CHAPTER 8

Control Panels

This chapter describes how to develop a control panel to control the settings of
systemwide features and how to create an extension for the standard Monitors control
panel.

Create a control panel if you want to provide users with the ability to set preferences for
global values or systemwide features. Some of the standard control panels allow users to
change the speaker volume, set the date and time, and select a different desktop pattern.
Although you must not develop control panels to replace the standard ones, you can
create additional control panels for any features that meet the stipulations for control
panels. If the feature that you want to implement as a control panel is complex or if its
interface requires menu items and multiple, layered dialog boxes, you should create a
small application instead of a control panel.

If you are a manufacturer of a video device, you can extend the standard Monitors
control panel to include items that give users a simple way to control the features of your
device. To do this, read the sections in this chapter that describe how to create an
extension to the Monitors control panel. The standard Monitors control panel lets the
user define the monitor’s display of colors and, if more than one monitor is connected to
the system, the relative position of each monitor. The Monitors control panel manages
any extensions to it that you create.

To use this chapter, you should be familiar with how to create' BNDL' , ' | CN#' ,

' FREF' , signature, and ' DI TL' resources as described in the chapters “Finder
Interface” and “Dialog Manager” of Inside Macintosh: Macintosh Toolbox Essentials. You
should also understand how to handle events and change settings of controls, as
explained in the chapters “Event Manager” and “Control Manager” of Inside Macintosh:
Macintosh Toolbox Essentials.

The Finder, which performs a number of services for your control panel, uses the Dialog
Manager to display your control panel’s dialog box. In turn, the Dialog Manager uses the
Control Manager to create and display buttons, radio buttons, checkboxes, and pop-up
menus. Your control panel needs to make these controls active and inactive in response
to messages from the Finder. If you include editable text items in your control panel, the
Dialog Manager uses TextEdit to handle associated editing tasks. (For general
information on TextEdit, see the chapter “TextEdit” in Inside Macintosh: Text.)

This chapter provides a general introduction to control panels and introduces the
Monitors control panel. It then describes how to

» define the user interface for a control panel

= create the resources for a control panel, including the rectangle and item list resources
» specify the font for your control panel’s text

= write a control panel function

» write an extension for the Monitors control panel

8-3

S|aued |01U0D n

CHAPTER 8

Control Panels

About Control Panels

This section provides an overview of control panels, the resources that a control panel
requires, and the Finder’s relationship to a control panel. It also distinguishes the
services the Finder performs for a control panel from those that your control panel code
must implement.

This section also provides an overview of the Monitors control panel and extensions to it,
including the resources that a monitors extension requires.

Control Panels

A control panel manages the settings of a systemwide feature, such as the amount of
memory allocated to a disk cache, the volume of the speaker, or the picture displayed by
a screen saver. A control panel can also allow the user to set a global value, such as the
highlight color. On the screen, a control panel appears as a modeless dialog box with
controls that let users specify basic settings and preferences for the feature. A control
panel file (a file of type ' cdev') contains the required resources that implement the
feature and define the look of the control panel’s user interface, including its icon. A
control panel file also contains any optional resources needed to implement the feature.

Among the required resources in a control panel file is a code resource that consists of a
control device function. A control device function, also referred to as a cdev function,
implements the features of the control panel and performs any services offered by the
control panel. Control device functions interact and communicate with the Finder. The
Finder provides a number of services for control device functions, including interfacing
with the Dialog Manager to create and manage each control panel’s dialog box.

A control panel allows the user to modify whatever settings the particular control panel
supports. A user opens a control panel from the Finder. Each control panel appears in its
own dialog box. Because each control panel is an independent executable file, more than
one control panel can remain open at a time, and the user can move among them or run
another application while one or more control panels are open. Figure 8-1 shows two
control panels open on the desktop. Like other windows, control panels can be dragged
on the desktop. The frontmost control panel is the active one.

About Control Panels

CHAPTER 8

Control Panels

Figure 8-1

=[I=- General Controls

Rate of Insertion
Foint Blinking

Cezktop Pattern

I:":":":‘ I:l Slowr Fast

Two control panels, each with its own window

Keyboard

Rate

)

Fast

Lelay Until Repeat

O OO0

Off Long Short

Fenu Etinking Time ®
NEAD Q311 AM
== | ® 120, () 24hr.
O oo® | o [E
off 1z 2 12/17/92

Keyboard Laygout

You cannot define your own menus for a control panel, but the user can use most of the

Finder’s Edit menu commands while working in the control panel. When your control
panel is active and the user chooses a command from the Edit menu, the Finder passes
the Undo, Cut, Copy, Paste, or Clear commands to your control device function for

processing. Your control device function can respond to these messages from the Finder

when it is appropriate to do so; for example, if your control panel has an editable text
item, your function should respond to editing commands.

Many standard control panels are provided with the system software. For example, the
Sound control panel lets the user specify the volume and type of alert sound. The Mouse
control panel lets the user define the speed of the onscreen cursor relative to movement
of the mouse; the user can also set the double-click speed. The Startup Disk control panel
lets the user specify the boot drive.

About Control Panels

S|aued |01U0D n

CHAPTER 8

Control Panels

Figure 8-2 shows the General Controls control panel, which lets the user set the Finder’s
desktop color and pattern, the blinking rate of the insertion point, the number of times a
menu item blinks once the user chooses it, and the time and date.

Figure 8-2 The General Controls control panel

=

beneral Controls

Rate of Inzertion
FPoint Elinking

Desktop Pattern l:::l @ l:::l

I:":":":l I:l Slow Fast

Fenu Elinking Tirne ®
== Q:46:524 AM
Ea & 12hr. () 24hr.
D D {:} @ Date E
off 1 2 3 44 1793

A Control Panel's Resources

A control panel file must contain certain required resources. In addition to these, your
control panel can include optional resources. You can also create any other types of
resources that your control device function needs and include them in the control panel
file. The resources you provide in your control panel file must adhere to conventions
governing the resource ID numbers; see “Resource IDs for Control Panels” on page 8-14
for information on these conventions. These are the required resources:

= A rectangle positions (' nrct ') resource. This resource specifies the number of
rectangles that make up the display area of your control panel and a list of the
coordinates defining the position for each rectangle. (Your control panel interface can
have one or more rectangles containing the controls that let the user set and change
values or otherwise manipulate the feature the control panel governs.)

= Anitem list (' DI TL') resource. This resource specifies the items in your control panel.
You can specify in this resource items such as static text, buttons, checkboxes, radio
buttons, editable text, user items, icons, QuickDraw pictures, and other types of
controls, such as pop-up menus.

= A machine (" mach') resource. This resource specifies the types of systems on which
your control panel can run.

s A black-and-white icon list (' | CN#') resource and other resources associated with an
icon family. These resources define the icon for your control panel file. The icon family
resourcesare' | CN#' ,'ics#' ,'icl8' ,'icl4',"ics8 ,and'ics4'.Seethe
chapter “Finder Interface” in Inside Macintosh: Macintosh Toolbox Essentials for
information on how to create an icon family.

About Control Panels

CHAPTER 8

Control Panels

= Abundle (' BNDL') resource. This resource groups together the control panel’s
signature, icon, and file reference resources.

= A file reference (' FREF') resource. This resource associates icons with your control
panel file; the Finder uses this information to display the icon for your control panel
file.

= A signature resource. This resource contains a unique four-character sequence that has
the same value as your control panel’s creator type.

» A control device (' cdev') code resource. This resource contains the code that
implements the control panel.

Although it is not required, you can also include a font information (' f i nf ') resource in
your control panel file. This resource type lets you specify the font of your control
panel’s static text items. If you don’t include a font information resource, the Finder uses
the default application font, which is 9-point Geneva for Roman scripts.

The control device code resource contains a control device function, which must be the
first section of code in the resource. The control device function handles messages from
the Finder and implements the work your control panel is designed to do. The Finder
handles such actions as displaying your control panel’s dialog box and tracking controls
init.

The Finder’s Interaction With Control Panels

The Finder performs the following services on behalf of your control panel:

= queries your control device function initially, to determine whether it can run on the
available software and hardware configuration

= requests your control device function to perform any needed initialization when the
user first opens your control panel

= displays dialog items defined by your control panel file
= tracks user actions in controls defined by your control panel file

= manages the modeless dialog box in which your control panel is displayed (For
instance, the Finder responds appropriately when the user drags the modeless dialog
box or clicks its close box.)

= sends your control device function the information it needs to respond to specific
events or to handle Edit menu commands

= displays messages to the user when the control panel cannot run on the current
system and when your control device function returns an error code

Your control panel should

= provide both the required resources and any additional resources that the Finder
needs to run your control panel

= initialize, open, and close your control panel appropriately as requested by the Finder

About Control Panels 8-7

S|aued |01U0D n

8-8

CHAPTER 8

Control Panels

= respond to activate events as requested by the Finder
= draw user items in response to update events as requested by the Finder
= respond to user actions in controls as requested by the Finder

= respond to user keystrokes as requested by the Finder

Control Panels and System Extensions

Many control panels rely on system extensions (files of type ' | NI T') to implement their
features. For example, you might implement a screen saver as a system extension and
create a control panel that allows the user to set specific features of the screen saver, such
as the color of the picture displayed. Although the extension creates and manages the
screen saver, the user might control the look of the screen saver through settings in the
control panel. In this scenario, which is used as an example throughout this chapter,

the control device function and its system extension communicate and share values
related to settings that the user changes.

If you use a system extension with your control panel, include it in the control panel file
along with the required resources and any other optional resources you use. In System 7,
system extensions can be installed in the Control Panels folder or the Extensions folder
(both of which are stored in the System Folder) or directly in the System Folder.
However, if it contains a system extension, your control panel file must reside in the
Control Panels folder within the System Folder. At startup time, the system software
opens files of type ' cdev' that reside in the Control Panels folder and executes any
system extensions that it finds there. If the system extension portion of a control panel is
not loaded at startup, the control panel won’t function properly.

About User Documentation for Control Panels

Because control panels are like independent files, you or the user can install and store
them anywhere in the file system. Users might want to store frequently used control
panels in the Apple Menu Items folder or in a folder containing other utilities.

You should refer to a file of type ' cdev' as a control panel file in any user documentation
that you provide. Don't refer by name to the file type of this file or any other file. If your
control panel file includes a system extension, you should direct the user to install it in
the Control Panels folder or provide an installation script for this purpose. System
software provides an alias (a file that points to another file) of the Control Panels folder
for quick access from the Apple menu. Figure 8-3 shows many control panel icons in the
Control Panels folder.

About Control Panels

CHAPTER 8

Control Panels

Figure 8-3 Control panel icons in the Control Panels folder
System Folder
38 items= T0.Z MEB in disk 4.7 ME awvailable
Mame Size Kind
[[0 Apple Menu Items - folder
[+ [3 Applelink Out Basket — folder
=S0=—— Control Panels ——a0————3
21 iterns T0.Z MB in disk 4.7 MB available
G e
I == e
Color Easy Access General Controls
= |\d R &
— Sl i © Dl =
kKeyboard Labels Map Mernary Monitars
[e
rE f i L) I 5 A
= =
Mauze Sharing Setup Sound Startup Disk Views
r
[
L 1
File Sharing Monitor Users & Groups o
<allli &

The Monitors Control Panel and Extensions to It

The standard Monitors control panel lets the user define the monitor’s display of colors
or shades of gray. If more than one monitor is connected to the system, the Monitors
control panel also allows the user to define the relative position of each monitor and
choose which monitor is the startup screen. If you are a manufacturer of a video card,
you can create a monitors extension to give users a simple way to control the features of
your device through the Monitors control panel. A monitors extension controls the
features of your video card only, not systemwide features. For example, a monitors
extension might allow the user to set the virtual screen size for a single monitor but not
the size of the menu bar, which can appear on any monitor. If you require a more
complex interface, such as your own menu items or several levels of nested dialog boxes,
you should create a small application rather than an extension to the Monitors control
panel.

The Monitors control panel manages any extensions to it that you create, and the user
can open an extension only through the Monitors control panel. Like a control panel file,
a monitors extension file has a file type of ' cdev' . A monitors extension file contains
resources for the monitors extension, including a code resource of type' mtr' . If you
want to create a separate control panel to let the user control the settings of another
feature of the same video card, you can include the control panel’s resources and code in
the same file as your monitors extension. In this case, you create the control panel just as
you do any other independent control panel. If a user opens your independent control

About Control Panels 8-9

S|aued |01U0D n

CHAPTER 8

Control Panels

panel, the Finder displays the control panel defined in your file and ignores the monitors
extension in that file, just as the Monitors control panel ignores the independent control
panel defined in your file when it opens the file to display the monitors extension.

The Monitors control panel allows a user to

» select which one of the monitors connected to the computer to use as a startup screen
(that is, which monitor displays the menu bar)

» inform system software about the relative locations of the monitors

= control some features of the monitors, for instance, how many colors or shades of gray
are displayed

Figure 8-4 shows an example of the Monitors control panel.

8-10

Figure 8-4 The Monitors control panel
S[I=—— Monitors
Characteristics of selected monitor : 7.0
3 Grays: | Black & White
4
) Colors: 16

Drag monitors and renu bar to rearrange thermn.

If more than one video card is installed in the computer, the Monitors control panel
shows all of the connected monitors. When the user selects one monitor, then clicks the
Options button, the Monitors control panel displays the Options dialog box for that
monitor. When you provide a monitors extension for the Monitors control panel, the
controls you add appear in this dialog box.

Figure 8-5 shows an example of an Options dialog box for the SurfBoard video card. The
OK and Cancel buttons are standard for all Options dialog boxes. In this example, the
developers of the SurfBoard video card have provided a monitors extension that adds
two items to the the Options dialog box: the Magnify Enabled checkbox and static text
listing the manufacturer’s name.

About Control Panels

CHAPTER 8

Control Panels

Figure 8-5 An Options dialog box for the SurfBoard video card

| Maonitors |

SurfBoard Display Card

River Change Systerns
. rmonitars extension
[JMagnify Enabled Copyright @ 1993

A monitors extension file must contain these four resources:

= Acard (' card') resource. This resource contains a Pascal string identical to the name
stored in the declaration ROM of the video card. You can include as many card
resources as you like, so that one extension file can handle several types of video
cards.

= A monitor (mtr') code resource. This resource carries out the functions of your
monitors extension.

= Arectangle (' RECT') resource. This resource describes the size and shape of the area
that your controls occupy.

= Anitem list (' DI TL') resource specifying the items in your monitors extension. You
can also add additional controls, separated from other controls by a horizontal line,
for the benefit of advanced users (superusers).

Your monitors extension file can also include any of the following resources:

= One or more members of an icon family (' | CN#',"ics#','icl 8" ,"icl4",
"ics8',and' i cs4'), each with resource ID —4064, that define an icon for your video
card. If you provide any of these resources, the Monitors control panel displays the
appropriate icon from the icon family in the upper-left corner of the Options dialog
box.

= Additional icon family resources to provide a unique icon for your monitors extension
file.

= Aversion (' vers') resource. This resource provides version information for your
monitors extension.

= Astring list (" STR#') resource defining one or more video card names. If you want
the Options dialog box to display a name that is different from the one in the
declaration ROM of the card, define the alternate name in an' STR#' resource.

About Control Panels 8-11

S|aued |01U0D n

CHAPTER 8

Control Panels

= One or more gamma table (' gama') resources. Here you can include gamma tables
that allow your video card to provide the most accurate colors possible.

= A file reference (' FREF') resource. This resource associates icons with your monitors
extension file; the Finder uses this information to display the icon for your
monitors extension file.

= Abundle (' BNDL') resource. This resource groups together the monitor extensions’
signature, icon, and file reference resources.

= Asystem extension (' | NI T') resource. Although this resource acts independently of
other resources in the file, it should be related to the monitors extension.

= A signature resource (of type ' STR ').

Creating Control Panel Files

8-12

This section describes how to create your control panel’s resources, including the code
resource that implements the control panel. This section discusses how to

= define the user interface for your control panel

= create resources for your control panel, including those that define
o control panel rectangles
o the item list resource
o icons
o the machine resource

o the file reference, bundle, and signature resources
= specify the font of static text in your control panel
= write a control panel function

Before you begin, consider whether the feature that you have in mind is best governed
by a control panel. It should be a systemwide feature amenable to manipulation by the
user, who would use the control panel only occasionally to set or change preferences. If
you find that you need special menus or nested dialog boxes to implement your control
panel, create a small application instead.

Defining the User Interface for a Control Panel

The user interface for a control panel consists of the display area defined by the dialog
box and its controls, including checkboxes, buttons, static text, editable text, and user
items. In addition, you need to provide an icon for your control panel file, for display by
the Finder. A control panel can open in a modeless dialog box of any size, limited only
by the screen display.

Creating Control Panel Files

CHAPTER 8

Control Panels

Your control panel’s display area can consist of one or more rectangles; you determine
the display area by defining the rectangles and their positions. You specify these values
in your control panel’s rectangle positions (' nr ct') resource. These rectangles
essentially determine the size of the dialog box. The Finder calculates the boundaries of
the dialog box from the coordinate values you specify in your rectangle positions
resource.

When deciding on the size and number of your rectangles, consider the number and
placement of the buttons, checkboxes, text, and other items in your control panel. Allow
enough space for the user to distinguish them easily. Because control panels are
generally used only occasionally, make the interface as simple as possible. If you choose
the default settings well, the user should seldom need to use your control panel.

Figure 8-6 shows the user interface for the River control panel used as an example
throughout this chapter. It governs certain features of River, a screen saver system
extension.

Figure 8-6 The River control panel interface
E[I== River S5creen Saver =——=
River Change Systems (@& On
1993) OFF
Flow Direction: @ Uphill
3 Downhill
i Circular
River color: | Orange]

Delocity: mph

[JPlay Babble Sound

In System 7, you can include a font information resource that specifies the font in which
the Finder displays your control panel’s static text items. (For information on creating a
font information resource, see “Specifying the Font of Text in a Control Panel” on

page 8-23.) Choose a font that is easy to read. In System 7, the control panel interface
allows ample space for larger point sizes; Apple recommends 12-point Chicago.

If you don’t include a font information resource, the Finder uses the default application
font for static text items. For Roman scripts, this is 9-point Geneva. (The static text of the
River control panel illustrated in Figure 8-6 is 12-point Chicago because this control
panel provides a font information resource for this purpose.) Note that the Finder uses
the system font to draw text strings that you define as part of a control item in your item
list; for Roman scripts, this is 12-point Chicago.

Creating Control Panel Files 8-13

S|aued |01U0D n

CHAPTER 8

Control Panels

If your control panel runs in both System 7 and System 6 but you wish to display your
control panel’s static text in 12-point Chicago, you can define the text as user items. See
“Defining Text in a Control Panel as User Items” on page 8-24 for details.

If you wish, you can create an icon family to specify the icon that the Finder uses to
represent your control panel file. The icon family resources are' | CN#' , ' i cs#',

"icl8 ,"icl4'","ics8 ,and'ics4' .

The icons for a control panel file are square and include a horizontal or vertical slider
along with a graphic representing the feature governed by the control panel. Figure 8-7
shows an icon for the River control panel file.

Figure 8-7 An icon for the River control panel file

8-14

<

-

—

-

See Macintosh Human Interface Guidelines for more information on designing an icon. For
complete information on designing a dialog box, see the chapter “Dialog Manager” in
Inside Macintosh: Macintosh Toolbox Essentials.

Creating a Control Panel’s Resources

The following sections describe the required and optional resources that you supply for
your control panel. The first section contains general information that applies to all of the
individual resources. Later sections discuss each of the required resources and some
optional resources.

Resource IDs for Control Panels

Every resource has a resource ID. With one exception, all resource IDs for control panel
resources, including standard resources and resources you define yourself, must be in
the range of 4064 through —4033. The exception is the resource for the icon help balloon
(" hf dr') resource, whose resource ID is —-5696.

Of this range, resource IDs from —4064 through —4049 are reserved for standard resources
and some optional resources.

You can assign resource IDs in the range —4048 through —4033 to any private resources
that you define for your control panel.

Note

You can use a high-level tool such as the ResEdit application, which is
available through APDA, to create your resources. (See ResEdit Reference
for details on using ResEdit.) You can also use the Rez utility. O

Creating Control Panel Files

CHAPTER 8

Control Panels

Defining the Control Panel Rectangles

Your control panel can consist of one rectangle, as in Figure 8-8, or several (see Figure 8-2
on page 8-6 and Figure 8-6 on page 8-13). You define these rectangles in a rectangle
positions (' nrct ') resource. You specify in this resource the number of rectangles for
your control panel and a list of the coordinates for each rectangle. You must specify a
resource ID of —4064 for a rectangle positions resource.

Figure 8-8 The Color control panel

Si— Color ——

Highlight color: [l Black & White v|

Window color: [[3J Standard |

In the rectangle positions resource you specify a rectangle’ s coordinates in this order:
top, left, bottom, and right. Although you can define a control panel of any size (limited
only by the screen display), you must specify the coordinates (-1,87) as the origin
(upper-left point) of the upper-left rectangle. To provide for backward compatibility with
the Control Panel desk accessory, the Finder accepts only these coordinates as the origin
of a control panel. If you are designing for System 7 only, you can extend the bottom and
right edges of a control panel as far as you like. If you want your control panel to run in
System 7 and previous versions of system software, you must limit your control panel’s
size to the area bounded by (-1,87,255,322). These are the coordinates used by the
Control Panel desk accessory.

The Control Panel Desk Accessory

In System 6, the Control Panel desk accessory is a single interface shared
by all control panels. It has two parts: a scrollable list of icons
representing the control panels a user can open as part of the desk
accessory and a display area of fixed size. If you want to make your
control panel compatible with the Control Panel desk accessory, it must
fit in this area. The Control Panel desk accessory acts as a driver
interfacing with and managing the control panels whose icons it
displays. All of the control panels represented by icons in the scrollable
list share the same display area. For this reason, a user can open only
one control panel at a time. O

If you want to make your control panel backward compatible, remember that the
Control Panel desk accessory draws a frame that is 2 pixels wide around each rectangle.
To join two parts of a panel neatly, overlap their rectangles by 2 pixels on the side where
they meet.

Creating Control Panel Files 8-15

S|aued |01U0D n

CHAPTER 8

Control Panels

Figure 8-9 shows the coordinates of the two rectangles that make up the River control
panel. Because the River control panel has relatively few items, they fit well within the
space constraints imposed by the Control Panel desk accessory. Thus, this control panel
can run in both the Finder in System 7 and the Control Panel desk accessory in System 6.

Figure 8-9 Coordinates defining the rectangles of the River control panel display area

=0
River Change Systems (® On
(40, 87)—— | @ 1993 O 0ff

River 5creen Saver

(-1,87)

i i] — (42, 322)
Flow Direction: & Uphill

3 Downhill
iy Circular

River color: | Orange |

Delocity: mph

[JPlay Babble Sound

(255, 322)

Listing 8-1 shows the Rez input for the rectangle positions resource that specifies the
rectangles for the River control panel.

Listing 8-1 Rez input for a rectangle positions list (' nrct') resource

resource 'nrct' (-4064, purgeable) {
{ /*array RectArray: 2 elenents*/

[*[1] %1
{-1, 87, 42, 322},
[*[2]*/
{40, 87, 255, 322}
}
b

If you define two or more rectangles that together do not form a complete square or
rectangle in relation to the bounding dialog box that the Finder creates, the Finder fills in
any blank space on the control panel with a gray pattern.

8-16 Creating Control Panel Files

CHAPTER 8

Control Panels

Note

In System 6, the Control Panel desk accessory first fills in the area
defined by the coordinates (-1,87,255,322) with a gray background
pattern. It then creates white areas corresponding to the rectangles you
define. In these, it draws the items of your control panel. The Control
Panel desk accessory outlines the rectangles with a 2-pixel-wide
frame. O

Creating the Item List Resource

You define the items in your control panel and their positions within its rectangles using
anitem list (' DI TL') resource. These items can include static text, buttons, checkboxes,
radio buttons, editable text, the resource IDs of icons and QuickDraw pictures, and

the resource IDs of other types of controls, such as pop-up menus. You must specify a
resource ID of —4064 for your control panel’s item list resource.

An item list contains a display rectangle for each item. A display rectangle determines
the size and location of the item. You must specify the coordinates of an item’s display
rectangle relative to the origin of the control panel’s upper-left rectangle.

Recall that the origin (the point at the extreme upper left) of your control panel must
coincide with the coordinates (-1,87). In the Control Panel desk accessory, the origin is at
the upper left of the rectangle containing the scrollable list of icons, to the left of the
display area. A 2-pixel-wide frame borders the rectangle containing the scrollable list of
icons.

Listing 8-7 shows the item list resource for the River control panel. Notice that the item
list includes a static text item (item 2) giving the control panel’s name and copyright. The
upper-left point of the display rectangle for the static text lies at the coordinates (4,95).

In Listing 8-7, some items are defined as enabled and some as disabled. By specifying
each item in the item list as enabled or disabled, you inform the Dialog Manager
whether or not to report user clicks in the item.

Depending on the type of item, you usually provide a text string or a resource ID for the
item.

Note that text in a control panel is defined either as part of a control (such as labels for
buttons, checkboxes, radio buttons, and pop-up menus), or as separate items (static text,
editable text, or user items). For example, the text “River color” is defined as part of a
pop-up control in a separate menu resource and the text “mph” is defined as a static text
item.

The item list resource for the River control panel defines text that is not provided by a
control as static text items; in addition to the product name, these static text items
include “Flow Direction:” and “Velocity:” (see Figure 8-6 on page 8-13). The item list
resource defines one editable text item, setting the default text for this item to 55. It also
defines the editable text item as disabled. If you define an editable text item as disabled,
the Dialog Manager and TextEdit handle user input in the editable text item.

Creating Control Panel Files 8-17

S|aued |01U0D n

CHAPTER 8

Control Panels

IMPORTANT

If you want to use a font other than the default application font for
your control panel’s text and you want your control panel to run in the
Control Panel desk accessory of System 6, you must define the text as
user items instead of static text items. For more information on this, see
“Defining Text in a Control Panel as User Items” on page 8-24. O

In Listing 8-7, the first item in this resource is an enabled button labeled “Show Me.”
This is the River control panel’s default button. (The Control Manager positions the label
inside the button and draws it using the system font.) Notice that the outline around the
button, which identifies it as the default button, is defined as a separate item (a disabled
user item) toward the end of the listing.

All of the other controls with which the user interacts are defined as enabled—the On
and Off radio buttons, the radio buttons beside the label Flow Direction, the Play Babble
Sound checkbox, and the River color pop-up control. When these controls are active, the
user can click them, changing settings and making selections. The up and down arrows
are defined as enabled user items, and the item list resource includes a picture item that
refers to a resource containing a QuickDraw picture of the arrows. Finally, the item list
resource includes a help item referencing the resource ID that defines the help balloons
for the River control panel.

Listing 8-2 Rez input for an item list (' DI TL') resource

resource 'DITL" (rControl Panel Di al og, purgeable) {
{ /*array: 18 el enents*/

[*[1]*/

{219, 237, 239, 308},

Button { enabl ed, " Show Me" },
[*[2]*/

{4, 95, 44, 247},

StaticText { di sabl ed, "Ri ver Change Systems\n© 1993" 1},
[*[3]*/

{2, 254, 21, 302},

Radi oButton { enabl ed, "On" },
[*[4]*]

{22, 254, 40, 302},

Radi oButton { enabl ed, "OFf" },
[*[5]*/

{51, 95, 70, 196},

StaticText { di sabl ed, "Fl ow Direction:" },
[*[6]*/

{50, 197, 68, 303},

Radi oButton { enabl ed, "Uphi " },

8-18 Creating Control Panel Files

CHAPTER 8

Control Panels

}s

For complete information on creating an item list resource, see the chapter “Dialog

[*[7]*/

{69, 197, 87, 303},

Radi oButton { enabl ed, "Downhi 1"
[*[8]*/

{88, 197, 106, 303},

Radi oButton { enabl ed, "Grcular"
[*[9]*/

{157, 95, 178, 156},

StaticText { di sabl ed, "Velocity:"
/*[10] */

{156, 162, 172, 180},

Edi t Text { di sabl ed, " 55"

[*[11] (up arrow)*/

{150, 184, 162, 201},

Userltem { enabl ed

/*[12] (down arrow)*/

{163, 184, 175, 201},

Userltem { enabl ed

[*[13] (picture of up/down arrows)*/
{150, 184, 175, 201},

Picture { di sabl ed, —-4048
[*[14] */

{157, 202, 176, 242},

StaticText { di sabl ed, "nmph"

/*[15] (outline around default button)*/
{212, 231, 247, 314},

Userltem { di sabl ed,
[*[16]*/

{188, 95, 208, 241},
Checkbox{ enabl ed,

"Play Babbl e Sound"

},

[*[17] (title & nenu itens defined by nmenu w res | D mPopUp) */

{122, 92, 142, 297},

Control { enabl ed, nPopUp

/*[18] get help balloon infornmation from'hdlg'
{0,0,0, 0},

Hel pltem { di sabl ed,

HVBcanhdl g /*scan resource type—hdl g

{-4064)

Manager” in Inside Macintosh: Macintosh Toolbox Essentials.

Creating Control Panel Files

resource*/

},

8-19

S|aued |01U0D n

8-20

CHAPTER 8

Control Panels

Defining the Icon for a Control Panel

You create an icon family to specify the icon that the Finder uses to represent your
control panel file. The icon family resources are' | CN#' ," i cs#','icl 8" ,"icl4",
"ics8',and ' ics4' . You must specify a resource ID of —4064 for the icon family
resources of a control panel and mark these resources as purgeable. If you provide the
complete icon family, the Finder displays the appropriate icon family member according
to the bit depth of the monitor. For more information on these icons, see the chapter
“Finder Interface” in Inside Macintosh: Macintosh Toolbox Essentials.

Specifying the Machine Resource

When the user opens your control panel, the Finder reads your machine (' mach')
resource from your control panel file. Depending on the value you specify in the
machine resource, the Finder takes one of two actions: (1) calls your control device
function, directing your function to check the current hardware and software
configuration to determine whether your control panel can run on the current system;
or (2) performs the check itself. You must specify a resource ID of —4064 for a machine
resource.

The machine resource consists of a hard mask and a soft mask. The Finder handles the
check if you set these masks to values indicating that your control panel runs on all
systems or to values representing the requirements for your control panel; the Finder
checks the current configuration in the latter case. If the Finder handles the check, it
never calls your control device function with a macDev message; instead, the Finder calls
your function for the first time with an initialization message. If the Finder determines
that your control panel cannot run on the current system, the Finder displays an alert
box to the user and does not open the control panel. (In System 6, the Control Panel does
not display the icon for a control panel file if the machine resource indicates the control
panel cannot run on the current system.)

If you set the hard mask to $FFFF and the soft mask to $0000, indicating your control
device function performs its own requirements check, the Finder calls your function with
a macDev message once only, and this is the first call the Finder makes to your function.
(See”Determining If a Control Panel Can Run on the Current System” on page 8-29 for a
discussion of how to handle a macDev message.)

Table 8-1 shows the values you use to set the machine resource masks.

Creating Control Panel Files

CHAPTER 8

Control Panels

Table 8-1 Possible settings for the machine resource masks
Soft mask Hard mask Action
$0000 $FFFF The Finder calls this control device function with a

macDev message, and the function must perform its own
hardware and software requirements check.

$3FFF $0000 This control panel runs on Macintosh II systems only.

$7FFF $0400 This control panel runs on all systems with an Apple
Desktop Bus (ADB).

SFFFF $0000 This control panel runs on all systems.

Listing 8-3 shows the Rez input for a machine resource. The values in this machine
resource indicate to the Finder that the control panel performs its own hardware and
software requirements check.

Listing 8-3 Rez input for a machine (" mach') resource

resource 'mach' (-4064, purgeable) {

OxFFFF, /*hard mask*/
0 /[*soft mask*/
s
Note

The machine resource allows the Finder to cache information about each
control panel. The user can force the Finder to rebuild the cache by
pressing Command-Option while opening the control panel. O

Creating the File Reference, Bundle, and Signature Resources

You must create a file reference resource, a signature resource, and a bundle resource to
enable the Finder to display the icon for your control panel. You must specify a resource
ID of —4064 for both a bundle resource and a file reference resource.

The file reference resource specifies a file type (for a control panel, ' cdev'), the local
resource ID of an icon list resource, and an empty string. The local ID maps the file type
(' cdev') to your icon list resource that is assigned the same local ID in the bundle
resource. Listing 8-4 shows the file reference resource for the River control panel.

Listing 8-4 Rez input for a file reference (' FREF') resource

resource ' FREF' (-4064, purgeable) {
‘cdev', 0, ""

b

Creating Control Panel Files 8-21

S|aued |01U0D n

CHAPTER 8

Control Panels

The Finder uses the signature resource with the bundle resource to establish your
control panel’s identity. You define a signature resource as a string resource (that is, a
resource of type ' STR ') and specify as its resource type a unique four-character
sequence that has the same value as your control panel’s creator type. A signature
resource has a resource ID of 0.

The signature resource contains a string that identifies your control panel; typically the
string specifies the name, version number, and release date of your control panel.
Listing 8-5 shows the River control panel’s signature resource, which has a signature of
"rivr',inRez input format.

Listing 8-5 Rez input for a signature resource

type 'rivr' as 'STR';
resource 'rivr' (0, purgeable) {
"River Control Panel 1.0"

b

Abundle (" BNDL') resource associates all of the resources that the Finder uses for your
control panel. It associates your control panel file and your control panel’s signature
with its icon. The Finder requires the information in the bundle resource in order to
display icons for your control panel. In the bundle resource, you must assign a local ID
to your icon list resource that matches the local ID you assigned inside the
corresponding file reference resource. In the bundle resource shown in Listing 8-6, local
ID 0 is assigned to the icon list resource with a resource ID —4064, which maps the icon
defined for the River control panel to the control panel file.

Listing 8-6 Rez input for a bundle (" BNDL') resource

8-22

resource 'BNDL' (-4064, purgeable) {
"rivr', O,
{ "IC\g', {0, -4064},
'"FREF', {0, -4064}

}s

(See the chapter “Finder Interface” in Inside Macintosh: Macintosh Toolbox Essentials for
complete information on how to create file reference, signature, and bundle resources.)

Providing Additional Resources for a Control Panel

In addition to providing required resources, you can supply optional resources for your
control panel. For example, you can supply resources to store the settings of controls,
text strings, or font information. The River control panel stores its controls’ settings in a
resource that it defines.

Creating Control Panel Files

CHAPTER 8

Control Panels

If you wish, you can provide help balloon resources. For example, you can include a
resource to define a help balloon for your control panel’s icon in the Finder. The resource
type of an icon help balloon resource is ' hf dr' , and its resource ID is -5696.

This is the only control panel resource whose resource ID is outside the range

of —4064 through —4033.

You can also include help balloon resources for specific items or areas of your control
panel. For example, you might include a help balloon resource to explain how to use a
control. For this purpose, you supply a resource of type ' hdl g' or' hrct' witha
resource ID of —4064. For information on how to create help balloon resources, see the
chapter “Help Manager” in this book.

If you define any other types of resources for your control panel, you must assign them
resource IDs in the range —4048 through —4033.

Specifying the Font of Text in a Control Panel

A control panel typically contains uneditable text that is part of a control item or defined
as static text. See Listing 8-7 on page 8-24 for examples.

The Finder uses the default application font to draw control panel items that you define
as static text. However, you can specify that a different font be used for this purpose.
There are two ways to do so. The easiest way is to define a font information (' fi nf"')
resource. This is the method you should use if you intend your control panel to run in
System 7 only.

If you want your control panel to be compatible with the Control Panel desk accessory,
you cannot use this method because the Control Panel desk accessory does not recognize
font information resources. In this case, you can use an alternative method, which entails
defining your control panel’s static text as user items, setting the font, and drawing the
text. This section explains both methods.

You can also specify the font to be used for each item by creating an item color table
("ictb')resource whose entries correspond to the items in your item list. However, you
cannot use this method in System 6, because the Control Panel desk accessory appends
your control panel’s item list to its own. For more information about the item color table
(" i ctb')resource, see the chapter “Dialog Manager” in Inside Macintosh: Macintosh
Toolbox Essentials.

Creating a Font Information Resource

You create a font information (' fi nf') resource to specify the font in which the Finder
displays your control panel’s static text. You include the font information resource in
your control panel file, and the Finder reads this resource when it opens your file. You
must use the resource ID —4049 for a font information resource.

In the font information resource, you specify the font ID number, the font style, and its
size. The Finder sets the graphics port’s t xFont , t xFace, and t XSi ze fields to the
values you specify, and QuickDraw draws the text using these values.

Creating Control Panel Files 8-23

S|aued |01U0D n

CHAPTER 8

Control Panels

Defining Text in a Control Panel as User Items

If you want to specify the font for your control panel’s text and also want your control
panel to run in both System 6 and System 7, you can define your control panel’s text as
disabled user items rather than as disabled static text items. Your control device function
must call QuickDraw to set the graphics port fields for the font and its characteristics,
and then draw the text at initialization and in response to update events. See “Handling
Text Defined as User Items” on page 8-43 for more information.

For these user items, you can define a string list (' STR#') resource to store the text
strings that make up your text. Your control device function can read the text from

the string list resource and store the text in a data structure in your control device
function’s private storage. If you do this, then your control device function can read the
values from its private storage whenever it needs to update user items.

Listing 8-7 shows a part of the River control panel’s item list with the control panel’s text
defined as user items. Because the user does not need to read the product title and
copyright regularly to interact with the control panel, the control panel defines this
string as a static text item; the Finder draws this text string only in 9-point Geneva. The
control panel defines all other text strings as user items, and the control device function
sets the font and draws those user items containing text.

Listing 8-7 A control panel’s static text defined as user items

8-24

resource 'DITL' (rControl Panel Di al og, purgeable) {
{ /* array DI TLarray: 18 elements */ }
[* .. %]
[* [2] */
{4, 95, 44, 247},
StaticText { di sabl ed, "Ri ver Change Systenms\n®© 1993" },
[* . .. %
[* [5] */
{51, 95, 70, 196},
Userltem { di sabl ed, /*Flow Direction:*/ },
[* . .. *
[* [9] */
{157, 95, 178, 156},
Userltem { di sabl ed, /*Vel ocity: */ },
[* .. %]
[* [14] */
{157, 202, 176, 242},
Userltem { di sabl ed, [*mph*/ }
[* . . . %
}
b

Creating Control Panel Files

CHAPTER 8

Control Panels

Writing a Control Panel Function

A control panel requires a control device (' cdev') code resource, which contains the
code that implements the feature your control panel provides. The first piece of code in
this resource must be a control device function that adheres to a defined interface. When
the user opens your control panel, the Finder loads your code resource (of type' cdev')
into memory.

The Finder calls your control device function, requesting it to perform the action
indicated by the nessage parameter, in response to events and the user’s interaction
with your control panel. Your control device function should perform the requested
action and return a function result to the Finder. Your control device function should
return as its function result either a standard value indicating that it has not allocated
storage, a handle to any storage it has allocated, or an error code. Here is how you
declare a control device function:

FUNCTI ON MyCdev(nessage, item numtens, CPrivateVal ue: |nteger
VAR t heEvent: Event Record;
cdevSt orageVal ue: Longlnt;
CPDi al og: Dial ogPtr): Longlnt;

The nessage parameter can contain any of the values defined by these constants:

CONST
macDev = 8; {determ ne whether control panel can run}
i ni tDev 0; {performinitialization}
hi t Dev = 1; {handle click in enabled itent
updat eDev 4; {respond to update event}
acti vDev = 5; {respond to activate event}
deActivDev = 6; {respond to control panel becom ng inactive}
keyEvt Dev = 7; {respond to key-down or auto-key event}
undoDev = 9; {handle Undo comuand}
cut Dev 10; {handl e Cut conmand}
copyDev = 11; {handl e Copy comand}
past eDev = 12; {handl e Paste conmand}
cl ear Dev = 13; {handl e d ear conmand}
nul Dev = 3; {respond to null event}
cl osebDev = 2; {respond to user closing control panel}

These constants (as specified in the nessage parameter) indicate that your control
device function should perform the following actions:

= macDev. Determine whether the control panel can run on the current system, and
return a function result of 1 if it can and 0 if it cannot.

» i ni t Dev. Perform initialization.

= hi t Dev. Handle a click in an enabled item.

Creating Control Panel Files 8-25

S|aued |01U0D n

8-26

CHAPTER 8

Control Panels

= updat eDev. Update any user items and redraw any controls that are not standard
dialog items handled by the Dialog Manager.

= acti vDev. Respond to your control panel becoming active by making the default
button and any other controls in your control panel active.

= deAct i vDev. Respond to your control panel becoming inactive by making the default
button and any other controls in your control panel inactive.

= keyEvt Dev. Handle a key-down or auto-key event.

= undoDev. Handle an Undo command.

= cut Dev. Handle a Cut command.

= copyDev. Handle a Copy command.

= past eDev. Handle a Paste command.

= cl ear Dev. Handle the Clear command.

= nul Dev. Handle a null event by performing any idle processing.

= cl oseDev. Handle a click in the close box by terminating, after disposing of any
handles and pointers created by your function.

The control device function that implements the River control panel used as an example
in this chapter shows one way of handling messages from the Finder. In this scenario,
the user sets the screen saver’s characteristics using the River control panel. The River
control panel (' cdev') file includes a system extension that displays the screen saver
when the user signals it to do so. The River control panel uses the system extension to
display the screen saver using the current settings whenever the user clicks the panel’s
default button (Show Me). (See Figure 8-6 on page 8-13.)

The River control device function reads control settings from a resource stored in its
preferences file, which is stored in the Preferences folder, and writes new values to that
file at certain points after the user changes control settings. The control device function
alerts the system extension of changes in the preferences file, and the system extension
gets the new values to use from the preferences file.

In addition to the required resources, the River control device function uses a number of
private resources that are included in the control panel file.

Listing 8-8 shows the River control panel’s control device function, called mai n. To
respond to requests from the Finder, the function uses a CASE statement that handles
each type of message sent by the Finder.

The remainder of this section discusses each of these messages in detail and includes
code showing how the River control panel processes the messages.

Creating Control Panel Files

CHAPTER 8

Control Panels

Listing 8-8 A control device function

UNIT Ri verCP;
| NTERFACE

{include a Uses statenent if your progranmi ng environnent requires it}
CONST

kShowive = 1;
kOnRadBut t on = 3
kOf f RadBut t on = 4;
kUphi | | RadBut t on = 6,
kDownhi | | RadBut t on =7,
kCi r cul ar RadBut t on = 8;
kVel oci t yEdi t Text = 10;
kUser |t emJpAr r ow = 11;
kUser | t enDownAr r ow = 12;
kPi ct = 13;
kUserltenButtonCQutline = 15;
kBabbl eCheckBox = 16;
kRi ver Col or Menu = 17;
TYPE
M/Ri ver St or age =
RECORD

err: Longl nt;

count: Longl nt;

settingsChanged: Bool ean;

END;

M/Ri ver St or agePt r = "MyRi ver St or age;
MR ver St or ageHndl = "MWRi ver St or agePtr;

FUNCTI ON rmai n (nessage, item numtens, CPrivateVal ue: |Integer;
VAR t heEvent: Event Record; cdevStorageVal ue: Longlnt;
CPDi al og: DialogPtr): Longlnt;

| MPLEMENTATI ON
FUNCTI ON mai n;

{any support routines used by your control panel function}

VAR
nyRi ver Hndl : M/Ri ver St or ageHndl ;
i ni t DevOr MacDevMsg: Bool ean;
okToRun: Longl nt ;
cpMenkrror: Bool ean;
BEG N
cpMentrror : = MyRoomToRun(nessage, cdevStorageVal ue);

Creating Control Panel Files 8-27

S|aued |01U0D n

CHAPTER 8

Control Panels

| F cpMenError THEN {an error occurred or there isn't enough nmenory }
mai n ;= cdevMenErr { to run, return inmediately}
ELSE {handl e t he nmessage}
BEG N
I F (nessage <> macDev) AND (nmessage <> initDev) THEN
nyRi ver Hndl : = MyRi ver St or ageHndl (cdevSt or ageVal ue) ;
CASE nessage OF
macDev: {check nachi ne characteristics}

BEG N
MyCheckMachi neChar acteri sti cs(okToRun);
mai n : = okToRun;

END;

initDev:{performinitialization}
Myl nitializeCP(cdevSt orageVal ue, CPDi al og, nyRi verHndl);
hitDev: {user clicked dialog iten
BEG N
item:=item- numtens;
MyHandl eHi t I nDi al oglten(item cdevStorageVal ue,
CPDi al og, nmyRi verHndl);
END;
activbDev: {control panel is becomnming active}
MyAct i vat eCont r ol Panel (cdevSt or ageVal ue, CPDi al og,
myRi ver Hhdl , TRUE) ;
deActivDev: {control panel is beconing inactive}
MyAct i vat eCont r ol Panel (cdevSt or ageVal ue, CPDi al og,
myRi ver Hndl , FALSE) ;
updat eDev: {update event -- draw any user itens}
MyUpdat eCont r ol Panel (cdevSt orageVal ue, CPDi al og, nyRi ver Hndl);
cut Dev, copyDev, pasteDev, clearDev: {editing comand}
MyHandl eEdi t Coormand(nessage, CPDi al og);
keyEvt Dev: {keyboard-rel ated event}
MyHandl eKeyEvent (t heEvent, CPDi al og, nessage);
nul Dev: {null event -- performidle processing}
MyHandl el dl ePr ocessi ng(cdevSt orageVal ue, CPDi al og, nmyRi ver Hndl);
cl oseDev: {user closed control panel, release nmenory before exiting}
MyCl oseCont r ol Panel (nyRi ver Hndl, cdevSt or ageVal ue) ;
END; {of CASE}
| F message <> macDev THEN

mai n : = Longl nt (cdevSt or ageVal ue);
END; {of handl e nessage}
END; {of main progran

END.

8-28 Creating Control Panel Files

CHAPTER 8

Control Panels

When the Finder first calls your control device function, the current resource file is set to
your control panel (' cdev') file, the current graphics port is set to your control panel’s
dialog box, and the default volume is set to the System Folder of the current startup disk.
Your control device function must preserve all of these settings.

Although the Finder intercedes with the system software and performs services on
behalf of your control device function, it is your control device function’s responsibility
to detect and, if possible, recover from any error conditions. To avoid a memory error
condition, your function should ensure that enough memory is available to handle the
message from the Finder. On entry, the mai n function calls its MyRoomlroRun procedure
to perform this check.

The next sections describe how to handle each message passed in the nessage
parameter.

Determining If a Control Panel Can Run on the Current System

If you want your control device function to determine if your control panel can run on
the current system, specify the values in your machine resource accordingly (see

Table 8-1 on page 8-21). In this case, the Finder calls your function for the first time with
a macDev message. The Finder calls your control device function with a macDev
message only once.

In response to the macDev message, your control device function can check the
hardware configuration of the current system. As necessary, your control device function
should determine which computer it is being run on, what hardware is connected, and
what is installed in the slots, if there are slots. The application-defined

MyCheckMachi neChar act eri st i cs procedure, used in Listing 8-8 on page 8-27,
performs these checks for the River control panel. Your control device function should
return either a 0 or a 1 as its function result in response to the macDev message. These
values have specific meanings in response to a mac Dev message, and the Finder does not
interpret them as error codes. If your control panel file can run on the current system,
return a function result of 1; if your control panel file cannot run on it, return a function
result of 0. If your function returns a result of 0, the Finder does not open your control
panel; instead, it displays an alert box to the user.

Note

If your machine resource specifies that your control panel runs on all
systems, or if the machine resource identifes the restrictions that apply
to your control panel, the Finder does not call your control device
function with a macDev message. O

Initializing the Control Panel Items and Allocating Storage

If your control panel can run on the current system, the Finder calls your control device
function and specifies i ni t Dev in the message parameter. Except for a macDev
message, your control device function should not process any other messages before it
receives and successfully processes an i ni t Dev message. In response to an i ni t Dev
message, your function should allocate any private storage it needs to implement its

Creating Control Panel Files 8-29

S|aued |01U0D n

8-30

CHAPTER 8

Control Panels

features, initialize the settings of controls in the control panel, and perform any other
necessary initialization tasks.

Because control panels cannot use normal global variables to retain information once the
control device function returns, the interface between the Finder and the control device
function provides a way to preserve memory that your control device function might
allocate. If, for example, your control device function allocates memory to save data
between calls, you return a handle to the allocated memory as the function result in
response to the Finder’s i ni t Dev message. The next time it calls your function, the
Finder passes this handle back as the value of the cdevSt or ageVal ue parameter. After
sending an i ni t Dev message, the Finder always passes to your function the function
result previously returned as the value of the cdevSt or ageVal ue parameter. In this
way, the Finder makes the handle available to your function, until your function returns
an error code.

When the Finder calls your function with the i ni t Dev message, it passes the constant
cdevUnset in the cdevSt or ageVal ue parameter; this value indicates that your
function has not allocated any memory. If you do not create a handle and allocate
memory in response to the i ni t Dev message, you should return this value

(cdevUnset) as your function result. In this case, the Finder continues to pass this value
to your control device function, and your function should continue to return this value
until your control device function encounters an error.

Before the Finder calls your function with an i ni t Dev message, it has already drawn
the dialog box and any items defined in your item list resource, except for user items.
During initialization, you set the default value for any controls, and, if necessary, draw
any user items. You can store the default values for controls in a resource located in a
preferences file within the Preferences folder. To initially set the values for your panel’s
controls (such as radio buttons and checkboxes) and editable text, retrieve the default
values from the resource and then use the Dialog Manager’s Get Di al ogl t em
procedure and the Control Manager’s Set Cont r ol Val ue procedure.

The Finder calls QuickDraw to draw the static text for your control panel. QuickDraw
uses the default application font for this purpose; for Roman scripts, this is 9-point
Geneva. For System 7, you can include a font information (' f i nf') resource in your
control panel file to specify a font to be used for static text.

For example, you can use a font information resource to specify 12-point Chicago, which
is the recommended font for Roman scripts. You can also use an ' fi nf' resource to
change the font of static text in control panels localized for other system scripts. If you
include an' fi nf' resource, the Finder sets the font, font style, and font size for the
graphics port to the values you specify and uses these values to draw any static text. See
“Specifying the Font of Text in a Control Panel” on page 8-23 for more information.

Note

The Control Manager uses the system font for text strings that are part
of a control item. O

Creating Control Panel Files

CHAPTER 8

Control Panels

Listing 8-9 shows the Myl ni ti al i zeCP procedure, which the River control

device function calls to handle the i ni t Dev message. This procedure calls the
NewHandl e function to create a handle to a record of type MyRi ver St or age (see
Listing 8-8 on page 8-27). The procedure then initializes the fields of this record. It also
calls its own procedure, MyGet User Pr ef er enceSet t i ngs, which reads a resource file
containing the initial settings for the controls. This resource contains either the original
default values or new values set by the user from the control panel.

The Myl ni ti al i zeCP procedure sets initial values for any controls in its control panel.
For each control, Myl ni ti al i zeCP calls the Dialog Manager’s Get Di al ogl t em
procedure to get a handle to the control and then calls the Control Manager’s

Set Cont r ol Val ue procedure to restore the last setting of the control. The first time a
user uses the control panel, the initial values are the default values; after that, the initial
values are those last set by the user. The Myl ni ti al i zeCP procedure restores the last
settings of radio buttons and checkboxes, sets the menu item to the last item chosen by
the user in pop-up menus, and restores the text that the user last entered in editable text
items.

Finally, the Myl ni ti al i zeCP procedure returns in the cdevSt or ageVal ue parameter
a handle to the memory it has allocated. The control device function then returns this
value as its function result. In all subsequent calls to the control device function, the
Finder passes this value back in the cdevSt or ageVal ue parameter.

The River control panel uses the memory it allocates to save values indicating that the
user has changed a setting. When the user clicks the Show Me button or closes the
control panel, the control device function notifies the River screen saver system
extension that the settings have changed. The River screen saver then uses the new
settings when it displays the river on the screen.

Listing 8-9 Initializing a control panel: Allocating memory and setting controls

PROCEDURE Myl nitializeCP (VAR cdevSt orageVal ue: Longlnt; CPDi al og: Dial ogPtr;
VAR nyRi ver Hhdl : MyRi ver St or ageHndl) ;
VAR
initOnSetting, initOfSetting, initUphill Setting, initDownhill Setting,
initCrcularSetting, initBabbleSetting, initRi verColorSetting: Integer;

i ni tVel ocityText: Str 255;
start Sel, endSel: I nt eger;
i tenmlype: I nt eger;
i temHandl e: Handl e;
itenRect: Rect ;

Creating Control Panel Files 8-31

S|aued |01U0D n

CHAPTER 8

Control Panels

BEG N
myRi ver Hndl : = M/Ri ver St or ageHndl (NewHand! e(Si zeof (MyRi ver St orage))) ;
| F nyRiverHndl <> NIL THEN
BEA N {initialize fields in nyRi ver record}
myRi ver Hndl **. count := 0;
nyR ver Hndl " .err := 0;
nyRi ver Hndl ~*. setti ngsChanged : = FALSE;
END;
{set default or saved values for each setting in this control panel-- }
{ usually a control panel reads these values froma resource file}
MyGet User Pref erenceSettings(initOnSetting, initOffSetting,
initUphill Setting, initDownhill Setting,
initCircularSetting, initBabbleSetting,
initRi verColorSetting, initVelocityText,
start Sel, endSel);
{set the initial values of buttons and other controls using the D alog }
{ Manager's GetDialogltem & the Control Myr's SetControl Val ue procedures}

CGet Di al ogl t en{ CPDi al og, kOnRadButton, itenilype, itenHandl e, itenRect);
Set Cont r ol Val ue(Control Handl e(i temHandl), initOnSetting);

CGet Di al ogl t en{ CPDi al og, kOff RadButton, itenfype, itenHandle, itenRect);
Set Contr ol Val ue(Control Handl e(itenmHandl e), initOfSetting);

Cet Di al ogl t en{ CPDi al og, kUphill| RadButton, itemlype, itenHandl e, itenRect);
Set Cont r ol Val ue(Cont rol Handl e(i temHandl e), initUphill Setting);

CGet Di al ogl t en{ CPDi al og, kDownhi || RadButton, itenilype,itenHandl e,itenRect);
Set Cont r ol Val ue(Cont rol Handl e(i tenHandl e), initDownhill Setting);

Cet Di al ogl t en{ CPDi al og, kCircul arRadButton, itenflype,itenHandle,itenRect);
Set Cont r ol Val ue(Control Handl e(itenHandl e), initC rcul arSetting);

CGet Di al ogl t en{ CPDi al og, kBabbl eCheckBox, itenilype, itenHandl e, itenRect);
Set Cont r ol Val ue(Cont rol Handl e(i temHandl e), initBabbl eSetting);

Cet Di al ogl t en{ CPDi al og, kRi ver Col or Menu, itenilype, itenHandl e, itenRect);
Set Cont r ol Val ue(Control Handl e(i tenmHandl e), initRi verCol orSetting);

Cet Di al ogl t en{ CPDi al og, kVel ocityEditText, itenilype, itenHandle,itenRect);
Set Di al ogl t enText (i temHandl e, initVel ocityText);
Sel ect Di al ogl t eniText (CPDi al og, kVel ocityEditText, startSel, endSel);
cdevSt orageVal ue : = Ord4(nyRi ver Hndl) ;

END;

8-32 Creating Control Panel Files

CHAPTER 8

Control Panels

If you define your text items as user items, your control device function must draw the
text in response to an i ni t Dev message. See “Handling Text Defined as User Items” on
page 8-43 for details.

Responding to Activate Events

When a control panel is active, your control device function is responsible for making
each control active or inactive, as appropriate. For example, your function should draw a
bold outline around the control panel’s default button. By contrast, when your control
panel is inactive, your control device function should make all its controls inactive,
causing the Control Manager to draw them in gray or in grayscale, depending on the bit
depth of the monitor. This provides a visual indication to the user that a control panel is
inactive, and it distinguishes the active window from inactive ones.

Whenever the Event Manager generates an activate event for your control panel in
response to a user action, the Finder intercepts the activate event and calls your control
device function with either an act i vDev message or a deAct i vDev message. In either
case, the Finder passes to your function, in the parameter t heEvent , the event record
for the activate event and, in the cdevSt or ageVal ue parameter, a handle to the
memory previously allocated by your function.

For example, the Finder calls your control device function with an act i vDev message
(after sending an i ni t Dev message) when the user opens your control panel or clicks
your inactive control panel after using another control panel or an application. Your
function should respond to an act i vDev message by drawing a bold outline around the
default button. It should also make the default button and any other controls in your
control panel active. You can use the Control Manager’s H | i t eCont r ol procedure to
make a control active or inactive. (See the chapter “Control Manager” in Inside Macintosh:
Macintosh Toolbox Essentials for information about Hi | i t eContr ol .)

In general, your function does not need to update user items in response to an activate
event, apart from drawing a bold outline around the default button. If, however, your
control panel includes a user item that requires updating, such as a clock that shows the
current time, your control device function should update that user item.

Creating Control Panel Files 8-33

S|aued |01U0D n

CHAPTER 8

Control Panels

The Finder calls your control device function with a deAct i vDev message when the
user clicks another control panel, runs an application, or otherwise brings another
window to the front. In this case, your function should respond by drawing the outline
of the default button in gray and making inactive any other controls in your control
panel. While a control is inactive, the Control Manager does not respond to mouse
events in it. See the chapter “Dialog Manager” in Inside Macintosh: Macintosh Toolbox
Essentials for information on how to make buttons, radio buttons, checkboxes, and
pop-up menus inactive and active in response to activate events. Figure 8-10 shows the
River control panel when it is inactive. Note that all of its controls are dimmed.

Figure 8-10 Example of an inactive control panel

8-34

River Screen Saver
River Change Systems @ On

1993 {7 0ff
Flow Direction: & Uphill

3 Downhill

) Circular
River color: | Orange |

Delocity: mph

[Play Babble Sound

The River control device function calls its own procedure to handle both act i vDev and
deAct i vDev messages. Listing 8-10 shows the MyAct i vat eCont r ol Panel procedure,
which either makes the controls active in response to an act i vDev message or inactive
in response to a deAct i vDev message.

In response to activate events, this procedure calls the Dialog Manager’s

Cet Di al ogl t emprocedure to get a handle to the default button and then calls the
Control Manager’s Hi | i t eCont r ol procedure to make the control active. To draw the
bold outline around the default button, the MyAct i vat eCont r ol Panel procedure calls
its own procedure, MyDr awDef aul t But t onQut | i ne. (See the chapter “Dialog
Manager” in Inside Macintosh: Macintosh Toolbox Essentials for detailed instructions on
drawing an outline around a default button.) The procedure then makes all other
controls active.

In response to a deAct i vDev message, the MyAct i vat eCont r ol Panel procedure
makes all its controls inactive. In addition, it uses its own procedure,
MyDr awDef aul t But t onQut | i ne, to draw a gray outline around the default button.

Creating Control Panel Files

CHAPTER 8

Control Panels

Note

If the dialog box uses a color graphics port, you can use the Color
QuickDraw function Get G ay to return a blended gray based on the
foreground and background colors. O

Listing 8-10 Responding to an activate event

PROCEDURE MyActi vat eControl Panel (VAR cdevSt orageVal ue: Longlnt;

CPDi al og: Dial ogPtr;
nyRi ver Hhdl : MyRi ver St or ageHndl ;
activate: Bool ean);

VAR
i tenlype: I nt eger;
i tenHandl e: Handl e;
i temRect: Rect ;
BEG N
| F activate THEN
BEA N {control panel becom ng active}

{activate the default button (ShowMe) and draw bold outline around it}
CGet Di al ogl t en{ CPDi al og, kShowive, itenilype, itenHandl e, itenRect);

Hi liteControl (Control Handl e(itenHandl e), 0);

MyDr awDef aul t Butt onCQut | i ne(CPDi al og, kShowiwe) ;

{make other controls active}
Get Di al ogl t en{ CPDi al og, kOnRadButton, itenilype, itenHandl e, itenRect);
HiliteControl (Control Handl e(itenHandl e), O0);

Get Di al ogl ten{ CPDi al og, kOff RadButton, itenflype, itenHandle, itenRect);
HiliteControl (Control Handl e(itenHandl e), O0);

Get Di al ogl t en{ CPDi al og, kUphill RadButton,itenilype,itenmHandl e,itenRect);
HiliteControl (Control Handl e(itenHandl e), O0);

Get Di al ogl t en{ CPDi al og, kDownhil | RadButton, itenflype, itenHandl e,
itemRect);
Hi liteControl (Control Handl e(itenHandl e), 0);

CGet Di al oglt en{ CPDi al og, kCircul arRadButton, itenflype, itenHandl e,
itemRect);
HiliteControl (Control Handl e(itenHandl e), 0);

Creating Control Panel Files 8-35

S|aued |01U0D n

CHAPTER 8

Control Panels

CGet Di al ogl t en{ CPDi al og, kBabbl eCheckBox, iteniype, itenHandl e,
i tenRect);
HiliteControl (Control Handl e(itenHandl e), O0);

Cet D al ogltem(CPDi al og, kRi verCol or Menu, itenmlype, itenHandl e,
itemRect);
HiliteControl (Control Handl e(itenHandl e), 0);

END
ELSE
BEA N {control panel becom ng inactive}

{make the default button inactive and draw gray outline around it}
Get Di al ogl tem(CPDi al og, kShowMe, itenilype, itenHandl e, itenRect);
HiliteControl (Control Handl e(itenHandl e), 255);

MyDr awDef aul t But t onQut | i ne(CPDi al og, kShowive) ;

{nmake other controls inactive}
Cet Di al ogltem(CPDi al og, kOnRadButton, itenfType, itenHandl e, itenRect);
HiliteControl (Control Handl e(itenHandl e), 255);

CetDi al ogltenm(CPDi al og, kO f RadButton, itemlype, itenHandl e, itenRect);
HiliteControl (Control Handl e(itenHandl e), 255);

Cet Di al ogl t em(CPDi al og, kUphi | | RadButton,itenType,itenmHandl e,itenRect);
HiliteControl (Control Handl e(itenHandl e), 255);

Cet D al ogl tem(CPDi al og, kDownhil | RadButton, iteniType, itenHandl e,
itenmRect);
HiliteControl (Control Handl e(itenHandl e), 255);

Get Di al ogl tem(CPDi al og, kGircul arRadButton, itenilype, itenHandl e,
itemRect);
Hi l'iteControl (Control Handl e(i tenHandl e), 255);

CGet Di al ogl t en{ CPDi al og, kBabbl eCheckBox, i t enlype, i t enHandl e, i t enRect) ;
Hi liteControl (Control Handl e(i tenHandl e), 255);

CGet Di al ogl t en{ CPDi al og, kRi ver Col or Menu, i t eniType, i t enHandl e, i t enRect) ;
Hi liteControl (Control Handl e(i tenHandl e), 255);

END;

END;

8-36

Creating Control Panel Files

CHAPTER 8

Control Panels

Using Multiple Dialog Boxes

The use of nested dialog boxes is not recommended in control panels. If
you decide to use them nevertheless, keep in mind that the Finder may
send your control device function a deAct i vDev message before your
code that displays and initializes the second dialog box completes. This
is because when your control device function calls Di al ogSel ect to
handle an event in a second dialog box, Di al 0ogSel ect issues a call to
CGet Next Event . In turn, the system software sends to the Finder an
activate event instructing it to deactivate the main control panel’s dialog
box. However, this situation should not cause unusual problems, and
your code should handle the deAct i vDev message, then continue its
processing for the second dialog box. O

Responding to Keyboard Events

The Finder intercepts all key-down and auto-key events for your control panel. The
Finder sends your control device function a keyboard event through the keyEvt Dev
message for all keystrokes except Command-key equivalents. The Finder processes all
Command-key equivalents on behalf of your control panel except those that it maps to
its own Edit menu commands. The Finder converts these Command-key equivalents to
messages and passes them on (as cut Dev, copyDev, past eDev, undoDev, and

cl ear Dev messages) to your control panel for processing. (See “Handling Edit Menu
Commands” on page 8-46 for more information.)

Note

In System 6, the Control Panel desk accessory does not convert
Command-key equivalents for Edit menu commands to edit messages;
instead it passes the Command-key equivalent to your control device
function as a keyEvt Dev message. For backward compatibility, when
your control device function receives a keyEvt Dev message, it should
check for Command-key equivalents as follows: it should examine the
modi fi er s field and the nessage field of the event record to identify
the Command-key equivalent, process it, and set the event record’s
what field to nul | Event . In this way, you prevent the Control Panel
desk accessory from passing the keystroke to TextEdit for further
handling. Listing 8-11 illustrates this technique. O

In addition to handling Command-key equivalents, your control device function should
respond appropriately when the user presses the Enter key or the Return key. In either
case, your function should map the keypress to your control panel’s default button, if
any, and perform the action corresponding to that button. For instance, the

MyHandl eKeyEvent procedure shown in Listing 8-11 calls its My ShowMe routine
whenever the user presses Enter or Return. This routine signals the River system
extension to display the river on the screen.

Creating Control Panel Files 8-37

S|aued |01U0D n

CHAPTER 8

Control Panels

Your control device function does not need to process most other keystrokes. The Finder
passes keyboard events on to Di al ogSel ect, which calls TextEdit to handle text entry
in editable text items. However, in some cases you might want your function to process
the keypress and return the constant nul | Event in the what field of the event record.
For example, if your control panel includes an editable text item that accepts only
numeric characters, your function can detect an invalid value, signal the user by
beeping, then modify the what field to prevent the Finder from passing the event to the
Dialog Manager. Listing 8-11 illustrates this technique: the user can enter only numeric
values in the Velocity editable text item.

Listing 8-11 Responding to a keyboard event

PROCEDURE MyHandl eKeyEvent

(VAR theEvent: EventRecord; CPDi al og: Dial ogPtr;

nessage: | nteger);
VAR
t heChar: Char;
i tenlype: I nt eger;
i terHandl e: Handl e;
i temRect: Rect ;
final Ticks: Longlnt;

BEG N

8-38

{in System 6, you need to check for Conmand-key equival ent s}
{get the character fromthe nessage field of the event record}
t heChar CHR(BAnd(t heEvent . message, char CodeMask));

| F BAnd(t heEvent. nodi fiers, cndKey) <> 0 THEN

BEA N { Command key down}

t heEvent . what := null Event; {change the event to a null event so that }
{ TextEdit will ignore it}
CASE t heChar OF
X, tx'
message : = cut Dev,
'C, 'c':
message : = copyDev;
V', v
nmessage : = pasteDev;
OTHERW SE
nmessage : = nul Dev; {ignore any other Conmand-key equival ents}
END; {of CASE}
MyHandl eEdi t Cormand(nessage, CPDi al og);
END; {of command-key down}
CASE t heChar O
‘o, "1, *2", "3, "4, '5,'6, "7, "8, '9;
; {valid input, let DialogSelect/ TextEdit handl e key input}

Creating Control Panel Files

CHAPTER 8

Control Panels

OTHERW SE
BEG N
| F (theChar = Char (kCRkey)) OR (theChar = Char (kEnterKey)) THEN
BEA N {user pressed Return or Enter, map to default button}
Cet D al ogltem(CPDi al og, kShowMe, itenfType, itenmHandl e, itenRect);
HiliteControl (Control Handl e(itemHandl e), inButton);
Del ay(8, final Ticks);
Hi I'iteControl (Control Handl e(itenmHandl e), 0);
MyShowve(CPDi al og) ; {perform action defined by default button}
t heEvent . what : = nul | Event;
END {of Return or Enter}
ELSE | F (theChar = Char(kDel et eKey)) THEN
{let DialogSelect/ TextEdit handle it}

ELSE

BEG N {invalid input, don't allow this character as input}
SysBeep(40);
t heEvent . what : = nul | Event;

END;

END; {of otherw se}
END;, {of CASE}
END;

Responding to Mouse Events

When the user clicks any active, enabled controls in your control panel, system software
generates a mouse event. The Finder intercepts this event and passes it to your control
device function as a hi t Dev message. Your control device function typically changes the
setting of the control or performs the appropriate action in response to a hi t Dev
message.

Along with the hi t Dev message, the Finder passes three values that your control device
function uses to determine which item the user clicked.

= In the CPDi al og parameter, the Finder passes a pointer to your control panel’s dialog
box.

= Intheit emparameter, the Finder passes the number of the item, as defined in your
item list, that the user clicked.

= Inthe num t ems parameter, a value provided for backward compatibility with the
Control Panel desk accessory, the value passed depends on the system currently in
effect. In System 6, this number is the number of items in the item list of the Control
Panel desk accessory. In System 7, the Finder always passes a value of 0 in num t ens.

In System 6, the Control Panel desk accessory uses the num t ens parameter to pass the
number of items in its own item list. The Control Panel desk accessory appends your
control panel’s item list to its own. To get the correct number of the clicked item, you
need to subtract the number of items in the desk accessory’s item list (num t ens) from
the number passed in the i t emparameter. Although the nunl t ens parameter

Creating Control Panel Files 8-39

S|aued |01U0D n

8-40

CHAPTER 8

Control Panels

contains 0 in System 7, to maintain backward compatibility, you should always
determine an item number by subtracting the value of num t ens from the value of

i t em If you do so, your control panel can operate correctly with both the Finder and the
Control Panel desk accessory. For more information about item lists, see “Creating the
Item List Resource” on page 8-17, and the chapter “Dialog Manager” in Inside Macintosh:
Macintosh Toolbox Essentials.

The River control device function determines the correct item number in its CASE
statement before it calls its MyHandl eHi t | nDi al ogl t emprocedure to handle the

hi t Dev message. Here is the code segment, also shown in Listing 8-8 on page 8-27, that
determines the item number:

hitDev: {user clicked dialog iten
BEG N
item:=item- numtens;
MyHandl eHi t I nDi al ogltem(item cdevStorageVal ue,
CPDi al og, nyRi verHndl);
END;

Listing 8-12 shows the River control panel’s MyHandl eHi t | nDi al ogl t emprocedure,
which takes the appropriate action in response to the item the user clicked. For the Show
Me button, the procedure calls its My ShowMe procedure, which instructs its system
extension to display the River screen saver using any new values.

For the On and Off radio buttons, MyHandl eHi t | nDi al ogl t emfirst calls the Dialog
Manager’s Get Di al ogl t emprocedure to get a handle to each radio button and then the
Control Manager’s Get Cont r ol Val ue function to determine the current setting. If the
radio button clicked was previously off, M/Handl eHi t | nDi al ogl t emreverses its
setting and also reverses the setting of the radio button that was previously on. If the
user clicks any one of the group of radio buttons governing flow direction (Uphill,
Downbhill, Circular), MyHandl eHi t | nDi al ogl t emcalls another application-defined
routine, the MyHandl eFl owRadi oBut t on procedure. Although not shown in this
listing, this procedure handles each of the three radio buttons, checking whether a
button’s value has changed and, if so, resetting the control.

If the user clicked the Play Babble Sound checkbox, MyHandl eHi t | nDi al ogl t em
reverses its setting.

The River control panel defines two user items that enclose the up arrow and the down
arrow. If the user clicks either of these areas, MyHandl eHi t | nDi al ogl t emcalls its own
MyHandl eHi t | nAr r ows procedure to handle this event. The routine either increments
or decrements the number displayed in its editable text item accordingly.

The River control panel ignores clicks in any other item, because the Dialog Manager
automatically handles clicks in pop-up controls and editable text items.

After handling the hi t Dev message, MyHandl eHi t | nDi al ogl t emsets the

set ti ngsChanged field of the MyRi ver St or age record. Other routines use this value
to determine if the preferences file needs updating or if its system extension needs to
read the preferences file and use the new values when displaying the screen saver.

Creating Control Panel Files

CHAPTER 8

Control Panels

Listing 8-12 Responding to the user’s interaction with controls

PROCEDURE MyHandl eHi t1 nDi al ogltem (item | nteger;
VAR cdevSt or ageVal ue: Longl nt;
CPDi al og: Dial ogPtr;
myRi ver Hndl : MyRi ver St or ageHndl) ;
VAR
newOnSetting, newdffSetting: |nteger;
newlUphi | | Setting, newDownhill Setting, newCircul arSetting: |nteger;

newBabbl eSetti ng: I nt eger;

newVel oci t yText : Str 255;

newRi ver Col or Setti ng: I nt eger;

i tenType: I nt eger;

i temHandl e: Handl e;

i temRect: Rect ;
BEG N

CASE item OF

k Showive:

My Showive(CPDi al og) ;
kOnRadBut t on:
BEG N
{get handle to the On radio button, get its current value, }
{ and then if it was off, change it to on}
Cet D al ogl t em{ CPDi al og, kOnRadButt on, i tenType, itenmHandl e, itenRect);
newOnSetting : = GetControl Val ue(Control Handl e(itenHandl e));
I F (newOnSetting = 0) THEN
BEG N
newOnSetting : = 1 - newOnSetting;
Set Cont r ol Val ue(Cont rol Handl e(i t enHandl), newOnSetti ng);
{get handle to the Of radio button, get its current value, }
{ and then change it}
CGet Di al ogl ten{ CPDi al og, kOff RadButton, itemlype, itenHandl e,
i tenRect);
newOf f Setting := 1 - newOnSetting;
Set Cont r ol Val ue(Cont rol Handl e(i t enHandl e), newOF f Setting);
END;
END;
kO f RadBut t on:
BEG N
{get handle to the Of radio button, get its current value, }
{ and then if it was off, change it to on}
Cet Di al ogl tem(CPDi al og, kO f RadBut t on, i t emlype, i t enHandl e, i t enRect) ;
newdf fSetting := Get Q| Val ue(Control Handl e(itenmHandl e));
IF (newOffSetting = 0) THEN

Creating Control Panel Files 8-41

S|aued |01U0D n

CHAPTER 8

Control Panels

BEG N
newdrf Setting := 1 - newOfSetting;
Set Cont r ol Val ue(Cont r ol Handl e(i t enrHandl e), newOf f Setting);
newdf fSetting := GetCtl Val ue(Control Handl e(itenmHandl e));
{get handle to the On radio button, get its current val ue, }
{ and then change it}
Cet Di al ogl t en{ CPDi al og, kOnRadButton, itenType, itenHandl e,
i temRect);
newOnSetting := 1 - newOfSetting;
Set Cont r ol Val ue(Control Handl e(i t enHandl), newOnSetti ng);
END;
END;
kUpHi | | RadButt on, kDownHi || RadButton, kCircul ar RadButt on:
{this routine handles the Flow Direction radi o buttons}
MyHandl eFl owRadi oButton(item CPDi al og);
kBabbl eCheckBox:
BEG N
{get handle to Play Babbl e Sound checkbox, get its current val ue,
{ and then change it}
Cet Di al ogl tem(CPDi al og, kBabbl eCheckBox, itemlype, itenHandl e,
itenmRect);
newBabbl eSetting : = Get Control Val ue(Cont r ol Handl e(i t enHandl e)) ;
newBabbl eSetting := 1 - newBabbl eSetti ng;
Set Cont r ol Val ue(Cont r ol Handl e(i t emHandl e), newBabbl eSetti ng);
END;
kUser | temJpArrow, kUserltenDownArrow
MyHandl eHi t I nArrows(item CPDi al og);
END; {of CASE}
myRi ver Hndl ", setti ngsChanged : = TRUE;
END;

8-42 Creating Control Panel Files

CHAPTER 8

Control Panels

Responding to Update Events

Whenever the Event Manager generates an update event for your control panel, the
Finder intercepts the update event and calls your control device function with an

updat eDev message. Your control device function should perform any updating
necessary, apart from the standard dialog item updating that the Dialog Manager
performs. An update event gives your control device function the opportunity to redraw
user items that might require updating, such as a clock. You should also redraw the
outline around your default button in response to an update event. Notice that the
MyUpdat eCont r ol Panel procedure in Listing 8-13 does this by calling its

M/ Dr awDef aul t But t onQut | i ne procedure, which the control device function also
calls in response to an act i vDev or deAct i vDev message. If your control panel has an
editable text item, you don’t need to include code to make the caret blink. The Dialog
Manager calls TEI dl e for this purpose.

Listing 8-13 Responding to update events

PROCEDURE MyUpdat eCont r ol Panel (VAR cdevStorageVal ue: Longlnt;
CPDi al og: Dial ogPtr;
myRi ver Hndl : MyRi ver St or ageHndl) ;
BEG N
{draw the outline around the default button on an update event}
MyDr awDef aul t But t onQut | i ne(CPDi al og, kShowiwe) ;
END;

Handling Text Defined as User Items

If you want to use a font other than the default application font for your control panel’s
text, you should either include an' fi nf' resource in your control panel file and define
your text as static text items or define your text using user items. See “Creating a Font
Information Resource” on page 8-23 for details on changing the font using an' fi nf"
resource. This section gives details on how to define text using user items. You might
want to use this approach so that your control panel can run in the Finder and the
Control Panel desk accessory.

If you define the text in your control panel using user items, you need to draw the text in
response to an updat eDev message, just as you would any other user item that requires
updating. (You draw the text initially in response to an i ni t Dev message.)

Creating Control Panel Files 8-43

S|aued |01U0D n

CHAPTER 8

Control Panels

For each item, this process entails

= Setting the text font, style, and size fields to be used. (You use the QuickDraw
procedures Text Font, Text Face, and Text Si ze for this purpose.)

= Positioning the pen where you want to draw the text. You draw the text in the
rectangle defined for it in the item list resource. (You can use the QuickDraw
procedure MoveTo to set the initial location of the pen.)

= Drawing the text string. (You can use the QuickDraw Dr awSt r i ng procedure for this
purpose.)

Listing 8-14 shows the MyDr awText procedure. The River control device function might
use this procedure to draw any text that it defined as user items. First the MyDr awText
procedure calls the QuickDraw Text Font , Text Face, and Text Si ze procedures to set
the graphics port font to 12-point Chicago.

Then, for each text item, MyDr awText calls it own MyGet User Text procedure to get
the text string and the coordinates of the text string as defined by the display rectangle
of the user item. (See“Defining Text in a Control Panel as User Items” on page 8-24 for
details about the item list.) Next, M/Dr awText calls the QuickDraw MoveTo procedure
to position the pen and QuickDraw’s Dr awSt r i ng procedure to draw the text.

Listing 8-14 Drawing text defined as user items

PROCEDURE MyDr awText ;

VAR
text ForUserltem Str255;
textH, textV: I nt eger;
BEG N
Text Font (0) ; {set the font to the system font (Chicago)}
Text Face([]); {set the text face to nornal}
Text Si ze(12); {set the font size to 12-point}

{get the text and location for the first text string}
MyGet User Text (kFl ow, textForUserltem textH, textV);
MoveTo(textH, textV);
DrawStri ng(text ForUserlten); {draw t he text}
{get the text and location for the next text string}
MyGet User Text (kVel ocity, textForUserltem textH, textV);
MoveTo(textH, textV);
DrawSt ri ng(textForUserltemn; {draw t he text}
{get the text and location for the next text string}
MoveTo(textH, textV);
MyGet User Text (kMph, textForUserltem textH, textV);
DrawsSt ri ng(textForUserltem; {draw the text}

END;

8-44 Creating Control Panel Files

CHAPTER 8

Control Panels

Responding to Null Events

Whenever the Event Manager generates a null event for your control panel, the Finder
intercepts the event and calls your control device function with a nul Dev message. Your
control device function should respond to a nul Dev message by performing any needed
idle processing. However, your control device function should do minimal processing in
response to a null event; for example, it should not refresh control settings.

Responding to the User Closing the Control Panel

When the user closes your control panel, the Finder calls your control device function
with a ¢l oseDev message, signaling it to terminate gracefully. In response to this
message, your control device function must dispose of any memory it has allocated,
including any pointers or handles it has allocated.

Before your function begins this process, however, it can perform other needed tasks. For
example, the River control device function checks whether the user changed the values
of any settings. If so, it updates its preferences file to reflect the changes.

Listing 8-15 shows the MyCl oseCont r ol Panel procedure, which the River control
device function calls to handle the cl oseDev message. The MyCl oseCont r ol Panel
procedure checks the set t i ngsChanged field of its MyRi ver St or age record to
determine if the user changed the settings (the control device function sets this field
whenever the user changes a setting). If necessary, M/Cl oseCont r ol Panel calls a
procedure to update the preferences file with the new values stored in the

M/Ri ver St or age record. Next, MyCl oseCont r ol Panel disposes of the memory that
the control device function previously allocated by disposing of the handle in the

nyRi ver Hndl parameter. It then sets the cdevSt or ageVal ue parameter to 0. The
control device function returns this value as its function result.

Listing 8-15 Terminating a control device function when the user closes the control panel

PROCEDURE MyCd oseControl Panel (nyRiverHndl: MRiver StorageHndl ;
VAR cdevSt orageVal ue: Longlnt);

BEG N

{if the user changed any of the settings, }

{ wite the new settings to the River preferences file}

| F nyRi ver Hndl ~*. set ti ngsChanged THEN

MW it eUser Preferences(nyRi ver Hndl) ;
{di spose of any allocated storage}
| F nyRiverHndl <> NIL THEN

BEG N
Di sposeHandl e(Handl e(nyRi ver Hndl)) ;
cdevSt orageVal ue : = 0;
END;
END;

Creating Control Panel Files 8-45

S|aued |01U0D n

CHAPTER 8

Control Panels

Handling Edit Menu Commands

Although you cannot implement a menu bar in your control panel, the user can choose
the Finder’s Edit menu Undo, Cut, Copy, Paste, and Clear commands when working in
an editable text item. When the user chooses one of these commands from the Edit menu
or presses its Command-key equivalent, the Finder maps the command to a message and
calls your control device function with the message. The values in the message
parameter for these commands are undoDev for Undo, cut Dev for Cut, copyDev for
Copy, past eDev for Paste, and cl ear Dev for Clear.

Note

In System 6, the Control Panel desk accessory does not convert
Command-key equivalents for Edit menu commands to edit messages;
instead it passes the Command-key equivalent to your control device
function as a keyEvt Dev message. See “Responding to Keyboard
Events” beginning on page 8-37 for details on handling keyboard events,
including Command-key equivalents. O

Listing 8-16 show the MyHandl eEdi t Command procedure. The River control device
function calls this procedure from within its CASE statement to handle an edit message.
For the Cut, Copy, and Clear commands, MyHandl eEdi t Command calls Dialog Manager
routines to perform the desired operation. For the Paste command,

MyHandl eEdi t Command first uses its MyCheckLengt h function to ensure that the
length of any text to be pasted does not exceed the TextEdit text buffer limit of 32 KB;
only then does it call Di al ogPast e. The Dialog Manager calls TextEdit to perform the
operation.

Listing 8-16 Responding to Edit menu commands

PROCEDURE MyHandl eEdi t Conmand (nessage: | nteger;
CPDi al og: Dial ogPtr);

BEG N
CASE nessage OF
cut Dev: {use Di al og Manager to cut the text}
Di al ogCut (CPDi al og) ;
copyDev: {use Di al og Manager to copy the text}
Di al ogCopy(CPDi al 0og) ;
cl ear Dev: {use Di al og Manager to clear the text}
Di al ogDel et e(CPDi al og) ;
past eDev:
BEA N {check I ength, then paste the text}
| F MyCheckLengt h(CPDi al og) THEN
Di al ogPast e(CPDi al og) ;
END;
END; {of CASE}
END;

Creating Control Panel Files

CHAPTER 8

Control Panels

Handling Errors

Your control device function is responsible for detecting and, if possible, recovering from
error conditions. If your function cannot recover from an error condition, it must dispose
of any memory that it previously allocated, restore the system stack, and return as its
function result one of three error codes.

If your control panel encounters an error due to missing resources or lack of memory,
your control device function should return cdevResErr or cdevMenEr r. When the

Finder receives either of these error codes, it closes the control panel and displays an

alert box reporting the problem.

Your control device function should return a generic error code (cdevGenEr r) for all
other errors. When the Finder receives this generic error code, it closes the control panel
but does not display an alert box; if it can do so, your function should display an alert
box to the user before completing. Your function can also return this error code to signal
a missing-resources or lack-of-memory error. Use this error code instead of cdevResEr r
or cdevMenEr r if you want your function, not the Finder, to display a meaningful error
message that directs the user in resolving the problem.

The Finder in System 7 and the Control Panel desk accessory in System 6 respond
differently to any error codes that your control panel returns. In System 6, after your
control device function terminates, the Control Panel desk accessory fills the area
previously occupied by your control panel with the background pattern, in effect
dimming it. The Control Panel desk accessory dialog box remains open because the user
can use other control panels represented in the icon list. Your control panel’s area
remains dimmed until the user selects another control panel.

Table 8-2 shows the constants defined for these error codes and the corresponding
responses by the Finder and the Control Panel desk accessory.

Table 8-2 Error codes and their meaning
Constant Value Meaning
cdevGenErr -1 Generic error

In System 7, the Finder closes your control panel but does not display an
alert box to the user.

In System 6, the Control Panel desk accessory dims your control panel’s
area in the Control Panel window and passes 0 in the
cdevSt or ageVal ue parameter the next time it calls your function.

Creating Control Panel Files 8-47

S|aued |01U0D n

CHAPTER 8

Control Panels

Table 8-2 Error codes and their meaning (continued)
Constant Value Meaning
cdevMentrr 0 Insufficient memory

In System 7, the Finder closes the control panel and displays an
out-of-memory alert box to the user.

In System 6, the Control Panel desk accessory dims your control panel’s
area in the Control Panel window, displays an out-of-memory alert box to
the user, and passes 0 in the cdevSt or ageVal ue parameter the next time
it calls your function.

continued
cdevResErr 1 Missing resource

In System 7, the Finder closes the control panel and displays a
missing-resources alert box to the user.

In System 6, the Control Panel desk accessory dims your control panel’s
area in the Control Panel window, displays a missing-resources alert box to
the user, and passes 0 in the cdevSt or ageVal ue parameter the next time
it calls your function.

Creating an Extension for the Monitors Control Panel

This section describes how to create an extension for the Monitors control panel. A
monitors extension typically adds controls to the Options dialog box so that the user can
set values for one or more features of a video card.

A monitors extension consists of a file of type ' cdev' that contains the resources for a
monitors extension, including a code resource of type ' mtr ' . This code resource, called
a monitors extension function, communicates with the Monitors control panel,
responding to requests from the Monitors control panel to handle events or perform
actions. This section begins with a discussion of the interface components of a monitors
extension. Then it describes how to

= create resources for your monitors extension, including how to define

o a card resource to identify your monitors extension and display the name of your
video card at the top of the Options dialog box

o arectangle resource to define the area in which to display your video card’s controls

o an item list resource to define additional items for display in the Options dialog box
= create and supply optional resources for your monitors extension

= write a monitors extension function

8-48 Creating an Extension for the Monitors Control Panel

CHAPTER 8

Control Panels

Before you develop an extension for the Monitors control panel, consider these three

important points:

= You should develop a monitors extension only if you are the manufacturer of the

video card for which you are providing the feature or features whose values the user

can control.

= There can be only one extension to the Monitors control panel for each video card.
Apple Computer, Inc., reserves the right to supply monitors extensions for its own

video cards.

» If the features that you want to implement require an extensive or complex set of

controls—for example, if you need to use nested dialog boxes—you should probably

write a small application rather than an extension to the Monitors control panel.

Designing the User Interface for a Monitors Extension

When the user clicks the Options button, the Monitors control panel displays the

Options dialog box for the selected monitor. The Options dialog box contains standard

controls that the Monitors control panel provides, such as the OK and Cancel buttons.
Beneath these two buttons is a scrollable list of monitor types if the selected monitor
belongs to a family of monitors. Beneath the icon is a scrollable list of gamma tables if

the user is a superuser (a very knowledgeable user; a user indicates superuser status by
pressing the Option key while clicking the Options button). These items are also defined

by the Monitors control panel.

If you provide a monitors extension for your video card, the Monitors control panel adds
any controls you define beneath the two scrollable lists, if one or both are displayed, or
beneath the Cancel button. Figure 8-11 shows the Options dialog box for the Macintosh

display card.

Figure 8-11 An Options dialog box with standard controls

| Monitors

Select monitor type:

FMacintosh Display Card

Cancel

Macintosh Two-Fage Monitor

Creating an Extension for the Monitors Control Panel

8-49

S|aued |01U0D n

CHAPTER 8

Control Panels

Figure 8-12 shows the Options dialog box for the Macintosh display card as it appears
when the user presses the Option key while clicking the Options button.

Figure 8-12 An Options dialog box with superuser controls

8-50

| Monitors |

Mazintosh Display Card
Cancel

|:| Use Special Gamma Select monitor type:
: Mazintosh Two-Page Monitor

To provide the user interface for your video card’s feature, you define a rectangle
resource of type' RECT' specifying the amount of space you need to display your
controls and an item list resource of type ' DI TL' specifying the controls themselves.

At the upper-left corner of the Options dialog box, the Monitors control panel displays
the name of your video card and an icon representing it. The Monitors control panel
defines the coordinates of these items. You must supply your video card’s name in a
required card resource of type ' car d' (see “Creating a Card Resource for a Monitors
Extension” on page 8-51). You can optionally provide one or more members of an icon
family (with resource ID —4064) that define an icon for your video card. If you do not
provide icon resources with this resource ID for this purpose, the Monitors control panel
displays the icon defined in the SResour ce data structure in the ROM on your video
card. If your video card does not supply a default icon in the ROM, the Monitors control
panel displays a generic monitors icon.

You can also supply an additional icon family to specify the icon that the Finder uses to
represent your monitors extension file. The icon family resources are' | CN#' , ' i cs#',
"icl8 ,"icl4',"ics8 ,and'ics4' . When creating an icon for a monitors
extension, design it so that it is square, except include at the bottom of the icon a tab-like
form, indicating that the file the icon represents is an extension. See the chapter “Finder
Interface” in Inside Macintosh: Macintosh Toolbox Essentials for information on how to
create an icon family. Figure 8-13 shows an icon of type' i cl 8' for the monitors
extension file supplied with the SurfBoard video card.

Creating an Extension for the Monitors Control Panel

CHAPTER 8

Control Panels

Figure 8-13 The SurfBoard monitors extension icon

FHMonitorExtend

If you wish, you can design two sets of controls for your monitors extension: one set for
ordinary users and one for superusers. When a user indicates superuser status by
holding down the Option key while clicking the Options button in the Monitors control
panel, the Monitors control panel notifies your monitors extension function to display
the superuser controls. For more information, see “Creating an Item List Resource for a
Monitors Extension” beginning on page 8-54.

Creating the Required Resources for a Monitors Extension

This section describes the four required resources that you supply for your monitors
extension.

To create these resources, either you can specify the resource description in an input file
and compile the resource using a resource compiler, such as Rez, or you can directly
create your resources in a resource file using a tool such as ResEdit.

The required resources and their resource IDs are

» the card (' card') resource: resource ID from —4080 through —4065
» the rectangle (' RECT') resource: resource ID —4096

s theitemlist (' DI TL') resource: resource ID —4096

s the monitor (' mtr') resource: resource ID —4096

Creating a Card Resource for a Monitors Extension

You create a card resource of type ' car d' to identify the monitors extension for your
video card and to specify the name of your video card. When the monitor to which your
card is connected is the selected one and the user clicks the Options button, the Monitors
control panel checks all monitors extension files for a card resource that contains the
name of your video card. If it finds a match, the Monitors control panel extends the
Options dialog box to display the monitors extension containing the matching card
resource. The Monitors control panel also displays, at the very top of the Options dialog
box, your video card’s name as defined in the card resource. This title indicates to the
user that the Options dialog box pertains to your card. For example, Figure 8-11 on
page 8-49 shows the Macintosh Display Card name at the top of the Options dialog box.
The card resource is required, and its resource ID must be in the range of —4080

through —4065.

Creating an Extension for the Monitors Control Panel 8-51

S|aued |01U0D n

CHAPTER 8

Control Panels

Your card resource must contain a Pascal string identical to the name of your video card
as specified in the sResour ce data structure in the ROM of the card. (For more
information on the sResour ce data structure, see Designing Cards and Drivers for the
Macintosh Family, third edition.)

If you do not want to use the video card name specified in the ROM of the card, you can
include in your monitors extension file a string list resource of type ' STR#' . In that
resource, specify an alternative name for the Monitors control panel to display. See
“Providing an Alternative Name for a Video Card” on page 8-58 for more information.

You use a card resource to ensure that your monitors extension is called when the user
selects the monitor to which your card is connected and clicks the Options button.
Because your monitors extension file can contain as many card resources as you wish,
one extension file can handle several types of video cards. For example, Listing 8-17
shows two card resources; thus, when the user selects the monitor connected to the
SurfBoard Display Card or the SurfBoard Super Display Card, the monitors extension
MyMonExt end is called. (See Listing 8-25 on page 8-64 for the MyMonExt end function.)

Listing 8-17 Rez input for a card (' car d') resource

8-52

resource 'card" (-4080, purgeable)

{

"Surf Board Di splay Card"
1
resource 'card' (-4079, purgeable)
{

"Surf Board Super Display Card"
b

Defining a Rectangle for a Monitors Extension

You create a rectangle resource of type ' RECT' to define the display area for the controls
of your monitors extension. When the user clicks the Options button in the Monitors
control panel, the Monitors control panel uses your monitors extension to expand the
Options dialog box under these circumstances: if the monitor connected to your video
card is currently selected, and if you have provided a monitors extension

for your card. Before displaying it, the Monitors control panel expands the Options
dialog box to include the space defined by the rectangle resource. The rectangle resource
is required, and its resource ID must be —4096.

To specify the top coordinate of your rectangle, determine the height in pixels of the
space required to display your controls and specify that value as a negative number. For
example, if you need a display area that is 60 pixels high, specify —60 as the top
coordinate. Specify 0 as the left coordinate. This is the same value used to define the left
edge of the Options dialog box, and your rectangle should have the same left edge.

Specify 0 as the bottom coordinate. You can think of the distance from the bottom
coordinate to the top coordinate—60 pixels, in this example—as the height of your

Creating an Extension for the Monitors Control Panel

CHAPTER 8

Control Panels

rectangle. Specify 320 as the right coordinate. This is the same value used to define the
right edge of the Options dialog box, and your rectangle should have the same right
edge.

Note

Although you specify other coordinate values for your rectangle’s
origin, when you assign coordinates to your controls, assume that

the origin of the local coordinate system for your dialog items is (0,0). O

Figure 8-14 shows the Options dialog box for the SurfBoard Display Card. The OK and
Cancel buttons and the scrollable list for the monitor type are standard controls. The
Magnify Enabled checkbox and three lines of text have been added by the SurfBoard
monitors extension. This figure shows the height and width, in pixels, defined in the
rectangle resource; this is the area required to display the additional controls.

Figure 8-14 Display area defined by a rectangle resource

| Monitors |
SurfBoard Dvsplay Card
* River Change Systems
. } rmonitors extension
60 pixels O] Magnify Enabled copyright ® 1993

- 320pixels ——————»

Listing 8-18 shows, in Rez input, the rectangle resource used in this example. Notice that
the top coordinate is 60 and the bottom coordinate is 0. In other words, the space to be
added to the Options dialog box is 60 pixels high.

Listing 8-18 Rez input for a rectangle (' RECT') resource

resource ' RECT' (-4096, purgeable)

{
{-60, 0,0, 320}

b

Creating an Extension for the Monitors Control Panel 8-53

S|aued |01U0D n

CHAPTER 8

Control Panels

Creating an Item List Resource for a Monitors Extension

You provide an item list resource of type' DI TL' to specify which items you want to
appear in the rectangle display area (see the previous section for information about the
rectangle resource). In an item list, you specify static text, buttons, checkboxes, radio
buttons, editable text, user items, the resource IDs of icons and QuickDraw pictures, and
the resource IDs of other types of controls, such as pop-up menus. The item list is
required, and its resource ID must be —4096.

When you assign coordinates to your controls, assume that the origin (that is, the
upper-left corner) of the local coordinate system is (0,0). The Monitors control panel
transforms the coordinates of your controls to the coordinate system that it uses for the
Options dialog box. Thus, you must use the Get Di al ogl t emprocedure to get the true
locations of your dialog items. See the chapter “Dialog Manager” in Inside Macintosh:
Macintosh Toolbox Essentials for information on the Get Di al ogl t emprocedure.

If you add additional controls for superusers, you should place them below a horizontal
line separating them from other controls, as illustrated in Figure 8-15.

Figure 8-15 The SurfBoard Options dialog box with superuser controls

8-54

| Monitors |

SurfBoard vsplay Card
A

|:| Usze Special Gamma Select monitor type:
: Mazintosh Two-Page Monitor

River Change Systerns
} rmonitars extension
[Magnify Enabled Copyright @ 1933

Superuzer Options

@ Zirconian Filtration

) Anti-Aliasing

Creating an Extension for the Monitors Control Panel

CHAPTER 8

Control Panels

To draw a dividing line, specify a separate dialog item of type user | t em Listing 8-19

shows the item list resource for the SurfBoard monitor extension. Notice that the

dividing line (item 2) is defined as a user item.

Listing 8-19 Rez input for the SurfBoard monitors extension item list resource

resource 'DITL' (-4096, purgeable) {

{

I* [1] */
{10, 151, 50, 314},

StaticText { di sabl ed, "Ri ver Change Systens\nnonitors extension”

"\ nCopyright © 1993"
/* [2] dividing |ine for superuser control s*/
{60, 1, 61, 319},

Userltem { enabl ed

[* [3] */

{70, 28, 80, 236},

StaticText { enabl ed, " Superuser Options”
[* [4] */

{82, 7, 110, 200},

Radi oButton { enabl ed, "Zirconian Filtration"
[* [5] */

{112, 7, 132, 200},

Radi oButton { enabl ed, "Anti-Aliasing"

[* [6] */

{22, 7, 58, 160},

CheckBox { enabl ed, "Magni fy Enabl ed"

}

b

Listing 8-29 on page 8-70 shows the procedure that the SurfBoard monitors extension

function uses to draw a line separating the items for normal users from the items

displayed for superusers. It uses the QuickDraw Fr aneRect procedure to draw the
item as a 1-pixel-high rectangle. After calling the Fr ameRect procedure, a monitors
extension can also dither the line in the same manner used to dither menu divider lines.

(For information on the Fr anmeRect procedure, see Inside Macintosh: Imaging With

QuickDraw.)

Creating an Extension for the Monitors Control Panel

8-55

S|aued |01U0D n

8-56

CHAPTER 8

Control Panels

If you use an item color table resource of type ' i ct b' to draw your items in color or in a
different font, you must include placeholder entries for the standard Options dialog box
items before you define the item color table entries to be mapped to the items in your
monitors extension item list. This step is necessary because the Monitors control panel
appends your monitors extension item list to that of the Options dialog box. To maintain
the mapping between entries in the item color table (' i ct b') and your item list, you
must account for the Options dialog box items.

Currently, the Options dialog box contains 10 items (although this number is subject to
change in future implementations of the Monitors control panel). An item color table
entry contains two words for each corresponding item. For this implementation of the
Monitors control panel, you can ensure that the first item in your item list is mapped to
the correct item color table entry as follows: create 10 entries in the item color table to
correspond to the 10 items in the Options dialog box, and specify a value of 0 for both
words of each entry.

Creating the Monitor Code Resource

A monitor code resource (of type' mtr') contains the code that carries out the
functions of a monitors extension. In MPW, you can set the code resource type to

"mtr' when you link the program. When you create such a resource, the resource must
begin with a function that you provide, called the monitors extension function.

The Monitors control panel passes to your monitors extension function parameters that
specify actions to perform. You can use the function result to keep a handle to allocated
memory or to return an error code. For more information about the monitors extension
function, see “Writing a Monitors Extension Function” beginning on page 8-61.

Supplying Optional Resources for a Monitors Extension

Your monitors extension file can also include any of the optional resources described in
this section. To create these resources, either you can specify the resource description in
an input file and then use a resource compiler, such as Rez, to compile the resource, or
you can use a tool such as ResEdit to create your resources in a resource file.

The optional resources and their resource IDs are

= The icon family resources (' | CN#' ,"ics# ,'icl 8" ,"icl4',"ics8',and
"i cs4'), which specify an icon for display in the upper-left corner of the Options
dialog box: resource ID —4096.

s The version (' vers') resources: resource ID 1 and 2.
s The string list (' STR#') resource: resource ID —4096.
= The gamma table (' gama') resource: resource ID from —4080 through —4065.

Creating an Extension for the Monitors Control Panel

CHAPTER 8

Control Panels

» The file reference (' FREF') resource. The resource ID follows the normal conventions
(typically, you assign a resource ID of 128).

s The bundle (' BNDL') resource. The resource ID follows the normal conventions
(typically, you assign a resource ID of 128).

= Theicon family resources (' | CN#',"ics# ,'icl 8 ,"icl4',"ics8' ,and
'i cs4'), which define the monitors extension file icon. The resource ID follows the
normal conventions (typically, you assign a resource ID of 128).

= The system extension (' | NI T') resource.
= The signature resource: resource ID 0.

In addition to the optional resources that these sections describe, you can include
private optional resources whose resource ID numbers must fall within the
range —4080 through —4065.

Specifying an Icon for the Options Dialog Box

To specify an icon that the Monitors control panel displays in the upper-left corner of the
Options dialog box, you can define one or more members of an icon family. For each of
these resources, you must assign a resource ID of —4064. If you provide an icon family,
the Monitors control panel displays the appropriate icon according to the bit depth of the
monitor. (Note that in System 6 you provide ' | CON' or' ci cn' icons instead of an icon
family.) For more information on these icons, see the chapter “Finder Interface” in Inside
Macintosh: Macintosh Toolbox Essentials.

If you do not supply either of these icon resources, the Monitors control panel displays
the icon defined in the sRsr cl con entry of the sResour ce data structure of your video
card’s ROM. If your do not supply either of these resources and your video card does not
include an icon, the Monitors control panel displays a generic icon that represents a
monitor.

Listing 8-20 shows a partial listing of the icon family resources that define the SurfBoard
video card icon shown in Figure 8-13 on page 8-51.

Listing 8-20 Rez input for icon family resources for a monitors extension

data ' | CN#' (-4064, purgeable) {
/*icon data goes here*/

b

data 'icl8 (-4064, purgeable) {
/*icon data goes here*/

b

data 'icl4'" (-4064, purgeable) {
/*icon data goes here*/

b

Creating an Extension for the Monitors Control Panel 8-57

S|aued |01U0D n

CHAPTER 8

Control Panels

Specifying Version Information

You can include two kinds of version resources of type ' vers' to provide version
information for your monitors extension file. The version resource with a resource ID
of 1 specifies the version of your monitors extension file. The version resource with a
resource ID of 2 specifies the version of the group to which your file belongs—for
example, the version number of the video card that your extension file supports.

The Finder displays version information about your monitors extension for the user. For
complete information on how to specify the version resources and how the Finder
displays the information from these resources in its information window, see the chapter
“Finder Interface” in Inside Macintosh: Macintosh Toolbox Essentials.

Listing 8-21 shows a version resource with a resource ID of 1 that specifies the version
number of the SurfBoard’s monitor extension file. This version resource includes the
copyright of the River Change Systems company, which manufactures the card.

Listing 8-21 Rez input for a version (' ver s') resource

8-58

resource 'vers' (1) {
0x01, 0x00, release, 0x00,
0, /*verUs+/
"1.00",
"1.00, Copyright © 1993 River Change Systens."

}s

Providing an Alternative Name for a Video Card

The Monitors control panel displays the name of your video card in the upper-left corner
of the Options dialog box. By default, it displays the name defined in the declaration
ROM of the video card. To display a name for your video card that is different from the
name in the declaration ROM of the video card, you can include a string list (' STR#')
resource with resource ID —4096. This resource must contain pairs of Pascal strings. The
first string in each pair must be identical to the name of your video card as specified in
the sResour ce data structure in the ROM of the card. (For more information on the
sResour ce data structure, see Designing Cards and Drivers for the Macintosh Family, third
edition.) The second string in each pair is the name that you want to display in the
Options dialog box. You can have as many pairs of names in one string list resource as
you wish; the Monitors control panel uses the first match it finds.

Creating an Extension for the Monitors Control Panel

CHAPTER 8

Control Panels

It is unlikely that you will need to override the name specified in the declaration ROM.
However, if you have misspelled the card name on the board, or if you want to display a
name that is more descriptive, you can include a string list resource. Listing 8-22 shows
the string list resource for the SurfBoard video card monitors extension. This monitors
extension includes two card resources (see Listing 8-17 on page 8-52), but the string list
resource includes only one entry to override the name SurfBoard Super Display Card. In
this example, when the Monitors control panel displays the Options dialog box for the
SurfBoard Super Display Card, it displays the name SurfBoard Super Fast Display Card
instead of the name in the card’s declaration ROM.

Listing 8-22 Rez input for the SurfBoard string list resource

resource ' STR#' (-4096, purgeable)

{
{ "SurfBoard Super Display Card";

"Surf Board Super Fast Display Card"};
i

Supplying Gamma Table Resources

To indicate status as a superuser, the user presses the Option key while clicking the
Options button in the Monitors control panel. In response, the Monitors control panel
displays a list of gamma tables (see Figure 8-12 on page 8-50).

The software driver for a video card uses a gamma table to correct for the fact that the
intensity of each color on a video display is not linearly proportional to the intensity of
the electron beam; in other words, the gamma table helps the video driver to provide the
most accurate colors possible for a video display. Because the user might prefer a
nonstandard color correction, many developers of video cards provide more than one
gamma table for a given card.

To supply one or more gamma tables for a video card, include in the monitors extension
file a named resource of type ' gama' for each gamma table. To change the default
gamma table for a monitor, the user clicks the Use Special Gamma checkbox and then
selects a table by clicking its name in the list. The default gamma table for a monitor is
the one listed in the screen resource of type' scrn' . For a complete discussion of
gamma tables, see Designing Cards and Drivers for the Macintosh Family, third edition. For
information on the screen (' scrn') resource, see Inside Macintosh: Devices.

Creating File Reference, Bundle, and Signature Resources

The file reference (' FREF'), bundle (" BNDL'), and signature resources work together to
give your file a distinctive appearance on the desktop. The Finder uses these resources to
display the icon for your monitors extension.

Creating an Extension for the Monitors Control Panel 8-59

S|aued |01U0D n

CHAPTER 8

Control Panels

The file reference resource specifies the file type for a monitors extension (' cdev'), the
local ID of your icon list resource, and an empty string. The local ID maps the monitors
extension file type to the icon list resource that is assigned the same local ID in the
bundle resource. Listing 8-23 shows the file reference resource for the SurfBoard
monitors extension.

Listing 8-23 Rez input for a file reference resource of a monitors extension

resource ' FREF' (128, purgeable) {
‘cdev', 0, ""

b

Note

If you provide the complete icon family, the Finder displays the
appropriate member of the icon family according to the bit depth of the
monitor. O

The Finder uses the signature resource with the bundle resource to establish the identity
of your monitors extension. You define a signature resource as a string resource (that is, a
resource of type' STR ') and specify as its resource type a unique four-character
sequence that has the same value as your monitors extension’s creator type. The
signature resource contains a string that identifies your monitors extension; typically the
string specifies the name, version number, and release date of the monitors extension.

Abundle (' BNDL') resource associates all of the resources that the Finder uses for your
monitors extension. It associates your monitors extension and its signature with its icon.
The Finder requires the information in the bundle resource to display icons for your
monitors extension. In the bundle resource, you must specify a local ID for your icon

list resource that matches the local ID you assigned inside the corresponding file
reference resource. In the bundle resource shown in Listing 8-24, local ID 0 is assigned to
the icon list resource with resource ID 128, mapping the icon defined for the SurfBoard
monitors extension to the monitors extension file.

Listing 8-24 Rez input for a bundle resource of a monitors extension

8-60

resource 'BNDL' (128, purgeable) {
" kcah',
0,
{
"ICNg#', {0, 128},
'"FREF', {0, 128}
}
1

Creating an Extension for the Monitors Control Panel

CHAPTER 8

Control Panels

(See the chapter “Finder Interface” in Inside Macintosh: Macintosh Toolbox Essentials for
complete information on how to create file reference, signature, and bundle resources.)

Including a System Extension Resource

A file that contains an extension to the Monitors control panel can contain a system
extension resource of type ' | NI T' . If your monitors extension file is in the Control
Panels folder, the Extensions folder, or the base level of the System Folder, then the
system software executes the system extension resource when the user starts or restarts
the computer.

Although the system extension resource acts independently of other resources in the file,
it should be related to the monitors extension.

Writing a Monitors Extension Function

You create a monitors extension function to implement the feature for your video card
and manage the controls that allow the user to set values for that feature. The Monitors
control panel calls your monitors extension function, requesting it to perform an action
or handle an event in response to the user’s manipulation of the controls for your video
card. The message parameter identifies the action or event.

Your monitors extension function should perform the requested action and return a
function result to the Monitors control panel. This function result should be either a
standard value indicating that your monitors extension function has not allocated
memory, a handle to any memory you allocate, or an error code. Here is how you declare
a monitors extension function:

FUNCTI ON MyMnt r Ext (nessage, item numtens: |nteger; nonitorValue: Longlnt;

nDi al og: Dial ogPtr; theEvent: EventRecord;
screenNum | nteger; VAR screens: ScrnRsrcHandl e;
VAR scrnChanged: Bool ean): Longlnt;

The nessage parameter can contain any of the values defined by these constants:

CONST
startupMsg = 12; {status of user (whether a superuser)}
i nitMg = 1; {performinitialization}
okMsg = 2; {user clicked OK button}
cancel Msg = 3; {user clicked Cancel button}
hi t Msg = 4; {user clicked enabled control}
nul Msg =5, {null event}
keyEvt Msg = 9; {keyboard event}
updat eMsg = 6; {update event}

Creating an Extension for the Monitors Control Panel 8-61

S|aued |01U0D n

8-62

CHAPTER 8

Control Panels

The value of the message parameter indicates the action your monitors extension
function should perform:

st ar t upMsg. Informs your monitors extension function that it has been loaded into
memory. Your function can determine whether the user has superuser status by
examining the i t emparameter. The Monitors control panel sets the i t emparameter
to 1 if the user is a superuser. Your code should load any resources and modify them if
necessary for the capabilities of the computer system or selection of superuser status.
You can also allocate memory in response to this message, and store the value
identifying the user’s status.

i ni t Msg. Requests your monitors extension function to perform initialization.

okMsg. Indicates that the user clicked the OK button. Your function should check for
any values the user changed, release any memory it allocated, and return control to
the Monitors control panel.

cancel Msg. Indicates that the user clicked the Cancel button. Your function should
restore the system to the state it was in before the user clicked the Options button,
release any memory it allocated, and return control to the Monitors control panel. If
the user modified any values before clicking the Cancel button, reinstate the original
values.

hi t Msg. Indicates that the user clicked an enabled control in your monitors extension.
Your function should handle the click.

nul Msg. Requests your control device function to handle a null event by performing
any idle processing. Your monitors extension function should do minimal processing
in response to a null event; for example, it should not refresh control settings. The
Monitors control panel passes the event record for the null event in the parameter

t heEvent .

keyEvt Msg. Requests your monitors extension function to handle a key-down or
auto-key event.

updat eMsg. Requests your monitors extension function to update any user items and
redraw any controls that are not standard dialog items handled by the Dialog
Manager.

In addition, the message parameter can contain any of the values defined by these
constants:

CONST

activateMsg = 7; {becoming active (not currently used)}
deact i vat eMsg 8; {beconming inactive (not currently used)}
super Msg 10; {user is a superuser}

nor mal Msg 11; {user is not a superuser}

Creating an Extension for the Monitors Control Panel

CHAPTER 8

Control Panels

These messages either are provided for backward compatibility or are not currently used:

= activat eMsg. Requests your monitors extension function to respond to an activate
event by making your video card’s controls active. Currently, this message is not used
because the Options dialog box is modal. However, your monitors extension function
should handle this message as it would any activate event because in future
implementations the Options dialog box might be modeless.

= deacti vat eMsg. Requests your monitors extension function to respond to an
activate event by making your video card’s controls inactive. Currently, this message
is not used because the Options dialog box is modal. However, your monitors
extension function should handle this message as it would any activate event because
in future implementations the Options dialog box might be modeless.

= super Msg. Informs your monitors extension function that the user has selected
superuser status. This message is provided for backward compatibility with System 6.
However, your monitors extension function can respond to it by initializing any
controls that you have reserved for superusers, if your function has not already done
so in response to either the st art upMsg ori ni t Msg message. If your function does
not handle this message, it should return as its function result a handle to any
memory it previously allocated. The Monitors control panel sends the message
super Msg or nor nal Msg immediately following the initialization message.

= nor mal Msg. Informs your monitors extension function that the user has not selected
superuser status. This message is provided for backward compatibility with System 6.
However, your monitors extension function can respond to it by initializing any
controls, if your code has not already done so in response to either the st ar t upMsg
ori ni t Msg message. If your function does not handle this message, it should return
as its function result a handle to any memory it previously allocated. The Monitors
control panel sends the message nor mal Msg or super Msg immediately following the
initialization message.

IMPORTANT

If your monitors extension function cannot handle a message, it should
return as its function result a handle to any memory it previously
allocated. Otherwise, it should return the value passed in the

nmoni t or Val ue parameter. a

For a description of the remaining parameters of the monitors extension function, see
“Monitors Extension Functions” beginning on page 8-79.

Your monitors extension function can return either an error code or a handle to memory
it allocated. Each time the Monitors control panel calls your monitors extension function,
the moni t or Val ue parameter contains the value that your function returned as its
function result the last time it was called.

If an error occurs, your monitors extension function should display an error dialog box
and then return a value between 1 and 255. If your function returns a value in this range,
the Monitors control panel closes the Options dialog box immediately and does not call
your monitors extension function again.

The monitors extension used as an example in this chapter adds controls to the Options
dialog box for a video card called SurfBoard. The Magnify Enabled checkbox allows the
user to magnify the display of text and graphics on the monitor connected to the

Creating an Extension for the Monitors Control Panel 8-63

S|aued |01U0D n

CHAPTER 8

Control Panels

SurfBoard video card. The SurfBoard monitors extension also includes controls for
superusers, which illustrate how to implement the rectangle extension in which

the superuser controls are displayed. The SurfBoard monitors extension shows one way
of handling messages from the Monitors control panel.

Listing 8-25 shows the SurfBoard monitors extension function, My MonExt end. It
includes a CASE statement that handles messages that the Monitors control panel passes
to MyMonExt end. First the function sets up a handle for memory that it allocates in
response to the startup message. The function returns a handle to the storage it allocates
as its function result in response to the startup message, unless an error occurs (see
Listing 8-26 on page 8-66). For all subsequent messages, the Monitors control panel
passes, in the noni t or Val ue parameter, the previous function result. The

M/MonExt end function returns the handle to the allocated memory as its function result
for any messages that it does not handle.

Listing 8-25 A monitors extension function

UNI T Sur f Boar dMonExt ;

| NTERFACE
{include a Uses statenent if your progranm ng environnent requires it}
CONST
kTextltem = 1; {static text iten}
kSuper User Di vLi ne = 2; {separation |ine}
kFilterControl = 4, {radio button filter}
kAnti Al i asi ngCntl = 5; {radi o button aliasing}
kMagni f yCont r ol = 6; {checkbox for Magnify Enabl ed}
kMentrr Al ert = 130; {resource ID of out-of-nenory alert box}
kdeepAl ert = 131; {resource ID of alert box}
kResl| D = 133; {all other errors}
TYPE
Moni t or Dat aRec =
RECORD {local data for the extension}
i sSuper User: Bool ean;
filteringSetting: I nt eger;
ol dFil tering: I nt eger;
t oggl eMagni fyVal ue: Integer;
END;
Moni t or Dat aPt r = ~Moni t or Dat aRec;
Moni t or Dat aHandl e = ~"NMonitorDataPtr;
MyRect Handl e = "RectPtr;
Myl nt Ptr = "l nteger;
M/l nt Handle = "MyIntPtr;

8-64

Creating an Extension for the Monitors Control Panel

CHAPTER 8

Control Panels

FUNCTI ON MyMonExt end (nessage, item nunltemns: |nteger;
nmoni t or Val ue: Longlnt; nDial og: Dial ogPtr;
t heEvent: Event Record; ScreenNum | nteger;
VAR Screens: ScrnRsrcHandl e;
VAR ScrnChanged: Bool ean): Longlnt;

| MPLEMENTATI ON
{any support routines your nmonitors extension function uses}
PROCEDURE MyHandl eSt art upMsg(item |Integer; nDialog: D alogPtr;

VAR nonitorVal ue: Longlnt); FORWARD,
PROCCEDURE MyHandl el ni t Msg(num tens: Integer; nDialog: DialogPtr;

dat aRecHand: Monit or Dat aHandl e); FORWARD;
PROCEDURE MyDr awRect (t heW ndow. W ndowPtr; itemNo: Integer); FORWARD;
FUNCTI ON MySet UpDat a (super User: Integer; storage: MNonitorDataHandle): OSErr;
FORWARD;
PROCEDURE MyHandl eHits (nDi al og: DialogPtr; whichltem nunmtens: Integer;
dat aRecHand: Moni t or Dat aHandl e); FORWARD;
PROCEDURE MySaveNewVal ues (dat aRecHand: Monit or Dat aHandl e); FORWARD;
PROCEDURE MyUndoChanges (item numtens: Integer; nDialog: D alogPtr;
dat aRecHand: Moni t or Dat aHandl e); FORWARD;

FUNCTI ON MyMonExt end (message, item nunltems: |nteger; nonitorVal ue: Longlnt;
nDi al og: Dial ogPtr; theEvent: EventRecord;
ScreenNum I nteger; VAR Screens: ScrnRsrcHandl e;
VAR ScrnChanged: Bool ean): Longlnt;
VAR
dat aRecHand: Moni t or Dat aHandl e;
BEG N
| F message <> startupMsg THEN
dat aRecHand : = Moni t or Dat aHandl e(moni t or Val ue); {set up handl e}
CASE nessage OF
startupMsg:
MyHandl eSt art upMsg(item nDi al og, nonitorVal ue);
initMsg:
MyHandl el ni t Msg(nunm tens, nDi al og, dataRecHand);
hi t Msg:
MyHandl eHi t s(nDi al og, item numtens, dataRecHand);
okMsg:
My SaveNewval ues(dat aRecHand) ;
cancel Msg:
MyUndoChanges(item numtens, nDial og, dataRecHand);
END; {of CASE}
MyMonExt end : = nonitorVal ue;{return value w th handl e}
END; { MyMonExt end}

Creating an Extension for the Monitors Control Panel 8-65

S|aued |01U0D n

CHAPTER 8

Control Panels

Handling the Startup Message

After the code in your monitors (' mtr') code resource is loaded and before the
Monitors control panel finds any resources to which your monitors extension function
refers, the Monitors control panel calls your function with a startup (st ar t upMsg)
message. If the user is a superuser, the Monitors control panel sets the i t emparameter
to 1 for the startup message.

The startup message requests your monitors extension function to load and modify any
resources that must allow for the capabilities of the computer or for superusers. For
example, your monitors extension function should modify the rectangle resource if the
user is a superuser.

In response to a startup message, your function can also create a handle and allocate any
memory that it needs to store values between calls from the Monitors control panel. For
example, if your function initializes its controls in response to the initialization

(i ni t Msg) message, it should store a value indicating whether or not the user is a
superuser. When the Monitors control panel calls your monitors extension function with
an initialization message, the i t emparameter no longer indicates the user’s status. If
your code allocates memory, your function should return as its function result a handle
to the memory it allocates in response to the startup message, unless an error occurs. If
an error occurs, your function can display an error dialog box and return a function
result of 255, indicating an error condition. Listing 8-26 shows how the MyMonExt end
function handles the startup message.

Listing 8-26 Handling the startup message

PROCEDURE MyHandl eSt artupMsg (item Integer; nDialog: DialogPtr;
VAR noni t or Val ue: Longlnt);

VAR
dat aRecHand: Moni t or Dat aHandl e;
result: CSErr
i I nt eger;

BEG N

{all ocate nenory to store data}
dat aRecHand : =
Moni t or Dat aHandl e(NewHand! e(si zeof (Moni t or Dat aRec))) ;
| F dat aRecHand <> NI L THEN
BEG N
result := MySetUpData(item dataRecHand);
IF result = noErr THEN

nmoni t or Val ue : = Longl nt (dat aRecHand)
ELSE {error function result stops any further action}
noni torVal ue : = result;

END

8-66 Creating an Extension for the Monitors Control Panel

CHAPTER 8

Control Panels

ELSE
BEG N {dat aRecHand not all ocat ed}
i = StopAlert(kMenErrAlert, NL);
{error function result stops any further action}
noni t or Val ue : = 255;
END;
END;

Allocating Storage in Response to the Initialization Message

If your monitors extension function does not allocate memory in
response to a startup message, it can do so in response to an
initialization message, and then use the superuser (super Msg) or the
normal user (nor mal Msg) message to initialize control values and user
items, if any. The Monitors control panel does not display the Options
dialog box until after your monitors extension function returns from
either of these messages. O

If your function returns an error in response to the startup message, the Monitors control
panel does not display the Options dialog box. Your code can display an alert box
describing the error before returning control to the Monitors control panel.

After it allocates storage, the function shown in Listing 8-26 calls its own My Set UpDat a
function to check the value of the i t emparameter. This value indicates whether the user
has selected superuser status.

Listing 8-27 shows the My Set UpDat a function. If the user is not a superuser, the
SurfBoard monitors extension uses the default values for the rectangle resource. (This
rectangle ends just before the dividing line, so that the superuser controls are not
displayed.) If the user is a superuser, My Set UpDat a extends the rectangle in the
rectangle (' RECT') resource to include all of the controls in the item list resource

(" DI TL') resource. If an error occurs, the function notifies the user and returns an error
code value of 255 as its function result.

Creating an Extension for the Monitors Control Panel 8-67

S|aued |01U0D n

CHAPTER 8

Control Panels

Listing 8-27 Using a normal user rectangle or extending it to display superuser controls

FUNCTI ON MySet UpDat a(super User: Integer; storage: MonitorDataHandle): OSErr
VAR

magni f yHdl : Handl e;

i ntensityLevel Hdl : Handl e;

resHandl e: Handl e;

i I nt eger;

result: OSErr;
BEG N

result := noErr;

HLock(Handl e(st orage));
W TH st or age™™ DO

BEG N
{open preferences file first if needed}
magni f yHdl : = Get Resource(' MAGN' , kReslD);
I F magni fyHdl <> NIL THEN
BEG N

t oggl eMagni fyVal ue : = Myl nt Handl e(magni f yHdl) **;
Rel easeResour ce(magni fyHdl) ;

END;
| F superUser = 1 THEN
BEG N
i sSuper User := TRUE;
intensityLevel Hdl := GetResource('INTE , kReslD);
| F intensityLevel HdIl <> NIL THEN
BEG N
oldFiltering : = Myl ntHandl e(i ntensityLevel Hdl) "";
filteringSetting := oldFiltering;
Rel easeResour ce(i ntensitylLevel Hdl) ;
resHandl e: = Get Resource(' RECT', -4096);
IF resHandl e <> NIL THEN
Rect Handl e(resHandl e) *.top := -160
ELSE
result := 255
END

8-68 Creating an Extension for the Monitors Control Panel

CHAPTER 8

Control Panels

ELSE
result := 255;
END {of superuser = 1}

{cl ose preferences file}
END; {of WTH
I F result = 255 THEN

BEG N

Di sposeHandl e(Handl e(st orage));

END;

St opAl ert (kdeepAlert, NL);

HUNnl ock(Handl e(st orage));
MySet UpData : = result;

END;

Performing Initialization

Before it displays the Options dialog box and after it has located any resources that your
monitors extension includes, such as gamma table (' gama') resources, the Monitors
control panel calls your monitors extension function with an i ni t Msg message. When
your monitors extension function receives this message, it should set default values for
controls. To handle this message, your function can initialize the settings of its controls. If
it hasn’t already allocated memory in response to the startup message, your function can
allocate memory when it performs initialization. The Monitors control panel calls your
monitors extension with an initialization message after the startup message and before
either the superuser or normal message.

If your function returns an error in response to the i ni t Msg message, the Monitors
control panel does not display the Options dialog box. Your function can display an alert
box describing the error before returning control to the Monitors control panel.

Listing 8-28 shows the MyHandl el ni t Msg procedure, which the MyMonExt end
function calls to handle the initialization message. First MyHandl el ni t Msg sets its
controls to their initial values; MyHandl el ni t Msg calls the Dialog Manager’s

Cet Di al ogl t emand the Control Manager’s Set Cont r ol Val ue procedures for this
purpose. Then, if the user is a superuser, the procedure installs the procedure that draws
the dividing line between the normal controls and superuser controls, then initializes the
settings of its superuser controls.

Listing 8-28 Initializing a monitors extension

PROCEDURE MyHandl el nit Msg (num tems: Integer; nDialog: DialogPtr;
dat aRecHand: Moni t or Dat aHandl e) ;

VAR
i tenlype: I nt eger;
i temHandl e: Handl e;
i tenmRect: Rect ;

Creating an Extension for the Monitors Control Panel 8-69

S|aued |01U0D n

CHAPTER 8

Control Panels

BEG N
Cet D al ogltem(nDi al og, num tenms+kMagni fyControl, itemlype,
i temHandl e, itenRect);
Set Cont r ol Val ue(Cont rol Handl e(i t enHandl e) ,
(dat aRecHand”™”". t oggl eMagni fyVval ue)) ;

| F dat aRecHand”™”. i sSuper User THEN
BEG N

Cet D al ogltem(nDi al og, num t ems+kSuper User Di vLi ne, itenlype,

i temHandl e, itenRect);
Set Di al oglten{nDi al og, num t ens+kSuper User Di vLi ne, itenType,
@4 DranwRect, itenRect);
| F dat aRecHand™*. ol dFiltering = O THEN
CGet Di al ogl ten{nDi al og, num tens+kAnti Ali asi ngCntl,
i temType, itenHandl e, itenRect)
ELSE
Cet Di al ogl ten{nDi al og, nunml tenms+kFilterControl,
i temlype, itenHandl e, itenRect);

Set Cont r ol Val ue(Cont rol Handl e(i tenHandl e), 1);

END;
END;

Listing 8-29 shows the MyDr awRect procedure, which draws the line dividing superuser
controls from other controls. The MyDr awRect procedure uses the Fr aneRect
procedure to draw a 1-pixel-high rectangle. Note that MyDr awRect specifies the
coordinates for the dividing line in the coordinate system used by its rectangle (' RECT")
resource. If you wish, you can draw this line in a gray pattern so that it looks similar to
the dividers in menus. (For information on the Fr aneRect procedure, see Inside
Macintosh: Imaging With QuickDraw.)

Listing 8-29 Drawing a line to separate superuser controls

PROCEDURE MyDr awRect (theW ndow. W ndowPtr; itenmNo: Integer);

VAR
i tenlype: I nt eger;
i tenmHdl : Handl e;
i tenmRect: Rect ;
BEG N

CGet Di al ogl ten{t heW ndow, itenNo, itenifype, itenHdl, itenRect);
FrameRect (it enRect) ;
END;

8-70 Creating an Extension for the Monitors Control Panel

CHAPTER 8

Control Panels

Responding to a Click in the OK Button

The Monitors control panel calls your monitors extension function with an OK (okMsg)
message when the user clicks the OK button. The OK button is a standard control
defined for the Options dialog box by the Monitors control panel. When the user clicks
the OK button, the Monitors control panel hides the Options dialog box.

This message is a signal to put user preferences into effect. You should not make any
changes requested by the user irreversible until you receive this message. This is your
last chance to check the values of any controls or editable text items that the user might
have changed. Your monitors extension function should update the resources in which it
saves values; it should also make any hardware changes necessary. Your function should
release any memory it has allocated before returning control to the Monitors control
panel.

The MyMonExt end function (see Listing 8-25 on page 8-64) calls its own

My SaveNewVal ues procedure to handle an OK message from the Monitors control
panel. This procedure checks if the user has changed the setting of the Magnify Enabled
checkbox. If the user is a superuser, it also checks the values of the Anti-Aliasing and
Zirconian Filtration radio buttons. If the user changed values, M/MonExt end writes the
values to its preferences file, which is stored in the Preferences folder, and releases any
memory it has allocated before it returns to the Monitors control panel.

Responding to a Cancel Request

When the user clicks the Cancel button, the Monitors control panel calls your monitors
extension function with a cancel (cancel Msg) message. The Cancel button is a standard
control defined for the Options dialog box by the Monitors control panel. To handle the
cancel request, your monitors extension function should restore the system to its former
state, before the user clicked the Options button; release any memory it allocated; and
return control to the Monitors control panel. If your function modified any values the
user specified before clicking the Cancel button, reinstate the original values.

Handling Mouse Events for a Monitors Extension

When the user clicks any active enabled control that your monitors extension defined for
the Options dialog box, system software generates mouse events. The Monitors control
panel intercepts these events and passes them to your monitors extension function as a
hi t Msg message. Your monitors extension function typically changes the setting of the
control or performs the appropriate action in response to a hi t Msg message.

Along with the hi t Msg message, the Monitors control panel passes three values that
your monitors extension function uses to determine which item the user clicked.

= Inthe it emparameter, the number of the item clicked. This is not the number you
assign in your item list, but the number after the Monitors control panel appends your
item list to the item list of the Options dialog box.

= In the num t ems parameter, the number of items in the item list of the standard
Options dialog box.

Creating an Extension for the Monitors Control Panel 8-71

S|aued |01U0D n

CHAPTER 8

Control Panels

= In the parameter t heEvent, the event record for the mouse event that generated the
hi t Msg message.

The Monitors control panel appends the items you define in your monitors extension
item list to the item list for the standard controls in the Options dialog box. Therefore, to
get the actual number of your item, subtract num t ens from i t em

Listing 8-30 shows the MyHandl eHi t s procedure, which MyMonExt end calls to handle
a hi t Msg message. This procedure determines the item number of the clicked control, as
defined in the monitors extension’s item list resource. It does this by subtracting the
number of items in the item list of the Options dialog box (nuni t ens) from the item the
user clicked (whi chl t em) to get the correct item number. Then MyHandl eHi t s calls the
Dialog Manager’s Cet Di al ogl t emprocedure and the Control Manager’s

Set Cont r ol Val ue procedure to set the control to the new value indicated by the user.

Listing 8-30 Responding when a user clicks a control

PROCEDURE MyHandl eHits (nDi al og: Di al ogPtr; whichltem nunmtens: |nteger;

dat aRecHand: Moni t or Dat aHandl e) ;

VAR

i tenType: I nt eger;
i tenHandl e: Handl e;
i tenmRect: Rect ;

BEG N

HLock(Handl e(dat aRecHand)) ;
W TH dat aRecHand*" DO
BEG N
CASE whichltem - numtens OF
kFilterControl:
BEG N
CGet Di al ogl ten{nDi al og, whichltem itemlype, itenHandl e,
i tenRect);
Set Cont r ol Val ue(Cont r ol Handl e(i t emHandl e), 1);
CGet Di al ogl ten({nDi al og, nunltenms+kAnti AliasingCntl, itenilype,
itenHandl e, itenRect);
Set Cont r ol Val ue(Cont r ol Handl e(i t enHandl e), 0) ;
filteringSetting := 1;
END;
kAnti Al i asi ngCntl :
BEG N
CetDi al ogltem(nDi al og, num tens+kFilterControl, iteniflype,
i temHandl e, itenRect);
Set Cont r ol Val ue(Cont r ol Handl e(i t enHandl e), 0) ;
CetDi al ogltem(nDi al og, whichltem itemlype, itenHandl e,
itenmRect);

8-72 Creating an Extension for the Monitors Control Panel

CHAPTER 8

Control Panels

Set Cont r ol Val ue(Cont rol Handl e(i t enHandl e), 1) ;
filteringSetting := 0;
END;

kMagni f yControl :
BEG N
CetDi al ogltem(nDi al og, whichltem itenmlype, itenHandle
itemRect);
t oggl eMagni fyValue := 1 - toggl eMagni f yVal ue;
Set Cont r ol Val ue(Cont r ol Handl e(i t emHandl e),
t oggl eMagni f yVval ue) ;

END;
END; {end of CASE}
END;
HUnl ock(Handl e(dat aRecHand)) ;
END;

Handling Keyboard Events

The Monitors control panel intercepts all key-down and auto-key events for your
monitors extension and sends your monitors extension function a keyboard event
through the keyEvt Msg message. The Monitors control panel passes, in the parameter

t heEvent, the event record for the keyboard event. If your monitors extension includes
an editable text item and the user issues a Cut, Copy, or Paste command using the
Command-key equivalent, the Monitors control panel passes this event to your monitors
extension function in the event record.

Including Another Control Panel Definition in a Monitors
Extension File

A control panel file that contains an extension to the Monitors control panel can also
contain a definition for another, separate control panel. You might want to include both
an extension to the Monitors control panel and a new control panel definition in the
same file, for example, if each controls some features of the same video card. Any control
panel definition must include a resource of type ' cdev' and the other resources
described in “Creating a Control Panel’s Resources” beginning on page 8-14.

Because the control panel resources and the monitors extension resources in the file have
different resource ID numbers, the Finder handles them separately. If the user opens a
control panel file containing both a control panel definition and an extension to the
Monitors control panel, the control panel defined in that file appears on the screen, and
the Finder ignores the monitors extension in that file. If the user opens the Monitors
control panel file, then the Monitors control panel searches the other control panel files in
the same folder for extensions and ignores any control resources of type ' cdev' it finds

Creating an Extension for the Monitors Control Panel 8-73

S|aued |01U0D n

CHAPTER 8

Control Panels

in those files. The user cannot open a control panel file that contains only an extension to
the Monitors control panel; only the Monitors control panel can open such a file.

8-74 Creating an Extension for the Monitors Control Panel

CHAPTER 8

Control Panels

Control Panels Reference

This section describes the application-defined routines and the resources that are specific
to control panels and extensions to the Monitors control panel.

The section “Application-Defined Routines” describes the control device function that
you must provide for a control panel and the monitors extension function that you must
provide for an extension to the Monitors control panel. You create a control device
function to implement a control panel. A control device function should respond to
messages from the Finder, handling any events or performing any actions as requested
by the Finder. A monitors extension function extends the Monitors control panel to
provide support for a video device so that users can control its settings.

The “Resources” section lists the resources required for a control panel or an extension to
the Monitors control panel. It includes specific sections for the resources you must
supply for a control panel or a monitors extension if those resources are not fully
documented elsewhere in Inside Macintosh, and it indicates where to find information
about required resources that are not covered in that section.

Application-Defined Routines

This section describes the control device function and the monitors extension function.

Control Device Functions

MyCdev

A control device (' cdev') code resource contains a control device function that
implements the features of a control panel.

You provide a control device function to implement your control panel. In the nessage
parameter, the Finder passes a value indicating which action your control device
function should perform. Here’s how you declare a control device function called
MyCdev:

FUNCTI ON MyCdev(nmessage, item numtens, CPrivateVal ue: |nteger;
VAR t heEvent: Event Record;
cdevSt orageVal ue: Longlnt; CPDi al og: Dial ogPtr)
Longl nt;

Control Panels Reference 8-75

S|aued |01U0D n

CHAPTER 8

Control Panels

message A value that identifies the event or action to which your control
device function should respond. See Table 8-3 on page 8-77 for the
constants your function can receive in this parameter.

item The number of the item that the user clicked. In System 7, this is always
the actual number of the item in your item list. In System 6, the Control
Panel desk accessory appends your item list to its own. Although you
begin numbering your item list with 1, the Control Panel adds the
number of items in its item list to your item. Therefore, to get the
actual number of the clicked item, and to provide for backward
compatibility, your control device function should always subtract
num t ens fromitem

num tens In System 7, the Finder passes a value of 0 for this parameter. This
parameter is provided for backward compatibility with the Control Panel
desk accessory. In System 6, this parameter contains the number of items
in the item list belonging to the Control Panel desk accessory. To get the
actual number of the item that the user clicked, subtract num t ens from
item

CPri vat eVal ue
Reserved for use by the Finder or the Control Panel desk accessory.

t heEvent The event record for the event that caused the Finder to send a hi t Dev,
nul Dev, acti vDev, deAct i vDev, updat eDev, or keyEvt Dev message
to your control device function. See the chapter “Event Manager” in Inside
Macintosh: Macintosh Toolbox Essentials for a description of events and
event records.

cdevSt or ageVal ue
The first time the Finder calls your control device function, this parameter
is set to the constant cdevUnset . After the first call, this parameter
contains the function result last returned by your control device function.
Typically, in response to an i ni t Dev message, a control device function
allocates a handle to memory and returns this handle as its function
result. It does this so that it can store values between calls from the Finder.
On all subsequent calls, the Finder passes the handle back to your
function as the value of cdevSt or ageVal ue, and your function returns
this value as its function result until an error condition occurs or the user
closes the control panel.

If your function does not create a handle, your function and the Finder
pass cdevUnset back and forth, instead of the handle, until an error
condition occurs or the user closes the control panel.

CPDi al og The dialog pointer for your control panel’s dialog box. The dialog can be
a color dialog on systems that support color windows. See the chapter
“Dialog Manager” in Inside Macintosh: Macintosh Toolbox Essentials for a
description of dialog pointers.

8-76 Control Panels Reference

DESCRIPTION

CHAPTER 8

Control Panels

The Finder calls your control device function repeatedly with various messages in
response to user actions and events from the time the user opens your control panel until
the user closes the control panel or your function reports an error condition from which
it cannot recover. Before attempting to handle messages from the Finder, your control
device function should determine whether enough memory is available to perform the
requested action.

Depending on how you define your control panel’s machine resource, the Finder calls
your control device function for the first time with a macDev message or ani ni t Dev
message. Apart from a macDev message, your control device function should ignore
any messages that it receives before an i ni t Dev message. Your function should also
ignore any messages it receives after a cl oseDev message, which the Finder sends
under normal conditions free of error as a signal that your function should begin its
termination process: releasing any allocated memory, handles, pointers, and so on.
Between the i ni t Dev and the cl oseDev calls, the Finder calls your control device
function to direct it to handle activate, update, keyboard-related, mouse-related, and null
events. When the user chooses a command from the Finder’s Edit menu, the Finder
passes the command to your function as an edit message. Table 8-3 lists the constant
names for the values that the Finder passes in the message parameter and provides a
description of the action your function should perform.

Table 8-3 Messages from the Finder
Constant Value Description
i nitDev 0 Your control device function should perform any

initialization, set default values for controls, and create a
handle to any memory that it needs.

hi t Dev 1 The user clicked an enabled item, and your control device
function should handle the click.

cl oseDev 2 The user closed the control panel; your function should
terminate after disposing of any handles and pointers it
created. (In System 6 and earlier, the user could have also
selected another control panel.)

nul Dev 3 A null event occurred. Your control device function should
perform idle processing. Do not assume any particular
timing for this message.

updat eDev 4 An update event occurred. Your control device function
should update any user items and redraw any controls that
are not standard dialog items handled by the Dialog
Manager.

acti vDev 5 Your control panel is becoming active as the result of an
activate event. Your control device function should make
the default button and any other controls in your control
panel active.

Control Panels Reference 8-77

S|aued |01U0D n

8-78

CHAPTER 8

Control Panels

Table 8-3 Messages from the Finder (continued)
Constant Value Description
deAct i vDev 6 Your control panel is becoming inactive as the result of an

keyEvt Dev 7
nmacDev 8
undoDev 9
cut Dev 10
copyDev 11
past eDev 12
cl ear Dev 13

activate event. Your control device function should make
the default button and any other controls in your control
panel inactive.

A key-down or an auto-key event occurred. Your control
device function should process the keyboard event.

Your control device function should check the hardware
and software configuration to determine whether the
control panel can run on it. Your function should return a
function result of 1 if it can run and 0 if it cannot.

The user chose the Undo command from the Finder’s Edit
menu. Your control device function should handle the
command.

The user chose the Cut command from the Finder’s Edit
menu. Your control device function should handle the
command.

The user chose the Copy command from the Finder’s Edit
menu. Your control device function should handle the
command.

The user chose the Paste command from the Finder’s Edit
menu. Your control device function should handle the
command.

The user chose the Clear command from the Finder’s Edit
menu. Your control device function should handle the
command.

In System 7, the Finder processes all Command-key equivalents on behalf of your
control panel, except those that it maps to its own Edit menu commands. The Finder
converts these Command-key equivalents to edit messages, which it then passes to your
control panel for processing. In System 6, the Control Panel passes both commands from
the Edit menu and their Command-key equivalents to your control device function for
processing. See the sections “Responding to Keyboard Events” on page 8-37 and
“Handling Edit Menu Commands” on page 8-46 for more information on how to handle

Command-key equivalents.

If your function cannot recover from an error condition, it must return one of three error
codes to the Finder after disposing of any memory, handles, and pointers that it created
and restoring the system stack to the state it would be in after successful execution. See
Table 8-2 on page 8-47 for the error codes that your control device function can return.

Control Panels Reference

SEE ALSO

CHAPTER 8

Control Panels

For information on how to write a control device function, see “Writing a Control Panel
Function” beginning on page 8-25. For information on the required and optional
resources for your control panel, see “Creating a Control Panel’s Resources” beginning
on page 8-14.

Monitors Extension Functions

MyMntrExt

A monitor (' mtr') code resource contains a monitors extension function, which adds
controls to the Options dialog box of the Monitors control panel. This function
implements the features that allow users to set values for the added controls.

You provide a monitors extension function to implement the features that allow users to
set the controls for your video card. Your function should respond appropriately to any
messages sent to it by the Monitors control panel. In the message parameter, the
Monitors control panel passes a value indicating which action your function should
perform. Here’s how you declare a monitors extension function called MyMnt r Ext :

FUNCTI ON MyMnt r Ext (nessage, item numtens: |nteger;
noni t or Val ue: Longlnt; nDialog: DialogPtr;
t heEvent: Event Record;
screenNum Integer; VAR screens: ScrnRsrcHandl e;
VAR scrnChanged: Bool ean): Longlnt;

nessage A value that identifies the event or action to which your monitors
extension function should respond. See Table 8-4 on page 8-81 for the
values your function can receive in this parameter.

item For hi t Dev messages, the number of the item that the user clicked. The
Monitors control panel appends your item list to its own. So, although
you begin numbering your item list with 1 in your item list resource, the
Monitors control panel adds the number of standard items in the Options
dialog box’s item list to your item. Therefore, to get the actual number of
the clicked item, your monitors extension function should always subtract
num t ens fromitem

For the st art upMsg message, the i t emparameter indicates whether the
user has selected superuser status. If so, the i t emparameter is 1; if not, it
is 0.

num tems The item list number of the last standard item in the Options dialog box.

moni t or Val ue
The first time the Monitors control panel calls your monitors extension
function, that is, when the message parameter equals st ar t upMsg, the
value of the noni t or Val ue parameter is 0. After the first call, this

Control Panels Reference 8-79

S|aued |01U0D n

DESCRIPTION

8-80

CHAPTER 8

Control Panels

nDi al og

t heEvent

screenNum

SCreens

scrnChanged

parameter contains the result your monitors extension function returned
the last time the Monitors control panel called it. Because control panel
routines, including a monitors extension function, cannot use global
variables to store data between calls, your function can use its function
result to return a handle to any memory it allocates. The next time the
Monitors control panel calls your monitors extension function, it passes
the handle back to your function in the noni t or Val ue parameter.

If your monitors extension function returns a function result in the range
1 through 255, the Monitors control panel interprets this result as an error
and closes your Options dialog box. Therefore, your monitors extension
function will not receive a value in this range in the noni t or Val ue
parameter.

The dialog pointer for the Options dialog box. See the chapter “Dialog
Manager” in Inside Macintosh: Macintosh Toolbox Essentials for a
description of dialog pointers.

The event record for an event that caused the Monitors control panel to
pass a hi t Msg, nul Msg, or keyEvt Msg message to your monitors
extension function. See the chapter “Event Manager” in Inside Macintosh:
Macintosh Toolbox Essentials for a description of events and event records.

The number of the screen device (that is, the monitor) that the user
selected. The Monitors control panel numbers monitors consecutively, in
the same order as the slots in which the cards are installed, starting with 1.

A handle to a screen (' scrn') resource. See Inside Macintosh: Devices for
information on the screen resource.

A Boolean value that you can use to indicate whether you have modified
the screen (' scrn') resource. Set this parameter to TRUE if you have
modified the screen resource. When you set the scr nChanged parameter
to TRUE, the Monitors control panel checks whether the values in the
screen resource are still valid; if there is a problem, the Monitors control
panel tries to correct it.

This parameter makes it easier to implement a control that changes the
apparent area displayed on the screen. For example, your monitor might
be able to display either two pages of a document or a magnified view of
a single page. If the user changes the area displayed on one screen in a
system with multiple screens, the displays on adjacent screens could
overlap or show gaps. When you change the screen resource to
implement this change, the coordinates of the global rectangles for
adjacent screens are no longer contiguous. In this case, if you have set the
scrnChanged parameter to TRUE, the Monitors control panel shifts the
virtual locations of the screens to eliminate the gaps or overlaps.

The Monitors control panel calls your monitors extension function repeatedly with
messages requesting your function to perform an action or handle an event that occurs
while the Options dialog box is displayed. Table 8-4 lists the constant names for the

Control Panels Reference

CHAPTER 8

Control Panels

values that the Monitors control panel passes in the message parameter and provides a
description of the action your function should perform.

Table 8-4

Messages from the Monitors control panel

Constant
i nitMg

okMsg

cancel Msg

hi t Msg

nul Msg

updat eMsg

activateMsg

Value
1

Description

Your monitor extension function should perform initialization; it
should allocate any memory it needs and set default values for its
controls.

The Monitors control panel sends this message to your function before
it displays the Options dialog box but after it locates any resources,
such as gamma tables, that your extension includes.

When the user clicks the OK button, the Monitors control panel hides
the Options dialog box and calls your monitors extension function
with this message. This is your function’s last chance to check the
values of dialog items that the user might have changed. Your function
should release any memory that it previously allocated before
returning control to the Monitors control panel.

The OK button is a standard control put in the Options dialog box by
the Monitors control panel.

The user clicked the Cancel button. Your monitors extension function
should return the device that your monitors extension controls to the
condition it was in before the user clicked the Options button, release
any memory that your function previously allocated, and return
control to the Monitors control panel.

The Cancel button is a standard control put in the Options dialog box
by the Monitors control panel.

The user clicked an enabled control in the Options dialog box, and
your extension function should handle the click.

The Monitors control panel appends your item list to the standard list
of items in the Options dialog box and passes, in the i t emparameter,
the item’s item number in the combined list. To get the actual number
of the clicked item as defined in your item list, subtract num t ens
fromitem

A null event occurred. Your monitors extension function should
perform tasks that have to be done repeatedly, if any. Do not assume
any particular timing for this message.

An update event occurred. Your monitors extension function should
update any user items and redraw any controls that are not standard
items handled by the Dialog Manager.

An activate event occurred, indicating that the Options dialog box is
becoming active. Currently, the Monitors control panel does not call
your monitors extension function with this message, because the
Options dialog box is modal. However, your function should handle
this message as it would any activate event, because in future versions
of the Operating System the Options dialog box might be modeless.

Control Panels Reference 8-81

S|aued |01U0D n

CHAPTER 8

Control Panels

Table 8-4

Messages from the Monitors control panel (continued)

Constant
deact i vat eMsg

keyEvt Msg

super Msg

nor mal Msg

startupMsg

Value
8

10

11

12

Description

An activate event occurred, indicating that the Options dialog box is
becoming inactive. Currently, the Monitors control panel does not call
your extension function with this message, because the Options dialog
box is modal. However, your function should handle this message as
you would any activate event, because in future versions of the
Operating System the Options dialog box might be modeless.

A keyboard event occurred. Your monitors extension function should
process the keyboard event.

The user has selected superuser status. Your monitors extension
function should display any controls that are reserved for superusers.

The Monitors control panel sends this message when the user holds
down the Option key while clicking the Options button.

This message is provided for backward compatibility with System 6.
However, your monitors extension function can respond to it by
initializing any controls that you have reserved for superusers, if your
function has not already done this in response to either the
startupMsg ori ni t Msg message. If your code does not handle this
message, it should return as its function result a handle to any
previously allocated memory.

The Monitors control panel sends this message or the normal message
immediately following the initialization message.

The user is not a superuser. This message is provided for backward
compatibility with System 6. However, your monitors extension
function can respond to it by initializing any controls, if your function
has not already done this in response to either the st ar t upMsg or

i ni t Msg message. If your function does not handle this message, it
should return as its function result a handle to any previously
allocated memory.

The Monitors control panel sends this message or the superuser
message immediately following the initialization message.

The Monitors control panel sends this message as soon as the code in
your monitors code (' mt r') resource has been loaded, and before
the Monitors control panel finds any resources that your monitors
extension function refers to. If the user is a superuser, the Monitors
control panel sets the i t emparameter to 1 when it sends the startup
message.

When your monitors extension function receives this message, it can
load and modify any resources that must allow for the capabilities of
the system or for superusers. For example, your function can modify
the item list resource to display special controls for superusers.

8-82 Control Panels Reference

SEE ALSO

Resources

CHAPTER 8

Control Panels

Your monitors extension function can return either an error code or a value that you
want to have available the next time the Monitors control panel calls your function. For
example, if your monitors extension function allocates memory, it can return a handle to
the memory as its function result. Each time the Monitors control panel calls your
monitors extension function, the moni t or Val ue parameter contains the value that your
function returned the last time it was called.

Your monitors extension function must also detect and recover from any error conditions
or report them to the user. If it cannot recover from an error, your monitors extension
function should display an error dialog box and then return a value between 1 and 255.
If your function returns a value in this range, the Monitors control panel closes the
Options dialog box immediately and does not call your function again. If your function
returns an error in response to the i ni t Msg or st ar t upMsg message, the Monitors
control panel does not display the Options dialog box. Your function can display an alert
box describing the error before returning control to the Monitors control panel.

For more information about the messages the Monitors control panel sends to your
monitors extension function and how to handle them, see “Writing a Monitors Extension
Function” beginning on page 8-61.

This section identifies the resources you supply for a control panel and monitors
extension. The required resources for a control panel are

= A machine (' mach') resource that describes the systems on which your control panel
can run or signals the Finder to call your control device function to perform this check.

= A rectangle positions (' nrct') resource to define the number of rectangles that make
up the control panel and their positions.

= Anitem list (' DI TL') resource to specify all of the items that are to appear in the
control panel. These items can include static text, buttons, checkboxes, radio buttons,
editable text, the resource IDs of icons and QuickDraw pictures, and the resource IDs
of other types of controls, such as pop-up menus.

= Aniconlist (' | CN#') resource and other icon family resources (' i cs#',"icl 8",
"icld', "ics8', 'ics4')todefine the icons for the control panel file.

= A control device function (' cdev') code resource that contains the code to implement
the control panel.

= A file reference (' FREF') resource to associate your control panels’s icons with your
control panel file so that the Finder can display the icons with the file type they
represent.

Control Panels Reference 8-83

S|aued |01U0D n

8-84

CHAPTER 8

Control Panels

= Abundle (' BNDL') resource to associate your control panel’s signature, icon list, and
file reference resources.

= A signature resource—defined using a string (' STR ') resource—to identify your
control panel.

The following required resources are described completely in chapters of Inside
Macintosh: Macintosh Toolbox Essentials and are not included in this reference section:

= For the item list (' DI TL") resource, see the chapter “Dialog Manager” in Inside
Macintosh: Macintosh Toolbox Essentials.

= For the icon family, file reference (' FREF'), bundle (' BNDL'), and signature
resources, see the chapter “Finder Interface” in Inside Macintosh: Macintosh Toolbox
Essentials.

The two remaining required resources—machine (' mach') and rectangle positions

(" nrct') resources—are described in this section. The font information (' fi nf ')
resource is also covered in this section; it is an optional resource that you can supply to
specify the font to be used for static text items.

Note

You can include additional resources in your control panel file that are
not required. See “Providing Additional Resources for a Control Panel”
on page 8-22 for more information. O

The resources required for an extension to the Monitors control panel are

s Acard (' card') resource that contains a Pascal string identical to the name of the
video card. (This is the name in the declaration ROM of the card.) Because a monitors
extension can include as many card resources as you like, one extension file can
handle several types of video cards.

= A monitor (' mtr') code resource that contains the code to implement and handle
the controls and features of your monitors extension.

» Arectangle (' RECT') resource to describe the size and shape of the area used to
display your controls.

s Anitem list (' DI TL') resource to specify which items you want to appear in your
monitors extension. You can add additional controls for superusers, separating them
from the other controls with a horizontal dividing line.

Of these required resources, the card (' card'), monitor (' mtr'), and rectangle

(" RECT") resources are described in this reference section. See the chapter “Dialog
Manager” in Inside Macintosh: Macintosh Toolbox Essentials for information about the item
list (' DI TL') resource.

For information about the optional resources you can provide for a monitors extension,
see “Supplying Optional Resources for a Monitors Extension” beginning on page 8-56.

Control Panels Reference

CHAPTER 8

Control Panels

The Machine Resource

You can identify to the Finder the hardware and software components on which your
control panel runs, or you can signal the Finder to call your control device function to
perform this check. In either case, create a machine resource of type' mach' . A machine
resource must have a resource ID of —4064.

The machine resource consists of two word-sized masks: a hard and a soft mask.
Figure 8-16 shows the structure of a compiled machine resource.

Figure 8-16 Structure of a compiled machine (* mach') resource

"mach' resource type Bytes
Soft mask 2
Hard mask 2

A compiled version of a machine resource contains these elements:
= Soft mask. See Table 8-5 for a description of this mask.

= Hard mask. See Table 8-5 for a description of this mask.

The Finder performs the check if you set these masks to values representing the
requirements for your control panel.

Note

In System 6, the Control Panel does not display the icon for a control
panel file if the machine resource indicates that the control panel cannot
run on the current system. O

If you set these masks to values indicating that the Finder is to call your control device
function to perform the check, the Finder calls your function for the first time with a
mac Dev message. (See “Determining If a Control Panel Can Run on the Current System”
on page 8-29 for a discussion of how to handle a macDev message.)

7

Table 8-5 shows the values you use to set the machine resource masks.

Control Panels Reference 8-85

S|aued |01U0D n

CHAPTER 8

Control Panels

Table 8-5 Possible settings for the machine resource masks
Soft mask Hard mask Action
$0000 $FFFF The Finder calls this control device function with a

macDev message, and the function must perform its own
hardware and software requirements check.

$3FFF $0000 This control panel runs on Macintosh II systems only.

$7FFF $0400 This control panel runs on all systems with an Apple
Desktop Bus (ADB).

$FFFF $0000 This control panel runs on all systems.

For more information about the machine resource, see “Specifying the Machine

Resource” on page 8-20.

The Rectangle Positions Resource

Your control panel can consist of one or more rectangles. To define a list of rectangles
that determine the display area for your control panel, create a rectangle positions
resource of type ' nrct' . A rectangle positions resource must have a resource ID

of —4064. Figure 8-17 shows the structure of a compiled rectangle positions resource.

Figure 8-17 Structure of a compiled rectangle positions (' nrct') resource

‘nrct' resource type

Bytes

Number of rectangles in the list

First rectangle definition
Z top, left, bottom, right coordinates

/8

Last rectangle definition
{ top, left, bottom, right coordinates

8-86 Control Panels Reference

CHAPTER 8

Control Panels

A compiled version of a rectangle positions resource contains these elements:

= Number of rectangles in the list.

= Coordinates for each rectangle. You specify the coordinates as top, left, bottom, and
right.
To provide for backward compatibility with the Control Panel desk accessory, the Finder
accepts only the coordinates (-1,87) as the origin of a control panel. If you are designing
for System 7 only, you can extend the bottom and right edges of a control panel as far as
you like. If you want your control panel to run in System 7 and previous versions of
system software, you must limit your control panel’s size to the area bounded by
(-1,87,255,322). These are the coordinates used by the Control Panel desk accessory.

In System 6, the Control Panel desk accessory draws a frame that is 2 pixels wide around
each rectangle. To join two parts of a panel neatly, overlap their rectangles by 2 pixels on
the side where they meet.

For more information about the rectangle positions resource, see “Defining the Control
Panel Rectangles” beginning on page 8-15.

The Font Information Resource

The Dialog Manager uses the default application font when it displays the static text
items in your control panel. To specify a different font, create a font information resource
of type' finf'.A fontinformation resource must have a resource ID of —4049. This is an
optional resource for control panels. Figure 8-18 shows the structure of a compiled font
information resource.

Figure 8-18 Structure of a compiled font information (' fi nf ') resource

"finf' resourcetype Bytes
Font number 2
Font style 2
Font size 2

A font information resource contains three 2-byte words. A compiled version of a
rectangle positions resource contains these elements:

» Font ID number. The Finder sets the graphics port’s t xFont field to this value.
» Font style. The Finder sets the graphics port’s t xFace field to this style.
» Font size. The Finder sets the graphics port’s t xSi ze field to this size.

Control Panels Reference 8-87

S|aued |01U0D n

CHAPTER 8

Control Panels

For more information about the font information resource, see”Specifying the Font of
Text in a Control Panel” on page 8-23.

Note

The Control Panel desk accessory in System 6 does not support font
information resources. If your control panel can run in System 6 and you
want to specify a different font, see “Defining Text in a Control Panel as
User Items” on page 8-24. O

The Control Device Function Code Resource

A control device function code resource contains the code to implement a control panel
and respond to messages from the Finder. A control device function code resource is a
resource of type ' cdev' and must have a resource ID of —4064. This resource must begin
with a control device function (see “Control Device Functions” beginning on page 8-75
for more information).

The Card Resource

A card resource specifies a video card’s name. A card resource is a resource of type
‘card' and must have a resource ID within the range —4080 through —4065. A card
resource contains a Pascal string—that is, a length byte followed by an ASCII string—
identical to the name of a video card. The name of a video card is located in the ROM of
the card, as described in Designing Cards and Drivers for the Macintosh Family, third
edition. Figure 8-19 shows the structure of a compiled card resource.

Figure 8-19 Structure of a compiled card (' card') resource

8-88

'card' resource type Bytes

Video card name as specified in card’s ROM 1to 256

Because a monitors extension file can contain as many card resources as you wish, one
extension file can handle several types of video cards. The Options dialog box displays
the name in the card resource unless you also include a string (' STR#') resource in the
extension file. For more information about the string resource, see “Providing an
Alternative Name for a Video Card” on page 8-58.

Control Panels Reference

CHAPTER 8

Control Panels

The Monitor Code Resource

A monitor code resource contains the code that carries out the functions of a monitors
extension. A monitor code resource is a resource of type' rMt r' and must have a
resource ID of —4096. This resource must begin with a monitors extension function that
you provide. The Monitors control panel calls your monitors extension function with
requests to perform an action or handle an event. A monitors extension should return as
a function result a handle to memory that the function allocated or an error code. In
MPW, you can set the code resource type to' mt r' when you link the program.

The Rectangle Resource

A rectangle resource describes the display area for the controls of a monitors
extension. A rectangle resource is a resource of type' RECT' and must have a resource
ID of —4096. You specify the rectangle coordinates as top, left, bottom, and right.
Figure 8-20 shows the compiled version of a rectangle positions resource.

Figure 8-20 Structure of a compiled rectangle (' RECT') resource

'rect' resource type Bytes

Rectangle definition 8
top, left, bottom, right coordinates

When enlarging the Options dialog box, the Monitors control panel places the upper
edge of the new display area immediately below the lower edge of the area containing
the standard controls.

When you assign coordinates to your controls, assume that the origin (that is, the
upper-left corner) of the display area for your items is at (0,0). In this coordinate system,
the area bounding the standard controls (such as the OK and Cancel buttons) has a right
coordinate of 319 and a negative top coordinate. See “Defining a Rectangle for a
Monitors Extension” on page 8-52 for an example.

Before displaying the controls defined by your monitors extension, the Monitors control
panel changes the coordinates of your controls, using the coordinate system of the
Options dialog box. To get the true locations of your dialog items, use the Dialog
Manager’s Get Di al ogl t emprocedure; see the chapter “Dialog Manager” in Inside
Macintosh: Macintosh Toolbox Essentials for information on this procedure.

Control Panels Reference 8-89

S|aued |01U0D n

CHAPTER 8

Control Panels

Summary of Control Panels

Pascal Summary

Constants
CONST
{val ues for the nessage paraneter for control device functions}
i nitDev = 0; {performinitialization}
hi t Dev = 1; {handle click in enabled iten
cl oseDev = 2; {respond to user closing the control panel}
nul Dev = 3; {handle null event}
updat eDev = 4; {handl e update event}
acti vDev = 5; {handle activate event}
deActivDev = 6; {respond to control panel becom ng inactive}
keyEvt Dev = 7; {handl e key-down or auto-key event}
mac Dev = 8; {check whether control panel can run }
{ on current systent
undoDev = 9; {handl e Undo conmand}
cut Dev = 10; {handl e Cut conmand}
copyDev = 11; {handl e Copy conmand}
past eDev = 12; {handl e Paste conmand}
cl ear Dev = 13; {handl e d ear conmand}

{initial value of cdevStorageVal ue}

cdevUnset = 3; {the control device function has not }
{ returned a handl e}

{error codes}

cdevGenErr = -1; {general error; no error dialog box is displayed }
{ to the user}

cdevhMenerr = 0; {not enough nenory available to continue; an }
{ out-of-nenory error dialog box is displayed to }
{ the user}

cdevResErr = 1; {needed resource is not available or is mssing; }

{ error dialog box is displayed to the user}
{val ues for the nessage paranmeter for a nonitors extension function}

initMsg =1; {performinitialization}
okMsg = 2; {user clicked OK button}

8-90 Summary of Control Panels

CHAPTER 8

Control Panels

cancel Msg = 3; {user clicked Cancel button}

hit Msg = 4; {user clicked enabled control}

nul Msg = 5; {handle null event}

updat eMsg = 6; {handl e update event}

activateMsg = 7; {not used}

deactivateMsg = 8; {not used}

keyEvt Msg = 9; {handl e keyboard event}

super Msg = 10; {show superuser control s}

nor mal Msg = 11; {show only normal control s}

startupMsg = 12; {gives user status (whether a superuser)}

Application-Defined Routines

Control Device Functions

FUNCTI ON MyCdev (message, item nunltens, CPrivateVal ue:

I nt eger; VAR t heEvent: Event Record;
cdevSt orageVal ue: Longlnt;
CPDi al og: DialogPtr): Longlnt;

Monitors Extension Functions

FUCNTI ON MyWnt r Ext (message, item nuntens: |nteger;

nmoni t or Val ue: Longlnt; nDialog: DialogPtr;
theEvent: Event Record; screenNum | nteger;

VAR screens: ScrnRsrcHandl e;
VAR scrnChanged: Bool ean): Longlnt;

C Summary
Constants
enum {
/*val ues for the nessage paraneter for control device functions*/
i nitDev =0, /*performinitialization*/
hi t Dev =1, /*handle click in enabled itent/
cl oseDev = 2, [/*respond to user closing control panel*/
nul Dev = 3, /*handle null event*/
updat eDev = 4, [*handl e update event*/
activDev =5, J/*handle activate event*/
deActivDev = 6, [/*respond to control panel beconing inactive*/
keyEvt Dev = 7, [/*handl e key-down or auto-key event*/

Summary of Control Panels

8-91

S|aued |01U0D n

CHAPTER 8

Control Panels

8, [/*determ ne whether control panel can run */
/* on current systent/
undoDev =9, /*handle Undo comrand*/

mac Dev

cut Dev = 10, /*handl e Cut command*/

copyDev = 11, /*handl e Copy conmand*/

past eDev = 12, /*handl e Paste conmand*/

cl ear Dev = 13, /*handle C ear conmand*/

/*initial value of cdevStorageVal ue*/

cdevUnset = 3, /*the control device function has not */

/* returned a handl e*/
/*error codes*/

cdevGenErr = -1, /*general error; no error dialog box is displayed */
/* to the user*/
cdevMenerr = 0, /*not enough nmenory available to continue; an */

/* out-of-menory error dialog box is displayed to */
/* the user*/

/*needed resource is not available or is mssing;, */
/* error dialog box is displayed */

/* to the user*/

1
=

cdevResErr

b
enum {
/*val ues for the nessage paraneter for a nonitors extension*/
i nitMg =1, /*performinitialization*/
okMsg = 2, [*user clicked K button*/
cancel Msg = 3, [/*user clicked Cancel button*/
hi t Msg = 4, [*user clicked enabled control*/
nul Msg =5, /*handle null event*/
updat eMsg = 6, [/*update event*/
activateMsg = 7, [*not used*/
deactivateMsg = 8, /[*not used*/
keyEvt Msg = 9, /*handl e keyboard event*/
super Msg = 10, /*show superuser control s*/
nor mal Msg = 11, /*show only normal control s*/
start upMsg = 12 /*gives user status (whether a superuser)*/
i

8-92 Summary of Control Panels

CHAPTER 8

Control Panels

Application-Defined Routines

Control Device Functions

pascal unsigned | ong MyCdev
(short nessage, short item short nunitens,
short CPrivateVval, const EventRecord *theEvent,
unsi gned | ong cdevSt or ageVal ue,
Di al ogPtr CPDi al 0g);

Monitors Extension Functions

pascal unsigned | ong Myintr Ext
(short nessage, short item short nunltens,
unsi gned | ong noni t or Val ue,
Di al ogPtr nDi al og,
const EventRecord *theEvent, short screenNum
ScrnRsrcHandl e screens, Bool ean scrnChanged);

Summary of Control Panels 8-93

S|aued |01U0D n

CHAPTER 8

Control Panels

8-94 Summary of Control Panels

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Resource Manager TOC
	 Resource Manager, Part 1 (Introduction, About, and Using)
	 Resource Manager, Part 2 (Reference)
	 Scrap Manager TOC
	 Scrap Manager
	 Help Manager TOC
	 Help Manager, Part 1 (About and Using)
	 Help Manager, Part 2 (Reference)
	 List Manager TOC
	 List Manager
	 Icon Utilities TOC
	 Icon Utilities
	 Component Manager TOC
	 Component Manager
	 Translation Manager TOC
	 Translation Manager
	 Control Panels TOC
	Control Panels
	About Control Panels
	Control Panels
	A Control Panel’s Resources
	The Finder’s Interaction With Control Panels
	Control Panels and System Extensions
	About User Documentation for Control Panels

	The Monitors Control Panel and Extensions to It

	Creating Control Panel Files
	Defining the User Interface for a Control Panel
	Creating a Control Panel’s Resources
	Resource IDs for Control Panels
	Defining the Control Panel Rectangles
	Creating the Item List Resource
	Defining the Icon for a Control Panel
	Specifying the Machine Resource
	Creating the File Reference, Bundle, and Signature...
	Providing Additional Resources for a Control Panel...

	Specifying the Font of Text in a Control Panel
	Creating a Font Information Resource
	Defining Text in a Control Panel as User Items

	Writing a Control Panel Function
	Determining If a Control Panel Can Run on the Curr...
	Initializing the Control Panel Items and Allocatin...
	Responding to Activate Events
	Responding to Keyboard Events
	Responding to Mouse Events
	Responding to Update Events
	Handling Text Defined as User Items
	Responding to Null Events
	Responding to the User Closing the Control Panel
	Handling Edit Menu Commands
	Handling Errors

	Creating an Extension for the Monitors Control Pan...
	Designing the User Interface for a Monitors Extens...
	Creating the Required Resources for a Monitors Ext...
	Creating a Card Resource for a Monitors Extension
	Defining a Rectangle for a Monitors Extension
	Creating an Item List Resource for a Monitors Exte...
	Creating the Monitor Code Resource

	Supplying Optional Resources for a Monitors Extens...
	Specifying an Icon for the Options Dialog Box
	Specifying Version Information
	Providing an Alternative Name for a Video Card
	Supplying Gamma Table Resources
	Creating File Reference, Bundle, and Signature Res...
	Including a System Extension Resource

	Writing a Monitors Extension Function
	Handling the Startup Message
	Performing Initialization
	Responding to a Click in the OK Button
	Responding to a Cancel Request
	Handling Mouse Events for a Monitors Extension
	Handling Keyboard Events

	Including Another Control Panel Definition in a Mo...

	Control Panels Reference
	Application-Defined Routines
	Control Device Functions
	Monitors Extension Functions

	Resources
	The Machine Resource
	The Rectangle Positions Resource
	The Font Information Resource
	The Control Device Function Code Resource
	The Card Resource
	The Monitor Code Resource
	The Rectangle Resource

	Summary of Control Panels
	Pascal Summary
	Constants
	Application-Defined Routines

	C Summary
	Constants
	Application-Defined Routines

	 Desktop Manager TOC
	 Desktop Manager
	 Glossary
	 Index
	 Colophon

