
AO 01 - AOCE SMPReadContent Function 1 of 3

AOCE

New Technical Notes

Developer Support

ð
®Macintosh

AO 01 - AOCE SMPReadContent Function
AOCE

Written by: Steve Falkenburg, Scott Kuechle September 1994

This Technical Note attempts to clarify certain aspects of the AOCE Standard Mail
Package SMPReadContent routine, as described in Inside Macintosh: AOCE
Application Interfaces, pages 3-98 through 3-102, and also discusses some undocumented
features of the call.

Topics
• Correct usage of the AOCE SMPReadContent

function.

Introduction

The AOCE Standard Mail Package SMPReadContent routine is used to read a segment from
a letter's standard-interchange-format block. The routine is defined as follows (refer to Inside
Macintosh: AOCE Application Interfaces, pages 3-81 through 3-84 for a complete description):

pascal OSErr SMPReadContent(WindowPtr window,
MailSegmentMask segmentTypeMask,
void *buffer,
unsigned long bufferSize,
unsigned long *dataSize,
StScrpRec *textScrap,
ScriptCode *script,
MailSegmentType *segmentType,
Boolean *endOfScript,
Boolean *endOfSegment.
Boolean *endOfContent
long *segmentLength,
long *segmentID);

Some Sample Code, Explained

Shown below is some sample code that demonstrates the proper usage of the call. The code
reads all of the styled text blocks from a letter's standard-interchange-format block.

#define kBufferSize 1024

OSErr DoReadMyContent(WindowPtr window);

Macintosh Technical Notes

2 of 3 AO 01 - AOCE SMPReadContent Function

AOCE

OSErr DoReadMyContent(WindowPtr window)
{
Ptr dataBuffer;
unsigned long bufferSize,dataSize;
StScrpRec *textScrap;
ScriptCode script;
MailSegmentType segmentType;
Boolean endOfScript,endOfSegment,endOfContent;
long segmentLength,segmentID;
OSErr err;

 /* allocate data buffer */

 dataBuffer = NewPtr(kBufferSize);
 if (MemError()!=noErr)
 return MemError();
 bufferSize = kBufferSize;

 /* allocate scrap record */

 textScrap = (StScrpRec *)NewPtr(sizeof(StScrpRec));
 if (MemError()!=noErr)
 return MemError();

 /* read all of the styled text blocks */

 do
 {
 textScrap->scrpNStyles = sizeof(ScrpSTTable)/sizeof(ScrpSTElement);

 segmentID = 0;
 err = SMPReadContent(window,kMailStyledTextSegmentMask,dataBuffer,bufferSize
 &dataSize,textScrap,&script,&segmentType,&endOfScript,
 &endOfSegment,&endOfContent,&segmentLength,&segmentID);
 if (dataSize>0)
 {
 /* we got a styled text block */
 /* process the styled text block here */
 }

 } while ((err==noErr) && (endOfContent==false));

 DisposPtr((Ptr)textScrap);
 DisposPtr(dataBuffer);

 return err;
}

The segmentID parameter represents the ID of the segment. It is important to note that this
parameter is passed by reference. It is both an input and an output. Basically, segmentID is
used to provide random-access reference to the content in a letter. If you repeatedly pass 0 for
segmentID, SMPReadContent will sequentially give you all of the content blocks in the
letter. Upon return from each of the SMPReadContent calls, segmentID will be set to the
ID of the segment returned. This is so you can later call SMPReadContent to read a specific
block of content out of a letter.

This is useful in case you want to know what all of the blocks are in a letter without actually
reading the data associated with all of the blocks. For example, you might only want to

Developer Technical Support September 1994

AO 01 - AOCE SMPReadContent Function 3 of 3

AOCE

download a QuickTime movie in a letter if the user clicks on the spot where the movie is in the
letter.

Also, it is possible to determine the size of a given segment without actually having to read the
data into a buffer. Simply pass 0 in the bufferSize parameter and the length of the segment
will be returned in the segmentLength parameter. This is nice in that it enables you to to see
ahead of time how much buffer space you will need to allocate for a given segment (in case you
need to retrieve it at a later time, for example).

In our example above we always set segmentID to 0, since we just want to index through all
of the available content.

Some other things to note in the above code:

• it's necessary to re-set segmentID to 0 for each call, otherwise, the system
 will treat the non-zero segmentID as an index into the content you just read,
 and you'll get the same content over and over

• it's necessary to set textScrap->scrpNStyles for each call to SMPReadContent
 that returns scrap information. Again, this field is both an input and
 output. On input, it specifies how many styles your scrap record can hold,
 and on output, it returns how many were read

• even though we're only requesting data on styled text content blocks
 (kMailStyledTextSegmentMask), SMPReadContent will return the segmentID,
 segmentLength, and segmentType for other non-styled text blocks in the
 letter. However, SMPReadContent will always return a dataSize of 0 for these
 blocks, and will always set endOfBlock to true for these blocks (since you
 don't want to read them at all). This is useful, since you could set the
 segmentTypeMask to 0 and still get a list of all the blocks in a letter
 without actually reading any information

• the segmentID, segmentLength, and segmentType fields are only valid for the
 first SMPReadContent call *within* a segment. Our buffer size in the above
 code is 1024 bytes. If the styled text block we were reading were bigger
 than 1024 bytes, SMPReadContent would return information out of this larger
 block across multiple calls. Only in the first call for the block are these
 three parameters valid as outputs. You should still always reset segmentID
 to 0 (or the segment you want to read from), however.

• this last point seems obvious, but don't declare your scrap record as a
 non-dynamically allocated local variable. This structure is *huge* and will
 eat up all of your stack space. Use NewPtr to allocate the structure
 instead.

Further Reference:
• Inside Macintosh : AOCE Application Interfaces

	Introduction
	Some Sample Code, Explained

