
ATM Stream Driver Interface 1 January 1995

ATM Stream Driver Interface Design
The “DLPI++” Strawman

Request for Comments

Dave Singer and Alagu Periyannan
singer@apple.com

January 1995

Apple Confidential

Advanced Technology Group
Apple Computer, Inc.

Introduction

This document describes the driver message interface for ATM device drivers in the Apple
streams environment, OpenTransport. This driver design is under development within
the research organization of Apple, the Advanced Technology Group. It is expected that it
will form the basis of a low-level design adopted by Apple, but no representations can
currently be made beyond its current status as a research vehicle in ATG. Some familiarity with
TCP/IP, AppleTalk, and the OpenTransport streams environment is assumed. Your
comments on any aspect of this design are welcome and actively solicited.

ATM networks are physically point-to-point networks, with connection-oriented protocols
used for data transmission. This makes them unlike most existing local area network
technologies: particularly, connections must be set up before data can be transferred, and
there is no local network broadcast model. Our approach therefore has been to take the
standard connection-oriented DLPI design and modify it as little as possible.

The ATM “DLPI++” is a connection-oriented DLPI as opposed to an Ethernet DLPI which is
connectionless. The “DLPI++” does not support direct IEEE 802 binding and hence can not be
used directly by any standard network layer protocols like IP or AppleTalk. Instead, higher-
level adaptation modules (outside the scope of this document) are used.

This is a low-level driver interface. In particular, ILMI (UME), Q2110 (QSAAL) and Q2931
(signaling) are independent modules implemented above this driver, as are Classical IP
(RFC1577) support, LAN Emulation support, or other protocols. This driver is therefore
below the level which sees UNI-compliant ATM addresses. Instead, it is working at the
virtual circuit level; addresses, to this driver, are VCI/VPIs.

This driver design is for packet-oriented data transfer; AALs 3/4 and 5. ATM adaptation
layers such as 1 or 2 will require extensions to this specification.

In general a virtual circuit maps to exactly one stream; a stream normally carries traffic for
exactly one VC. Data on these streams is carried in M_DATA messages.

ATM Stream Driver Interface 2 January 1995

The functionality of the ATM DLPI++ is as follows:
 • Enable and Disable one or more incoming/outgoing ATM VCs on a stream
 • Specify AAL, Traffic Parameters and QOS on the VC
 • Send and Receive AAL packets (3/4 and 5)
 • Various simple management functions

Future Revisions

Currently we are allowing more than one VC per stream (for the convenience of higher-
level software which must manage many, functionally identical, VCs, such as LAN
Emulation); we intend to remove this feature. If more than one VC is mapped to a stream,
DL_UNITDATA messages are used, with the address field containing the VPI/VCI. This
feature raises many issues, for example in the management of QoS, since the
DL_INFO_ACK and DL_UDQOS_REQ apply to the whole stream and not a particular VC.
Your comments on having multiple VCs per stream are welcome.

We expect to add the following in future revisions of this specification; generally, it will
not be a problem if drivers do not support all these features. Your comments on these areas
are actively sought.

Packet Filtering by Content:

There are currently no messages to request traffic filtering by the driver or interface
hardware. Such filtering may be desirable for applications such as LAN Emulation,
where the incoming traffic from the broadcast-unknown-server (BUS) may contain
datagrams for unwanted multicast streams or unicast addresses other than this end-
station. The higher-level software will do this filtering if the card and driver are
unwilling or unable; but we would like to support cards which can perform content-
based filtering in hardware.

Support for Higher Level Functions.

We are also investigating using hardware support for higher-level protocols (e.g. TCP
checksum support).

Statistics Management

There are currently no messages defined for reporting statistics and other management.
We expect to add these in a later revision of this specification.

Resource Reservation

Before signaling is asked to establish a new VC, higher-level modules will attempt to
establish local feasibility, by asking the driver to check the parameters of the VC in advance
of its establishment (and therefore, before its VCI is known). This message will look very
much like a connect request, with no address (it may be a QoS request issued in IDLE state).
Typically this is used before signaling proceeds to setup the call; if the signaling succeeds, a
connection request will be sent to associate the VCI/VPI with these resources. If the
signaling fails, the resources will be released either by sending another reservation request
with different parameters, or by the stream being torn down.

ATM Stream Driver Interface 3 January 1995

Receive-side buffer supply

It is possible that this driver design will be enhanced in future to allow for the higher-level
software to supply receive buffers for a given stream/VC.

Messages Supported

All the data structures referred to here are either in dlpi.h or OpenTptAtm.h header files.
Some of the ATM related data structures are reproduced in the next section.

The characteristics of VCs (AAL Type, traffic parameters etc.) are currently passed in a
simplified, “digested” structure. We are considering changing this to include whole Q2931
information elements, exactly as they might appear on a network. This would be more
flexible, and certainly more complete. However, it would also complicate the driver
significantly, in the parsing of those structures and their many optional fields etc. Your
comments on such a change are welcome.

In general, the expected sequence of messages and states is, for a stream carrying a single VC:

Message Reply Valid State Resulting State
[initial state] DL_UNBOUND
DL_INFO_REQ DL_INFO_ACK any unchanged
DL_BIND_REQ DL_BIND_ACK DL_UNBOUND DL_IDLE
DL_CONNECT_REQ DL_CONNECT_CON DL_IDLE DL_DATAXFER
M_DATA no reply DL_DATAXFER unchanged
DL_DISCONNECT_REQ DL_OK_ACK DL_DATAXFER DL_IDLE
DL_UNBIND DL_OK_ACK DL_IDLE DL_UNBOUND

General Messages:

DL_INFO_REQ
DL_INFO_ACK

The ATM DLPI++ responds to DL_INFO_REQs with DL_INFO_ACKs. Some of the fields of
the DL_INFO_ACK must have specific values,

Maximum and minimum size of AAL 3/4 and 5 packets:
dl_max_sdu
dl_min_sdu

MAC layer type - there is no type defined for ATM
dl_mac_type = DL_OTHER

Service Mode — Connection Oriented
dl_service_mode = DL_CODLS

Address Information
(the first or only connected virtual circuit)
dl_addr_length = sizeof(PVC_Address)
dl_addr_offset = DL_UNKNOWN or offset if address present

Style and Version of DLPI
(only style 1 is currently supported; attach/detach are unused)
dl_provider_style = DL_STYLE1
dl_version = DL_VERSION_2

ATM Stream Driver Interface 4 January 1995

Current State of DLPI
dl_current_state = DL_DATAXFER or

DL_IDLE or
DL_UNBOUND

Traffic parameters (currently unused by higher-level software):
 The currently set traffic parameters are reported in the QoS field:

dl_qos_length = sizeof(ATM_Simple_QOS)
dl_qos_offset = offset of ATM_Simple_QOS

 The range structure reports the NIC capabilities;
dl_qos_range_length = sizeof(ATM_Simple_QOS)
dl_qos_range_offset = offset of ATM_Simple_QOS

In the current QoS report, the driver should report currently set conditions, either
from the connection establishment or QoS message, or as a result of network-side
operation (e.g. ABR).

In the QoS range report the peak_cell_rate01 (CLP0+1) in the forward and backward
directions should indicate the maximum achievable on this NIC. The use of other
fields is currently undefined. The reporting of NIC capabilities in this area will be
improved.

All other fields are ignored and should be set to 0 (or DL_UNKNOWN in the case of an offset
field.)

DL_PHYS_ADDR_REQ
DL_PHYS_ADDR_ACK

This pair of primitives is used to probe the driver for the MAC (OUI) address which should be
configured into the physical card. The response should include the MAC address. Currently
we do not use the set_phys_addr request, so the card should report the same value for both the
current and factory physical addresses.

DL_PHYS_ADDR_ACK
dl_addr_length = 6 (or 0 if unknown)
dl_addr_offset = offset (or DL_UNKNOWN if no address present)

Connection Management Messages:

DL_BIND_REQ
DL_BIND_ACK

The Bind messages are supported only to fit into the DLPI and XTI semantics. The ATM
DLPI++ responds to a DL_BIND_REQ with a DL_BIND_ACK.

All the fields except dl_service_mode are ignored in the DL_BIND_REQ . If dl_service_mode
field is not DL_CODLS, a DL_ERROR_ACK is returned with error DL_UNSUPPORTED. The
driver must also check the current state and return a DL_ERROR_ACK with error
DL_OUTSTATE, if the state is not DL_UNBOUND.

All fields in the DL_BIND_ACK are set to 0 (or DL_UNKNOWN in the case of an offset field.)
Once the DL_BIND_ACK is sent, the driver goes into the DL_IDLE state.

ATM Stream Driver Interface 5 January 1995

DL_CONNECT_REQ
DL_CONNECT_CON

Connection for this driver is a purely local operation (with the interface card); no remote
network messages are sent; thus there are neither CONNECT_IND or CONNECT_RES
messages used in this context.

The DL_CONNECT_REQ message causes an ATM VC to be activated and a
DL_CONNECT_CON to be returned. Once the DL_CONNECT_CON is sent, the driver goes
into the DL_DATAXFER state. The destination address in the connect message is used to carry
a PVC_Address structure. The QoS information is currently used to carry a simplified version
of what signaling might negotiate, an ATM_Simple_QOS structure. This contains the AAL
type, traffic parameters and QOS specification.

dl_addr_length = sizeof(PVC_Address)
dl_addr_offset = offset of PVC_Address

dl_qos_length = sizeof(ATM_Simple_QOS)
dl_qos_offset = offset of ATM_Simple_QOS

The DL_CONNECT_CON returns the same address as was sent in the DL_CONNECT_REQ, if
the VC enable succeeds, and the same VC_params. If the VC enable fails it returns a
DL_ERROR_ACK with error DL_BADADDR. If the driver was not in DL_IDLE, then it should
return DL_OUTSTATE; and if any system error occurs (e.g. out of memory), indicate
DL_SYSERR with ENOMEM.

Unidirectional connections are indicated with a peak_cell_rate01 of zero in one direction or
the other.

DL_DISCONNECT_REQ
DL_UNBIND_REQ

DL_DISCONNECT_REQ disconnects all the currently connected VCs on a stream, and changes
the state of the stream from DATAXFER to IDLE. Both the DL_DISCONNECT_REQ and
DL_UNBIND_REQ return a DL_OK_ACK on success and DL_ERROR_ACK on error. All
fields in DL_DISCONNECT_REQ and DL_UNBIND_REQ are ignored.

A DL_DISCONNECT_REQ is accepted only when the driver is in the DL_DATAXFER state
and a DL_UNBIND_REQ is accepted only when the driver is in the DL_IDLE state, otherwise a
DL_ERROR_ACK is sent indicating DL_OUTSTATE.

DL_OK_ACK
DL_ERROR_ACK

These messages are sent upstream by the driver to indicated the success or failure of an
operation. Various error conditions might be indicated, such as DL_UNSUPPORTED,
DL_BADPARAM, DL_OUTSTATE, DL_BADPPA, DL_BADADDR, DL_SYSERR with
ENOMEM (when an operation can not be completed because of low memory conditions),
DL_SYSERR with other specific system errors or DL_SYSERR with -1 (general system error).

ATM Stream Driver Interface 6 January 1995

DL_UDQOS_REQ

(Currently unused). This message is used to modify the characteristics of an existing VC
(presumed singular). The qos_length and qos_offset are formatted as in the
DL_CONNECT_REQ above. The driver should reply with a DL_OK_ACK or
DL_ERROR_ACK.

Data Transfer Messages:

The driver should accept the incoming data messages and free them once they are no longer
needed. Likewise it should somehow allocate (e.g. using allocb or esballoc) messages which
contain incoming data. These will eventually be freed by some higher-level module. It is
possible and legitimate to use esballoc to get the buffers back when freed; however, there is no
guarantee that they will be freed in a timely fashion.

If the driver is unable to accept data on a stream (e.g. the higher-level software is supplying
data faster than the agreed rate, or faster than the card can handle), then it should queue the
data messages rather than servicing them. This will apply back-pressure up the stream.

If the driver is unable to supply data to a stream because of flow-control, it should (if it can)
apply that back-pressure to the VC (e.g. using ABR mechanisms). It may also discard the data
or ignore the flow control indication. Generally this issue should be handled by higher-level
protocols and so should not arise; if it does, it is probably safer to discard data than to risk
exhausting memory.

M_DATA

When there is only one VC enabled on the stream, all AAL packets are transmitted and
received in simple M_DATA messages.

Messages to support multiple VCs per stream

If multiple VCs are bound to a stream, then the sequence of primitives would be like this:

Message Reply Valid State Resulting State
[initial state] DL_UNBOUND
DL_INFO_REQ DL_INFO_ACK any unchanged
DL_BIND_REQ DL_BIND_ACK DL_UNBOUND DL_IDLE
DL_CONNECT_REQ DL_CONNECT_CON DL_IDLE DL_DATAXFER
DL_IOC_SUBS_CONNECT M_IOCACK DL_DATAXFER unchanged
DL_UNITDATA_REQ no reply DL_DATAXFER unchanged
DL_IOC_SUBS_DISCONNECT M_IOCACK DL_DATAXFER unchanged
DL_DISCONNECT_REQ DL_OK_ACK DL_DATAXFER DL_IDLE
DL_UNBIND DL_OK_ACK DL_IDLE DL_UNBOUND

In general, the driver should handle both M_DATA and DL_UNITDATA_REQ coming
downstream at any time; if a DL_IOC_SUBSCONNECT is ever used on the stream, then only
DL_UNITDATA messages should be used on that stream from then on.

DL_UNITDATA_REQ
DL_UNITDATA_IND

When there is more than one VC enabled on a stream, then the DL_UNITDATA_REQ and
DL_UNITDATA_IND messages are used to indicate the VC on which an AAL packet must be
sent or the VC on which an AAL packet was received.

ATM Stream Driver Interface 7 January 1995

The DL_UNITDATA_REQ specifies the VC to transmit on.
dl_dest_addr_length = sizeof(PVC_Address)
dl_dest_addr_offset = offset of PVC_Address

The DL_UNITDATA_IND specifies the VC on which the AAL packet was received. (The
source address need not be present; if the driver is confident that this is a bi-directional VC,
then it may fill it in.)

dl_dest_addr_length = sizeof(PVC_Address)
dl_dest_addr_offset = offset of PVC_Address
dl_src_addr_length = 0 or sizeof(PVC_Address)
dl_src_addr_offset = DL_UNKNOWN or offset

M_IOCTL Messages (extensions to DLPI):
DL_IOC_SUBS_CONNECT
DL_IOC_SUBS_DISCONNECT

These M_IOCTL messages are used to enable and disable additional VCs on a stream. The
DL_IOC_SUBS_CONNECT and the DL_IOC_SUBS_DISCONNECT messages have the same
information content as a DL_CONNECT_REQ message.

typedef struct {
UInt32 dl_primitive;
UInt32 dl_addr_length;
UInt32 dl_addr_offset;
UInt32 dl_qos_length;
UInt32 dl_qos_offset;
UInt32 dl_growth;

} dl_subs_connect_req_t;

The dl_subs_connect_req_t structure, the PVC_Address and the ATM_Simple_QOS for the VC
to be enabled or disabled are passed to the driver in an M_DATA message that is chained off
an M_IOCTL message. The ioc_cmd field (in the iocblk structure) in the M_IOCTL message
and the dl_primitive field in the dl_subs_connect_req_t structure should be the same and set
to either DL_IOC_SUBS_CONNECT or DL_IOC_SUBS_DISCONNECT.

The reply to the above M_IOCTL message should be an M_IOCACK message with the correct
ioc_rval and ioc_error fields. The ioc_rval field must contain 0 or the appropriate DLPI error
code (i.e. DL_BADADDR, DL_OUTSTATE, DL_SYSERR) and the ioc_error field must contain
0 or the appropriate system error, if ioc_rval contains DL_SYSERR.

Note that a DL_IOC_SUBS_DISCONNECT disconnects only one VC; note also that it is
possible to disconnect every VC on a stream but for it still to be in “connected”
(DL_DATAXFER) state, and ready to accept more DL_IOC_SUBS_CONNECT messages. No
traffic should flow, of course, in this somewhat unusual (and unlikely) state.

ATM Stream Driver Interface 8 January 1995

Data Structures

/*###########################
 ATM Addressing
 ###########################*/

/* PVC Address structure */

typedef struct pvc_address {
UInt32 addrtype;
UInt8 pad;
UInt8 vpi;
UInt16 vci;

} PVC_Address;

/* ATM Address types */
enum ATM_ADDR_TYPE {

 ATM_ADDR_PVC_TYPE=11
};

#define kPVCAddressLength sizeof(PVC_Address)

/*###########################
 ATM Traffic Parameters
 ###########################*/

/* ATM AAL types */
enum aal_type {
 aal_null = 0,
 aal_type_1 = 1,
 aal_type_34 = 3,
 aal_type_5 = 5,
 aal_type_user = 16
};

typedef UInt32 AAL_Type;

/* PVC QOS specification structure */
typedef struct qos_class {

UInt8 fwd;
UInt8 bwd;
UInt16 pad;

} QOS_Class;

enum Qos_classes {
qos_class0 = 0,
qos_class_unspecified = 0,
qos_class1 = 1,
qos_class2 = 2,
qos_class3 = 3,
qos_class4 = 4

};

ATM Stream Driver Interface 9 January 1995

/* PVC Traffic descriptor specification structure */

typedef struct traffic_desc {
UInt32 fwdPeakCellRate0;
UInt32 bwdPeakCellRate0;
UInt32 fwdPeakCellRate01;
UInt32 bwdPeakCellRate01;
UInt32 fwdSustCellRate0;
UInt32 bwdSustCellRate0;
UInt32 fwdSustCellRate01;
UInt32 bwdSustCellRate01;
UInt32 fwdMeanBurstSize0;
UInt32 bwdMeanBurstSize0;
UInt32 fwdMeanBurstSize01;
UInt32 bwdMeanBurstSize01;
UInt8 bstEffortReq;
UInt8 fwdTagReq;
UInt8 bwdTagReq;
UInt8 pad;

} Traffic_Desc;

/*###########################
 ATM VC Related
 ###########################*/

/* ATM PVC connect message data structure */

typedef struct atm_vc_params {
AAL_Type aal;
QOS_Class qos;
Traffic_Desc traffic;

} ATM_VC_Params;

#define DL_QOS_SIMPLE_ATM 0x0701
#define DL_QOS_SIMPLE_ATM_RANGE 0x0702

typedef struct atm_simple_qos {
UInt32 dl_qos_type;

// DL_QOS_SIMPLE_ATM or
// DL_QOS_SIMPLE_ATM_RANGE

ATM_VC_Params params;
} ATM_Simple_QOS;

/*###########################
 Multiple VC per stream Related
 ###########################*/

/* ATM PVC connect message data structure */
#define DL_IOC_SUBS_CONNECT 20
#define DL_IOC_SUBS_DISCONNECT 21

	ATM Stream Driver Interface Design
	Introduction
	Future Revisions
	Messages Supported
	General Messages:
	Connection Management Messages:
	Data Transfer Messages:
	Messages to support multiple VCs per stream
	M_IOCTL Messages (extensions to DLPI):

	Data Structures

