
FL 27 - Mixing HFS and C File I/O 1 of 3

Files

New Technical Notes

Developer Support

ð
®Macintosh

FL 27 - Mixing HFS and C File I/O
Files

Written by: Jeanette Robertson August 1989

This Technical Note discusses the problem of mixing calls to the Macintosh file system with
calls to MPW C library file I/O routines.

Problems with Communication Between HFS and C

Frequently, developers want to use both Macintosh file I/O and C file I/O. Developers who do
this must keep in mind that they are combining two distinct file representations (the Macintosh
and ANSI C). The only limitation on mixing HFS and C I/O functions is that they cannot be
mixed on the same open file. There are three reasons why this cannot be done.

First, there is no routine that maps between a C FILE struct (returned by fopen()) to an
HFS fRefNum (needed to call HFS functions). Similarly, there is no call to create a FILE
struct given an fRefNum returned by FSOpen(). Thus, there is no way that the information
from an fopen() call could be used to do a fsread().

Second, even if the first problem were solved, the C libraries eventually call the HFS file
system, but keep some internal state information. So, if you call HFS directly (say,
SetFPos()), the C file system has no way of knowing a call was made and, therefore,
doesn’t update its state information.

Similarly, there is no mechanism for synchronizing the C library’s buffers. For example, you
perform an fwrite() with some number of characters which get put into a buffer without
flushing it. Then you perform an FSWrite() with something else. Neither the C library nor
HFS are aware that the other has written to the file.

Simply put, you cannot make HFS calls on a file opened with fopen() or fdopen(); you
cannot use C library I/O on a file opened under HFS. However, here are some points to
consider when manipulating the same file using both C and HFS. Keep in mind this isn’t
frequently done; there may be problems of which we are unaware.

One obvious problem is keeping track of the working directory. Be sure to save and restore the
current working directory when moving between HFS and C I/O calls.

Following is an example routine, which mixes HFS and C I/O. Notice that it doesn’t really
solve the problem of mixing the two file systems, but rather it shows how to use fopen()
with standard file (working directories or directory IDs) in general.

Macintosh Technical Notes

2 of 3 FL 27 - Mixing HFS and C File I/O

Files

HardRockCocoJoe()
{

Point where;
char *prompt = "\pWe Are Here";
char *fname = "\pHardRockCocoJoe";
FileFilterProcPtr fileFilter = NULL;
short numTypes = 1;
SFTypeList typeList;
DlgHookProcPtr dlgHook = NULL;
SFReply reply;
OSErr result;
FILE *TheFile;
short fileNum;
long numofChars = 10;
short currentVRefNum;

(void) GetVol(NULL, ¤tVRefNum);

result = FSOpen(fname, currentVRefNum, &fileNum);
if (result != 0) {

/* error checking */
}
else {

result = FSWrite(fileNum, &numofChars, "from MacIO");
if (result != 0) {

/* error checking */
}

}

(void) FSClose(fileNum);

where.h = 80;
where.v = 90;
typeList[0] = 'TEXT';

SFGetFile (where, prompt, fileFilter, numTypes, typeList, dlgHook, &reply);

result = SetVol(reply.fName, reply.vRefNum /* from sfgetfile */);
if (result != 0){

/* error check */
}

p2cstr(reply.fName);
TheFile = fopen (reply.fName, "a+");
fprintf (TheFile, "\nfromC\n");
fclose (TheFile);

result = SetVol(NULL, currentVRefNum);
if (result != 0){

/* error check */
}

result = FSOpen(fname, currentVRefNum, &fileNum);
if (result != 0){

/* error check */
}

Developer Support Center August 1989

FL 27 - Mixing HFS and C File I/O 3 of 3

Files

else {
numofChars = 12;
SetFPos(fileNum, fsFromLEOF, 0);
result = FSWrite (fileNum, &numofChars, "from MacIO 2");
if (result != 0) {

/* error check */
}

}
}

Assuming the user chooses HardRockCocoJoe from the Standard File dialog box, the result of
this routine is a file called HardRockCocoJoe, which contains the following data:

from MacIO
fromC
from MacIO 2

By keeping track of the working directory, you can work with HFS file I/O and C I/O. Of
course, if you are working with many files, it could be a problem keeping track of the correct
paramBlock and expensive to open and close the files each time you switch.

Another approach would be to construct a pathname from the Macintosh file system that could
be passed to the C I/O functions. Technical Note FL 4 - Getting a Full Pathname (deleted - see
Inside Macintosh: Files), goes into complete detail as to how this is done using either a
working directory or vRefNum and DirID. But, this solution has serious drawbacks and is
not recommended. One problem is that you have to manually create the pathname as a string
and stuff the needed folder separators into that string. The current separator, the colon (:), may
change in the future. A bigger problem is the length of the pathname. Currently, it can only be
256 characters, and that may be hard for you to guarantee. Lastly, there could be a problem if
the user should change the directory or rename a file.

You Were Warned

Be aware that you are responsible for any file problems you may have mixing HFS and C file
I/O. If it can be avoided, by all means, avoid it.

Further Reference:
• Inside Macintosh, Volume I, The Standard File Package
• Inside Macintosh, Volume IV, The File Manager
• Inside Macintosh: Files

	Problems with Communication Between HFS and C
	You Were Warned

