

Plate 1xxxxxxDevice RGB color space and CMYK color space

Plate 2xxxxxxThe HSV and HLS color space cones

HSV space

Blue

Black

Green

Yellow

White

Magenta

Cyan

Hue

HLS space

Lightness

Hue

Saturation

Value

Saturation

Plate 3 Additive and subtractive color

Plate 4xxxxxxCIE color space

xy chromaticities

Additive color Subtractive color

Red

Green

Cyan Yellow

Magenta

Blue

White

Yellow

Green

Blue

Cyan Magenta

Red

Black

1.0

0 1.0

y

x

Red
Cyan

White

Magenta

Green

Yellow

Blue

Plate 5xxxxxxThe default color picker

Plate 6xxxxxxL*a*b* color space

–a

–b
+a

+b

+L

Plate 7xxxxxxThe colors of the default color tables

1 bit

4 bits

8 bits

2 bits

ð

Addison-Wesley Publishing Company

Reading, Massachusetts Menlo Park, California New York
Don Mills, Ontario Wokingham, England Amsterdam Bonn
Sydney Singapore Tokyo Madrid San Juan
Paris Seoul Milan Mexico City Taipei

Advanced Color Imaging
on the Mac OS

This document was created with FrameMaker 4.0.4

ACI Book : Title ACI Page 1 Thursday, July 13, 1995 8:40 AM

ð

Apple Computer, Inc.

 1986, 1995 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying, recording,
or otherwise, without prior written
permission of Apple Computer, Inc.
Printed in the United States of
America.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop
applications only for Apple
Macintosh computers.
Every effort has been made to
ensure that the information in this
manual is accurate. Apple is not
responsible for printing or clerical
errors.

Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, APDA,
AppleLink, AppleTalk, ColorSync,
LaserWriter, Macintosh and MPW
are trademarks of Apple Computer,
Inc., registered in the United States
and other countries.
Balloon Help, Finder and
QuickDraw, are trademarks of
Apple Computer, Inc.

Acrobat, Adobe Illustrator, Adobe
Photoshop, and PostScript are
trademarks of Adobe Systems
Incorporated, which may be
registered in certain jurisdictions.
AGFA is a trademark of
Agfa-Gevaert.
America Online is a registered
service mark of America Online, Inc.
CompuServe is a registered service
mark of CompuServe, Inc.
FrameMaker is a registered
trademark of Frame Technology
Corporation.
Helvetica and Palatino are
registered trademarks of Linotype
Company.
ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.

PowerPC

 and the PowerPC
logo

 are trademarks of
International Business Machines
Corporation, used under license
therefrom.

QuickView

 is licensed from Altura
Software, Inc.

Simultaneously published in the
United States and Canada.

LIMITED WARRANTY ON MEDIA
AND REPLACEMENT

ALL IMPLIED WARRANTIES ON THIS
MANUAL, INCLUDING IMPLIED
WARRANTIES OF
MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE, ARE
LIMITED IN DURATION TO NINETY

(90) DAYS FROM THE DATE OF THE
ORIGINAL RETAIL PURCHASE OF
THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE PURCHASER,
ARE ASSUMING THE ENTIRE RISK
AS TO ITS QUALITY AND
ACCURACY.

IN NO EVENT WILL APPLE BE
LIABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS MANUAL,
even if advised of the possibility of such
damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED.
No Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion
or limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state.

ISBN 0-201-48949-X
1 2 3 4 5 6 7 8 9-MA-9998979695
First Printing, August 1995

Library of Congress Cataloging-in-Publication Data

Advanced color imaging on the Mac OS.
p. cm.

Includes index.
ISBN 0-201-48949-X (pbk.)
1. Color computer graphics. 2. Macintosh (Computer)

I. Apple Computer, Inc.
T385.A3598 1995
006.6’765--dc20 95-21221

CIP

This document was created with FrameMaker 4.0.4

ACI Book : Copyright ACI Page 2 Thursday, July 13, 1995 8:40 AM

iii

Contents

Figures, Tables, and Listings xi

Preface

About This Book

xv

Format of This Book and Its Companion Volume xvi
Conventions Used in This Book xviii

Special Fonts xviii
Types of Notes xviii

Development Environment xix
For More Information xix

Chapter 1

Palette Manager

1-1

About the Palette Manager 1-4
Palette Format 1-5
The Palette Paradigm 1-5
Colors in a Palette 1-6

Courteous Colors 1-9
Tolerant Colors 1-11
Animated Colors 1-12
Displaying Animated Colors on Direct Devices 1-13
Explicit Colors 1-14
Inhibited Colors 1-15
Combining Color Usage for an Entry 1-16
Sequencing the Entries 1-16

How the Palette Manager Allocates Colors for Display 1-17
How the Palette Manager Restores the Color Environment 1-18

Using the Palette Manager 1-20
Creating Palettes 1-21

Creating a Palette in Code 1-21
Creating a Palette in a Resource File 1-23
Selecting the Right Color Set 1-25
Creating a Palette by Copying and Assigning It to a Window 1-27

This document was created with FrameMaker 4.0.4

ACI Book : ACI TOC Page iii Thursday, July 13, 1995 8:40 AM

iv

Designating a Default Palette for Your Application 1-29
Drawing With a Palette’s Colors 1-31
Animating a Window With a Palette 1-31
Disposing of a Palette and Restoring the Color Table 1-33
Using Palettes With Offscreen Graphics Worlds 1-34

Summary of the Palette Manager 1-38
Constants 1-38
Data Types 1-38
Functions 1-39

Chapter 2

Color Picker Manager

2-1

About the Color Picker Manager 2-3
Color Picker Dialog Boxes 2-4
Color Pickers as Components 2-6
ColorSync Colors and the Color Picker Manager 2-7

Using the Color Picker Manager 2-8
Using the Standard Dialog Box for Color Pickers 2-9

Defining an Event Filter Function 2-10
Defining a Color-Changed Function 2-11

Using Customized Dialog Boxes for Color Pickers 2-13
Creating Dialog Boxes for Color Pickers 2-14
Setting Colors for and Getting Colors From the Color Picker 2-19
Handling Events in a Color Picker Dialog Box 2-21
Handling Events in the Edit Menu 2-24
Sending Event Forecasters to the Color Picker 2-27
Setting the Destination Profile 2-28

Controlling the Help Balloons for a Color Picker’s Dialog Box 2-29
Writing Your Own Color Pickers 2-31

Creating a Component Resource for a Color Picker 2-32
Dispatching to Functions Defined by a Color Picker 2-34
Initializing Your Color Picker 2-37
Handling Events for Your Color Picker 2-41
Returning and Setting Color Picker Information 2-44

ACI Book : ACI TOC Page iv Thursday, July 13, 1995 8:40 AM

v

Summary of the Color Picker Manager 2-51
Constants and Data Types 2-51
Color Picker Manager Functions 2-57
Application-Defined Functions 2-60
Color Picker–Defined Functions 2-60

Chapter 3

Introduction to the ColorSync Manager

3-1

Introduction to Color and Color Management Systems 3-4
Color: A Brief Overview 3-4

Color Perception 3-5
Hue, Saturation, and Brightness 3-5
Additive and Subtractive Color 3-6

Color Spaces 3-6
Gray Spaces 3-7
RGB-Based Color Spaces 3-7
CMY-Based Color Spaces 3-10
Device-Independent Color Spaces 3-11
Indexed Color Spaces 3-14

Color-Component Values, Color Values, and Colors 3-15
Color Conversion and Color Matching 3-15
Color Management Systems 3-17

About the ColorSync Manager 3-18
Programming Interfaces 3-18
About the ColorSync Manager’s Memory Allocation and Use 3-19
Profiles 3-19
Color Management Modules 3-22
When Color Matching Occurs 3-24

QuickDraw GX and the ColorSync Manager 3-26
What Users Can Do With ColorSync-Supportive Applications 3-27

Display Matching 3-27
Gamut Checking 3-27
Soft Proofing 3-28
Device-Linked Profiles 3-28
Calibration 3-28

ACI Book : ACI TOC Page v Thursday, July 13, 1995 8:40 AM

vi

Chapter 4

Developing ColorSync-Supportive Applications

4-1

About ColorSync Application Development 4-4
About the ColorSync Manager Programming Interface 4-4
What Should a ColorSync-Supportive Application Do? 4-5

At a Minimum 4-5
Storing and Handling Profiles 4-6

How the ColorSync Manager Selects the CMM to Be Used 4-7
Developing Your ColorSync-Supportive Application 4-12

Determining If the ColorSync Manager Is Available 4-14
Providing Minimal ColorSync Support 4-15
Obtaining Profile References 4-16
Opening a Profile and Obtaining a Reference to It 4-17
Identifying the Current System Profile 4-19
Matching Colors to Displays Using ColorSync With QuickDraw

Operations 4-20
Matching Colors in a Picture Containing an Embedded Profile 4-21
Matching Colors as Your User Draws a Picture 4-22

Setting a Large Profile Element 4-24
Creating a Color World for Color Matching and Checking Using the

Low-Level Functions 4-27
Matching Colors Using the Low-Level Functions 4-29

Matching the Colors of a Pixel Map to the Display’s Color Gamut 4-30
Matching the Colors of a Bitmap Image to the Display’s Color

Gamut 4-31
Embedding Profiles in Documents and Pictures 4-34
Extracting Profiles Embedded in Pictures 4-38

Step 1: Counting the Profiles in the PICT File 4-40
Step 2: Extracting the Profile 4-42

Searching for Profiles in the ColorSync

 Profiles Folder 4-49
Checking Colors Against a Destination Device’s Gamut 4-51
Creating and Using Device-Linked Profiles 4-53

Considerations 4-56
Providing Soft Proofs 4-56
Calibrating a Device 4-58

ACI Book : ACI TOC Page vi Thursday, July 13, 1995 8:40 AM

vii

Summary of the ColorSync Manager 4-59
Constants 4-59
Data Structures 4-63
Functions 4-69

Chapter 5

Developing Color Management Modules

5-1

About Color Management Modules 5-4
Creating a Color Management Module 5-6

Creating a Component Resource for a CMM 5-6
How Your CMM Is Called by the Component Manager 5-9
Handling Request Codes 5-10

Responding to Required Component Manager Request Codes 5-21
Responding to ColorSync Manager Required Request Codes 5-22
Responding to ColorSync Manager Optional Request Codes 5-25

Summary of the Color Management Modules 5-39
Constants 5-39
Functions 5-40

Chapter 6

Developing ColorSync-Supportive Device Drivers

6-1

About ColorSync-Supportive Device Driver Development 6-4
The ColorSync Manager Programming Interface 6-4
Devices and Their Profiles 6-5

The Profile Format and Its Cross-Platform Use 6-6
Storing and Handling Device Profiles 6-6
How You Use Profiles 6-7

Devices and Color Management Modules 6-8
Providing ColorSync-Supportive Device Drivers 6-8

Providing Minimum Support 6-9
Providing More Extensive ColorSync Support 6-9

Developing Your ColorSync Supportive Device Driver 6-10
Determining If the ColorSync Manager Is Available 6-11
Interacting With the User 6-11

Searching for Profiles and Displaying Their Names to the User 6-12

ACI Book : ACI TOC Page vii Thursday, July 13, 1995 8:40 AM

viii

Setting the Rendering Intent Selected by the User 6-15
Setting the Color-Matching Quality Selected by the User 6-17

Color Matching an Image to Be Printed 6-22

Chapter 7

Color Manager

7-1

About the Color Manager 7-3
Graphics Devices 7-4
Color Tables 7-5
Inverse Tables 7-6

Inverse Tables in Action 7-10
Hidden Colors 7-11
Building Inverse Tables 7-12

Using the Color Manager 7-13
Customizing Search Functions 7-13
Customizing Complement Functions 7-15
Managing the Device CLUT 7-16

Summary of the Color Manager 7-19
Constants and Data Types 7-19
Color Manager Functions 7-20
Application-Defined Functions 7-21

Appendix

ColorSync Manager Backward Compatibility

A-1

ColorSync 1.0 API Support A-1
ColorSync 1.0 Profile Support A-2

ColorSync 1.0 Profiles and Version 2.0 Profiles A-2
How ColorSync 1.0 Profiles and Version 2.0 Profiles Differ A-3
CMMs and Mixed Profiles A-5

Using the ColorSync Manager API With ColorSync 1.0 Profiles A-5
ColorSync Manager Functions Not Supported for ColorSync 1.0

Profiles A-6
Using ColorSync 1.0 Profiles With the ColorSync Manager A-7

Opening a ColorSync 1.0 Profile A-7
Obtaining a ColorSync 1.0 Profile Header A-7

ACI Book : ACI TOC Page viii Thursday, July 13, 1995 8:40 AM

ix

Obtaining ColorSync 1.0 Profile Elements A-8
Embedding ColorSync 1.0 Profiles A-8

ColorSync 1.0 Functions With Parallel ColorSync Manager
Counterparts A-9

Glossary

GL-1

Index

IN-1

ACI Book : ACI TOC Page ix Thursday, July 13, 1995 8:40 AM

ACI Book : ACI TOC Page x Thursday, July 13, 1995 8:40 AM

xi

Figures, Tables, and Listings

Color Plates

Color plates are immediately preceding the title page.

Color Plate 1

Device RGB color space and CMYK color space

Color Plate 2

The HSV and HLS color space cones

Color Plate 3

Additive and subtractive color

Color Plate 4

CIE color space

Color Plate 5

The default color picker

Color Plate 6

L*a*b* color space

Color Plate 7

The colors of the default color tables

Preface

About This Book

xv

Figure P-1

Road Map to

Advanced Color Imaging

xvii

Chapter 1

Palette Manager

1-1

Table 1-1

A courteous palette 1-10

Listing 1-1

Creating a red palette 1-22

Listing 1-2

A palette (

'pltt'

) resource 1-23

Listing 1-3

Displaying different colors on different types of screens 1-25

Listing 1-4

Copying a color table to a palette 1-28

Listing 1-5

Animating with a palette 1-32

Listing 1-6

Changing the color environment of an offscreen graphics
world 1-35

Chapter 2

Color Picker Manager

2-1

Figure 2-1

The standard dialog box for color pickers 2-4

Figure 2-2

Color picker choices in the standard dialog box for color
pickers 2-5

Figure 2-3

A movable modal dialog box for color pickers 2-6

Figure 2-4

A movable modal application-owned dialog box 2-17

Figure 2-5

An application-created color picker 2-33

This document was created with FrameMaker 4.0.4

ACI Book : ACI LOF Page xi Thursday, July 13, 1995 8:40 AM

xii

Listing 2-1

Using the

PickColor

 function 2-9

Listing 2-2

An event filter function for the

PickColor

 function 2-11

Listing 2-3

A color-changed function 2-12

Listing 2-4

Creating a movable modal system-owned dialog box 2-15

Listing 2-5

Creating an application-owned dialog box 2-16

Listing 2-6

Creating a color picker–owned dialog box 2-18

Listing 2-7

Setting the original and new colors 2-19

Listing 2-8

Determining the selected color 2-20

Listing 2-9

A sample event loop 2-22

Listing 2-10

Handling the Edit menu 2-25

Listing 2-11

Warning the color picker that it’s about to be closed 2-28

Listing 2-12

Using the

SetPickerProfile

 function to set the destination
profile 2-29

Listing 2-13

Using the

GetPickerProfile

 function to get the destination
profile 2-29

Listing 2-14

Using the

ExtractPickerHelpItem

 function 2-30

Listing 2-15

A component resource for a color picker 2-32

Listing 2-16

Handling Component Manager request codes 2-36

Listing 2-17

Initializing private data for a color picker 2-38

Listing 2-18

Testing whether an environment can support your color
picker 2-39

Listing 2-19

Returning the dialog box items for a color picker 2-40

Listing 2-20

Redrawing a color picker 2-41

Listing 2-21

Responding to events before handing them to the Dialog
Manager 2-41

Listing 2-22

Responding to events in color picker items 2-42

Listing 2-23

Handling events in the color picker’s Edit menu 2-44

Listing 2-24

Returning the original or the new color 2-45

Listing 2-25

Setting colors 2-45

Listing 2-26

Returning icon data 2-47

Listing 2-27

Returning the color picker’s prompt 2-48

Listing 2-28

Setting the color picker’s prompt 2-48

Listing 2-29

Returning the destination profile 2-49

Listing 2-30

Setting the destination profile 2-49

Listing 2-31

Specifying how the Edit menu should be set 2-50

ACI Book : ACI LOF Page xii Thursday, July 13, 1995 8:40 AM

xiii

Chapter 3

Introduction to the ColorSync Manager

3-1

Figure 3-1

Gray space 3-7

Figure 3-2

RGB color space 3-8

Figure 3-3

HSV color space and HLS color space 3-9

Figure 3-4

Additive colors expressed in CMYK and subtractive colors
expressed in RGB 3-10

Figure 3-5

Yxy chromaticities in the CIE color space 3-13

Figure 3-6

Color gamuts for two devices expressed in Yxy space 3-16

Figure 3-7

The ColorSync

 System Profile control panel 3-25

Figure 3-8

The ColorSync Manager and the Component Manager 3-26

Chapter 4

Developing ColorSync-Supportive Applications

4-1

Figure 4-1

Color matching when the source and destination profiles specify the
same CMM 4-7

Figure 4-2

Color matching using the destination profile’s CMM 4-8

Figure 4-3

Color matching using the source profile’s CMM 4-9

Figure 4-4

Color matching through an XYZ interchange space using both
CMMs 4-10

Figure 4-5

Matching using both CMMs and two interchange color
spaces 4-11

Figure 4-6

Color matching using the Apple-supplied default CMM 4-12

Listing 4-1

Opening a reference to a file-based profile 4-18

Listing 4-2

Obtaining the current system profile 4-20

Listing 4-3

Two methods of color matching to a display 4-23

Listing 4-4

Setting the element size before setting the element data in
segments 4-24

Listing 4-5

Matching the colors of a pixel map or a bitmap using a color
world 4-32

Listing 4-6

Embedding a profile by prepending it before its associated
picture 4-36

Listing 4-7

Counting the number of profiles in a picture 4-41

Listing 4-8

Calling the CMUnflattenProfile function to extract an embedded
profile 4-43

Listing 4-9

The unflatten procedure 4-45

Listing 4-10

The comment procedure 4-47

Listing 4-11

Searching for specific profiles in the ColorSync

 Profiles
folder 4-50

ACI Book : ACI LOF Page xiii Thursday, July 13, 1995 8:40 AM

xiv

Chapter 5

Developing Color Management Modules

5-1

Figure 5-1

The ColorSync Manager and the Component Manager 5-5

Listing 5-1

CMM component Rez listing 5-8

Listing 5-2

A CMM component shell 5-14

Chapter 6

Developing ColorSync-Supportive Device Drivers

6-1

Listing 6-1

Modifying the system profile header’s quality flag and setting the
header 6-20

Chapter 7

Color Manager

7-1

Figure 7-1

Sample inverse table 7-7

Figure 7-2

An inverse table of resolution 4 7-9

Figure 7-3

Creating an inverse table index 7-11

Table 7-1

Sample inverse table indexes 7-10

Table 7-2

A sample CSpecArray data structure 7-17

Listing 7-1 Adding and using a custom search function 7-14

Appendix ColorSync Manager Backward Compatibility A-1

Table A-1 ColorSync 1.0 functions and their ColorSync Manager
counterparts A-9

ACI Book : ACI LOF Page xiv Thursday, July 13, 1995 8:40 AM

xv

P R E F A C E

About This Book

This book,

Advanced Color Imaging on the Mac OS

, and its (electronic)
companion,

Advanced Color Imaging Reference

, describe the following collections
of system software routines:

■

the Palette Manager

■

the Color Picker Manager, version 2.0

■

the ColorSync Manager, version 2.0

■

the Color Manager

The chapters in this book describe how to use these managers to enhance your
application’s color capabilities. To implement core graphics capabilities, your
application should use QuickDraw or QuickDraw GX. The book

Inside
Macintosh: Imaging With QuickDraw

 describes how your application can use
QuickDraw to create and display Macintosh graphics, and how to use the
Printing Manager to print the images created with QuickDraw. The

Inside
Macintosh: QuickDraw GX

 suite of books describes the QuickDraw GX
object-based graphics programming environment for creating, displaying, and
printing graphics.

To provide more sophisticated color support on indexed graphics devices in
QuickDraw environments, your application can use the Palette Manager. The
Palette Manager allows your application to specify sets of colors that it needs
on a window-by-window basis. An indexed device supporting a byte for each
pixel allows 256 colors to be displayed. On a video device that uses a variable
color lookup table, your application can use the Palette Manager to display
tens of thousands of palettes—that is, sets of colors—consisting of 256 colors
each, so that your application has up to 16 million colors at its disposal.

To solicit color choices from users, your application can use the Color Picker
Manager. Whether your application uses QuickDraw or QuickDraw GX, the
Color Picker Manager provides your application with a standard dialog box for
soliciting a color choice from users.

To match colors between screens and input and output devices such as
scanners and printers, Macintosh system software provides a set of routines
and algorithms called the ColorSync Manager

.

 Developers writing device
drivers use the ColorSync Manager to support color matching between devices.

This document was created with FrameMaker 4.0.4

ACI Book : Preface ACI Page xv Thursday, July 13, 1995 8:40 AM

xvi

P R E F A C E

Application developers use the ColorSync Manager to communicate with
drivers and to present users with color-matching information—such as a
device’s color capabilities.

QuickDraw GX and the Color Picker Manager automatically use the ColorSync
Manager to perform color matching. Unless your application is using one of
these two graphics managers, it must explicitly call the functions of the
ColorSync Manager to use its color-matching capabilities.

The Color Manager assists Color QuickDraw in mapping your application’s
color requests to the actual colors available. Most applications never need to
call the Color Manager directly.

Format of This Book and Its Companion Volume 0

This book provides conceptual information about enhancing your application’s
color capabilities; it also includes code samples that give step-by-step
instructions for doing so. For example, in the chapter “Color Picker Manager,”
conceptual information is in the section “About the Color Picker Manager,”
which explains how you can use the standard user interface for soliciting color
choices from users.

Tutorial information is in the section “Using the Color Picker Manager,” which
contains code samples and step-by-step instructions describing how to use the
Color Picker Manager to create dialog boxes in which users can make color
choices. The chapter “Color Picker Manager” also contains a summary section
that provides the C interfaces for the constants, data structures and functions
associated with the Color Picker Manager.

The electronic companion to this book,

Advanced Color Imaging Reference

,
provides a reference chapter for each of the managers described in

Advanced
Color Imaging on the Mac OS

. For example, the chapter “Color Picker Manager
Reference” provides a complete reference to the data structures, functions, and
resources that your application can use to create an interface for soliciting color
choices from users. Each function description also follows a standard format,
which presents the function definition followed by a description of every
parameter of the function.

The book

Advanced Color Imaging on the Mac OS

 is in a printed form and an
electronic form. The content of these two versions is identical.

ACI Book : Preface ACI Page xvi Thursday, July 13, 1995 8:40 AM

xvii

P R E F A C E

The

Advanced Color Imaging Reference

 is in an electronic form only—there is no
printed version of it. It has two electronic formats that are identical in content:

■

Adobe

 Acrobat

 format.

 Acrobat features excellent navigation and the
ability to print the entire document or selected pages.

■

QuickView format.

 QuickView features extremely fast navigation and
limited printing capabilities. For better printing capabilities, it is suggested
that you use the Adobe Acrobat version.

For additional information on navigating in the

Advanced Color Imaging
Reference

 with Acrobat or QuickView, see the ReadMe file on the enclosed CD.

Figure P-1 shows a road map to the printed and electronic documentation
forms of

Advanced Color Imaging on the Mac OS

 and the

Advanced Color Imaging
Reference

.

Figure P-1

Road Map to

Advanced Color Imaging

Paper documentation Electronic documentation

Acrobat format QuickView format

Conceptual,
introductory,
and tutorial
information

Reference

Advanced Color Imaging
on the Mac OS

Advanced Color Imaging
on the Mac OS

Advanced Color Imaging
Reference

Advanced Color Imaging
Reference

Advanced Color
Imaging
on the Mac OS

Location

Content

PDF

PDF

ACI Book : Preface ACI Page xvii Thursday, July 13, 1995 8:40 AM

xviii

P R E F A C E

Conventions Used in This Book 0

This book uses various conventions to present information. Words that require
special treatment appear in specific fonts or font styles. Certain information,
such as parameter blocks, appears in special formats so that you can scan it
quickly.

Special Fonts 0

All code listings, reserved words, and the names of actual data structures,
constants, fields, parameters, and routines are shown in Letter Gothic (

this is
Letter Gothic

).

Words that appear in

boldface

 are key terms or concepts and are defined in the
glossary at the end of this book.

Types of Notes 0

There are several types of notes used in this book.

Note

A note like this contains information that is interesting but
possibly not essential to an understanding of the main text.
(An example appears on page 1-21.)

◆

IMPORTANT

A note like this contains information that is essential for an
understanding of the main text. (An example appears on
page 1-30.)

▲

▲ W A R N I N G

Warnings like this indicate potential problems that you
should be aware of as you design your application. Failure
to heed these warnings could result in system crashes or
loss of data. (An example appears on page 1-14.)

▲

ACI Book : Preface ACI Page xviii Thursday, July 13, 1995 8:40 AM

xix

P R E F A C E

Development Environment 0

The system software functions described in this book are available using C or
assembly-language interfaces. How you access these functions depends on the
development environment you are using. This book shows system software
routines in their C interface using the Macintosh Programmer’s Workshop
(MPW).

All code listings in this book are shown in C (except for listings that describe
resources, which are shown in Rez-input format). They show methods of using
various routines and illustrate techniques for accomplishing particular tasks.
All code listings have been compiled and, in most cases, tested. However,
Apple Computer does not intend that you use these code samples in your
application. You can find the location of this book’s code listings in the list of
figures, tables, and listings.

To make the code listings in this book more readable, only limited error
handling is shown. You need to develop your own techniques for detecting and
handling errors.

For More Information 0

APDA is Apple Computer’s worldwide source for hundreds of development
tools, technical resources, training products, and information for anyone
interested in developing applications on Apple platforms. Customers receive
the

APDA Tools Catalog

featuring all current versions of Apple development
tools and the most popular third-party development tools. APDA offers
convenient payment and shipping options, including site licensing.

ACI Book : Preface ACI Page xix Thursday, July 13, 1995 8:40 AM

xx

P R E F A C E

To order products or to request a complimentary copy of the

APDA Tools
Catalog

, contact

APDA
Apple Computer, Inc.
P.O. Box 319
Buffalo, NY 14207-0319

If you provide commercial products and services, call 408-974-4897 for
information on the developer support programs available from Apple.

For information on registering signatures, file types, and other technical
information, contact

Macintosh Developer Technical Support
Apple Computer, Inc.
20525 Mariani Avenue, M/S 303-2T
Cupertino, CA 95014-6299

Telephone 1-800-282-2732 (United States)
1-800-637-0029 (Canada)
716-871-6555 (International)

Fax 716-871-6511

AppleLink APDA

America Online APDAorder

CompuServe 76666,2405

Internet APDA@applelink.apple.com

ACI Book : Preface ACI Page xx Thursday, July 13, 1995 8:40 AM

C H A P T E R 1

Contents

1-1

Contents

1

Figure 1-0
Listing 1-0
Table 1-0

1 Palette Manager

About the Palette Manager 1-4
Palette Format 1-5
The Palette Paradigm 1-5
Colors in a Palette 1-6

Courteous Colors 1-9
Tolerant Colors 1-11
Animated Colors 1-12
Displaying Animated Colors on Direct Devices 1-13
Explicit Colors 1-14
Inhibited Colors 1-15
Combining Color Usage for an Entry 1-16
Sequencing the Entries 1-16

How the Palette Manager Allocates Colors for Display 1-17
How the Palette Manager Restores the Color Environment 1-18

Using the Palette Manager 1-20
Creating Palettes 1-21

Creating a Palette in Code 1-21
Creating a Palette in a Resource File 1-23
Selecting the Right Color Set 1-25
Creating a Palette by Copying and Assigning It to a Window 1-27

Designating a Default Palette for Your Application 1-29
Drawing With a Palette’s Colors 1-31
Animating a Window With a Palette 1-31
Disposing of a Palette and Restoring the Color Table 1-33
Using Palettes With Offscreen Graphics Worlds 1-34

This document was created with FrameMaker 4.0.4

ACI Book : Palette MgrTOC Page 1 Thursday, July 13, 1995 8:40 AM

C H A P T E R 1

1-2

Contents

Summary of the Palette Manager 1-38
Constants 1-38
Data Types 1-38
Functions 1-39

ACI Book : Palette MgrTOC Page 2 Thursday, July 13, 1995 8:40 AM

C H A P T E R 1

1-3

P
alette M

anager

1

Palette Manager 1

This chapter describes how you can use the Palette Manager to ensure that an
optimal set of colors is available whenever one of your application’s windows
is active.

The Palette Manager monitors the color needs of the graphics environment.
The Palette Manager can track the combined color and grayscale requirements
of your application, other applications, and the Operating System, and it can
do so across multiple screens. The primary purpose of the Palette Manager is to
ensure that the best set of colors is available for display devices with limited
color capabilities.

For example, on a device that can display 16 colors only, an image composed
entirely of earth tones will lack all subtlety and richness because the default
color lookup table for the device provides a broad set of colors spread across
the color spectrum. With the Palette Manager you can create a palette
containing a range of 14 earth tones (you must provide black and white as
well) and attach it to a window to get the best display possible for your image.
This palette can be attached to one particular window and needn’t affect the
color display of the Finder, of other applications, or of other windows in your
application.

You need to read this chapter if your application uses Color QuickDraw’s color
system, rather than the basic eight-color system supplied with original
QuickDraw and you need to control your color environment.

You should be familiar with the material in

Inside Macintosh: Imaging With
QuickDraw

. In particular, you should understand how Color QuickDraw and
graphic devices such as video cards display colors and grays on a screen. The
chapter “Introduction to QuickDraw” in

Inside Macintosh: Imaging With
QuickDraw

 describes the format and uses of color lookup tables, and it
introduces both the indexed color system that can display up to 256 colors and
the direct color system that can display thousands or millions of colors. In the
same book, the chapter “Color QuickDraw” provides details about the color
graphics port and the

grafVars

 data structure, which together hold information
about the color settings.

Because the Palette Manager uses the Color Manager to coordinate color
assignments across multiple graphic devices, most developers don’t need to
read the Color Manager chapter, which itself operates on single devices only.

This document was created with FrameMaker 4.0.4

ACI Book : Palette Mgr Page 3 Thursday, July 13, 1995 8:40 AM

C H A P T E R 1

Palette Manager

1-4

About the Palette Manager

About the Palette Manager 1

You can use the Palette Manager to

■

create a palette so that an optimal set of colors and grays is available to your
application’s window

■

provide sets of colors for displaying images on devices with different pixel
depths

■

create color animation effects

Indexed devices (devices with a pixel depth of 8 bits or less) have default color
lookup tables (CLUTs) that contain a broad spectrum of colors to meet the color
needs of the widest range of applications. The Palette Manager allows you to
customize the colors for each window in your application—within the limits of
each display device’s pixel depth. The Palette Manager can enhance your color
display because it can give you a specialized range of colors to display. For
example, on a device with an 8-bit pixel depth, instead of 256 colors spread
across the spectrum, which is what the default CLUT provides, you could
choose a particular range of colors depending on the image your application is
displaying in a specific window. For one image you might provide 180 greens
and the remaining 76 colors across the spectrum, or for a different image, 254
reds with black and white.

The Palette Manager compares your palettes with the CLUTs for the available
display devices. For example, if a user opens your application’s window or
makes it active and frontmost on the desktop, the Palette Manager compares
the colors of the palette you specified for your window with those available for
the video card and loads whatever colors are needed into the color table of the
card.

On direct devices, the Palette Manager uses the exact colors you request, to the
limits of the card’s pixel depth (15 or 24 bits per pixel). The use of palettes does
not enhance the color display on direct devices because direct devices can
display thousands or millions of colors, which means that sufficient colors are
available for even the most skewed or narrow color scheme.

ACI Book : Palette Mgr Page 4 Thursday, July 13, 1995 8:40 AM

C H A P T E R 1

Palette Manager

About the Palette Manager

1-5

P
alette M

anager

1

Palette Format 1

A

palette

 is a set of colors optimized for use on display devices with a limited
number of colors. A palette is defined by a palette resource or a palette data
structure, each of which describes for each color in the palette the RGB color
value, how the color is to be used, and its tolerance value if the color only
needs to be approximated. See “The Palette Resource” in the chapter “Palette
Manager Reference” in

Advanced Color Imaging Reference

 on the enclosed CD for
information on the structure of a palette resource. See “The Palette Structure”
in the chapter “Palette Manager Reference” in

Advanced Color Imaging Reference

on the enclosed CD for details on the palette structure; this structure contains a
series of color information structures that contain the actual information on
each color, so you may want to look at “The Color Information Structure” as
well.

The Palette Paradigm 1

Palettes are easy to create, either as resources or as data structures within your
application. Once you create a palette and attach it to a particular window, the
Palette Manager manages the window’s colors. Whenever your window is
activated, the Palette Manager checks each graphics device that your window
overlaps and ensures that your colors are available. In allocating colors for
your window, the Palette Manager takes into account the importance you place
on the various colors in the palette as well as the capabilities of the display
devices your window touches.

There are several ways to create a palette. You can do any of the following:

■

Place a palette resource (a resource of type

'pltt'

) in the resource fork of
your application and create a palette from the color record information in
the resource.

■

Copy a palette from another palette.

■

Build a palette from a color table.

■

Create a palette by either of the methods just mentioned and then use the

SetEntry

 and

SetUsage

 functions to modify the colors in the palette and how
they are used.

If you create a palette resource for a window in your application, and you
assign the same ID to the resource and to the window, the Window Manager
automatically calls the Palette Manager to attach the palette to the window
when the window is first opened. If you create a palette in code (or from a

ACI Book : Palette Mgr Page 5 Thursday, July 13, 1995 8:40 AM

C H A P T E R 1

Palette Manager

1-6

About the Palette Manager

resource that does not have the same ID as a window), you use the

SetPalette

or

NSetPalette

 function to attach the palette to a particular window. If you
wish, you can create a default palette to use for all windows in your
application. You can create a default resource (a resource of type

'pltt'

 with
ID = 0) from which to create the default palette or you can use the

SetPalette

or

NSetPalette

 function to assign a default palette. See “Designating a Default
Palette for Your Application” on page 1-29 for information on how to do this.

In the palette resource, or in the palette that you create, you specify the RGB
colors your application needs. You can indicate whether each color must be
matched exactly and, if not, how close a match is required. You can tailor your
palettes to different possible video devices—indicating, for example, that
certain colors in the palette should be used with 4-bit pixel depths, that a
different set should be used with 8-bit pixel depths, and that neither set should
be used with grayscale devices.

The Palette Manager can handle different screen depths across multiple
devices. If the user moves your application window so that it overlaps one
grayscale screen, one indexed-color screen, and one direct-color screen, the
Palette Manager chooses appropriate grays and colors for all three.

The Palette Manager has access to all palettes used by all windows throughout
the system. A set of default color tables for devices of various depths ensures
that the Palette Manager always returns to a known set of colors when an
application terminates. When your application begins executing, it executes in
an environment equipped with as broad a range of colors or grays as the
hardware allows; that is, a broad range of colors is always provided but the
number of actual colors is limited by the pixel depth of the screen. For example,
the default color table for a 4-bit pixel depth screen provides a range of 16
colors, the default color table for a 16-bit pixel depth screen provides a range of
256 colors, and so on.

Colors in a Palette 1

When the user activates a window, the Palette Manager examines the window
and its palette to determine how many screens the window touches and
whether colors need to be loaded into any device’s color lookup table. If your
window requires 180 shades of green, for example, chances are the current
device color tables lack the necessary colors. Whether the Palette Manager
must change a color table depends on what colors are in it already, what colors
you ask for, and the categories into which your colors fall.

ACI Book : Palette Mgr Page 6 Thursday, July 13, 1995 8:40 AM

C H A P T E R 1

Palette Manager

About the Palette Manager

1-7

P
alette M

anager

1

When using Color QuickDraw you specify colors as RGB values. An RGB color
is defined by its red, green, and blue components, which you specify in an

RGBColor

 data structure. The brightest white consists of three maximum integer
values (65535); black is three minimum values (0); grays are any three equal
values between white and black. See the “Color QuickDraw” chapter of

Inside
Macintosh: Imaging With QuickDraw

 for further information about RGB colors
and the

RGBColor

 structures you use to specify them.

You may know the RGB values of the colors you need, or you may determine
them by trial and error or by using a color picker.

Generally, the Palette Manager comes into play implicitly in your application;
that is, you first create a palette and attach it to a window. Then, when you
display an image or draw in the window, if any of the colors you specify is not
available in the color table, the Palette Manager loads them for you, if it can.

The Palette Manager also provides two functions,

PMForeColor

 and

PMBackColor

,
that enable you to draw explicitly with a palette’s colors. Each of these
functions takes a palette entry as an argument. You can use

PMForeColor

 and

PMBackColor

 with any type of color (see the rest of this section for a description
of the different usage categories that determine the type of a palette color,
including courteous, tolerant, animated and explicit). You must use

PMForeColor

 and

PMBackColor

 when drawing with animated colors. See
“Drawing With a Palette’s Colors,” beginning on page 1-31 for more
information on when and how to use the Palette Manager drawing functions.
For a complete description of the

PMForeColor

 and

PMBackColor

 functions, see
the chapter “Palette Manager Reference” in

Advanced Color Imaging Reference

 on
the enclosed CD.

The Palette Manager tracks colors in usage categories, which you specify to
control the way the Palette Manager allocates your palette’s colors. When you
create your palette, you assign usage categories to colors with the usage
constants in the color information record—see “The Color Information
Structure” in the chapter “Palette Manager Reference” in

Advanced Color
Imaging Reference

 on the enclosed CD. You can change the categories by using
Palette Manager functions. You can assign any of the following categories to
each color in your palette. The four categories, courteous, tolerant, animated,

ACI Book : Palette Mgr Page 7 Thursday, July 13, 1995 8:40 AM

C H A P T E R 1

Palette Manager

1-8

About the Palette Manager

and explicit define the types of colors that the Palette Manager provides. (Note
that some of the categories can be combined.)

■

A color specified as

courteous

 accepts whatever value the Color Manager
determines to be the closest match currently available in the device color
table. On indexed devices, the Palette Manager lets the Color Manager select
appropriate pixel values from those already in the device color table. On
direct devices, the Palette Manager matches courteous colors as closely as
the hardware allows. Courteous colors have no special properties, but their
use offers you a convenient way to name and hold color collections.

■

A color specified as

 tolerant

 also accepts the Color Manager’s choices on an
indexed device, but unlike a courteous color, a tolerant color specifies an
acceptable range for color matching. If no color in the device’s color table
falls within that range, the Palette Manager loads the color required. If you
specify a tolerance of 0, the color must match exactly. On direct devices, the
Palette Manager matches tolerant colors as closely as the hardware allows.

■

A color specified as

animated

 is used for special color animation effects, as
described in “Animated Colors,” beginning on page 1-12. Animated colors
are reserved by a palette until its window is closed, and until then their
spaces are unavailable to (and can’t be used to match) any other request for
color. The effects of color animation depend on the existence of a device
color table, and, because a direct device doesn’t have a color table, color
animation has no effect on a direct device’s display. If your window spans
two devices, one indexed and one direct, the Palette Manager is dexterous
enough to animate the portion on the indexed device’s screen.

■

An

explicit

 color specifies an index value rather than an RGB color and
always generates the corresponding entry from the device’s color table.
Explicit colors are useful if you wish to display the contents of a color table—
for example, to display to a user some or all of the colors actually available.
If you specify an index value greater than those available in the palette, the
Palette Manager wraps the entry and selects an index value that is within
range.

ACI Book : Palette Mgr Page 8 Thursday, July 13, 1995 8:40 AM

C H A P T E R 1

Palette Manager

About the Palette Manager

1-9

P
alette M

anager

1

The next two groups of categories, inhibited and

pmWhite

/

pmBlack

 are always
used with one or more of the four color-type usage categories just defined.

■

A color specified as

 inhibited

 is prevented from appearing on color and
grayscale devices of specified pixel depths. You always use inhibited colors
in combination with other usage categories. You can create a large palette—
for example, with two different sets of color ranges, one optimized for a 4-bit
device, the other optimized for an 8-bit device—and then inhibit colors on
the devices for which they are not intended.

■

Colors specified as

pmWhite

 or

pmBlack

 are assigned to white or black,
respectively, on 1-bit devices. If your application is working with red and
dark blue, for example, both might get mapped to black on a 1-bit device. By
assigning

pmWhite

 to one and

pmBlack

 to the other, you assure that they are
always distinct. You can combine these categories with other usage
categories, but combining them with each other is undefined.

You can combine several color usage categories. You can specify that a color is
both tolerant and explicit, for example, which means that your RGB color, or a
tolerably close match, is placed in the color table at the index corresponding to
that palette entry (as opposed to merely being available somewhere in the
table) on all devices that touch the window. See “Combining Color Usage for
an Entry,” beginning on page 1-16 for additional information on combining
two or more color usage categories.

Typically, you create a palette in which all colors have the same usage, and then
if any entries need to be in a different category, you change them with Palette
Manager functions.

The following sections describe the usage categories in more detail.

Courteous Colors 1

Courteous colors have no special properties, but they can serve as convenient
placeholders. If your application uses a small number of colors, you can order
them in a palette according to your preference and designate them as courteous.

Colors with specified usage categories that can’t be satisfied by the Palette
Manager default to courteous colors. This occurs, for example, when drawing
to a direct device or one with a fixed device color table.

Suppose you have an open window named

myColorWindow

 that has a palette
resource consisting of a set of eight colors: white, black, red, orange, yellow,

ACI Book : Palette Mgr Page 9 Thursday, July 13, 1995 8:40 AM

C H A P T E R 1

Palette Manager

1-10

About the Palette Manager

green, blue, and violet, in that order, each with its color usage specified as
courteous, as shown in Table 1-1.

Table 1-1

A courteous palette

The following example paints the rectangle

myRect

 in yellow (palette entry 4,
where white is 0).

SetPort (myColorWindow);
SetPalette (myColorWindow, srcPalette, TRUE);
PmForeColor (4);
PaintRect (myRect);

This is exactly analogous (if the usage is courteous) to the following sequence
of Color QuickDraw functions, where

yellowRGB

 is of type

ColorSpec

:

yellowRGB.red = $FFFF;
yellowRGB.green = $FFFF;
yellowRGB.blue = $0000;

SetPort (myColorWindow);
SetPalette (myColorWindow, srcPalette, TRUE);
RGBForeColor (yellowRGB);
PaintRect (myRect);

Index RGB value Usage

0 White courteous

1 Black courteous

2 Red courteous

3 Orange courteous

4 Yellow courteous

5 Green courteous

6 Blue courteous

7 Violet courteous

ACI Book : Palette Mgr Page 10 Thursday, July 13, 1995 8:40 AM

C H A P T E R 1

Palette Manager

About the Palette Manager

1-11

P
alette M

anager

1

Tolerant Colors 1

Tolerant colors allow you to change the current color environment if the
available colors are not sufficiently close to those your application needs. When
your window becomes the frontmost window on a device, its palette’s colors
are given preference. Each tolerant color is compared to the best match
available in the current color environment. (In a multiscreen environment this
comparison is done for each device on which the window is drawn.) When the
difference between your color and the best available match is greater than the
tolerance you specify, the Palette Manager loads an exact match into the device
color table.

The Palette Manager compares the tolerance value associated with each palette
entry to a measure of the difference between two RGB color values. This
difference is an approximation of the distance between the two points as
measured in a Cartesian coordinate system where the axes are the unsigned
red, green, and blue values. The distance formula used is

∆

RGB

 =

maximum of

 (

abs

(

Red1

 –

Red2

),

abs

(

Green1

 –

Green2

),

abs

(

Blue1 – Blue2))

A tolerance value of $0000 means that only an exact match is acceptable. (Any
value of $0xxx other than $0000 is reserved and should not be used in
applications.) A value of $5000 is generally sufficient to allow matching
without updates in well-balanced color environments, such as those provided
by the default palettes.

The color needs of your application determine the tolerance value to set for
palette entries. For example, if your application is a drawing program in which
exact colors are required, then you will specify a tolerance of zero for your
palette entries. On the other hand, if exact matching is not a requirement,
specifying a higher tolerance such as $5000 is a good idea because it eliminates
updates which can cause annoying screen flashes and also alter the color
environment for other applications.

If your palette requires more colors than the number of unreserved table
indexes, the Palette Manager checks to see if some other palette has reserved
indexes for animation. If so, it cancels their reservation and makes their indexes
available for your palette.

If you ask for more colors than are available on a device, the Palette Manager
cannot honor your request. Color requests that can’t be met default to
courteous colors, and the Color Manager selects the best color available. That
selection will, of necessity, match one of the colors elsewhere in your palette,
because the Palette Manager runs out of colors only after it has given your

ACI Book : Palette Mgr Page 11 Thursday, July 13, 1995 8:40 AM

C H A P T E R 1

Palette Manager

1-12 About the Palette Manager

palette all that are available. This function works as well as possible for a given
device, but of course, works better if your window is moved to a device of
greater pixel depth where the request can be met.

Note that two tolerant entries may match to the same index even if space isn’t
the problem. For instance, when all indexes are initially assigned to black,
activating a palette with 256 shades of gray with tolerance of $2000 uses up
four indexes, that being sufficient to match all 256 shades within a tolerance of
$2000. If the tolerance value were decreased to $1000, then eight indexes would
be altered.

On direct devices, tolerant entries always match as close to exactly as the
hardware allows (to the first 8 bits of each component).

Animated Colors 1

Animated colors allow you to create color-table animation effects while
lessening the disturbance caused other windows.

One way to change the color of an object on the screen is to change the pixel
values in the object’s part of the pixel map—you draw it again in a different
color. In certain situations, you can get the same effect at less cost in processing
and memory by changing the colors in the video device’s color table instead.
All pixel values corresponding to the altered indexes immediately appear on
the display device in a new color. By careful selection of index values and the
corresponding colors, you can achieve a number of special animation effects.

Note that no objects move in this animation; rather, the animation gives the
appearance of motion, like the lights of a movie marquee.

To use an animated color, you must first draw with it using the PmForeColor or
PmBackColor function. To create color-table animation, you then change that
entry’s RGB color by using the AnimateEntry function. You can animate a
contiguous set of colors by using the AnimatePalette function to supply RGB
colors from a color table.

The way the Palette Manager reserves indexes for animated colors creates some
side effects. The Palette Manager first checks each animated color to see if it
already has a reserved index for the target device. If it does not, the Palette
Manager checks all windows and reserves the least frequently used indexes for
your palette. (This reservation process is analogous to that used by the Color
Manager function ReserveEntry.) The device’s index and its corresponding
color value are removed from the matching scheme used by Color QuickDraw;
you cannot draw with the color by calling RGBForeColor. (However, when you

ACI Book : Palette Mgr Page 12 Thursday, July 13, 1995 8:40 AM

C H A P T E R 1

Palette Manager

About the Palette Manager 1-13

P
alette M

anager
1call PmForeColor, the Palette Manager locates the reserved index and configures

your window’s port to draw with it.) On a multiscreen system the index
reserved is likely to be different for each device, but this process is invisible to
your application.

After reserving one device index per device for each animated color it detects,
the Palette Manager changes the color environment to match the RGB values
specified in the palette.

The Palette Manager returns the indexes used by your animated entries to each
screen device when any of the following occur:

■ A window owning those animated entries moves off of that screen.

■ Your application changes the usage of an animated color.

■ Your application disposes of the palette owning those entries (merely hiding
a window does not release its entries).

■ Your application quits.

The Palette Manager replaces previously animated indexes with the
corresponding colors from the default color table for that device.

The Palette Manager receives notice when the screen depth changes, so that it
can take appropriate action at that time, such as setting color tables to their
defaults.

Displaying Animated Colors on Direct Devices 1

Color-table animation doesn’t work on a direct device because it has no color
table. To present the best appearance, for example, on a window that spans an
indexed device and a direct device, the Palette Manager records two colors in
the ciRGB field of the ColorInfo structure: the last color the entry was set to by
the SetEntryColor function and the last color the entry was set to by the
AnimateEntry or AnimatePalette function. In the ColorInfo structure, the high
bytes of the components in the ciRGB field reflect the animated color, and the
low bytes contain the color set by SetEntryColor. (The GetEntryColor function
returns the last color to which the entry was animated.) When you draw with
an animated color on a direct device (or on any device on which the animated
color was not allocated and reserved), then the color set by SetEntryColor is
used. This allows successive updates of an animated image on a direct device
to match correctly. A side effect is that GetEntryColor does not necessarily
return an exact match of the color originally set (only the top 8 bits are an exact
match).

ACI Book : Palette Mgr Page 13 Thursday, July 13, 1995 8:40 AM

C H A P T E R 1

Palette Manager

1-14 About the Palette Manager

▲ W A R N I N G

This internal usage of color information fields may change.
For maximum safety, use the functions SetEntryColor,
SetEntryUsage, GetEntryColor, and GetEntryUsage. ▲

Explicit Colors 1

Use explicit colors when your primary concern is the index value rather than
the color stored at that index.

Explicit colors cause no change in the color environment. For indexed devices,
the Palette Manager ignores the RGB value in a palette if a color is an explicit
color. When you draw with an explicit color, you get the color that is currently
at the entry in the device color table whose index corresponds to the explicit
color’s position in the palette. When you call PmForeColor with a parameter of
12, it places a value of 12 into the foreground color field of your window’s color
graphics port. (Since the value wraps around the table, the value placed into
the foreground field would be

12 modulo (maxIndex + 1)

where maxIndex is the maximum available index for each device under
consideration.)

On direct devices an explicit entry produces the color for that entry in the
palette.

You can use explicit colors to monitor the color environment on an indexed
screen device. For example, you could draw a 16-by-16 grid of 256 explicit
colors in a small window. Whatever colors appear are exactly those in the
device’s color table. If color-table animation is taking place simultaneously, the
corresponding colors in the small window animate as well. If you display such
a window on a 4-bit device, the first 16 colors match the 16 colors available in
the device, and each row thereafter is a copy of the first row.

ACI Book : Palette Mgr Page 14 Thursday, July 13, 1995 8:40 AM

C H A P T E R 1

Palette Manager

About the Palette Manager 1-15

P
alette M

anager
1Inhibited Colors 1

The Palette Manager recognizes six inhibited usage categories that give you
control of which palette entries can and cannot appear on depths of 2, 4, and 8
bits per pixel, on color or grayscale devices. The categories are specified using
these constants:

enum {
pmInhibitG2 = $0100; /* inhibit on 2-bit grayscale device

*/
pmInhibitC2 = $0200; /* inhibit on 2-bit color device */
pmInhibitG4 = $0400; /* inhibit on 4-bit grayscale device

*/
pmInhibitC4 = $0800; /* inhibit on 4-bit color device */
pmInhibitG8 = $1000; /* inhibit on 8-bit grayscale device

*/
pmInhibitC8 = $2000; /* inhibit on 8-bit color device */

};

Here is an example of how these categories can be combined:

myColor8Usage = SetEntryUsage(myPalHandle,270,pmAnimated+
pmExplicit+pmInhibitG2+pmInhibitC2+pmInhibitG4+pmInhibitC4+
pmInhibitG8,0);

This example sets the usage of entry 270 of the palette specified by myPalHandle
to the combined usages of animated and explicit, to be allocated only on color
8-bit devices. See “Selecting the Right Color Set,” beginning on page 1-25 for a
further example of inhibiting particular colors on different types of devices.

You should always inhibit tolerant colors on grayscale devices. The default
color table on a grayscale device is an evenly spaced gray ramp from black to
white. Since this is usually the best possible spread on a grayscale device, you
could specify all three inhibited grayscale categories.

As another example, on a 4-bit device you might want to allocate 14 tolerant
colors, while on an 8-bit device there are sufficient indexes that you can also
use a number of animated colors. By inhibiting the animated entries on 4-bit
devices, you ensure that your 14 tolerant colors are allocated. Merely
sequencing the palette doesn’t solve this problem because the animated colors
always take precedence over the tolerant colors.

ACI Book : Palette Mgr Page 15 Thursday, July 13, 1995 8:40 AM

C H A P T E R 1

Palette Manager

1-16 About the Palette Manager

Combining Color Usage for an Entry 1

You must always combine the inhibited usage category with some other usage
category. In addition, you can combine the explicit usage category with the
tolerant and animated categories if you wish.

The main purpose for using explicit colors is to provide a convenient interface
to color table indexes. The PmForeColor function configures the color graphics
port to draw with the index of your choice. So that you can easily create
effective explicit palettes, two color usage categories can be combined:
pmTolerant + pmExplicit and pmAnimated + pmExplicit.

The pmTolerant + pmExplicit combined usage means that you get the color you
want at the index you want, across all devices that the window touches. As
with pmTolerant, other windows may use those colors in their displays.

The pmAnimated + pmExplicit combined usage means that you get the color you
want at the index you want, across all devices that intersect the window, but
windows that don’t share the palette can’t use that index. The entry can be
animated by a call to the AnimateEntry function.

Since the value of an explicit entry is treated as the entry modulo the bit depth,
index collisions can occur between entries of the same usage within a palette.
In this case, the lower-numbered entry gets the index. For example, if palette
entries 1 and 17 were both pmAnimated + pmExplicit, then on a 4-bit screen,
entry 1 would get index 1, and entry 17, although it wraps around to 1, would
get nothing.

Unallocated pmTolerant + pmExplicit colors revert to pmTolerant. Unallocated
pmAnimated + pmExplicit colors revert to pmCourteous.

Sequencing the Entries 1

Using the inhibited usage categories is the best way to be sure that the right
colors are available for screens of different depths, but in many situations you
can achieve the same effect with a single set of colors if you sequence the colors
in the palette or arrange them according to the screen depth of the device that
uses them, from least to greatest depth.

Color QuickDraw, to support standard QuickDraw features, puts white and
black at the beginning and end, respectively, of each device’s color table, and
the Palette Manager never changes them. Thus the maximum number of
indexes available for animated or tolerant colors is really the maximum
number of indexes minus 2.

ACI Book : Palette Mgr Page 16 Thursday, July 13, 1995 8:40 AM

C H A P T E R 1

Palette Manager

About the Palette Manager 1-17

P
alette M

anager
1After white and black, you should assign the next two colors to the two you

wish to have if the device is a 2-bit device. Likewise, the first 16 colors should
be the optimal palette entries for a 4-bit device, and the first 256 colors should
be the optimal palette entries for an 8-bit device. You should inhibit colors for
grayscale devices.

How the Palette Manager Allocates Colors for Display 1

The colors available when your application is running depend on the pixel
depths and color capabilities that the attached cards and screens can support,
as well as what those devices are actually set to by the system or by the user.

Since your palette may define more colors than the hardware can display, the
Palette Manager allocates device color-table entries for your requests according
to the priority of their usage. Prioritizing occurs when the ActivatePalette
function is called, which occurs automatically when your window becomes the
frontmost window. (You may also call ActivatePalette yourself after changing
one or more of the palette’s colors or usage categories.)

The Palette Manager first allocates animated colors that are also specified as
explicit. Colors that are specified as both tolerant and explicit are allocated next.

The Palette Manager allocates animated colors next. Starting with the first
entry in your window’s palette (entry 0), the Palette Manager checks to see if it
is an animated entry. The Palette Manager checks each animated entry to see
that the entry has a reserved index for each appropriate device and selects and
reserves an index if needed. This process continues until all animated color
requests have been satisfied or until the available indexes are exhausted.

The Palette Manager handles tolerant colors next. It assigns each tolerant color
an index until all tolerant color requests have been satisfied. The Palette
Manager then calculates for each entry the difference between the desired color
and the color associated with the selected index. If the difference exceeds the
tolerance you have specified, the Palette Manager marks the selected device
entry to be changed to the desired color.

Since explicit colors designate index values, not the colors at those index
locations, and since courteous colors are amenable to being assigned any RGB
value, neither is considered during prioritizing (except for explicit combined
with animated).

When the Palette Manager has matched as many animated and tolerant entries
as possible, it checks to see if the current device color table is adequate. If

ACI Book : Palette Mgr Page 17 Thursday, July 13, 1995 8:40 AM

C H A P T E R 1

Palette Manager

1-18 About the Palette Manager

modifications are needed, the Palette Manager overrides any calls made to the
Color Manager outside the Palette Manager and then calls the Color Manager
to change the device’s color environment accordingly (with the SetEntries
function).

Finally, if the color environment on a given device has changed, the Palette
Manager checks to see if this change has affected any other window in the
system. If another window is affected, the Palette Manager checks that window
to see if it specifies an update in the case of such changes. Applications can use
the SetPalette, NSetPalette, or SetPaletteUpdates function to specify whether
a window should be updated when its environment has been changed because
of actions by another window. (If so, the InvalRect function, described in the
“Window Manager” chapter of Inside Macintosh: Macintosh Toolbox Essentials,
updates the window using the boundary rectangle of the device that has been
changed.)

How the Palette Manager Restores the Color Environment 1

When a window closes, the Palette Manager resets each display device to the
default color table for that depth, except for those indexes still reserved by
another application. (Eventually, the application that owns those indexes will
terminate or voluntarily release the indexes.) You can run a long sequence of
wildly animated color-stealing programs, quit them all, return to the Finder,
and find every screen fully restocked with default system color tables. (But if
an application calls the Color Manager function ProtectEntry to lock a device
index, the Palette Manager cannot restore the default color tables.)

ACI Book : Palette Mgr Page 18 Thursday, July 13, 1995 8:40 AM

C H A P T E R 1

Palette Manager

About the Palette Manager 1-19

P
alette M

anager
1The Palette Manager provides default color tables for differing screen devices:

The 'clut' resource IDs 1, 2, 4, and 8 are the standard color lookup tables for
those bit depths; they are shown in Plate 7, “The colors of the default color
tables” in the front of this book.

The 'clut' resource IDs 34, 36, and 40—the bit depth plus 32—are grayscale
ramps for bit depths of 2, 4, and 8.

The default color lookup tables with the highlight color added are 'clut'
resource IDs 66, 68, and 72—that is, the bit depth plus 64. To get these color
lookup tables, use the GetCTable function (not GetResource), as described in the
chapter “Color QuickDraw” of Inside Macintosh: Imaging With QuickDraw.

Screen device Default color table

Any device in gray mode or 1 bit deep A grayscale ramp; that is, an evenly
spaced range from white in index 0
to black in the last index (only white
and black in 1-bit mode).

A color device in 2-bit mode Indexes 0 to 3 contain white, 50
percent gray, the highlight color, and
black, respectively.

A color device in 4-bit mode The 'clut' system resource with a
resource ID of 4. It could be in the
system file or stored in ROM. If the
color closest to the highlight color
differs from it by more than $3000 in
any component, the color is
averaged with the highlight color.

A color device in 8-bit mode The 'clut' system resource with a
resource ID of 8. It could be in the
system file or stored in ROM.

ACI Book : Palette Mgr Page 19 Thursday, July 13, 1995 8:40 AM

C H A P T E R 1

Palette Manager

1-20 Using the Palette Manager

Using the Palette Manager 1

To use the Palette Manager you generally do one of the following:

■ Create a palette in any of several ways.

■ Modify the colors and usages of the colors in a palette.

■ Assign a palette to a window or assign a default palette to multiple
windows.

After creating a palette and assigning it to a window, you can do the following:

■ Draw with the palette’s colors.

■ Animate the colors in a palette.

■ Draw or animate in an offscreen graphics world.

These tasks are explained in the rest of this chapter. This chapter also describes
how and when to dispose of palettes and how to restore the default color table
for an application. However, Palette Manager functions are dependent on the
availability of Color QuickDraw. Therefore, before calling any of the functions
described in the following sections, your application should check for the
existence of Color QuickDraw by using the Gestalt function with the
gestaltQuickDrawVersion selector. The Gestalt function returns a 4-byte value
in its response parameter; the low-order word contains QuickDraw version
data. In that low-order word, the high-order byte gives the major revision
number and the low-order byte gives the minor revision number. Listed here
are the various constants and the versions of QuickDraw that they represent.

/* quickdraw version */
gestaltOriginalQD = 0x000, /* original 1-bit QD */
gestalt8BitQD = 0x100, /* 8-bit color QD */
gestalt32BitQD = 0x200, /* 32-bit color QD */
gestalt32BitQD11 = 0x210, /* 32-bit color QDv1.1 */
gestalt32BitQD12 = 0x220, /* 32-bit color QDv1.2 */
gestalt32BitQD13 = 0x230, /* System 7: 32-bit color QDv1.3 */

Your application can also use the Gestalt function with the selector
gestaltSystemVersion to check for the system software version under which
your application is running. The functions SaveFore, RestoreFore, SaveBack,

ACI Book : Palette Mgr Page 20 Thursday, July 13, 1995 8:40 AM

C H A P T E R 1

Palette Manager

Using the Palette Manager 1-21

P
alette M

anager
1RestoreBack, ResizePalette, and RestoreDeviceClut require System Software

version 6.0.5 or greater:

Creating Palettes 1

This section shows you several different ways to create a palette. The first
example uses the NewPalette function in a loop to create a 16-color palette with
14 shades of red plus black and white. The second example shows how to
create a resource file containing the same 16 colors and shows you how to
select the right color set by inhibiting certain colors on different screens. It also
shows how to copy a palette from a color table and assign the palette to a
window.

Creating a Palette in Code 1

The Palette Manager is particularly useful when your application needs to
display an image that uses a narrowed or skewed color set. For example,
suppose that your application displays PICT images on a 4-bit depth screen
and that a particular image contains only shades of red. By default, the system
provides a range of colors to use. If your application uses these 16 default
colors to display the red PICT file, the display will lose all subtlety. With the
Palette Manager, you can create a special palette containing red hues only to
display this PICT image.

Note
This example assumes that the PICT image to display uses
shades of red. One way to obtain information about a
picture to display is by using the Picture Utilities,
described in the chapter “Pictures” of Inside Macintosh:
Imaging With QuickDraw. The Picture Utilities allow you to
obtain various information about a picture to display,
including the most used colors in the picture. The Picture
Utilities are available in system software version 7.0 and
later. ◆

Listing 1-1 shows how to create a palette containing shades of red only.

ACI Book : Palette Mgr Page 21 Thursday, July 13, 1995 8:40 AM

C H A P T E R 1

Palette Manager

1-22 Using the Palette Manager

Listing 1-1 Creating a red palette

PaletteHandle DoMake14RedPalette (void)
{

long iterator;
PaletteHandle myPalette;
RGBColor color;

myPalette = NewPalette(14, nil, pmTolerant, 4000);
/* check here for nil result */

color.green = 0;
color.blue = 0;
for (iterator = 0; iterator < 14; iterator++)
{

/* range red component from 1/14 to 14/14 */
/* iterator is a long, so it can safely be multiplied by 65535 */
color.red = (iterator+1) * 65535 / 14;
SetEntryColor(myPalette, iterator, &color);

};
return (myPalette);

}

In Listing 1-1, the DoMake14RedPalette function creates a new 14-color palette
containing 14 shades of red. The Palette Manager always guarantees that black
and white are available to an application so that menus, windows, and other
such things display properly. Therefore, you can load at most 14 new colors
from a palette into a 16-color lookup table because the Palette Manager will not
overwrite white (the first entry) or black (the last entry).

After defining three variables, the DoMake14RedPalette function calls the
NewPalette function to create a palette large enough to hold 14 colors. The nil
value passed as the second parameter specifies that the palette not be created
from a color lookup table. In this case, the Palette Manager sets all three fields
of each color to 0 (black). In essence, NewPalette has created a palette template.
The SetEntryColor function later fills in, or changes, the color value for each
color in the palette. The NewPalette function defines each color as tolerant with
a tolerance of $4000.

Because this palette contains shades of red only, the green and blue fields of the
color variable are set to 0. The code then defines 14 shades of red in a loop by
dividing the maximum red value (65535) by 14 and adding 1/14 of 65,535 each

ACI Book : Palette Mgr Page 22 Thursday, July 13, 1995 8:40 AM

C H A P T E R 1

Palette Manager

Using the Palette Manager 1-23

P
alette M

anager
1time through the loop. Each time through the loop, the SetEntryColor function

places a shade of red at the next palette entry (identified by iterator, the
iteration variable). When the loop is finished, the first 14 entries in the palette
created by the NewPalette function contain 14 evenly distributed shades of red.

Note
When the Palette Manager uses this palette—after you
have attached it to a window with the SetPalette or
NSetPalette function—it looks at the colors of the color
lookup table for the 4-bit display device and determines
which of the 14 colors in the palette it must load. It then
loads as many of the 14 palette entries as necessary to
create the 14 shades of red defined in the palette. The
Palette Manager keeps the first entry in the table as white
and the last as black and uses the other 14 indexes as
necessary to load the shades of red. See “How the Palette
Manager Allocates Colors for Display” on page 1-17 for
more information on how the Palette Manager loads colors
from a palette into a color lookup table. ◆

Creating a Palette in a Resource File 1

The format of a palette resource (type 'pltt') is an image of the palette
structure minus the private fields. The private fields in both the header and in
each ColorInfo record are created by the GetNewPalette function and are
reserved for future use.

Listing 1-2 shows a palette resource with 16 entries as it would appear within a
resource file. The black and white entries each have a tolerance value of 0,
meaning that their color should be matched exactly. The shades of red have a
tolerance of $4000.

Listing 1-2 A palette ('pltt') resource

resource 'pltt' (128, "Simple Palette") {
{ /* array ColorInfo: 16 elements */
/* [1] white */
65535, 65535, 65535, pmTolerant, 0,
/* [2] 2 through 15 are shades of red */
4681, 0, 0, pmTolerant, $4000,

ACI Book : Palette Mgr Page 23 Thursday, July 13, 1995 8:40 AM

C H A P T E R 1

Palette Manager

1-24 Using the Palette Manager

/* [3] */
9362, 0, 0, pmTolerant, $4000,
/* [4] */
14043, 0, 0, pmTolerant, $4000,
/* [5] */
18724, 0, 0, pmTolerant, $4000,
/* [6] */
23405, 0, 0, pmTolerant, $4000
/* [7] */
28086, 0, 0, pmTolerant, $4000,
/* [8] */
32768, 0, 0, pmTolerant, $4000,
/* [9] */
37449, 0, 0, pmTolerant, $4000,
/* [10] */
42130, 0, 0, pmTolerant, $4000,
/* [11] */
46811, 0, 0, pmTolerant, $4000,
/* [12] */
51492, 0, 0, pmTolerant, $4000,
/* [13] */
56173, 0, 0, pmTolerant, $4000,
/* [14] */
60854, 0, 0, pmTolerant, $4000,
/* [15] */
65535, 0, 0, pmTolerant, $4000,
/* [16] black */
0, 0, 0, pmTolerant, 0

}
};

Use the GetNewPalette function to obtain a 'pltt' resource; it initializes private
fields in the palette structure. (Don’t use the Resource Manager function
GetResource.)

The palette defined by the palette resource in Listing 1-2 is identical to the
palette created in code in Listing 1-1 in the previous section except that white
and black are explicitly placed in the palette in Listing 1-2. This palette contains
black and white and 14 shades of red. The shades of red are defined by setting
the green and blue values of each color entry to 0 and distributing the red color

ACI Book : Palette Mgr Page 24 Thursday, July 13, 1995 8:40 AM

C H A P T E R 1

Palette Manager

Using the Palette Manager 1-25

P
alette M

anager
1in 14 increments from the lowest to the highest value (65535). One possible use

of this palette is to display a PICT file that contains only shades of red.

Selecting the Right Color Set 1

Different types of screens (for example, screens with different bit depths) often
require different color sets to best display the same image. This section, like the
previous section, uses an example of creating a palette to display an image in
various shades of red. In addition, the code has been modified to display
different colors on different screens.

Listing 1-3 shows the code to display 14 shades of red on a 4-bit color screen,
254 shades of red on an 8-bit color screen, and no color requests at all on 2-bit
screens or grayscale screens.

Listing 1-3 Displaying different colors on different types of screens

PaletteHandle MyMakeRedPalette (void)
{

long iterator;
PaletteHandle myPalette;
RGBColor color;

myPalette = NewPalette(254+14, nil, 0, 0);
/* check here for nil result */

color.green = 0;
color.blue = 0;
/* make 14 reds that are inhibited on all

screens except 4-bit color */
for (iterator = 0; iterator < 14; iterator++)
{

/* range red component from 1/14 to 14/14 */
/* iterator is a long, so it can safely be multiplied by 65535 */
color.red = (iterator+1) * 65535 / 14;
SetEntryColor(myPalette, iterator, &color);
SetEntryUsage(myPalette, iterator, pmTolerant+pmInhibitC2+

pmInhibitG2+pmInhibitG4+
pmInhibitC8+pmInhibitG8, 0);

};

ACI Book : Palette Mgr Page 25 Thursday, July 13, 1995 8:40 AM

C H A P T E R 1

Palette Manager

1-26 Using the Palette Manager

/* make 254 reds that are inhibited on all
screens except 8-bit color */

for (iterator = 0; iterator < 255; iterator++)
{

/* range red component from 1/254 to 254/254 */
/* iterator is a longint, so can safely be multiplied by 65535 */

color.red = (iterator+1) * 65535 / 254;
SetEntryColor(myPalette, 14+iterator, &color);
SetEntryUsage(myPalette, 14+iterator, pmTolerant+pmInhibitC2+

pmInhibitG2+pmInhibitG4+
pmInhibitC4+pmInhibitG8, 0);

};
return (myPalette);

}

In Listing 1-3, the MyMakeRedPalette function creates a palette that contains
shades of red in order to optimally display an image that contains shades of
red only. The palette contains two less colors than the maximum (14 for a 4-bit
screen and 254 for an 8-bit screen) so that black and white are available in the
color table.

After defining three variables, the MyMakeRedPalette function calls the
NewPalette function to create a palette large enough to hold 268 colors (254 plus
14). The nil value passed as the second parameter specifies that no color table
be used to create the template, in which case all the colors in the palette are set
to black. The two for loops that follow use the SetEntryColor and
SetEntryUsage functions to change the colors and their use in the palette.

The first loop creates 14 shades of red. The green and blue values for all the
colors are already set to 0. The SetEntryColor function is called in a loop to set
the 14 red values. It specifies 1/14 increments up to the maximum value of
65535. The SetEntryUsage function specifies that each color is tolerant (it uses
the pmTolerant constant to do this) and that the tolerance is 0 so that each color
must match exactly.

The SetEntryUsage function also specifies that these 14 colors are to be used
only on a 4-bit screen. It does this by inhibiting these colors on all other
indexed screens using the constants pmInhibitC2 (inhibit on a 2-bit color
screen), pmInhibitG2 (inhibit on a 2-bit grayscale screen), and so on for the other
types of indexed screens.

The second loop creates 254 shades of red. It uses the SetEntryColor function as
the first loop does with the only difference being that the red color value is

ACI Book : Palette Mgr Page 26 Thursday, July 13, 1995 8:40 AM

C H A P T E R 1

Palette Manager

Using the Palette Manager 1-27

P
alette M

anager
1incremented 1/254 at each iteration rather than 1/14. As in the first loop, the

SetEntryUsage function specifies that each color is tolerant with a tolerance of 0
so that the colors must match exactly. The SetEntryUsage function also specifies
that the colors are to be used only on an 8-bit color screen. It does this by
inhibiting the colors on all other indexed screens.

Creating a Palette by Copying and Assigning It to a Window 1

You can create a palette from the colors in a color table by using the NewPalette
function. It copies the colors from the table and assigns the usage and tolerance
values you specify as function parameters. You assign a usage value and a
tolerance value that apply to all of the palette’s entries, but you can change
individual entries with subsequent calls to the SetEntryUsage function, which
can change both the usage and tolerance values of an entry. (If you call
NewPalette without supplying a color table as a source, it creates a palette with
all entries equal to black. You can then modify the entries as needed, using the
SetEntryColor and SetEntryUsage functions.)

Note
Color tables define the colors that are available for pixel
images on indexed devices. You can create color tables
from either ColorTable data structures or color table
('clut') resources. See the chapter “Color QuickDraw” of
Inside Macintosh: Imaging With QuickDraw for more
information on color tables. ◆

For example, suppose you are drawing to an indexed device with a color table
containing 14 colors plus black and white and you want a palette in which the
fifth color must be matched exactly but the others need only be close.
Listing 1-4 shows how to create the palette from the color table and then
modify the tolerance value for the fifth entry (remember that color table and
palette entries are numbered starting at 0).

ACI Book : Palette Mgr Page 27 Thursday, July 13, 1995 8:40 AM

C H A P T E R 1

Palette Manager

1-28 Using the Palette Manager

Listing 1-4 Copying a color table to a palette

#define clutID 68

void DoCreatePalette()
{

CTabHandle myColorTable;
PaletteHandle myPalette;
WindowPtr myWindow;

myColorTable = GetCTable (clutID);

/* create a new window */
myWindow = NewCWindow(nil, &BaseRect, "\pUsing Palette

Manager", TRUE, documentProc,
(WindowPtr) -1, TRUE, nil);

/* create a 16-color palette */
myPalette = NewPalette(16, myColorTable, pmTolerant, $2000);
/* modify the 5th entry */
SetEntryUsage(myPalette, 4, 0);

/* assign the palette to the window */
SetPalette ((WindowPtr) myWindow, myPalette, TRUE);

}

After defining three variables (to hold the color table ID, the palette ID, and the
window ID), the DoCreatePalette function uses the GetCTable function
(described in the chapter “Color QuickDraw” of Inside Macintosh: Imaging With
QuickDraw) to retrieve the default color-table ('clut') resource for a screen
with a 4-bit pixel depth. (You can obtain the default color-table resource for a
screen by adding 64 to the pixel depth of the screen. Therefore, 68 identifies the
color-table resource for a 4-bit pixel depth screen.) The NewCWindow function
(described in the chapter “Window Manager” of Inside Macintosh: Macintosh
Toolbox Essentials) then creates a new color window.

The NewPalette function creates a palette from the color-table resource. All
colors in the new palette have a tolerance of $2000. The SetEntryUsage function
changes the tolerance of the fifth entry such that an exact match is required.

Finally, the SetPalette function assigns the newly created palette to the newly
created window.

ACI Book : Palette Mgr Page 28 Thursday, July 13, 1995 8:40 AM

C H A P T E R 1

Palette Manager

Using the Palette Manager 1-29

P
alette M

anager
1Note

You can use either the SetPalette or NSetPalette function
to assign a palette to a window. These functions are
identical except that the NSetPalette function is more
versatile in specifying whether the window is to receive
updates when the color environment changes; it allows
you to specify whether the window is to receive updates
only when the window is active, updates only when it is
not active, all updates, or none. The SetPalette function
only allows the last two settings. ◆

If you want to change a window’s palette momentarily and then restore the
first palette, use the GetPalette function to obtain a handle to a window’s
current palette and then restore it with either SetPalette or NSetPalette.

Designating a Default Palette for Your Application 1

Your application can define a default palette for the Operating System to use
for your windows. Defining a default palette is useful if all your windows use
the same palette or if you use basic QuickDraw dialog and alert boxes.

There are two ways that you can define a default palette for your application:
by creating a palette resource that the Palette Manager can then use to create
the default palette or by using the SetPalette or NSetPalette function to assign
a default palette.

You set a palette resource (a resource of type 'pltt') as your application’s
default by assigning it a resource ID of 0. The Palette Manager loads the
application default palette and stores it in a low-memory global variable called
AppPalette. When your application opens a new color window, the Palette
Manager automatically looks for a palette resource from which to create a
palette to assign to the window. It looks in the resource fork for a palette
resource with the same ID as that of the window. If you haven’t created a
specific resource for the window and if you haven’t assigned a palette to the
window with the SetPalette or NSetPalette function, the Palette Manager
creates a palette from the default application resource and assigns this palette
to the window. If the Palette Manager cannot find the default application
resource, it uses the system default palette resource ('pltt' ID = 0 in the
System file). If the System file has no default palette, the Palette Manager
creates a special two-entry palette (black and white) and assigns this palette to
the window.

ACI Book : Palette Mgr Page 29 Thursday, July 13, 1995 8:40 AM

C H A P T E R 1

Palette Manager

1-30 Using the Palette Manager

IMPORTANT

If you are running an application from a development
environment, such as MPW, you could have trouble
automatically assigning the default application palette.
The Palette Manager loads the default palette when a call
is made to InitPalettes (generally, InitWindows makes this
call). Then InitPalettes uses Get1Resource rather than
GetResource to load the 'pltt' resource with ID equal to 0.
The problem is that Get1Resource assumes your
application is at the top of the resource chain and retrieves
the resource only if it is in the first file. However, because
the development environment, not your application, is at
the top of the resource chain, the Palette Manager will be
unable to load the default application resource. In this
case, it loads the default system resource, if it exists, or the
special two-entry palette instead. ▲

The other way to assign a default palette is to create a palette and then assign it
with the SetPalette or NSetPalette function as follows:

defPalette = NewPalette (numcolor, mycolors, pmAnimated, 0x1500);
SetPalette ((WindowPtr) -1, defPalette, TRUE);

This method of assigning a default palette is useful if, for example, you give the
user an opportunity in a menu or preference file to change the palette to
another setting.

Once your application has set its color environment by calling InitWindows (or
InitPalettes in unusual instances when there are no menus), you can find the
default palette for your application by using the GetPalette function:

myPaletteHndl = GetPalette ((WindowPtr) -1);

ACI Book : Palette Mgr Page 30 Thursday, July 13, 1995 8:40 AM

C H A P T E R 1

Palette Manager

Using the Palette Manager 1-31

P
alette M

anager
1Drawing With a Palette’s Colors 1

You can use the PmForeColor and PmBackColor functions to specify foreground
and background drawing using colors from your palette. The functions set the
foreground and background colors of the current graphics port to the palette
colors you specify so that subsequent drawing operations use them. (In effect,
you substitute these functions for the Color QuickDraw functions RGBForeColor
and RGBBackColor. Use the RGBForeColor and RGBBackColor functions to specify
drawing with colors not contained in your palette.)

For courteous and tolerant entries, PmForeColor calls the RGBForeColor function
using the RGB color of the palette entry. For animated colors, PmForeColor
selects the recorded device index previously reserved for animation (if still
present) and installs it in the color graphics port. The RGB foreground color
field is set to the value from the palette entry. For explicit colors, PmForeColor
places the value

dstEntry modulo (maxIndex +1)

into the color graphics port, where maxIndex is the largest index available in a
device’s color table. When multiple devices with different depths are present,
the value of maxIndex varies appropriately for each device.

You can save and restore the current foreground and background colors by
using the SaveFore, RestoreFore, SaveBack, and RestoreBack functions.

Animating a Window With a Palette 1

The Palette Manager provides functions that allow you to create color
animation effects. Listing 1-5 shows a simple means of creating animation in
your application.

Note
Color animation requires color tables. Therefore, you can
create color animation effects on indexed screens only.
Screens with 16-bit and 32-bit pixel depth do not have
color tables and therefore cannot support Palette Manager
animation. ◆

ACI Book : Palette Mgr Page 31 Thursday, July 13, 1995 8:40 AM

C H A P T E R 1

Palette Manager

1-32 Using the Palette Manager

Listing 1-5 Animating with a palette

#define clutID 150
#define numcolor 256

void DoAnimate()
{

CTabHandle myColorTable, StoreCTab;
PaletteHandle myPalette;
WindowPtr myWindow;
RGBColor changeColor;

myColorTable = GetCTable (clutID);

/* create a new window */
myWindow = NewCWindow(nil, &BaseRect,

"\pUsing Palette Manager",
TRUE, documentProc,
(WindowPtr) -1, TRUE, nil);

/* create a 256-color palette */
myPalette = NewPalette(numcolor, myColorTable, pmAnimate, 0);

/* assign the palette to the window */
SetPalette ((WindowPtr) myWindow, myPalette, TRUE);

GetEntryColor (myPalette, 1, &changecolor);
AnimatePalette (myWindow, StoreCTab, 2, 1, numcolor - 2);
AnimateEntry (myWindow, numcolor - 1, &changecolor);
PaletteToCTab (myPalette, StoreCTab);

}

In Listing 1-5, the DoAnimate function does some setup before performing the
animation. It first declares variables for two color lookup tables, for the
window and palette IDs, and for an RGB color. It retrieves a color table with
the GetCTable function (described in the chapter “Color QuickDraw” of Inside
Macintosh: Imaging With QuickDraw) and creates a new color window with the
NewCWindow function (described in the chapter “Window Manager” of Inside
Macintosh: Macintosh Toolbox Essentials). It then creates a palette from the color
table using NewPalette and assigns this palette to the newly created window

ACI Book : Palette Mgr Page 32 Thursday, July 13, 1995 8:40 AM

C H A P T E R 1

Palette Manager

Using the Palette Manager 1-33

P
alette M

anager
1using SetPalette. The palette contains 256 colors and the colors are all

animated colors.

The first step in the animation is to use the GetEntryColor function to save the
first color in the palette. Then AnimatePalette cycles through each color in the
palette (except for black and white, which do not animate). The AnimateEntry
function moves the saved color to the last entry in the palette. Finally,
PaletteToCTab saves the new version of the palette to the color table for use
during the next animation.

One thing you could do with this animation code is to put it in a loop. Because
the first entry has been moved to the end, the animation, in effect, begins at the
second entry during the second iteration, and so on for each time through the
loop. The result is an animation that not only cycles through the palette but
also displays a slight variation at each iteration by beginning with a different
color.

Disposing of a Palette and Restoring the Color Table 1

To prevent memory leaks, it is good programming practice to use the
DisposePalette function to dispose of palettes when your application is done
with them. If you explicitly attach a palette to a window with the SetPalette or
NSetPalette function, then your application owns the palette and must dispose
of it when it is no longer needed. Note that a palette can be attached to more
than one window, so closing a window doesn’t necessarily mean that its palette
is no longer needed.

If you call GetPalette, which makes a copy of a window’s palette, you must
also call DisposePalette when you no longer need the palette.

If a palette has been set up automatically by the Palette Manager and Window
Manager because the palette resource has the same ID as the window (or if the
palette was created from the default application palette resource), then these
managers automatically dispose of the palette when the window goes away.

It is also good programming practice to use the RestoreDeviceClut function to
restore the color table of all graphics devices to their default state whenever
your application is switched out as the active application. You don’t have to
worry about switching to the Finder, because its colors are automatically
restored upon switching from applications that use the Palette Manager; nor do
you need to be concerned with applications that use the Palette Manager,
because the Palette Manager provides the proper colors the moment a window
in such an application comes to the front. However, if you switch to an

ACI Book : Palette Mgr Page 33 Thursday, July 13, 1995 8:40 AM

C H A P T E R 1

Palette Manager

1-34 Using the Palette Manager

application that does not use the Palette Manager, its windows inherit your
palette unless you have restored the default color tables for all the available
display devices.

Using Palettes With Offscreen Graphics Worlds 1

You can attach a palette to an offscreen graphics world; however, the only
Palette Manager color usage categories that you can use to specify the types of
colors in such a case are pmCourteous and pmBlack and pmWhite. The other three
color usage categories, pmTolerant, pmAnimated, and pmExplicit, are interpreted
in an offscreen graphics world as pmCourteous, so they are of no use in this
environment.

This section first explains why and how you might use pmCourteous, pmBlack,
and pmWhite and then shows how to simulate the effects of the other usage
modifiers that you cannot use with an offscreen graphics world.

After you’ve created a palette and assigned it to an offscreen graphics world,
you can pass indexes from your palette to the PmForeColor and PmBackColor
functions and then draw in the offscreen world. The advantage of using
courteous colors for the offscreen graphics world is that otherwise you must
hard-code colors into your code. If you or a software localizer wants to change
the colors in the offscreen worlds, you can do so by changing the 'pltt'
resource that defines the palette rather than making code changes and
recompiling the application.

The pmBlack and pmWhite usage modifiers simply allow you to specify which
colors map to white and which to black in a black-and-white environment. If
your application is working with red and dark blue, for example, both might
get mapped to black on a 1-bit device. By assigning pmWhite to one and pmBlack
to the other, you assure that they are always distinct.

Explicit colors in a palette attached to an offscreen graphics world are
interpreted as courteous. Therefore, instead of using a palette, you should
convert your pixel value to an RGB color and use this as the foreground or
background color. After setting the current graphics device to the offscreen
graphics world to set the color environment, convert your pixel value to the
corresponding RGB color using the IndexToColor function. Then you can draw
by passing the RGB color to the RGBForeColor and RGBBackColor functions.

Both tolerant and animated colors are interpreted as courteous in an offscreen
graphics world. To use these types of colors, you can change the color

ACI Book : Palette Mgr Page 34 Thursday, July 13, 1995 8:40 AM

C H A P T E R 1

Palette Manager

Using the Palette Manager 1-35

P
alette M

anager
1environment of the offscreen graphics world by assigning it a whole new color

table. Listing 1-6 shows how to do this.

Listing 1-6 Changing the color environment of an offscreen graphics world

#define clutID 150
#define numcolor 256

WindowPtr myWindow;
CTabHandle mycolors;
PaletteHandle srcPalette

GetGWorld (&SavePort, &SaveGD);
mycolors = GetCTable (clutID);
/* create a new window */
myWindow = NewCWindow(nil, &BaseRect, "", TRUE, zoomDocProc,

(WindowPtr) -1, TRUE, nil);
SetGWorld((CGrafPtr)myWindow, SaveGD);
DrawGrowIcon (myWindow);

(*mycolors)->ctFlags |= 0x4000;

/* create a 256-color palette */
srcPalette = NewPalette (numcolor, mycolors, pmCourteous, 0);
/* call DoSetInhibited to set color usage */
DoSetInhibited(pmCourteous);
SetPalette ((WindowPtr) myWindow, srcPalette, TRUE);

GetGWorld (&SavePort, &SaveGD);
err = NewGWorld (&offscreenGWorld, 8, &InitWindowSize,

 mycolors, nil, nil);
if (err)

Debugger();
SetGWorld (offscreenGWorld, nil);
EraseRect (&InitWindowSize);
DrawPicture (ThePict, &InitWindowSize);
SetGWorld (SavePort, SaveGD);

ACI Book : Palette Mgr Page 35 Thursday, July 13, 1995 8:40 AM

C H A P T E R 1

Palette Manager

1-36 Using the Palette Manager

After defining constants and declaring variables, the code in Listing 1-6 calls
the QuickDraw GetGWorld function to get and save the current graphics port so
that you can restore it later. The GetCTable function retrieves a handle to a color
table—from a 'clut' resource with ID 150—and stores it in the mycolors
variable. You will use this color table for the offscreen graphics world and to
create a palette.

The NewCWindow function creates a new window and the SetGWorld function
assigns the current graphics port to this newly created window. The
DrawGrowIcon function draws the window’s size box.

The next piece of code:

(*mycolors)->ctFlags |= 0x4000;

sets bit 14 of the ctFlags field in the color table. Setting this bit synchronizes the
color table to a palette. It does this by reinterpreting the ctTable field of the
color table. Normally, this field contains an array of ColorSpec entries, each of
which contains a pixel value and a color. After setting bit 14 of the ctFlags field,
each array in the ctTable field contains an index value and a color.

The NewPalette function creates a new palette from the color table retrieved by
the GetCTable function. It contains 256 colors. Initially, all the colors are
courteous and must match exactly (have a zero tolerance value).

The DoSetInhibited function (whose code is not shown here) uses the Palette
Manager SetEntryUsage function to change the usage categories of the palette
when the usage of the palette changes. For example, it sets the colors in the
palette to courteous, tolerant, explicit, or animated, depending on menu
selections that a user makes. The DoSetInhibited function also inhibits certain
colors in the palette depending on the bit-depth of the screen on which the
window is currently displayed. In this way, the palette can contain entries for
multiple screen bit-depths and will display properly on each type of screen. See
“Selecting the Right Color Set,” beginning on page 1-25 for an example of how
to create a palette that will display on screens with different bit-depths. The
application calls DoSetInhibited at this point to set the palette for the
appropriate screen depth. Since pmCourteous is passed to DoSetInhibited, the
usage category is not being changed.

The SetPalette function assigns the newly created palette to the window
created by NewCWindow. The GetGWorld function gets and saves the current
graphics port so it can be restored later. The NewGWorld function creates an

ACI Book : Palette Mgr Page 36 Thursday, July 13, 1995 8:40 AM

C H A P T E R 1

Palette Manager

Using the Palette Manager 1-37

P
alette M

anager
1offscreen graphics world and the SetGWorld function sets the current graphics

port to the newly created offscreen graphics world.

The EraseRect and DrawPicture functions erase and draw in the offscreen
graphics world.

The final SetGWorld function restores the graphics port to the window created
by the NewCWindow function. (To move the offscreen drawing to the screen, use
the QuickDraw CopyBits function—see the chapter, “QuickDraw Drawing,” in
Inside Macintosh: Imaging With QuickDraw for an example of how to do this.)
The colors from the offscreen world—which come from the color table—match
the colors of the window—which are controlled by the palette—because the
color table and the palette are identical and synchronized. The advantage of
this synchronization is that your application doesn’t have to use the offscreen
world’s color matching algorithm to synchronize the colors from the offscreen
world with the colors of the palette. Having to do so would greatly slow down
your application, and speed is one of the primary reasons to use an offscreen
world for drawing in the first place.

ACI Book : Palette Mgr Page 37 Thursday, July 13, 1995 8:40 AM

C H A P T E R 1

Palette Manager

1-38 Summary of the Palette Manager

Summary of the Palette Manager 1

Constants 1

enum {
pmCourteous = 0, /* Courteous color.*/
pmTolerant = 0x0002, /* Tolerant color */
pmAnimated = 0x0004, /* Animated color */
pmExplicit = 0x0008, /* Explicit color */
pmWhite = 0x0010, /* Use on 1-bit devices */
pmBlack = 0x0020, /* Use on 1-bit devices */
pmInhibitG2 = 0x0100,
pmInhibitC2 = 0x0200,
pmInhibitG4 = 0x0400,
pmInhibitC4 = 0x0800,
pmInhibitG8 = 0x1000,
pmInhibitC8 = 0x2000,

/* NSetPalette Update Constants */
pmNoUpdates = 0x8000, /*no updates*/
pmBkUpdates = 0xA000, /*background updates only*/
pmFgUpdates = 0xC000, /*foreground updates only*/
pmAllUpdates = 0xE000 /*all updates*/

};

Data Types 1

struct Palette {
short pmEntries; /*entries in pmTable*/
short pmDataFields[7]; /*private fields*/
ColorInfo pmInfo[1];

};
typedef struct Palette Palette;
typedef Palette *PalettePtr, **PaletteHandle;

ACI Book : Palette Mgr Page 38 Thursday, July 13, 1995 8:40 AM

C H A P T E R 1

Palette Manager

Summary of the Palette Manager 1-39

P
alette M

anager
1struct ColorInfo {

RGBColor ciRGB; /*true RGB values*/
short ciUsage; /*color usage*/
short ciTolerance; /*tolerance value*/
short ciDataFields[3]; /*private fields*/

};
typedef struct ColorInfo ColorInfo;

Functions 1

Initializing the Palette Manager
pascal void InitPalettes (void);

pascal short PMgrVersion (void);

Initializing and Allocating Palettes
pascal PaletteHandle NewPalette (short entries,CTabHandle srcColors,short

srcUsage,short srcTolerance);

pascal PaletteHandle GetNewPalette (
short PaletteID);

pascal void DisposePalette (PaletteHandle srcPalette);

Interacting With the Window Manager
pascal void ActivatePalette (WindowPtr srcWindow);

pascal PaletteHandle GetPalette (WindowPtr srcWindow);
pascal void SetPalette (WindowPtr dstWindow,PaletteHandle srcPalette,Boolean

cUpdates);

pascal void NSetPalette (WindowPtr dstWindow,PaletteHandle srcPalette,short
nCUpdates);

pascal void SetPaletteUpdates (PaletteHandle p,short updates);

pascal short GetPaletteUpdates (PaletteHandle p);

ACI Book : Palette Mgr Page 39 Thursday, July 13, 1995 8:40 AM

C H A P T E R 1

Palette Manager

1-40 Summary of the Palette Manager

Drawing With Color Palettes
pascal void PmForeColor (short dstEntry);

pascal void PmBackColor (short dstEntry);

pascal void SaveFore (ColorSpec *c);

pascal void RestoreFore (const ColorSpec *c);

pascal void SaveBack (ColorSpec *c);

pascal void RestoreBack (const ColorSpec *c);

Animating Color Tables
pascal void AnimateEntry (WindowPtr dstWindow,short dstEntry,const RGBColor

*srcRGB);

pascal void AnimatePalette (WindowPtr dstWindow,CTabHandle srcCTab,short
srcIndex,short dstEntry,short dstLength);

Manipulating Palettes and Color Tables
pascal void CopyPalette (PaletteHandle srcPalette,PaletteHandle

dstPalette,short srcEntry,short dstEntry,short
dstLength);

pascal void ResizePalette (PaletteHandle p,short size);

pascal void RestoreDeviceClut (GDHandle gd);

pascal void CTabToPalette (CTabHandle srcCTab,PaletteHandle dstPalette,short
srcUsage,short srcTolerance);

pascal void PaletteToCTab (PaletteHandle srcPalette,CTabHandle dstCTab);

Manipulating Palette Entries
pascal void GetEntryColor (PaletteHandle srcPalette,short srcEntry,RGBColor

*dstRGB);

pascal void SetEntryColor (PaletteHandle dstPalette,short dstEntry,const
RGBColor *srcRGB);

pascal void GetEntryUsage (PaletteHandle srcPalette,short srcEntry,short
*dstUsage,short *dstTolerance);

ACI Book : Palette Mgr Page 40 Thursday, July 13, 1995 8:40 AM

C H A P T E R 1

Palette Manager

Summary of the Palette Manager 1-41

P
alette M

anager
1pascal void SetEntryUsage (PaletteHandle dstPalette,short dstEntry,short

srcUsage,short srcTolerance);

pascal long Entry2Index (short entry);

ACI Book : Palette Mgr Page 41 Thursday, July 13, 1995 8:40 AM

ACI Book : Palette Mgr Page 42 Thursday, July 13, 1995 8:40 AM

C H A P T E R 2

Contents

2-1

Contents

2

Figure 2-0
Listing 2-0
Table 2-0

2 Color Picker Manager

About the Color Picker Manager 2-3
Color Picker Dialog Boxes 2-4
Color Pickers as Components 2-6
ColorSync Colors and the Color Picker Manager 2-7

Using the Color Picker Manager 2-8
Using the Standard Dialog Box for Color Pickers 2-9

Defining an Event Filter Function 2-10
Defining a Color-Changed Function 2-11

Using Customized Dialog Boxes for Color Pickers 2-13
Creating Dialog Boxes for Color Pickers 2-14
Setting Colors for and Getting Colors From the Color Picker 2-19
Handling Events in a Color Picker Dialog Box 2-21
Handling Events in the Edit Menu 2-24
Sending Event Forecasters to the Color Picker 2-27
Setting the Destination Profile 2-28

Controlling the Help Balloons for a Color Picker’s Dialog Box 2-29
Writing Your Own Color Pickers 2-31

Creating a Component Resource for a Color Picker 2-32
Dispatching to Functions Defined by a Color Picker 2-34
Initializing Your Color Picker 2-37
Handling Events for Your Color Picker 2-41
Returning and Setting Color Picker Information 2-44

Summary of the Color Picker Manager 2-51
Constants and Data Types 2-51
Color Picker Manager Functions 2-57
Application-Defined Functions 2-60
Color Picker–Defined Functions 2-60

This document was created with FrameMaker 4.0.4

ACI Book : Color Picker ManagerTOC Page 1 Thursday, July 13, 1995 8:40 AM

ACI Book : Color Picker ManagerTOC Page 2 Thursday, July 13, 1995 8:40 AM

C H A P T E R 2

About the Color Picker Manager

2-3

C
olor P

icker M
anager

2

Color Picker Manager 2

This chapter describes how your application can use the standard user
interface for soliciting color choices from users. The

Color Picker Manager

supplies the functions that provide your application with this user interface.
Your application can use these functions to display, respond to events within,
and close a color picker dialog box. The Color Picker Manager provides
standard

color pickers

 (which allow users to select colors from ranges of
colors) and a standard dialog box allowing users to interact with the color
picker. This chapter also describes how your application can create its own
color pickers and dialog boxes.

The Color Picker Manager version 2.0, described in this chapter, is available on
all Macintosh computers using QuickDraw GX or system software version 7.5.
Previous versions of system software supported an earlier version of the Color
Picker Manager called the Color Picker Package. The Color Picker Manager is
compatible with the older Color Picker Package.

Read this chapter if your application allows users to pick a color from a range
of colors.

The Color Picker Manager supports ColorSync 1.0. For information about
ColorSync 1.0, see the appendix “ColorSync Manager Backward
Compatibility” in this book. Because the Color Picker Manager presents color
pickers in a dialog box, you should be familiar with the information described
in the chapter “Dialog Manager” in

Inside Macintosh: Macintosh Toolbox
Essentials.

 The Color Picker Manager uses the Component Manager to interact
with color pickers; if you want to create your own color picker, you should be
familiar with the information in the chapter “Component Manager” in

Inside
Macintosh: More Macintosh Toolbox

.

About the Color Picker Manager 2

The Color Picker Manager provides your application with a standard way of
asking the user to make a color choice.

For users, system software provides standard color pickers appearing in a
dialog box that can be modified by your application. Users add new color
pickers by installing them in the Extensions folder in the System Folder. The
Color Picker Manager also gives you the capability to create color pickers of
your own design.

This document was created with FrameMaker 4.0.4

ACI Book : Color Picker Manager Page 3 Thursday, July 13, 1995 8:40 AM

C H A P T E R 2

Color Picker Manager

2-4

About the Color Picker Manager

Color Picker Dialog Boxes 2

If your application uses the standard dialog box for color pickers, your
application’s interaction with the Color Picker Manager is straightforward:
your application calls the

PickColor

 function, and the Color Picker Manager
presents a standard dialog box to the user, as shown in Figure 2-1. (The older
Color Picker Package function

GetColor

 also displays this dialog box.)

Figure 2-1

The standard dialog box for color pickers

If the user clicks the More Choices button in this dialog box, the Color Picker
Manager displays in a scrolling list all available color pickers, as shown in
Figure 2-2.

ACI Book : Color Picker Manager Page 4 Thursday, July 13, 1995 8:40 AM

C H A P T E R 2

Color Picker Manager

About the Color Picker Manager

2-5

C
olor P

icker M
anager

2

Figure 2-2

Color picker choices in the standard dialog box for color pickers

The user manipulates the controls in this dialog box to select a color. When the
user is satisfied with a color and clicks the OK button,

PickColor

 returns the
selected color to your application and closes the dialog box. The

PickColor

function also closes the dialog box when the user clicks the Cancel button.

By using low-level Color Picker Manager functions, your application can use
moveable modal or modeless dialog boxes instead of the modal dialog box
displayed by

PickColor

. Figure 2-3 shows a moveable modal dialog box for
color pickers.

ACI Book : Color Picker Manager Page 5 Thursday, July 13, 1995 8:40 AM

C H A P T E R 2

Color Picker Manager

2-6

About the Color Picker Manager

Figure 2-3

A movable modal dialog box for color pickers

Color Pickers as Components 2

Color pickers are implemented as

components,

 which, as described in the
chapter “Component Manager” in

Inside Macintosh: More Macintosh Toolbox,

 are
pieces of code that provide a set of services to one or more clients. For color
pickers, the Color Picker Manager is the client. When your application calls a
Color Picker Manager function, it calls the Component Manager, which in turn
calls the color picker itself.

The separation of color pickers from the Color Picker Manager allows the user
or your application to dynamically add new color pickers to the user’s system.
Once a new color picker has been registered with the Component Manager, it’s
available for use by the Color Picker Manager. The section “Writing Your Own
Color Pickers,” beginning on page 2-31 describes how to create your own color
picker. However, most applications do not need to create their own pickers,
because those supplied with system software are usually sufficient.

ACI Book : Color Picker Manager Page 6 Thursday, July 13, 1995 8:40 AM

C H A P T E R 2

Color Picker Manager

About the Color Picker Manager

2-7

C
olor P

icker M
anager

2

ColorSync Colors and the Color Picker Manager 2

When returning a color selected by the user, the Color Picker Manager uses the
ColorSync definition of a color, which contains both a color and a
color-matching profile. The color-matching profile defines the color space of the
color (which includes the type of color — CMYK, HSL, RGB, and so on). Your
application can also specify a destination profile, which describes the color
space of the device for which the color is being chosen (for example, a color
printer that will eventually print the document). When given the destination
profile, color pickers that are ColorSync aware can help the user choose a color
that’s within the gamut of the destination device.

This version of the Color Picker Manager uses ColorSync 1.0 profiles only. The
ColorSync 1.0 profile is a handle-based profile. The profile format is defined by
Apple Computer. You cannot use version 2.0 profiles, which are identified by
profile references, with this version of the Color Picker Manager. ColorSync 1.0
profiles typically reside in the ColorSync

 Profiles folder (within the
Preferences folder of the System Folder). They may also be embedded with the
images to which they pertain in graphics files. The appendix “ColorSync
Manager Backward Compatibility” provides information about the
relationship between the ColorSync Manager version 2.0 and ColorSync 1.0
profiles, which you may find useful. Because ColorSync 1.0 is supported for
backward compatibility only, the ColorSync 1.0 profile format is not described
in this book.

For compatibility with the Color Picker Package, the

GetColor

 function still
uses RGB colors. To convert RGB colors to and from those of the CMYK, HSL,
and HSV models, you can use the functions described in “Converting Colors
Among Color Models” in the chapter “Color Picker Manager Reference” in

Advanced Color Imaging Reference

 on the enclosed CD. See the chapter
“Introduction to the ColorSync Manager” in this book for an explanation of
these color models.

ACI Book : Color Picker Manager Page 7 Thursday, July 13, 1995 8:40 AM

C H A P T E R 2

Color Picker Manager

2-8

Using the Color Picker Manager

Using the Color Picker Manager 2

You can use the Color Picker Manager to allow the user to select a color. The
functions defined by the Color Picker Manager are divided into one high-level
function and several low-level functions:

■

The high-level function,

PickColor

, provides access to almost all of the Color
Picker Manager’s feature set. For compatibility with the older Color Picker
Package, its old high-level function,

GetColor

, is still supported by the Color
Picker Manager. The use of

PickColor

 is described in “Using the Standard
Dialog Box for Color Pickers,” beginning on page 2-9.

■

The low-level functions allow maximum flexibility for your application. The

PickColor

 function presents a modal dialog box, but the low-level functions
allow your application to use moveable modal and modeless dialog boxes.
These low-level functions are described in “Using Customized Dialog Boxes
for Color Pickers,” beginning on page 2-13.

Before calling the Color Picker Manager functions, your application should test
for the availability of the Color Picker Manager by calling the

Gestalt

 function
with the

gestaltColorPickerVersion

 selector.

enum {
gestaltColorPickerVersion = 'cpkr' /* returns version of the

Color Picker Manager */
};

If the

Gestalt

 function returns a value of 00000200, version 2.0 of the Color
Picker Manager is available. If the

Gestalt

 function returns a value of 00000100,
version 1.0 (that is, the original Color Picker Package) is available.

Besides using the Color Picker Manager to interact with color pickers already
available on the user’s system, you can use the Component Manager to create
your own color picker, as described in “Writing Your Own Color Pickers,”
beginning on page 2-31. Other applications can then interact with your color
picker by using the Color Picker Manager.

ACI Book : Color Picker Manager Page 8 Thursday, July 13, 1995 8:40 AM

C H A P T E R 2

Color Picker Manager

Using the Color Picker Manager

2-9

C
olor P

icker M
anager

2

Using the Standard Dialog Box for Color Pickers 2

When your application calls the

PickColor

 function, your application passes it a
pointer to a color picker parameter block. Your application uses the color picker
parameter block (which is described in detail in the chapter “Color Picker
Manager Reference” in

Advanced Color Imaging Reference

 on the enclosed CD) to
specify information to and obtain information from the Color Picker Manager.
For example, Listing 2-1 uses the color picker parameter block to specify which
color to initially display in the dialog box and to place the dialog box on the
deepest color screen. You also use the color picker parameter block to
determine whether the user has selected a new color, and, if so, which color is
selected.

Listing 2-1

Using the

PickColor

 function

void MyPickAColor(void)
{

ColorPickerInfo cpInfo;
/* setting input color to be an RGB color */
cpInfo.theColor.color.rgb = gMyRGBColor;
cpInfo.theColor.profile = 0L;
/* no destination profile */
cpInfo.dstProfile = 0L;
cpInfo.flags = AppIsColorSyncAware | CanModifyPalette |

CanAnimatePalette;
/* center dialog box on the deepest color screen */
cpInfo.placeWhere = kDeepestColorScreen;
/* use the system default picker */
cpInfo.pickerType = 0L;
/* install event filter and color-changed functions */
cpInfo.eventProc = MyEventProc; /* see Listing 2-2 on page 2-11 */
cpInfo.colorProc = MyColorChangedProc; /* see Listing 2-3 */
cpInfo.colorProcData = 0L;
strcpy(cpInfo.prompt,"\pChoose a highlight color:");
/* describe the Edit menu for Color Picker Manager */
cpInfo.mInfo.editMenuID = kMyEditMenuID;
cpInfo.mInfo.cutItem = kMyCutItem;
cpInfo.mInfo.copyItem = kMyCopyItem;
cpInfo.mInfo.pasteItem = kMyPasteItem;
cpInfo.mInfo.clearItem = kMyClearItem;

ACI Book : Color Picker Manager Page 9 Thursday, July 13, 1995 8:40 AM

C H A P T E R 2

Color Picker Manager

2-10

Using the Color Picker Manager

cpInfo.mInfo.undoItem = kMyUndoItem;
/* display dialog box to allow user to choose a color */
if(PickColor(&cpInfo) == noErr && cpInfo.newColorChosen)

/* use this new color */
DoNewColor(&cpInfo.theColor);

}

The

PickColor

 function displays the modal dialog box shown in Figure 2-1 on
page 2-4. Your application uses the

prompt

 field of the color picker parameter
block to specify the text string prompting the user to choose a color for a
particular use (for example, “Choose a highlight color”).

When the user clicks the Cancel button,

PickColor

 removes the dialog box, and
the

newColorChosen

 field of the color picker parameter block contains the value

false

. When the user clicks the OK button,

PickColor

 removes the dialog box,
the

newColorChosen

 field of the color picker parameter block contains the value

true

, and the field

theColor

 contains a structure describing the newly selected
color. Your application can then use this color for the purpose described in the
prompt string (for example, highlighting text or filling shapes).

When the dialog box is first displayed, the color that your application specifies
in the field

theColor

 is used as the original color from which the user begins to
edit. Upon completion,

PickColor

 sets this field to the last color that the user
chose before clicking OK. Although the new colors selected by the user may
vary widely, the original color remains fixed for comparison. Figure 2-1 on
page 2-4 shows how the standard dialog box displays both the original and the
new colors.

Defining an Event Filter Function 2

Applications can generally allow the Color Picker Manager to handle all events
that might occur while the standard dialog box is displayed. Update events are
exceptions to this, however.

The

PickColor

 function calls the Dialog Manager function

DialogSelect

. As
described in the chapter “Dialog Manager” in

Inside Macintosh: Macintosh
Toolbox Essentials

,

DialogSelect

 does not allow background windows to receive
update events; therefore, at a minimum, your event filter function should
handle update events. If your application needs to filter or preprocess other
events before

DialogSelect

 handles them, your application should do so in its
event filter function.

ACI Book : Color Picker Manager Page 10 Thursday, July 13, 1995 8:40 AM

C H A P T E R 2

Color Picker Manager

Using the Color Picker Manager

2-11

C
olor P

icker M
anager

2

As you can see in Listing 2-1 on page 2-9, your application should supply the

eventProc

 field of the color picker parameter block with a pointer to an
application-defined filter function for handling user events meant for your
application. If your filter function returns

true

, the Color Picker Manager won’t
process the event any further. If your filter function returns

false

, the Color
Picker Manager handles the event as if it were meant for the color picker.
Listing 2-2 illustrates such an event filter function.

Listing 2-2

An event filter function for the

PickColor

 function

pascal Boolean MyPickerEventFilterFunction (EventRecord *event)
{ /* returning false sends events to the Color Picker Manager */

Boolean handled = false;
switch(event->what)
{

case updateEvt:
DoTheUpdate((WindowPtr) event->message);
handled = true;

}
return handled;

}

Defining a Color-Changed Function 2

As shown in Listing 2-1 on page 2-9, your application can supply the

colorProc

field of the color picker parameter block with a pointer to an
application-defined function that handles color changes. This function,
illustrated in Listing 2-3, should support the updating of colors in a document
as the user selects them. To support faster feedback as the user changes color,
this function doesn’t update the application’s internal data structures.

ACI Book : Color Picker Manager Page 11 Thursday, July 13, 1995 8:40 AM

C H A P T E R 2

Color Picker Manager

2-12

Using the Color Picker Manager

Listing 2-3

A color-changed function

pascal void MyColorChangedFunction(long userData, PMColorPtr newColor)
{

GrafPtr port;
CWorld cWorld;
CMColor color;
CMError cwError;

GetPort(&port);
SetPort(myDocWindow);
/* determine whether the color has a profile */
if(newColor->profile)
{

/* convert the color to an RGB color */
cwError = CWNewColorWorld(&cWorld, newColor->profile, 0L);
if(cwError == noErr || cwError == CMProfilesIdentical)
{

color = newColor->color;
CWMatchColors(cWorld, &color, 1);
CWDisposeColorWorld(cWorld);

}
}
else

color.rgb = newColor->color.rgb;
/* change the color of currently highlighted objects */
MyChangeHighlight(&color.rgb);
SetPort(port);

}

In this example, it is assumed that ColorSync is installed because the
application sets the

AppIsColorSyncAware

 flag when calling

PickColor. Because a
non-RGB color might come back from the color picker, this example uses
ColorSync 1.0 functions to convert the color to an RGB color.

ACI Book : Color Picker Manager Page 12 Thursday, July 13, 1995 8:40 AM

C H A P T E R 2

Color Picker Manager

Using the Color Picker Manager 2-13

C
olor P

icker M
anager

2

Using Customized Dialog Boxes for Color Pickers 2

Instead of using the PickColor function, your application can use the low-level
Color Picker Manager functions to create a tighter integration between your
application and the dialog box for color pickers. For example, your application
can create a floating palette instead of a modal dialog box. When using the
low-level Color Picker Manager functions, your application specifies the type
of dialog box in which to put the color picker, and your application maintains
tighter control over the event loop.

Your application can use the low-level calls to create three additional types of
color picker dialog boxes: system-owned, application-owned, and color
picker–owned.

A system-owned dialog box for color pickers has the same dialog box items as
the dialog box created by PickColor—that is, it has OK, Cancel, and More
Choices buttons. However, with the low-level calls, you can make the dialog
box a movable modal or modeless dialog box.

Application-owned dialog boxes are supplied by applications. You can use
this type of dialog box to integrate color pickers with other window features of
your application or to extend the controls for color pickers. For example, you
could add controls that allow the user to alter the style of an object as well as its
color.

A color picker–owned dialog box is created by the color picker itself. Creating
its own dialog box gives a color picker the flexibility of specifying the size and
shape of the color picker (color pickers in system-owned and
application-owned dialog boxes are always the same size). This is useful for
implementing color pickers in floating palettes.

Once they’re created, your application interacts with all three types of dialog
boxes in the same way. The rest of this section describes how to create each
type of dialog box and then discusses how your application interacts with the
color picker displayed in the dialog box, no matter what type of dialog box
you’ve used.

ACI Book : Color Picker Manager Page 13 Thursday, July 13, 1995 8:40 AM

C H A P T E R 2

Color Picker Manager

2-14 Using the Color Picker Manager

Creating Dialog Boxes for Color Pickers 2

The code for creating all three dialog boxes is similar. In all three cases, your
application

■ Creates a structure describing the dialog box and your application’s Edit
menu. For a system-owned dialog box, this is a SystemDialogInfo structure;
for an application-owned dialog box, this is an ApplicationDialogInfo
structure; for a color picker–owned dialog box, this is a PickerDialogInfo
structure. These structures are described in detail in the chapter “Color
Picker Manager Reference” in Advanced Color Imaging Reference on the
enclosed CD.

■ Uses the SetPickerColor function (described in Advanced Color Imaging
Reference on the enclosed CD) to set the original and new colors for the color
picker.

■ Uses the SetPickerPrompt function (described in Advanced Color Imaging
Reference on the enclosed CD) to specify a text string prompting the user to
choose a color for a particular use (for example, “Choose a highlight color”).

■ Uses—for an application-owned dialog box—the AddPickerToDialog
function (described in Advanced Color Imaging Reference on the enclosed CD)
to add a color picker to your application’s dialog box.

■ Makes the dialog box visible (if your application initially created it as
invisible) with the SetPickerVisibility function (described in Advanced
Color Imaging Reference) and, for an application-owned dialog box, with the
Window Manager function ShowWindow (described in the chapter “Window
Manager” in Inside Macintosh: Macintosh Toolbox Essentials.)

When creating a system-owned dialog box, your application uses combinations
of the DialogIsModal and DialogIsMoveable flags in the flags field of a
SystemDialogInfo structure to specify whether the dialog box is modal,
movable modal, or modeless. (You should always set one or both flags, because
your application should never display a nonmovable, modeless dialog.)

Listing 2-4 illustrates how to create the movable modal system-owned dialog
box shown in Figure 2-3 on page 2-6.

ACI Book : Color Picker Manager Page 14 Thursday, July 13, 1995 8:40 AM

C H A P T E R 2

Color Picker Manager

Using the Color Picker Manager 2-15

C
olor P

icker M
anager

2

Listing 2-4 Creating a movable modal system-owned dialog box

OSErr MyBuildMovableModalSysDialog(void)
{

SystemDialogInfo sInfo;
OSErr result;

sInfo.flags = DialogIsMoveable + AppIsColorSyncAware +
CanModifyPalette + CanAnimatePalette;

sInfo.pickerType = 0L;
sInfo.placeWhere = kDeepestColorScreen;
sInfo.mInfo.editMenuID = kMyEditMenuID;
sInfo.mInfo.cutItem = kMyCutItem;
sInfo.mInfo.copyItem = kMyCopyItem;
sInfo.mInfo.pasteItem = kMyPasteItem;
sInfo.mInfo.clearItem = kMyClearItem;
sInfo.mInfo.undoItem = kMyUndoItem;
gMyPicker = nil;
result = CreateColorDialog(&sInfo, &gMyPicker);
if(result == noErr && gMyPicker != nil)
{

PMColor myPMColor;
myPMColor.color.rgb = gMyRGBColor;
myPMColor.profile = 0L;
SetPickerColor(gMyPicker, kOriginalColor, &myPMColor);
SetPickerColor(gMyPicker, kNewColor, &myPMColor);
SetPickerPrompt(gMyPicker, "\pChoose a highlight color:");
SetPickerVisibility(gMyPicker, true);

}
return result;

}

Before displaying the dialog box, your application must use the SetPickerColor
function to specify colors for the user to start with. Setting these original and
new colors is described in the next section.

Listing 2-5 shows how to use the Dialog Manager function GetNewDialog to
create an application-owned dialog box. (See the chapter “Dialog Manager” in
Inside Macintosh: Macintosh Toolbox Essentials for information on the
GetNewDialog function.) To use this dialog box for a color picker, your

ACI Book : Color Picker Manager Page 15 Thursday, July 13, 1995 8:40 AM

C H A P T E R 2

Color Picker Manager

2-16 Using the Color Picker Manager

application needs to create an ApplicationDialogInfo structure and then call
the AddPickerToDialog function, as shown in this example.

Listing 2-5 Creating an application-owned dialog box

OSErr MyBuildAppDialog(void)
{

ApplicationDialogInfo aInfo;
OSErr result;

/* create the dialog box, but ensure it's color */
gMyDialog = GetNewDialog(kMyDialogID, nil, (WindowPtr)-1);
/* set up the ApplicationDialogInfo structure */
aInfo.flags = DialogIsMoveable + AppIsColorSyncAware +

CanModifyPalette + CanAnimatePalette;
aInfo.pickerType = 0L;
aInfo.theDialog = gMyDialog;
/* put the color picker's origin at (0,0) in the dialog box */
aInfo.pickerOrigin.h = 0;
aInfo.pickerOrigin.v = 0;
/* report Edit menu information */
aInfo.mInfo.editMenuID = kMyEditMenuID;
aInfo.mInfo.cutItem = kMyCutItem;
aInfo.mInfo.copyItem = kMyCopyItem;
aInfo.mInfo.pasteItem = kMyPasteItem;
aInfo.mInfo.clearItem = kMyClearItem;
aInfo.mInfo.undoItem = kMyUndoItem;
/* add the color picker to the dialog box */
result = AddPickerToDialog(&aInfo, &gMyPicker);
if(result == noErr && gMyPicker != nil)
{

PMColor myPMColor;
myPMColor.color.rgb = gMyRGBColor;
myPMColor.profile = 0L;
SetPickerColor(gMyPicker, kOriginalColor, &myPMColor);
SetPickerColor(gMyPicker, kNewColor, &myPMColor);
SetPickerPrompt(gMyPicker, "\pChoose a hightlight color");
SetPickerVisibility(gMyPicker, true);
ShowWindow(gMyDialog);
DrawDialog(gMyDialog);

ACI Book : Color Picker Manager Page 16 Thursday, July 13, 1995 8:40 AM

C H A P T E R 2

Color Picker Manager

Using the Color Picker Manager 2-17

C
olor P

icker M
anager

2

}
else

MyDoError(result);
return result;

}

Figure 2-4 shows the application-owned dialog box created by Listing 2-5.
Notice the difference between the buttons in this dialog box and those in the
system-owned dialog box shown in Figure 2-3 on page 2-6.

Figure 2-4 A movable modal application-owned dialog box

Listing 2-6 shows how use a PickerDialogInfo structure and the
CreatePickerDialog function to create a color picker–owned dialog box.

ACI Book : Color Picker Manager Page 17 Thursday, July 13, 1995 8:40 AM

C H A P T E R 2

Color Picker Manager

2-18 Using the Color Picker Manager

Listing 2-6 Creating a color picker–owned dialog box

OSErr BuildPickerDialog(void)
{

PickerDialogInfo pInfo;
OSErr result;

pInfo.flags = DialogIsMoveable + AppIsColorSyncAware +
CanModifyPalette + CanAnimatePalette;

pInfo.pickerType = 0L;
pInfo.mInfo.editMenuID = kMyEditMenuID;
pInfo.mInfo.cutItem = kMyCutItem;
pInfo.mInfo.copyItem = kMyCopyItem;
pInfo.mInfo.pasteItem = kMyPasteItem;
pInfo.mInfo.clearItem = kMyClearItem;
pInfo.mInfo.undoItem = kMyUndoItem;
gMyPicker = nil;
result = CreatePickerDialog(&pInfo, &gMyPicker);
if(result == noErr && gMyPicker != nil)
{

PMColor myPMColor;
myPMColor.color.rgb = gMyRGBColor;
myPMColor.profile = 0L;
SetPickerColor(gMyPicker, kOriginalColor, &myPMColor);
SetPickerColor(gMyPicker, kNewColor, &myPMColor);
SetPickerPrompt(gMyPicker, "\pChoose a highlight color:");
SetPickerVisibility(gMyPicker, true);

}
else

MyDoError(result);
return result;

}

As you can see from Listing 2-4, Listing 2-5, and Listing 2-6, the code to create
all three types of dialog boxes is very similar. As you will see in the next few
sections, the code to manage them is also very similar.

ACI Book : Color Picker Manager Page 18 Thursday, July 13, 1995 8:40 AM

C H A P T E R 2

Color Picker Manager

Using the Color Picker Manager 2-19

C
olor P

icker M
anager

2

Setting Colors for and Getting Colors From the Color Picker 2

Your application uses a color picker to present color choices to the user and to
determine which color the user selects.

Most color pickers present controls that identify color choices. In any case, your
application must initially set two default colors: an original color and a new
color. The original color is the color that the user is about to change, and the
new color is the color to which the user changes the original. For custom color
picker dialog boxes, you use the SetPickerColor function to set both colors.
(When your application uses the PickColor function to display the standard
dialog box, your application supplies the original color in the field theColor of
the color picker parameter block. This color is used as the initial value for both
the original color and the new color.)

Although the new colors selected by the user may vary widely, the original
color remains fixed for comparison. Figure 2-3 on page 2-6 shows how a
system-owned dialog box displays both the original and the new colors.

Suppose, for example, that your paint program uses a floating palette for a
color picker. When the user clicks an object, you want the floating palette to
show the color of that object. You accomplish this by initially setting the
object’s current color as both the original color and the new color. As the user
changes the color of the object, the original color remains the same while the
new color changes. This provides feedback as to what would happen if the user
were to undo the color change.

Listing 2-7 illustrates how to use the SetPickerColor function to set the original
and new colors.

Listing 2-7 Setting the original and new colors

void MySetPickerToColor(RGBColor *rgb)
{

PMColor aColor;

aColor.color.rgb = *rgb;
aColor.profile = 0L;
SetPickerColor(myPicker, kOriginalColor, &aColor);
SetPickerColor(myPicker, kNewColor, &aColor);

}

ACI Book : Color Picker Manager Page 19 Thursday, July 13, 1995 8:40 AM

C H A P T E R 2

Color Picker Manager

2-20 Using the Color Picker Manager

Whenever the user changes the current color, you need to be able to get the
new color so that you can update your object accordingly. To determine what
color the user is selecting, use the GetPickerColor function, as illustrated in
Listing 2-8. (Use the GetPickerColor function for getting colors from color
pickers in custom dialog boxes. When your application uses the PickColor
function to display the standard dialog box, and the user clicks the OK button,
the Color Picker Manager returns the new color in the field theColor of the
color picker parameter block.)

Listing 2-8 Determining the selected color

void MyGetCurrentColor(RGBColor *rgb)
{

PMColor aColor;

GetPickerColor(myPicker, kNewColor, &aColor);
*rgb = aColor.color.rgb;

}

As shown in Listing 2-3 on page 2-12, you might want to use the colors
provided by your color-changed function as temporary colors only.
Accordingly, your application should not update its internal data until the user
has actually chosen a color (or at least stopped dragging a control). Your
application will know this happens when the DoPickerEvent function, which is
described in the next section, returns the kColorChanged constant. Your
application should then update its internal data.

As you can see, setting colors for and getting colors from a color picker are
simple tasks to perform; complexities arise only if you need to convert a color
returned by the color picker from one color space to another. For example, a
color picker might return a color using the CMYK color space; if your
application uses only RGB colors, then your application must convert the color
between the two spaces. (See “Converting Colors Among Color Models” in the
chapter “Color Picker Manager Reference” in Advanced Color Imaging Reference
on the enclosed CD for information about converting between RGB colors and
other color types.)

Listing 2-3 on page 2-12 illustrates how to use ColorSync 1.0 functions to
convert any color to an RGB color.

ACI Book : Color Picker Manager Page 20 Thursday, July 13, 1995 8:40 AM

C H A P T E R 2

Color Picker Manager

Using the Color Picker Manager 2-21

C
olor P

icker M
anager

2

When the AppIsColorSyncAware flag is not set in the SystemDialogInfo,
ApplicationDialogInfo, or PickerDialogInfo structure used to create a dialog
box, the Color Picker Manager automatically converts any color it gets back
from a color picker into an RGB color.

Handling Events in a Color Picker Dialog Box 2

When your application receives an event for a color picker dialog box, you use
the DoPickerEvent function to pass the event to the Color Picker Manager. The
color picker or the Color Picker Manager either handles the event or returns it
to your application for handling.

When your application uses the DoPickerEvent function to pass an event to a
color picker or the Color Picker Manager for handling, you use an EventData
structure to supply information about the event, and to receive information
about how the color picker or the Color Picker Manager handled the event.
(The DoPickerEvent function and the EventData structure are described in detail
in the chapter “Color Picker Manager Reference” in Advanced Color Imaging
Reference on the enclosed CD.)

When either the color picker or the Color Picker Manager handles the event,
the DoPickerEvent function returns in the action field of the EventData structure
one of the following constants describing the event. (These constants are
described in “Picker Actions” in the chapter “Color Picker Manager Reference”
in Advanced Color Imaging Reference on the enclosed CD.)

enum PickerAction {
kDidNothing, /* no action worth reporting */
kColorChanged, /* user chose a different color */
kOkHit, /* user clicked OK */
kCancelHit, /* user clicked Cancel */
kNewPickerChosen, /* user chose a new color picker */
kApplItemHit /* Dialog Manager returned an item in an

application-owned dialog box */
};
typedef short PickerAction;

Internally, the Color Picker Manager handles the event by calling the Dialog
Manager function DialogSelect and then processing the event from there. If the
color picker is in an application-owned dialog box and an application item is
selected, the Color Picker Manager returns the kApplItemHit constant as well as
the number of the selected item.

ACI Book : Color Picker Manager Page 21 Thursday, July 13, 1995 8:40 AM

C H A P T E R 2

Color Picker Manager

2-22 Using the Color Picker Manager

If your application creates a modeless dialog box for a color picker, you must
handle events related to its menus before calling the DoPickerEvent function. If
you’ve created a modal system-owned dialog box, the Color Picker Manager
can handle the Edit menu events for you (as it does when you call PickColor).
However, for other dialog boxes there may be menu items that the Color Picker
Manager cannot handle. If you send events relating to these menu items to the
Color Picker Manager, it will assume all Edit menu selections are meant for the
color picker and will ignore every other menu selection. “Handling Events in
the Edit Menu” on page 2-24 describes how to handle the Edit menu.

Listing 2-9 illustrates an event loop. This example assumes that the application
always handles events related to its menus.

Listing 2-9 A sample event loop

#define IsMenuKey(x) (x)->what == keyDown && (x)->modifiers &
cmdKey)

Boolean MySampleDoEvent(EventRecord *event)
{

Boolean handled = false, isMenuEvent = false;
EventData pEvent;
short inWhere;
WindowPtr whichWindow;

if (event->what == mouseDown)
{

inWhere = FindWindow(event->where, &whichWindow);
if (inWhere == inMenuBar)

isMenuEvent = true;
}

 if (isMenuEvent || IsMenuKey(event))
{

 DoMenu(event);
 handled = true;

}
/* if the event's not handled yet, pass it to the Color Picker

Manager */
if (!handled)
{

pEvent.event = event;

ACI Book : Color Picker Manager Page 22 Thursday, July 13, 1995 8:40 AM

C H A P T E R 2

Color Picker Manager

Using the Color Picker Manager 2-23

C
olor P

icker M
anager

2

pEvent.colorProc = MyColorChangedProc;
pEvent.colorProcData = 0L;
DoPickerEvent(myPicker, &pEvent);
handled = pEvent.handled;
/* if the color picker handled it, do something with the

results */
if (handled)
{

switch (pEvent.action) {
case kDidNothing:

break;
case kColorChanged:

UseNewColor(myPicker);
break;

case kOKHit:
UseNewColor(myPicker);
DisposeColorPicker(myPicker);
myPicker = nil;
break;

case kCancelHit:
UseOriginalColor(myPicker);
DisposeColorPicker(myPicker);
myPicker = nil;
break;

case kNewPickerChosen:
/* nothing to do for this case */
break;

case kApplItemHit:
/* let my app handle the item */
MyHandleAppItem(pEvent.itemHit);
break;

}
}
if (!handled)
{

/* the event hasn't been handled; treat it like any normal
Macintosh event; if any other dialog boxes are present,
call DialogSelect here; if the event is a
mouseDown event, my app already called FindWindow */

ACI Book : Color Picker Manager Page 23 Thursday, July 13, 1995 8:40 AM

C H A P T E R 2

Color Picker Manager

2-24 Using the Color Picker Manager

}
return handled;

}

As shown in this example, if you use a color-changed function (such as the one
illustrated in Listing 2-3 on page 2-12), you should supply it, along with any
data it needs, in the EventData structure that your application passes to the
DoPickerEvent function.

Handling Events in the Edit Menu 2

Handling events in the Edit menu requires more work than standard menu
processing. If an Edit menu choice is for the color picker, you need to set the
state of the Edit menu items according to the color picker specifications and, if
a menu item is chosen, send the appropriate message to the color picker. To do
so, you use two functions, GetPickerEditMenuState and DoPickerEdit.

After you determine that there has been a mouse-down event in the Edit menu
(or that the user pressed a keyboard equivalent), you need to determine who
owns the Edit menu.

If the color picker is in a color picker–owned or system-owned dialog box and
it’s the frontmost window, the color picker owns it. If the color picker is in an
application-owned dialog box and it’s frontmost, ownership of the Edit menu
depends on the current dialog item. The choice really depends on your
application. As a general rule, whoever owns the current item owns the Edit
menu. If your application uses the DoPickerEdit function while the current item
belongs to your application, DoPickerEdit implements the standard cut, copy,
paste, and clear features for your application. If your application needs to do
more than this, it needs to handle the menu itself.

Listing 2-10 assumes that the owner of the current item owns the Edit menu.
The item number for the application’s last dialog item is represented by the
constant kMyLastItem. If your application has a system-owned or color
picker–owned dialog box, this constant should be set to 0. In an
application-owned dialog box, the color picker’s items will always be added
after your application’s, so your item numbers remain the same.

ACI Book : Color Picker Manager Page 24 Thursday, July 13, 1995 8:40 AM

C H A P T E R 2

Color Picker Manager

Using the Color Picker Manager 2-25

C
olor P

icker M
anager

2

Listing 2-10 Handling the Edit menu

Boolean MyDoMenu(EventRecord *event)
{

long mChoice;
EditData eData;
EditOperation eOperation;

/* if the picker is in front and the current edit item is the
picker's, set up the Edit menu as the picker wants it */

if (FrontWindow() == gMyDialog &&
((DialogPeek)gMyDialog)->editField + 1 > kMyLastItem)

{
MenuState mState;
MenuHandle theMenu;

GetPickerEditMenuState(myPicker, &mState);
theMenu = GetMenu(kMyEditMenuID);
if (mState.cutEnabled)

EnableItem(theMenu, kMyCutItem);
else

DisableItem(theMenu, kMyCutItem);
if (mState.copyEnabled)

EnableItem(theMenu, kMyCopyItem);
else

DisableItem(theMenu, kMyCopyItem);
if (mState.pasteEnabled)

EnableItem(theMenu, kMyPasteItem);
else

DisableItem(theMenu, kMyPasteItem);
if(mState.clearEnabled)

EnableItem(theMenu, kMyClearItem);
else

DisableItem(theMenu, kMyClearItem);
if (mState.undoEnabled)
{

SetItem(theMenu, kMyUndoItem, mState.undoString);
EnableItem(theMenu, kMyUndoItem);

}
else

DisableItem(theMenu, kMyUndoItem);

ACI Book : Color Picker Manager Page 25 Thursday, July 13, 1995 8:40 AM

C H A P T E R 2

Color Picker Manager

2-26 Using the Color Picker Manager

}
/* pass the event to the Menu Manager */
if (event->what == mouseDown)

mChoice = MenuSelect(event->where);
else if (event-> == keyDown)

mChoice = MenuKey(event->message);
/* if not the Edit menu, handle normally */
if (HiWord(mChoice) != kMyEditMenuID)
{

HandleMenuChoice(mChoice);
return true;

}
switch (LoWord(mChoice))
{

case kMyCutItem:
eOperation = kCut;
break;

case kMyCopyItem:
eOperation = kCopy;
break;

case kMyPasteItem:
eOperation = kPaste;
break;

case kMyClearItem:
eOperation = kClear;
break;

case kMyUndoItem:
eOperation = kUndo;
break;

default:
eOperation = -1;
break;

}
if (eOperation >= 0)
{

eData.theEdit = eOperation;
DoPickerEdit(myPicker, &eData);
/* this example is simply ignoring the results here */

}

ACI Book : Color Picker Manager Page 26 Thursday, July 13, 1995 8:40 AM

C H A P T E R 2

Color Picker Manager

Using the Color Picker Manager 2-27

C
olor P

icker M
anager

2

HiliteMenu(0);
return true;

}

See the chapter “Menu Manager” in Inside Macintosh: Macintosh Toolbox
Essentials for more information about managing menus in your application.

Sending Event Forecasters to the Color Picker 2

Your application may sometimes need to warn the color picker about a user
action that might affect it. For example, if you display a color picker in an
application-owned dialog box and the user closes that dialog box, your
application might want to check whether the color picker is in a state that can
handle this. If the user had just typed some numbers into the color picker that
left it in an inconsistent state, it would be helpful if the color picker could warn
the user before the user closes it.

Your application can warn the color picker about potential problems by
sending it event forecasters. Event forecasters aren’t events in themselves;
instead, they are warnings to the color picker. To send event forecasters to the
color picker, you use the same function as for regular events—DoPickerEvent—
except that in the EventData structure that your application passes to
DoPickerEvent, your application sets the event field to nil and sets the forcast
field to an appropriate constant from the following list.

enum EventForcasters {
kNoForcast, /* no forecast (e.g., an update event) */
kMenuChoice, /* this event causes a menu to be chosen */
kDialogAccept, /* the dialog box will be accepted */
kDialogCancel, /* the dialog box will be canceled */
kLeaveFocus, /* the focus will leave the color picker */
kPickerSwitch, /* new color picker chosen in More Choices

list */
kNormalKeyDown, /* a normal key-down event in an edit field */
kNormalMouseDown /* a normal click in color picker's focus */

};
typedef short EventForcaster;

The color picker informs your application about whether the color picker is
ready for the action to occur by setting the handled field of the EventData
structure to true if it’s not ready and false if it is.

ACI Book : Color Picker Manager Page 27 Thursday, July 13, 1995 8:40 AM

C H A P T E R 2

Color Picker Manager

2-28 Using the Color Picker Manager

Generally, the only time you need to use event forecasters is when the color
picker’s dialog box is about to close. If the Color Picker Manager affects the
closing (as indicated when it sets the action field of the EventData structure to
the kOKHit constant after your application calls DoPickerEvent), your
application doesn’t need to warn the color picker because the Color Picker
Manager has already done so. However, if the user has just clicked the close
box of a window containing an application-owned dialog box or has chosen
Close from a menu, you should send an event forecaster to the color picker.

Listing 2-11 shows an application-defined function called
CheckIfPickerCanClose. If this function returns true, then the color picker can
close; otherwise, it can’t close for some reason, and you can assume that the
color picker has informed the user of the problem.

Listing 2-11 Warning the color picker that it’s about to be closed

Boolean MyCheckIfPickerCanClose()
{

EventData pEvent;
pEvent.event = 0L; /* make it a forecast event */
pEvent.forecast = kDialogAccept;
DoPickerEvent(myPicker, &pEvent);
return !pEvent.handled;

}

Setting the Destination Profile 2

If you use a color picker to ask the user for a color intended for an output
device, and the device has a color-matching profile, your application can hand
this profile to the color picker so that it can communicate the profile’s
information to the user. You do this with the SetPickerProfile function, as
illustrated in Listing 2-12. Setting a destination profile is optional; the color
picker assumes that there’s no profile unless your application uses
SetPickerProfile to set one.

ACI Book : Color Picker Manager Page 28 Thursday, July 13, 1995 8:40 AM

C H A P T E R 2

Color Picker Manager

Using the Color Picker Manager 2-29

C
olor P

icker M
anager

2

Listing 2-12 Using the SetPickerProfile function to set the destination profile

void MySetDestinationProfile(CMProfileHandle profile)
{

if (SetPickerProfile(myPicker, profile) != noErr)
MyHandleError();

}

There’s also a matching function, GetPickerProfile, illustrated in Listing 2-13,
to get the current destination profile from the color picker.

Listing 2-13 Using the GetPickerProfile function to get the destination profile

void MyGetDestinationProfile(CMProfileHandle profile)
{

if (GetPickerProfile(myPicker, profile) != noErr)
MyHandleError();

}

Your application owns the memory of any profiles it gives to or receives from
the color picker. When your application sets the destination profile, the color
picker makes a copy of the profile handle; when your application gets the
destination profile, your application gives the color picker a handle into which
it copies the profile data.

Controlling the Help Balloons for a Color Picker’s Dialog Box 2

The Color Picker Manager supports Balloon Help user assistance (which is
described in the chapter “Help Manager” in Inside Macintosh: More Macintosh
Toolbox). Most applications don’t need to do anything special to use Balloon
Help for a color picker in any type of dialog box. However, if your application
needs control over a color picker’s help balloon, you can use the
ExtractPickerHelpItem function to get the help balloon for the color picker. You
can then use the Help Manager function HMShowBalloon to override the default
help balloon and display the altered balloon.

It’s up to your application to determine whether the cursor is over a color
picker’s item or one of your application’s items. You can use the Dialog
Manager function FindDialogItem to determine which item the cursor is over. If

ACI Book : Color Picker Manager Page 29 Thursday, July 13, 1995 8:40 AM

C H A P T E R 2

Color Picker Manager

2-30 Using the Color Picker Manager

it’s over one of your application items, you can put up your own help balloon.
Otherwise, use the ExtractPickerHelpItem function to get the color picker’s
balloon, which you can alter or display as it is defined by the color picker. The
ExtractPickerHelpItem function searches the color picker’s help resource for an
appropriate balloon. If it can’t find one, it returns the noHelpForItem result.

Listing 2-14 illustrates how you can control the help balloons for a color picker
dialog box. Everything in this example is performed by the Color Picker
Manager internally; the example just gives you a general idea of how to use
ExtractPickerHelpItem.

Listing 2-14 Using the ExtractPickerHelpItem function

void MyDoPickerBalloonHelp(void)
{

HelpItemInfo helpInfo;
short itemNo;
Point where;
OSErr err;

GetMouse(&where);
itemNo = FindDialogItem(gMyDialog, where) + 1;
/* get the color picker's help item */
helpInfo.options = 0;
helpInfo.tip.v = helpInfo.tip.h = 0;
SetRect(&helpInfo.altRect, 0, 0, 0, 0);
helpInfo.theProc = 0;
helpInfo.variant = 0;
helpInfo.helpMessage.hmmHelpType = 0;
helpInfo.helpMessage.u.hmmPictHandle = 0L;
err = ExtractPickerHelpItem(myPicker, itemNo, 0, &helpInfo);
/* show the balloon */
if (err == noErr)
{

/* if altRect is empty, use the item's rectangle */
if (EmptyRect(&helpInfo.altRect))
{

short iType;
Handle iHandle;
GetDialogItem(gMyDialog, itemNo, &iType, &iHandle,

ACI Book : Color Picker Manager Page 30 Thursday, July 13, 1995 8:40 AM

C H A P T E R 2

Color Picker Manager

Writing Your Own Color Pickers 2-31

C
olor P

icker M
anager

2

&helpInfo.altRect);
}
/* convert balloon tip's location to local coordinates */
helpInfo.tip.h += helpInfo.altRect.left;
helpInfo.tip.v += helpInfo.altRect.top;
/* convert the balloon tip and the altRect to global

coordinates */
LocalToGlobal(&helpInfo.tip);
LocalToGlobal((Point *) &helpInfo.altRect.top);
LocalToGlobal((Point *) &helpInfo.altRect.bottom);
/* show the balloon */
HMShowBalloon (&helpInfo.helpMessage, helpInfo.tip,

&helpInfo.altRect, 0L, helpInfo.theProc,
helpInfo.variant, kHMRegularWindow);

}
}

If your color picker needs to override the help message or another help balloon
characteristic for the item specified in the itemNo parameter for the
ExtractPickerHelpItem function, you should do so before using the Help
Manager function HMShowBalloon to display the help balloon. Specify the
desired help message and characteristics in the HelpItemInfo structure pointed
to in the helpInfo parameter to HMShowBalloon.

Writing Your Own Color Pickers 2

Macintosh system software provides color pickers that present ranges of colors
from which users can choose particular colors. You can present these color
pickers in dialog boxes, as described in “Using the Color Picker Manager,”
beginning on page 2-8. This section describes how you can also use the
Component Manager and the Color Picker Manager to create your own color
pickers, which you implement as components.

When you create a color picker, the Color Picker Manager uses the Component
Manager to request services from your color picker. For example, when the
user selects a color from your color picker and clicks the OK button in its dialog
box, the Color Picker Manager sends your color picker a request to provide the
selected color.

ACI Book : Color Picker Manager Page 31 Thursday, July 13, 1995 8:40 AM

C H A P T E R 2

Color Picker Manager

2-32 Writing Your Own Color Pickers

You need to read this section only if you are creating a color picker for use in
your own application or in those created by others. Before reading this section,
you should read the preceding sections of this chapter. For complete details on
components and their structure, see the chapter “Component Manager” in
Inside Macintosh: More Macintosh Toolbox. For complete information about dialog
boxes, see the chapter “Dialog Manager” in Inside Macintosh: Macintosh Toolbox
Essentials.

Creating a Component Resource for a Color Picker 2

A color picker is stored as a component resource. It contains a number of
resources, including icons, strings, and the standard component resource (a
resource of type 'thng') required of any Component Manager component. In
addition, a color picker must contain code to handle required request codes
passed to it by the Component Manager.

Your color picker must be contained in a resource file. The creator of the file can
be any type you wish, but the type of the file must be 'thng'. If your color
picker contains a 'BNDL' resource (described in the chapter “Finder Interface”
in Inside Macintosh: Macintosh Toolbox Essentials), then the file’s bundle bit must
be set. To allow other applications to use your color picker, you should place it
in the Extensions folder (where it will be automatically registered at startup.)
Otherwise, you can use the Component Manager function RegisterComponent
or RegisterComponentResource to make your color picker available as your
application needs it.

Listing 2-15 shows the Rez listing of a component resource that describes a
color picker.

Listing 2-15 A component resource for a color picker

resource 'thng' (kPickerID, locked) {
'cpkr', /* component type: a color picker */
'stup', /* component subtype */
'wave', /* color picker manufacturer */
$00000071, /* control flags */
$000000ff, /* control flags mask */
'cpkr', /* resource type for color picker's code */
kPickerID, /* resource ID for color picker's code */
'STR ', /* resource type for color picker's name */

ACI Book : Color Picker Manager Page 32 Thursday, July 13, 1995 8:40 AM

C H A P T E R 2

Color Picker Manager

Writing Your Own Color Pickers 2-33

C
olor P

icker M
anager

2

kPickerID, /* resource ID for color picker's name */
'STR ', /* color picker info resource type */
kInfoID, /* color picker info resource ID */
'ICN#', /* icon list for color picker */
kPickerID /* icon list resource ID */

};

The component resource, and the resources that define the component’s code,
name, information string, and icon family, must be in the same resource file.

Figure 2-5 shows the color picker created with this component resource. This is
a very simplistic color picker that uses only editable text fields for specifying a
color.

Figure 2-5 An application-created color picker

ACI Book : Color Picker Manager Page 33 Thursday, July 13, 1995 8:40 AM

C H A P T E R 2

Color Picker Manager

2-34 Writing Your Own Color Pickers

Dispatching to Functions Defined by a Color Picker 2

As explained in the previous section, the code for your color picker should be
contained in a resource. The Component Manager expects the entry point in
this resource to be a function having this format:

pascal ComponentResult MyColorPickerDispatch (
 ComponentParameters *params,
 Handle storage)

Whenever the Color Picker Manager uses the Component Manager to send a
request to your color picker, the Component Manager calls your component’s
entry point and passes any parameters, along with information about the
current connection, in a component parameters structure. The Component
Manager also passes a handle to the global storage associated with that
instance of your color picker.

When your color picker receives a request, it should examine the parameters to
determine the nature of the request, perform the appropriate processing, set an
error code if necessary, and return an appropriate function result to the
Component Manager.

The component parameters structure is defined by a data structure of type
ComponentParameters. The what field of this structure specifies the type of
request. Your color picker’s entry point should interpret the request code and
then possibly dispatch to some other subroutine. Your color picker must be
able to handle the required request codes represented by the constants
kComponentOpenSelect, kComponetCloseSelect, kComponentCanDoSelect, and
kComponentVersionSelect.

Note
For complete details on required component request codes
and the ComponentParameters structure, see the chapter
“Component Manager” in Inside Macintosh: More Macintosh
Toolbox. ◆

ACI Book : Color Picker Manager Page 34 Thursday, July 13, 1995 8:40 AM

C H A P T E R 2

Color Picker Manager

Writing Your Own Color Pickers 2-35

C
olor P

icker M
anager

2

In addition to these required request codes, your color picker must also be able
to handle the request codes defined by the elements of the PickerMessages
enumerated data type, which is shown here and described in detail in the
chapter “Color Picker Manager Reference” in Advanced Color Imaging Reference
on the enclosed CD.

typedef enum { /* request codes handled by a color picker */
 kInitPicker, /* initialize any private data */
 kTestGraphicsWorld, /* test operability on current system */
 kGetDialog, /* if using own dialog box, return its pointer; for

default dialog box, return nil */
 kGetItemList, /* return a list of items for dialog box */
 kGetColor, /* return original or newest color */
 kSetColor, /* change original or newest color */
 kEvent, /* perform any special processing necessary for an event */
 kEdit, /* perform an editing command */
 kSetVisibility, /* make color picker visible or invisible */
 kDrawPicker, /* redraw color picker */
 kItemHit, /* respond to event in a dialog box item */
 kSetBaseItem, /* set base item for dialog box items */
 kGetProfile, /* return a handle to the destination profile */
 kSetProfile, /* change the destination color-matching profile */
 kGetPrompt, /* return prompt string */
 kSetPrompt, /* set a new prompt */
 kGetIconData, /* return script code and resource ID of icon family */
 kGetEditMenuState, /* return information about edit menu */
 kSetOrigin, /* update any info about local coordinate system */
 kExtractHelpItem /* return information about help balloons */
} PickerMessages;

Your color picker should respond to these request codes by performing the
requested action. Your color picker may need to access additional information
provided in the params field to service the request. The params field of the
component parameters structure is an array that contains the parameters
specified by the Color Picker Manager. Your color picker can use the
CallComponentFunctionWithStorage function to extract the parameters from this
array and pass these parameters to a subroutine of your color picker.
Listing 2-16 illustrates how to define a color picker entry point routine. This
example inspects the params->what field to determine which request code to
handle.

ACI Book : Color Picker Manager Page 35 Thursday, July 13, 1995 8:40 AM

C H A P T E R 2

Color Picker Manager

2-36 Writing Your Own Color Pickers

Listing 2-16 Handling Component Manager request codes

pascal ComponentResult MyColorPickerDispatch(ComponentParameters *params,
 Handle storage)

{
short message;
ComponentResult result;
ComponentFunction RoutineToCall = 0;

message = params->what;
if (message < 0)

/* negative values are Component Manager request codes */
switch (message)
{

case kComponentOpenSelect:
RoutineToCall = MyOpen; break;

case kComponentCloseSelect:
RoutineToCall = MyClose; break;

case kComponentCanDoSelect:
RoutineToCall = MyCanDo; break;

case kComponentVersionSelect:
RoutineToCall = MyVersion; break;

case kComponentRegisterSelect:
RoutineToCall = MyRegister; break;

case kComponentTargetSelect:
RoutineToCall = MySetTarget; break;

default: return 0; /* no error */
}

else
{

switch (message)
{

case kInitPicker: RoutineToCall = MyInitPicker; break;
case kTestGraphicsWorld: RoutineToCall = MyTestGraphicsWorld; break;
case kGetDialog: RoutineToCall = MyGetDialog; break;
case kGetItemList: RoutineToCall = MyGetItemList; break;
case kGetColor: RoutineToCall = MyGetColor; break;
case kSetColor: RoutineToCall = MySetColor; break;
case kEvent: RoutineToCall = MyDoEvent; break;
case kEdit: RoutineToCall = MyDoEdit; break;
case kSetVisibility: RoutineToCall = MySetVisibility; break;

ACI Book : Color Picker Manager Page 36 Thursday, July 13, 1995 8:40 AM

C H A P T E R 2

Color Picker Manager

Writing Your Own Color Pickers 2-37

C
olor P

icker M
anager

2

case kDrawPicker: RoutineToCall = MyDrawPicker; break;
case kItemHit: RoutineToCall = MyItemHit; break;
case kSetBaseItem: RoutineToCall = MySetBaseItem; break;
case kGetProfile: RoutineToCall = MyGetProfile; break;
case kSetProfile: RoutineToCall = MySetProfile; break;
case kGetPrompt: RoutineToCall = MyGetPrompt; break;
case kSetPrompt: RoutineToCall = MySetPrompt; break;
case kGetIconData: RoutineToCall = MyGetIconData; break;
case kGetEditMenuState: RoutineToCall = MyGetEditMenuState; break;
case kSetOrigin: RoutineToCall = MySetOrigin; break;
case kExtractHelpItem: RoutineToCall = MyExtractHelpItem; break;
default: return 0;

}
}
result=CallComponentFunctionWithStorage(storage, params, RoutineToCall);
return result;

}

“Color Picker–Defined Functions” in the chapter “Color Picker Manager
Reference” in Advanced Color Imaging Reference on the enclosed CD describes
the interfaces your color picker must provide to respond to these request codes.
The next several sections provide examples of how your color picker can
respond to most of these request codes.

Initializing Your Color Picker 2

The Color Picker Manager sends the kInitPicker request code after your color
picker has set up all of its external data. (If the Color Picker Manager opens a
color picker only to obtain a list of color pickers for the More Choices list in a
dialog box, your color picker will not receive this message unless the user
actually chooses the color picker.)

Your color picker code should use the CallComponentFunctionWithStorage
function, which invokes a specified function of your color picker with the
parameters originally provided by the Color Picker Manager. Your color picker
passes these parameters by specifying the same component parameters
structure that was received by your color picker’s main entry point. The
CallComponentFunctionWithStorage function also provides a handle to the
memory associated with the current connection. Your color picker uses this
memory to store private data that it initializes in response to the kInitPicker
request code.

ACI Book : Color Picker Manager Page 37 Thursday, July 13, 1995 8:40 AM

C H A P T E R 2

Color Picker Manager

2-38 Writing Your Own Color Pickers

To access resources that are stored in your color picker, you can use the
Component Manager functions OpenComponentResFile and
CloseComponentResFile. Listing 2-17 illustrates how a color picker uses these
functions to gain access to its private data, which it initializes in response to the
kInitPicker request code.

Listing 2-17 Initializing private data for a color picker

pascal ComponentResult MyInitPicker(PickerStorageHndl storage,
 PickerInitData *data)

{
GrafPtr thePort;
OSErr error = noErr;
PMColorPtr theColor;
RGBColor rgb;
short resFile;

/* open resource file */
resFile = OpenComponentResFile((Component) (*storage)->myself);
GetPort(&thePort);
(*storage)->port = thePort;
(*storage)->flags = data->flags;
(*storage)->realPicker = true;
/* always open an invisible picker */
(*storage)->visible = false;
(*storage)->active = true;
/* initalize internal colors */
theColor = &(*storage)->color;
theColor->profile = 0;
theColor->color.rgb.red = 0;
theColor->color.rgb.green = 0;
theColor->color.rgb.blue = 0;
(*storage)->origColor = (*storage)->color;
(*storage)->lastRGB = (*storage)->color.color.rgb;
MyInitNumerics(storage);
/* allocate patterns for the color rectangles */
(*storage)->newColorPat = NewPixPat();
(*storage)->origColorPat = NewPixPat();
/* initialize rectangles to the correct colors */
rgb = (*storage)->color.color.rgb;

ACI Book : Color Picker Manager Page 38 Thursday, July 13, 1995 8:40 AM

C H A P T E R 2

Color Picker Manager

Writing Your Own Color Pickers 2-39

C
olor P

icker M
anager

2

MakeRGBPat((*storage)->newColorPat,&rgb);
rgb = (*storage)->origColor.color.rgb;
MakeRGBPat((*storage)->origColorPat,&rgb);
(*storage)->profile = 0L;
finish:
CloseComponentResFile(resFile);
return error;

}

▲ W A R N I N G

Do not leave any resource files open when your color
picker is closed. Their maps will be left in the subheap
when the subheap is freed, causing the Resource Manager
to crash. ▲

Before handling the kInitPicker request code, your color picker must be able to
handle the kTestGraphicsWorld, kGetDialog, and kGetItemList request codes.

In response to the kTestGraphicsWorld request code, you should test whether
your color picker can operate under existing conditions and return noErr if it
can, as illustrated in Listing 2-18.

Listing 2-18 Testing whether an environment can support your color picker

pascal ComponentResult MyTestGraphicsWorld(PickerStorageHndl storage,
PickerInitData *data)

{
#pragma unused(storage,data)
OSErr err = noErr;
long gLong;
/* color picker requires Color QuickDraw */
Gestalt(gestaltQuickdrawVersion,&gLong);
return gLong >= gestalt8BitQD ? noErr : pickerCantLive;

}

ACI Book : Color Picker Manager Page 39 Thursday, July 13, 1995 8:40 AM

C H A P T E R 2

Color Picker Manager

2-40 Writing Your Own Color Pickers

If your color picker uses its own dialog box, it should return a pointer to this
dialog box in response to the kGetDialog request code. If your color picker uses
the default dialog box, it should return nil, as illustrated here.

pascal ComponentResult MyGetDialog(PickerStorageHndl storage)
{

#pragma unused (storage)
return 0L;

}

In response to the kGetItemList request code, your color picker should return
its dialog box items, as illustrated in Listing 2-19. The Color Picker Manager
adds these items to the color picker dialog box.

Listing 2-19 Returning the dialog box items for a color picker

pascal long MyGetItemList(PickerStorageHndl storage)
{

#pragma unused (storage)
Handle theItems;
short resFile;

/* open resource file to get DITL */
resFile = OpenComponentResFile((Component) (*storage)->myself);
/* get the DITL and detach it so it won't go away after

closing the file */
theItems = GetResource ('DITL', kPickerDITL);
if(theItems)

DetachResource(theItems);
CloseComponentResFile(resFile); /* close the file */
return (long) theItems;

}

A color picker must respond to the kSetVisibility request code by making
itself either visible or invisible, as requested by the Color Picker Manager.

ACI Book : Color Picker Manager Page 40 Thursday, July 13, 1995 8:40 AM

C H A P T E R 2

Color Picker Manager

Writing Your Own Color Pickers 2-41

C
olor P

icker M
anager

2

Handling Events for Your Color Picker 2

The Color Picker Manager sends the kDrawPicker request in response to an
update event. Your color picker responds to this code by redrawing your color
picker, as illustrated in Listing 2-20.

Listing 2-20 Redrawing a color picker

pascal ComponentResult MyDrawPicker(PickerStorageHndl storage)
{

if((*storage)->visible)
{

MyDrawColorList(storage);
MyDrawColorEditor(storage,true);

}
return noErr;

}

The Color Picker Manager calls the Event Manager function BeginUpdate before
sending the kDrawPicker request code and the Event Manager function
EndUpdate after sending the kDrawPicker request code.

The Color Picker Manager sends the kEvent request code so that your color
picker can handle events that the Dialog Manager does not handle. A color
picker responds to the kEvent request code by performing any event processing
in addition to or instead of that normally performed by the Dialog Manager.
Listing 2-21 illustrates how a color picker can perform such event processing.

Listing 2-21 Responding to events before handing them to the Dialog Manager

pascal ComponentResult MyDoEvent(PickerStorageHndl storage,
 EventData *data)

{
OSErr err = noErr;
/* initialize so events are not filtered */
data->handled = false;
data->action = kDidNothing;
if(data->event)
{

ACI Book : Color Picker Manager Page 41 Thursday, July 13, 1995 8:40 AM

C H A P T E R 2

Color Picker Manager

2-42 Writing Your Own Color Pickers

switch(data->event->what)
{

case nullEvent:
DoIdle(storage,data);
break;

case mouseDown:
err = DoMouseDown(storage,data);
break;

case keyDown:
case autoKey:

err = DoKeyDown(storage,data);
break;

case keyUp:
err = DoKeyUp(storage,data);
break;

case activateEvt:
if(data->event->modifiers & activeFlag)

ActivatePicker(storage);
else

DeactivatePicker(storage);
break;

}
}
return err;

}

The Color Picker Manager sends the kItemHit request code to inform your
color picker of an event in one of its items. In turn, your color picker responds
to the event for the item reported in the itemHit field of an ItemHitData record,
which is described in the chapter “Color Picker Manager Reference” in
Advanced Color Imaging Reference on the enclosed CD. Listing 2-22 illustrates
how a color picker can perform such event processing.

Listing 2-22 Responding to events in color picker items

pascal ComponentResult MyItemHit(PickerStorageHndl storage,
 ItemHitData *data)

{
#pragma unused(iMod)
Handle theItem;

ACI Book : Color Picker Manager Page 42 Thursday, July 13, 1995 8:40 AM

C H A P T E R 2

Color Picker Manager

Writing Your Own Color Pickers 2-43

C
olor P

icker M
anager

2

short iType;
Rect iBox;

OSErr err = noErr;
data->action = kDidNothing;
GetDialogItem((*storage)->port,

(*storage)->baseItem + data->itemHit, &iType,
&theItem, &iBox);

switch(data->itemHit)
{

case iRedText:
case iGreenText:
case iBlueText:

/* don't udpate everything as the user types each key;
update only after the user leaves an edit field */

if(data->iMod != kKeyDown && data->itemHit != kMouseDown)
CheckCurrentWorld(storage,data->itemHit);

break;
case iOrigColor:

err = DoListClick(storage,data);
break;

case iNewColor:
break;

}
return err;

}

The Color Picker Manager sends the kEdit request code to inform your color
picker that the user has chosen one of the edit commands from the Edit menu
(or typed its keyboard equivalent). If your color picker, rather than the Dialog
Manager, needs to perform the editing command, your color picker should do
so in response to this request code. For example, because the Dialog Manager
does not perform the Undo command, your MyDoEdit function can instead. The
editing command is passed to your function in the field theEdit of the EditData
record pointed to in the data parameter. Listing 2-23 illustrates how a color
picker can respond to this result code.

ACI Book : Color Picker Manager Page 43 Thursday, July 13, 1995 8:40 AM

C H A P T E R 2

Color Picker Manager

2-44 Writing Your Own Color Pickers

Listing 2-23 Handling events in the color picker’s Edit menu

pascal ComponentResult MyDoEdit(PickerStorageHndl storage,
EditData *data)

{
RGBColor rgb;

switch(data->theEdit)
{

default:
/* default behavior is appropriate */
data->action = kDidNothing;
data->handled = false;
break;

case kUndo:
rgb = (*storage)->lastRGB;
(*storage)->lastRGB = (*storage)->color.color.rgb;
(*storage)->color.color.rgb = rgb;
/* update the other internal data and then redraw */
MySetSelectionColor(storage);
MyUpdateColorText(storage);
MyDrawColorRects(storage, false);
data->action = kColorChanged;
data->handled = true;
break;

}
return noErr;

}

Returning and Setting Color Picker Information 2

The Color Picker Manager sends the kGetColor code to request your color
picker to supply an original or a new color. In turn, your color picker returns
either the original color or the new color, as shown in Listing 2-24.

ACI Book : Color Picker Manager Page 44 Thursday, July 13, 1995 8:40 AM

C H A P T E R 2

Color Picker Manager

Writing Your Own Color Pickers 2-45

C
olor P

icker M
anager

2

Listing 2-24 Returning the original or the new color

pascal ComponentResult MyGetColor(PickerStorageHndl storage,
 ColorType whichColor,
 PMColorPtr color)

{
/* copy the color here because the profile is always set as

we want it to be (nil - the system profile/RGB space) */
if(whichColor == kNewColor)

*color = (*storage)->color;
else

*color = (*storage)->origColor;
return noErr;

}

Similarly, the Color Picker Manager sends the kSetColor code to request your
color picker to set an original or a new color. Listing 2-25 shows how a color
picker can set these colors.

Listing 2-25 Setting colors

pascal ComponentResult MySetColor(PickerStorageHndl storage,
 ColorType whichColor, PMColorPtr color)

{
Boolean updateEditor = false;
Boolean textInvalid = false;
CWorld cworld;
PMColor myColor;
long csLong;

OSErr err = noErr;
myColor = *color; /* get your own copy */
/* check whether a profile was included; if so, convert the color to

system space */
if(color->profile)
{

/* first ensure that ColorSync is available */
if(Gestalt(gestaltColorMatchingVersion,&csLong) != noErr)
{

ACI Book : Color Picker Manager Page 45 Thursday, July 13, 1995 8:40 AM

C H A P T E R 2

Color Picker Manager

2-46 Writing Your Own Color Pickers

err = colorSyncNotInstalled;
goto fail;

}
/* create the color world and convert the color */
if(CWNewColorWorld(&cworld,myColor.profile,0L) == noErr)
{

if(CWMatchColors(cworld,&myColor.color,1) != noErr)
{

err = badProfileError;
CWDisposeColorWorld(cworld);
goto fail;

}
CWDisposeColorWorld(cworld);

}
else
{

err = badProfileError;
goto fail;

}
}
myColor.profile = 0L; /* it's in the system space now */
if(whichColor == kNewColor)
{

(*storage)->color = *color;
(*storage)->lastRGB = color->color.rgb;
updateEditor = true;

}
else
{ (*storage)->origColor = *color;

/* make a new pattern for the original color */
MakeRGBPat((*storage)->origColorPat,&color->color.rgb);
if((*storage)->visible)

DrawMYColorRects(storage,true);/* redraw original color rect */
}
if(updateEditor) {

/* make some calls to update data structures and redraw the parts of
the picker that need to be redrawn */

SetSelectionColor(storage);
UpdateColorText(storage);
if((*storage)->visible)
{

ACI Book : Color Picker Manager Page 46 Thursday, July 13, 1995 8:40 AM

C H A P T E R 2

Color Picker Manager

Writing Your Own Color Pickers 2-47

C
olor P

icker M
anager

2

/* you don't call DoPickerDraw here because you don't need to
redraw everything */

DrawMYColorRects(storage,false);
DrawMYColorEditor(storage,false);

}
}

fail: C
return err;

}

Listing 2-26 illustrates a color picker–defined function that responds to the
kGetIconData request code. The color picker uses a PickerIconData structure
(described in the chapter “Color Picker Manager Reference” in Advanced Color
Imaging Reference on the enclosed CD) to return the script code and the resource
ID of the icon family by which the color picker identifies itself in the More
Choices list of color picker dialog boxes. (This list is shown in Figure 2-2 on
page 2-5.)

Listing 2-26 Returning icon data

pascal ComponentResult MyGetIconData(PickerStorageHndl storage,
 PickerIconData *data)

{
short fref;
OSErr err = noErr;
PickerIconData **mypdat;

data->scriptCode = 0;
data->iconSuiteID = kPickerData;
fref = OpenComponentResFile((Component) (*storage)->myself);
if(fref)
{

mypdat = (PickerIconData **)GetResource(kPickerDataType,
kPickerData);

if(mypdat)
*data = **mypdat;

else
goto fail;

}
else

ACI Book : Color Picker Manager Page 47 Thursday, July 13, 1995 8:40 AM

C H A P T E R 2

Color Picker Manager

2-48 Writing Your Own Color Pickers

goto fail;
CloseComponentResFile(fref);
return err;

fail:
DebugStr("\pProblem getting resource");
return pickerResourceError;

}

The Color Picker Manager sends the kGetPrompt request code to obtain the
prompt string currently used by your color picker. Your color picker should
respond to this code by returning its string, as illustrated in Listing 2-27.

Listing 2-27 Returning the color picker’s prompt

pascal ComponentResult MyGetPrompt(PickerStorageHndl storage,
 Str255 prompt)

{
Handle theItem;
short iType;
Rect iBox;

GetDialogItem((*storage)->port, (*storage)->baseItem +
iPrompt, &iType ,&theItem, &iBox);

GetDialogItemText(theItem, prompt);
return noErr;

}

Listing 2-28 illustrates a color picker–defined function that responds to the
kSetPrompt request code by setting the prompt string used by the color picker.

Listing 2-28 Setting the color picker’s prompt

pascal ComponentResult MySetPrompt(PickerStorageHndl storage,
 Str255 prompt)

{
Handle theItem;
short iType;
Rect iBox;

ACI Book : Color Picker Manager Page 48 Thursday, July 13, 1995 8:40 AM

C H A P T E R 2

Color Picker Manager

Writing Your Own Color Pickers 2-49

C
olor P

icker M
anager

2

GetDialogItem((*storage)->port, (*storage)->baseItem +
iPrompt, &iType, &theItem, &iBox);

SetDialogItemText(theItem, prompt);
return noErr;

}

The Color Picker Manager sends the kGetProfile request code to obtain the
destination color-matching profile currently used by your color picker. Your
color picker should respond to this code by returning the destination profile, as
illustrated in Listing 2-29.

Listing 2-29 Returning the destination profile

pascal ComponentResult MyGetProfile(PickerStorageHndl storage)
{

Handle h;
h = (Handle) (*storage)->profile;
if(h)

HandToHand(&h);
return (long) h;

}

Listing 2-30 illustrates a color picker–defined function that responds to the
kSetProfile request code by setting a new destination profile for use by the
color picker.

Listing 2-30 Setting the destination profile

pascal ComponentResult MySetProfile(PickerStorageHndl storage,
CMProfileHandle profile)

{
CMProfileHandle myProfile;

OSErr err = noErr;
/* Make a private copy of the profile, even though this

picker doesn't do anything with profiles. This is necessary
because the Color Picker Manager relies on color pickers to

ACI Book : Color Picker Manager Page 49 Thursday, July 13, 1995 8:40 AM

C H A P T E R 2

Color Picker Manager

2-50 Writing Your Own Color Pickers

store this data so that it doesn't have to duplicate the
storage and waste memory. */

if(myProfile = profile)
{

HandToHand((Handle *) &myProfile);
if((err = MemError()) != noErr)

goto fail;
}
(*storage)->profile = myProfile;

fail:
return err;

}

The Color Picker Manager sends the kGetEditMenuState request code to obtain
information about the desired state of the edit menu for your color picker. As
illustrated in Listing 2-31, your color picker should respond to this code by
returning edit menu information in a MenuState structure, which is described in
detail in the chapter “Color Picker Manager Reference” in Advanced Color
Imaging Reference on the enclosed CD.

Listing 2-31 Specifying how the Edit menu should be set

pascal ComponentResult MyGetEditMenuState(PickerStorageHndl storage,
 MenuState *mState)

{
#pragma unused(storage)
OSErr err = noErr;
mState->cutEnabled = true;
mState->copyEnabled = true;
mState->pasteEnabled = true;
mState->clearEnabled = true;
mState->undoEnabled = true;
strcpy(mState->undoString,"\pUndo");
return err;

}

ACI Book : Color Picker Manager Page 50 Thursday, July 13, 1995 8:40 AM

C H A P T E R 2

Color Picker Manager

Summary of the Color Picker Manager 2-51

C
olor P

icker M
anager

2

Summary of the Color Picker Manager 2

Constants and Data Types 2

enum { /* gestalt selector */
gestaltColorPickerVersion = 'cpkr' /* returns version of Color Picker Manager */

};

typedef struct PMColor {
CMProfileHandle profile; /* a handle to a profile */
CMColor color; /* a color-matching structure */

} PMColor,*PMColorPtr;

typedef struct PrivatePickerRecord **picker;

/* actions returned to the application from DoPickerEvent */
enum PickerAction {

kDidNothing, /* no action worth reporting */
kColorChanged, /* user chose different color */
kOkHit, /* user clicked OK */
kCancelHit, /* user clicked Cancel */
kNewPickerChosen, /* user chose new color picker */
kApplItemHit /* Dialog Manager returned an item in an

application-owned dialog box */
};
typedef short PickerAction;

/* types of colors a picker must maintain */
enum ColorTypes {

kOriginalColor, /* the starting color--the one to change */
kNewColor /* the last color selected by the user */

};
typedef short ColorType;

/* types of edit operations that are sent with the kEdit message */
enum EditOperations {

kCut, /* perform the Cut command */
kCopy, /* perform the Copy command */

ACI Book : Color Picker Manager Page 51 Thursday, July 13, 1995 8:40 AM

C H A P T E R 2

Color Picker Manager

2-52 Summary of the Color Picker Manager

kPaste, /* perform the Paste command */
kClear, /* perform the Clear command */
kUndo /* perform the Undo command */

};
typedef short EditOperation;

/* Item hit modifiers. These are sent along with the itemHit message and
inform the picker of what it was that caused the item hit. */

enum ItemHitModifiers {
kMouseDown, /* mouse-down event on item */
kKeyDown, /* key-down event in current edit item */
kFieldEntered, /* tab into an edit field */
kFieldLeft, /* tab out of an edit field */
kCutOp, /* cut in current edit field */
kCopyOp, /* copy in current edit field */
kPasteOp, /* paste in current edit field */
kClearOp, /* clear in current edit field */
kUndoOp /* undo in current edit field */

};
typedef short ItemModifier;

/* The dialog placement specifiers. These tell the picker manager where to
place the picker dialog (used for system dialogs). */

enum DialogPlacementSpecifiers {
kAtSpecifiedOrigin, /* place the top-left corner of the dialog box at

the point specified in the dialogOrigin field of
the color picker parameter block */

kDeepestColorScreen, /* center the dialog box on the screen with the
greatest color depth */

kCenterOnMainScreen /* center the dialog box on the main screen */
};
typedef short DialogPlacementSpec;

/* these flags may be set by the app and are passed through to the picker */
#define DialogIsMoveable 1 /* the user can move the dialog box */
#define DialogIsModal 2 /* the dialog box is modal */
#define CanModifyPalette 4 /* the picker is allowed to install a palette */
#define CanAnimatePalette 8 /* the picker is allowed to animate the palette */
#define AppIsColorSyncAware 16 /* The application is ColorSync aware and can

therfore convert colors between spaces (that
is, it can accept non-RGB colors) */

ACI Book : Color Picker Manager Page 52 Thursday, July 13, 1995 8:40 AM

C H A P T E R 2

Color Picker Manager

Summary of the Color Picker Manager 2-53

C
olor P

icker M
anager

2

/* these flags are set by the Color Picker Manager (overriding any
application settings) */

#define InSystemDialog 32 /* the color picker is in a system-owned
dialog box */

#define InApplicationDialog 64 /* the color picker is in an application-
owned dialog box */

#define InPickerDialog 128 /* the color picker is in its own dialog box */
#define DetachedFromChoices 256 /* the color picker has been detached

from the More Choices list */

/* Color Picker attributes (bits 23 to 0 in the componentFlags field of the
component 'thng') */

#define CanDoColor 1 /* the color picker supports Color QuickDraw */
#define CanDoBlackWhite 2 /* the color picker supports Basic QuickDraw */
#define AlwaysModifiesPalette 4 /* the color picker will modify palette

entries on indexed devices */
#define MayModifyPalette

8 /* the color picker will modify palette if
told it can */

#define PickerIsColorSyncAware 16 /* the color picker is ColorSync aware and can
accept non-RGB colors */

#define CanDoSystemDialog 32 /* the color picker supports a system-owned
dialog box */

#define CanDoApplDialog 64 /* the color picker supports an application-
owned dialog box */

#define HasOwnDialog 128 /* the color picker has its own dialog box */
#define CanDetach 256 /* the picker can detach from a system-owned

dialog box */

typedef struct PickerInitData {
short scriptCode; /* script code */
short iconSuiteID; /* resource ID for icon family */
ResType helpResType; /* resource type for help balloon */
short helpResID; /* resource ID for help balloon */

} PickerInitData;

/* the application-defined event filter function for DoPickerEvent */
typedef pascal Boolean (*UserEventProc)(EventRecord *event);

/* the application-defined function for dynamically changing colors */
typedef pascal void (*ColorChangedProc)(long userData,PMColorPtr newColor);

ACI Book : Color Picker Manager Page 53 Thursday, July 13, 1995 8:40 AM

C H A P T E R 2

Color Picker Manager

2-54 Summary of the Color Picker Manager

enum EventForcasters {
kNoForcast, /* no forecast (e.g., an update event) */
kMenuChoice, /* this event causes a menu to be chosen */
kDialogAccept, /* the dialog box will be accepted */
kDialogCancel, /* the dialog box will be cancelled */
kLeaveFocus, /* the focus will leave the color picker */
kPickerSwitch, /* new color picker chosen in More Choices list */
kNormalKeyDown, /* a normal key down to an edit field */
kNormalMouseDown /* a normal click in the color picker's focus */

};
typedef short EventForcaster;

#define PickerComponentType 'cpkr'

typedef enum { /* request codes handled by a color picker */
kInitPicker, /* initialize any private data */
kTestGraphicsWorld, /* test operability on current system */
kGetDialog, /* if using own dialog box, return a pointer to the dialog

box; if using the default dialog box, return nil */
kGetItemList, /* return a list of items for dialog box */
kGetColor, /* return original or last chosen color */
kSetColor, /* change original or last chosen color */
kEvent, /* perform any special processing necessary for an event */
kEdit, /* perform an editing command */
kSetVisibility, /* make color picker visible or invisible */
kDrawPicker, /* redraw color picker */
kItemHit, /* respond to event in a dialog box item */
kSetBaseItem, /* set base item for dialog box items */
kGetProfile, /* return a handle to the destination profile */
kSetProfile, /* change the destination profile */
kGetPrompt, /* return prompt string */
kSetPrompt, /* set a new prompt */
kGetIconData, /* return script code and resource ID of icon family */
kGetEditMenuState, /* return information about edit menu */
kSetOrigin, /* update any information about local

coordinate system of dialog box */
kExtractHelpItem /* return information about help balloons */

} PickerMessages;

typedef struct MenuItemInfo {
short editMenuID; /* resource ID of the edit menu */
short cutItem; /* item number of Cut command */

ACI Book : Color Picker Manager Page 54 Thursday, July 13, 1995 8:40 AM

C H A P T E R 2

Color Picker Manager

Summary of the Color Picker Manager 2-55

C
olor P

icker M
anager

2

short copyItem; /* item number of Copy command */
short pasteItem; /* item number of Paste command */
short clearItem; /* item number of Clear command */
short undoItem; /* item number of Undo command */

} MenuItemInfo;

typedef struct MenuState {
Boolean cutEnabled; /* whether Cut menu item is enabled */
Boolean copyEnabled; /* whether Copy menu item is enabled */
Boolean pasteEnabled; /* whether Paste menu item's enabled */
Boolean clearEnabled; /* whether Clear menu item's enabled */
Boolean undoEnabled; /* whether Undo menu item is enabled */
Str255 undoString; /* text for Undo menu item */

} MenuState;

typedef struct ColorPickerInfo { /* color picker parameter block */
PMColor theColor; /* a picker color */
CMProfileHandle dstProfile; /* profile for destination device */
long flags; /* color picker flags */
DialogPlacementSpec placeWhere; /* dialog box placement specifier */
Point dialogOrigin; /* upper-left corner of dialog box */
long pickerType; /* color picker type */
UserEventProc eventProc; /* event filter function */
ColorChangedProc colorProc; /* color change function */
long colorProcData; /* data for color change function */
Str255 prompt; /* color picker prompt */
MenuItemInfo mInfo; /* application’s edit menu items */
Boolean newColorChosen; /* whether user changed color */

} ColorPickerInfo;

typedef struct SystemDialogInfo {
long flags; /* color picker flags */
long pickerType; /* color picker type */
DialogPlacementSpec placeWhere; /* dialog box placement specifier */
Point dialogOrigin; /* upper-left corner of dialog box */
MenuItemInfo mInfo; /* application's Edit menu items */

} SystemDialogInfo;

typedef struct PickerDialogInfo {
long flags; /* color picker flags */
long pickerType; /* color picker type */

ACI Book : Color Picker Manager Page 55 Thursday, July 13, 1995 8:40 AM

C H A P T E R 2

Color Picker Manager

2-56 Summary of the Color Picker Manager

Point *dialogOrigin; /* upper-left corner of dialog box */
MenuItemInfo mInfo; /* application's menu items */

} PickerDialogInfo;

typedef struct ApplicationDialogInfo {
long flags; /* color picker flags */
long pickerType; /* color picker type */
DialogPtr theDialog; /* pointer to dialog box */
Point pickerOrigin; /* upper-left corner of dialog box */
MenuItemInfo mInfo; /* application's Edit menu items */

} ApplicationDialogInfo;

typedef struct EventData {
EventRecord *event; /* an event record */
PickerAction action; /* action performed by color picker */
short itemHit; /* the item number for the item

associated with the event */
Boolean handled; /* true if color picker handled event */
ColorChangedProc colorProc; /* application-defined function for

changing colors in the document */
long colorProcData; /* data used by application for function

in ColorChangedProc field */
EventForcaster forcast; /* event forecaster */

} EventData;

typedef struct EditData {
EditOperation theEdit; /* the editing operation */
PickerAction action; /* action performed by color picker */
Boolean handled; /* whether action was handled */

} EditData;

typedef struct ItemHitData {
short itemHit; /* item receiving event */
ItemModifier iMod; /* type of event */
PickerAction action; /* picker's action */
ColorChangedProc colorProc; /* color-changed function */
long colorProcData; /* data for color-changed function */
Point where; /* mouse location */

} ItemHitData;

typedef struct HelpItemInfo {
long options; /* 'hmnu' options bits */
Point tip; /* tip location */

ACI Book : Color Picker Manager Page 56 Thursday, July 13, 1995 8:40 AM

C H A P T E R 2

Color Picker Manager

Summary of the Color Picker Manager 2-57

C
olor P

icker M
anager

2

Rect altRect; /* alternate rectangle */
short theProc; /* res ID of balloon-definition function */
short variant; /* variation code */
HMMessageRecord helpMessage; /* help message structure */

} HelpItemInfo;

typedef unsigned short SmallFract; /* unsigned fraction between 0 and 1 */

enum {MaxSmallFract = 0x0000FFFF}; /* Maximum small fract value, as long */

struct HSVColor {
SmallFract hue; /* fraction of circle, red at 0 */
SmallFract saturation; /* 0-1, 0 for gray, 1 for pure color */
SmallFract value; /* 0-1, 0 for black, 1 for maximum intensity */

};
typedef struct HSVColor HSVColor;

struct HSLColor {
SmallFract hue; /* fraction of circle, red at 0 */
SmallFract saturation; /* 0-1, 0 for gray, 1 for pure color */
SmallFract lightness; /* 0-1, 0 for black, 1 for white */

};
typedef struct HSLColor HSLColor;

struct CMYColor {
SmallFract cyan; /* cyan component */
SmallFract magenta; /* magenta component */
SmallFract yellow; /* yellow component */

};
typedef struct CMYColor CMYColor;

Color Picker Manager Functions 2

Using the Standard Color Picker Dialog Box
pascal OSErr PickColor (ColorPickerInfo *theColorInfo);

pascal Boolean GetColor (Point where,
Str255 prompt,
RGBColor *inColor,
RGBColor *outColor):

ACI Book : Color Picker Manager Page 57 Thursday, July 13, 1995 8:40 AM

C H A P T E R 2

Color Picker Manager

2-58 Summary of the Color Picker Manager

Creating a Customized Color Picker Dialog Box
pascal OSErr CreateColorDialog (SystemDialogInfo *info,

picker *thePicker);

pascal OSErr CreatePickerDialog (PickerDialogInfo *info,
picker *thePicker);

pascal OSErr AddPickerToDialog (ApplicationDialogInfo *info,
picker *thePicker);

pascal OSErr SetPickerVisibility (picker thePicker,
short visible);

pascal OSErr GetPickerVisibility (picker thePicker,
Boolean *visible);

pascal OSErr SetPickerPrompt (picker thePicker,
Str255 promptString);

pascal OSErr GetPickerOrigin (picker thePicker,
Point *where);

pascal OSErr SetPickerOrigin (picker thePicker,
Point where);

pascal OSErr DisposeColorPicker (picker thePicker);

Handling Events in a Color Picker Dialog Box
pascal OSErr DoPickerEvent (picker thePicker,

EventData *data);

pascal OSErr DoPickerEdit (picker thePicker,
EditData *data);

pascal OSErr DoPickerDraw (picker thePicker);

Getting Colors From and Setting Colors for a Color Picker
pascal OSErr GetPickerColor (picker thePicker,

ColorType whichColor,
PMColor *color);

pascal OSErr SetPickerColor (picker thePicker,
ColorType whichColor,
PMColor *color);

ACI Book : Color Picker Manager Page 58 Thursday, July 13, 1995 8:40 AM

C H A P T E R 2

Color Picker Manager

Summary of the Color Picker Manager 2-59

C
olor P

icker M
anager

2

Getting the Menu State and the Help Balloons for a Color Picker
pascal OSErr GetPickerEditMenuState (

picker thePicker,
MenuState *mState);

pascal OSErr ExtractPickerHelpItem (
picker thePicker,
short itemNo,
short whichState,
HelpItemInfo *helpInfo);

Getting and Setting Color-Matching Profiles for a Color Picker
pascal OSErr GetPickerProfile (picker thePicker,

CMProfileHandle *profile);

pascal OSErr SetPickerProfile (picker thePicker,
CMProfileHandle profile);

Converting Colors Among Color Models
pascal void CMY2RGB (const CMYColor *cColor,

RGBColor *rColor);

pascal void RGB2CMY (const RGBColor *rColor,
CMYColor *cColor);

pascal void HSL2RGB (const HSLColor *hColor,
RGBColor *rColor);

pascal void RGB2HSL (const RGBColor *rColor,
HSLColor *hColor);

pascal void HSV2RGB (const HSVColor *hColor,
RGBColor *rColor);

pascal void RGB2HSV (const RGBColor *rColor,
HSVColor *hColor);

Converting Between SmallFract and Fixed Values
pascal SmallFract Fix2SmallFract (Fixed f)

pascal Fixed SmallFract2Fix (SmallFract s);

ACI Book : Color Picker Manager Page 59 Thursday, July 13, 1995 8:40 AM

C H A P T E R 2

Color Picker Manager

2-60 Summary of the Color Picker Manager

Application-Defined Functions 2

Handling Application-Directed Events in a Color Picker
pascal Boolean MyPickerFilterFunction (

EventRecord *event)

Changing Colors in a Document
pascal void MyColorChangedFunction (

long userData,
PMColorPtr newColor)

Color Picker–Defined Functions 2

Responding to Creation and Initialization Requests
pascal long MyTestGraphicsWorld (PickerStorageHndl storage,

PickerInitData *data);

pascal long MyInitPicker (PickerStorageHndl storage,
PickerInitData *data);

pascal DialogPtr MyGetDialog (PickerStorageHndl storage);

pascal long MyDrawPicker (PickerStorageHndl storage);

pascal long MySetVisibility (PickerStorageHndl storage,
Boolean visible);

Responding to Requests to Return and Set Color Picker Information
pascal long MyGetColor (PickerStorageHndl storage,

ColorType whichColor,
PMColorPtr color);

pascal long MySetColor (PickerStorageHndl storage,
ColorType whichColor,
PMColorPtr color);

pascal long MyGetItemList (PickerStorageHndl storage);

pascal long MySetBaseItem (PickerStorageHndl storage,
short baseItem);

ACI Book : Color Picker Manager Page 60 Thursday, July 13, 1995 8:40 AM

C H A P T E R 2

Color Picker Manager

Summary of the Color Picker Manager 2-61

C
olor P

icker M
anager

2

pascal long MyGetIconData (PickerStorageHndl storage,
PickerIconData *data);

pascal long MyGetPrompt (PickerStorageHndl storage,
Str255 prompt);

pascal long MySetPrompt (PickerStorageHndl storage,
Str255 prompt);

pascal long MySetOrigin (PickerStorageHndl storage,
Point where);

pascal CMProfileHandle MyGetProfile (
PickerStorageHndl storage);

pascal long MySetProfile (PickerStorageHndl storage,
CMProfileHandle profile);

pascal long MyGetEditMenuState (PickerStorageHndl storage,
MenuState *mState);

pascal long MyExtractHelpItem (PickerStorageHndl storage,
short itemNo,
short whichMsg,
HelpItemInfo *helpInfo);

Responding to Events in a Color Picker
pascal long MyDoEvent (PickerStorageHndl storage,

EventData *data);

pascal long MyItemHit (PickerStorageHndl storage,
ItemHitData *data);

pascal long MyDoEdit (PickerStorageHndl storage,
EditData *data);

ACI Book : Color Picker Manager Page 61 Thursday, July 13, 1995 8:40 AM

ACI Book : Color Picker Manager Page 62 Thursday, July 13, 1995 8:40 AM

C H A P T E R 3

Contents

3-1

Contents

3

Figure 3-0
Listing 3-0
Table 3-0

3 Introduction to the ColorSync
Manager

Introduction to Color and Color Management Systems 3-4
Color: A Brief Overview 3-4

Color Perception 3-5
Hue, Saturation, and Brightness 3-5
Additive and Subtractive Color 3-6

Color Spaces 3-6
Gray Spaces 3-7
RGB-Based Color Spaces 3-7
CMY-Based Color Spaces 3-10
Device-Independent Color Spaces 3-11
Indexed Color Spaces 3-14

Color-Component Values, Color Values, and Colors 3-15
Color Conversion and Color Matching 3-15
Color Management Systems 3-17

About the ColorSync Manager 3-18
Programming Interfaces 3-18
About the ColorSync Manager’s Memory Allocation and Use 3-19
Profiles 3-19
Color Management Modules 3-22
When Color Matching Occurs 3-24

QuickDraw GX and the ColorSync Manager 3-26
What Users Can Do With ColorSync-Supportive Applications 3-27

Display Matching 3-27
Gamut Checking 3-27
Soft Proofing 3-28
Device-Linked Profiles 3-28
Calibration 3-28

This document was created with FrameMaker 4.0.4

ACI Book : Intro to ColorSync ManagerTOC Page 1 Thursday, July 13, 1995 8:40 AM

ACI Book : Intro to ColorSync ManagerTOC Page 2 Thursday, July 13, 1995 8:40 AM

C H A P T E R 3

3-3

Introduction to the C
olorS

ync M
anager

3

Introduction to the ColorSync Manager 3

This chapter describes the

ColorSync Manager,

 which provides your
application or color peripheral device driver with device-independent
color-matching and color conversion services. The ColorSync Manager allows
you to match colors accurately across different input, display, and output
devices. You can also convert colors easily and exactly across color spaces
belonging to the same base family. Color spaces, color matching, and color
conversion are discussed throughout this chapter.

Read this chapter if your software product performs color drawing, printing, or
calculation or if your peripheral device supports color. You should also read
this chapter if you are creating a color management module (CMM) to be used
for color matching, color gamut checking, and profile management.

The ColorSync Manager provides your application, device driver, or CMM
with color-matching capabilities that your users can employ without the need
for a proprietary environment. The ColorSync Manager provides the first
system-level implementation of an industry-standard color-matching system.

The ColorSync Manager is contained in a system extension. To provide its
color-matching services, the ColorSync Manager uses one or more color
management modules (CMMs) and profiles. A

color management module
(CMM)

is a component that implements color-matching and gamut-checking
services. Your application or driver can supply its own CMM, or you can use
the robust default CMM that Apple supplies. A

profile

 provides a means of
defining the color characteristics of a given device in a particular state. A
separate control panel, the ColorSync

TM

System Profile control panel, allows the
user to specify the ColorSync system profile. The

system profile

 defines the
color characteristics for the system’s display device. CMMs and profiles are
discussed throughout this chapter.

The ColorSync Manager relies on the Component Manager for the basis of the
framework that allows plug-and-play capability for third-party CMMs.

The next section, “Introduction to Color and Color Management Systems,”
provides a general introduction to color models and to approaches taken by the
publishing and computer industries to manage color.

“About the ColorSync Manager,” beginning on page 3-18, provides a general
introduction to Apple Computer’s implementation of the ColorSync color
management system.

This document was created with FrameMaker 4.0.4

ACI Book : Intro to ColorSync Manager Page 3 Thursday, July 13, 1995 8:40 AM

C H A P T E R 3

Introduction to the ColorSync Manager

3-4

Introduction to Color and Color Management Systems

Introduction to Color and Color Management Systems 3

Different types of color peripheral devices (such as displays, scanners, and
printers) use different methods for representing color information and are
capable of producing different ranges of colors. As a result, colors do not match
consistently when scanned or drawn to many different imaging devices. To
address this problem, the ColorSync Manager allows users to transparently
move color images from one device to another and from one operating system
to another. But before learning about the ColorSync Manager, it is necessary to
have a basic knowledge of color.

This chapter provides a general introduction to the basics of color and color
management systems. Read this chapter to learn about color perception,
additive and subtractive color systems, how different peripheral devices
represent color, and how color management systems maintain consistent color
among devices.

For more information on color theory and color spaces, you may also want to
read other books such as these:

■

Fred W. Billmeyer, Jr., and Max Saltzman.

Principles of Color Technology

,
second edition. Wiley, 1981.

■

James D. Foley.

Computer Graphics: Principles and Practice,

 second edition.
Addison-Wesley, 1990.

■

Roy Hall.

Illumination and Color in Computer Generated Imagery.

New York:
Springer-Verlag, 1988.

■

R.W.G. Hunt.

Measuring Colour,

 second edition. Prentice-Hall, 1991.

Color: A Brief Overview 3

Color is created through the interaction of a light, an object, and the eye. There
must be a light to illuminate the object. White light contains many different
colors of light. This can be seen by observing how sunlight is broken into its
components when passed through a prism. The resulting rainbow represents
the “visible spectrum” consisting of the colors that can be seen by the eye. Each
color of light has a particular wavelength. An object appears to be a certain

ACI Book : Intro to ColorSync Manager Page 4 Thursday, July 13, 1995 8:40 AM

C H A P T E R 3

Introduction to the ColorSync Manager

Introduction to Color and Color Management Systems

3-5

Introduction to the C
olorS

ync M
anager

3

color because it has pigments that absorb some of the wavelengths of the light
that illuminates it while reflecting others back to the eye.

Color Perception 3

The eye contains three types of cone receptors. Each receptor is sensitive to
about one-third of the visible spectrum. These are blue light, green light, and
red light. The color the eyes see in an object depends on how much red, green,
and blue light is reflected to the eye. Black is perceived when no light is
reflected to the eye. When red, green, and blue lights are reflected to the eye in
equal amounts, then white is perceived.

Even the conditions in which color is viewed greatly affect the perception of
color. The light source and environment must be standardized for accurate
viewing. When viewing colors, people in the graphic arts industry, for
example, avoid fluorescent and tungsten lighting, use a particular illuminant,
and proof against a neutral gray surface.

Color images frequently contain hundreds of distinctly different colors. To
reproduce such images on a color peripheral device would be impractical.
However, a very broad range of colors can be visually matched by a mixture of
three “primary” lights. This allows colors to be reproduced on a display by a
mixture of red, green, and blue lights or on a printer by a mixture of cyan,
magenta, and yellow inks or pigments. Cyan absorbs red, magenta absorbs
green, and yellow absorbs blue. Black is printed to increase contrast and make
up for the deficiency of the inks.

The use of only three colors to reproduce thousands of colors is possible
because the eyes are basically responsive to these three broad sections of the
spectrum. The three color values constitute the specification for the matching of
properties of a color.

Hue, Saturation, and Brightness 3

Color is described as having three dimensions. These dimensions are hue,
saturation, and brightness.

Hue

 is the name of the color, which places the color
in its correct position in the spectrum. For example, if a color is described as
blue, it is distinguished from yellow, red, green, or other colors.

Saturation

refers to the degree of hue in a color, or a color’s strength. A neutral gray is
considered to have zero saturation. A saturated red would have a color similar
to apple red.

Brightness

 is the term used to describe differences in the intensity
of light reflected from or transmitted by a color image. The hue of an object

ACI Book : Intro to ColorSync Manager Page 5 Thursday, July 13, 1995 8:40 AM

C H A P T E R 3

Introduction to the ColorSync Manager

3-6

Introduction to Color and Color Management Systems

may be blue, but the terms

dark

 and

light

 distinguish the brightness of one
object from another.

Additive and Subtractive Color 3

The

additive color theory

 refers to the process of mixing red, green, and blue
lights, which are each approximately one-third of the visible spectrum.
Additive color theory explains how red, green, and blue light can be added to
make white light. Red and green projected together produce yellow, red and
blue produce magenta, and blue and green produce cyan. With transmitted
light, all the colors of the rainbow can be matched.

The

subtractive color theory

 refers to the process of combining subtractive
colorants such as inks or dyes. In this theory colorants of cyan, magenta, and
yellow are used to subtract a portion of the white light that is illuminating an
object. The color of an object is the result of the color lights that are not
absorbed by the object. An apple appears that red because the surface of the
apple absorbs the blue and green light.

Color Spaces 3

A

color space

 is a model for representing color in terms of intensity values; a
color space specifies how color information is represented. It defines a one-,
two-, three-, or four-dimensional space whose dimensions, or

 components,

represent intensity values. A color component is also referred to as a

color
channel

. For example, RGB space is a three-dimensional color space whose
components are the red, green, and blue intensities that make up a given color.
Visually, these spaces are often represented by various solid shapes, such as
cubes, cones, or polyhedra.

The ColorSync Manager directly supports several different color spaces to give
you the convenience of working in whatever kind of color data most suits your
needs. The ColorSync color spaces fall into several groups, or base families.
They are

■

gray spaces,

 used for grayscale display and printing

■

RGB-based color spaces,

 used mainly for displays and scanners

■

CMYK-based color spaces,

 used mainly for color printing

ACI Book : Intro to ColorSync Manager Page 6 Thursday, July 13, 1995 8:40 AM

C H A P T E R 3

Introduction to the ColorSync Manager

Introduction to Color and Color Management Systems

3-7

Introduction to the C
olorS

ync M
anager

3

■

device-independent color spaces,

 used mainly for color models

■

heterogeneous HiFi color spaces,

 also referred to as multichannel color
spaces, primarily used in new printing processes involving the use of gold
plate and silver, and also for spot coloring

All color spaces within a base family differ only in details of storage format or
else are related to each other by very simple mathematical formulas.

Gray Spaces 3

Gray spaces typically have a single component, ranging from black to white, as
shown in Figure 3-1. Gray spaces are used for black-and-white and grayscale
display and printing.

Figure 3-1

Gray space

RGB-Based Color Spaces 3

The

 RGB space

 is a three-dimensional color space whose components are the
red, green, and blue intensities that make up a given color. For example,
scanners read the amounts of red, green, and blue light that are reflected from
an image and then convert those amounts into digital values. Displays receive
the digital values and convert them into red, green, and blue light seen
onscreen.

RGB-based color spaces are the most commonly used color spaces in computer
graphics, primarily because they are directly supported by most color displays
and scanners. RGB color spaces are device dependent and additive. The groups
of color spaces within the RGB base family include

■

RGB spaces

■

HSV and HLS spaces

Black White

ACI Book : Intro to ColorSync Manager Page 7 Thursday, July 13, 1995 8:40 AM

C H A P T E R 3

Introduction to the ColorSync Manager

3-8

Introduction to Color and Color Management Systems

RGB Spaces 3

Any color expressed in RGB space is some mixture of three primary colors: red,
green, and blue. Most RGB-based color spaces can be visualized as a cube, as in
Figure 3-2, with corners of black, the three primaries (red, green, and blue), the
three secondaries (cyan, magenta, and yellow), and white. (See also Color
Plate 1 at the front of this book.)

Figure 3-2

RGB color space

HSV and HLS Color Spaces 3

HSV space

 and

 HLS space

 are transformations of RGB space that allow colors
to be described in terms more natural to an artist. The name

HSV

 stands for

hue, saturation,

 and

value,

 and

HLS

 stands for

hue, lightness,

 and

saturation.

 The
two spaces can be thought of as being single and double cones, as shown in
Figure 3-3. (See also Color Plate 2 at the front of this book.)

Yellow

Magenta

Blue

Black

Green

Cyan

White

RedRed

ACI Book : Intro to ColorSync Manager Page 8 Thursday, July 13, 1995 8:40 AM

C H A P T E R 3

Introduction to the ColorSync Manager

Introduction to Color and Color Management Systems

3-9

Introduction to the C
olorS

ync M
anager

3

Figure 3-3

HSV color space and HLS color space

The components in HLS space are analogous, but not completely identical, to
the components in HSV space:

■

The hue component in both color spaces is an angular measurement,
analogous to position around a color wheel. A hue value of 0 indicates the
color red; the color green is at a value corresponding to 120

°

, and the color
blue is at a value corresponding to 240

°

. Horizontal planes through the
cones in Figure 3-3 are hexagons; the primaries and secondaries (red, yellow,
green, cyan, blue, and magenta) occur at the vertices of the hexagons.

■

The saturation component in both color spaces describes color intensity. A
saturation value of 0 (in the middle of a hexagon) means that the color is
“colorless” (gray); a saturation value at the maximum (at the outer edge of a
hexagon) means that the color is at maximum “colorfulness” for that hue
angle and brightness.

■

The value component (in HSV space) and the lightness component (in HLS
space) describe brightness or luminance. In both color spaces, a value of 0
represents black. In HSV space, a maximum value means that the color is at

HueHue

HLS space

Lightness
Value

HSV space

Saturation

Saturation

ACI Book : Intro to ColorSync Manager Page 9 Thursday, July 13, 1995 8:40 AM

C H A P T E R 3

Introduction to the ColorSync Manager

3-10

Introduction to Color and Color Management Systems

its brightest. In HLS space, a maximum value for lightness means that the
color is white, regardless of the current values of the hue and saturation
components. The brightest, most intense color in HLS space occurs at a
lightness value of exactly half the maximum.

CMY-Based Color Spaces 3

CMY-based color spaces are most commonly used in color printing systems.
They are device dependent and subtractive in nature. The groups of color
spaces within the CMY family include

■

CMY

, which is not very common except on low-end color printers

■

CMYK

, which models the way inks or dyes are applied to paper in printing

The name

CMYK

 refers to cyan, magenta, yellow, and black. Cyan, magenta,
and yellow are the three primary colors in this color space, and red, green, and
blue are the three secondaries. Theoretically black is not needed. However,
when full-saturation cyan, magenta, and yellow inks are mixed equally on
paper, the result is usually a dark brown, rather than black. Therefore, black ink
is overprinted in darker areas to give a better appearance. Figure 3-4 shows
how additive colors expressed in CMYK space and subtractive colors
expressed in RGB space mix to form other colors. (See also Color Plates 1 and 3
at the front of this book.)

Figure 3-4

Additive colors expressed in CMYK and subtractive colors expressed in

RGB

Red

Green

Cyan Yellow

Magenta

Blue Magenta

Yellow

Green Red

Blue

Cyan

BlackWhite

ACI Book : Intro to ColorSync Manager Page 10 Thursday, July 13, 1995 8:40 AM

C H A P T E R 3

Introduction to the ColorSync Manager

Introduction to Color and Color Management Systems

3-11

Introduction to the C
olorS

ync M
anager

3

Theoretically, the relation between RGB values and CMY values in CMYK
space is quite simple:

Cyan = 1.0 – red
Magenta = 1.0 – green
Yellow = 1.0 – blue

(where red, green, and blue intensities are expressed as fractional values
varying from 0 to 1). In reality, the process of deriving the cyan, magenta,
yellow, and black values from a color expressed in RGB space is complex,
involving device-specific, ink-specific, and even paper-specific calculations of
the amount of black to add in dark areas (black generation) and the amount of
other ink to remove (undercolor removal) where black is to be printed. The
ColorSync Manager performs those calculations for you when converting
among color spaces.

Device-Independent Color Spaces 3

Some color spaces allow color to be expressed in a device-independent way.
Whereas RGB colors vary with display and scanner characteristics, and CMYK
colors vary with printer, ink, and paper characteristics,

device-independent colors

are meant to be true representations of colors as perceived by the human eye.
These color representations, called

device-independent color spaces,

 result
from work carried out in 1931 by the Commission Internationale d’Eclairage
(CIE) and for that reason are also called

CIE-based color spaces

.

The most common method of identifying color within a color space is a
three-dimensional geometry. The three color attributes, hue, saturation, and
brightness, are measured, assigned numeric values, and plotted within the
color space.

RGB colors vary with display characteristics, and CMYK colors vary with
printer, ink, and paper characteristics. Conversion from an RGB color space to a
CMYK color space involves a number of variables. The type of printer or
printing press, the paper stock, and the inks used all influence the balance
between cyan, magenta, yellow, and black. In addition, different devices have
different

gamuts,

 or ranges of colors that they can produce. Because the colors
produced by RGB and CMYK specifications vary from device to device, they’re
called

device-dependent color spaces. Device color spaces enable the
specification of color values that are directly related to their representation on a
particular device.

ACI Book : Intro to ColorSync Manager Page 11 Thursday, July 13, 1995 8:40 AM

C H A P T E R 3

Introduction to the ColorSync Manager

3-12

Introduction to Color and Color Management Systems

Device-independent color spaces, or

interchange color spaces

, are used for the
interchange of color data from the native color space of one device to the native
color space of another device.

The CIE created a set of color spaces that specify color in terms of human
perception. It then developed algorithms to derive three imaginary primary
constituents of color—X, Y, and Z—that can be combined at different levels to
produce all the color the human eye can perceive. The resulting color model,
CIE, and other CIE color models form the basis for all color management
systems. Although the RGB and CMYK values differ from device to device,
human perception of color remains consistent across devices. Colors can be
specified in the CIE-based color spaces in a way that is independent of the
characteristics of any particular display or reproduction device. The goal of this
standard is for a given CIE-based color specification to produce consistent
results on different devices, up to the limitations of each device.

CIELUV is a CIE-based color space used for representing additive color
systems, including color lights and emissive phosphor displays. CIELAB is an
independent color space used for representing subtractive systems, where light
is absorbed by colorants such as inks and dyes. (See Color Plate 4 at the front of
this book.)

XYZ Space 3

There are several CIE-based color spaces, but all are derived from the
fundamental

XYZ space.

 The XYZ space allows colors to be expressed as a
mixture of the three

tristimulus values

 X, Y, and Z. The term

tristimulus

 comes
from the fact that color perception results from the retina of the eye responding
to three types of stimuli. After experimentation, the CIE set up a hypothetical
set of primaries, XYZ, that correspond to the way the eye’s retina behaves.

The CIE defined the primaries so that all visible light maps into a positive
mixture of X, Y, and Z, and so that Y correlates approximately to the apparent
lightness of a color. Generally, the mixtures of X, Y, and Z components used to
describe a color are expressed as percentages ranging from 0 percent up to, in
some cases, just over 100 percent.

Other device-independent color spaces based on XYZ space are used primarily
to relate some particular aspect of color or some perceptual color difference to
XYZ values.

ACI Book : Intro to ColorSync Manager Page 12 Thursday, July 13, 1995 8:40 AM

C H A P T E R 3

Introduction to the ColorSync Manager

Introduction to Color and Color Management Systems

3-13

Introduction to the C
olorS

ync M
anager

3

Yxy Space 3

Yxy space expresses the XYZ values in terms of x and y chromaticity
coordinates, somewhat analogous to the hue and saturation coordinates of
HSV space. The coordinates are shown in the following formulas, used to
convert XYZ into Yxy:

Y = Y
x = X / (X+Y+Z)
y = Y / (X+Y+Z)

Note that the Z tristimulus value is incorporated into the new coordinates and
does not appear by itself. Since Y still correlates to the lightness of a color, the
other aspects of the color are found in the chromaticity coordinates x and y.
This allows color variation in Yxy space to be plotted on a two-dimensional
diagram. Figure 3-5 shows the layout of colors in the x and y plane of Yxy
space.

Figure 3-5 Yxy chromaticities in the CIE color space

1.0

0 1.0

y

x

Red
Cyan

White

Magenta

Green

Color
families

Yellow

Blue

ACI Book : Intro to ColorSync Manager Page 13 Thursday, July 13, 1995 8:40 AM

C H A P T E R 3

Introduction to the ColorSync Manager

3-14 Introduction to Color and Color Management Systems

L*u*v* Space and L*a*b* Space 3

One problem with representing colors using the XYZ and Yxy color spaces is
that they are perceptually nonlinear: it is not possible to accurately evaluate the
perceptual closeness of colors based on their relative positions in XYZ or Yxy
space. Colors that are close together in Yxy space may seem very different to
observers, and colors that seem very similar to observers may be widely
separated in Yxy space.

L*u*v* space is a nonlinear transformation of XYZ space in order to create a
perceptually linear color space. L*a*b* space is a nonlinear transformation
(that is, a third-order approximation) of the Munsell color-notation system
(which is not described here). Both are designed to match perceived color
difference with quantitative distance in color space.

Both L*u*v* space and L*a*b* space represent colors relative to a reference
white point, which is a specific definition of what is considered white light,
represented in terms of XYZ space, and usually based on the whitest light that
can be generated by a given device. (In that sense L*u*v* and L*a*b* are not
completely device independent; two numerically equal colors are truly
identical only if they were measured relative to the same white point.)

Measuring colors in relation to a white point allows for color measurement
under a variety of illuminations.

A primary benefit of using L*u*v* space and L*a*b* space is that the perceived
difference between any two colors is proportional to the geometric distance in
the color space between their color values. For applications where closeness of
color needs to be quantified, such as in colorimetry, gemstone evaluation, or
dye matching, use of L*u*v* space or L*a*b* space is common.

Indexed Color Spaces 3

In situations where you use only a limited number of colors, it can be
impractical or impossible to specify colors directly. If you have a bitmap with
only a few bits per pixel (1, 2, 4, or 8, for example), each pixel is too small to
contain a complete color specification; its color must be specified as an index
into a list or table of color values. If you are using spot colors in printing or pen
colors in plotting, it can be simpler and more precise to specify each color as an
index into a list of colors instead of an actual color value. Also, if you want to
restrict the user to drawing with a specific set of colors, you can put the colors
in a list and specify them by index.

ACI Book : Intro to ColorSync Manager Page 14 Thursday, July 13, 1995 8:40 AM

C H A P T E R 3

Introduction to the ColorSync Manager

Introduction to Color and Color Management Systems 3-15

Introduction to the C
olorS

ync M
anager

3

Indexed space is the color space you use when drawing with indirectly
specified colors. An indexed color value (a color specification in indexed color
space) consists of an index value that refers to a color in a color list. Color
values are defined in the next section.

Color-Component Values, Color Values, and Colors 3

Each of the color spaces described in this chapter requires one or more numeric
values in a particular format to specify a color.

Each dimension, or component, in a color space has a color-component value.
A color-component value can vary from 0 to 65,535 (0xFFFF), although the
numerical interpretation of that range is different for different color spaces. In
most cases, color-component intensities are interpreted numerically as varying
between 0 and 1.0.

Depending on the color space used, one, two, three, or four color-component
values combine to make a color value. For HiFi colors, up to eight
color-component values combine to make a color. A color value is a structure; it
is the complete specification of a color in a given color space.

Color Conversion and Color Matching 3

Color conversion is the process of converting colors from one color space to
another. Color matching, which entails color conversion, is the process of
adjusting or matching these converted colors appropriately to achieve
maximum similarity from the gamut of one color space to the other. Color
matching always involves color conversion, whereas color conversion may not
entail color matching.

Different imaging devices (scanners, displays, printers) work in different color
spaces, and each can have a different gamut. Color displays from different
manufacturers all use RGB colors but may have different RGB gamuts. Printers
that work in CMYK space vary drastically in their gamuts, especially if they
use different printing technologies. Even a single printer’s gamut can vary
significantly with the ink or type of paper it uses. It’s easy to see that
conversion from RGB colors on an individual display to CMYK colors on an
individual printer using a particular paper type can lead to unpredictable
results.

When an image is output to a particular device, the device displays only those
colors that are within its gamut. Likewise, when an image is created by

ACI Book : Intro to ColorSync Manager Page 15 Thursday, July 13, 1995 8:40 AM

C H A P T E R 3

Introduction to the ColorSync Manager

3-16 Introduction to Color and Color Management Systems

scanning, only those colors within the scanner’s gamut are saved. Devices with
different gamuts cannot reproduce each other’s colors exactly, but careful
shifting of the colors used on one device can improve the visual match when
the image is displayed on another.

Figure 3-6 shows examples of two devices’ color gamuts, projected onto Yxy
space. Both devices produce less than the total possible range of colors, and the
printer gamut is restricted to a significantly smaller range than the RGB gamut.
The problem illustrated by Figure 3-6 is to be able to display the same image on
both devices with a minimum of visual mismatch. The solution to the problem
is to match the colors of the image using profiles for both devices and one or
more color management modules (CMMs).

Figure 3-6 Color gamuts for two devices expressed in Yxy space

1.0

0 1.0

y

x

RGB gamut

Printer gamut

ACI Book : Intro to ColorSync Manager Page 16 Thursday, July 13, 1995 8:40 AM

C H A P T E R 3

Introduction to the ColorSync Manager

Introduction to Color and Color Management Systems 3-17

Introduction to the C
olorS

ync M
anager

3

Color Management Systems 3

Members of the computer and publishing industries have developed color
management systems (CMSs) to convert colors from the color space of one
device to the color space of another device. The goal of these systems is to
provide consistent color across peripheral devices and across operating-system
platforms. Most CMSs are proprietary. The ColorSync Manager, however,
supports an industry-standard color profile specification defined by the
International Color Consortium.

The components of a color management system include

■ collections of color characteristics (these collections are given various names,
such as color tags, precision transforms, or in the case of the International
Color Consortium, profiles)

■ a color management module (CMM) that performs the color matching
among color characteristic collections

■ a programming interface for invoking color matching

■ device-independent color spaces

A color management system gives the user the ability to perform color
matching, to see in advance what colors cannot be accurately reproduced on a
specific device, to simulate the range of colors of one device on another, and to
calibrate peripheral devices using a device profile and a calibration application.

The next section describes the ColorSync Manager, which constitutes the color
management system for the Macintosh OS.

ACI Book : Intro to ColorSync Manager Page 17 Thursday, July 13, 1995 8:40 AM

C H A P T E R 3

Introduction to the ColorSync Manager

3-18 About the ColorSync Manager

About the ColorSync Manager 3

This section describes the ColorSync Manager architecture and how your
application or device driver can use it for color conversion, color matching,
color gamut checking, profile management, and creating CMMs that perform
these services.

The ColorSync Manager allows your application or driver to maintain
consistent color across devices and across platforms. The ColorSync Manager
also let your users perform quick and inexpensive color proofing and see in
advance what colors cannot be printed on their printers.

The ColorSync Manager consists of a collection of functions that your
application or device driver can use to provide ColorSync support. These
functions also allow you to create and manage profiles and to create CMMs
that respond to requests from ColorSync-supportive applications or device
drivers. The ColorSync Manager also includes a collection of display device
profiles for Apple monitors and a robust default CMM.

Instead of providing your own device profile, device driver developers and
peripheral manufacturers can obtain profiles from a number of vendors who
provide them. For a list of profile vendors, contact the Developer Support
organization of Apple Computer, Inc. See the Preface of this book for
information explaining how to contact Developer Support.

ColorSync Manager shared library version number for
PowerPC-based computers
The ColorSync Manager is implemented as a shared
library on PowerPC -based computers. The ColorSync
Manager shared library version number is 0x02000000. ◆

Programming Interfaces 3

The ColorSync Manager programming interface allows your application to
handle such tasks as color matching, color conversion, profile management,
profile searching and accessing, reading individual tagged elements within a
profile, embedding profiles in documents, modifying profiles, and creating
CMMs that respond to requests for color matching and profile data transfer
from one format to another.

ACI Book : Intro to ColorSync Manager Page 18 Thursday, July 13, 1995 8:40 AM

C H A P T E R 3

Introduction to the ColorSync Manager

About the ColorSync Manager 3-19

Introduction to the C
olorS

ync M
anager

3

About the ColorSync Manager’s Memory Allocation and Use 3

The ColorSync Manager attempts to allocate the memory it requires from the
following sources in this order:

■ The current heap zone. If the current heap zone is set to the application
heap, the ColorSync Manager will attempt to allocate the memory it requires
from the application heap.

■ The system heap. If the current heap zone is set to the system heap, the
ColorSync Manager will try the system heap first and never attempt to
allocate memory from the application heap.

■ The Process Manager temporary heap. (If this final source does not satisfy
the ColorSync’s Manager’s memory requirements, any attempt to load the
ColorSync Manager will fail.)

An application commonly sets the current heap zone to the application heap.
When the ColorSync Manager is used apart from QuickDraw GX, this scenario
commonly prevails, making application heap memory available to the
ColorSync Manager.

However, QuickDraw GX holds a covenant with applications committing not
to allocate memory from the application heap. QuickDraw GX sets the current
heap zone to the system heap. Consequently, when the ColorSync Manager is
used with QuickDraw GX, the ColorSync Manager is prohibited from
allocating memory it requires from the application heap and must allocate all
the memory it requires from the system heap and the Process Manager
temporary heap.

Profiles 3

To perform color matching or color conversion across different base family
color spaces requires the use of a profile for each device involved. Profiles
describe various color characteristics. Profiles provide the ColorSync Manager
with information necessary to convert color between device-dependent color
spaces and device-independent color spaces. A profile may contain such
information as lightest and darkest possible tones (referred to as white point
and black point) and maximum densities for red, green, blue, cyan, magenta,
and yellow. Together these measurements represent a color gamut.

For the ColorSync Manager, a profile consists of color data that follows the
International Color Consortium (ICC) profile format. The International Color
Consortium defines several different types of profiles. Each of these types of

ACI Book : Intro to ColorSync Manager Page 19 Thursday, July 13, 1995 8:40 AM

C H A P T E R 3

Introduction to the ColorSync Manager

3-20 About the ColorSync Manager

profiles must include a different required set of information, but all of these
profile types follow the same format.

This format provides a single cross-platform standard for translating color data
across devices and across operating systems. A profile created for a particular
device is usable on systems running different operating systems. The founding
members of the ICC include Adobe Systems Inc.; Agfa-Gevaert N.V.; Apple
Computer, Inc.; Eastman Kodak Company; FOGRA (Honorary); Microsoft
Corporation; Silicon Graphics, Inc.; Sun Microsystems, Inc.; and Taligent, Inc.
These companies have committed to full support of this specification in their
operating systems, platforms, and applications.

For information on how to obtain a copy of the International Color Consortium
Profile Format Specification, version 2.0 document revision 3.x, contact the
Developer Support organization of Apple Computer, Inc. See the preface of this
book for information explaining how to contact Developer Support.

A device profile characterizes a particular device: that is, it describes the
characteristics of a color space for a physical device in a particular state. A
display, for example, might have a single profile, whereas a printer might have
a different profile for each paper type or ink type it uses. Use of different paper
types and ink types constitutes different printer states. When your application
uses the ColorSync Manager to match colors between devices such as a display
and a printer, it specifies the profile for each device when calling a ColorSync
Manager color-matching function.

Device profiles are divided into three broad classifications:

■ input devices such as scanners and digital cameras

■ display devices such as monitors and flat-panel screens

■ output devices such as printers and film recorders

A color space profile contains the data necessary to translate color values, such
as CIE into RGB or RGB into CIE, as necessary for color matching. The
ColorSync Manager, for example, uses color space profiles when mapping
colors between different color spaces. Color space profiles provide a convenient
means for CMMs to convert between different nondevice profiles.

Abstract profiles allow applications to perform special color effects
independent of the devices on which the effects are rendered. For example,
your application may choose to implement an abstract profile that increases
yellow hue on all devices. Abstract profiles allow users of your application to

ACI Book : Intro to ColorSync Manager Page 20 Thursday, July 13, 1995 8:40 AM

C H A P T E R 3

Introduction to the ColorSync Manager

About the ColorSync Manager 3-21

Introduction to the C
olorS

ync M
anager

3

make subjective color changes to images or graphics objects by transforming
the color data within the profile connection space.

A device-linked profile combines multiple profiles, such as various device
profiles associated with the creation and editing of an image. A device-linked
profile can include profile types other than device profiles, such as abstract
profiles and color space profiles. The first and last profiles in the set are
commonly those of the source and destination devices.

Profiles can reside in stand-alone files in the ColorSync Profiles folder, which
exists in the Preferences folder inside the System Folder. Hardware vendors
should have their users install profiles for their peripheral devices in the
ColorSync Profiles folder.

Profiles can also be embedded within images. For example, profiles can be
embedded in PICT, EPS, and TIFF files and in the private file formats used by
applications. Embedded profiles allow for the automatic interpretation of color
information as the color image is transferred from one device to another.

Note
The ICC profile format implemented in the ColorSync
Manager is significantly different from the ColorSync 1.0
profile implementation. As implemented in the ColorSync
Manager, a version 2.0 profile is a tagged-element
structure. The extension infrastructure design supports
this change. The profile supports use of lookup table
transforms. The ColorSync 1.0 profile is memory
resident. ◆

Profile Properties 3

Profiles can have different kinds of information in them. Recall that different
types of profiles, such as a profile for a scanner or a profile for a printer, have
different sets of minimum required tags and their element data. However, all
profiles have at least a header followed by a required element tag table. The
required tags may represent lookup tables, for example. The required tags for
various profile types are described in the International Color Consortium Profile
Format Specification.

Profiles contain additional information, such as a specification for how to apply
matching (see the next section, “Color Management Modules”). Profiles may
also have a series of optional and private tagged elements. These private
tagged elements may contain custom information used by particular color

ACI Book : Intro to ColorSync Manager Page 21 Thursday, July 13, 1995 8:40 AM

C H A P T E R 3

Introduction to the ColorSync Manager

3-22 About the ColorSync Manager

management modules. It is important to note that private tags limit the
cross-platform portability of a profile and that, for this reason, Apple
Computer, Inc. discourages use of them. The ColorSync Manager uses profiles
that follow the format defined by the International Color Consortium. See the
International Color Consortium Profile Format Specification for more information.

Color Management Modules 3

A color management module (CMM) uses profiles to convert and match a color
in a given color space on a given device to or from another color space or
device, perhaps a device-independent color space.

The ColorSync Manager includes color conversion functions that allow your
application or driver to convert colors between color spaces belonging to the
same base families without the use of CMMs; CMMs themselves can also call
these color conversion functions. Color conversion and color matching across
color spaces belonging to different base families always entail the use of a
CMM.

When colors consistent with one device’s gamut are displayed on a device with
a different gamut, as in Figure 3-6 on page 3-16, a CMM attempts to minimize
the perceived differences in the displayed colors between the two devices. The
CMM does this by mapping the out-of-gamut colors into the range of colors
that can by produced by the destination device.

The CMM uses lookup tables and algorithms for color matching, previewing
color reproduction capabilities of one device on another, and checking for
colors that cannot be reproduced. Although the ColorSync Manager includes
an Apple-supplied CMM, used as the default CMM, peripheral developers can
create their own CMMs, tailored to the specific requirements of their device.

Each profile header includes a field that names the preferred CMM to be used
for performing color matching involving that profile. If two profiles used in a
color-matching session name different CMMs, the ColorSync Manager follows
an algorithm, described in “When Color Matching Occurs” on page 3-24, to
determine the CMM to use.

The structure used to create a device-linked profile, which can contain many
profiles, includes a field that identifies the CMM to be used for the entire
color-matching session across all profiles.

ACI Book : Intro to ColorSync Manager Page 22 Thursday, July 13, 1995 8:40 AM

C H A P T E R 3

Introduction to the ColorSync Manager

About the ColorSync Manager 3-23

Introduction to the C
olorS

ync M
anager

3

Rendering Intents 3

Rendering intent refers to the approach taken when a CMM maps or translates
the colors of an image to the color gamut of a destination device. The ICC
version 2.0 profile specification defines a tag for each of the four supported
rendering intents. The following four rendering intents supported by the
ColorSync Manager allow the user to select an approach that best maintains the
important aspects of the image:

■ Perceptual matching. In this approach, all the colors of a given gamut may
be scaled to fit within another gamut. The colors maintain their relative
positions, so the relationship between colors is maintained. With realistic
images such as scanned photographs, perceptual matching produces better
results than colorimetric matching in most cases; in Figure 3-6, for example,
the eye could compensate for the difference between the two gamuts, and a
perceptually matched image on the printer device would look very similar
to the original image on the RGB device. A disadvantage of perceptual
matching is that all of the original colors are changed in the copy.

■ Relative colorimetric matching. In this approach, colors that fall within the
gamuts of both devices are left unchanged. For example, to match an image
from the RGB gamut onto the printer gamut in Figure 3-6, only the colors in
the RGB gamut that fall outside the printer gamut are altered. Relative
colorimetric matching allows some colors in both images to be exactly the
same, which is useful when colors must match quantitatively. A
disadvantage of relative colorimetric matching is that many colors may map
to a single color, resulting in tone compression. All colors outside the printer
gamut in Figure 3-6, for example, would be converted to colors at the edge
of its gamut, reducing the total number of colors in the image and possibly
greatly altering its appearance. In relative colorimetric matching, colors
outside the gamut are usually converted to colors with the same lightness,
but different saturation, at the edge of the gamut. The final image may be
lighter or darker overall than the original image, but the blank areas will
coincide.

■ Saturation matching. In some computer graphics, such as bar graphs and
pie charts, the actual color displayed is less important than its vividness. In
this approach, the relative saturation of colors is maintained from gamut to
gamut. Colors outside the gamut are usually converted to colors with the
same saturation, but different lightness, at the edge of the gamut.

■ Absolute colorimetric matching. This approach is based on a
device-independent color space in which the result is an idealized print
viewed on a perfect paper having a large dynamic range and color gamut. In

ACI Book : Intro to ColorSync Manager Page 23 Thursday, July 13, 1995 8:40 AM

C H A P T E R 3

Introduction to the ColorSync Manager

3-24 About the ColorSync Manager

reality paper cannot reproduce densities less than a particular minimum
density (Dmin). Absolute colorimetric matching leads to a close appearance
match over most of the tonal range, but if the minimum density of the
idealized image is different from that of the output image, the areas of the
image that are left blank will be different. Colors that fall within the gamuts
of both devices are left unchanged. Colors with densities that fall outside the
dynamic density range of the destination device are clipped. While an
appearance match may be achieved, there will be a loss of detail in some
regions.

When Color Matching Occurs 3

When a ColorSync-supportive scanning application creates a scanned image, it
embeds a profile for the scanner driver in the image. The profile that is
associated with the image and describes the characteristics of the device on
which the image was created is called the source profile. If the colors in the
image are subsequently converted to another color space by the scanning
application or by another ColorSync-supportive application, the ColorSync
Manager uses that source profile to identify the original colors and to match
them to colors expressed in the new color space.

To display the image requires using another profile, which is associated with
the output device, such as a display. The profile for that device is called the
destination profile. If the image is destined for a display, the ColorSync
Manager uses the display’s profile (the destination profile) along with the
image’s source profile to match the image’s colors to the display’s gamut. If the
image is printed, the ColorSync Manager uses the printer’s profile to match the
image’s colors to the printer, including generating black and removing
undercolors where appropriate.

If the color gamut of the source profile is different from the color gamut of the
destination profile, the ColorSync Manager relies on the CMM and the
information stored in both profiles for mapping the colors from the source
profile’s gamut to the destination profile’s gamut. The CMM contains the
necessary algorithms and lookup tables to enable consistent color among
devices.

ACI Book : Intro to ColorSync Manager Page 24 Thursday, July 13, 1995 8:40 AM

C H A P T E R 3

Introduction to the ColorSync Manager

About the ColorSync Manager 3-25

Introduction to the C
olorS

ync M
anager

3

When using the ColorSync Manager functions for color matching, you specify
the source and destination profiles. If you do not specify the source profile or
the destination profile, the ColorSync Manager substitutes the system profile.
Recall that the system profile is the profile for the system’s display device and
that the user can configure the profile to be used. Figure 3-7 shows the
ColorSync System Profile control panel, which allows the user to configure
the system profile to match the display device.

Figure 3-7 The ColorSync System Profile control panel

If the user does not specify a system profile through the ColorSync Manager
control panel, the default system profile is used. The default system profile is
the device profile for the Apple 13-inch color display.

Color matching between the source and destination color spaces happens
inside the color management module component. Figure 3-8 shows the
relationship between your application, the ColorSync Manager, the Component
Manager, and the CMM component.

ACI Book : Intro to ColorSync Manager Page 25 Thursday, July 13, 1995 8:40 AM

C H A P T E R 3

Introduction to the ColorSync Manager

3-26 About the ColorSync Manager

Figure 3-8 The ColorSync Manager and the Component Manager

QuickDraw GX and the ColorSync Manager 3

Unless your application uses QuickDraw GX to create and render images, your
application must call ColorSync functions, such as NCMBeginMatching and
NCMDrawMatchedPicture, to match colors between devices.

However, if your application uses QuickDraw GX and your application sets the
view port attribute gxEnableMatchPort, the ColorSync Manager automatically
matches colors when your application draws to the screen.

QuickDraw GX color profile objects contain ColorSync profiles, and each
profile specifies the kind of matching that should be performed with it. For
more information about QuickDraw GX color architecture, see the chapter
“Colors and Color-Related Objects” in Inside Macintosh: QuickDraw GX.

Component Manager

CMM component

ColorSync Manager

High-level functions Low-level functions

ACI Book : Intro to ColorSync Manager Page 26 Thursday, July 13, 1995 8:40 AM

C H A P T E R 3

Introduction to the ColorSync Manager

About the ColorSync Manager 3-27

Introduction to the C
olorS

ync M
anager

3

QuickDraw GX version 1.1.2 or earlier uses ColorSync 1.0. However, because
the ColorSync Manager provides robust backward compatibility including
continued support of the ColorSync 1.0 API, you can use the ColorSync
Manager with QuickDraw GX. For more information about the ColorSync
Manager’s backward compatibility, see the appendix, “ColorSync Manager
Backward Compatibility.”

What Users Can Do With ColorSync-Supportive Applications 3

Your ColorSync-supportive application or device driver can provide users with
many features to help them reproduce color consistently across devices and
across time and therefore reduce iterative color-proofing and color output
surprises.

This section provides an overview of some of the features you can provide.
How to implement these features is described in the chapters “Developing
ColorSync-Supportive Applications” and “Developing ColorSync-Supportive
Device Drivers.”

Display Matching 3

When the user of a ColorSync-supportive application opens a file in which one
or more ColorSync profiles have been embedded, the user benefits from
display matching: that is, the user experiences consistent color from one
display to another. If a color cannot be reproduced on the destination device
and your program uses the ColorSync Manager API, the ColorSync Manager
can map the color to the color gamut of the device.

Your application or driver should allow the user to embed or tag
color-matching information and be able to display a tagged picture using the
ColorSync Manager. Most importantly, your application must preserve picture
comments in documents and allow the information to be passed on to the
destination device.

Gamut Checking 3

Because not all colors can be rendered on all devices, you may want your
application to warn users when a color they choose is out of gamut for the
currently selected destination device. For example, you can use gamut
checking to see if a given color is reproducible on a particular printer. If the
color is not directly reproducible—that is, if it is out of gamut—you could alert

ACI Book : Intro to ColorSync Manager Page 27 Thursday, July 13, 1995 8:40 AM

C H A P T E R 3

Introduction to the ColorSync Manager

3-28 About the ColorSync Manager

the user to that fact. The ColorSync Manager provides the CWCheckPixMap and
CWCheckColors functions for checking a color against a device’s profile to see if
it is in or out of gamut for the device. Your application should then display the
results of this check in a window for the user.

Soft Proofing 3

Using the destination device’s profile, your application can enable users to
preview what a color image would look like on that device. This simulation of
a device’s output can save the user considerable time and cost.

Device-Linked Profiles 3

Most users use the same device configuration for scanning, viewing, and
printing over a period of time. Your application can allow users to create a
device-linked profile. A device-linked profile is a means of storing in a single
profile a series of linked profiles that correspond to a specific configuration in
the order in which the devices in that configuration are normally used. A
device-linked profile represents a one-way link or connection between devices.
A device-linked profile cannot be embedded into images.

Calibration 3

Your application can provide calibration services. A calibration application
offers the option of calibrating a peripheral device based on a standard state or
calibrating the device based on its current state.

If a peripheral device, such as a color printer, has drifted from its original state
over time, a calibration application can make use of the characterization data
contained in the corresponding profile to bring the color response back into
range.

A user may want to improve the reproduction quality of a device without
returning the device to a standard state. A profile can be created based on the
current state of the device. The new profile is then used to calibrate that device.
This approach to calibration maintains the existing dynamic density range
while improving the device’s overall quality.

ACI Book : Intro to ColorSync Manager Page 28 Thursday, July 13, 1995 8:40 AM

C H A P T E R 4

Contents

4-1

Contents

4

Figure 4-0
Listing 4-0
Table 4-0

4 Developing
ColorSync-Supportive
Applications

About ColorSync Application Development 4-4
About the ColorSync Manager Programming Interface 4-4
What Should a ColorSync-Supportive Application Do? 4-5

At a Minimum 4-5
Storing and Handling Profiles 4-6

How the ColorSync Manager Selects the CMM to Be Used 4-7
Developing Your ColorSync-Supportive Application 4-12

Determining If the ColorSync Manager Is Available 4-14
Providing Minimal ColorSync Support 4-15
Obtaining Profile References 4-16
Opening a Profile and Obtaining a Reference to It 4-17
Identifying the Current System Profile 4-19
Matching Colors to Displays Using ColorSync With QuickDraw

Operations 4-20
Matching Colors in a Picture Containing an Embedded Profile 4-21
Matching Colors as Your User Draws a Picture 4-22

Setting a Large Profile Element 4-24
Creating a Color World for Color Matching and Checking Using the

Low-Level Functions 4-27
Matching Colors Using the Low-Level Functions 4-29

Matching the Colors of a Pixel Map to the Display’s Color Gamut 4-30
Matching the Colors of a Bitmap Image to the Display’s Color

Gamut 4-31
Embedding Profiles in Documents and Pictures 4-34
Extracting Profiles Embedded in Pictures 4-38

Step 1: Counting the Profiles in the PICT File 4-40
Step 2: Extracting the Profile 4-42

This document was created with FrameMaker 4.0.4

ACI Book : Develop CS Supportive AppsTOC Page 1 Thursday, July 13, 1995 8:40 AM

C H A P T E R 4

4-2

Contents

Searching for Profiles in the ColorSync

 Profiles Folder 4-49
Checking Colors Against a Destination Device’s Gamut 4-51
Creating and Using Device-Linked Profiles 4-53

Considerations 4-56
Providing Soft Proofs 4-56
Calibrating a Device 4-58

Summary of the ColorSync Manager 4-59
Constants 4-59
Data Structures 4-63
Functions 4-69

ACI Book : Develop CS Supportive AppsTOC Page 2 Thursday, July 13, 1995 8:40 AM

C H A P T E R 4

4-3

D
eveloping C

olorS
ync-S

upportive A
pplications

4

Developing ColorSync-Supportive Applications 4

This chapter describes how you can use the ColorSync Manager to provide
your users with color-matching and color gamut-checking services. Your
ColorSync-supportive application can match the colors of an image created
using one device to the color gamut of another device on which the image is to
be rendered. Your application can allow your users to preview the results and
adjust the colors of the matched image if desirable. To match or check the
colors of an image across devices with different gamuts and characteristics, the
ColorSync Manager uses profiles that contain information depicting a device.
Using the ColorSync Manager, your application can search for and display a
list or menu containing the names of available profiles for a particular device
type, such as a printer, and allow your users to select the profile to be used to
define the destination device. You can modify the content of profiles to change
how an image is to be rendered. These and other features that your application
can provide using the ColorSync Manager are described in this chapter.

You need to read this chapter if your application will support the ColorSync
Manager and provide your users with various color-matching and
color-checking features. You should read this chapter even if you will provide
only minimal support allowing your users to modify documents containing
color images created using other applications that fully support the ColorSync
Manager. This chapter tells you how to preserve profiles embedded in
documents along with the images with which they are associated.

The features described in this chapter can also be used in developing
ColorSync-supportive device drivers. Therefore, you should read this chapter
in addition to the chapter “Developing ColorSync-Supportive Device Drivers”
if you are developing a device driver that supports the ColorSync Manager.

Before you read this chapter, you should read the chapter “Introduction to the
ColorSync Manager” in this book. The introductory chapter explains color
theory and color management systems (CMSs). It provides an overview of
the ColorSync Manager CMS, including the use of profiles. “Introduction
to the ColorSync Manager” also explains key terms that describe aspects of the
ColorSync Manager, which are used throughout this chapter but not defined
again in it.

While reading this chapter, you might want to refer to the chapter “ColorSync
Manager Reference for Applications and Device Drivers” in the

Advanced Color
Imaging Reference

 for details related to functions this chapter discusses.

Most high-level applications that support the ColorSync Manager
automatically either use the color management module (CMM) specified by the
source profile or use the Apple-supplied CMM, as determined internally by the

This document was created with FrameMaker 4.0.4

ACI Book : Develop CS Supportive Apps Page 3 Thursday, July 13, 1995 8:40 AM

C H A P T E R 4

Developing ColorSync-Supportive Applications

4-4

About ColorSync Application Development

CMM selection algorithm described later in this chapter. For this reason, you
do not need to read the two ColorSync Manager chapters addressed to
developers who provide CMMs—“ColorSync Manager Reference for Color
Management Modules” in the

Advanced Color Imaging Reference

 on the enclosed
CD and “Developing Color Management Modules” in this book—nor do you
need to read the chapter “Developing ColorSync-Supportive Device Drivers”
in this book. However, you should read the appendix, which describes
ColorSync Manager 2.0 backward compatibility.

About ColorSync Application Development 4

The ColorSync Manager provides your application with color-matching
capabilities that your users can employ without the need for a proprietary
environment. The ColorSync Manager provides the first system-level
implementation of an industry-standard color-matching system. Because the
ColorSync Manager supports the version 2.0 profile format defined by the
International Color Consortium (ICC), a color image your user creates can be
color matched, rendered, and modified by another user running another
application on another platform that supports the version 2.0 profile format.
Conversely, your application can modify and color match images created by
other applications that support the ColorSync Manager or a CMS that includes
support for the version 2.0 profile.

The ColorSync Manager requires Color QuickDraw and System 7.0 or later. The
Component Manager is packaged with the ColorSync Manager and installed at
startup in systems that do not include it (that is, systems prior to 7.1).

About the ColorSync Manager Programming Interface 4

The ColorSync Manager programming interface allows your application to
handle such tasks as color matching, color conversion, profile management,
profile searching and accessing, reading individual tagged elements within a
profile, embedding profiles in documents, and modifying profiles. The
ColorSync Manager includes the five interface files for developers that you can
use for either 68020 or later or PowerPC development. Of the five interface
files, your application must include at least the following three:

CMApplication.h

Interface to the ColorSync Manager functions and data types
for applications and device drivers.

ACI Book : Develop CS Supportive Apps Page 4 Thursday, July 13, 1995 8:40 AM

C H A P T E R 4

Developing ColorSync-Supportive Applications

About ColorSync Application Development

4-5

D
eveloping C

olorS
ync-S

upportive A
pplications

4

CMConversions.h

Interface for conversions to and from base-derived color spaces.

CMICCProfile.h

Definitions for the version 2.0 profile for profile developers.
This interface file contains enumerations and structures, such as
the version 2.0 profile header, that your application requires.
Therefore, you must include it.

What Should a ColorSync-Supportive Application Do? 4

Your ColorSync-supportive application can provide a rich set of color-matching
features. Your application can color match images, pixel maps, bitmaps, and
even individual colors. In addition to color matching, you can handle such
tasks as color conversion, color gamut checking, soft proofing of images, profile
management, profile searching and accessing, reading individual tagged
elements within a profile, embedding profiles in documents, extracting
embedded profiles, and modifying profiles.

Your application can provide an interface that offers your user selection menus
allowing the user to choose how an image is to be rendered and the profile to
associate with an image. It can show the user the colors of an image that are in
or out of gamut for a particular device on which the image is to be produced
and how the ColorSync Manager adjusts for colors that are out of gamut. This
allows the user to preview differences that occur in the color-matching
transition between gamuts and make corrections if necessary.

At a Minimum 4

The ColorSync Manager allows your application to preserve high fidelity to the
original colors of an image—whether the image was created using your
application or another—by supporting the use of embedded profiles. Your
application can take advantage of a profile embedded along with an image,
matching the original colors of the device used to create the image to those of
the destination display or printer. Even if your application doesn’t support
some of the more advanced features the ColorSync Manager affords, such as
soft proofing, you should color match images using the source profile, if one is
identified and available.

At a minimum, your application should preserve images tagged with a profile
by not stripping out picture comments used to embed profiles or by leaving
profiles in documents that use other methods to include them.

ACI Book : Develop CS Supportive Apps Page 5 Thursday, July 13, 1995 8:40 AM

C H A P T E R 4

Developing ColorSync-Supportive Applications

4-6

About ColorSync Application Development

It is important for your application to tag an image with the profile for the
device used to create the image and to preserve existing tagging because a
picture that is not tagged assumes use of the system profile. If the picture is
moved to a different system that uses a different system profile, the picture will
be drawn differently. “Providing Minimal ColorSync Support,” beginning on
page 4-15, explains how to preserve embedded profiles, and “Embedding
Profiles in Documents and Pictures,” beginning on page 4-34 explains how to
tag an image. Some of these features are described in greater detail in the rest
of this chapter.

Storing and Handling Profiles 4

Profiles for use with the ColorSync Manager are stored in the ColorSync

Profiles folder within the Preferences folder of the System Folder. When you
install the ColorSync Manager, the ColorSync

 Profiles folder contains a
selection of display profiles for all Apple color monitors.

The ColorSync Manager provides a control panel, the ColorSync

 System
Profile control panel, to allow the user to select the profile corresponding to the
system’s display. This profile then becomes the system profile. Your application
specifies the profiles to be used for color matching when the application calls a
ColorSync Manager function. For most functions, the ColorSync Manager uses
the system profile as the default profile if your application doesn’t specify a
profile. Some functions require that you explicitly specify a profile by reference.

Device drivers for ColorSync-supportive input and output devices, such as
scanners and printers, may install the profiles they use in the ColorSync

Profiles folder, making them available to your application for color matching or
gamut checking. If your application creates device-linked profiles, described on
page 4-53, you should place them in the ColorSync

 Profiles folder.

Your application can provide the interface to allow your user to choose a
profile for a specific device. Using the ColorSync Manager functions, your
application can search the ColorSync

 Profiles folder and display information
about available profiles to your user.

These features are described in greater detail in the rest of this chapter. As
described in “Providing Minimal ColorSync Support” on page 4-15, your
application should, at a minimum, leave profile information intact in the
documents and pictures that it imports or copies into its own documents.

ACI Book : Develop CS Supportive Apps Page 6 Thursday, July 13, 1995 8:40 AM

C H A P T E R 4

Developing ColorSync-Supportive Applications

About ColorSync Application Development

4-7

D
eveloping C

olorS
ync-S

upportive A
pplications

4

How the ColorSync Manager Selects the CMM to Be Used 4

A profile header contains a field called the

CMMType

 field that specifies the
preferred CMM for that profile. When the source and destination profiles
specify different CMMs or when a specified CMM is unavailable or unable to
provide a requested color-matching service, the ColorSync Manager follows a
CMM selection algorithm or arbitration scheme to determine which CMM to
use for color conversion and matching. Here is how the CMM selection
algorithm works:

■

If the source and destination profiles specify the same CMM and that CMM
component is available and able to perform the matching, then the specified
CMM maps the colors directly from the color space of the source profile to
the color space of the destination profile. This is the simplest scenario, and
Figure 4-1 illustrates it.

Figure 4-1

Color matching when the source and destination profiles specify the

same CMM

Source profile Destination profile

ProfileConnectionSpace
xyz

ProfileConnectionSpace
xyz

CMMType A

RGB data CMYK data

CMMType A

CMM A

ACI Book : Develop CS Supportive Apps Page 7 Thursday, July 13, 1995 8:40 AM

C H A P T E R 4

Developing ColorSync-Supportive Applications

4-8

About ColorSync Application Development

■

If the source and destination profiles specify different CMMs, then the
ColorSync Manager follows these steps to identify the CMM to use:

1. If the CMM specified by the destination profile is available, is able to
perform the color matching using the two profiles, and is not the
Apple-supplied default CMM, then the ColorSync Manager uses this
CMM. Figure 4-2 shows this scenario.

Figure 4-2

Color matching using the destination profile’s CMM

Source profile Destination profile

ProfileConnectionSpace
xyz

ProfileConnectionSpace
xyz

CMMType A

RGB data CMYK data

CMMType B

CMM B

ACI Book : Develop CS Supportive Apps Page 8 Thursday, July 13, 1995 8:40 AM

C H A P T E R 4

Developing ColorSync-Supportive Applications

About ColorSync Application Development

4-9

D
eveloping C

olorS
ync-S

upportive A
pplications

4

2. If the destination profile’s preferred CMM is unavailable or unable to
perform the color-matching request using the two profiles, then the
ColorSync Manager looks for the CMM specified by the source profile. If
the CMM specified by the source profile is available, is able to perform
the color matching using the two profiles, and is not the Apple-supplied
default CMM, the ColorSync Manager uses this CMM. Figure 4-3 shows
this scenario.

Figure 4-3

Color matching using the source profile’s CMM

Source profile Destination profile

ProfileConnectionSpace
xyz

ProfileConnectionSpace
xyz

CMMType A

RGB data CMYK data

CMMType B

CMM A

ACI Book : Develop CS Supportive Apps Page 9 Thursday, July 13, 1995 8:40 AM

C H A P T E R 4

Developing ColorSync-Supportive Applications

4-10

About ColorSync Application Development

3. If both the source-preferred CMM and the destination-preferred CMM are
available, but neither is able to perform the match alone, the ColorSync
Manager uses the source profile’s CMM to convert the colors of the source
image from the source profile’s color space to an interchange color space
using the XYZ color space profile as the destination profile. Next, the
ColorSync Manager uses the preferred CMM specified by the destination
profile to convert the colors now specified in the interchange color space
to colors expressed in the color space of the destination profile using the
XYZ color space profile as the source profile. The color conversion and
matching work this way if both profiles specify the same interchange
color space. Figure 4-4 shows this scenario.

Figure 4-4

Color matching through an XYZ interchange space using both CMMs

4. If both the source-preferred CMM and the destination-preferred CMM are
available, but neither is able to perform the match alone and both profiles
specify different interchange color spaces, the ColorSync Manager uses
the source profile’s CMM to convert the colors of the source image from
the source profile’s color space to its interchange color space using the
appropriate color space profile as the destination profile. The example
shown in Figure 4-5 uses the XYZ color space profile as the destination
profile. Then the ColorSync Manager inserts a part into the process, itself
converting colors from the source profile’s interchange color space to the

Source profile Destination profile

ProfileConnectionSpace
xyz

ProfileConnectionSpace
xyz

CMMType A

xyz data

CMMType B

RGB data CMYK data
CMM A CMM B

xyz color
space profile

ACI Book : Develop CS Supportive Apps Page 10 Thursday, July 13, 1995 8:40 AM

C H A P T E R 4

Developing ColorSync-Supportive Applications

About ColorSync Application Development

4-11

D
eveloping C

olorS
ync-S

upportive A
pplications

4

destination profile’s interchange color space. Next, the ColorSync
Manager uses the preferred CMM specified by the destination profile to
convert the colors now specified in the destination profile’s interchange
color space to colors expressed in the destination profile’s color space
using the appropriate color space profile as the source profile. The
example shown in Figure 4-5 uses the Lab color space profile as the
source profile.

Figure 4-5

Matching using both CMMs and two interchange color spaces

Source profile Destination profile

ProfileConnectionSpace
xyz

ProfileConnectionSpace
Lab

ColorSync
Manager

CMMType A

RGB data xyz data

CMMType B

Lab data CMYK data
CMM A

xyz

Lab
CMM B

xyz color
space profile

Lab color
space profile

ACI Book : Develop CS Supportive Apps Page 11 Thursday, July 13, 1995 8:40 AM

C H A P T E R 4

Developing ColorSync-Supportive Applications

4-12

Developing Your ColorSync-Supportive Application

■

If neither the source nor the destination profile’s preferred CMM is available
or able to perform the color conversion and matching, then the ColorSync
Manager uses the Apple-supplied default CMM, which will always attempt
to perform the match. Figure 4-6 shows this scenario.

Figure 4-6

Color matching using the Apple-supplied default CMM

Developing Your ColorSync-Supportive Application 4

This section describes some of the tasks your application can perform to
implement the color-matching and color-checking features you can provide
using the ColorSync Manager functions.

This section explains how to

■

determine if version 2.0 of the ColorSync Manager is available on a
68K-based system or a PowerPC-based system, described on page 4-14

■

provide minimal ColorSync support by preserving embedded profiles in
existing documents, described on page 4-15

Source profile Destination profile

ProfileConnectionSpace
xyz

ProfileConnectionSpace
Lab

CMMType A

RGB data CMYK data

CMMType B

Apple-supplied
default CMM

ACI Book : Develop CS Supportive Apps Page 12 Thursday, July 13, 1995 8:40 AM

C H A P T E R 4

Developing ColorSync-Supportive Applications

Developing Your ColorSync-Supportive Application

4-13

D
eveloping C

olorS
ync-S

upportive A
pplications

4

■

obtain a unique reference to a profile, which provides access to the profile,
described on page 4-16

■

obtain the name of the current system profile and other information about
the profile, described on page 4-19

■

match the colors of an image to the system’s display using ColorSync with
QuickDraw operations, described on page 4-20

■

create a color world comprised of profiles required for a color-matching or
gamut-checking session using the low-level ColorSync Manager functions
that do not rely on QuickDraw, described on page 4-27

■

match the colors of an image to the system’s display without using
QuickDraw, described on page 4-29

■

store a profile in a document containing the image created using the profile,
referred to as embedding a profile, described on page 4-34

■

extract an embedded profile from a document in order to use it, described
on page 4-38

■

search through the ColorSync

 Profiles folder for profiles that meet certain
criteria, described on page 4-49

■

check the colors of an image against the color gamut of the device for which
it is destined, such as a printer, described on page 4-51

■

create and use a special type of profile called a device-linked profile
containing a number of concatenated profiles used in sequence, described on
page 4-53

■

provide soft proofs, described on page 4-56

■

calibrate a device, described on page 4-58

ACI Book : Develop CS Supportive Apps Page 13 Thursday, July 13, 1995 8:40 AM

C H A P T E R 4

Developing ColorSync-Supportive Applications

4-14

Developing Your ColorSync-Supportive Application

Determining If the ColorSync Manager Is Available 4

To determine whether version 2.0 of the ColorSync Manager is available on a
68K-based Macintosh system, you use the

Gestalt

 function with the

gestaltColorMatchingVersion

 selector. You can modify and use the following
sample code to test for the presence of the ColorSync Manager. This function
initializes the Boolean

ColorSyncAvailable

 variable to

false

 and sets it to

true

 if
version 2.0 or later of the ColorSync Manager is installed.

{
Boolean ColorSyncAvailable = false;
long version;
if (Gestalt(gestaltColorMatchingVersion, &version) == noErr)

{ if (version >= gestaltColorSync20) }
{ (ColorSyncAvailable = true; }

}

For a PowerPC-based system, to determine if the ColorSync Manager shared
libraries have been loaded, use the

Gestalt

 function with the

gestaltColorMatchingAttr

 selector. Test the bit field (bit 1) indicated by the

gestaltColorMatchingLibLoaded

 constant in the response parameter. If the bit is
set, the ColorSync Manager shared libraries are loaded. You can use the
following sample code to determine if the ColorSync Manager is available on a
PowerPC-based system. This code fragment initializes the

colorSyncAvailable

Boolean variable to

false.

Boolean CheckIfColorSyncAvailableOnPPC(void)
{

Boolean ColorSyncAvailable = false;
long gestaltResponse;
if (TrapAvailable(_Gestalt))

{ ColorSyncAvailable =
((Gestalt(gestaltColorMatchingAttr, &gestaltResponse) = noErr)

&& (gestaltResponse & (1 << gestaltColorMatchingLibLoaded)));
}

}

ACI Book : Develop CS Supportive Apps Page 14 Thursday, July 13, 1995 8:40 AM

C H A P T E R 4

Developing ColorSync-Supportive Applications

Developing Your ColorSync-Supportive Application 4-15

D
eveloping C

olorS
ync-S

upportive A
pplications

4

Providing Minimal ColorSync Support 4

The ICC’s open architecture describes the profile format that all compliant
CMSs must support. The common profile format allows one user to
electronically transfer a document containing a color image to another user
with the assurance that the original image will be rendered faithfully according
to the source profile specification through use of a CMS such as the ColorSync
Manager.

To ensure this, the application or driver used to create the image stores the
profile for the source device in the document containing the color image. The
application can do this automatically or allow the user to tag the image. If the
source profile is embedded within the document, a user can move the
document from one system to another without concern for whether the
intended recipient has the profile used to create the image installed on his or
her computer.

To support the ColorSync Manager, your application should, at a minimum,
leave profile information intact in the documents and pictures it imports or
copies. That is, your application should not strip out profile information from
documents or pictures created with other applications. Even if your application
does not use profile information, your users may be able to take advantage of it
when using the documents or pictures with other applications.

For example, profiles may be embedded in pictures that your users paste into
your application. Profiles can be embedded in formats such as PICT or TIFF
files. For files of type 'PICT', the ColorSync Manager defines the following
picture comments for embedding profiles and for performing color matching:

/* PicComment IDs */
enum {

cmBeginProfile = 220,
/* begin ColorSync 1.0 profile */

cmEndProfile = 221,
/* end a ColorSync 2.0 or 1.0
 profile */

cmEnableMatching = 222,
 /* begin color matching for either

ColorSync 2.0 or 1.0 */
cmDisableMatching = 223,

/* end color matching for either
 ColorSync 2.0 or 1.0 */

cmComment = 224

ACI Book : Develop CS Supportive Apps Page 15 Thursday, July 13, 1995 8:40 AM

C H A P T E R 4

Developing ColorSync-Supportive Applications

4-16 Developing Your ColorSync-Supportive Application

/* embedded ColorSync 2.0 profile
 information */

};

/* PicComment selectors for cmComment */
enum {

cmBeginProfileSel = 0, /* begining of a ColorSync 2.0
profile; profile data to
follow */

cmContinueProfileSel = 1, /* continuation of a ColorSync
 2.0 profile; profile data to

follow */
cmEndProfileSel = 2 /* end of ColorSync 2.0 profile

data; no profile data
follows */

};

The picture comment kind value of 224 is defined for embedded ColorSync
Manager version 2.0 profiles. This picture comment is followed by a 4-byte
selector that describes the type of data in the picture comment. Your
application should leave these comments and the embedded profiles they
define intact. Similarly, if your application imports or converts file types
defined by other applications, your application should maintain the profile
information embedded in those files, too.

Your application can also embed picture comments and profiles in documents
and pictures it creates or modifies. For information describing how to do this,
see “Embedding Profiles in Documents and Pictures” on page 4-34. Inside
Macintosh: Imaging With QuickDraw describes picture comments in detail.

Obtaining Profile References 4

Most of the ColorSync Manager functions require that your application identify
the profile or profiles to be used in carrying out the work of the function. For
example, when your application calls functions to perform color matching or
color gamut checking, you must identify the profiles to be used for the session.
For high-level functions that use QuickDraw, you specify a source profile and a
destination profile. For low-level functions, you specify a color world
containing source and destination profiles or a set of concatenated profiles. You
can also create a device-linked profile, which is described later in this chapter,

ACI Book : Develop CS Supportive Apps Page 16 Thursday, July 13, 1995 8:40 AM

C H A P T E R 4

Developing ColorSync-Supportive Applications

Developing Your ColorSync-Supportive Application 4-17

D
eveloping C

olorS
ync-S

upportive A
pplications

4

but to do so your application must first obtain references to all the profiles that
will comprise the device-linked profile.

Your application must identify the profile to be used when you intend to
modify the profile’s contents—for example, you might modify a profile based
on the rendering intent a user specifies—and to copy or verify a profile’s
elements.

The ColorSync Manager provides for multiple concurrent accesses to a single
profile through use of a private data structure called a profile reference. A profile
reference is a unique reference to a profile; it is the means by which your
application identifies a profile and gains access to the contents of that profile.
Many applications can use the same profile at the same time, each with its own
reference to the profile.

Opening a Profile and Obtaining a Reference to It 4

To open a profile and obtain a reference to it, you call the CMOpenProfile
function. (The CMCopyProfile, CWNewLinkProfile, and CMNewProfile functions
also return profile references.) To identify a profile that is file based or memory
based, you must give its location.

The ColorSync Manager defines the following data type that you use to tell the
profile’s location:

struct CMProfileLocation{
short locType;
CMProfLoc u;

};

The CMProfileLocation data type contains a member called CMProfLoc for which
you specify a value using the following union defined by the ColorSync
Manager:

union CMProfLoc {
CMFileLocation fileLoc;
CMHandleLocation handleLoc;
CMPtrLocation ptrLoc;

};

The CMProfLoc value provides the actual location of the profile. In most cases, a
ColorSync profile is stored in a disk file, and you use the union to give the file

ACI Book : Develop CS Supportive Apps Page 17 Thursday, July 13, 1995 8:40 AM

C H A P T E R 4

Developing ColorSync-Supportive Applications

4-18 Developing Your ColorSync-Supportive Application

specification. However, to support special requirements, a profile can also be
located in memory, or it may be a temporary profile, meaning that the profile
will not persist in memory after your application uses it for a color session.

Your application uses a data type of CMFileLocation to provide a file
specification for a profile stored in a disk file, a data type of CMHandleLocation
to specify a handle for a profile stored in relocatable memory, and a data type
of CMPtrLocation to specify a pointer to a profile stored in nonrelocatable
memory.

To identify the kind of data type you assigned to the u field of
CMProfileLocation, you assign to the CMProfileLocation.locType field one of
the constants or numeric equivalents defined by the following enumeration:

enum {
cmNoProfileBase = 0,
cmFileBasedProfile= 1,
cmHandleBasedProfile= 2,
cmPtrBasedProfile= 3

};

For example, for a file-based profile, the u field would hold a file specification
and the locType field would hold the constant cmFileBasedProfile. Your
application passes a CMProfileLocation structure to the function when it calls
the CMOpenProfile function and the function returns a reference to that profile.

Listing 4-1 shows an application-defined function, MyOpenProfileFSSpec, that
assigns the file specification for the profile file to the profLoc union and
identifies the location type as file based. Given the file specification,
MyOpenProfileFSSpec then calls the CMOpenProfile function, passing to it the
profile’s file specification and receiving in return a reference to the profile.

Listing 4-1 Opening a reference to a file-based profile

CMError MyOpenProfileFSSpec (FSSpec spec,CMProfileRef *prof)
{

CMError cmerr;
CMProfileLocation profLoc;

profLoc.locType = cmFileBasedProfile;
profLoc.u.file.spec = spec;

ACI Book : Develop CS Supportive Apps Page 18 Thursday, July 13, 1995 8:40 AM

C H A P T E R 4

Developing ColorSync-Supportive Applications

Developing Your ColorSync-Supportive Application 4-19

D
eveloping C

olorS
ync-S

upportive A
pplications

4

cmerr = CMOpenProfile(prof, &profLoc);

return cmerr;
}

▲ W A R N I N G

Problems using a single profile reference can occur when
different processes within the same application use the
same profile reference. For example, if your application
allows multiple windows to remain open at the same time,
you cannot determine which window a user might close
first. If a user closes a window and the window’s process
disposes of the profile reference, the processes associated
with the remaining open windows will no longer have
access to the profile. The CSDemo sample application
provided on the enclosed CD shows how to handle this
kind of circumstance. ▲

Identifying the Current System Profile 4

For the NCMBeginMatching, NCMDrawMatchedPicture, and NCWNewColorWorld
functions, your application can specify NULL to signify the system profile. For all
other functions—for example, the CMGetProfileElement function, the
CMValidateProfile function, and the CMCopyProfile function—for which you
want to specify the system profile, you must give an explicit reference to the
profile. You can use the CMGetSystemProfile function to obtain a reference to the
system profile.

Each profile has a name associated with it, including the profile configured as
the system profile. There are cases in which your application may need to
display the name of the system profile to the user. For example, you may want
to present a list or selection menu to your user showing the names of all
available display profiles. To obtain the name of the system profile, your
application can call the CMGetScriptProfileDescription function.

To call this function, your application must first obtain a reference to the
system profile because you cannot specify NULL to identify it. Given a
profile reference, the CMGetScriptProfileDescription function returns
the profile name and script code. Listing 4-2 uses the CMGetSystemProfile

ACI Book : Develop CS Supportive Apps Page 19 Thursday, July 13, 1995 8:40 AM

C H A P T E R 4

Developing ColorSync-Supportive Applications

4-20 Developing Your ColorSync-Supportive Application

and CMGetScriptProfileDescription functions to obtain a reference to the
system profile and the system profile’s name and script code.

Listing 4-2 Obtaining the current system profile

void MyPrintSystemProfileName(void)
{

CMError cmErr;
CMProfileRef sysProf;
Str255 profName;
ScriptCode profScript;

cmErr = CMGetSystemProfile(&sysProf);

if (cmErr == noErr)
{

cmErr = CMGetScriptProfileDescription(sysProf, profName,
&profScript);

if (cmErr == noErr)
{

DrawString(profname);
}

}
}

Matching Colors to Displays Using ColorSync With QuickDraw
Operations 4

To provide your user with images and pictures showing consistent colors
across displays, your application can use the ColorSync Manager to match the
colors in the user’s pictures and documents with the colors available on the
user’s current display. If a color cannot be reproduced on the current system’s
display, the ColorSync Manager maps the color to the color gamut of the
display according to the specifications defined by the profiles.

The ColorSync Manager provides two high-level functions that use QuickDraw
that your application can call to draw a color picture to the current display. One
function, NCMDrawMatchedPicture, uses the source profile embedded in the
picture to match the picture’s colors to the display’s gamut defined by the

ACI Book : Develop CS Supportive Apps Page 20 Thursday, July 13, 1995 8:40 AM

C H A P T E R 4

Developing ColorSync-Supportive Applications

Developing Your ColorSync-Supportive Application 4-21

D
eveloping C

olorS
ync-S

upportive A
pplications

4

system profile. The other function, NCMBeginMatching, uses the source and
destination profiles you specify to match the colors of the source image to the
colors of the device for which it is destined.

On all systems, the current display device’s profile should be configured as the
system profile. The ColorSync System Profile control panel allows the user to
configure the current display’s profile as the system profile. Because the
ColorSync Manager recognizes the system profile as that of the current display,
you can specify NULL to indicate the system profile instead of explicitly giving a
profile reference. Passing NULL as a profile reference to the ColorSync Manager
functions directs the ColorSync Manager to use the system profile.

The following subsections describe how to use these high-level matching
functions, which automatically perform color matching in a manner acceptable
to most applications. Listing 4-3 on page 4-23 shows sample code that performs
color matching to a display in different ways using the high-level functions.

However, if your application needs a finer level of control over color matching,
you can use the low-level ColorSync Manager color-matching functions,
described in“Matching Colors Using the Low-Level Functions” on page 4-29 to
match the colors of a bitmap, a pixel map, or a list of colors.

Matching Colors in a Picture Containing an Embedded Profile 4

If a user copies a picture that includes a profile into one of your application’s
documents, your application can use the ColorSync Manager’s high-level
function NCMDrawMatchedPicture to match the colors in that picture to the
display on which you draw it.

The NCMDrawMatchedPicture function automatically matches all colors to the
color gamut of the display device using the device’s profile as the picture is
drawn. To use this function, you identify only the profile for the display device.
The function acknowledges color-matching picture comments embedded in the
picture and uses embedded profiles. The source profile for the device on which
the image was created should be embedded in the QuickDraw picture whose
handle you pass to the function; the NCMDrawMatchedPicture function uses the
embedded source profile, if it exists. If the source profile is not embedded, the
function uses the current system profile as the source profile. A picture may
have more than one profile embedded. If so, the NCMDrawMatchedPicture
function will use the profiles successively if they are embedded correctly.

By specifying NULL as the destination profile when you use this function, you
are assured that the system profile—that is, the profile for the main screen—is

ACI Book : Develop CS Supportive Apps Page 21 Thursday, July 13, 1995 8:40 AM

C H A P T E R 4

Developing ColorSync-Supportive Applications

4-22 Developing Your ColorSync-Supportive Application

used as the destination profile. Alternatively, your application can call the
CMGetSystemProfile function to obtain a reference to the profile and specify the
system profile explicitly; the portion of code that calls the
NCMDrawMatchedPicture function in Listing 4-3 on page 4-23 handles use of the
system profile this way.

Considerations 4

For embedded profiles to be used correctly, the currently effective profile must
be terminated by a picture comment of kind cmEndProfile after drawing
operations using that profile are performed. If a picture comment was not
specified to end the profile, the profile will remain in effect until the next
embedded profile is introduced with a picture comment of kind
cmBeginProfile. However, use of the next profile might not be the intended
action. It is good practice to always pair use of the cmBeginProfile and
cmEndProfile picture comments. When the ColorSync Manager encounters an
cmEndProfile picture comment, it restores use of the system profile for
matching until it encounters another cmBeginProfile picture comment.

If your application allows a user to modify an image that you color-matched
using the NCMDrawMatchedPicture function, your application must either embed
the system profile in the picture file or convert and match the colors of the
modified image to the colors of the source profile. The method you choose is
specific to your application.

Matching Colors as Your User Draws a Picture 4

To use Color QuickDraw functions to draw a document with colors matched to
a display, your application can simply use the NCMBeginMatching function before
calling Color QuickDraw functions, and then conclude its drawing with the
CMEndMatching function. Color QuickDraw drawing functions are described in
Inside Macintosh: Imaging With QuickDraw.

To use this function, you must specify both the source and destination profiles.
If the user creates the image using your application, you can specify NULL for
both the source and destination profiles because the source and destination
devices are the same, the current display. This function returns a reference to
the color-matching session that you must pass to the CMEndMatching function to
terminate color matching. The latter portion of code shown in Listing 4-3
demonstrates how to use the NCMBeginMatching and CMEndMatching pair of
functions.

ACI Book : Develop CS Supportive Apps Page 22 Thursday, July 13, 1995 8:40 AM

C H A P T E R 4

Developing ColorSync-Supportive Applications

Developing Your ColorSync-Supportive Application 4-23

D
eveloping C

olorS
ync-S

upportive A
pplications

4

Listing 4-3 Two methods of color matching to a display

void MyMatchingToDisplays(void)
{

CMError cmErr;
CMProfileRef sysProf;
CMProfileRef targProf;
PicHandle hPICT;
Rect rcPICT;
CMMatchRef matchRef;

/* use the system profile as the destination profile for the
NCMDrawMatchedPicture function */

cmErr = GetPict(&hPICT, &rcPICT);
if (cmErr == noErr)
{

cmErr = CMGetSystemProfile(&sysProf);
}

if (cmErr == noErr)
{

NCMDrawMatchedPicture(hPICT, sysProf, &rcPICT);

KillPicture(hPICT);
(void) CMCloseProfile(sysProf);

}

/* use the system profile as the source profile and another profile as the
destination profile for the NCMBeginMatching and CMEndMatching functions */

cmErr = CMGetSystemProfile(&sysProf);

if (cmErr == noErr)
{

cmErr = MyGetImageTargetProfile(&targProf);
}

if (cmErr == noErr)
{

cmErr = NCMBeginMatching(sysProf, targProf, &matchRef);

ACI Book : Develop CS Supportive Apps Page 23 Thursday, July 13, 1995 8:40 AM

C H A P T E R 4

Developing ColorSync-Supportive Applications

4-24 Developing Your ColorSync-Supportive Application

(void) CMCloseProfile(sysProf);
(void) CMCloseProfile(targProf);

}

if (cmErr == noErr)
{

MyDoDrawing();

CMEndMatching(matchRef);
}

}

Setting a Large Profile Element 4

When you need to set a large amount of element data for a tag in a profile, you
can use the CMSetPartialProfileElement function to copy the data to the profile
in segments. If you know the size of the element data, it is good practice to call
CMSetProfileElementSize to reserve space for the data before you set it. First
setting the size avoids incurring the extensive overhead required to increase
the size for the element data with each call to append another segment of data.
In addition to reserving the element data size, the CMSetProfileElementSize
function sets the element tag, if it does not already exist.

After you set the element size, you can call the CMSetPartialProfileElement
function repeatedly, as many times as necessary, each time appending a
segment of data to the end of the data already copied until all the element data
is copied.

Listing 4-4 Setting the element size before setting the element data in segments

#include <Types.h>
#include <Memory.h>
#include <StandardFile.h>
#include <OSUtils.h>
#include <CMApplication.h>
#include "MacUtils.h"

/* test element signature */
#define kElemTag 'test'

ACI Book : Develop CS Supportive Apps Page 24 Thursday, July 13, 1995 8:40 AM

C H A P T E R 4

Developing ColorSync-Supportive Applications

Developing Your ColorSync-Supportive Application 4-25

D
eveloping C

olorS
ync-S

upportive A
pplications

4

/* kElemSize must be evenly divisible by kNSegments */
#define kElemSize 10000
#define kNSegments 10

void main(void);

void main(void)
{

CMError err;
StandardFileReply reply;
CMProfileRef prof;
CMProfileLocation location;
unsigned long offset;
unsigned long byteCount;
Ptr p;
long i;

/* for error handling */
err = noErr;

p = NULL;

/* standard Mac Init */
InitMacintosh(8);

/* request file spec for destination */
StandardPutFile("\p", "\pnew profile", &reply);

/* bail if user canceled */
if (!reply.sfGood)
{

return;
}

ACI Book : Develop CS Supportive Apps Page 25 Thursday, July 13, 1995 8:40 AM

C H A P T E R 4

Developing ColorSync-Supportive Applications

4-26 Developing Your ColorSync-Supportive Application

/* create new empty profile */
if (err == noErr)
{

location.locType= cmFileBasedProfile;
location.u.fileLoc.spec= reply.sfFile;

err = CMNewProfile(&prof, &location);
}

/* allocate buffer for element data: cleared to 0s */
if (err == noErr)
{

if ((p = NewPtrClear(kElemSize/kNSegments)) == NULL)
{

err = MemError();
}

}

/* set total element size; also initially creates the element tag */
if (err == noErr)
{

err = CMSetProfileElementSize(prof, kElemTag, kElemSize);
}

/* set element data in segments */
if (err == noErr)
{

for (i = 0; i < kNSegments; i++)
{

offset = (i * (kElemSize / kNSegments));
byteCount= (kElemSize / kNSegments);
err = CMSetPartialProfileElement(prof, kElemTag, offset, byteCount, p);

if (err != noErr)
break;

}
}

/* update profile disk file */
if (err == noErr)
{

ACI Book : Develop CS Supportive Apps Page 26 Thursday, July 13, 1995 8:40 AM

C H A P T E R 4

Developing ColorSync-Supportive Applications

Developing Your ColorSync-Supportive Application 4-27

D
eveloping C

olorS
ync-S

upportive A
pplications

4

err = CMUpdateProfile(prof);
}

/* close profile */
if (err == noErr)
{

err = CMCloseProfile(prof);
}

/* free buffer */
if (p!= NULL)
{

DisposePtr(p);
}

}

Creating a Color World for Color Matching and Checking
Using the Low-Level Functions 4

A color world is a reference to a private ColorSync structure that represents a
unique color-matching session. Although profiles can be large, a color world is
a compact representation of the mapping needed to match between profiles.
Conceptually, you can think of a color world as a sort of “matrix
multiplication” of two or more profiles that distills all the information
contained in the profiles into a fast multidimensional lookup table.

For the ColorSync Manager low-level functions, a color world defines the
aspects that characterize how the color-matching session will occur based on
information contained in the profiles that you supply when your application
sets up the color world. Your application can define a color world for color
transformations between a source profile and a destination profile, or it can
define a color world for color transformations among a series of concatenated
profiles.

For the low-level ColorSync Manager functions, a color world is the equivalent
of the ColorSync Manager QuickDraw-based functions’ source and destination
profiles. From your application’s perspective, the difference in specifying
profiles for the low-level functions is that instead of calling a function and
passing it references to the profiles for the session, first you must create a color
world using those profile references and pass the color world to the function.

ACI Book : Develop CS Supportive Apps Page 27 Thursday, July 13, 1995 8:40 AM

C H A P T E R 4

Developing ColorSync-Supportive Applications

4-28 Developing Your ColorSync-Supportive Application

Your application calls the NCWNewColorWorld function to set up a simple color
world to be used for color transformations involving two profiles—a source
profile and a destination profile—and the function returns a reference to the
color world it creates. Setting up a color world to be used for color processing
involving a series of concatenated profiles or a single device-linked profile,
which contains a series of profiles, is slightly more complex. Here are the steps
you take:

1. Obtain references to the profiles to be used for the concatenated color
world.

For information describing how to obtain references to the profiles for the
color world, see “Obtaining Profile References” on page 4-16.

2. Set up an array containing references to the profiles comprising the set.

Before your application calls the CWConcatColorWorld function to create the
color world, you must establish the profile set. The ColorSync Manager
defines the following data structure of type CMConcatProfileSet that you use
to specify the profile set:

struct CMConcatProfileSet {
unsigned short keyIndex;
unsigned short count;
CMProfileRef profileSet[1];

};

Your application also uses the CMConcatProfileSet data structure to define a
profile set for a device-linked profile. See “Creating and Using
Device-Linked Profiles” on page 4-53 for more information.
Your application must create an array that contains references to the profiles
for the color world, specifying these references in processing order. You
must specify the number of profile references in the array as the value of the
CMConcatProfileSet.count field, using a one-based number. You assign the
profile array to the CMConcatProfileSet.profileSet field.
The ColorSync Manager defines rules governing the types of profiles you
can specify in a profile array. These rules differ depending on whether you
are creating a profile set to be used to create a device-linked profile or to be
used to create a concatenated color world. For a list of the rules defining the
types of profiles you can use for these purposes, see the CWNewLinkProfile
function description and the CWConcatColorWorld function description in the
“ColorSync Manager Reference for Applications and Device Drivers”
chapter of the Advanced Color Imaging Reference.

ACI Book : Develop CS Supportive Apps Page 28 Thursday, July 13, 1995 8:40 AM

C H A P T E R 4

Developing ColorSync-Supportive Applications

Developing Your ColorSync-Supportive Application 4-29

D
eveloping C

olorS
ync-S

upportive A
pplications

4

3. Identify the CMM to be used for the color processing.

Each of the profiles whose references you give identifies the preferred CMM
to be used for color processing involving that profile. To perform color
transformation using a series of profiles, the ColorSync Manager uses only
one CMM. You use the CMConcatProfileSet.keyIndex field to identify the
index into the array corresponding to the profile whose preferred CMM is to
be used. The array is 0 based, so you must specify the
CMConcatProfileSet.keyIndex value as a number in the range of 0 to
count-minus-1. Count is the number of elements in the array.

4. Call the CWConcatColorWorld function to set up the color world.

You pass the CWConcatColorWorld function a parameter of type
CMConcatProfileSet to specify the profile array, and the function returns a
color world reference. To perform color matching or gamut checking using
the profiles comprising a color world, you call the low-level function passing
it the reference to the color world.

Using a device-linked profile for the low-level functions entails additional steps
described in “Creating and Using Device-Linked Profiles,” beginning on
page 4-53.

Matching Colors Using the Low-Level Functions 4

Using the low-level CWMatchPixMap or CWMatchBitmap ColorSync Manager
function, your application can match the colors of a pixel image or a bitmap
image to the display’s color gamut and display the image without relying on
QuickDraw.

Color matching occurs relatively quickly, but for a session involving a large
pixel image or bitmap image, the color-matching process may take some time.
To keep your user informed, you can provide a progress-reporting function.
For example, your function can display an indicator, such as a thermometer, to
the user to depict how much of the matching has been done and how much
remains. Your function can also allow the user to terminate the color-matching
process before it completes.

When your application calls either the CWMatchPixMap function or the
CWMatchBitmap function, you can pass the function a pointer to your callback
progress-reporting function and a reference constant containing data, such as
the thermometer dialog box’s window reference. When the CMM used to
match the colors calls your progress-reporting function, it passes the reference

ACI Book : Develop CS Supportive Apps Page 29 Thursday, July 13, 1995 8:40 AM

C H A P T E R 4

Developing ColorSync-Supportive Applications

4-30 Developing Your ColorSync-Supportive Application

constant to it. If you provide a progress-reporting function, here is how you
should declare the function if you were to name it MyCMBitmapCallBackProc:

pascal Boolean MyCMBitmapCallBackProc (long progress, void *refCon);

For a complete description of the progress-reporting function declaration, see
the chapter “ColorSync Manager Reference for Applications and Device
Drivers” of the Advanced Color Imaging Reference.

To use the CWMatchPixMap and CWMatchBitmap functions, your application must
first set up a color world that specifies the profiles involved in the
color-matching session. The color world establishes how matching will take
place between the profiles. For information on how to create a color world, see
“Creating a Color World for Color Matching and Checking Using the
Low-Level Functions” on page 4-27. Listing 4-5 on page 4-32 shows how to
match the colors of a pixel map or a bitmap using the ColorSync Manager
low-level functions that take a color world.

The ColorSync Manager uses the PixMap data type defined by Color
QuickDraw. The ColorSync Manager defines and uses the cmBitmap data type,
based on the classic QuickDraw Bitmap data type.

Matching the Colors of a Pixel Map to the Display’s Color Gamut 4

Your application can call the CWMatchPixMap function to match the colors of a
pixel image to the display’s color gamut using a color world that you had
previously created. The color world must be based on the source profile for the
device used to create the pixel image and the system profile for the system’s
display.

To match the colors of a pixel image to the display’s color gamut, the source
profile for the color world must specify a data color space of RGB as its
dataColorSpace element value to correspond to the pixel map data type, which
is implicitly RGB. If the source profile you specify for the color world is the
original source profile used to create the pixel image, most likely these values
match. However, if you want to verify that the source profile’s dataColorSpace
element specifies RGB, you can use the CMGetProfileHeader function to obtain
the profile header. The profile header contains the dataColorSpace element
field. For a pixel image, the display profile’s dataColorSpace element must also
be set to RGB; this is the color space commonly used for displays.

If the source profile is embedded in the document containing the pixel map,
your application can extract the profile and open a reference to it before you

ACI Book : Develop CS Supportive Apps Page 30 Thursday, July 13, 1995 8:40 AM

C H A P T E R 4

Developing ColorSync-Supportive Applications

Developing Your ColorSync-Supportive Application 4-31

D
eveloping C

olorS
ync-S

upportive A
pplications

4

create the color world. For information on how to extract an embedded profile,
see “Extracting Profiles Embedded in Pictures” on page 4-38. If the source
profile is installed in the ColorSync Profiles folder, your application can
display a list of profiles to the user to allow the user to select the appropriate
one.

Listing 4-5 on page 4-32 shows how to set up a color world to be used for color
matching of either a pixel map or a bitmap. After setting up the color world,
the MyMatchImage function calls the CWMatchPixMap function to match the pixel
map in place.

Matching the Colors of a Bitmap Image to the Display’s Color Gamut 4

Matching the colors of a bitmap image to the current system’s display is similar
to the process of matching a pixel map’s colors except that the data type of a
bitmap image is explicitly stated in the space field of the bitmap. A bitmap
image can be specified using any of the following data types: cmGrayASpace,
cmRGB16Space, cmRGB32Space, cmARGB32Space, cmCMYK32Space, cmHSV32Space,
cmHLS32Space, cmYXY32Space, cmXYZ32Space, cmLUV32Space, or cmLAB32Space. The
data type of the source bitmap image must correspond to the data color space
specified by the color world’s source profile.

When you call the CWMatchBitmap function, you can pass it a pointer to a bitmap
to hold the resulting image. In this case, you must allocate the pixel buffer
pointed to by the image field of the CMBitmap structure. Because the
CWMatchBitmap function allows you to specify a separate bitmap to hold the
resulting color-matched image, you must ensure that the data type you specify
in the space field of the resulting bitmap matches the destination’s color data
space.

Rather than creating a bitmap for the color-matched image, you can match the
bitmap in place. To do so, you specify NULL instead of passing a pointer to a
resulting bitmap. In this case, the data color space of the display’s system
profile must match the data type of the source bitmap image.

The latter portion of the code in Listing 4-5 shows how to set up a bitmap for
the resulting color-matched image before calling the CWMatchBitmap function to
perform the color matching. The MyMatchImage function, depicted in this sample
listing, uses the profile of the device that produced the image as the source
profile and the system profile as the destination profile.

ACI Book : Develop CS Supportive Apps Page 31 Thursday, July 13, 1995 8:40 AM

C H A P T E R 4

Developing ColorSync-Supportive Applications

4-32 Developing Your ColorSync-Supportive Application

Listing 4-5 Matching the colors of a pixel map or a bitmap using a color world

void MyMatchImage(void)
{

CMError cmErr;
CMProfileRef sourceProf;
CMProfileRef sysProf;
CMWorldRef cw;
CMBitmap bitmap;

/* set up a color world */

cmErr = MyGetImageSourceProfile(&sourceProf);

if (cmErr == noErr)
{

cmErr = CMGetSystemProfile(&sysProf);
}

if (cmErr == noErr)
{

cmErr = NCWNewColorWorld(&cw, sourceProf, sysProf);

/* close profiles after setting up color world */
(void) CMCloseProfile(sourceProf);
(void) CMCloseProfile(sysProf);

}

/* match pixmap */

if (cmErr == noErr)
{

cmErr = CWMatchPixMap(cw, gpPixMap, (CMBitmapCallBackUPP) NULL, NULL);
}

/* match CMBitmap */

if (cmErr == noErr)
{
/* CMBitmaps corresponding to QD 16 & 32 bit/pixel, RGBDirect

pixmaps are supported by the ColorSync Manager */

ACI Book : Develop CS Supportive Apps Page 32 Thursday, July 13, 1995 8:40 AM

C H A P T E R 4

Developing ColorSync-Supportive Applications

Developing Your ColorSync-Supportive Application 4-33

D
eveloping C

olorS
ync-S

upportive A
pplications

4

if ((*gpPixMap).pixelType != RGBDirect)
{

cmErr = paramErr;
}

}

if (cmErr == noErr)
{

/* set local CMBitmap structure so that it describes the
pixmap */

bitmap.image= (*gpPixMap).baseAddr;
bitmap.width= (*gpPixMap).bounds.right - (*gpPixMap).bounds.left;
bitmap.height= (*gpPixMap).bounds.bottom - (*gpPixMap).bounds.top;
/* mask QD rowBytes flag bits */
bitmap.rowBytes= (*gpPixMap).rowBytes & 0x3ffe;

switch ((*gpPixMap).pixelSize)
{

case 16:
bitmap.pixelSize= 16;
bitmap.space= cmRGB16Space;
break;

case 32:
bitmap.pixelSize= 32;
bitmap.space = cmRGB32Space;
break;

default:
cmErr = paramErr;
break;

}

/* CMBitmap fields not used by the ColorSync Manager */
bitmap.user1= 0;
bitmap.user2= 0;

}

if (cmErr == noErr)
{

/* match in place */

ACI Book : Develop CS Supportive Apps Page 33 Thursday, July 13, 1995 8:40 AM

C H A P T E R 4

Developing ColorSync-Supportive Applications

4-34 Developing Your ColorSync-Supportive Application

cmErr = CWMatchBitmap(cw, &bitmap, (CMBitmapCallBackUPP) NULL, NULL,
 (CMBitmap*) NULL);

/* dispose of the colorworld */
CWDisposeColorWorld(cw);

}
}

Embedding Profiles in Documents and Pictures 4

When the user creates and saves a document or picture containing a color
image created or modified with your application, your application can provide
for future color matching by saving—along with that document or picture—the
profile for the device on which the image was created or modified. To get the
system profile, your application can use the CMGetSystemProfile function
described in “Identifying the Current System Profile” on page 4-19 and in the
chapter “ColorSync Manager Reference for Applications and Device Drivers”
of the Advanced Color Imaging Reference. “Searching for Profiles in the
ColorSync Profiles Folder,” beginning on page 4-49 describes other functions
your application can use to search for device profiles.

When embedding source profiles in the documents created by your
application, you can store them in any manner that you choose. In the resource
fork of the document file, for example, you may choose to have your
application store one profile for an entire image, or a separate profile for every
object in an image, or a separate profile for every device on which the user
modified the image.

When embedding source profiles in PICT file pictures, your application should
use the cmComment picture comment, which has a kind value of 224 and is
defined for embedded version 2.0 profiles. This comment is followed by a
4-byte selector that describes the type of data in the comment. The following
selectors are currently defined:

Selector Description

0 Beginning of a version 2.0 profile. Profile data to follow.

1 Continuation of version 2.0 profile data. Profile data to follow.

2 End of version 2.0 profile data. No profile data follows.

ACI Book : Develop CS Supportive Apps Page 34 Thursday, July 13, 1995 8:40 AM

C H A P T E R 4

Developing ColorSync-Supportive Applications

Developing Your ColorSync-Supportive Application 4-35

D
eveloping C

olorS
ync-S

upportive A
pplications

4

Because the dataSize parameter of the PicComment procedure is a signed 16-bit
value, the maximum amount of profile data that can be embedded in a single
picture comment is 32,763 bytes (32,767 – 4 bytes for the selector). You can
embed a larger profile by using multiple picture comments of selector type 1.
You must embed the profile data in consecutive order, and you must conclude
the last piece of profile data by embedding a picture comment of selector type 2.

All embedded version 2.0 profiles, including those that fit within a single
picture comment, must be followed by the end-of-profile picture comment
(selector 2), as shown in the following examples:

Example 1: Embedding a 20K profile.
PicComment kind=224, dataSize=20K+4, selector=0, profile data=20K
PicComment kind=224, dataSize=4, selector=2

Example 2: Embedding a 50K profile.
PicComment kind=224, dataSize=32K, selector=0, profile data=32K-4
PicComment kind=224, dataSize=18K+8, selector=1, profile data=18K+4
PicComment kind=224, dataSize=4, selector=2

For version 1.0 of the ColorSync Manager, picture comment types
cmBeginProfile and cmEndProfile are used to begin and end a picture comment.
The cmBeginProfile comment is not supported for ColorSync Manager version
2.0 profiles; however, the cmEndProfile comment can be used to end the current
profile and begin using the system profile for both ColorSync 1.0 and 2.0.
(Following a cmEndProfile comment, the ColorSync Manager reverts to the
system profile.) The cmEnableMatching and cmDisableMatching picture
comments are used to begin and end color matching in both ColorSync 1.0 and
2.0. See Inside Macintosh: Imaging With QuickDraw for more information about
picture comments.

It is important to understand that for embedded profiles to be used properly,
the currently effective profile must be correctly terminated by a picture
comment of kind cmEndProfile after drawing operations using that profile are
performed. If you do not specify a picture comment to end the profile, the
profile will remain in effect until the next embedded profile is introduced with
a picture comment of kind cmBeginProfile. It is good practice to always pair
use of the cmBeginProfile and cmEndProfile picture comments. When the
ColorSync Manager encounters a cmEndProfile picture comment, it restores use
of the system profile for matching until it encounters another cmBeginProfile
picture comment.

ACI Book : Develop CS Supportive Apps Page 35 Thursday, July 13, 1995 8:40 AM

C H A P T E R 4

Developing ColorSync-Supportive Applications

4-36 Developing Your ColorSync-Supportive Application

The ColorSync Manager provides the NCMUseProfileComment function, which
automates the process of embedding a profile. This function generates the
picture comments required to embed the specified profile into the open picture.
It calls the QuickDraw PicComment function with a picture comment kind value
of cmComment and a 4-byte selector that describes the type of data in the picture
comment: 0 to begin the profile, 1 to continue, and 2 to end the profile. If the
size in bytes of the profile and the 4-byte selector together exceed 32 KB, this
function segments the profile data and embeds the multiple segments in
consecutive order using selector 1 to embed each segment.

However, the NCMUseProfileComment function does not terminate the embedded
profile with a picture comment to turn off use of the profile.

You are responsible for adding the picture comment of kind cmEndProfile. If a
picture comment was not specified to end the profile following the drawing
operations to which the profile applies, the profile will remain in effect until the
next embedded profile is introduced with a picture comment of kind
cmBeginProfile.

Listing 4-6 shows how to embed a profile in a picture file. The
MyPreprendProfileToPicHandle function depicts how to create a new picture
and embed the profile for the device used to create the picture before the
picture. The reference for the profile is passed to the
MyPrependProfileToPicHandle function as the prof parameter. Notice that after
the MyPreprendProfileToPicHandle function calls the NCMUseProfileComment
function to embed the profile, it calls its own MyEndProfileComment function to
embed a comment of kind cmEndProfile, ensuring that the profile is properly
terminated.

Listing 4-6 Embedding a profile by prepending it before its associated picture

CMError MyPrependProfileToPicHandle (PicHandle pict, PicHandle
*pictNew, CMProfileRef prof)

{
OSErr err = noErr;
CGrafPtr savePort;
GDHandle saveGDev;
GWorldPtr smallOff;
Rect pictRect;
CMAppleProfileHeader head;
unsigned long vers;

ACI Book : Develop CS Supportive Apps Page 36 Thursday, July 13, 1995 8:40 AM

C H A P T E R 4

Developing ColorSync-Supportive Applications

Developing Your ColorSync-Supportive Application 4-37

D
eveloping C

olorS
ync-S

upportive A
pplications

4

unsigned long flags;

if (prof==nil) return paramErr;

/* get the profile header */
err = CMGetProfileHeader(prof, &head);
if (err) return err;

/* get the version from profile header */
vers = head.cm2.profileVersion;

/* set the embedded profile flag bit */
if (vers >= cmCS2ProfileVersion)
{

flags = head.cm2.flags;
head.cm2.flags |= (1<<cmEmbeddedProfile);
err = CMSetProfileHeader(prof, &head);
if (err) return err;

}

/* create a temporary graphics world */
err = NewSmallGWorld(&smallOff);
if (err) goto restoreProfFlagAndBail;

GetGWorld(&savePort, &saveGDev);
SetGWorld(smallOff, nil);
pictRect = (**pict).picFrame;
ClipRect(&pictRect); /* important: set clipRgn */

/* create a new picture */
pictNew = OpenPicture(&pictRect); / start recording */
if (vers == cmCS1ProfileVersion) /* if version 1 profile... */

err = paramErr;
else if (vers >= cmCS2ProfileVersion)

err = NCMUseProfileComment(prof,nil);
DrawPicture(pict, &pictRect)
MyEndProfileComment();
ClosePicture();

ACI Book : Develop CS Supportive Apps Page 37 Thursday, July 13, 1995 8:40 AM

C H A P T E R 4

Developing ColorSync-Supportive Applications

4-38 Developing Your ColorSync-Supportive Application

 if (err) KillPicture(*pictNew);

SetGWorld(savePort, saveGDev);
DisposeGWorld(smallOff);

restoreProfFlagAndBail:
/* restore the original flag */
if (vers >= cmCS2ProfileVersion)
{

head.cm2.flags = flags;
err = CMSetProfileHeader(prof, &head);

}
return err;

}

Here is the application-defined MyEndProfileComment function that the code in
Listing 4-6 calls to add the cmEndProfile picture comment to terminate the
profile:

void MyEndProfileComment (void)
{

PicComment(cmEndProfile, 0, 0);
}

Extracting Profiles Embedded in Pictures 4

To color match or gamut check a picture embedded in a document, your
application must first extract the source profile used when the image was
created if the profile is embedded in the document along with the picture, and
then open a reference to the profile. This process entails locating and
identifying the profile for the image within the document and transferring the
profile data from the document file.

ACI Book : Develop CS Supportive Apps Page 38 Thursday, July 13, 1995 8:40 AM

C H A P T E R 4

Developing ColorSync-Supportive Applications

Developing Your ColorSync-Supportive Application 4-39

D
eveloping C

olorS
ync-S

upportive A
pplications

4

Note
If you use the high-level NCMDrawMatchedPicture function,
you do not need to extract the source profile from the PICT
file. ◆

To extract an embedded profile, your application can use the
CMUnflattenProfile function. This function takes a pointer to a low-level
data-transfer function that your application must supply to transfer the profile
data from the document containing it. This function assumes that your
low-level data-transfer function is informed about the context of the profile.
After all of the profile data has been transferred, the CMUnflattenProfile
function returns the file specification for the profile.

When your application calls the CMUnflattenProfile function, the ColorSync
Manager uses the Component Manager to pass the pointer to your low-level
data-transfer function along with the reference constant to the preferred CMM
specified by the source profile. If available, the preferred CMM calls your
low-level data-transfer function. (If the preferred CMM is not available, the
ColorSync Manager follows the CMM selection algorithm described in “How
the ColorSync Manager Selects the CMM to Be Used,” beginning on page 4-7,
to determine which CMM to use.) The CMM calls your low-level data-transfer
function, directing it to open the file containing the profile, read segments of
the profile data, and return the data to the CMM’s calling function.

The CMM communicates with your low-level data transfer-function using a
command parameter to identify the operation to be performed. To facilitate the
transfer of profile data from the file to the CMM, the CMM passes to your
function a pointer to a data buffer for data, the size in bytes of the profile data
your function should return, and the reference constant passed from the calling
application.

On return, your function passes to the CMM segments of the profile data and
the number of bytes of profile data you actually return.

The following listings are portions of a sample application called CSDemo. You
can find the complete sample application in the ColorSync Samples folder of
the CD-ROM included with Advanced Color Imaging on the Mac OS. These
listings assume that all variables beginning with a lowercase letter g are global
variables previously defined. The application uses global variables to pass data

ACI Book : Develop CS Supportive Apps Page 39 Thursday, July 13, 1995 8:40 AM

C H A P T E R 4

Developing ColorSync-Supportive Applications

4-40 Developing Your ColorSync-Supportive Application

between functions that do not include reference constant parameters. The
listings shown here cover two primary steps:

■ “Step 1: Counting the Profiles in the PICT File,” beginning on page 4-40,
shows the portion of the application that sets up the port and draws the
picture using the bottleneck routines in order to count the number of profiles
associated with the picture. The application-defined functions
MyCountProfilesInPicHandle and MyCountProfilesCommentProc perform these
processes.

■ “Step 2: Extracting the Profile,” beginning on page 4-42, consists of three
hierarchical parts that locate a profile, flatten it, and open a reference to the
profile. In order to perform these tasks, the code must again draw the
picture using the bottleneck routines.

Step 1: Counting the Profiles in the PICT File 4

Given a picHandle value to the picture containing the embedded profile, the
sample code shown in Listing 4-7 counts the number of profiles in the picture
in order to be able to identify the profile to be extracted.

The MyCountProfilesInPicHandle function sets up the port and its bottlenecks
and initializes its global counter, which holds a single count summing both
ColorSync 1.0 profiles and version 2.0 profiles. The code must draw the picture
in order to be able to observe and count the number of profiles. To count the
number of profiles as the picture is being drawn, the code uses the
MyCountProfilesCommentProc bottleneck procedure, but it does not need to use
other bottleneck procedures. Therefore, the code defines nonoperational
bottleneck routines for the remaining routines. For example, it defines the
following function for the TextProc bottleneck:

static pascal void TextProc (short byteCount, Ptr textAddr,
Point numer, Point denom);

The code calls its own MyDrawPicHandleUsingBottleneck function, not shown
here, to draw the picture using the bottleneck routines. Because it must
increment the gCount global counter for both ColorSync 1.0 profiles and version
2.0 profiles, MyCountProfilesCommentProc checks for both types of profiles.

ACI Book : Develop CS Supportive Apps Page 40 Thursday, July 13, 1995 8:40 AM

C H A P T E R 4

Developing ColorSync-Supportive Applications

Developing Your ColorSync-Supportive Application 4-41

D
eveloping C

olorS
ync-S

upportive A
pplications

4

Listing 4-7 Counting the number of profiles in a picture

CMError MyCountProfilesInPicHandle (PicHandle pict, unsigned long *count)
{

OSErr err = noErr;
CQDProcs procs;

/* set up bottleneck for picComments so we can count the profiles */
SetStdCProcs(&procs);
procs.textProc = NewQDTextProc(TextProc);
procs.lineProc = NewQDLineProc (LineProc);
procs.rectProc = NewQDRectProc (RectProc);
procs.rRectProc = NewQDovalPro (RRectProc);
procs.ovalProc = NewQDOvalProc (OvalProc);
procs.arcProc = NewQDArcProc (ArcProc);
procs.polyProc = NewQDPolyProc (PolyProc);
procs.rgnProc = NewQDRgnProc (RgnProc);
procs.bitsProc = NewQDBitsProc (BitsProc);
procs.commentProc = NewQDCommentProc(MyCountProfilesCommentProc);
procs.txMeasProc = NewQDTxMeasProc (TxMeasProc);

/* initialize the global counter to be incremented by the commentProc*/
gCount = 0;

/* draw the picture in order to count the profiles */
err = MyDrawPicHandleUsingBottlenecks (pict, procs, nil);

/* obtain the result from the count global variable */
*count = gCount;

/* clean up and return*/
DisposeRoutineDescriptor(procs.textProc);
DisposeRoutineDescriptor(proc.lineProc);
DisposeRoutineDescriptor(procs.rectProc);
DisposeRoutineDescriptor(procs.rRectProc);
DisposeRoutineDescriptor(procs.ovalProc);
DisposeRoutineDescriptor(procs.arcProc);
DisposeRoutineDescriptor(procs.polyProc);
DisposeRoutineDescriptor(procs.rgnProc);
DisposeRoutineDescriptor(procs.bitsProc);
DisposeRoutineDescriptor(procs.commentProc);

ACI Book : Develop CS Supportive Apps Page 41 Thursday, July 13, 1995 8:40 AM

C H A P T E R 4

Developing ColorSync-Supportive Applications

4-42 Developing Your ColorSync-Supportive Application

DisposeRoutineDescriptor(procs.txMeasProc);
}

pascal void MyCountProfilesCommentProc (short kind, short dataSize, Handle
 dataHandle)

{
long selector;

switch (kind)
{

case cmBeginProfile
gCount ++; /* we found a ColorSync 1.0 profile */

/* increment the counter*/
break;

case cmComment;
if (dataSize <= 4) break; /* dataSize is too small for selector

 so break and get the selector
 from the first long */

selector = *((long *)(*dataHandle));
if (selector == cmBeginProfileSel)

gCount ++; /* we found a version 2 profile; increment
the counter */

break;
}

}

Step 2: Extracting the Profile 4

This part of the sample application identifies the profile to be flattened, flattens
the profile, and creates a temporary profile disposing of the original one.

Part A: Calling the Unflatten Function 4

Listing 4-8 shows the MyGetIndexedProfileFromPicHandle entry point function
that drives the process of unflattening the profile. The code creates a universal
procedure pointer (UPP), MyflattenUPP, that points to the low-level
data-transfer procedure.

A PICT handle may contain more than one profile. To identify the profile to be
unflattened, the MyGetIndexedProfileFromPicHandle function contains an index
parameter that passes in the profile’s index. The code stores the index in the

ACI Book : Develop CS Supportive Apps Page 42 Thursday, July 13, 1995 8:40 AM

C H A P T E R 4

Developing ColorSync-Supportive Applications

Developing Your ColorSync-Supportive Application 4-43

D
eveloping C

olorS
ync-S

upportive A
pplications

4

global variable gIndex so that the value is accessible by the application’s other
functions that check for the correct profile and extract it. Then, the code calls
the CMUnflattenProfile function, passing it the MyflattenUPP pointer. This
invokes the MyUnflattenProc function shown in Listing 4-9.

When the CMUnflattenProfile function returns, the code calls the CMOpenProfile
function to open a reference to the file-based profile; then it calls CMCopyProfile
to create a temporary profile. Finally, the code disposes of the original profile.
The code creates the temporary profile and disposes of the original in order to
adhere to the copyright protection for embedded profiles set through the
profile header flags field setting.

Listing 4-8 Calling the CMUnflattenProfile function to extract an embedded profile

CMError MyGetIndexedProfileFromPicHandle (PicHandle pict, unsigned long index,
 CMProfileRef *prof, CMProfileLocation
 *profLoc)

{
unsigned long refCon;
CMFlattenUPP MyflattenUPP;
CMError cmErr = noErr;
Boolean preferredCMMNotFound;
FSSpec tempSpec;
CMProfileRef tempProf;
CMProfileLocation tempProfLoc;

MyflattenUPP = NewCMFlattenProc(MyUnflattenProc); /* create a universal
 procedure pointer for unflatten
 procedure */

/* assumes that index <= count */

refCon = (unsigned long) pict;
gIndex = index;

cmErr = CMUnflattenProfile(&tempSpec, MyflattenUPP,(void*)&refCon,
&preferredCMMNotFound); /* this function invokes the

MyUnflattenProc shown in Listing 4-9 */
DisposeRoutineDescriptor(MyflattenUPP);

ACI Book : Develop CS Supportive Apps Page 43 Thursday, July 13, 1995 8:40 AM

C H A P T E R 4

Developing ColorSync-Supportive Applications

4-44 Developing Your ColorSync-Supportive Application

if (cmerr) return cmerr;

tempProfLoc.locType = cmFileBasedProfile;
tempProfLoc.u.fileLoc.spec = tempSpec;

cmErr = CMOpenProfile(&tempProf, &tempProfLoc);
if (cmerr) return cmerr;

cmErr = CMCopyProfile(prof, profLoc, tempProf);
cmErr = CMCloseProfile(tempProf);
cmErr = FSpDelete(&tempSpec);

return cmerr;
}

B: Calling the Unflatten Function 4

When the code in Listing 4-8 calls the CMUnflattenProc function passing it a
pointer to the MyUnflattenProc function, the MyUnflattenProc function shown in
Listing 4-9 gets called by the CMM to perform the low-level profile data
transfer from the document file.

When the CMM calls this function with an open command, the function
initializes global variables, creates a graphics world, and installs the bottleneck
procedures in the graphics world. The only bottleneck procedure that is
actually used is MyUnflattenProfilesCommentProc, which checks the picture
comments as the picture is drawn offscreen in order to identify the desired
profile.

When the CMM calls the MyUnflattenProc function with a read command, the
function reads the appropriate segment of data from a chunk and returns it. To
accomplish this, the code calls the MyDrawMatchedPicture function with the
appropriate bottleneck procedure installed. In turn, this invokes the
MyUnflattenProfilesCommentProc shown in Listing 4-10.

When the CMM calls the code with a close command, the code releases the
memory it used and disposes of the graphics world and bottlenecks.

ACI Book : Develop CS Supportive Apps Page 44 Thursday, July 13, 1995 8:40 AM

C H A P T E R 4

Developing ColorSync-Supportive Applications

Developing Your ColorSync-Supportive Application 4-45

D
eveloping C

olorS
ync-S

upportive A
pplications

4

Listing 4-9 The unflatten procedure

pascal OSErr MyUnflattenProc (long command, long *sizePtr, void
 *dataPtr, void *refConPtr)

{
OSErr err = noErr;
static CQDProcs procs;
static GWorldPtr offscreen;
PicHandle pict;

switch (command)
{

case cmOpenReadSpool:
err = NewSmallGWorld(&offscreen);
if (err) return err;

SetStdCProcs(&procs);
procs.textProc = NewQDTextProc (MyNoOpTextProc);
procs.lineProc = NewQDLineProc (MyNoOpLineProc);
procs.rectProc = NewQDRectProc (MyNoOpRectProc);
procs.rRectProc = NewQDRRectPro (MyNoOpRRectProc);
procs.ovalProc = NewQDOvalProc (MyNoOpOvalProc);
procs.arcProc = NewQDArcProc (MyNoOpArcProc);
procs.polyProc = NewQDPolyProc (MyNoOpPolyProc);
procs.rgnProc = NewQDRgnProc (MyNoOpRgnProc);
procs.bitsProc = NewQDBitsProc(MyNoOpBitsProc);
procs.commentProc = NewQDCommentProc (MyUnflattenProfilesCommentProc);
procs.txMeasProc = NewQDTxMeasProc (MyNoOpTxMeasProc);

gChunkBaseHndl = nil;
gChunkIndex = 0;
gChunkOffset = 0;
gChunkSize = 0;
break;

case cmReadSpool:
if (gChunkOffset > gChunkSize) /* if we overread the last chunk */
{

return ioErr;
}
if (gChunkOffset == gChunkSize) /* if we used up the last chunk */

ACI Book : Develop CS Supportive Apps Page 45 Thursday, July 13, 1995 8:40 AM

C H A P T E R 4

Developing ColorSync-Supportive Applications

4-46 Developing Your ColorSync-Supportive Application

{
if (gChunkBaseHndl !=nil)
{

HUnlock(gChunkBaseHndl); /* dispose of the previous chunk */
DisposeHandle(gChunkBaseHndl);
gChunkBaseHndl = nil;

}
gChunkIndex++; /* read in a new chunk */
gChunkOffset = 0;
gCount = 0;
gChunkCount = 0;
pict = *((PicHandle *)refConPtr);
err = MyDrawPicHandleUsingBottlenecks (pict, procs, offscreen);

/* this invokes MyUnflattenProfilesCommentProc shown in
Listing 4-10 */

if (gChunkBaseHndl==nil) /* check to see if we're overread */
return ioErr;

HLock(gChunkBaseHndl);
}
if (gChunkOffset < gChunkSize)
{

*sizePtr = MIN(gChunkSize-gChunkOffset, *sizePtr);
BlockMove((Ptr)(&((*gChunkBaseHndl)[gChunkOffset])),

(Ptr)dataPtr, *sizePtr);
gChunkOffset += (*sizePtr);

}
break;

case cmCloseSpool:
if (gChunkBaseHndl != nil)
{

HUnlock(gChunkBaseHndl); /* dispose of the previous chunk */
DisposeHandle(gChunkBaseHndl);
gChunkBaseHndl = nil;

}
DisposeGWorld(offscreen);
DisposeRoutineDescriptor(procs.MyNoOpTextPrc);
DisposeRoutineDescriptor(procs.MyNoOpLinePrc);
DisposeRoutineDescriptor(procs.MyNoOpRectProc);
DisposeRoutineDescriptor(procs.MyNoOpRRectPrc);
DisposeRoutineDescriptor(procs.MyNoOpOvalProc);

ACI Book : Develop CS Supportive Apps Page 46 Thursday, July 13, 1995 8:40 AM

C H A P T E R 4

Developing ColorSync-Supportive Applications

Developing Your ColorSync-Supportive Application 4-47

D
eveloping C

olorS
ync-S

upportive A
pplications

4

DisposeRoutineDescriptor(procs.MyNoOpArcProc);
DisposeRoutineDescriptor(procs.MyNoOpPolyPrc);
DisposeRoutineDescriptor(procs.MyNoOpRgnProc);
DisposeRoutineDescriptor(procs.MyNoOpBitsProc);
DisposeRoutineDescriptor(procs.MyUnflattenProfilesCommentPrc);
DisposeRoutineDescriptor(procs.MyNoOpTxMeasPrc);
break;

default:
break;

}
return err;

}

Part C: Calling the Comment Procedure 4

When the MyUnflattenProc function’s MyDrawPicHandleUsingBottlenecks
function calls the MyUnflattenProfilesCommentProc function, the function
shown in Listing 4-10 finds the profile identified by the index, finds the correct
segment of data within the profile, and stores the data in the gChunkBaseHndl
global variable.

Listing 4-10 The comment procedure

pascal void MyUnflattenProfilesCommentProc (short kind,short
dataSize, Handle dataHandle)

{
long selector;
OSErr err;

if (gChunkBaseHndl != nil) return;
/* the handle is in use; this shouldn’t happen */

if (gCount > gIndex) return;
/* we have already found the profile */

switch (kind)
{
case cmBeginProfile:

gCount ++; /* we found a version 1 profile */
gChunkCount = 1; /* v1 profiles should only have 1 chunk */

ACI Book : Develop CS Supportive Apps Page 47 Thursday, July 13, 1995 8:40 AM

C H A P T E R 4

Developing ColorSync-Supportive Applications

4-48 Developing Your ColorSync-Supportive Application

if (gCount != gIndex) break;
/* this is not the profile we're looking for */

if (gChunkCount != gChunkIndex) break;
/* this is not the chunk we're looking for */

gChunkBaseHndl = dataHandle;
err = HandToHand(&gChunkBaseHndl);
gChunkSize = dataSize;
gChunkOffset = 0;
break;

case cmComment:
if (dataSize <= 4) break;

/* the dataSize too small for selector, so break */
selector = *((long *)(*dataHandle));

/* get the selector from the first long in data */
switch (selector)
{

case cmBeginProfileSel:
gCount ++; /* we found a version 2 profile */
gChunkCount = 1;
if (gCount != gIndex) break;

/* this is not the profile we're looking for */
if (gChunkCount!=gChunkIndex) break;

/* this is not the chunk we're looking for */
gChunkBaseHndl = dataHandle;
err = HandToHand(&gChunkBaseHndl);
gChunkSize = dataSize;
gChunkOffset = 4;
break;

case cmContinueProfileSel:
gChunkCount ++;
if (gCount != gIndex) break;

/* this is not the profile we're looking for */
if (gChunkCount!=gChunkIndex) break;

/* this is not the chunk we're looking for */
gChunkBaseHndl = dataHandle;
err = HandToHand(&gChunkBaseHndl);
gChunkSize = dataSize;
gChunkOffset = 4;
break;

ACI Book : Develop CS Supportive Apps Page 48 Thursday, July 13, 1995 8:40 AM

C H A P T E R 4

Developing ColorSync-Supportive Applications

Developing Your ColorSync-Supportive Application 4-49

D
eveloping C

olorS
ync-S

upportive A
pplications

4

case cmEndProfileSel:
/* check to see if we're overreading */

gChunkCount = 0;
break;

}
break;

}
}

Searching for Profiles in the ColorSync Profiles Folder 4

Your application can use the ColorSync Manager search functions to obtain a
list identifying profiles in the ColorSync Profiles folder that meet
specifications you supply in a search record. For example, you can use these
functions to find all profiles for printers that meet certain criteria defined in the
profile. Your application can walk through the result listing that identifies these
profiles and obtain the name and script code of each profile corresponding to a
specific index in the list. Your application can then display a selection menu
showing the names of the profiles to your user. Listing 4-11 shows sample code
that takes an approach similar to one this example describes.

Listing 4-11 defines values for the search specification record fields, including
the search mask, and assigns those values to the record’s fields after initializing
the search result.

Then the code calls the CMNewProfileSearch function to search the ColorSync
Profiles folder for profiles that meet the search specification requirements. The
function returns a one-based count of the profiles matching the search
specification and a reference to the search result list of the matching profiles.

Next the function calls the CMSearchGetIndProfile function to obtain a reference
to a specific profile corresponding to a specific index into the search result list.
Passing the profile reference returned by the CMSearchGetIndProfile function as
the foundProf parameter, the code calls the CMGetScriptProfileDescription
function to obtain the profile name and script code.

Finally, the code cleans up, calling the CMCloseProfile function to close the
profile and the CMDisposeProfileSearch function to dispose of the search result
list.

ACI Book : Develop CS Supportive Apps Page 49 Thursday, July 13, 1995 8:40 AM

C H A P T E R 4

Developing ColorSync-Supportive Applications

4-50 Developing Your ColorSync-Supportive Application

Listing 4-11 Searching for specific profiles in the ColorSync Profiles folder

/* field definitions for search */
#define kCMMType 'appl' /* ColorSync default CMM */
#define kProfileClass cmDisplayClass /* monitor */
#define kAttr0 0x00000000
#define kAttr1 0x00000002 /* Macintosh standard gamma */

#define kSearchMask (cmMatchProfileCMMTypecmMatchProfileClasscmMatchAttributes)

void MyProfileSearch(void)
{

CMError cmErr;
CMProfileRef foundProf;
Str255 profName;
ScriptCode profScript;
CMSearchRecord searchSpec;
CMProfileSearchRef searchResult;
unsigned long searchCount;
unsigned long i;

/* init for error handling */

searchResult = NULL;

/* specify search */
searchSpec.CMMType= kCMMType;
searchSpec.profileClass= kProfileClass;
searchSpec.deviceAttributes[0]= kAttr0;
searchSpec.deviceAttributes[1]= kAttr1;

searchSpec.searchMask = kSearchMask;

searchSpec.filter= NULL; /* filter proc is not used */

cmErr = CMNewProfileSearch(&searchSpec, NULL, &searchCount, &searchResult);

if (cmErr == noErr)
{

for (i = 1; i <= searchCount; i++)
{

ACI Book : Develop CS Supportive Apps Page 50 Thursday, July 13, 1995 8:40 AM

C H A P T E R 4

Developing ColorSync-Supportive Applications

Developing Your ColorSync-Supportive Application 4-51

D
eveloping C

olorS
ync-S

upportive A
pplications

4

if (CMSearchGetIndProfile(searchResult, i, &foundProf) != noErr)
{

break;
}

cmErr = CMGetScriptProfileDescription(foundProf, profName, &profScript);

if (cmErr == noErr)
{

/* assume profile name ScriptCode is smRoman */
(void) printf("%s\n", p2cstr(profName));

}

(void) CMCloseProfile(foundProf);
}

}

if (searchResult != NULL)
{

CMDisposeProfileSearch(searchResult);
}

}

Checking Colors Against a Destination Device’s Gamut 4

Different imaging devices (scanners, displays, printers) work in different color
spaces, and each can have a different gamut or range of colors that they can
produce. The process of matching colors between devices entails adjusting the
colors of an image from the color gamut of one device to the color gamut of
another device so that the resulting image looks as similar as possible to the
original image. Not all colors can be rendered on all devices. The rendering
intent used in the color transformation process dictates how the colors are
matched, strongly influencing the outcome. Your application can give your
user some control over the outcome by allowing the user to select the rendering
intent to be used. However, some users might want to know in advance which
colors are out of gamut for the destination device so that they can choose other
appropriate colors within the gamut.

Using the ColorSync Manager low-level color-checking functions, your
application can check the colors of a pixel map (using the CWCheckPixMap
function), the colors of a bitmap (using the CWCheckBitmap function), or a list of

ACI Book : Develop CS Supportive Apps Page 51 Thursday, July 13, 1995 8:40 AM

C H A P T E R 4

Developing ColorSync-Supportive Applications

4-52 Developing Your ColorSync-Supportive Application

colors (using the CWCheckColors function) against the color gamut of the
destination device and warn your user when a color she or he chooses is out of
gamut for that device.

There are a number of ways in which your application can provide
gamut-checking services. For example, you can use gamut checking to see if a
given color is reproducible on a particular printer. If the color is not directly
reproducible—that is, if it is out of gamut—you could alert the user to that fact.

You can allow your user to specify a list of colors that fall within the gamut of a
source device to see if they fit within the gamut of a destination device before
the user color matches an image. Your application could display the results in a
window, indicating which colors are in the gamut and which are out. This
feature, too, gives the user the opportunity to test colors and select different
ones for portions of an image whose colors fall out of gamut. To handle this
feature, your application can call the CWCheckColors function.

In addition to providing features that allow your user to anticipate which
colors are out of gamut for a particular device, your application can also show
results. Your application can provide a print preview dialog box, showing
which colors in a printed image, for example, are out of gamut for the image as
it appears on the screen.

For an image that your application prepares, for example, your application can
present a print preview dialog box that signifies those colors within the image
that the printer cannot accurately reproduce. Your application can also allow
users to choose whether and how to match colors in the image with those
available on the printer.

You can provide a gamut-checking feature that marks the areas of a displayed
image, showing the colors that do not fall within the destination device’s
gamut. For example, your application can color check an image against a
destination device and create a black-and-white version of the image drawn to
the display using black to indicate the portions of the source image that are out
of gamut. The sample application called CSDemo that is provided in the
ColorSync Samples folder of the CD-ROM included with this book takes this
approach.

ACI Book : Develop CS Supportive Apps Page 52 Thursday, July 13, 1995 8:40 AM

C H A P T E R 4

Developing ColorSync-Supportive Applications

Developing Your ColorSync-Supportive Application 4-53

D
eveloping C

olorS
ync-S

upportive A
pplications

4

Creating and Using Device-Linked Profiles 4

To accommodate users who use a specific configuration requiring a
combination of device profiles and possibly nondevice profiles repeatedly over
time, your application can create device-linked profiles. A device-linked profile
offers your user a means of saving and storing a series of profiles
corresponding to a specific configuration in a concatenated format. This feature
provides an economy of effort for both your application and its user.

There are many uses for device-linked profiles. For example, a user might want
to store multiple profiles, such as various device profiles and color space
profiles associated with the creation and editing of an image.

Most users use the same device configuration to scan, view, and print graphics
over a period of time, often soft proofing images before they print them. To
enhance your application’s soft-proofing feature, you can allow your user to
store the contents of the profiles involved in the soft-proofing process in a
device-linked profile. Each time a user enacts your application’s soft-proofing
feature, your application can use the appropriate device-linked profile for the
configuration instead of opening profile references to each of the profiles in
order to create a color world to pass to the color-matching functions. (For
information about soft proofing, see “Providing Soft Proofs” on page 4-56.)

A device-linked profile is especially useful when a scanner application does not
embed the source profile in the document containing the image it creates. By
storing the scanner’s profile, your application eliminates the need to query the
user for the appropriate source profile each time the user wants to soft proof
using the configuration involving that scanner.

A user may want to see how a scanned image will look when printed using a
specific printer. The user may want to look at many images captured on the
same scanner at different times before printing the image. Because the same
devices are involved in the process, if your application has offered the user the
opportunity to create device-linked profiles, your application could display a
list of device-linked profiles that the user had previously created for various
configurations and allow the user to select the appropriate one for the current
soft-proofing.

ACI Book : Develop CS Supportive Apps Page 53 Thursday, July 13, 1995 8:40 AM

C H A P T E R 4

Developing ColorSync-Supportive Applications

4-54 Developing Your ColorSync-Supportive Application

Here are the steps your application should take in creating a device-linked
profile:

1. Open the profiles corresponding to the devices and transformations
involved in the configuration and obtain references to them.

To create a device-linked profile, your application must first obtain
references to the profiles involved in the configuration. If the profile for an
input device, such as a scanner, is embedded in the document containing the
image, you must first extract the profile. For a description of how to obtain a
profile reference, see “Obtaining Profile References” on page 4-16. For
information describing how to extract a profile from a document, see
“Extracting Profiles Embedded in Pictures,” beginning on page 4-38.

2. Create an array containing references to the profiles, specifying the profile
references in processing order.

You supply the profile references as an array of type CMProfileRef within a
data structure of type CMConcatProfileSet. The order of the profiles must
correspond to the order in which you want the colors of the image to be
processed. For example, for soft proofing an image, you should specify the
scanner profile reference first, followed by the printer profile reference, and
then the display profile reference because the goal is to match the colors of
the scanned image to the color gamut of the printer for which the image is
destined and then display the results to the user.
In the count field, specify a 0-based number identifying how many profiles
the array holds. A device-linked profile represents a one-way link between
devices.
Here is the CMConcatProfileSet data type:

struct CMConcatProfileSet {
unsigned short keyIndex;
unsigned short count;
CMProfileRef profileSet[1];

};

You must adhere to the rules that govern the type of profiles you can specify
in the array. For example, the first and last profiles must be device profiles.
For a list of these rules, see the chapter “ColorSync Manager Reference for
Applications and Device Drivers” of the Advanced Color Imaging Reference.

ACI Book : Develop CS Supportive Apps Page 54 Thursday, July 13, 1995 8:40 AM

C H A P T E R 4

Developing ColorSync-Supportive Applications

Developing Your ColorSync-Supportive Application 4-55

D
eveloping C

olorS
ync-S

upportive A
pplications

4

3. Specify the index corresponding to the profile whose preferred CMM is to
be used to perform the processing.

The header of each profile specifies the preferred CMM for that profile. Only
one CMM is used for all transformations across the profiles of a
device-linked profile, and you must identify the profile whose CMM is to be
used by giving the index of that profile in the keyIndex field of the
CMConcatProfileSet data type.

4. Using the CMProfileLocation data type, provide a file specification for the
new device-linked profile.

If the CWNewLinkProfile function completes successfully, the ColorSync
Manager creates a device-linked profile in the location that you specify,
opens a reference to the profile, and returns the profile reference to your
application. To tell the ColorSync Manager where to create the new profile,
your application must provide a file specification. The ColorSync Manager
defines a data structure of type CMProfileLocation containing a CMProfLoc
union that you use to give a file specification. (You can look at Listing 4-1 on
page 4-18, which assigns values to a CMProfileLocation data structure.)

5. Call the CWNewLinkProfile function to create the device-linked profile.

After you set up CMConcatProfileSet and CMProfileLocation, your
application can call the CWNewLinkProfile function, passing these values to it.
If the function completes successfully, it returns a reference to the newly
created device-linked profile.
Note that you cannot embed a device-linked profile into a document along
with an image that uses it.

6. Using the CWConcatColorWorld function, create a color world based on the
device-linked profile.

You can use a device-linked profile with the low-level ColorSync Manager
functions only. To use a device-linked profile for a color-matching or color
gamut-checking function, you must first create a color world using the
CWConcatColorWorld function, passing to it a data structure of type
CMConcatProfileSet. The CMConcatProfileSet data structure is the same data
type that you used to specify the array of profiles when you created the new
device-linked profile. To create the color world, however, you specify the
device-linked profile as the only member of the CMConcatProfileSet array. If
the CWConcatColorWorld function completes successfully, it returns a
reference to a color world that your application can pass to other low-level
functions for color-matching and color-checking sessions. A device-linked

ACI Book : Develop CS Supportive Apps Page 55 Thursday, July 13, 1995 8:40 AM

C H A P T E R 4

Developing ColorSync-Supportive Applications

4-56 Developing Your ColorSync-Supportive Application

profile remains intact and available for use again after your application calls
the CWDisposeColorWorld function to dispose of the concatenated color world.

Considerations 4

Here are some points to consider about how the ColorSync Manager uses
information contained in the profiles comprising a device-linked profile:

■ When you use a device-linked profile, the quality flag setting—indicating
normal mode, draft mode, or best mode—specified by the first profile
prevails for the entire session; the quality flags of following profiles in the
sequence are ignored. The quality flag setting is stored in the flags field of
the profile header.

■ The rendering intent specified by the first profile is used to color match to
the second profile, the rendering intent specified by the second profile is
used to color match to the third profile, and so on through the series of
concatenated profiles.

When your application is finished with the device-linked profile, it must close
the profile with the CMCloseProfile function.

Providing Soft Proofs 4

Using the ColorSync Manager, your application can provide your users with a
soft-proofing feature to enable them to preview the printed results of a color
image on the system’s display or local printer without actually outputing the
image to the printer that will produce the final image. The destination printer’s
profile provides the ColorSync Manager with the information required to
determine how the colors of the image will appear when printed. You can soft
proof an image by showing on the system’s display the outcome a printer
would produce because most displays support a wider color gamut than do
printers. Therefore, a display will probably be able to show all the colors a
printer could support.

Providing a feature that simulates the printed outcome for the user to preview
can save users considerable time and cost by allowing them to intervene and
adjust colors before sending the image to a printing shop. For example, without
the ability to soft proof and correct the colors of an image using a color
management system such as the ColorSync Manager, a graphics designer
producing a poster to be printed by a printing press would require the services
of a prepress shop to achieve the correct results before sending the image to the

ACI Book : Develop CS Supportive Apps Page 56 Thursday, July 13, 1995 8:40 AM

C H A P T E R 4

Developing ColorSync-Supportive Applications

Developing Your ColorSync-Supportive Application 4-57

D
eveloping C

olorS
ync-S

upportive A
pplications

4

printing press. The graphics designer might print the image to a local desktop
printer with a color gamut more limited than that of a printing press and then
submit the output to the prepress in order to correct the colors, repeating this
process until the results were satisfactory. Your application can eliminate the
need for the intermediate steps by allowing the user to color match the image
to the color gamut of the final printing press, display the image, and adjust the
colors accordingly.

You can use the low-level ColorSync Manager color-matching functions
CWMatchPixMap and CWMatchBitmap to perform the color matching, or you can
match a list of colors using the CWMatchColors function. To use these functions,
your application must first define a color world that encompasses the profiles
for the devices involved in the soft-proofing process.

For example, suppose your user intends to create a color image by drawing to
the display, then color matching the image to the color gamut of the printing
press and printing the image to a local desktop printer before delivering it to
the printing press. The user intends to repeat this process until he or she is
satisfied with the color rendering. To allow the user to do this, your application
must build a color world using the system profile for the display device, the
profile for the printing press, and the profile for the local desktop printer; you
must specify the profiles in processing order. Because the process involves
three profiles, your application must use the CWConcatColorWorld function to set
up the color world. “Creating a Color World for Color Matching and Checking
Using the Low-Level Functions” on page 4-27 describes how to set up a color
world.

If your application provides a feature that allows the user to store a series of
profiles in a device-linked profile, you can preserve the profiles used for the
soft-proofing process for future use by creating a device-linked profile
representing the configuration and pass the device-linked profile to the
CWConcatColorWorld function to set up the color world. For information
describing how to create and use a device-linked profile to build a color world,
see “Creating and Using Device-Linked Profiles” on page 4-53.

Your application can also use the high-level QuickDraw-based
NCMBeginMatching and CMEndMatching functions for soft proofing of a color
image drawn to the display that your user wants to color match to the gamut of
a printing press and print to a desktop printer.

The NCMBeginMatching function matches the colors using the two profiles that
you specify, and the CMEndMatching function terminates the color-matching
session. Because the NCMBeginMatching function takes two profiles only—a

ACI Book : Develop CS Supportive Apps Page 57 Thursday, July 13, 1995 8:40 AM

C H A P T E R 4

Developing ColorSync-Supportive Applications

4-58 Developing Your ColorSync-Supportive Application

source profile and a destination profile—you must call sets of these functions to
enact soft proofing.

It is important to recognize that QuickDraw matches to the most recently
added profiles first. Therefore, to use the NCMBeginMatching and CMEndMatching
pair to perform soft proofing from a displayed image to a printing press output
image to a desktop printer image, you would first call the NCMBeginMatching
function with the printing press to desktop printer profile references and then
call NCMBeginMatching with the display to printing press profile references.
QuickDraw will color match all drawing from display to printing press and
then to the desktop printer.

To use the NCMBeginMatching function, you specify the source and destination
profiles to be used. Passing NULL as the source profile assures that the
ColorSync Manager uses the system profile as the source profile. Similarly,
passing NULL as the destination profile uses the system profile as the destination
profile.

Calibrating a Device 4

A calibration application either creates a profile or tunes a profile to represent
the current state of the device.

A profile contains two types of device information: the actual calibration
information describing how to perform the color match and the device settings
at the time the match was made, for example, paper type, ink flow, or film
exposure time. A device may have several profiles, each for a different setting,
such as paper type or ink.

Your calibration program should first turn off matching on the device and
generate its image. You should then perform the calibration and generate a
profile.

ACI Book : Develop CS Supportive Apps Page 58 Thursday, July 13, 1995 8:40 AM

C H A P T E R 4

Developing ColorSync-Supportive Applications

Summary of the ColorSync Manager 4-59

D
eveloping C

olorS
ync-S

upportive A
pplications

4

Summary of the ColorSync Manager 4

Constants 4

/* constants for profile location type */
enum {

cmNoProfileBase = 0,
cmFileBasedProfile= 1,
cmHandleBasedProfile= 2,
cmPtrBasedProfile= 3

};

/* profile classes */

enum {
cmInputClass = 'scnr',
cmDisplayClass = 'mntr',
cmOutputClass = 'prtr',
cmLinkClass = 'link',
cmAbstractClass = 'abst',
cmColorSpaceClass = 'spac'

};

/* signature of the Apple-supplied color management module (CMM) */
enum {

kDefaultCMMSignature = 'appl'
};

/* commands for calling the application-supplied MyColorSyncDataTransfer */
enum {

openReadSpool = 1,
openWriteSpool,
readSpool,
writeSpool,
closeSpool

};

ACI Book : Develop CS Supportive Apps Page 59 Thursday, July 13, 1995 8:40 AM

C H A P T E R 4

Developing ColorSync-Supportive Applications

4-60 Summary of the ColorSync Manager

/* picture comment IDs for profiles and color matching */
enum {

cmBeginProfile = 220,
cmEndProfile = 221,
cmEnableMatching = 222,
cmDisableMatching = 223,
cmComment = 224

};

/* picture comment selectors for the cmComment ID */
enum {

cmBeginProfileSel = 0,
cmContinueProfileSel = 1,
cmEndProfileSel = 2

};

/* color space signatures */
enum {

cmXYZData = 'XYZ ',
cmLabData = 'Lab ',
cmLuvData = 'Luv ',
cmYxyData = 'Yxy ',
cmRGBData = 'RGB ',
cmGrayData = 'GRAY',
cmHSVData = 'HSV ',
cmHLSData = 'HLS ',
cmCMYKData = 'CMYK',
cmCMYData = 'CMY ',
cmMCH5Data = 'MCH5',
cmMCH6Data = 'MCH6',
cmMCH7Data = 'MCH7',
cmMCH8Data = 'MCH8'

};

/* color packing for color spaces */
enum {

cmNoColorPacking = 0x0000,
cmAlphaSpace = 0x0080,
cmWord5ColorPacking = 0x0500,
cmLong8ColorPacking = 0x0800,
cmLong10ColorPacking = 0x0a00,

ACI Book : Develop CS Supportive Apps Page 60 Thursday, July 13, 1995 8:40 AM

C H A P T E R 4

Developing ColorSync-Supportive Applications

Summary of the ColorSync Manager 4-61

D
eveloping C

olorS
ync-S

upportive A
pplications

4

cmAlphaFirstPacking = 0x1000,
cmOneBitDirectPacking = 0x0b00

};

/* color spaces */
enum {

cmNoSpace = 0,
cmRGBSpace,
cmCMYKSpace,
cmHSVSpace,
cmHLSSpace,
cmYXYSpace,
cmXYZSpace,
cmLUVSpace,
cmLABSpace,
cmReservedSpace1,
cmGraySpace,
cmReservedSpace2,
cmGamutResultSpace,
cmRGBASpace = cmRGBSpace + cmAlphaSpace,
cmGrayASpace = cmGraySpace + cmAlphaSpace,
cmRGB16Space = cmWord5ColorPacking + cmRGBSpace,
cmRGB32Space = cmLong8ColorPacking + cmRGBSpace,
cmARGB32Space = cmLong8ColorPacking +

cmAlphaFirstPacking + cmRGBASpace,
cmCMYK32Space = cmLong8ColorPacking + cmCMYKSpace,
cmHSV32Space = cmLong10ColorPacking + cmHSVSpace,
cmHLS32Space = cmLong10ColorPacking + cmHLSSpace,
cmYXY32Space = cmLong10ColorPacking + cmYXYSpace,
cmXYZ32Space = cmLong10ColorPacking + cmXYZSpace,
cmLUV32Space = cmLong10ColorPacking + cmLUVSpace,
cmLAB32Space = cmLong10ColorPacking + cmLABSpace,
cmGamutResult1Space= cmOneBitDirectPacking +

cmGamutResultSpace
};

/* rendering intent values for version 2.0 profiles */
enum {

cmPerceptual = 0,
cmRelativeColorimetric = 1,

ACI Book : Develop CS Supportive Apps Page 61 Thursday, July 13, 1995 8:40 AM

C H A P T E R 4

Developing ColorSync-Supportive Applications

4-62 Summary of the ColorSync Manager

cmSaturation = 2,
cmAbsoluteColorimetric = 3

};

/* PrGeneral operation codes */
enum {

enableColorMatchingOp= 12,
registerProfileOp= 13

};

/* color conversion component version */
enum {

CMConversionInterfaceVersion = 1
};

/* ColorSync Manager element tags and their signatures for version 1.0 profiles */

enum {
cmCS1ChromTag = 'chrm',
cmCS1TRCTag = 'trc ',
cmCS1NameTag = 'name',
cmCS1CustTag = 'cust'

};

/* defines for the CMSearchRecord.searchMask field */

enum {
cmMatchAnyProfile= 0x00000000,
cmMatchProfileCMMType= 0x00000001,
cmMatchProfileClass= 0x00000002,
cmMatchDataColorSpace= 0x00000004,
cmMatchProfileConnectionSpace = 0x00000008,
cmMatchManufacturer= 0x00000010,
cmMatchModel = 0x00000020,
cmMatchAttributes= 0x00000040,
cmMatchProfileFlags= 0x00000080

};

ACI Book : Develop CS Supportive Apps Page 62 Thursday, July 13, 1995 8:40 AM

C H A P T E R 4

Developing ColorSync-Supportive Applications

Summary of the ColorSync Manager 4-63

D
eveloping C

olorS
ync-S

upportive A
pplications

4

Data Structures 4

/* profile location union */
union CMProfLoc {

CMFileLocation fileLoc;
CMHandleLocation handleLoc;
CMPtrLocation ptrLoc;

};

/* profile location structure */
struct CMProfileLocation{

short locType;
CMProfLoc u;

};

/* file specification for file-based profiles */
struct CMFileLocation {

FSSpec spec;
};

/* handle specification for memory-based profiles */
struct CMHandleLocation {

Handle h;
};

/* pointer specification for memory-based profiles */
struct CMPtrLocation {

Ptr p;
};

/* Apple profile header */
union CMAppleProfileHeader {

CMHeader cm1;
CM2Header cm2;

};

/* ColorSync Manager profile 2.0 header structure */
struct CM2Header {

unsigned long size;
OSType CMMType;
unsigned long profileVersion;
OSType profileClass;
OSType dataColorSpace;

ACI Book : Develop CS Supportive Apps Page 63 Thursday, July 13, 1995 8:40 AM

C H A P T E R 4

Developing ColorSync-Supportive Applications

4-64 Summary of the ColorSync Manager

OSType profileConnectionSpace;
CMDateTime dateTime;
OSType CS2profileSignature;
OSType platform;
unsigned long flags;
OSType deviceManufacturer;
unsigned long deviceModel;
unsigned long deviceAttributes[2];
unsigned long renderingIntent;
CMFixedXYZColor white;
char reserved[48];

};

/* concatenated profile set structure */
struct CMConcatProfileSet {

unsigned short keyIndex;
unsigned short count;
CMProfileRef profileSet[1];

};

/* color world information record */
struct CMCWInfoRecord {

unsigned long cmmCount;
CMMInfoRecord cmmInfo[2];

};

/* color management module (CMM) information record structure */
struct CMMInfoRecord {

OSType CMMType;
long CMMVersion;

};

/* profile search record */
struct CMSearchRecord {

OSType CMMType;
OSType profileClass;
OSType dataColorSpace;
OSType profileConnectionSpace;
unsigned long deviceManufacturer;
unsigned long deviceModel;
unsigned long deviceAttributes[2];
unsigned long profileFlags;

ACI Book : Develop CS Supportive Apps Page 64 Thursday, July 13, 1995 8:40 AM

C H A P T E R 4

Developing ColorSync-Supportive Applications

Summary of the ColorSync Manager 4-65

D
eveloping C

olorS
ync-S

upportive A
pplications

4

unsigned long searchMask;
CMProfileFilterUPP filter;

};

/* XYZ color-component values */
typedef unsigned short CMXYZComponent;

/* XYZ color value */
struct CMXYZColor {

CMXYZComponent X;
CMXYZComponent Y;
CMXYZComponent Z;

};

/* fixed XYZ color value */
struct CMFixedXYZColor {

Fixed X;
Fixed Y;
Fixed Z;

};

/* L*a*b* color value */
struct CMLabColor {

unsigned short L;
unsigned short a;
unsigned short b;

};

/* L*u*v* color value */
struct CMLuvColor {

unsigned short L;
unsigned short u;
unsigned short v;

};

/* Yxy color value */
struct CMYxyColor {

unsigned short capY; /* 0..65535 maps to 0..1 */
unsigned short x; /* 0..65535 maps to 0..1 */
unsigned short y; /* 0..65535 maps to 0..1 */

};

ACI Book : Develop CS Supportive Apps Page 65 Thursday, July 13, 1995 8:40 AM

C H A P T E R 4

Developing ColorSync-Supportive Applications

4-66 Summary of the ColorSync Manager

/* RGB color value */
struct CMRGBColor {

unsigned short red;
unsigned short green;
unsigned short blue;

};

/* HLS color value */
struct CMHLSColor {

unsigned short hue;
unsigned short lightness;
unsigned short saturation;

};

/* HSV color value */
typedef struct CMHSVColor {

unsigned short hue;
unsigned short saturation;
unsigned short value;

};

/* CMYK color value */
struct CMCMYKColor {

unsigned short cyan;
unsigned short magenta;
unsigned short yellow;
unsigned short black;

};

/* CMY color value */
struct CMCMYColor {

unsigned short cyan;
unsigned short magenta;
unsigned short yellow;

};

/* HiFi color values */
struct CMMultichannel5Color {

unsigned char components[5];
};

ACI Book : Develop CS Supportive Apps Page 66 Thursday, July 13, 1995 8:40 AM

C H A P T E R 4

Developing ColorSync-Supportive Applications

Summary of the ColorSync Manager 4-67

D
eveloping C

olorS
ync-S

upportive A
pplications

4

struct CMMultichannel6Color {
unsigned char components[6];

};

struct CMMultichannel7Color {
unsigned char components[7];

};

struct CMMultichannel8Color {
unsigned char components[8];

};

/* gray color value */
struct CMGrayColor {

unsigned short gray;
};

/* color union */

union CMColor {
CM rgb;
CMHSVColor hsv;
CMHLSColor hls;
CMXYZColor XYZ;
CMLabColor Lab;
CMLuvColor Luv;
CMYxyColor Yxy;
CMCMYKColor cmyk;
CMCMYColor cmy;
CMGrayColor gray;
CMMultichannel5Color mc5;
CMMultichannel6Color mc6;
CMMultichannel7Color mc7;
CMMultichannel8Color mc8;

};

/* ColorSync Manager bitmap */
struct CMBitmap {

char *image;
long width;
long height;
long rowBytes;
long pixelSize;

ACI Book : Develop CS Supportive Apps Page 67 Thursday, July 13, 1995 8:40 AM

C H A P T E R 4

Developing ColorSync-Supportive Applications

4-68 Summary of the ColorSync Manager

CMBitmapColorSpace space;
long user1;
long user2;

};

/* profile reference abstract data type */
typedef struct CMPrivateProfileRecord *CMProfileRef;

/* profile search result reference abstract data type */
struct CMPrivateProfileSearchResult *CMProfileSearchRef;

/* high-level color-matching session reference abstract data type */
struct CMPrivateMatchRefRecord *CMMatchRef;

/* color world reference abstract data type */
struct CMPrivateColorWorldRecord *CMWorldRef;

/* TEnableColorMatchingBlk */
struct TEnableColorMatchingBlk {

short iOpCode;
short iError;
long lReserved;
THPrint hPrint;
Boolean fEnableIt;
SInt8 filler;

};

/* ColorSync version 1.0 profile header */
struct CMHeader {

unsigned long size;
OSType CMMType;
unsigned long applProfileVersion;
OSType dataType;
OSType deviceType;
OSType deviceManufacturer;
unsigned long deviceModel;
unsigned long deviceAttributes[2];
unsigned long profileNameOffset;
unsigned long customDataOffset;
CMMatchFlag flags;
CMMatchOption options;

ACI Book : Develop CS Supportive Apps Page 68 Thursday, July 13, 1995 8:40 AM

C H A P T E R 4

Developing ColorSync-Supportive Applications

Summary of the ColorSync Manager 4-69

D
eveloping C

olorS
ync-S

upportive A
pplications

4

CMXYZColor white;
CMXYZColor black;

};

/* PostScript color rendering dictionary (CRD) virtual memory size tag structure */
struct CMIntentCRDVMSize {

long rendering Intent;
unsigned long VMSize;

};

struct CMPS2CRDVMSizeType {
OSType typeDescriptor;
unsigned long reserved;
unsigned long count;
CMIntentCRDVMSize intentCRD[1];

};

Functions 4

Accessing Profile Files
pascal CMError CMOpenProfile (CMProfileRef *prof, const CMProfileLocation

*theProfile);

pascal CMError CMCloseProfile (CMProfileRef prof);

pascal CMError CMUpdateProfile (CMProfileRef prof);

pascal CMError CMNewProfile (CMProfileRef *prof, const CMProfileLocation
*theProfile);

pascal CMError CMCopyProfile (CMProfileRef *targetProf, const CMProfileLocation
*targetLocation, CMProfileRef prof);

pascal CMError CMValidateProfile (CMProfileRef prof, Boolean *valid,
Boolean *preferredCMMnotfound);

pascal CMError CMGetProfileLocation (
CMProfileRef prof,
CMProfileLocation *theProfile);

ACI Book : Develop CS Supportive Apps Page 69 Thursday, July 13, 1995 8:40 AM

C H A P T E R 4

Developing ColorSync-Supportive Applications

4-70 Summary of the ColorSync Manager

pascal CMError CMFlattenProfile (CMProfileRef prof,
unsigned long flags,
CMFlattenUPP proc,
void *refCon,
Boolean *preferredCMMnotfound);

pascal CMError CMUnflattenProfile (FSSpec *resultFileSpec,
CMFlattenUPP proc, void *refCon,
Boolean *preferredCMMnotfound);

Accessing Profile Elements
pascal CMError CMProfileElementExists (

CMProfileRef prof,
OSType tag, Boolean *found);

pascal CMError CMCountProfileElements (
CMProfileRef prof, unsigned long *elementCount);

pascal CMError CMGetProfileElement (
CMProfileRef prof, OSType tag, unsigned long
*elementSize, void *elementData);

pascal CMError CMGetProfileHeader (CMProfileRef prof, CMAppleProfileHeader *header);

pascal CMError CMGetPartialProfileElement (
CMProfileRef prof, OSType tag,
unsigned long offset, unsigned long *byteCount,
void *elementData);

pascal CMError CMSetProfileElementSize (
CMProfileRef prof, OSType tag, unsigned long
elementSize);

pascal CMError CMGetIndProfileElementInfo (
CMProfileRef prof, unsigned long index,
OSType *tag, unsigned long *elementSize,
Boolean *refs);

pascal CMError CMGetIndProfileElement (
CMProfileRef prof, unsigned long index,
unsigned long *elementSize, void *elementData);

ACI Book : Develop CS Supportive Apps Page 70 Thursday, July 13, 1995 8:40 AM

C H A P T E R 4

Developing ColorSync-Supportive Applications

Summary of the ColorSync Manager 4-71

D
eveloping C

olorS
ync-S

upportive A
pplications

4

pascal CMError CMSetPartialProfileElement (
CMProfileRef prof, OSType tag,
unsigned long offset, unsigned long byteCount,
void *elementData);

pascal CMError CMSetProfileElement (
CMProfileRef prof, OSType tag,
unsigned long elementSize, void *elementData);

pascal CMError CMSetProfileHeader (CMProfileRef prof,
const CMAppleProfileHeader *header);

pascal CMError CMSetProfileElementReference (
CMProfileRef prof,
OSType elementTag, OSType referenceTag);

pascal CMError CMRemoveProfileElement (
CMProfileRef prof, OSType tag);

pascal CMError CMGetScriptProfileDescription (
CMProfileRef prof, Str255 name, ScriptCode *code);

Matching Colors Using QuickDraw Operations
pascal CMError NCMBeginMatching (CMProfileRef src, CMProfileRef dst, CMMatchRef

*myRef);

pascal void CMEndMatching (CMMatchRef myRef);

pascal void CMEnableMatchingComment (
Boolean enableIt);

Using Embedded Profiles With QuickDraw
pascal void NCMDrawMatchedPicture (

PicHandle myPicture, CMProfileRef dst,
Rect *myRect);

pascal CMError NCMUseProfileComment (
CMProfileRef prof, unsigned long flags);

ACI Book : Develop CS Supportive Apps Page 71 Thursday, July 13, 1995 8:40 AM

C H A P T E R 4

Developing ColorSync-Supportive Applications

4-72 Summary of the ColorSync Manager

Matching Colors Using the Low-Level Functions
pascal CMError NCWNewColorWorld (CMWorldRef *cw, CMProfileRef src, CMProfileRef dst);

pascal CMError CWConcatColorWorld (CMWorldRef *cw, CMConcatProfileSet *profileSet);

pascal CMError CWNewLinkProfile (CMProfileRef *prof, const CMProfileLocation
*targetLocation, CMConcatProfileSet *profileSet);

pascal void CWDisposeColorWorld (CMWorldRef cw);

pascal CMError CWMatchPixMap (CMWorldRef cw, PixMap *myPixMap,
CMBitmapCallBackUPP progressProc, void *refCon);

pascal CMError CWCheckPixMap (CMWorldRef cw, PixMap *myPixMap,
CMBitmapCallBackUPP progressProc, void *refCon,
BitMap *resultBitMap);

pascal CMError CWMatchBitmap (CMWorldRef cw, CMBitMap *bitMap,
CMBitmapCallBackUPP progressProc, void *refCon,
CMBitMap *matchedBitMap);

pascal CMError CWCheckBitmap (CMWorldRef cw, const CMBitMap *bitMap,
CMBitmapCallBackUPP progressProc,
void *refCon, CMBitMap *resultBitMap);

pascal CMError CWMatchColors (CMWorldRef cw, CMColor *myColors, unsigned long
count);

pascal CMError CWCheckColors (CMWorldRef cw, CMColor *myColors,
unsigned long count, long *result);

Assigning and Accessing the System Profile File
pascal CMError CMSetSystemProfile (const FSSpec *profileFileSpec);

pascal CMError CMGetSystemProfile (CMProfileRef *prof);

Searching External Profiles
pascal CMError CMNewProfileSearch (CMSearchRecord *searchSpec, void *refCon,

unsigned long *count, CMProfileSearchRef
*searchResult);

pascal CMError CMUpdateProfileSearch (
CMProfileSearchRef search,
void *refCon, unsigned long *count);

ACI Book : Develop CS Supportive Apps Page 72 Thursday, July 13, 1995 8:40 AM

C H A P T E R 4

Developing ColorSync-Supportive Applications

Summary of the ColorSync Manager 4-73

D
eveloping C

olorS
ync-S

upportive A
pplications

4

pascal void CMDisposeProfileSearch (
CMProfileSearchRef search);

pascal CMError CMSearchGetIndProfile (
CMProfileSearchRef search,
unsigned long index, CMProfileRef *prof);

pascal CMError CMSearchGetIndProfileFileSpec (
CMProfileSearchRef search, unsigned long index,
FSSpec *profileFile);

Converting Between Color Spaces
pascal ComponentResult CMXYZToLab (ComponentInstance ci, const CMColor *src,

const CMXYZColor *white, CMColor *dst,
unsigned long count);

pascal ComponentResult CMLabToXYZ (ComponentInstance ci, const CMColor *src,
const CMXYZColor *white, CMColor *dst,
unsigned long count);

pascal ComponentResult CMXYZToLuv (ComponentInstance ci, const CMColor *src,
const CMXYZColor *white, CMColor *dst,
unsigned long count);

pascal ComponentResult CMLuvToXYZ (ComponentInstance ci, const CMColor *src,
const CMXYZColor *white, CMColor *dst,
unsigned long count);

pascal ComponentResult CMXYZToYxy (ComponentInstance ci, const CMColor *src,
CMColor *dst, unsigned long count);

pascal ComponentResult CMYxyToXYZ (ComponentInstance ci, const CMColor *src,
CMColor *dst, unsigned long count);

pascal ComponentResult CMXYZToFixedXYZ (
ComponentInstance ci, const CMXYZColor *src,
CMFixedXYZColor *dst, unsigned long count);

pascal ComponentResult CMFixedXYZToXYZ (
ComponentInstance ci,
const CMFixedXYZColor *src,
CMXYZColor *dst,
unsigned long count);

ACI Book : Develop CS Supportive Apps Page 73 Thursday, July 13, 1995 8:40 AM

C H A P T E R 4

Developing ColorSync-Supportive Applications

4-74 Summary of the ColorSync Manager

pascal ComponentResult CMRGBToHLS (ComponentInstance ci,
const CMColor *src,
CMColor *dst,
unsigned long count);

pascal ComponentResult CMHLSToRGB (ComponentInstance ci,
const CMColor *src,
CMColor *dst,
unsigned long count);

pascal ComponentResult CMRGBToHSV (ComponentInstance ci,
const CMColor *src,
CMColor *dst,
unsigned long count);

pascal ComponentResult CMHSVToRGB (ComponentInstance ci,
const CMColor *src,
CMColor *dst, unsigned long count);

pascal ComponentResult CMRGBToGray (
ComponentInstance ci,
const CMColor *src,
CMColor *dst,
unsigned long count);

PostScript Color-Matching Support Functions
pascal CMError CMGetPS2ColorSpace (CMProfileRef srcProf,

unsigned long flags,
CMFlattenUPP proc, void *refCon,
Boolean *preferredCMMnotfound);

pascal CMError CMGetPS2ColorRenderingIntent (
CMProfileRef srcProf,
unsigned long flags,
CMFlattenUPP proc, void *refCon,
Boolean *preferredCMMnotfound);

pascal CMError CMGetPS2ColorRendering (
CMProfileRef srcProf,
CMProfileRef dstProf,
unsigned long flags,
CMFlattenUPP proc, void *refCon,
Boolean *preferredCMMnotfound);

ACI Book : Develop CS Supportive Apps Page 74 Thursday, July 13, 1995 8:40 AM

C H A P T E R 4

Developing ColorSync-Supportive Applications

Summary of the ColorSync Manager 4-75

D
eveloping C

olorS
ync-S

upportive A
pplications

4

extern pascal CMError CMGetPS2ColorRenderingVMSize (
CMProfileRef srcProf, CMProfileRef dstProf,
unsigned long *vmSize,
Boolean *preferredCMMnotfound);

Locating the ColorSync Profiles Folder
pascal CMError CMGetColorSyncFolderSpec (

short vRefNum,
Boolean createFolder,
short *foundVRefNum,
long *foundDirID);

Obtaining Information About a Color World
pascal CMError CMGetCWInfo (CMWorldRef cw, CMCWInfoRecord *info);

Application-Supplied Functions for the ColorSync Manager
pascal OSErr MyColorSyncDataTransfer (

long command, long *size,
void *data, void *refCon);

pascal Boolean MyCMBitmapCallBackProc (
long progress,
void *refCon);

pascal Boolean MyCMProfileFilterProc (
CMProfileRef prof,
void *refCon);

ACI Book : Develop CS Supportive Apps Page 75 Thursday, July 13, 1995 8:40 AM

ACI Book : Develop CS Supportive Apps Page 76 Thursday, July 13, 1995 8:40 AM

C H A P T E R 5

Contents

5-1

Contents

5

Figure 5-0
Listing 5-0
Table 5-0

5 Developing Color Management
Modules

About Color Management Modules 5-4
Creating a Color Management Module 5-6

Creating a Component Resource for a CMM 5-6
How Your CMM Is Called by the Component Manager 5-9
Handling Request Codes 5-10

Responding to Required Component Manager Request Codes 5-21
Responding to ColorSync Manager Required Request Codes 5-22
Responding to ColorSync Manager Optional Request Codes 5-25

Summary of the Color Management Modules 5-39
Constants 5-39
Functions 5-40

This document was created with FrameMaker 4.0.4

ACI Book : Developing CMMsTOC Page 1 Thursday, July 13, 1995 8:40 AM

ACI Book : Developing CMMsTOC Page 2 Thursday, July 13, 1995 8:40 AM

C H A P T E R 5

5-3

D
eveloping C

olor M
anagem

ent M
odules

5

Developing Color Management Modules 5

This chapter describes how to create a component called a color management
module (CMM) that can be used with the ColorSync Manager instead of or in
conjunction with the Apple-supplied default CMM. At a minimum, a CMM
created for use with the ColorSync Manager must be able to match colors
across color spaces belonging to different base families and check colors
expressed in the color gamut of one device against the color gamut of another
device.

In addition to the minimum set of requests a CMM must service, a CMM can
also implement support for other requests a ColorSync-supportive application
or device driver might make. Among the optional services a CMM might
provide are verifying if a particular profile contains the base set of required
elements for a profile of its type and directing the process of converting profile
data embedded in a graphics file to data in an external profile file accessed
through a profile reference and vice versa. A CMM can also provide services
for PostScript

 printers by obtaining or deriving from a profile specific data
required by PostScript printers for color-matching processes and returning the
data in a format that can be sent to the PostScript printer.

You should read this chapter if you are a third-party developer who creates
CMMs for use with version 2.0 of the ColorSync Manager.

This chapter gives a brief overview of what a CMM is and the role a CMM
plays in the ColorSync Manager color management system (CMS). Before
reading this chapter, you should read the chapter “Introduction to the
ColorSync Manager” in this book for a more complete conceptual explanation
of how a CMM fits within the ColorSync Manager CMS.

This chapter provides you with a basic structure you can follow in creating a
CMM and a high-level discussion of the required and optional ColorSync
Manager request codes your CMM might be called to handle, as well as the
Component Manager required request codes to which every component must
respond.

For complete details on components and their structure, see the chapter
“Component Manager” in

Inside Macintosh: More Macintosh Toolbox.

This document was created with FrameMaker 4.0.4

ACI Book : Developing CMMs Page 3 Thursday, July 13, 1995 8:40 AM

C H A P T E R 5

Developing Color Management Modules

5-4

About Color Management Modules

About Color Management Modules 5

A color management module (CMM) is a component that implements color
matching, color gamut checking, and other services and performs these
services in response to requests from ColorSync-supportive applications or
device drivers.

A CMM component interacts directly with the Component Manager, which
calls the CMM on behalf of the ColorSync Manager and the requesting
application or driver. When they call ColorSync Manager functions to request
color-matching and color-checking services, ColorSync-supportive applications
and device drivers specify the profiles to be used. These profiles characterize
the devices involved; they include information giving the color spaces and the
color gamuts of the devices and the preferred CMM to be used to carry out the
work. A CMM uses the information contained in these profiles to perform the
processing required to service requests. Figure 5-1 shows the relationship
between a ColorSync-supportive application or driver, the ColorSync Manager,
the Component Manager, and a CMM.

ACI Book : Developing CMMs Page 4 Thursday, July 13, 1995 8:40 AM

C H A P T E R 5

Developing Color Management Modules

About Color Management Modules

5-5

D
eveloping C

olor M
anagem

ent M
odules

5

Figure 5-1

The ColorSync Manager and the Component Manager

A CMM should support all six classes of profiles defined by the ICC. For
information on the six classes of profiles, see the chapter “ColorSync Manager
Reference for Applications and Device Drivers” on the enclosed CD and the

International Color Consortium Profile Format Specification,

version 2.0, document
revision 3.x. For information on how to obtain a copy of this document, contact
the Developer Support organization of Apple Computer. See the preface of this
book for information explaining how to contact Developer Support.

In some cases, a CMM will not be able to convert and match colors directly
from the color space of one profile to that of another. Instead, it will need to
convert colors to the device-independent color space specified by the profile.
Device-independent color spaces, or interchange color spaces, are used for the
interchange of color data from the native color space of one device to the native

Component Manager

CMM component

ColorSync Manager

High-level functions Low-level functions

ACI Book : Developing CMMs Page 5 Thursday, July 13, 1995 8:40 AM

C H A P T E R 5

Developing Color Management Modules

5-6

Creating a Color Management Module

color space of another device.The profile connection space field of a profile
header specifies the interchange color space for that profile. Version 2.0 of the
ColorSync Manager supports two interchange color spaces: XYZ and Lab.

When interchange color spaces are involved, the ColorSync Manager handles
the process, which is largely transparent to the CMM. The ColorSync Manager
passes to the CMM the correct profiles for color matching. For example, in a
case in which both the source and destination profile’s CMMs are required to
complete the color matching using color space profiles, the ColorSync Manager
calls the source profile’s CMM with the source profile and an interchange color
space profile. Then it calls the destination profile’s CMM with an interchange
color space profile and the destination profile. The ColorSync Manager assesses
the requirements and breaks the process down so that the correct CMM is
called with the correct set of profiles. This process is described from the
perspective of an application or device driver in the chapter “Developing
ColorSync-Supportive Applications.”

A CMM uses lookup tables and algorithms for color matching, previewing
color reproduction capabilities of one device on another, and checking for
colors that cannot be reproduced.

Creating a Color Management Module 5

This section describes how to create a CMM component, including how to
respond to required Component Manager and ColorSync Manager requests
and optional ColorSync Manager requests.

Creating a Component Resource for a CMM 5

A CMM is stored as a component resource. It contains a number of resources,
including the standard component resource (a resource of type

'thng'

)
required of any Component Manager component. In addition, a CMM must
contain code to handle required request codes passed to it by the Component
Manager. This includes support for Component Manager required request
codes as well as ColorSync Manager required request codes.

To allow the ColorSync Manager to use your CMM when a profile specifies it
as its preferred CMM, your CMM should be located in the Extensions folder,

ACI Book : Developing CMMs Page 6 Thursday, July 13, 1995 8:40 AM

C H A P T E R 5

Developing Color Management Modules

Creating a Color Management Module

5-7

D
eveloping C

olor M
anagem

ent M
odules

5

where it will automatically be registered at startup. The file type for component
files must be set to

'thng'

.

The component resource contains all the information needed to register a code
resource as a component. Information in the component resource tells the
Component Manager where to find the code for the component. As part of the
component resource, you must provide a component description record that
specifies the component type, subtype, manufacturer, and flags. Here is the
component description data structure:

struct ComponentDescription {
OSType componentType;
OSType componentSubType;
OSType componentManufacturer;
unsigned long componentFlags;
unsigned long componentFlagsMask;

};

The component description data structure of type

ComponentDescription

contains the following fields for which you must set values:

■

The

componentType

 field contains a unique 4-byte code specifying the
resource type and resource ID of the component’s executable code. For your
CMM, set this field to

'cmm '

.

■

The

componentSubType

 field indicates the type of services your CMM
provides. You should set this field to your CMM name. This value must
match exactly the value specified in the profile header’s

CMMType

 field. You
must register this value with the ICC.

■

The

componentManufacturer

 field indicates the creator of the CMM. You may
set this field to any value you wish.

■

The

componentFlags

 field is a 32-bit field that provides additional
information about your CMM component. The high-order 8 bits are reserved
for definition by the Component Manager. The low-order 24 bits are specific
to each component type. You can use these flags to indicate any special
capabilities or features of your component. For more information, see the
chapter “Component Manager” in

Inside Macintosh: More Macintosh Toolbox.

■

The

componentFlagsMask

 field is reserved.

ACI Book : Developing CMMs Page 7 Thursday, July 13, 1995 8:40 AM

C H A P T E R 5

Developing Color Management Modules

5-8

Creating a Color Management Module

Note

Values you specify for all fields except the

componentType

field must include at least one uppercase character. Apple
Computer reserves values containing all lowercase
characters for its own use.

◆

Listing 5-1 shows a Rez listing of a component resource that describes a CMM.

Listing 5-1

CMM component Rez listing

/#define UseExtendedThingResource1
#include "Types.r"

resource 'STR ' (128, purgeable) {
"CMM Component"

};

resource 'STR ' (129, purgeable) {
"Copyright

 1995 Apple Computer, Inc."
};

resource 'ICN#' (128, purgeable) {
{ /* array: 2 elements */

/* [1] */
$"FFE0 07FF 8040 0201 8080 0101 807F FE01"
$"8000 0001 8000 0001 8003 F001 800F FC01"
$"803F FF01 807F FF01 807E 9E01 80F8 4401"
$"80F4 8A01 81F2 5201 81E0 8101 81F5 5501"
$"81EA AB01 81E0 4101 81F2 9201 80F4 4A01"
$"80F8 8401 807E 5E01 807F FF01 803F FF01"
$"800F FC01 8003 F001 8000 0001 8000 0001"
$"FFF0 0FFF 0020 0400 0040 0200 003F FC",
/* [2] */
$"FFE0 07FF FFC0 03FF FF80 01FF FFFF FFFF"
$"FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF"
$"FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF"
$"FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF"
$"FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF"
$"FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF"
$"FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF"

ACI Book : Developing CMMs Page 8 Thursday, July 13, 1995 8:40 AM

C H A P T E R 5

Developing Color Management Modules

Creating a Color Management Module

5-9

D
eveloping C

olor M
anagem

ent M
odules

5

$"FFFF FFFF 003F FC00 007F FE00 003F FC"
}

};

resource 'thng' (128, purgeable) {
'cmm ',
'fake',
'fake',
0X80000000,
kAnyComponentFlagsMask,
'cmm ',
128,
'STR ',
128,
'STR ',
129,
'ICN#',
128,
0x0,
9,
128,
{ /* array ComponentPlatformInfo: 2 elements */

/* [1] */
0X80000000, 'cmm ', 128, platform68k,
/* [2] */
0X80000000, 'cmm ', 129, platformPowerPC

}
};

How Your CMM Is Called by the Component Manager 5

Because a CMM is a direct client of the Component Manager, it must conform
to the Component Manager’s interface requirements, including supporting and
responding to required Component Manager calls.

The code for your CMM should be contained in a resource. The Component
Manager expects that the entry point to this resource is a function having this
format:

pascal ComponentResult main(ComponentParameters *params, Handle storage);

ACI Book : Developing CMMs Page 9 Thursday, July 13, 1995 8:40 AM

C H A P T E R 5

Developing Color Management Modules

5-10

Creating a Color Management Module

Whenever the Component Manager receives a request for your CMM, it calls
your component’s entry point and passes any parameters, along with
information about the current connection, in a component parameters data
structure of type

ComponentParameters

. This entry point must be the first
function in your CMM’s code segment. The Component Manager also passes a
handle to the private storage (if any) associated with the current instance of
your component. Here is the component parameters data structure:

struct ComponentParameters {
unsigned char flags;
unsigned char paramSize;
short what;
long params[1];

};

The first field of the component parameters data structure is reserved. The
following three fields carry information your CMM needs to perform its
processing. The

what

 field contains a value that identifies the type of request.
The

paramSize

 field specifies the size in bytes of the parameters passed from the
ColorSync-supportive calling application to your CMM. The parameters
themselves are passed in the

params

 field.

Handling Request Codes 5

When your component receives a request, it should examine the

what

 field of
the component parameters data structure to determine the nature of the
request, perform the appropriate processing, set an error code if necessary, and
return an appropriate function result to the Component Manager.

Your component’s entry point function should interpret the request code and
possibly dispatch the request to some other subroutine. To streamline your
CMM code, you can implement separate subroutines to handle each of the
request codes you support. The chapter “ColorSync Manager Reference for
Color Management Modules,” in the

Advanced Color Imaging Reference

 provided
on the enclosed CD, describes the prototype for each function your CMM must
supply in order to handle the corresponding ColorSync Manager request code.

At a minimum, your CMM must handle the required Component Manager and
required ColorSync Manager request codes.

ACI Book : Developing CMMs Page 10 Thursday, July 13, 1995 8:40 AM

C H A P T E R 5

Developing Color Management Modules

Creating a Color Management Module

5-11

D
eveloping C

olor M
anagem

ent M
odules

5

Your CMM component must be able to handle the required Component
Manager request codes, defined by these constants:

■

kComponentOpenSelect

 (

-1

)
Requests that you open an instance of the component. For more information,
see “Establishing the Environment for a New Component Instance” on
page 5-21.

■

kComponentCloseSelect

 (

-2

)
Requests that you close the component instance. For more information, see
“Releasing Private Storage and Closing the Component Instance” on
page 5-21.

■

kComponentCanDoSelect

 (

-3

)
Requests that you tell whether your CMM handles a specific request. For
more information, see “Reporting If Your CMM Supports a Request” on
page 5-22.

■

kComponentVersionSelect

 (

-4

)
Requests that you return your CMM’s version number. For more
information, see “Providing Your CMM Version Number” on page 5-22.

Your CMM must also be able to handle the required ColorSync Manager
request codes defined by these constants:

■

kCMMInit

 (

0

)
Requests that you initialize the current component instance of your CMM
for a ColorSync 1.0 session. This is a required request code only if your
CMM supports ColorSync 1.0 profiles.

■

kCMMMatchColors

 (

1

)
Requests that you color match the specified colors from one color space to
another. For more information, see “Matching a List of Colors to the
Destination Profile’s Color Space” on page 5-23.

■

kCMMCheckColors

 (

2

)
Requests that you check the specified colors against the gamut of the
destination device whose profile is specified. For more information, see
“Checking a List of Colors” on page 5-24.

■

kNCMMInit

 (

6

)
Requests that you initialize the current component instance of your CMM
for a ColorSync Manager 2.0 session. For more information, see “Initializing
the Current Component Instance for a Session Involving Two Profiles” on
page 5-23.

ACI Book : Developing CMMs Page 11 Thursday, July 13, 1995 8:40 AM

C H A P T E R 5

Developing Color Management Modules

5-12

Creating a Color Management Module

The Component Manager may also call your CMM with the following
ColorSync Manager request codes that are considered optional. A CMM may
support these requests, although you are not required to do so.

■

kCMMMatchPixMap

 (

3

)
Requests that you match the colors of a pixel map image to the color gamut
of a destination profile, replacing the original pixel colors with their
corresponding colors. For more information, see “Matching the Colors of a
Pixel Map Image” on page 5-30.

■

kCMMCheckPixMap

 (

4

)
Requests that you check the colors of a pixel map image against the gamut
of a destination device for inclusion and report the results. For more
information, see “Checking the Colors of a Pixel Map Image” on page 5-31.

■

kCMMConcatenateProfiles

 (

5

)
This request code is for backward compatibility with ColorSync 1.0.

■ kCMMConcatInit (7)
Requests that you initialize any private data your CMM will need for a color
session involving the set of profiles specified by the profile array pointed to
by the profileSet parameter. For more information, see “Initializing the
Component Instance for a Session Using Concatenated Profiles” on
page 5-31.

■ kCMMValidateProfile (8)
Requests that you test a specific profile to determine if the profile contains
the minimum set of elements required for a profile of its type. For more
information, see “Validating That a Profile Meets the Base Content
Requirements” on page 5-26.

■ kCMMMatchBitmap (9)
Requests that you match the colors of a source image bitmap to the color
gamut of a destination profile. For more information, see “Matching the
Colors of a Bitmap” on page 5-27.

■ kCMMCheckBitmap (10)
Requests that you check the colors of a source image bitmap against the
color gamut of a destination profile. For more information, see “Checking
the Colors of a Bitmap” on page 5-28.

■ kCMMGetPS2ColorSpace (11)
Requests that you obtain or derive the color space data from a source profile
and pass the data to a low-level data-transfer function supplied by the

ACI Book : Developing CMMs Page 12 Thursday, July 13, 1995 8:40 AM

C H A P T E R 5

Developing Color Management Modules

Creating a Color Management Module 5-13

D
eveloping C

olor M
anagem

ent M
odules

5

calling application or device driver. For more information, see “Obtaining
PostScript-Related Data From a Profile” on page 5-33.

■ kCMMGetPS2ColorRenderingIntent (12)
Requests that you obtain the color-rendering intent from the header of a
source profile and then pass the data to a low-level data-transfer function
supplied by the calling application or device driver. For more information,
see “Obtaining PostScript-Related Data From a Profile” on page 5-33.

■ kCMMGetPS2ColorRendering (13)
Requests that you obtain the rendering intent from the source profile’s
header, generate the color rendering dictionary (CRD) data from the
destination profile, and then pass the data to a low-level data-transfer
function supplied by the calling application or device driver. For more
information, see “Obtaining PostScript-Related Data From a Profile” on
page 5-33.

■ kCMMFlattenProfile (14)
Requests that you extract profile data from the profile to be flattened and
pass the profile data to a function supplied by the calling program. For more
information, see “Flattening a Profile for Embedding in a Graphics File” on
page 5-36.

■ kCMMUnflattenProfile (15)
Requests that you create a file in the temporary items folder in which to
store profile data you receive from a function. The calling program supplies
the function. You call this function to obtain the profile data. For more
information, see “Unflattening a Profile” on page 5-37.

■ kCMMNewLinkProfile (16)
Requests that you create a single device-linked profile that includes the
profiles passed to you in an array. For more information, see “Creating a
Device-Linked Profile and Opening a Reference to It” on page 5-32.

■ kCMMGetPS2ColorRenderingVMSize (17)
Requests that you obtain or assess the maximum virtual memory (VM) size
of the color rendering dictionary (CRD) specified by a destination profile.
For more information, see “Obtaining the Size of the Color Rendering
Dictionary for PostScript Printers” on page 5-35.

After examining the what field to identify the request, your CMM code must
extract the calling program’s parameters from the params field of the
component parameters data structure and call your appropriate subroutine
handler, passing the parameters to it. For a description of component

ACI Book : Developing CMMs Page 13 Thursday, July 13, 1995 8:40 AM

C H A P T E R 5

Developing Color Management Modules

5-14 Creating a Color Management Module

parameters data structure of type ComponentParameters, see “How Your CMM Is
Called by the Component Manager,” beginning on page 5-9.

Your code can unpack these parameters itself, or it can call the Component
Manager’s CallComponentFunctionWithStorage function or
CallComponentFunction function to perform these services.

The CallComponentFunctionWithStorage function is useful if your CMM uses
private storage. When you call this function, you pass it a handle to the storage
for this component instance, the component parameters data structure, and the
address of your subroutine handler. Each time it calls your entry point
function, the Component Manager passes to your function the storage handle
along with the component parameters data structure. For a description of how
you associate private storage with a component instance, see “Establishing the
Environment for a New Component Instance” on page 5-21. The Component
Manager’s CallComponentFunctionWithStorage extracts the calling application’s
parameters from the component parameters data structure and invokes your
function, passing to it the extracted parameters and the private storage handle.

Listing 5-2 shows sample code that illustrates how to respond to the required
Component Manager and ColorSync Manager requests. For a complete listing
of the sample code on which this listing is based, see the technical note QT05
Component Manager 3.0. This technical note shows how to create a fat
component, which is a single component usable for both 68K-based and
PowerPC-based systems. The portion of sample code in Listing 5-2 for
PowerPC-based systems uses a parameter block data structure to pass
parameters. The data structure for this parameter block is generated from a
macro in the MixedMode.h header file.

Listing 5-2 A CMM component shell

#include <Types.h>
#include <Quickdraw.h>
#include <Memory.h>
#include <Gestalt.h>
#include <Components.h>

#include <CMMComponent.h>

ACI Book : Developing CMMs Page 14 Thursday, July 13, 1995 8:40 AM

C H A P T E R 5

Developing Color Management Modules

Creating a Color Management Module 5-15

D
eveloping C

olor M
anagem

ent M
odules

5

#ifndef __powerc
#include <A4Stuff.h>
#endif

#define DEBUG 0

#ifndef DEBUG
#define DEBUG 0
#endif

/* component version */
#define CMCodeVersion 0
#define CMVersion ((CMMInterfaceVersion << 16) | CMCodeVersion)

/* component storage */
struct CMMStorageRecord {ComponentInstance ci;};
typedef struct CMMStorageRecordCMMStorageRecord, **CMMStorageHandle;

#if __powerc
#define CallComponentFunctionWithStorageUniv(storage, params, funcName) \

CallComponentFunctionWithStorage(storage, params, &funcName##RD)
#define CallComponentFunctionUniv(params, funcName) \

CallComponentFunction(params, &funcName##RD)
#define INSTANTIATE_ROUTINE_DESCRIPTOR(funcName) RoutineDescriptor funcName##RD = \

BUILD_ROUTINE_DESCRIPTOR (upp##funcName##ProcInfo, funcName)
#else

#define CallComponentFunctionWithStorageUniv(storage, params, funcName) \
CallComponentFunctionWithStorage(storage, params,

(ComponentFunctionUPP)funcName)
#define CallComponentFunctionUniv(params, funcName) \

CallComponentFunction(params, (ComponentFunctionUPP)funcName)
#endif

enum{
uppDoComponentOpenProcInfo = kPascalStackBased

| RESULT_SIZE(SIZE_CODE(sizeof(ComponentResult)))
| STACK_ROUTINE_PARAMETER(1,SIZE_CODE(sizeof(ComponentInstance)))

};

ACI Book : Developing CMMs Page 15 Thursday, July 13, 1995 8:40 AM

C H A P T E R 5

Developing Color Management Modules

5-16 Creating a Color Management Module

enum {
uppDoComponentCloseProcInfo = kPascalStackBased

| RESULT_SIZE(SIZE_CODE(sizeof(ComponentResult)))
| STACK_ROUTINE_PARAMETER(1, SIZE_CODE(sizeof(Handle)))
| STACK_ROUTINE_PARAMETER(2, SIZE_CODE(sizeof(ComponentInstance)))

};

enum {
uppDoComponentCanDoProcInfo = kPascalStackBased

| RESULT_SIZE(SIZE_CODE(sizeof(ComponentResult)))
| STACK_ROUTINE_PARAMETER(1, SIZE_CODE(sizeof(short)))

};

enum {
uppDoComponentVersionProcInfo = kPascalStackBased

| RESULT_SIZE(SIZE_CODE(sizeof(ComponentResult)))
};

enum {
uppDoComponentRegisterProcInfo = kPascalStackBased
 | RESULT_SIZE(SIZE_CODE(sizeof(ComponentResult)))

};

enum {
uppDoCMInitProcInfo = kPascalStackBased

| RESULT_SIZE(SIZE_CODE(sizeof(ComponentResult)))
| STACK_ROUTINE_PARAMETER(1, SIZE_CODE(sizeof(Handle)))
| STACK_ROUTINE_PARAMETER(2, SIZE_CODE(sizeof(CMProfileHandle)))
| STACK_ROUTINE_PARAMETER(3, SIZE_CODE(sizeof(CMProfileHandle)))

};

enum {
uppDoNCMInitProcInfo = kPascalStackBased

| RESULT_SIZE(SIZE_CODE(sizeof(ComponentResult)))
| STACK_ROUTINE_PARAMETER(1, SIZE_CODE(sizeof(Handle)))
| STACK_ROUTINE_PARAMETER(2, SIZE_CODE(sizeof(CMProfileRef)))
| STACK_ROUTINE_PARAMETER(3, SIZE_CODE(sizeof(CMProfileRef)))

};

ACI Book : Developing CMMs Page 16 Thursday, July 13, 1995 8:40 AM

C H A P T E R 5

Developing Color Management Modules

Creating a Color Management Module 5-17

D
eveloping C

olor M
anagem

ent M
odules

5

enum {
uppDoCMMatchColorsProcInfo = kPascalStackBased

| RESULT_SIZE(SIZE_CODE(sizeof(ComponentResult)))
| STACK_ROUTINE_PARAMETER(1, SIZE_CODE(sizeof(Handle)))
| STACK_ROUTINE_PARAMETER(2, SIZE_CODE(sizeof(CMColor*)))
| STACK_ROUTINE_PARAMETER(3, SIZE_CODE(sizeof(unsigned long)))

};

enum {
uppDoCMCheckColorsProcInfo = kPascalStackBased

| RESULT_SIZE(SIZE_CODE(sizeof(ComponentResult)))
| STACK_ROUTINE_PARAMETER(1, SIZE_CODE(sizeof(Handle)))
| STACK_ROUTINE_PARAMETER(2, SIZE_CODE(sizeof(CMColor*)))
| STACK_ROUTINE_PARAMETER(3, SIZE_CODE(sizeof(unsigned long)))
| STACK_ROUTINE_PARAMETER(4, SIZE_CODE(sizeof(long*))

};

/* function prototypes */
pascal ComponentResult main(ComponentParameters *params, Handle storage);

pascal ComponentResult DoComponentOpen(ComponentInstance self);

pascal ComponentResult DoComponentClose(CMMStorageHandle storage,
ComponentInstance self);

pascal ComponentResult DoComponentCanDo(short selector);

pascal ComponentResult DoComponentVersion(void);

pascal ComponentResult DoComponentRegister(void);

pascalComponentResult DoCMInit(CMMStorageHandle storage, CMProfileHandle srcProfile,
CMProfileHandle dstProfile);

pascalComponentResult DoNCMInit(CMMStorageHandle storage, CMProfileRef srcProfile,
CMProfileRef dstProfile);

pascalComponentResult DoCMMatchColors(CMMStorageHandle storage, CMColor *colorBuf,
unsigned long count);

ACI Book : Developing CMMs Page 17 Thursday, July 13, 1995 8:40 AM

C H A P T E R 5

Developing Color Management Modules

5-18 Creating a Color Management Module

pascal ComponentResult DoCMCheckColors(CMMStorageHandle storage, CMColor *colorBuf,
unsigned long count, long *gamutResult);

#if __powerc
/* Routine descriptors for component functions */
INSTANTIATE_ROUTINE_DESCRIPTOR(DoComponentOpen);
INSTANTIATE_ROUTINE_DESCRIPTOR(DoComponentClose);
INSTANTIATE_ROUTINE_DESCRIPTOR(DoComponentCanDo);
INSTANTIATE_ROUTINE_DESCRIPTOR(DoComponentVersion);
INSTANTIATE_ROUTINE_DESCRIPTOR(DoComponentRegister);
INSTANTIATE_ROUTINE_DESCRIPTOR(DoCMInit);
INSTANTIATE_ROUTINE_DESCRIPTOR(DoNCMInit);
INSTANTIATE_ROUTINE_DESCRIPTOR(DoCMMatchColors);
INSTANTIATE_ROUTINE_DESCRIPTOR(DoCMCheckColors);

/* PowerPC main component entry point */
RoutineDescriptor MainRD = BUILD_ROUTINE_DESCRIPTOR(uppComponentRoutineProcInfo,

main);

ProcInfoType __procinfo = uppComponentRoutineProcInfo;
#endif

pascal ComponentResult main(ComponentParameters *params,
Handle storage);

Abstract:
main entry point to CMM Component

Params:
params (in)Parameters in form used by Component Manager
storage (in)Handle to memory to be used by CMM

Return:
noErr If successful

Otherwise System or ColorSync result code

/* This main function must run on all Macs. */
pascalComponentResult main(ComponentParameters *params, Handle storage)
{

ComponentResult result;
short message;

ACI Book : Developing CMMs Page 18 Thursday, July 13, 1995 8:40 AM

C H A P T E R 5

Developing Color Management Modules

Creating a Color Management Module 5-19

D
eveloping C

olor M
anagem

ent M
odules

5

#if !__powerc
long oldA4;

oldA4 = SetCurrentA4();
#endif

message = (*params).what;

/* selectors < 0 for Component Manager functions */
if (message < 0)
{

switch (message)
{

case kComponentOpenSelect :
result = CallComponentFunctionUniv (params, DoComponentOpen);
break;

case kComponentCloseSelect :
result = CallComponentFunctionWithStorageUniv(storage, params,

DoComponentClose);
break;

case kComponentCanDoSelect :
result = CallComponentFunctionUniv(params, DoComponentCanDo);
break;

case kComponentVersionSelect :
result = CallComponentFunctionUniv(params, DoComponentVersion);
break;

case kComponentRegisterSelect :
result = CallComponentFunctionUniv(params, DoComponentRegister);
break;

default :
result = noErr;
break;

}
}

ACI Book : Developing CMMs Page 19 Thursday, July 13, 1995 8:40 AM

C H A P T E R 5

Developing Color Management Modules

5-20 Creating a Color Management Module

/* selectors >= 0 for CMM functions */
else
{

switch (message)
{

case kCMMInit :
result = CallComponentFunctionWithStorageUniv(storage, params,

DoCMInit);
break;

case kNCMMInit :
result = CallComponentFunctionWithStorageUniv(storage, params,

DoNCMInit);
break;

case kCMMMatchColors :
result = CallComponentFunctionWithStorageUniv(storage, params,

DoCMMatchColors);
break;

case kCMMCheckColors :
result = CallComponentFunctionWithStorageUniv(storage, params,

DoCMCheckColors);
break;
default :
result = unimpErr;
break;

}
}

#if !__powerc
SetA4(oldA4);

#endif

return (result);
}

For more information describing how your CMM component should respond
to request code calls from the Component Manager, see the section “Creating
Components” in the chapter “Component Manager” in Inside Macintosh: More
Macintosh Toolbox.

ACI Book : Developing CMMs Page 20 Thursday, July 13, 1995 8:40 AM

C H A P T E R 5

Developing Color Management Modules

Creating a Color Management Module 5-21

D
eveloping C

olor M
anagem

ent M
odules

5

Responding to Required Component Manager Request Codes 5

This section describes some of the processes your CMM can perform in
response to the following Component Manager requests that it must handle:

■ “Establishing the Environment for a New Component Instance” describes
how to handle a kComponentOpenSelect request.

■ “Releasing Private Storage and Closing the Component Instance” describes
how to handle a kComponentCloseSelect request.

■ “Reporting If Your CMM Supports a Request” describes how to handle a
kComponentCanDoSelect request.

■ “Providing Your CMM Version Number” describes how to handle a
kComponentVersionSelect request.

Establishing the Environment for a New Component Instance 5

When a ColorSync-supportive application or device driver first calls a function
that requires the services of your CMM, the Component Manager calls your
CMM with a kComponentOpenSelect request to open and establish an instance of
your component for the calling program. The component instance defines a
unique connection between the calling program and your CMM.

In response to this request, you should allocate memory for any private data
you require for the connection. You should allocate memory from the current
heap zone. It that attempt fails, you should allocate memory from the system
heap or the temporary heap. You can use the SetComponentInstanceStorage
function to associate the allocated memory with the component instance.

For more information on how to respond to this request and open connections
to other components, see the section “Creating Components” in the chapter
“Component Manager” in Inside Macintosh: More Macintosh Toolbox.

Releasing Private Storage and Closing the Component Instance 5

To call your CMM with a close request, the Component Manager sets the what
field of the component parameters data structure to kComponentCloseSelect. In
response to this request code, your CMM should dispose of the storage
memory associated with the connection.

ACI Book : Developing CMMs Page 21 Thursday, July 13, 1995 8:40 AM

C H A P T E R 5

Developing Color Management Modules

5-22 Creating a Color Management Module

Reporting If Your CMM Supports a Request 5

Before the ColorSync Manager calls your CMM with a request code on behalf
of a ColorSync-supportive application or driver that called the corresponding
function, the Component Manager calls your CMM with a can do request to
determine if your CMM implements support for the request.

To call your CMM with a can do request, the Component Manager sets
the what field of the component parameters data structure to the value
kComponentCanDoSelect. In response, you should set your CMM entry point
function’s result to 1 if your CMM supports the request and 0 if it doesn’t.

Providing Your CMM Version Number 5

To call your CMM requesting its version number, the Component Manager sets
the what field of the component parameters data structure to the value
kComponentVersionSelect. In response, you should set your CMM entry point
function’s result to the CMM version number. Use the high-order 16 bits to
represent the major version and the low-order 16 bits to represent the minor
version. The major version should represent the component specification level;
the minor version should represent your implementation’s version number.

If your CMM supports the ColorSync Manager version 2.0, your CMM should
return the constant for the major version defined by the following enumeration
when the Component Manager calls your CMM with the
kComponentVersionSelect request code:

enum {
CMMInterfaceVersion = 1
};

Responding to ColorSync Manager Required Request Codes 5

This section describes some of the processes your CMM can perform in
response to the following ColorSync Manager requests that it must handle:

■ “Initializing the Current Component Instance for a Session Involving Two
Profiles” describes how to handle the kNCMMInit request.

■ “Matching a List of Colors to the Destination Profile’s Color Space”
describes how to handle a kCMMMatchColors request.

■ “Checking a List of Colors” describes how to handle a kCMMCheckColors
request.

ACI Book : Developing CMMs Page 22 Thursday, July 13, 1995 8:40 AM

C H A P T E R 5

Developing Color Management Modules

Creating a Color Management Module 5-23

D
eveloping C

olor M
anagem

ent M
odules

5

Initializing the Current Component Instance for a Session Involving Two Profiles 5

The Component Manager calls your CMM with an initialization request,
setting the what field of the component parameters data structure to kNCMMInit.
In most cases the Component Manager calls your CMM with an initialization
request before it calls your CMM with any other ColorSync Manager requests.

In response to this request, your CMM should call its MyNCMInit initialization
subroutine. For a description of the function prototype your initialization
subroutine must adhere to, see the chapter “ColorSync Manager Reference for
Color Management Modules” chapter of the Advanced Color Imaging Reference
provided on the enclosed CD.

Using the private storage you allocated in response to the open request, your
initialization subroutine should instantiate any private data it needs for the
component instance. Before your entry point function returns a function result
to the Component Manager, your subroutine should store any profile
information it requires. In addition to the standard profile information, you
should store the profile header’s quality flags setting, the profile size, and the
rendering intent. After you return control to the Component Manager, you
cannot use the profile references again.

This request gives you the opportunity to examine the profile contents before
storing them. If you do not support some aspect of the profile, then you should
return an unimplemented error in response to this request. For example, if your
CMM does not implement multichannel color support, you should return an
“unimplemented” error at this point.

The Component Manager may call your CMM with the kNCMMInit request code
multiple times after it calls your CMM with a request to open the CMM. For
example, it may call your CMM with an initialization request once with one
pair of profiles and then again with another pair of profiles. For each call, you
need to reinitialize the storage based on the content of the current profiles.

Your CMM should support all six classes of profiles defined by the ICC. For
information on the six classes of profiles, see the chapter “ColorSync Manager
Reference for Applications and Device Drivers” on the enclosed CD.

Matching a List of Colors to the Destination Profile’s Color Space 5

When a ColorSync-supportive application or device driver calls the
CWMatchColors function for your CMM to handle, the Component Manager calls
your CMM with a color-matching session request, setting the what field of the
component parameters data structure to kCMMMatchColors and passing you a list

ACI Book : Developing CMMs Page 23 Thursday, July 13, 1995 8:40 AM

C H A P T E R 5

Developing Color Management Modules

5-24 Creating a Color Management Module

of colors to be matched. The Component Manager may also call your CMM
with this request code to handle other cases, for example, when a
ColorSync-supportive program calls the CWMatchPixMap function.

Before it calls your CMM with this request, the Component Manager calls your
CMM with one of the initialization requests—kCMMInit, kNCMMInit, or
kCMMConcatInit—passing to your CMM in the params field of the component
parameters data structure the profiles to be used for the color-matching session.

In response to the kCMMMatchColors request, your CMM should call its
MyCMMatchColors subroutine by calling the Component Manager’s
CallComponentFunctionWithStorage function and passing it a handle to the
storage for this component instance, the component parameters data structure,
and the address of your MyCMMatchColors subroutine. For a description of the
function prototype to which your subroutine must adhere, see the chapter
“ColorSync Manager Reference for Color Management Modules” in the
Advanced Color Imaging Reference provided on the enclosed CD.

The parameters passed to your CMM for this request include an array of type
CMColor containing the list of colors to be matched and a one-based count of the
number of colors in the list.

To handle this request, your CMM must match the source colors in the list to
the color gamut of the destination profile, replacing the color value
specifications in the myColors array with the matched colors specified in the
destination profile’s data color space. You should use the rendering intent and
the quality flag setting of the source profile in matching the colors. For a
description of the color list array data structure, see the section “The Color
Union” in the “ColorSync Manager Reference for Applications and Device
Drivers” chapter of the Advanced Color Imaging Reference provided on the
enclosed CD.

Checking a List of Colors 5

When a ColorSync-supportive application or device driver calls the
CWCheckColors function for your CMM to handle, the Component Manager calls
your CMM with a color gamut-checking session request, setting the what field
of the component parameters data structure to kCMMCheckColors and passing
you a list of colors to be checked.

Before it calls your CMM with this request, the Component Manager calls your
CMM with one of the initialization requests—kCMMInit, kNCMMInit, or
kCMMConcatInit—passing to your CMM in the params field of the component

ACI Book : Developing CMMs Page 24 Thursday, July 13, 1995 8:40 AM

C H A P T E R 5

Developing Color Management Modules

Creating a Color Management Module 5-25

D
eveloping C

olor M
anagem

ent M
odules

5

parameters data structure the profiles to be used for the color gamut-checking
session.

In response to the kCMMCheckColors request, your CMM should call its
MyCMCheckColors subroutine. For example, if you use the Component
Manager’s CallComponentFunctionWithStorage function, you would call it,
passing it a handle to the storage for this component instance, the component
parameters data structure, and the address of your MyCMCheckColors subroutine.
For a description of the function prototype to which your subroutine must
adhere, see the “ColorSync Manager Reference for Color Management
Modules” chapter of the Advanced Color Imaging Reference provided on the
enclosed CD.

In addition to the handle to the private storage containing the profile data, the
CallComponentFunctionWithStorage function passes to your MyCMCheckColors
subroutine an array of type CMColor containing the list of colors to be gamut
checked, a one-based count of the number of colors in the list, and an array of
longs.

To handle this request, your CMM should test the given list of colors against
the gamut specified by the destination profile to report if the colors fall within a
destination device’s color gamut. For each source color in the list that is out of
gamut, you must set the corresponding bit in the result array to 1.

Responding to ColorSync Manager Optional Request Codes 5

This section describes some of the processes your CMM can perform in
response to the optional ColorSync Manager requests if your CMM supports
them. Before the Component Manager calls your CMM with any of these
requests, it first calls your CMM with a can do request to determine if you
support the specific optional request code. This section includes the following:

■ “Validating That a Profile Meets the Base Content Requirements” on
page 5-26 describes how to handle a kCMMValidateProfile request.

■ “Matching the Colors of a Bitmap” on page 5-27 describes how to handle a
kCMMMatchBitmap request.

■ “Checking the Colors of a Bitmap” on page 5-28 describes how to handle a
kCMMCheckBitmap request.

■ “Matching the Colors of a Pixel Map Image” on page 5-30 describes how to
handle the kCMMMatchPixMap request.

ACI Book : Developing CMMs Page 25 Thursday, July 13, 1995 8:40 AM

C H A P T E R 5

Developing Color Management Modules

5-26 Creating a Color Management Module

■ “Checking the Colors of a Pixel Map Image” on page 5-31 describes how to
handle the kCMMCheckPixMap request.

■ “Initializing the Component Instance for a Session Using Concatenated
Profiles” on page 5-31 describes how to handle a kCMMConcatInit request.

■ “Creating a Device-Linked Profile and Opening a Reference to It” on
page 5-32 describes how to handle a kCMMNewLinkProfile request.

■ “Obtaining PostScript-Related Data From a Profile,” beginning on page 5-33
describes how to handle the kCMMGetPS2ColorSpace,
kCMMGetPS2ColorRenderingIntent, and kCMMGetPS2ColorRendering requests.

■ “Obtaining the Size of the Color Rendering Dictionary for PostScript
Printers” on page 5-35 describes how to handle a
kCMMGetPS2ColorRenderingVMSize request.

■ “Flattening a Profile for Embedding in a Graphics File” on page 5-36
describes how to handle a kCMMFlattenProfile request.

■ “Unflattening a Profile” on page 5-37 describes how to handle a
kCMMUnflattenProfile request.

Validating That a Profile Meets the Base Content Requirements 5

When a ColorSync-supportive application or device-driver calls the
CMValidateProfile function for your CMM to handle, the Component Manager
calls your CMM with the what field of the component parameters data structure
set to kCMMValidateProfile if your CMM supports the request.

In response to this request code, your CMM should call its
MyCMMValidateProfile subroutine. One way to do this, for example, is by
calling the Component Manager’s CallComponentFunction function, passing it
the component parameters data structure and the address of your
MyCMMValidateProfile subroutine. To handle this request, you don’t need
private storage for ColorSync profile information, because the profile reference
is passed to your function. However, if your CMM uses private storage for
other purposes, you should call the Component Manager’s
CallComponentFunctionWithStorage function. For a description of the function
prototype to which your subroutine must adhere, see the “ColorSync Manager
Reference for Color Management Modules” chapter of the Advanced Color
Imaging Reference provided on the enclosed CD.

ACI Book : Developing CMMs Page 26 Thursday, July 13, 1995 8:40 AM

C H A P T E R 5

Developing Color Management Modules

Creating a Color Management Module 5-27

D
eveloping C

olor M
anagem

ent M
odules

5

The CallComponentFunction function passes to your MyCMMValidateProfile
subroutine a reference to the profile whose contents you must check and a flag
whose value you must set to report the results.

To handle this request, your CMM should test the profile contents against the
baseline profile elements requirements for a profile of this type as specified by
the International Color Consortium. It should determine if the profile contains
the minimum set of elements required for its type and set the response flag to
true if the profile contains the required elements and false if it doesn’t.

For information on how to obtain a copy of the International Color Consortium
Profile Format Specification, version 2.0, document revision 3.x, contact the
Developer Support organization of Apple Computer. See the preface of this
book for information on how to contact Developer Support.

The ICC also defines optional tags, which may be included in a profile. Your
CMM might use these optional elements to optimize or improve its processing.
Additionally, a profile might include private tags defined to provide your
CMM with processing capability it uses. The profile developer can define these
private tags, register the tag signatures with the ICC, and include the tags in a
profile.

If your CMM is dependent on optional or private tags, your
MyCMMValidateProfile function should check for the existence of these tags also.

Instead of itself checking the profile for the minimum profile elements
requirements for the profile type, your MyCMMValidateProfile function may use
the Component Manager functions to call the default Apple-supplied CMM
and have it perform the minimum defaults requirements validation.

To call the Apple-supplied CMM when responding to a kCMMValidateProfile
request from an application, your CMM can use the standard mechanisms used
by applications to call another component. For information on these
mechanisms, see the chapter “Component Manager” in Inside Macintosh: More
Macintosh Toolbox.

Matching the Colors of a Bitmap 5

When a ColorSync-supportive application or device driver calls the
CWMatchBitMap function for your CMM to handle, the Component Manager calls
your CMM with the what field of the component parameters data structure set
to kCMMMatchBitmap if your CMM supports the request. If your CMM supports
this request code, your CMM should be prepared to receive any of the bitmap
types defined by the ColorSync Manager.

ACI Book : Developing CMMs Page 27 Thursday, July 13, 1995 8:40 AM

C H A P T E R 5

Developing Color Management Modules

5-28 Creating a Color Management Module

In response to this request code, your CMM should call its MyCMMatchBitmap
subroutine. For example, to do this, your CMM may call the Component
Manager’s CallComponentFunctionWithStorage function, passing it the storage
handle for this component instance, the component parameters data structure,
and the address of your MyCMMatchBitmap subroutine. For a description of the
function prototype to which your subroutine must adhere, see the “ColorSync
Manager Reference for Color Management Modules” chapter of the Advanced
Color Imaging Reference provided on the enclosed CD.

In addition to the storage handle for private storage for this component
instance, the CallComponentFunctionWithStorage function passes to your
MyCMMatchBitmap subroutine a pointer to the bitmap containing the source
image data whose colors your function must match, a pointer to a callback
function supplied by the calling program, a reference constant your subroutine
must pass to the callback function when you invoke it, and a pointer to a
bitmap in which your function stores the resulting color-matched image.

The callback function supplied by the calling function monitors the
color-matching progress as your function matches the bitmap colors. You
should call this function at regular intervals. Your MyCMMatchBitmap function
should monitor the progress function for a returned value of true, which
indicates that the user interrupted the color-matching process. In this case, you
should terminate the color-matching process.

To handle this request, your MyCMMatchBitmap function must match the colors of
the source image bitmap to the color gamut of the destination profile using the
profiles specified by a previous kNCMInit, kCMMInit, or kCMMConcatInit request
to your CMM for this component instance. You must store the color-matched
image in the bitmap result parameter passed to your subroutine. If you are
passed a NULL parameter, you must match the bitmap in place.

For a description of the prototype of the callback function supplied by the
calling program, see the MyCMBitmapCallBackProc entry in the “ColorSync
Manager Reference for Applications and Device Drivers” chapter of the
Advanced Color Imaging Reference provided on the enclosed CD.

Checking the Colors of a Bitmap 5

When a ColorSync-supportive application or device driver calls the
CWCheckBitMap function for your CMM to handle, the Component Manager calls
your CMM with the what field of the component parameters data structure set
to kCMMCheckBitmap if your CMM supports the request. If your CMM supports

ACI Book : Developing CMMs Page 28 Thursday, July 13, 1995 8:40 AM

C H A P T E R 5

Developing Color Management Modules

Creating a Color Management Module 5-29

D
eveloping C

olor M
anagem

ent M
odules

5

this request code, your CMM should be prepared to receive any of the bitmap
types defined by the ColorSync Manager.

In response to this request code, your CMM should call its MyCMCheckBitmap
subroutine. For example, to do this, your CMM may call the Component
Manager’s CallComponentFunctionWithStorage function, passing it the storage
handle for this component instance, the component parameters data structure,
and the address of your MyCMCheckBitmap subroutine. For a description of the
function prototype to which your subroutine must adhere, see the “ColorSync
Manager Reference for Color Management Modules” chapter of the Advanced
Color Imaging Reference provided on the enclosed CD.

In addition to the storage handle for private storage for this component
instance, the CallComponentFunctionWithStorage function passes to your
MyCMCheckBitmap subroutine a pointer to the bitmap containing the source
image data whose colors your function must check, a pointer to a callback
progress-reporting function supplied by the calling program, a reference
constant your subroutine must pass to the callback function when you invoke
it, and a pointer to a resulting bitmap whose pixels your subroutine must set to
show if the corresponding source color is in or out of gamut.

The callback function supplied by the calling function monitors the color
gamut-checking progress. You should call this function at regular intervals.
Your MyCMCheckBitmap function should monitor the progress function for a
returned value of true, which indicates that the user interrupted the
color-checking process. In this case, you should terminate the process.

For a description of the prototype of the callback function supplied by the
calling program, see the MyCMBitmapCallBackProc entry in the “ColorSync
Manager Reference for Applications and Device Drivers” chapter in the
Advanced Color Imaging Reference provided on the enclosed CD.

Using the content of the profiles that you stored at initialization time for this
component instance, your MyCMCheckBitmap subroutine must check the colors of
the source image bitmap against the color gamut of the destination profile. If a
pixel is out of gamut, your function must set the corresponding pixel in the
result image bitmap to 1. The ColorSync Manager returns the resulting bitmap
to the calling application or driver to report the outcome of the check.

For complete details on the MyCMCheckBitmap subroutine parameters and how
your MyCMCheckBitmap subroutine communicates with the callback function, see
the MyCMCheckBitmap entry in the “ColorSync Manager Reference for Color
Management Modules” chapter of the Advanced Color Imaging Reference
provided on the enclosed CD.

ACI Book : Developing CMMs Page 29 Thursday, July 13, 1995 8:40 AM

C H A P T E R 5

Developing Color Management Modules

5-30 Creating a Color Management Module

Matching the Colors of a Pixel Map Image 5

When a ColorSync-supportive application or device driver calls the
CWMatchPixMap function for your CMM to handle, the Component Manager calls
your CMM with the what field of the component parameters data structure set
to kCMMMatchPixMap if your CMM supports the request. If your CMM supports
this request code, your MyCMMatchPixMap function should be prepared to receive
any of the pixel map types defined by QuickDraw.

In response to this request code, your CMM should call its MyCMMatchPixMap
subroutine. For example, to do this, your CMM may call the Component
Manager’s CallComponentFunctionWithStorage function, passing it the storage
handle for this component instance, the component parameters data structure,
and the address of your MyCMMatchPixMap subroutine. For a description of the
function prototype to which your subroutine must adhere, see the “ColorSync
Manager Reference for Color Management Modules” chapter of the Advanced
Color Imaging Reference provided on the enclosed CD.

In addition to the storage handle for private storage for this component
instance, the CallComponentFunctionWithStorage function passes to your
MyCMMatchPixMap subroutine a pointer to the pixel map containing the source
image to be matched, a pointer to a callback progress-reporting function
supplied by the calling program, and a reference constant your subroutine
must pass to the callback function when you invoke it.

To handle this request, your MyCMMatchPixMap subroutine must match the colors
of the source pixel map image to the color gamut of the destination profile,
replacing the original pixel colors of the source image with their corresponding
colors expressed in the data color space of the destination profile. The
ColorSync Manager returns the resulting color-matched pixel map to the
calling application or driver.

The callback function supplied by the calling function monitors the
color-matching progress. You should call this function at regular intervals. Your
MyCMMatchPixMap function should monitor the progress function for a returned
value of true, which indicates that the user interrupted the color-matching
process. In this case, you should terminate the process.

For a description of the prototype of the callback function supplied by the
calling program see the description of the function MyCMBitmapCallBackProc in
the “ColorSync Manager Reference for Applications and Device Drivers”
chapter of the Advanced Color Imaging Reference.

ACI Book : Developing CMMs Page 30 Thursday, July 13, 1995 8:40 AM

C H A P T E R 5

Developing Color Management Modules

Creating a Color Management Module 5-31

D
eveloping C

olor M
anagem

ent M
odules

5

Checking the Colors of a Pixel Map Image 5

When a ColorSync-supportive application or device-driver calls the
CWCheckPixMap function for your CMM to handle, the Component Manager calls
your CMM with the what field of the component parameters data structure set
to kCMMCheckPixMap if your CMM supports the request.

In response to this request code, your CMM should call its MyCMCheckPixMap
subroutine. For example, to do this, your CMM may call the Component
Manager’s CallComponentFunctionWithStorage function, passing it the storage
handle for this component instance, the component parameters data structure,
and the address of your MyCMCheckPixMap subroutine. For a description of the
function prototype to which your subroutine must adhere, see the “ColorSync
Manager Reference for Color Management Modules” chapter of the Advanced
Color Imaging Reference provided on the enclosed CD.

In addition to the storage handle for private storage for this component
instance, the CallComponentFunctionWithStorage function passes to your
MyCMCheckPixMap subroutine a pointer to the pixel map containing the source
image to be checked, a QuickDraw bitmap in which to report the
color-checking results, a pointer to a callback progress-reporting function
supplied by the calling program, and a reference constant your subroutine
must pass to the callback function when you invoke it.

Using the content of the profiles passed to you at initialization time, your
MyCMCheckPixMap subroutine must check the colors of the source pixel map
image against the color gamut of the destination profile to determine if the
pixel colors are within the gamut. If a pixel is out of gamut, your subroutine
must set to 1 the corresponding pixel of the result bitmap. The ColorSync
Manager returns the bitmap showing the color-checking results to the calling
application or device driver.

Initializing the Component Instance for a Session Using Concatenated Profiles 5

When a ColorSync-supportive application or device driver calls the
CWConcatColorWorld function for your CMM to handle, the Component
Manager calls your CMM with the what field of the component parameters data
structure set to kCMMConcatInit if your CMM supports the request.

In response to this request code, your CMM should call its MyCMConcatInit
subroutine. For example, to do this, your CMM may call the Component
Manager’s CallComponentFunctionWithStorage function, passing it the storage
handle for this component instance, the component parameters data structure,
and the address of your MyCMConcatInit subroutine. For a description of the

ACI Book : Developing CMMs Page 31 Thursday, July 13, 1995 8:40 AM

C H A P T E R 5

Developing Color Management Modules

5-32 Creating a Color Management Module

function prototype to which your subroutine must adhere, see the “ColorSync
Manager Reference for Color Management Modules” chapter of the Advanced
Color Imaging Reference provided on the enclosed CD.

In addition to the storage handle for private storage for this component
instance, the CallComponentFunctionWithStorage function passes to your
MyCMConcatInit subroutine a pointer to a data structure of type
CMConcatProfileSet containing an array of profiles to be used in a subsequent
color-matching or color-checking session. The profiles in the array are in
processing order—source through destination. The profileSet field of the data
structure contains the array. If the profile array contains only one profile, that
profile is a device-linked profile. For a description of the CMConcatProfileSet
data structure, see the section “Concatenated Profile Set Structure” in the
“ColorSync Manager Reference for Applications and Device Drivers” chapter
of the Advanced Color Imaging Reference provided on the enclosed CD.

Using the storage passed to your entry point function in the CMSession
parameter, your MyCMConcatInit function should initialize any private data
your CMM will need for a subsequent color session involving the set of
profiles. Before your function returns control to the Component Manager, your
subroutine should store any profile information it requires. In addition to the
standard profile information, you should store the profile header’s quality flags
setting, the profile size, and the rendering intent. After you return control to the
Component Manager, you cannot use the profile references again.

A color-matching or color-checking session for a set of profiles entails various
color transformations among devices in a sequence for which your CMM is
responsible. Your CMM may use Component Manager functions to call other
CMMs if necessary.

There are special guidelines your CMM must follow in using a set of
concatenated profiles for subsequent color-matching or gamut-checking
sessions. These guidelines are covered in the MyCMConcatInit entry in the
“ColorSync Manager Reference for Color Management Modules” chapter of
the Advanced Color Imaging Reference.

Creating a Device-Linked Profile and Opening a Reference to It 5

When a ColorSync-supportive application or device driver calls the
CWNewLinkProfile function for your CMM to handle, the Component Manager
calls your CMM with the what field of the component parameters data structure
set to kCMMNewLinkProfile if your CMM supports the request.

ACI Book : Developing CMMs Page 32 Thursday, July 13, 1995 8:40 AM

C H A P T E R 5

Developing Color Management Modules

Creating a Color Management Module 5-33

D
eveloping C

olor M
anagem

ent M
odules

5

In response to this request code, your CMM should call its MyCMNewLinkProfile
subroutine. For example, to do this, your CMM may call the Component
Manager’s CallComponentFunctionWithStorage function, passing it the storage
handle for this component instance, the component parameters data structure,
and the address of your MyCMNewLinkProfile subroutine. For a description of
the function prototype to which your subroutine must adhere, see the
“ColorSync Manager Reference for Color Management Modules” chapter of
the Advanced Color Imaging Reference provided on the enclosed CD.

In addition to the storage handle for private storage for this component
instance, the CallComponentFunctionWithStorage function passes to your
MyCMNewLinkProfile subroutine a pointer to a data structure of type
CMConcatProfileSet containing the array of profiles that will make up the
device-linked profile.

To handle this request, your subroutine must create a single device-linked
profile of type DeviceLink that includes the profiles passed to you in the array
pointed to by the profileSet parameter. Your CMM must create a file
specification for the device-linked profile. A device-linked profile cannot be a
temporary profile: that is, you cannot specify a location type of cmNoProfileBase
for a device-linked profile. For information on how to specify the file location,
see the “Profile Location Union” and the “Profile Location Structure” in the
“ColorSync Manager Reference for Applications and Device Drivers” chapter
of the Advanced Color Imaging Reference provided on the enclosed CD.

The profiles in the array are in the processing order—source through
destination—which you must preserve. After your CMM creates the
device-linked profile, it must open a reference to the profile and return the
profile reference along with the location specification.

Obtaining PostScript-Related Data From a Profile 5

There are three very similar PostScript-related request codes that your CMM
may support. Each of these codes requests that your CMM obtain or derive
information required by a PostScript printer from the specified profile and pass
that information to a function supplied by the calling program.

When a ColorSync-supportive application or device driver calls the high-level
function corresponding to the request code and your CMM is specified to
handle it, the Component Manager calls your CMM with the what field of the
component parameters data structure set to the corresponding request code if

ACI Book : Developing CMMs Page 33 Thursday, July 13, 1995 8:40 AM

C H A P T E R 5

Developing Color Management Modules

5-34 Creating a Color Management Module

your CMM supports it. Here are the three high-level functions and their
corresponding request codes:

■ When the application or device driver calls the CMGetPS2ColorSpace function,
the Component Manager calls your CMM with a kCMMGetPS2ColorSpace
request code. To respond to this request, your CMM must obtain the color
space data from a source profile and pass the data to a low-level
data-transfer function supplied by the calling application or device driver.

■ When the application or device driver calls the
CMGetPS2ColorRenderingIntent function, the Component Manager calls your
CMM with a kCMMGetPS2ColorRenderingIntent request code. To respond to
this request, your CMM must obtain the color rendering intent from the
source profile and pass the data to a low-level data-transfer function
supplied by the calling application or device driver.

■ When the application or device driver calls the CMGetPS2ColorRendering
function, the Component Manager calls your CMM with a
kCMMGetPS2ColorRendering request code. To respond to this request, your
CMM must obtain the rendering intent from the source profile’s header.
Then your CMM must obtain or derive the color rendering dictionary for
that rendering intent from the destination profile and pass the CRD data to a
low-level data-transfer function supplied by the calling application or device
driver.

In response to each of these request codes, your CMM should call its
subroutine that handles the request. For example, to do this, your CMM may
call the Component Manager’s CallComponentFunctionWithStorage function,
passing it the storage handle for this component instance, the component
parameters data structure, and the address of your subroutine handler.

For a description of the function prototypes to which your subroutine must
adhere for each of these requests, see the appropriate one of the following
sections in the “ColorSync Manager Reference for Color Management
Modules” chapter of the Advanced Color Imaging Reference provided on the
enclosed CD:

■ For the kCMMGetPS2ColorSpace request, see the section MyCMMGetPS2ColorSpace.

■ For the kCMMGetPS2ColorRenderingIntent request, see the section
MyCMMGetPS2ColorRenderingIntent.

■ For the kCMMGetPS2ColorRendering request, see the section
MyCMMGetPS2ColorRendering.

ACI Book : Developing CMMs Page 34 Thursday, July 13, 1995 8:40 AM

C H A P T E R 5

Developing Color Management Modules

Creating a Color Management Module 5-35

D
eveloping C

olor M
anagem

ent M
odules

5

In addition to the storage handle for private storage for this component
instance, the CallComponentFunctionWithStorage function passes to your
subroutine a reference to the source profile containing the data you must obtain
or derive, a pointer to the function supplied by the calling program, and a
reference constant that you must pass to the supplied function each time your
CMM calls it. For kCMMGetPS2ColorRendering, your CMM is also passed a
reference to the destination profile.

To handle each of these requests, your subroutine must allocate a data buffer in
which to pass the particular PostScript-related data to the function supplied by
the calling application or driver. Your subroutine must call the supplied
function repeatedly until you have passed all the data to it. For a description of
the prototype of the application or driver-supplied function, see the
MyColorSyncDataTransfer entry in the “ColorSync Manager Reference for
Applications and Device Drivers” chapter of the Advanced Color Imaging
Reference provided on the enclosed CD.

For a description of how each of your subroutines must interact with the
calling program’s supplied function, see the descriptions of the prototypes for
the subroutines in the “ColorSync Manager Reference for Color Management
Modules” chapter of the Advanced Color Imaging Reference provided on the
enclosed CD.

Obtaining the Size of the Color Rendering Dictionary for PostScript Printers 5

When a ColorSync-supportive application or device driver calls the
CMGetPS2ColorRenderingVMSize function for your CMM to handle, the
Component Manager calls your CMM with the what field of the component
parameters data structure set to kCMMGetPS2ColorRenderingVMSize if your CMM
supports the request.

In response to this request code, your CMM should call its
MyCMMGetPS2ColorRenderingVMSize subroutine. For example, to do this, your
CMM may call the Component Manager’s CallComponentFunctionWithStorage
function, passing it the storage handle for this component instance, the
component parameters data structure, and the address of your
MyCMMGetPS2ColorRenderingVMSize subroutine. For a description of the function
prototype to which your subroutine must adhere, see the “ColorSync Manager
Reference for Color Management Modules” chapter of the Advanced Color
Imaging Reference provided on the enclosed CD.

In addition to the storage handle for global data for this component
instance, the CallComponentFunctionWithStorage function passes to your

ACI Book : Developing CMMs Page 35 Thursday, July 13, 1995 8:40 AM

C H A P T E R 5

Developing Color Management Modules

5-36 Creating a Color Management Module

MyCMMGetPS2ColorRenderingVMSize subroutine a reference to the source profile
identifying the rendering intent and a reference to the destination profile
containing the color rendering dictionary (CRD) for the specified rendering
intent.

To handle this request, your CMM must obtain or assess and return the
maximum VM size for the CRD of the specified rendering intent.

If the destination profile contains the Apple-defined private tag 'psvm',
described in the next paragraph, then your CMM may read the tag and return
the CRD VM size data supplied by this tag for the specified rendering intent. If
the destination profile does not contain this tag, then you must assess the VM
size of the CRD.

The CMPS2CRDVMSizeType data type defines the Apple-defined 'psvm' optional
tag that a printer profile may contain to identify the maximum VM size of a
CRD for different rendering intents.

This tag’s element data includes an array containing one entry for each
rendering intent and its virtual memory size. For a description of the data
structures used to define the tag’s element data, see the section “PostScript
Color Rendering Dictionary (CRD) Virtual Memory Size Tag Structure” in the
“ColorSync Manager Reference for Applications and Device Drivers” chapter
of the Advanced Color Imaging Reference provided on the enclosed CD.

Flattening a Profile for Embedding in a Graphics File 5

When a ColorSync-supportive application or device driver calls the
CMFlattenProfile function for your CMM to handle, the Component Manager
calls your CMM with the what field of the component parameters data structure
set to kCMMFlattenProfile if your CMM supports the request.

In response to this request code, your CMM should call its MyCMMFlattenProfile
subroutine. For example, to do this, your CMM may call the Component
Manager’s CallComponentFunctionWithStorage function, passing it the storage
handle for this component instance, the component parameters data structure,
and the address of your MyCMMFlattenProfile subroutine. For a description of
the function prototype to which your subroutine must adhere, see the
“ColorSync Manager Reference for Color Management Modules” chapter of
the Advanced Color Imaging Reference provided on the enclosed CD.

In addition to the storage handle for private storage for this component
instance, the CallComponentFunctionWithStorage function passes to your
MyCMMFlattenProfile subroutine a reference to the profile to be flattened, a
pointer to a function supplied by the calling program, and a reference constant

ACI Book : Developing CMMs Page 36 Thursday, July 13, 1995 8:40 AM

C H A P T E R 5

Developing Color Management Modules

Creating a Color Management Module 5-37

D
eveloping C

olor M
anagem

ent M
odules

5

your subroutine must pass to the calling program’s function when you
invoke it.

To handle this request, your subroutine must extract the profile data from the
profile, allocate a buffer in which to pass the profile data to the supplied
function, and pass the profile data to the function keeping track of the amount
of remaining data to be passed.

For a description of the prototype of the function supplied by the calling
program, see the entry MyColorSyncDataTransfer in the “ColorSync Manager
Reference for Applications and Device Drivers” chapter of the Advanced Color
Imaging Reference provided on the enclosed CD. The “ColorSync Manager
Reference for Color Management Modules” chapter also provides details on
how your MyCMMFlattenProfile subroutine communicates with the function
supplied by the calling program.

Unflattening a Profile 5

When a ColorSync-supportive application or device driver calls the
CMUnflattenProfile function for your CMM to handle, the Component
Manager calls your CMM with the what field of the component parameters data
structure set to kCMMUnflattenProfile if your CMM supports the request.

In response to this request code, your CMM should call its
MyCMMUnflattenProfile subroutine. For example, to do this, your CMM may
call the Component Manager’s CallComponentFunctionWithStorage function,
passing it the storage handle for this component instance, the component
parameters data structure, and the address of your MyCMMUnflattenProfile
subroutine. For a description of the function prototype to which your
subroutine must adhere, see the “ColorSync Manager Reference for Color
Management Modules” chapter of the Advanced Color Imaging Reference
provided on the enclosed CD.

In addition to the storage handle for private storage for this component
instance, the CallComponentFunctionWithStorage function passes to your
MyCMMUnflattenProfile subroutine a pointer to a function supplied by the
calling program and a reference constant that your subroutine must pass to the
calling program’s function when you invoke it. The calling program’s function
obtains and returns the profile data to your subroutine.

For a description of the prototype of the function supplied by the calling
program, see the MyColorSyncDataTransfer entry in the “ColorSync Manager
Reference for Applications and Device Drivers” chapter of the Advanced Color
Imaging Reference provided on the enclosed CD.

ACI Book : Developing CMMs Page 37 Thursday, July 13, 1995 8:40 AM

C H A P T E R 5

Developing Color Management Modules

5-38 Creating a Color Management Module

To handle this request, your subroutine must create a file in which to store the
profile data. You should create the file in the temporary items folder. Your
MyCMMUnflattenProfile subroutine must call the supplied
MyColorSyncDataTransfer function repeatedly to obtain the profile data. Before
calling the MyColorSyncDataTransfer function, your MyCMMUnflattenProfile
function must allocate a buffer to hold the returned profile data.

Your MyCMMUnflattenProfile function must identify the profile size and
maintain a counter tracking the amount of data transferred to you and the
amount of remaining data. This information allows you to determine when to
call the MyColorSyncDataTransfer function for the final time.

For a description of the prototype of the function supplied by the calling
program, see the entry MyColorSyncDataTransfer in the “ColorSync Manager
Reference for Applications and Device Drivers” chapter of the Advanced Color
Imaging Reference provided on the enclosed CD. The “ColorSync Manager
Reference for Color Management Modules” chapter in the same book also
provides details on how your MyCMMUnflattenProfile subroutine communicates
with the function supplied by the calling program.

ACI Book : Developing CMMs Page 38 Thursday, July 13, 1995 8:40 AM

C H A P T E R 5

Developing Color Management Modules

Summary of the Color Management Modules 5-39

D
eveloping C

olor M
anagem

ent M
odules

5

Summary of the Color Management Modules 5

Constants 5

enum {
CMMInterfaceVersion= 1
};

/* request codes (required) */
enum {

kCMMInit = 0,
kCMMMatchColors = 1,
kCMMCheckColors = 2
kNCMMInit = 6,
};

/* request codes (optional) */
enum {

kCMMValidateProfile = 8,
kCMMFlattenProfile = 14,
kCMMUnflattenProfile = 15,
kCMMMatchBitmap = 9,
kCMMCheckBitmap = 10,
kCMMMatchPixMap = 3,
kCMMCheckPixMap = 4,
kCMMConcatenateProfiles = 5,
kCMMConcatInit = 7,
kCMMNewLinkProfile = 16,
kCMMGetPS2ColorSpace = 11,
kCMMGetPS2ColorRenderingIntent = 12,
kCMMGetPS2ColorRendering = 13,
kCMMGetPS2ColorRenderingVMSize = 17
};

ACI Book : Developing CMMs Page 39 Thursday, July 13, 1995 8:40 AM

C H A P T E R 5

Developing Color Management Modules

5-40 Summary of the Color Management Modules

Functions 5

Required Functions
pascal CMError MyNCMInit (ComponentInstance CMSession,

CMProfileRef srcProfile,
CMProfileRef dstProfile);

pascal CMError MyCMMatchColors (ComponentInstance CMSession, CMColor *myColors,
unsigned long count);

pascal CMError MyCMCheckColors (ComponentInstance CMSession, CMColor *myColors,
unsigned long count, long *result);

pascal CMError CMInit (ComponentInstance CMSession,
CMProfileHandle srcProfile,
CMProfileHandle dstProfile)

Optional Functions
pascal CMError MyCMMValidateProfile (

ComponentInstance CMSession, CMProfileRef prof,
Boolean *valid);

pascal CMError MyCMMatchBitmap (ComponentInstance CMSession, const CMBitmap *bitmap,
CMBitmapCallBackUPP progressProc,
void *refCon, CMBitmap *matchedBitmap);

pascal CMError MyCMCheckBitmap (ComponentInstance CMSession,const CMBitmap *bitmap,
CMBitmapCallBackUPP progressProc,
void *refCon, CMBitmap *resultBitmap);

pascal CMError MyCMConcatInit (ComponentInstance CMSession,
CMConcatProfileSet *profileSet);

pascal CMError MyCMMatchPixMap (ComponentInstance CMSession, PixMap *myPixMap,
CMBitmapCallBackUPP progressProc,
void *refCon);

pascal CMError MyCMCheckPixMap (ComponentInstance CMSession,const PixMap *myPixMap,
CMBitmapCallBackUPP progressProc,BitMap *myBitMap,
void *refCon);

pascal CMError MyCMNewLinkProfile (ComponentInstance CMSession, CMProfileRef *prof,
const CMProfileLocation *targetLocation,
CMConcatProfileSet *profileSet);

ACI Book : Developing CMMs Page 40 Thursday, July 13, 1995 8:40 AM

C H A P T E R 5

Developing Color Management Modules

Summary of the Color Management Modules 5-41

D
eveloping C

olor M
anagem

ent M
odules

5

pascal CMError MyCMConcatenateProfiles (
ComponentInstance CMSession, CMProfileHandle thru,
CMProfileHandle dst,
CMProfileHandle *newDst);

pascal CMError MyCMMGetPS2ColorSpace (
ComponentInstance CMSession, CMProfileRef srcProf,
unsigned long flags, CMFlattenUPP proc,
void *refCon);

pascal CMError MyCMMGetPS2ColorRenderingIntent (
ComponentInstance CMSession,CMProfileRef srcProf,
unsigned long flags, CMFlattenUPP proc,
void *refCon);

pascal CMError MyCMMGetPS2ColorRendering (
ComponentInstance CMSession, CMProfileRef srcProf,
CMProfileRef dstProf, unsigned long flags,
CMFlattenUPP proc, void *refCon);

pascal CMError MyCMMGetPS2ColorRenderingVMSize (
ComponentInstance CMSession, CMProfileRef srcProf,
CMProfileRef dstProf, unsigned long vmSize);

pascal CMError MyCMMFlattenProfile (
ComponentInstance CMSession, CMProfileRef prof,
unsigned long flags, CMFlattenUPP
proc, void *refCon);

pascal CMError MyCMMUnflattenProfile (
ComponentInstance CMSession,
FSSpec *resultFileSpec,
CMFlattenUPP proc, void *refCon);

ACI Book : Developing CMMs Page 41 Thursday, July 13, 1995 8:40 AM

ACI Book : Developing CMMs Page 42 Thursday, July 13, 1995 8:40 AM

C H A P T E R 6

Contents

6-1

Contents

6

Figure 6-0
Listing 6-0
Table 6-0

6 Developing
ColorSync-Supportive Device
Drivers

About ColorSync-Supportive Device Driver Development 6-4
The ColorSync Manager Programming Interface 6-4
Devices and Their Profiles 6-5

The Profile Format and Its Cross-Platform Use 6-6
Storing and Handling Device Profiles 6-6
How You Use Profiles 6-7

Devices and Color Management Modules 6-8
Providing ColorSync-Supportive Device Drivers 6-8

Providing Minimum Support 6-9
Providing More Extensive ColorSync Support 6-9

Developing Your ColorSync Supportive Device Driver 6-10
Determining If the ColorSync Manager Is Available 6-11
Interacting With the User 6-11

Searching for Profiles and Displaying Their Names to the User 6-12
Setting the Rendering Intent Selected by the User 6-15
Setting the Color-Matching Quality Selected by the User 6-17

Color Matching an Image to Be Printed 6-22

This document was created with FrameMaker 4.0.4

ACI Book : Dev CS Sprtv Dev DrvrsTOC Page 1 Thursday, July 13, 1995 8:40 AM

ACI Book : Dev CS Sprtv Dev DrvrsTOC Page 2 Thursday, July 13, 1995 8:40 AM

C H A P T E R 6

6-3

D
eveloping C

olorS
ync-S

upportive D
evice D

rivers

6

Developing ColorSync-Supportive Device Drivers 6

This chapter describes how you can use the ColorSync Manager to provide
ColorSync-supportive device drivers for peripherals. It first describes the three
classes of devices—input, display, and output—that the ColorSync Manager
supports.

This chapter describes what you must do to provide minimum ColorSync
support. Then, using a QuickDraw-based printer device driver as an example,
it describes some of the color-matching features that a device driver can
provide, focusing on features offered through a user interface.

Although the features described in this chapter are commonly provided by
printer device drivers, they can also be provided by other applications that
support the ColorSync Manager. For this reason, features described in this
chapter are also addressed in the chapter “Developing ColorSync-Supportive
Applications,” which you should read in addition to this chapter. “Developing
ColorSync-Supportive Applications” includes hints that will benefit your
development of a ColorSync-supportive device driver and code samples that
illustrate approaches you can take in implementing processes, such as
extracting an embedded profile, that you may want your driver to perform.

You need to read this chapter if your device driver for an input, display, or
output device will support the ColorSync Manager and allow users of the
peripheral supported by the driver to produce images that can be color
matched or that are color matched.

Before you read this chapter, you should read the chapter “Introduction to the
ColorSync Manager.” It explains color theory and color management systems
(CMSs), and it provides an overview of the ColorSync Manager CMS,
including the use of profiles. It also explains key terms used throughout this
chapter but not defined again in it.

While reading this chapter, you might want to refer to the chapter “ColorSync
Manager Reference for Applications and Device Drivers” in the

Advanced Color
Imaging Reference

 for details related to functions this chapter discusses.

In addition to one or more profiles for the device, device drivers that support
the ColorSync Manager can provide their own color management module
(CMM) created to perform the best possible color matching for the device the
driver supports. Peripherals manufacturers can obtain CMMs and profiles from
vendors who create them, or they can create their own profiles and CMMs. For
a list of profile vendors, contact Apple Computer’s Developer Technical
Support organization.

This document was created with FrameMaker 4.0.4

ACI Book : Dev CS Sprtv Dev Drvrs Page 3 Thursday, July 13, 1995 8:40 AM

C H A P T E R 6

Developing ColorSync-Supportive Device Drivers

6-4

About ColorSync-Supportive Device Driver Development

If you are creating your own CMM, you should also read the chapter
“Developing Color Management Modules” in this book and the “ColorSync
Manager Reference for Color Management Modules” in the

Advanced Color
Imaging Reference.

IMPORTANT

This chapter does not include a ColorSync Manager quick
reference section. Instead, the complete ColorSync
Manager quick reference, including enumerations, data
structures, functions, and result codes for applications and
device drivers, is provided at the end of the chapter
“Developing ColorSync-Supportive Applications.”

▲

About ColorSync-Supportive Device Driver Development 6

Your device driver can provide minimal ColorSync Manager support, or it can
make extensive use of the ColorSync Manager functions to provide your users
with full color-matching capability. This section describes some aspects to
consider in regard to profiles you provide for your device.

The ColorSync Manager requires Color QuickDraw and System 7.0 or later. The
Component Manager is packaged with the ColorSync Manager and installed at
startup in systems that do not include it. Your device driver must include one
or more profiles for the device you support and, optionally, a CMM if you want
to use a custom one rather than the Apple-supplied default CMM.

The ColorSync Manager Programming Interface 6

Your device driver calls the functions defined by the ColorSync Manager
programming interfaces to handle such tasks as color matching, color
conversion, profile management, extracting profiles embedded in a document
to be printed, profile searching and accessing, and providing color-rendering
information to PostScript printers that perform color matching. The ColorSync
Manager includes the following five interface files for 68K and PowerPC
development:

CMApplication.h

Interface to the ColorSync Manager functions and data types
for applications and device drivers.

ACI Book : Dev CS Sprtv Dev Drvrs Page 4 Thursday, July 13, 1995 8:40 AM

C H A P T E R 6

Developing ColorSync-Supportive Device Drivers

About ColorSync-Supportive Device Driver Development

6-5

D
eveloping C

olorS
ync-S

upportive D
evice D

rivers

6

CMConversions.h

Interface for base-derived color space conversions.

CMICCProfile.h

Definitions for the version 2.0 profile for profile developers.
This interface file contains enumerations and structures, such as
the version 2.0 profile header, that your application requires.
Therefore, you must include it.

CMMComponent.h

Interface to the functions and data types for CMMs.

CMPRComponent.h

Interface for Profile Responder components for ColorSync 1.0
backward-compatibility support. If your application provides
backward compatibility, you must include this interface file.

Devices and Their Profiles 6

To assess the way each device interprets color, color scientists and profile
developers perform device characterizations. This process, which entails
measuring the gamut of a device, yields a color profile for that device. Device
profiles are of paramount importance to any color management system (CMS)
because they characterize the unique color behavior of each device and allow
color matching to occur. Device profiles are used by CMMs that perform the
low-level calculations required to match colors from a source device to a
destination device.

To support the ICC specification, the ColorSync Manager supports the
following three classes of devices for which you can provide device drivers:

■

an input device, such as a scanner or a digital camera

■

a display device, such as a monitor or a liquid crystal display

■

an output device, such as a printer

For each class of device, the ICC defines a device profile type, each with its
own signature. Here are the profile type signatures:

'scnr'

Designates an input device such as a scanner or a digital camera.

'mntr'

Designates a display device such as a monitor or a liquid crystal
display (LCD).

'prtr'

Designates an output device such as a printer.

ACI Book : Dev CS Sprtv Dev Drvrs Page 5 Thursday, July 13, 1995 8:40 AM

C H A P T E R 6

Developing ColorSync-Supportive Device Drivers

6-6

About ColorSync-Supportive Device Driver Development

A profile creator specifies the signature denoting the profile type in the profile
header’s

profileClass

 field.

Whether you create a profile for your device or obtain one from a profile
vendor, your device driver must provide at least one profile for its device.
However, you can provide more than one profile for the same device to
characterize it differently. Although a printer that your device driver supports
may have a number of profiles for different conditions, such as the use of foils
or different grades of paper, all of its profiles will use the same

'prtr'

 profile
signature.

The Profile Format and Its Cross-Platform Use 6

Device profiles follow the ICC profile format, an industry standard. You can
provide a single profile or a set of profiles that can be used across different
operating systems for the device your driver supports. The common profile
format specified by the ICC allows end users to transparently move profiles
and images with embedded profiles between different operating systems.

The profile structure is defined as a header followed by a tag table which, in
turn, is followed by a series of tagged elements that your device driver can
access randomly and individually. Using the ColorSync Manager functions,
you can obtain the profile header to read and modify its contents and you can
get and set individual tags and their element data.

This profile structure is referred to by the ICC as version 2.0. Version 2.0
profiles require more information and are larger than ColorSync 1.0 profiles,
which were originally memory based. Because version 2.0 profiles are larger,
they are disk-based. The ICC profile format specification defines how version
2.0 profiles can be stored as disk files and how profiles can be embedded in
common graphics file formats such as PICT and TIFF. The ColorSync Manager
provides a data structure that you can use to identify the location of a profile. It
also provides functions you can use to embed a profile in or extract if from a
PICT file.

Storing and Handling Device Profiles 6

Device profiles reside in files in the ColorSync

 Profiles folder (within the
Preferences folder of the System Folder), in pictures, or with device drivers.
Files that contain profiles keep them in the data fork and are of type

'prof'

.

By convention, profiles not embedded in documents containing the images
they are associated with are stored in the ColorSync

 Profiles folder. Although

ACI Book : Dev CS Sprtv Dev Drvrs Page 6 Thursday, July 13, 1995 8:40 AM

C H A P T E R 6

Developing ColorSync-Supportive Device Drivers

About ColorSync-Supportive Device Driver Development

6-7

D
eveloping C

olorS
ync-S

upportive D
evice D

rivers

6

you can decide where to store your profiles, to make them available to other
applications you should store them in the ColorSync

 Profiles folder.
Applications that perform soft proofing or gamut checking can search the
folder for specific types of profiles in order to provide a selection menu or list
to the user. If your profiles are not available, applications will not be able to
offer use of them to their users for color matching or gamut checking. These
applications will not be able to color match to your device unless they provide
a profile to be used for it.

The ColorSync

 Profiles folder may contain profiles for your device provided
by applications for special purposes. For this reason, when your device driver
itself displays a selection menu or list to the user, you should search not only
your private profile location storage, if you use one, but also the ColorSync

Profiles folder to make sure that you offer your users a complete list of
available profiles for your device.

The ColorSync

 Profiles folder can contain both ColorSync 1.0 profiles and
version 2.0 profiles. However, your device driver will be able to search for only
version 2.0 profiles. This is because the ColorSync Manager 2.0 search functions
that you use to look for profiles in the folder do not acknowledge ColorSync 1.0
profiles.

How You Use Profiles 6

For most of the ColorSync Manager functions that your device driver calls, you
will need to supply references to profiles for both the source device on which
the image was created and the destination device for which it is to be color
matched and where it will be rendered.

The driver for an input device such as a scanner typically embeds the scanner
profile used to create the image in the document containing the image. The
driver for a device that displays an existing image on the system’s display or a
printer device that prints a color-matched image typically extracts the
embedded profile that accompanies the image from the document containing
the image.

Images created using input devices are commonly color matched using the
profile for the input device as the source profile and the system profile for the
display as the destination profile. Images that are created, depicted, or
modified on a display device and that are destined for an output device such as
a printer are color matched using the profile for the display as the source
profile and the printer’s profile as the destination one.

ACI Book : Dev CS Sprtv Dev Drvrs Page 7 Thursday, July 13, 1995 8:40 AM

C H A P T E R 6

Developing ColorSync-Supportive Device Drivers

6-8

About ColorSync-Supportive Device Driver Development

To use a profile, you must first obtain a reference to the profile. For information
on how to obtain a profile reference, see the chapter “Developing
ColorSync-Supportive Applications.”

Devices and Color Management Modules 6

Your device driver can use the color conversion functions, described in the
“ColorSync Manager Reference for Applications and Device Drivers” chapter
of the

Advanced Color Imaging Reference

, to convert colors between color spaces
belonging to the same base family without relying on a CMM. However, color
matching, gamut checking, providing color rendering dictionaries to PostScript
printers, and other tasks you perform using the ColorSync Manager functions
all require use of a CMM. It is the CMM that actually carries out the work of
the ColorSync Manager functions, for example, performing the low-level
calculations required to match colors from a source device to a destination
device.

If your ColorSync-supportive device driver can use the Apple-supplied default
CMM, you only need to provide one or more profiles for your device.
However, you may want to provide a custom CMM that is optimized for your
device and its profiles. For example, a profile can provide private tags
containing information a custom CMM might use to achieve better results for
the device.

If you provide your own CMM, you can create it or obtain one from a vendor.
For information describing how to create a CMM, see the chapter “Developing
Color Management Modules” in this book and the chapter “ColorSync
Manager Reference for Color Management Modules” in the

Advanced Color
Imaging Reference

.

Providing ColorSync-Supportive Device Drivers 6

Your ColorSync-supportive device driver can provide your users with various
features based on color matching, depending on the type of device you
support. This section describes what you should do to provide minimum
ColorSync Manager support. Then, using a color printer as an example, this
section lists some of the features you can implement to provide more extensive
support.

ACI Book : Dev CS Sprtv Dev Drvrs Page 8 Thursday, July 13, 1995 8:40 AM

C H A P T E R 6

Developing ColorSync-Supportive Device Drivers

About ColorSync-Supportive Device Driver Development

6-9

D
eveloping C

olorS
ync-S

upportive D
evice D

rivers

6

Providing Minimum Support 6

The minimum level of ColorSync Manager support you should provide differs
depending on the type of device your driver supports.

For a scanner, you should embed the scanner profile used to create the image in
the document containing the image; this is also referred to as

tagging

 an image.
If you do not tag the image with the profile, you should at least make the
profile for the image available so that it can be used for color matching. If you
do not provide the scanner profile, an application or driver that attempts to
color match the scanned image will use the system profile as the source profile
and produce results inconsistent with the colors of the original image.

For a display device driver or a printer device driver, you must preserve
images tagged with a profile by not stripping out picture comments used to
embed profiles or by leaving profiles in documents that use other methods to
include them. For example, if your driver displays or prints PICT files but does
not perform color matching, your driver should not strip out the
ColorSync-related picture comments that are used to embed profiles in PICT
files, begin and end use of a specific profile, and enable and disable color
matching. Even though your driver may not make use of the profiles, another
display or printer driver or an application may.

If you don’t perform color matching but you want to allow applications that do
to produce images that are color matched for your device, you should provide
a device profile to be used as the destination profile. If you provide a profile for
your display or printer and place it in the ColorSync

 Profiles folder,
applications that perform color matching can use it to create a color-matched
image expressed in the colors of your device’s gamut. A user can then print a
color-matched image using the printer your driver supports.

Providing More Extensive ColorSync Support 6

Instead of relying on an application to color match an image for your printer,
your printer driver can color match the image itself before sending it to the
printer. To perform color matching, your printer driver must obtain a reference
to the source profile. Documents containing images to be printed often contain
an embedded profile along with the image. To use the source profile, your
printer driver must be able to extract it. If an image is not accompanied by a
source profile, the system profile is used. In this case, your driver should
provide an interface that allows the user to select the rendering intent to be
used.

ACI Book : Dev CS Sprtv Dev Drvrs Page 9 Thursday, July 13, 1995 8:40 AM

C H A P T E R 6

Developing ColorSync-Supportive Device Drivers

6-10

Developing Your ColorSync Supportive Device Driver

You can provide an interface that offers your user additional features. Your
interface can

■

allow your user to turn ColorSync Manager color matching on or off before
printing.

■

offer your user selection menus, allowing the user to choose

n

the rendering method to be used in color matching the image (perceptual,
colorimetric, or saturation)

n

the color-image quality (normal, draft, or best)

Allowing your user to turn color matching on or off

If an application that creates or modifies an image already
performed color matching using your printer profile as the
destination profile, your user could turn off color
matching. To provide this capability, your driver
should support the

PrGeneral

 function with the

enableColorMatchingOp

 operation code. For information on
the

PrGeneral

 function, see

Inside Macintosh: Imaging With
QuickDraw

. The

enableColorMatchingOp

 operation code
constant is defined by the ColorSync Manager.

◆

Some of these features are discussed later in this chapter and in the chapter
“Developing ColorSync-Supportive Applications.”

Developing Your ColorSync Supportive Device Driver 6

Your device driver can implement certain features using the ColorSync
Manager to support color matching and its associated processes. This section
describes how to tell whether the ColorSync Manager is installed on the system
running your device driver.

Then it describes how to implement features and provide a user interface that
offers a user control over the settings for these features. You can provide a user
interface that allows the user to choose which profile to use for the device your
driver supports. The user interface can also allow the user to choose the
color-rendering intent and the color-matching quality. Finally, this section
describes how to color match images sent to your device driver before sending

ACI Book : Dev CS Sprtv Dev Drvrs Page 10 Thursday, July 13, 1995 8:40 AM

C H A P T E R 6

Developing ColorSync-Supportive Device Drivers

Developing Your ColorSync Supportive Device Driver

6-11

D
eveloping C

olorS
ync-S

upportive D
evice D

rivers

6

them to your printer. Many of the tasks that your device driver performs to
support the ColorSync Manager can also be performed by other kinds of
color-matching applications. These tasks are mentioned in this chapter, but not
explained in detail. For details, refer to the chapter “Developing
ColorSync-Supportive Applications.”

Determining If the ColorSync Manager Is Available 6

To determine if the ColorSync Manager (version 2.0) is available on a
68K-based Mac, use the

Gestalt

 function with the

gestaltColorMatchingVersion

 selector. This function returns the result

gestaltColorSync20

 if the ColorSync Manager is available.

To determine if the ColorSync Manager shared libraries have been loaded on a
Power Macintosh, use the

Gestalt

 function with the

gestaltColorMatchingAttr

 selector. Test the bit field (bit 1) indicated by the

gestaltColorMatchingLibLoaded

 constant in the response parameter. If the bit
is set, the ColorSync Manager shared libraries are loaded.

Interacting With the User 6

Using selection menus, lists, and dialog boxes, you can provide your user with
choices that influence the color-matching process. For example, you can offer
the user

■

a list of profiles to select from. You can allow the user to choose the
appropriate profile for your printer in its current state. To provide a list of
profiles for the user to select from, you must first search for the relevant
profiles. The next section outlines approaches you can take.

■

a selection menu or dialog box for specifying how the image will be color
matched. If the source profile is embedded with the image, the source profile
specifies the rendering intent to be used. However, if the source profile is not
provided and the system profile is used as the source profile, you should
allow the user to select the rendering intent to be used. Your user has
different requirements for different kinds of images, such as scanned
photographs, posters, pie charts, and book illustrations. You can allow users
to specify their intentions for the process to be used in matching the source
image’s colors when they fall out of gamut for your printer. After the user
chooses a rendering intent, you can use the selection to set the source

ACI Book : Dev CS Sprtv Dev Drvrs Page 11 Thursday, July 13, 1995 8:40 AM

C H A P T E R 6

Developing ColorSync-Supportive Device Drivers

6-12

Developing Your ColorSync Supportive Device Driver

profile’s header. “Setting the Rendering Intent Selected by the User” on
page 6-15 explains this process.

■

a selection menu or dialog box for choosing which color-matching quality of
image to produce. A user may want to produce a draft of the image quickly
for review before producing the best possible quality of the image. After the
user chooses a color-matching quality, you can use the selection to set the
source profile’s header. “Setting the Color-Matching Quality Selected by the
User” on page 6-17 explains how to do this.

Searching for Profiles and Displaying Their Names to the User 6

The ColorSync Manager search functions let you identify types of profiles or
profiles having certain characteristics. You can use these functions to search
through available version 2.0 profiles in the ColorSync

 Profiles folder and
hone in on profiles that meet criteria you specify. You can set up a search to
look for certain classes of device profiles for a specific manufacturer’s device,
such as printer profiles designed for the printer model your device driver
supports. You can even refine the search to look for a specific printer profile for
the printer’s current state, for example, a profile especially designed for your
printer’s use of foils and a certain type of ink.

IMPORTANT

The ColorSync Manager 2.0 search functions can identify
only version 2.0 profiles in the ColorSync

 Profiles folder.
If the folder contains ColorSync 1.0 profiles, they are not
investigated during the search.

▲

Searching for profiles entails the following four steps:

1. Defining the search criteria

You can define the search criteria broadly based on the profile’s device type
only or refine the search based on other specific characteristics of a profile
carried in its header or elements. The section “Defining Search Criteria”
describes this step.

2. Running the search

After you set up the search criteria, you must call the

CMNewProfileSearch

function to start the search and find all profiles that match your
requirements. “Running the Search” on page 6-14 explains how to do this.

ACI Book : Dev CS Sprtv Dev Drvrs Page 12 Thursday, July 13, 1995 8:40 AM

C H A P T E R 6

Developing ColorSync-Supportive Device Drivers

Developing Your ColorSync Supportive Device Driver

6-13

D
eveloping C

olorS
ync-S

upportive D
evice D

rivers

6

3. Gaining access to the search results

Using the search results, you can now obtain references to each of the
profiles that match your criteria by calling the

CMSearchGetIndProfile

function. “Obtaining References to the Qualifying Profiles” on page 6-14
describes how to do this.

4. Getting the names of qualifying profiles to display to your user

Once you have references to each of the qualifying profiles, you can obtain
the names of the profiles to present to your user. “Getting the Names of
Qualifying Profiles” on page 6-15 explains this step.

Defining Search Criteria 6

Before you begin a profile search, you must describe aspects of the profiles you
are looking for. To help you, the ColorSync Manager provides a data structure
of type

CMSearchRecord that you use to identify the search criteria. Your device
driver can declare an instance of the search record and assign values to its
fields to characterize the profiles you want to find. The search record data
structure of type CMSearchRecord is described in the “ColorSync Manager
Reference for Applications and Device Drivers” chapter of the Advanced Color
Imaging Reference.

You define the parameters of a search by first setting the fields of the search
record whose values you want matched and then setting the searchMask field
to indicate the operative fields. If you don’t set the field mask, your search
criteria are ignored.

To create a refined search that seeks all profiles belonging to a certain class
that also meet other criteria, you must set multiple fields of the search
record. For example, suppose you want to find all printer profiles for your
manufacturer’s printer and you also want to filter out profiles unless they
are for a certain device model. To do this, you need to set the search record’s
deviceManufacturer field to the signature that identifies the manufacturer.
This must be the same signature specified in the profile header’s
deviceManufacturer field when the manufacturer or vendor created the profile.
You must also set the deviceModel field to the value that identifies the printer
model whose profiles you want to identify. After you set these fields, you must
set the searchMask to identify the operative fields. To do this, you can use the
constants cmMatchProfileClass, cmMatchManufacturer, and cmMatchModel. After
you define a search record that establishes your criteria, you must initiate the
search.

ACI Book : Dev CS Sprtv Dev Drvrs Page 13 Thursday, July 13, 1995 8:40 AM

C H A P T E R 6

Developing ColorSync-Supportive Device Drivers

6-14 Developing Your ColorSync Supportive Device Driver

For a description of the enumeration that defines constants for profile class
signatures, see the section “Profile Classes” in the chapter “ColorSync Manager
Reference for Applications and Device Drivers” in the Advanced Color Imaging
Reference on the enclosed CD. For a description of the enumeration that defines
constants for the search mask, see the section “Profile Search Record” in the
same chapter.

Running the Search 6

Passing to this function the search record whose fields you set in the previous
step, you call the CMNewProfileSearch function to run the search on all profiles
in the ColorSync Profiles folder. The CMNewProfileSearch function searches the
ColorSync Profiles folder for version 2.0 profiles that meet your criteria. In
response, the function returns to your driver a reference to a search results
private data structure containing a list of all profiles that match your
description.

The function also returns a one-based count telling you how many profiles are
in the list. You use this count, along with the search result reference, to navigate
the list in order to identify a specific profile and obtain information about it.
Your device driver cannot gain direct access to the contents of the search result
list.

Obtaining References to the Qualifying Profiles 6

Using the results of the search, you can now obtain references to each of the
qualifying profiles. The one-based count returned by the CMNewProfileSearch
function identifies the number of profiles in the list. You can use this count to
set the bounds of a loop you can define to obtain a profile reference for each
qualifying profile. Identifying the index position of a profile in the search result
list, you can call the CMSearchGetIndProfile function repeatedly, incrementing
through the list until you obtain references to all of its profiles. The sample
code listing in “Searching for Profiles in the ColorSync Profiles Folder” of the
“Developing ColorSync-Supportive Applications” chapter shows one approach
you can take.

The ColorSync Manager preserves the results of a search you perform until
you discard the private data structure containing the search result list by
calling CMDisposeProfileSearch. If you know that the user has updated
the ColorSync Profiles folder since you searched it, you can call the
CMUpdateProfileSearch function to update the search result without providing
the search specification again.

ACI Book : Dev CS Sprtv Dev Drvrs Page 14 Thursday, July 13, 1995 8:40 AM

C H A P T E R 6

Developing ColorSync-Supportive Device Drivers

Developing Your ColorSync Supportive Device Driver 6-15

D
eveloping C

olorS
ync-S

upportive D
evice D

rivers
6Getting the Names of Qualifying Profiles 6

After you obtain references to the profiles in the search result list, you must get
the names of the profiles so that you can display them in the selection list your
user interface provides. You can get the profile names either within your profile
reference loop or outside it.

When you are finished with the profiles, you must call the CMCloseProfile
function for each one to dispose of the references and release the memory they
use.

Setting the Rendering Intent Selected by the User 6

The ColorSync Manager offers four rendering intents—perceptual, relative
colorimetric, saturated, and absolute colorimetric. Every profile supports these.
The first three are commonly used to render images matching the colors of a
source image to the color gamut of the destination device on which the
resulting image is to be rendered in the most optimum way for the type of
image.

If the source profile is embedded with the image, the source profile specifies
the rendering intent to be used. However, if the source profile is not provided
and the system profile is used as the source profile, you should allow the user
to select the rendering intent to be used.

To allow users to choose the rendering intent most appropriate for color
matching their graphical image, you can provide a menu or a dialog box
identifying the rendering intent options available. To help your user in
choosing the appropriate intent, you can provide meaningful information that
identifies the best use of each intent. Users can then select the rendering intent
that best maintains important aspects of the image.

Instead of simply listing the available rendering intents by the technical names
used to refer to them, you can indicate how they are best used, basing your
presentation on this background information:

■ For perceptual matching, all the colors of a given gamut may be scaled to fit
within another gamut. This intent is the best choice for realistic images, such
as scanned photographs.

■ For saturation matching, the relative saturation of colors is maintained from
gamut to gamut. Rendering the image using this intent gives the strongest

ACI Book : Dev CS Sprtv Dev Drvrs Page 15 Thursday, July 13, 1995 8:40 AM

C H A P T E R 6

Developing ColorSync-Supportive Device Drivers

6-16 Developing Your ColorSync Supportive Device Driver

colors and is the best choice for bar graphs and pie charts, in which the
actual color displayed is less important than its vividness.

■ For relative colorimetric matching, the colors that fall within the gamuts of
both devices are left unchanged. Some colors in both images will be exactly
the same, a useful outcome when colors must match quantitatively. This
intent is best suited for logos.

After the user selects the intent to be used, you must modify the
renderingIntent field of the system profile’s header to reflect the choice.

To put the rendering intent chosen by the user in the profile header, follow
these steps:

1. Obtain a profile reference to the system profile.

“Identifying the Current System Profile” in the chapter “Developing
ColorSync-Supportive Applications” describes how to do this.

2. Get the profile header of the system profile.

Passing the profile reference to the function, you can use the
CMGetProfileHeader function to obtain the profile’s header. The function
returns the profile header using a union of type CMAppleProfileHeader. You
can use this function for both ColorSync 1.0 profiles and version 2.0 profiles.
For a version 2.0 profile, you use the CM2Header data structure. For a version
1.0 profile, you use the CMHeader data structure. For a description of the
profile headers, see the chapter “ColorSync Manager Reference for
Applications and Device Drivers” in the Advanced Color Imaging Reference on
the enclosed CD. This book also describes the CMGetProfileHeader function.

3. Assign the new rendering intent to the header field.

To assign a rendering intent to the system profile header’s renderingIntent
field, use the constants defined by the following enumeration:

enum {
cmPerceptual = 0,

cmRelativeColorimetric= 1,
cmSaturation = 2,
cmAbsoluteColorimetric= 3

};

ACI Book : Dev CS Sprtv Dev Drvrs Page 16 Thursday, July 13, 1995 8:40 AM

C H A P T E R 6

Developing ColorSync-Supportive Device Drivers

Developing Your ColorSync Supportive Device Driver 6-17

D
eveloping C

olorS
ync-S

upportive D
evice D

rivers
64. Set the modified profile header of the system profile.

After you assign the rendering intent, you must replace the header
by calling the CMSetProfileHeader function. You can use the
CMSetProfileHeader function to set a header for a version 1.0 or a
version 2.0 ColorSync profile. You pass the header you supply in the
CMAppleProfileHeader union, which is described in the chapter “ColorSync
Manager Reference for Applications and Device Drivers” in the Advanced
Color Imaging Reference on the enclosed CD.

You can now use the system profile to create a color world for the
color-matching process. For information on how to create a color world, see the
chapter “Developing ColorSync-Supportive Applications.”

The profile header is temporarily modified and the rendering intent change is
discarded when you call the CMCloseProfile function. To preserve the change,
you must call the CMUpdateProfile function.

Listing 6-1 on page 6-20 shows how to set the rendering intent for a profile.

Setting the Color-Matching Quality Selected by the User 6

The ColorSync Manager provides a feature, called the quality flags settings, that
controls the quality of the color-matching process in relation to the time
required to perform the match. This feature, which is not a standard feature
defined by the ICC profile format specification, works by letting you
manipulate certain bits of the profile header’s flags field. There are three
quality flag settings: normal, draft, and best. For a description of the profile
header’s flags field, see the chapter “ColorSync Manager Reference for
Applications and Device Drivers” in the Advanced Color Imaging Reference.

Normal mode is the default setting. Color matching using draft mode takes the
least time and produces the least exact results. Color matching using best mode
takes the longest time but produces the finest results.

Users sometimes want to produce review drafts of images quickly before
expending the time to produce the best-quality final copy. Your interface can
allow them this flexibility by offering a selection menu or dialog box that
provides the three options.

ACI Book : Dev CS Sprtv Dev Drvrs Page 17 Thursday, July 13, 1995 8:40 AM

C H A P T E R 6

Developing ColorSync-Supportive Device Drivers

6-18 Developing Your ColorSync Supportive Device Driver

After the user selects the color-matching quality, you can use the selection to set
the appropriate bits of the source profile’s flags field. To set the color-matching
quality chosen by the user, follow these steps:

1. Obtain a profile reference to the source profile.

“Obtaining Profile References” in the chapter “Developing
ColorSync-Supportive Applications” describes how to do this.

2. Get the profile header of the source profile.

Passing the profile reference to the function, you can use the
CMGetProfileHeader function to obtain the profile’s header. The function
returns the profile header using a union of type CMAppleProfileHeader.

3. Optionally, test the current setting of the source profile header’s flags.

The flags field of the source profile header is a long word coded in
big-endian notation. Big-endian notation is a means of encoding data in
which the first byte within the 16-bit and 32-bit quantities is the most
significant. The ICC profile consortium reserves the first 2 bits of the low
word for its own use. The least significant 2 bits of the high word constitute
the quality flag settings used to specify the quality for the color matching. To
evaluate and interpret the current setting of the quality flags bits, you can
take these steps, in order:

n Right-shift the 16 bits.

n Mask off the high 14 bits.

n Compare the result with values defined by the following enumeration:

enum {
 cmNormalMode = 0, cmDraftMode = 1,cmBestMode = 2
};

4. Set the quality flags bits to the value your user selected.

To set the quality flag, you can use the constants defined by the enumeration
provided by the ColorSync Manager and shown in step 3.

5. Set the source profile with the modified profile header.

After you set the flags field based on the user’s selection, you must replace
the header by calling the CMSetProfileHeader function. You use the
CMSetProfileHeader function to set the header. You pass the header you

ACI Book : Dev CS Sprtv Dev Drvrs Page 18 Thursday, July 13, 1995 8:40 AM

C H A P T E R 6

Developing ColorSync-Supportive Device Drivers

Developing Your ColorSync Supportive Device Driver 6-19

D
eveloping C

olorS
ync-S

upportive D
evice D

rivers
6supply in the CMAppleProfileHeader union, which is described in the chapter

“ColorSync Manager Reference for Applications and Device Drivers” in the
Advanced Color Imaging Reference on the enclosed CD.

You can now use the source profile to create a color world for the
color-matching process. For information on how to create a color world, see the
chapter “Developing ColorSync-Supportive Applications.”

The profile header is temporarily modified and the flags field change is
discarded when you call the CMCloseProfile function. To preserve the change,
you must call the CMUpdateProfile function.

Listing 6-1 shows how to set the system profile’s quality flag to best mode for
producing the highest-quality color-matched image, and shows how to set the
rendering intent to saturation before setting up a color world based on the
modified system profile and the printer profile.

Listing 6-1’s MySetHeader function initializes the CMProfileRef data structures it
will use for the system profile and the printer profile before it calls the
following two functions—the ColorSync Manager CMGetSystemProfile function
to obtain a reference to the system profile and its own MyGetPrinterProfile
function to obtain a reference to the profile for its printer.

The source profile—in this case, the system profile—not the printer profile,
determines the quality mode and the rendering intent to be used in color
matching the image to the destination printer. Now that it has a reference to the
system profile, the code can obtain the profile’s header. It does this by calling
the CMGetProfileHeader function, specifying the reference it obtained to the
system profile.

Using the kSpeedAndQualityFlagMask constant it defined earlier, the code clears
the quality mode bits of the system profile’s flags field. Then it sets the quality
mode bits to cmBestMode to specify best mode quality for color matching. The
least significant 2 bits of the flags field’s high word constitute the quality flag.
After setting the quality flag, the code sets the system profile header’s
renderingIntent field to cmSaturation.

Now that the code has modified the system profile’s header to indicate the
user’s selections, it calls the CMSetProfileHeader function to write the profile
header to the profile. Because the driver code intends to use the values the user
selected only to color match the image in the user’s document to be printed, it
does not permanently preserve the header field changes. When the code closes
its reference to the system profile after having built the color world, the system
profile’s header modifications are discarded. To write the changes to the profile
to preserve them, the code must include a call to the CMUpdateProfile function.

ACI Book : Dev CS Sprtv Dev Drvrs Page 19 Thursday, July 13, 1995 8:40 AM

C H A P T E R 6

Developing ColorSync-Supportive Device Drivers

6-20 Developing Your ColorSync Supportive Device Driver

Using the temporarily modified system profile, the code calls the
NCWNewColorWorld function to create the color world, closes its references to
both the system and printer profiles, and color matches the image before
sending it to the printer. When it no longer needs the color world, the code calls
the CWDisposeColorWorld function to close the color world and release the
memory it uses. Finally, the code tests to ensure that the profile references are
closed.

Listing 6-1 Modifying the system profile header’s quality flag and setting the header

#include <Types.h>
#include <CMApplication.h>
#include <stdio.h>
#include <assert.h>

#define kMajorVersionMask 0XFF000000

void MySetHeader(void);

CMError MyGetPrinterProfile(CMProfileRef* printerProf);

/* for CM2Header.profileVersion */
#define kMajorVersionMask 0XFF000000

/* two bits used to specify speed & quality; must be shifted left 16 bits in
flag’s long word */

#define kSpeedAndQualityFlagMask 0X00000003

void MySetHeader(void)
{

CMError cmErr;
CMProfileRef sysProf;
CMAppleProfileHeader sysHeader;
CMProfileRef printerProf;
CMWorldRef cw;

sysProf = NULL;
printerProf= NULL;
cw = NULL;

ACI Book : Dev CS Sprtv Dev Drvrs Page 20 Thursday, July 13, 1995 8:40 AM

C H A P T E R 6

Developing ColorSync-Supportive Device Drivers

Developing Your ColorSync Supportive Device Driver 6-21

D
eveloping C

olorS
ync-S

upportive D
evice D

rivers
6cmErr = CMGetSystemProfile(&sysProf);

if (cmErr == noErr)
{

cmErr = MyGetPrinterProfile(&printerProf);
}

if (cmErr == noErr)
{

cmErr = CMGetProfileHeader(sysProf, &sysHeader);
}

if (cmErr == noErr)
{

sysHeader.cm2.flags&= ~(kSpeedAndQualityFlagMask << 16);
sysHeader.cm2.flags|= (cmBestMode << 16);

sysHeader.cm2.renderingIntent = cmSaturation;

cmErr = CMSetProfileHeader(sysProf, &sysHeader);
}
if (cmErr == noErr)
{

cmErr = NCWNewColorWorld(&cw, sysProf, printerProf);

(void) MyCMCloseProfile(sysProf);
sysProf = NULL;
(void) CMCloseProfile(printerProf);
printerProf = NULL;

}
 .

.

.

/* device-driver functions that use the color world to color match
the image and send it to the printer belong here */

.

.

.

ACI Book : Dev CS Sprtv Dev Drvrs Page 21 Thursday, July 13, 1995 8:40 AM

C H A P T E R 6

Developing ColorSync-Supportive Device Drivers

6-22 Developing Your ColorSync Supportive Device Driver

if (cw != NULL)
{

CWDisposeColorWorld(cw);
}

/* close open profiles in case of error */
if (sysProf != NULL)
{
 (void) CMCloseProfile(sysProf);
}
if (printerProf != NULL)
{

(void) CMCloseProfile(printerProf);
}

}

Color Matching an Image to Be Printed 6

The ColorSync Manager provides high-level and low-level color-matching
functions. Printer device drivers usually perform color matching using the
low-level ColorSync Manager functions to match all QuickDraw operations as
they pass through the bottleneck routines.

When the stream of QuickDraw data sent to your printer device driver
contains a profile embedded using picture comments, your driver should
extract the embedded profile using the ColorSync Manager’s
CMUnflattenProfile function. After you extract the profile and open a reference
to it, you should create a new color world based on the extracted profile and a
profile for your printer. For information on how to extract an embedded
profile, see the chapter “Developing ColorSync-Supportive Applications.” This
chapter also describes how to create a color world.

If the QuickDraw data stream does not contain embedded profiles, your driver
should use the system profile as the source profile in creating the color world.

You should then match subsequent QuickDraw operations using the color
world before sending them to your printer.

ACI Book : Dev CS Sprtv Dev Drvrs Page 22 Thursday, July 13, 1995 8:40 AM

C H A P T E R 7

Contents

7-1

Contents

7

Figure 7-0
Listing 7-0
Table 7-0

7 Color Manager

About the Color Manager 7-3
Graphics Devices 7-4
Color Tables 7-5
Inverse Tables 7-6

Inverse Tables in Action 7-10
Hidden Colors 7-11
Building Inverse Tables 7-12

Using the Color Manager 7-13
Customizing Search Functions 7-13
Customizing Complement Functions 7-15
Managing the Device CLUT 7-16

Summary of the Color Manager 7-19
Constants and Data Types 7-19
Color Manager Functions 7-20
Application-Defined Functions 7-21

This document was created with FrameMaker 4.0.4

ACI Book : Color ManagerTOC Page 1 Thursday, July 13, 1995 8:40 AM

ACI Book : Color ManagerTOC Page 2 Thursday, July 13, 1995 8:40 AM

C H A P T E R 7

About the Color Manager

7-3

C
olor M

anager

7

Color Manager 7

The

Color Manager

 assists Color QuickDraw in mapping your application’s
color requests to the actual colors available. Most applications never need to
call the Color Manager directly. The material in this chapter is provided for
specialized applications that require a color-mapping method other than the
one used by the Color Manager.

You need to understand Color QuickDraw concepts, terminology, and data
structures when using the material in this chapter. You should be familiar with
RGB color values, color tables, pixel maps, and graphics devices, as described
in

Inside Macintosh: Imaging With QuickDraw.

Color Manager functions are the intermediary between such high-level
software as Color QuickDraw, the Palette Manager, and the Color Picker
Manager, and the lower-level of video cards and screens. The vast majority of
applications never need to use Color Manager functions directly.

About the Color Manager 7

The Color Manager is optimized to work with graphics hardware that contains
a color lookup table (CLUT), a data structure that maps the index values into
actual colors. Color QuickDraw supports two kinds of devices:

■

Indexed devices, which contain hardware that converts a

pixel value

 stored
in the card’s video RAM to some actual color. The pixel value can be an
index to any of the colors in the CLUT for the device, and for most CLUTs
the set of colors can be changed.

■

Direct devices, which display the RGB color values stored in the card’s video
RAM. Unlike indexed devices, values placed in the frame buffer of direct
devices produce the same color every time.

Color QuickDraw uses the Color Manager to determine which entry in a
device’s CLUT best maps to a color. When your application uses the

RGBForeColor

 or

RGBBackColor

 function to set a color as the foreground or
background color, Color QuickDraw calls on the Color Manager to find the
color in the CLUT of the current graphics device that maps most closely to the
color you submitted. The Color Manager returns the index to the best color,
and Color QuickDraw puts the value in the

fgColor

 field of your application’s

CGrafPort

 data structure.

This document was created with FrameMaker 4.0.4

ACI Book : Color Manager Page 3 Thursday, July 13, 1995 8:40 AM

C H A P T E R 7

Color Manager

7-4

About the Color Manager

Note

QuickDraw and the Palette Manager also use Color
Manager functions to change the entries in a device’s
CLUT. Applications that do color painting and animation
need to control the precise colors they use; they should use
the Palette Manager to allocate colors. Palette Manager
functions operate transparently across multiple screens,
but Color Manager functions do not.

◆

The sections that follow describe how the Color Manager selects from colors
available on the CLUT to satisfy color requests.

Graphics Devices 7

The Color Manager, like Color QuickDraw, accesses a particular graphics
device through a data structure known as a

GDevice

 data structure. Each

GDevice

 data structure stores information about a particular graphics device;
after this data structure is initialized, the device itself is known to the Color
Manager and QuickDraw through that

GDevice

 data structure.

A graphics device, represented by a

GDevice

 data structure, is a logical device
that the software treats identically whether it is a video card, a display device,
or an offscreen graphics world. The Color Manager uses fields of the

GDevice

data structure to track application-defined functions and to manage the device
CLUT. (See the chapter “Graphics Devices” in

Inside Macintosh: Imaging With
QuickDraw

 for additional information about the

GDevice

 data structure.)

The Color Manager uses three fields of a

GDevice

 data structure to track
application-defined custom search and complement functions. The

gdSearchProc

 field contains a handle to a list of search functions, and the

gdCompProc

 field contains a handle to a list of color complement functions. In
each list the Color Manager’s default function is at the end of the list, to be
used if there are no others, or if they fail. The

gdId

 field contains an identifier to
connect a particular custom function with the application that created it.

Two fields of the

GDevice

 data structure contain handles to tables that the Color
Manager uses to specify and look up the colors in a device’s CLUT. The

gdPMap

field contains a handle to the pixel map for the device. The pixel map in turn
contains a handle to the

ColorTable

 data structure that contains the colors
currently loaded in the CLUT. The

gdITable

 field contains a handle to an
inverse table that the Color Manager creates and maintains as a means of
quickly finding colors in the color table.

ACI Book : Color Manager Page 4 Thursday, July 13, 1995 8:40 AM

C H A P T E R 7

Color Manager

About the Color Manager

7-5

C
olor M

anager

7

Color Tables 7

The complete set of colors available at a given time for an indexed-pixel device
is contained in a

ColorTable

 data structure. (The

ColorTable

 data structure is
described in the chapter “Color QuickDraw” in

Inside Macintosh: Imaging With
QuickDraw

.)

struct ColorTable {
long ctSeed; /* unique identifier for table */
short ctFlags; /* high bit is set for a */

 /* GDevice, clear for a PixMap */
short ctSize; /* number of entries in table minus 1 */
CSpecArray ctTable; /* array[0..0] of ColorSpec records */

};
typedef struct ColorTable ColorTable;

The

ctSeed

 field contains a version identifier for the color table. Its value is a
unique number higher than

minSeed

, a predefined constant with a value of
1023. (If a color table is created from a resource, its resource number becomes
the initial

ctSeed

.) Values of 1023 and below are reserved for standard color
tables defined by Color QuickDraw. Color tables that are part of a

GDevice

 data
structure always have the high bit of the

ctFlags

 field set. (Color tables that are
part of pixel maps not associated with a

GDevice

 data structure have this bit
clear.)

The

ctTable

 field contains an array of

ColorSpec

 entries. The type

ColorSpec

consists of an integer value and a color, as shown in the following specification.

struct ColorSpec {
short value; /* color representation */
RGBColor rgb; /* color value */

};
typedef struct ColorSpec ColorSpec;

In color tables for screen devices, the Color Manager and Palette Manager use
the

value

 field to contain color matching and protection information; in such
tables, the index for a particular color is determined by its position in the table,

not

 by the contents of the

value

 field.

ACI Book : Color Manager Page 5 Thursday, July 13, 1995 8:40 AM

C H A P T E R 7

Color Manager

7-6

About the Color Manager

Inverse Tables 7

The Color Manager constructs

inverse tables

 in order to remap the information
in a device’s color lookup table so that, when Color QuickDraw supplies a
color, the Color Manager can quickly return the index to the closest color
available in the CLUT.

Note

The material in this section is provided for developers who
are planning to create their own color-mapping methods;
few programs need to use inverse tables directly, and even
fewer need to create their own.

◆

When an application sets the foreground color with the

RGBForeColor

 function,
and then draws using that color (with a

LineTo

 function, for example), Color
QuickDraw must determine how to deal with the 48 bits of that

RGBColor

 data
structure. If the line is drawn into a picture, Color QuickDraw can store all 48
bits of color information along with the line-drawing codes. But when it is
drawn into a pixel map, some color information must be discarded, because
even the deepest pixel map can store only 24 bits of color information per pixel.

Drawing into direct pixel maps, in which each pixel value directly specifies the
red, green, and blue components of a color, is straightforward: Color
QuickDraw truncates low-order bits from each 16-bit color component of the

RGBColor

 data structure. Direct pixel maps can be either 16 or 32 bits deep, with
each pixel value containing 15 or 24 bits of color information (5 or 8 bits per
component, with the other bits unused).

Indexed pixel maps don’t contain

RGBColor

 data structures; they contain
indexes to a color table where the

RGBColor

 data structures are stored. The color
table of a

GDevice

 data structure reflects the current CLUT values for that
device. When an application requests a color for an indexed device, Color
QuickDraw calls on the Color Manager to determine which color currently in
the

GDevice

 data structure’s color table (and hence the device’s CLUT) comes
closest to the requested color. The Color Manager function

Color2Index

 returns
the index for a given color, and Color QuickDraw stores that index in the pixel
map. Indexed pixel maps can be 1, 2, 4, or 8 bits deep. (A 1-bit pixel map is
effectively the same as a bitmap.) The most common device CLUT has 256
entries, each of which can be addressed by a pixel map that is 8 bits deep.

ACI Book : Color Manager Page 6 Thursday, July 13, 1995 8:40 AM

C H A P T E R 7

Color Manager

About the Color Manager

7-7

C
olor M

anager

7

Determining the best color choice out of 256 candidates can take a lot of
processing time. To speed up processing, the Color Manager builds an inverse
table for every indexed device that the Slot Manager finds at startup. The Color
Manager stores a handle to the inverse table in the

gdITable

 field of the

GDevice

data structure. An inverse table organizes the information in a device’s CLUT
so that, given an

RGBColor

 data structure, the index to the best color can be
found quickly. Its format is the inverse of a color table: instead of a collection of

RGBColor

 data structures that can be looked up by an index, the inverse table
contains a collection of color table indexes that can be looked up by an RGB
color value.

The format of an inverse table can be illustrated compactly with a hypothetical
color world in which red, green, and blue components are only 1 bit deep each.
In Figure 7-1, the eight possible RGB color values of such a world are the
indexes into a table whose

entries

 consist of indexes to the best colors in the
CLUT for that RGB color value.

Figure 7-1

Sample inverse table

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Index for best black

Index for best blue

Index for best green

Index for best cyan

Index for best red

Index for best magenta

Index for best yellow

Index for best white

Inverse table entry R G B

ACI Book : Color Manager Page 7 Thursday, July 13, 1995 8:40 AM

C H A P T E R 7

Color Manager

7-8

About the Color Manager

In Color QuickDraw’s world, inverse tables may use 3, 4, or 5 bits for each
color component. The number of bits used is called the

resolution

 of the inverse
table. The size of the table depends on its resolution; the table must be large
enough to accommodate every color combination at a given resolution. For
example, the number of combinations in a table of resolution 3 is 512, so an
inverse table of resolution 3 has 512 entries, of one byte each. (Here’s how to
calculate the 512: there are 3 bits each for red, green, and blue, totaling 9 bits,
the permutations of which are 2

9

 or 512.) Tables of resolution 4 and 5 occupy
approximately 4 KB and 32 KB, respectively.

The format of an inverse table follows.

struct ITab {
long iTabSeed; /* copy of color table seed */
short iTabRes; /* resolution of table: 3, 4, or 5 */
unsigned char iTTable[1]; /* byte-length color */

/* table index values */
};
typedef struct ITab ITab;

▲ W A R N I N G

Because the format of inverse tables is subject to change in
the future, or may not be present on certain devices,
applications should not assume the structure of the inverse
table’s data.

▲

The first entry of the

iTabTable

 array, at location 0 (red, green, and blue values
of 0000, 0000, 0000 in a table of resolution 4) contains the index to black or the
nearest color to it in the CLUT. Similarly, the last entry in a table of resolution 4,
at location 4095 (1111, 1111, 1111), contains the CLUT index to white.

Since the largest CLUT has only 256 entries, many inverse table entries contain
duplicates of other entries. For example, in an inverse table of resolution 4, the
first several entries may all point to the index for black, the last few entries may
all point to the index for white, and even various entries in the middle may
point to white or black, as illustrated in Figure 7-2.

ACI Book : Color Manager Page 8 Thursday, July 13, 1995 8:40 AM

C H A P T E R 7

Color Manager

About the Color Manager

7-9

C
olor M

anager

7

Figure 7-2 An inverse table of resolution 4

Note
Finding indexes by means of inverse tables is the Color
Manager’s default method for color mapping.
Applications with special color processing requirements
may need to override the code for inverse table mapping
with custom functions that have special mapping rules. ◆

0000 0000 0000

0000 0000 0001

0000 0000 0010

0000 0000 0011

0000 0000 0100

0000 0001 0000

0000 0001 0001

1110 1111 1110

1110 1111 1111

1111 1111 1100

1111 1111 1101

1111 1111 1110

1111 1111 1111

Index for best black

Index for best black

Index for best black

Index for best dark blue

Index for best dark blue

Index for best black

Index for best black

Index for best white

Index for best white

Index for best light yellow

Index for best white

Index for best white

Index for best white

R G B Inverse table entry

ACI Book : Color Manager Page 9 Thursday, July 13, 1995 8:40 AM

C H A P T E R 7

Color Manager

7-10 About the Color Manager

Inverse Tables in Action 7

When Color QuickDraw supplies a color, the Color Manager truncates the red,
green, and blue values to the size of the table resolution, and concatenates the
results to form an index into the table. At that location, the Color Manager,
when it built the inverse table, stored the index to the best-mapping color in the
CLUT.

Table 7-1 shows two indexes into two inverse tables, one of resolution 4, the
other of resolution 5, when the Color2Index function is given a color of
0x123456789ABC:

The Color Manager derived the 4-bit index by taking the top 4 bits of each color
component. The 5-bit index is more subtle. Figure 7-3 illustrates the steps of
truncation and concatenation that result in the value 0x0953.

Table 7-1 Sample inverse table indexes

Table
resolution

RGBColor data
structure

Inverse
table index Table size

4-bit red=0x1234,
green=0x5678,
blue=0x9ABC

0x0159 212 = 4 KB

5-bit red=0x1234,
green=0x5678,
blue=0x9ABC

0x0953 215 = 32 KB

ACI Book : Color Manager Page 10 Thursday, July 13, 1995 8:40 AM

C H A P T E R 7

Color Manager

About the Color Manager 7-11

C
olor M

anager
7

Figure 7-3 Creating an inverse table index

The Color Manager truncates the high-order 8 bits of each color component to
the high-order 5 bits, and then concatenates those 15 bits. The resulting value,
0x0953 in hexadecimal, is the index into the inverse table.

Hidden Colors 7

Colors that are close in the red, green, and blue color space can become hidden
when they differ only in low-order bits that weren’t used to construct the
inverse table index. For example, even if the CLUT were loaded with 256 levels
of gray, a 4-bit inverse table can only discriminate among 16 of the levels. (In
the 4096 permutations there are only 16 places where the red, green, and blue
values are equal.)

To solve this problem, inverse tables carry additional information about how to
find colors that differ only in the less significant bits. (The information is kept
private to the Color Manager.) As a result, when the Color2Index function is
called, it can find the best color to the full 48-bit resolution available in a
ColorSpec data structure. Since examining the extra information takes time,
certain parts of Color QuickDraw, notably the arithmetic transfer modes, don’t
use this information and hence won’t find the hidden colors.

Red Green Blue

21 65 A9

90 35

High-order
byte

High-order
5 bits

Concatenated

ACI Book : Color Manager Page 11 Thursday, July 13, 1995 8:40 AM

C H A P T E R 7

Color Manager

7-12 About the Color Manager

Building Inverse Tables 7

The Color Manager builds an inverse table for each graphics device at startup.
The data in inverse tables remains valid as long as the CLUT from which it was
built remains unchanged.

The Color Manager rebuilds a table whenever Color QuickDraw, the Color
Picker Manager, or the Palette Manager requests colors from a graphics device
whose CLUT has changed. To determine whether an inverse table has been
changed, the Color Manager compares the ctSeed field of the current GDevice
data structure’s color table against the iTabSeed field of that graphics device’s
inverse table. Each function that modifies the ColorTable data structure (with
the exception of the RestoreEntries function) increments the value in its ctSeed
field. If ctSeed and iTabSeed don’t match, the Color Manager invalidates the
inverse table and rebuilds it.

Note
Under normal circumstances, your application does not
know when the Color Manager has invalidated an inverse
table. The method of invalidation is the same as the one
that Color QuickDraw uses to invalidate expanded
patterns and cursors. ◆

If your application modifies a color table entry directly (which is not
recommended), it should call the CTabChanged function, described in the chapter
“Color QuickDraw” in Inside Macintosh: Imaging With QuickDraw. CTabChanged
changes the iTabSeed value so that the Color Manager rebuilds the table the
next time a pixel index is requested.

The Color Manager builds or rebuilds an inverse table in the following manner:

1. It builds a table of all possible RGB color values taken 3, 4, or 5 bits at a time.

2. For each position in the table, it attempts to find the closest match.

3. It adds information to get a better resolution.

The Color Manager builds an inverse table with the MakeITable function, which
supports only 3-bit, 4-bit, and 5-bit resolution. (Five bits is the maximum
resolution, because the indexes into a 6-bit table would have to be 18 bits long,
more than a full word.) In most cases, when your application sets colors in a
graphics port using the RGBForeColor and RGBBackColor functions or uses
CopyBits to transfer pixel maps, inverse tables of 4 bits, the default, are
sufficient. If you use arithmetic transfer modes with color tables that have

ACI Book : Color Manager Page 12 Thursday, July 13, 1995 8:40 AM

C H A P T E R 7

Color Manager

Using the Color Manager 7-13

C
olor M

anager
7

closely spaced colors, the screen appearance may be improved by specifying
inverse tables at 5-bit resolution, which may uncover some hidden colors.

Using the Color Manager 7

Color QuickDraw uses the Color Manager for several tasks: to determine the
index value of the best mapping color available in a device CLUT, to determine
whether a specific color exists in a CLUT, to change the color in a CLUT entry,
and to find the complement of a color. Color QuickDraw’s use of the Color
Manager is transparent to most applications.

The vast majority of applications don’t need to use Color Manager functions
directly. Palette Manager functions can manipulate the colors of all the CLUTs
attached to a system, and the Palette Manager takes care to minimize
disturbances to other windows when your application needs to change the
values in one or more CLUTs.

Some applications may need to modify the algorithms by which the Color
Manager determines the best mapping color in a CLUT or inverts a color. A
few applications that are designed to run in specialized environments, where
the machine is dedicated to a single task, for example, may need to directly
modify a device CLUT.

Customizing Search Functions 7

Specialized color applications may need to modify the way in which the Color
Manager determines the best-mapping color in a CLUT. A custom search
function you provide can implement its own mapping rules. For instance, a
color-selection application might want to map all levels of green to a single
green on a monitor.

To do this, you write your own color search function and use the AddSearch
function to install it in the list of search functions that the Color Manager
maintains. Then when your application or Color QuickDraw calls the
Color2Index function, the Color Manager calls on your search function to find
and return the index for the best-mapping color. Your function should be
defined as:

Boolean MySearchProc (RGBColor *rgb, long *position);

ACI Book : Color Manager Page 13 Thursday, July 13, 1995 8:40 AM

C H A P T E R 7

Color Manager

7-14 Using the Color Manager

If your search function decides to act on the color, it returns the index of the
desired color in the position parameter, and returns true for the function
value. Otherwise, it should return false as the function value, and pass the
input color back to the Color Manager in the rgb parameter. The Color
Manager then looks to the next search function in the list, and if there are no
other custom functions it uses the normal inverse table mechanism.

The functions are chain elements in a linked list beginning in the gdSearchProc
field of the current GDevice data structure. Each link is an SProcRec data
structure, which has the format shown below.

struct SProcRec {
Handle nxtSrch; /* handle to next sProcRec */
ColorSearchProcPtr srchProc; /* pointer to search function */

};
typedef struct SProcRec SProcRec;

The Color Manager provides functions to add and delete custom functions
from the linked list. You can install any number of search functions in the list.
The Color Manager gives each function the chance to act or pass on the color
until one returns true. Since each device is a shared resource, you can use the
SetClientID function to set the gdID field of the GDevice data structure to
identify your application as the caller to your search functions. When your
application is finished mapping colors, it should remove your custom search
function, by calling the DelSearch function.

For example, Listing 7-1 shows a function that adds a custom search function
before drawing with a user-supplied color.

Listing 7-1 Adding and using a custom search function

void MyDrawUserColor(void)
{

ColorSearchProcPtr MyColorSearch;
RGBColor *UserColor;
Rect *sampleRect;

AddSearch(MyColorSearch);
RGBForeColor(UserColor);

ACI Book : Color Manager Page 14 Thursday, July 13, 1995 8:40 AM

C H A P T E R 7

Color Manager

Using the Color Manager 7-15

C
olor M

anager
7

FrameRect(sampleRect);
DelSearch(MyColorSearch);

}

The MyColorSearch function could entirely replace the Color Manager’s search
algorithm by accepting the RGBColor data structure, doing a search, and then
returning the index value and true. It could also merely modify the color and
then let the Color Manager perform its inverse table lookup. For example, the
MyColorSearch function could accept the RGBColor, do an arithmetic add with a
gray color to lighten all three components, and then return the RGBColor data
structure in the rgb VAR parameter and return false as the function value. The
Color Manager then uses the returned color as the input for its default search.

Customizing Complement Functions 7

Some specialized color applications may need to modify the way in which the
Color Manager calculates the inverse, or complement, of a color. The Color
Manager’s default method for inverting a color is to invert the bit values of the
RGBColor data structure. For colors in which at least one component has very
low or very high values this method produces expected (or at least discernible)
results. A pure green, for example, with RGB color values of 0x0000, 0xFFFF,
and 0x0000, inverts to magenta, with RGB color values of 0xFFFF, 0x0000, and
0xFFFF. But midrange values do not change by much: a component value of
0x7FFF, for example, inverts to 0x8000, which is an indiscernible difference. A
gray value always inverts to another gray, which may or may not be what your
application needs.

Your application can supply a custom complement function to find the inverse
of a specified color. The Color Manager keeps complement functions in a
linked list beginning in the GDevice data structure’s gdCompProc field. Each link
is a CProcRec data structure, which has the format shown below.

struct CProcRec {
Handle nxtComp; /* handle to next CProcRec */
ColorComplementProcPtr compProc; /* pointer to complement

function */
};
typedef struct CProcRec CProcRec;

You install a complement function with the AddComp function. When your
application is done using it, be sure to remove it with the DelComp function.

ACI Book : Color Manager Page 15 Thursday, July 13, 1995 8:40 AM

C H A P T E R 7

Color Manager

7-16 Using the Color Manager

Managing the Device CLUT 7

The Color Manager functions that directly modify a device CLUT should be
used with care, because in a multitasking environment, changes to a device
CLUT affect colors used by the system software and other application windows.

Note
The Color Manager functions described next are designed
to operate on a single GDevice data structure. The Palette
Manager can perform most of these operations across
multiple GDevice data structures. Since the Palette Manager
provides more general and portable functionality,
applications should use Palette Manager functions
whenever possible. ◆

Use the SetEntries function to change any of the entries in a device’s CLUT.
SetEntries changes the CTSeed field value, so the Color Manager knows to
rebuild the inverse table.

The SaveEntries and RestoreEntries functions can make temporary changes to
the color table under very specialized circumstances (for example, from a color
selection dialog box within an application). Applications don’t need these
functions under normal circumstances. For example, if you use the Palette
Manager functions GetEntryColor and SetEntryColor on a palette, rather than
directly changing a device’s color table, the Palette Manager ensures that colors
used by other applications and the system are not affected.

You can use the SaveEntries function to copy any combination of ColorSpec
data structures into a color table. RestoreEntries replaces the table created by
SaveEntries in the graphics device. Unlike SetEntries, these functions don’t
perform invalidations of the device’s color table, so they avoid causing
invalidations of cached data structures. If you use these functions, your
application must take responsibility for rebuilding and restoring auxiliary
structures as necessary.

By convention, when using SetEntries or RestoreEntries, you should store
white at color table position 0, and black in the last color table position
available, whether it is 1, 3, 15, or 255. The Palette Manager also enforces this
convention. The most commonly found CLUT contains 256 entries, but a

ACI Book : Color Manager Page 16 Thursday, July 13, 1995 8:40 AM

C H A P T E R 7

Color Manager

Using the Color Manager 7-17

C
olor M

anager
7

4-entry CLUT can illustrate setting entry values more concisely. Here’s a
CSpecArray data structure called MyColors containing four RGB color values:

Then you could use the SetEntries function to fill the four entries of the CLUT
starting at 0 with white at the first entry, a bright red at the second, a gray at the
third, and black at the last entry:

SetEntries(0, 4, MyColors);

Color Manager functions maintain special information in device color tables.
Using the ProtectEntry and ReserveEntry functions, an entry may be protected,
which prevents SetEntries from further changing the entry, or reserved, which
makes the entry unavailable to be mapped by the RGBForeColor and
RGBBackColor functions. Functions that change the device table (SetEntries,
ProtectEntry, and ReserveEntry, but not RestoreEntries) perform the
appropriate invalidations of QuickDraw data structures. Your application must
then redraw where necessary.

Use the RealColor function to determine whether a particular color exists in a
color table. RealColor determines whether any color in the CLUT for the
current GDevice data structure matches the given color to the resolution of the
device’s inverse table. For example, if the device’s inverse table is set to a
resolution of 4 (the default), RealColor returns true if any color in the CLUT
exactly matches the top four bits of each component. You could make RealColor
match to the top 5 bits by rebuilding the inverse table: call MakeITable with a
res parameter value of 5.

Table 7-2 A sample CSpecArray data structure

Value Red Green Blue

0 FFFF FFFF FFFF

1 FFFF 0000 0000

2 8888 8888 8888

3 0000 0000 0000

ACI Book : Color Manager Page 17 Thursday, July 13, 1995 8:40 AM

C H A P T E R 7

Color Manager

7-18 Using the Color Manager

The Color2Index function returns the index in the current device’s CLUT that is
the best match to the requested color. The Index2Color function performs the
opposite function—it returns the color of a particular index value. These
functions can be useful when making copies of the screen frame buffer. Use the
GetSubTable function to obtain a set of indexes for a CLUT; it calls the
Color2Index function for each input color.

ACI Book : Color Manager Page 18 Thursday, July 13, 1995 8:40 AM

C H A P T E R 7

Color Manager

Summary of the Color Manager 7-19

C
olor M

anager
7

Summary of the Color Manager 7

Constants and Data Types 7

CONST

struct MatchRec {
unsigned short red;
unsigned short green;
unsigned short blue;
long matchData;

};
typedef struct MatchRec MatchRec;

struct ITab {
long iTabSeed; /* copy of CTSeed from source CTable */
short iTabRes; /* bits/channel resolution of iTable */
unsigned char iTTable[1]; /* byte colortable index values */

};
typedef struct ITab ITab;
typedef ITab *ITabPtr, **ITabHandle;

struct SProcRec {
Handle nxtSrch; /* handle to next SProcRec */
ColorSearchProcPtr srchProc; /* pointer to search function */

};
typedef struct SProcRec SProcRec;
typedef SProcRec *SProcPtr, **SProcHndl;

struct CProcRec {
Handle nxtComp; /* handle to next CProcRec */
ColorComplementProcPtr compProc; /* pointer to complement function */

};
typedef struct CProcRec CProcRec;
typedef CProcRec *CProcPtr, **CProcHndl;

ACI Book : Color Manager Page 19 Thursday, July 13, 1995 8:40 AM

C H A P T E R 7

Color Manager

7-20 Summary of the Color Manager

struct ReqListRec {
short reqLSize; /*request list size*/
short reqLData[1] /*request list data*/

};
typedef struct ReqListRec ReqListRec;

Color Manager Functions 7

Managing Colors
pascal long Color2Index (const RGBColor *myColor);

pascal void Index2Color (long index,
RGBColor *aColor);

pascal void InvertColor (RGBColor *myColor);

pascal Boolean RealColor (const RGBColor *color);

pascal void GetSubTable (CTabHandle myColors,
short iTabRes,
CTabHandle targetTbl);

pascal void MakeITable (CTabHandle cTabH,
ITabHandle iTabH,
short res);

Managing Color Tables
pascal long GetCTSeed (void);

pascal void ProtectEntry (short index,
Boolean protect);

pascal void ReserveEntry (short index,
Boolean reserve);

pascal void SetEntries (short start,
short count,
CSpecArray aTable);

pascal void SaveEntries (CTabHandle srcTable,
CTabHandle resultTable,
ReqListRec*selection);

ACI Book : Color Manager Page 20 Thursday, July 13, 1995 8:40 AM

C H A P T E R 7

Color Manager

Summary of the Color Manager 7-21

C
olor M

anager
7

pascal void RestoreEntries (CTabHandle srcTable,
CTabHandle dstTable,
ReqListRec *selection);

Operations on Search and Complement Functions
pascal void AddSearch (ColorSearchProcPtr searchProc);

pascal void AddComp (ColorComplementProcPtr compProc);

pascal void DelSearch (ColorSearchProcPtr searchProc);

pascal void DelComp (ColorComplementProcPtr compProc);

pascal void SetClientID (short id);

Application-Defined Functions 7

pascal Boolean MySearchProc (RGBColor *rgb,
long *position);

pascal void MyCompProc (RGBColor *rgb);

ACI Book : Color Manager Page 21 Thursday, July 13, 1995 8:40 AM

ACI Book : Color Manager Page 22 Thursday, July 13, 1995 8:40 AM

ColorSync 1.0 API Support

A-1

A P P E N D I X

ColorSync Manager Backward

Compatibility A

The ColorSync Manager version 2.0 replaces the earlier version of the product
called ColorSync 1.0. This appendix describes backward compatibility support
for ColorSync 1.0 functions, profiles, and CMMs provided by the ColorSync
Manager version 2.0. Hereafter, the name ColorSync Manager is used to mean
ColorSync Manager version 2.0.

The ColorSync Manager provides backward compatibility with ColorSync 1.0
by supporting the ColorSync 1.0 API and ColorSync 1.0 profiles.

You should use the ColorSync 1.0 API with ColorSync 1.0 profiles and the
ColorSync Manager API with version 2.0 profiles. However, there are
exceptional cases for which you must use a ColorSync 1.0 profile with the
ColorSync Manager.

In addition to describing ColorSync Manager backward compatibility with
ColorSync 1.0, this appendix explains how to use the ColorSync Manager API
for color matching between a ColorSync 1.0 profile and a version 2.0 profile.

ColorSync 1.0 API Support A

For its first release, the ColorSync Manager will continue to implement fully
the ColorSync 1.0 API, including the ColorSync 1.0 profile responder. Existing
applications and drivers written to the ColorSync 1.0 API, and ColorSync 1.0
profiles, CMMs, and QuickDraw GX 1.0 will continue to work properly with
the first release of the ColorSync Manager.

Although the ColorSync Manager continues to support use of the profile
responder for ColorSync 1.0, this feature is not supported by the ColorSync
Manager API.

Figure A-0
Listing A-0
Table A-0

This document was created with FrameMaker 4.0.4

ACI Book : Appendix1 Page 1 Thursday, July 13, 1995 8:40 AM

A P P E N D I X

ColorSync Manager Backward Compatibility

A-2

ColorSync 1.0 Profile Support

ColorSync 1.0 Profile Support A

For the first release of the product, the ColorSync Manager will continue to
support the use of ColorSync 1.0 profiles. Apple Computer strongly
recommends that you use the ColorSync 1.0 API with ColorSync 1.0 profiles, if
possible. For example, always use the ColorSync 1.0 API to match colors
between the color gamuts of two devices if both devices have ColorSync 1.0
profiles.

However, there are times when you may need to use a ColorSync 1.0 profile
with the ColorSync Manager API. The ColorSync Manager’s robust
backward-compatibility support allows you to do this. For example, a
document containing an image to be color matched may include an embedded
ColorSync 1.0 source profile for the image. To match the colors of the source
image to a device that has a version 2.0 profile, you must use the ColorSync
Manager API because the ColorSync 1.0 API cannot gain access to a version 2.0
profile.

One of the main differences between ColorSync 1.0 and the ColorSync Manager
is the profile format used. The ColorSync Manager accommodates ColorSync
1.0 profiles so that you can use them with it when you must. Before describing
how to use a ColorSync 1.0 profile with the ColorSync Manager, this section
explains the differences between the ColorSync 1.0 profile format and the
version 2.0 profile format defined by the International Color Consortium (ICC)
and used by the ColorSync Manager.

ColorSync 1.0 Profiles and Version 2.0 Profiles A

The ColorSync 1.0 profile format was designed by Apple Computer. This
profile is memory resident and follows an internal structure based on tables.
Although it is an open format, it is not an industry standard.

ACI Book : Appendix1 Page 2 Thursday, July 13, 1995 8:40 AM

A P P E N D I X

ColorSync Manager Backward Compatibility

ColorSync 1.0 Profile Support

A-3

C
olorS

ync M
anager B

ackw
ard C

om
patibility

The ICC profile format implemented in the ColorSync Manager is significantly
different from the profile format implemented for ColorSync 1.0. The version
2.0 profile format is specified by the ICC and provides an industry standard
that allows for interoperability across platforms and devices. A version 2.0
profile created for a particular device can be used on systems running different
operating systems.

Because the ColorSync 1.0 and version 2.0 profile formats differ, the ColorSync
Manager must resolve any compatibility issues involving accessing profiles
and color matching between profiles.

How ColorSync 1.0 Profiles and Version 2.0 Profiles Differ A

A ColorSync 1.0 profile is smaller than a version 2.0 profile, which allows for it
to reside in memory. It is a handle-based profile. A version 2.0 profile as
implemented by the ColorSync Manager is commonly file based, but it can also
be memory based. You use an abstract internal data structure, called a profile
reference, to access a version 2.0 profile.

A ColorSync 1.0 profile contains a header, a copy of the Apple

CMProfileChromaticities

 record, profile response data for the associated
device, and a profile name string for use in dialog boxes. Custom profiles may
also have additional, private data. ColorSync 1.0 defines the following profile
data structure:

struct CMProfile, *CMProfilePtr, **CMProfileHandle {
CMHeader header;
CMProfileChromaticities profile;
CMProfileResponse response;
IString profileName; /* variable length */
char customData[anyNumber];

 /* optional custom CMM data */
};

The response data fields contain nine tables. The first table is for grayscale
values. The next three are red, green, and blue values, followed by three for
cyan, magenta, and yellow values. The eighth and ninth tables are for CMYK
printers requiring undercolor removal and black generation data.

ACI Book : Appendix1 Page 3 Thursday, July 13, 1995 8:40 AM

A P P E N D I X

ColorSync Manager Backward Compatibility

A-4

ColorSync 1.0 Profile Support

The ColorSync 1.0 profile header and the version 2.0 profile header contain
many fields in common. However, the ColorSync 1.0 profile header contains
fields that reflect its table-based structure. ColorSync 1.0 defines the following
profile header data structure:

struct CMHeader{
unsigned long size; /* this is the total size of the

 profile including custom data */
OSType CMMType; /* preferred CMM */
unsigned long applProfileVersion; /* profile version */
OSType dataType;
OSType deviceType;
OSType deviceManufacturer;
unsigned long deviceModel;
unsigned long deviceAttributes[2];
unsigned long profileNameOffset; /* offset to profile name

from top of data */
unsigned long customDataOffset; /* offset to custom data

from top of data */
CMMatchFlag flags;
CMMatchOption options;
XYZColor white;
XYZColor black;

} ;

As implemented in the ColorSync Manager, a version 2.0 profile is a
tagged-element structure that begins with a profile header. A version 2.0 profile
supports use of lookup table transforms that allow for faster processing. The
ColorSync Manager defines the following profile header data structure for
version 2.0 profiles:

struct CM2Header {
unsigned long size;
OSType CMMType;
unsigned long profileVersion;
OSType profileClass;
OSType dataColorSpace;
OSType profileConnectionSpace;
CMDateTime dateTime;
OSType CS2profileSignature;
OSType platform;

ACI Book : Appendix1 Page 4 Thursday, July 13, 1995 8:40 AM

A P P E N D I X

ColorSync Manager Backward Compatibility

Using the ColorSync Manager API With ColorSync 1.0 Profiles

A-5

C
olorS

ync M
anager B

ackw
ard C

om
patibility

unsigned long flags;
OSType deviceManufacturer;
unsigned long deviceModel;
unsigned long deviceAttributes[2];
unsigned long renderingIntent;
CMFixedXYZColor white;
char reserved[48];

};

CMMs and Mixed Profiles A

Although the ColorSync Manager API supports using a mix of ColorSync 1.0
and version 2.0 profiles, the success of a matching session involving a
ColorSync 1.0 profile depends on the CMM component performing the process.
Third-party CMMs may choose not to support ColorSync 1.0 profiles. The
Apple-supplied default CMM is able to establish a matching session involving
one or more ColorSync 1.0 profiles.

For device-linked profiles, you must include only version 2.0 profiles. You
cannot mix ColorSync 1.0 and version 2.0 profiles in a device-linked profile.

Using the ColorSync Manager API With ColorSync 1.0

Profiles A

Despite differences between the version 2.0 and ColorSync 1.0 profile formats,
you can use most of the ColorSync Manager 2.0 functions to gain access to
ColorSync 1.0 profiles and their contents and to color match to and from the
two disparate profile formats, if necessary. The ColorSync Manager makes this
possible.

You can open a reference to a ColorSync 1.0 profile using the ColorSync
Manager functions and special data structures that accommodate both profile
styles. You can also match the colors of an image expressed in the color gamut
of one device whose characteristics are described by a ColorSync 1.0 profile to
the colors within the gamut of another device whose characteristics are
described by a version 2.0 profile.

ACI Book : Appendix1 Page 5 Thursday, July 13, 1995 8:40 AM

A P P E N D I X

ColorSync Manager Backward Compatibility

A-6

Using the ColorSync Manager API With ColorSync 1.0 Profiles

IMPORTANT

If you are color matching between devices that both use
ColorSync 1.0 profiles, you should use the ColorSync 1.0
API for the process.

▲

This section describes

■

which ColorSync Manager functions you cannot use for ColorSync 1.0
profiles

■

how you can use the ColorSync Manager with ColorSync 1.0 profiles

ColorSync Manager Functions Not Supported for

ColorSync 1.0 Profiles A

You cannot use the ColorSync Manager’s

CMUpdateProfile

 function to update a
ColorSync 1.0 profile. The ColorSync Manager does not provide functions for
profile version conversions. This is the domain of profile-building tools and
calibration applications.

The ColorSync Manager API includes a set of functions used to search the
ColorSync

 Profiles folder for specific profiles that meet search criteria. These
functions act on version 2.0 profiles only. If the ColorSync

 Profiles folder
contains ColorSync 1.0 profiles, these functions do not acknowledge them or
return results that include them. The ColorSync Manager search functions,
which are not supported for ColorSync 1.0 functions, are the

CMNewProfileSearch

,

CMUpdateProfileSearch

,

CMDisposeProfileSearch

,

CMSearchGetIndProfile

, and

CMSearchGetIndProfileFileSpec

.

You cannot use the ColorSync Manager’s

NCMUseProfileComment

 function to
automatically generate the picture comments required to embed a
ColorSync 1.0 profile. This function is designed to work with version 2.0
profiles only.

ACI Book : Appendix1 Page 6 Thursday, July 13, 1995 8:40 AM

A P P E N D I X

ColorSync Manager Backward Compatibility

Using the ColorSync Manager API With ColorSync 1.0 Profiles

A-7

C
olorS

ync M
anager B

ackw
ard C

om
patibility

Using ColorSync 1.0 Profiles With the ColorSync Manager A

To match an image contained in a document that includes the image’s
embedded ColorSync 1.0 source profile to the color gamut of a printer defined
by a version 2.0 profile, you must use the ColorSync Manager. The ColorSync
Manager is equipped to contend with both profile formats.

The subsections that follow explain how to obtain a reference to the
ColorSync 1.0 profile, get the profile’s header, and get its synthesized tags.

Opening a ColorSync 1.0 Profile A

To use a ColorSync 1.0 profile with the ColorSync Manager API, you must
obtain a reference to the profile. Obtaining a reference to the profile is
synonymous with opening the profile for your program’s use. If the profile is
embedded in a document, you must extract the profile before you can open it.

You can use the ColorSync Manager

CMOpenProfileFile

 function to obtain a
reference to a ColorSync 1.0 profile. Other ColorSync Manager functions that
you use to gain access to the profile’s contents or perform color matching based
on the profile require the profile reference as a parameter.

Obtaining a ColorSync 1.0 Profile Header A

After you obtain a reference to a profile, you can gain access to the profile’s
contents. To gain access to the contents of any of the fields of a profile header,
you must get the entire header. The ColorSync Manager allows you to do this
using the

CMGetProfileHeader

 function. You pass this function the profile
reference and a data structure to hold the returned header. The ColorSync
Manager defines the following union of type

CMAppleProfileHeader,

containing variants for ColorSync 1.0 and version 2.0 ColorSync profile headers
for this purpose:

union CMAppleProfileHeader {
CMHeader cm1;
CM2Header cm2;

};

You use the

cm1

 variant for a ColorSync 1.0 profile header. You can easily test
for the version of a profile header to determine which variant to use because
the offset of the header version is at the same place for both ColorSync 1.0
profiles and version 2.0 profiles.

ACI Book : Appendix1 Page 7 Thursday, July 13, 1995 8:40 AM

A P P E N D I X

ColorSync Manager Backward Compatibility

A-8

Using the ColorSync Manager API With ColorSync 1.0 Profiles

Obtaining ColorSync 1.0 Profile Elements A

The ColorSync Manager provides four tags to allow you to obtain four
ColorSync 1.0 profile elements pointed to from the profile header or contained
outside the header. To obtain the profile element, you specify its associated tag
signature as a parameter to the

CMGetProfileElement

 function along with the
profile reference. The ColorSync Manager provides the following enumeration
that defines these tags:

enum {
cmCS1ChromTag = 'chrm',
cmCS1TRCTag = 'trc ',
cmCS1NameTag = 'name',
cmCS1CustTag = 'cust'

};

Embedding ColorSync 1.0 Profiles A

In ColorSync 1.0, picture comment types

cmBeginProfile

and

cmEndProfile

are
used to begin and end a picture comment.

The

cmEnableMatching

 and

cmDisableMatching

 picture comments are used to
begin and end color matching in ColorSync 1.0 and the ColorSync Manager.

'chrm'

Profile chromaticities

 tag signature. Element data for this tag
specifies the XYZ chromaticities for the six primary and secondary
colors (red, green, blue, cyan, magenta, and yellow).

'trc '

Profile response data tag signature. Element data for this tag
specifies the profile response data for the associated device.

'name'

 Profile name string tag signature. Element data for this tag specifies
the profile name string. This is an international string consisting of
a Macintosh script code followed by a length byte and up to 63
additional bytes composing a text string that identifies the profile.

'cust'

Custom tag signature. Element data for this tag specifies the private
data for a custom CMM.

ACI Book : Appendix1 Page 8 Thursday, July 13, 1995 8:40 AM

A P P E N D I X

ColorSync Manager Backward Compatibility

ColorSync 1.0 Functions With Parallel ColorSync Manager Counterparts

A-9

C
olorS

ync M
anager B

ackw
ard C

om
patibility

ColorSync 1.0 Functions With Parallel ColorSync Manager

Counterparts A

Four of the functions supported by the ColorSync 1.0 API have been
implemented in the ColorSync Manager API. The ColorSync Manager version
of these functions follows the ColorSync Manager API style. For example, a
parameter used to specify a profile takes a profile reference.

It is easy to spot a ColorSync Manager function that is a new version of a
ColorSync 1.0 function, because the function’s name begins with an uppercase
letter

N,

 signifying that it is new.

If you are writing a new ColorSync-supportive program, you should always
use the new ColorSync Manager functions. The ColorSync 1.0 version of these
functions will continue to be supported for only the first release of the
ColorSync Manager.

Here are the four ColorSync 1.0 functions and their ColorSync Manager
counterpart functions:

Table A-1

ColorSync 1.0 functions and their ColorSync Manager counterparts

ColorSync 1.0 function ColorSync Manager function

pascal

CWNewColorWorld

(CMWorldRef *cw, CMProfileHandle src,
CMProfileHandle dst);

pascal CMError

 NCWNewColorWorld

(CMWorldRef *cw, CMProfileRef src,
CMProfileRef dst);

pascal CMError

CMBeginMatching

(CMProfileHandle src, CMProfileHandle
dst, CMMatchRef *myRef);

pascal CMError

 NCMBeginMatching

(CMProfileRef src, CMProfileRef dst,
CMMatchRef *myRef);

pascal void

CMDrawMatchedPicture

(PicHandle myPicture, CMProfileHandle
dst, Rect *myRect);

pascal void

NCMDrawMatchedPicture

(PicHandle myPicture, CMProfileRef dst,
Rect *myRect);

pascal CMError

CMUseProfileComment

(CMProfileHandle profile);
pascal CMError

NCMUseProfileComment

(CMProfileRef prof, unsigned long flags);

ACI Book : Appendix1 Page 9 Thursday, July 13, 1995 8:40 AM

ACI Book : Appendix1 Page 10 Thursday, July 13, 1995 8:40 AM

GL-1

Glossary

absolute colorimetric matching

A

rendering intent

 that is used for a
device-independent color space in which
the result is an idealized print viewed on a
perfect paper having a large dynamic range
and color gamut. In reality, paper cannot
reproduce densities less than a particular
minimum density.

abstract profile

 A profile that allows
applications to perform special color effects
independent of the devices on which the
effects are rendered.

additive color theory

The process of
mixing red, green, and blue lights, which
are each approximately one-third of the
visible spectrum. Additive color theory
explains how red, green, and blue light can
be added to make white light.

animated color

A color that the Palette
Manager uses for special animation effects.
Animated colors work only on devices that
have a color table; that is, they do not work
on direct devices.

application-owned dialog

box

A dialog
box, created by an application, for
presenting a color picker.

brightness

A term in color theory used to
describe differences in the intensity of light
reflected from or transmitted by a color
image. The hue of an object may be blue,
but the adjectives dark or light distinguish
the brightness of one object from another.
Compare with

hue

 and

saturation.

CIE-based color spaces

Color spaces that
allow color to be expressed in a
device-independent way, unlike RGB
colors, which vary with display, and
scanner characteristics and CMYK colors,
which vary with printer, ink, and paper
characteristics. CIE-based color spaces
result from work carried out in 1931 by the
Commission Internationale d’Eclairage
(CIE). These color spaces are also referred to
as device-independent color spaces.

CMM

See

color management module.

color channel

See

color component.

color component

 A dimension of a color
value expressed as a numeric value. For the
ColorSync Manager, depending on the color
space, a color value may consist of one, two,
three, four, or eight components, also
referred to as channels.

color-component value

A value that
represents the color of a component. Each
component of a color space has a
color-component value. A color-component
value can vary from 0 to 65,535 (0xFFFF),
although the numerical interpretation of
that range is different for different color
spaces. In most cases, color-component
intensities are interpreted numerically as
varying between 0 and 1.0. See also

color
space

 and

 color value.

color conversion

The process of
converting colors from one color space to
another.

This document was created with FrameMaker 4.0.4

ACI Book : Glossary ACI Page 1 Thursday, July 13, 1995 8:40 AM

G L O S S A R Y

GL-2

color gamut

See

gamut.

color management module

A component,
also referred to as a CMM, that carries out
the actual color matching and
gamut-checking processes based on
requests resulting from calls a program
makes to the ColorSync Manager API. An
application or driver can supply its own
CMM or it can use the robust default CMM
that Apple supplies.

Color Manager

A set of system software
functions that supply color-selection
support for Color QuickDraw. Most
applications never need to call the Color
Manager directly.

color matching

The process of adjusting
or

matching

converted colors appropriately
to achieve maximum similarity from the
gamut of one color space to the other. Color
matching always involves color conversion,
whereas color conversion may not entail
color matching.

color picker

Code, implemented as a
component, that allows users to select a
color from a range of possible colors.

Color Picker Manager

A set of system
software functions that provide applications
with a standard user interface for soliciting
color choices from users.

color picker–owned dialog box

A dialog
box, defined by a color picker, for
presenting the color picker.

color space

 A model for representing
color in terms of intensity values; a color
space specifies how color information is

represented. It defines a multidimensional
space whose dimensions, or

components,
represent intensity values.

color space profile

 A profile that contains
the data necessary to translate color values,
such as CIE into RGB or RGB into CIE, as
necessary for color matching. Color space
profiles provide a convenient means for
CMMs to convert between different
nondevice profiles.

ColorSync Manager

A set of system
software functions that provide applications
with device-independent color-matching
and color conversion services.

color value

A complete specification of a
color in a given color space. Depending on
the color space used, one, two, three, or four
color-component values combine to make a
color value.

courteous color

A color that accepts
whatever value the Color Manager
determines is the closest match available in
the color table. Compare

tolerant color

.

default system profile

The system profile
for the display device that the ColorSync
Manager includes and uses unless the user
selects a different system profile through
the ColorSync Manager control panel.

destination profile

The profile that
describes the characteristics of the output
device for which the image is destined. The
profile is used to color match the image to
the device’s gamut.

device-independent color spaces

See

CIE-based color spaces.

ACI Book : Glossary ACI Page 2 Thursday, July 13, 1995 8:40 AM

G L O S S A R Y

GL-3

device-linked profile

A profile that
combines multiple profiles, such as various
device profiles associated with the creation
and editing of an image.

device profile

A structure that provides a
means of defining the color characteristics
of a given device in a particular state.

event forecasters

Warnings sent by an
application to a color picker about user
actions that might adversely affect the color
picker.

explicit color

A color that specifies an
index value in the devices color table rather
than an RGB color.

gamut

The range of color that a device
can produce, also referred to as the device’s
color gamut.

HLS space

A transformation of RGB
space that allow colors to be described in
terms more natural to an artist. The name

HLS

 stands for

hue, lightness,

 and

saturation.

HSV

space

A transformation of RGB
space that allow colors to be described in
terms more natural to an artist. The name

HSV

 stands for

hue, saturation,

 and

value.

hue

The name of the color that places the
color in its correct position in the spectrum.
For example, if a color is described as blue,
it is distinguished from yellow, red, green,
or other colors. Compare with

brightness

and

saturation.

indexed color space

The color space used
when drawing with indirectly specified
colors.

inhibited color

A color that is prevented
from appearing on particular screens.
Colors can be specifically inhibited on a
2-bit, 4-bit, and 8-bit color or grayscale
screen.

interchange color space

Device-independent color spaces that are
used for the interchange of color data from
the native color space of one device to the
native color space of another device.

inverse table

A special data structure
arranged by the Color Manager in such a
manner that, given an arbitrary RGB color,
the Color Manager can very rapidly look up
its pixel value.

L*a*b* space

A nonlinear transformation
(that is, a third-order approximation) of the
Munsell color-notation system designed to
match perceived color difference with
quantitative distance in color space.

L*u*v* color space

A nonlinear
transformation of XYZ space used to create
a perceptually linear color space. This color
space was designed to match perceived
color difference with quantitative distance
in color space.

new color

In a color picker dialog box, the
latest color selected by the user.

original color

In a color picker dialog box,
the color that the user is about to change.

palette

A set of colors optimized for use
on display devices with a limited number of
colors. A palette defines a set of RGB colors,
how they are to be used, and the tolerances
within which they must be matched.

ACI Book : Glossary ACI Page 3 Thursday, July 13, 1995 8:40 AM

G L O S S A R Y

GL-4

perceptual matching

A

rendering intent

in which all the colors of a given gamut
may be scaled to fit within another gamut.
The colors maintain their relative positions,
so the relationship between colors is
maintained.

pixel value

A number used by system
software and a graphics device to represent
a color. The translation from the color that
an application specificies in an

RGBColor

data structure to a pixel value is performed
at the time the application draws the color.
The process differs for indexed and direct
devices.

profile

A structure that may contain
measurements representing a color gamut,
including information such as the lightest
and darkest possible tones, and maximum
densities for red, green, blue, cyan,
magenta, and yellow. The International
Color Consortium defines several different
types of profiles. Each of these types of
profiles must include a different required
set of information, but all of these profile
types follow the same format.

profile chromaticities

Color values that
define the extremes of saturation that the
device can produce for its primary and
secondary colors (red, green, blue, cyan,
magenta, yellow).

reference white point

A specific
definition of what is considered white light
represented in terms of XYZ space and
usually based on the whitest light that can
be generated by a given device.

relative colorimetric matching

A

rendering intent

in which the colors that
fall within the gamuts of both devices are
left unchanged. Relative colorimetric
matching allows some colors in both images
to be exactly the same, which is useful
when colors must match quantitatively. A
disadvantage of relative colorimetric
matching is that many colors may map to a
single color resulting in tone compression.

rendering intent

The approach taken
when a CMM maps or translates the colors
of an image to the color gamut of a
destination device. Each profile supports
four different rendering intents:

perceptual
matching, relative colorimetric matching,
saturation matching,

and

 absolute
colorimetric matching.

RGB space

A three-dimensional color
space whose components are the red, green,
and blue intensities that make up a given
color.

saturation

The degree of hue in a color or
a color’s strength. A neutral gray is
considered to have zero saturation. A
saturated red would have the a color
similar to apple red. Compare with

brightness

and

hue.

saturation matching

 A

rendering intent

in which the relative saturation of colors is
maintained from gamut to gamut. Colors
outside the gamut are usually converted to
colors with the same saturation, but
different lightness, at the edge of the gamut.

source profile

The profile that is
associated with the image and describes the
characteristics of the device on which the
image was created.

ACI Book : Glossary ACI Page 4 Thursday, July 13, 1995 8:40 AM

G L O S S A R Y

GL-5

subtractive color theory

The process of
combining subtractive colorants such as
inks or dyes. In this theory colorants of
cyan, magenta, and yellow are used to
subtract a portion of the white light that is
illuminating an object.

system-owned dialog box

The default
dialog box provided by system software for
applications that create custom dialog boxes
for color pickers. Applications can make
this a box modal, modeless, or moveable
modal dialog box.

system profile

The profile that defines the
color characteristics for the system’s display
device. The ColorSync Manager provides a
control panel to allow the user to specify
the system profile for the current display
device.

tolerant color

A color that accepts—
within a specified range—the value that the
Color Manager determines is the closest
match available in the color table. If there is
no match within the specified range, the
Palette Manager loads the required color.
Compare

courteous color

.

tristimulus values

An hypothetical set of
primaries, XYZ, set up by the CIE that
correspond to the way the eye’s retina
behaves. The term

tristimulus

 comes from
the fact that color perception results from
the retina of the eye responding to three
types of stimuli. After experimentation, the
CIE set up a hypothetical set of primaries,
XYZ, that correspond to the way the eye’s
retina behaves.

XYZ color space

The fundamental
CIE-based color space that allows colors to
be expressed as a mixture of the three

tristimulus values

 X, Y, and Z.

Yxy color space

 A color space belonging
to the XYZ base family that expresses the
XYZ values in terms of x and y chromaticity
coordinates, somewhat analogous to the
hue and saturation coordinates of HSV
space.

ACI Book : Glossary ACI Page 5 Thursday, July 13, 1995 8:40 AM

ACI Book : Glossary ACI Page 6 Thursday, July 13, 1995 8:40 AM

IN-1

Index

A

absolute colorimetric matching 3-23

AddComp

 function 7-15
additive color 3-6
allocating colors, by Palette Manager 1-17
animated colors 1-12 to 1-13

allocation of 1-17
on direct devices 1-13
in palettes 1-8
returned to a device 1-13

application-defined functions

MyBuildAppDialog

2-16

MyBuildMovableModalSysDialog

2-15

MyCheckIfPickerCanClose

2-28

MyColorChangedFunction

2-12

MyDoMenu

2-25

MyDoPickerBalloonHelp

2-30

MyDrawUserColor

7-14

MyGetDestinationProfile

2-29

MyPickAColor

2-9

MyPickerEventFilterFunction

2-11

MySampleDoEvent

2-22

MySearchProc

7-13 to 7-15

MySetDestinationProfile

2-29

ApplicationDialogInfo

 type 2-16
application-owned dialog box 2-13, 2-16 to 2-17

B

base families for color spaces 3-6
bitmap color-checking request

defined 5-12
handling 5-28

bitmap color-matching request, handling 5-27
black generation 3-11
brightness 3-5

C

calibration applications 3-28, 4-58
chromaticity 3-13
CIE-based color spaces 3-11 to 3-14

defined 3-11
L*u*v* 3-14
XYZ 3-12 to 3-13

CLUTs 7-3 to 7-18

CMCloseProfile

 function 4-23

CMDisposeProfileSearch

 function 4-51

CMGetScriptProfileDescription

function 4-20, 4-51

CMGetSystemProfile

 function 4-20, 4-23
CMMs

and ColorSync 1.0 profiles A-5
and device drivers 6-3, 6-8
defined 3-22, 5-4
development of 5-3 to 5-41
for a color world 4-29
interaction with the Component Manager 5-4

to 5-6, 5-9 to 5-10
tasks performed by 5-3, 6-8

CMNewProfileSearch

 function 4-50

CMOpenProfile

 function 4-18

CMSearchGetIndProfile

 function 4-51

CMUnflattenProfile

 function 4-39
CMY-based color spaces 3-10 to 3-11

CMY 3-10
CMYK 3-11
defined 3-10

CMYK-based color spaces 3-6
CMYK space 3-10 to 3-11
color

perception of 3-5
theory, an overview 3-4 to 3-6

Color2Index

 function 7-6, 7-10, 7-11, 7-13, 7-18
color allocation, by Palette Manager 1-17

This document was created with FrameMaker 4.0.4

ACI Book : ACI IX Page 1 Thursday, July 13, 1995 8:40 AM

I N D E X

IN-2

color-changed functions (for color pickers) 2-11
to 2-12

color channels 3-6
color-checking request

defined 5-11
handling 5-24

color complement functions 7-15
color components 3-6
color conversion 3-15
colorimetric matching 3-23

ColorInfo

 data type 1-5
color lookup tables (CLUTs) 7-3 to 7-18
color management modules.

See

 CMMs
color management systems 3-17
Color Manager 7-3 to 7-21

and Color QuickDraw 7-3
and the Color Picker Manager 7-3
and the Palette Manager 7-3, 7-16

color matching 3-15
to the display 3-27

color-matching request
defined 5-11
handling 5-24

color picker–defined functions
dispatching to 2-34 to 2-37

MyColorPickerDispatch

2-34, 2-36

MyDoEdit

2-44

MyDoEvent

2-41

MyDrawPicker

2-41

MyGetColor

2-45

MyGetDialog

2-40

MyGetEditMenuState

2-50

MyGetIconData

2-47

MyGetItemList

2-40

MyGetProfile

2-49

MyGetPrompt

2-48

MyInitPicker

2-38

MyItemHit

2-42

MySetColor

2-45

MySetProfile

2-49

MySetPrompt

2-48

MyTestGraphicsWorld

2-39
Color Picker Manager 2-3 to 2-61

and QuickDraw GX 2-3
and the Color Manager 7-3

and the Color Picker Package 2-3
and the ColorSync Manager 2-7
and the Component Manager 2-6, 2-31 to 2-40
and the Dialog Manager 2-3
testing for availability 2-8

color picker–owned dialog box 2-13, 2-17 to 2-18
Color Picker Package 2-3, 2-4
color pickers 2-3 to 2-61

and color matching 2-7
and help balloons 2-29 to 2-31
as components 2-6, 2-31 to 2-40
color-changed functions for 2-11 to 2-12
color information in custom 2-44 to 2-50
creation of 2-31 to 2-33
customized dialog boxes for 2-5 to 2-6, 2-13 to

2-29
defined 2-3
destination profiles for 2-28 to 2-29, 2-49 to

2-50
dialog boxes for 2-4 to 2-5, 2-9 to 2-31
Edit menu state for custom 2-50
event filter functions for 2-10 to 2-11
event forecasters for 2-27 to 2-28
event handling for the Edit menu 2-24 to 2-27,

2-43 to 2-44
event handling in custom 2-41 to 2-44
events in 2-21 to 2-28, 2-41 to 2-44
getting color information from 2-19 to 2-21
icons for custom 2-47 to 2-48
initialization of custom 2-37 to 2-40
request codes for 2-35 to 2-37
setting color information in 2-19 to 2-21
standard dialog box for 2-4 to 2-5, 2-9 to 2-12
user prompt strings in 2-9 to 2-10, 2-14, 2-48 to

2-49
color profiles, response data fields A-3
Color QuickDraw, and the Color Manager 7-3
colors

color value 3-15
out of gamut 3-15
in a palette 1-6 to 1-18
selecting for screen depth 1-25 to 1-27

color search functions 7-13 to 7-15
color spaces 3-6 to 3-15

base families for 3-6

ACI Book : ACI IX Page 2 Thursday, July 13, 1995 8:40 AM

I N D E X

IN-3

CMYK 3-10 to 3-11
defined 3-6
HLS 3-8 to 3-10
HSV 3-8 to 3-10
indexed 3-14 to 3-15
L*a*b* 3-14
L*u*v* 3-14
RGB 3-8
XYZ 3-12
Yxy 3-13

ColorSpec

 type 7-5
ColorSync

 Profiles folder 4-6, 4-49, 6-6
ColorSync 1.0 A-1 to A-8

and CMMs A-5
ColorSync 1.0 profiles

and ColorSync Manager functions 2-7, A-6
and the

CMGetProfileHeader

 header A-7
and the

CMOpenProfileFile

 function A-7
and the ColorSync Manager A-5
contrasted with version 2.0 profiles A-3 to A-5
header for A-3
response data A-3
tags synthesized for A-8

ColorSync Manager
and QuickDraw GX 3-26, 6-4
and the Color Picker Manager 2-7
backward compatibility A-1 to A-9

with ColorSync 1.0 API A-1
with ColorSync 1.0 profiles A-2 to A-5, A-7

to A-8
control panel for system profile 4-6
defined 3-18
developing CMMs 5-3 to 5-41
developing supportive applications 4-3 to ??
developing supportive device drivers 6-3 to

6-22
functions not supported for ColorSync 1.0

profiles A-6
introduction 3-3 to 3-28
memory allocation and use 3-19
picture comments for 4-15
programming interfaces 3-18, 4-4, 6-4
requirements 4-4
testing for availability 4-14, 6-11

ColorSync-supportive applications
color-matching to a display 4-20 to 4-24
creating a color world for 4-27
creating device-linked profiles 4-53 to 4-56
development of 4-3 to ??
embedding profiles 4-34 to 4-38
extracting embedded profiles 4-38 to 4-49
features an application can implement 4-12 to

4-58
gamut checking 4-51 to 4-52
matching a bitmap 4-31
matching a pixel map 4-30
providing minimum support 4-5, 4-15
providing soft proofs 4-56 to 4-58
searching for profiles 4-49 to 4-51

ColorSync-supportive device drivers 6-3 to 6-22
development of 6-10 to 6-22
features of 6-3
minimum support 6-9
possible features, listed 6-9 to 6-10
searching for profiles 6-12 to 6-15

setting the search criteria 6-13
using the search results 6-14 to 6-15

setting the color-matching quality flags 6-17 to
6-22

setting the rendering intent 6-15 to 6-17, 6-20
color tables

for animation 1-12
default 1-18, 1-19

ColorTable

 type 7-5
color usage categories 1-8 to 1-18

and color allocation 1-17
combining 1-9, 1-16

color values 3-15
color worlds

creation of 4-27 to 4-29
for matching a pixel map or a bitmap 4-31
references for 4-29

Commission Internationale d’Eclairage
(CIE) 3-11

complement functions 7-15

ComponentDescription

 data structure 5-7
Component Manager, and the Color Picker

Manager 2-6, 2-31 to 2-40
components (for color pickers) 2-6, 2-31 to 2-40

ACI Book : ACI IX Page 3 Thursday, July 13, 1995 8:40 AM

I N D E X

IN-4

concatenated profiles, creation of 4-28
courteous colors, in palettes 1-8 to 1-9

CProcRec

 type 7-15

CreatePickerDialog

 function 2-18
creating an application's default palette 1-29

CTabChanged

 function 7-12
customized dialog boxes (for color pickers) 2-5

to 2-6, 2-13 to 2-29

CWConcatColorWorld

 function 4-55

CWDisposeColorWorld

 function 4-34

CWMatchBitmap

 function 4-29, 4-34

CWMatchPixMap

 function 4-29, 4-32

CWNewColorWorld

 function 4-28

CWNewLinkProfile

 function 4-55

D

default color tables 1-19
default palettes 1-29

application 1-29, 1-30
obtaining 1-30
system 1-29

DelComp

 function 7-15

DelSearch

 function 7-14
destination profile 3-24
destination profiles, for color pickers 2-28 to

2-29, 2-49 to 2-50
device color lookup tables

default values 1-19
restored by Palette Manager 1-18

device drivers
and CMMs 6-3, 6-8
and profiles 6-5
ColorSync requirements for 6-6

device-independent color spaces.

See

 CIE-based
color spaces

device-linked profiles
creation of 4-54 to 4-56
use of 4-53

device-linked profiles request
defined 5-13
handling 5-32

devices
supported by the ICC, types of 6-5

dialog boxes (for color pickers) 2-4 to 2-5, 2-9 to
2-31

Dialog Manager, and the Color Picker
Manager 2-3

direct colors 7-6
direct devices 7-3

animated colors on 1-13
and Palette Manager 1-4

display devices 6-5

DoPickerEvent

 function 2-28

E

Edit menu 2-24 to 2-27, 2-43 to 2-44, 2-50
embedded profiles, support of 4-5
event filter functions (for color pickers) 2-10 to

2-11
event forecasters 2-27 to 2-28
event handling (in color pickers) 2-21 to 2-28
explicit colors 1-16

allocation of 1-17
on direct devices 1-14
index collisions and 1-16
in palettes 1-8, 1-14

explict colors 1-14

ExtractPickerHelpItem

 function 2-30

F

format conventions xviii

G

gamut checking 3-27
gamuts 3-11

GDevice

 type 7-4

gestaltColorMatchingVersion

 selector 4-14

GetColor

 function 2-4

ACI Book : ACI IX Page 4 Thursday, July 13, 1995 8:40 AM

I N D E X

IN-5

GetNewPalette

 function 1-23

GetPickerEditMenuState

 function 2-25

GetPickerProfile

 function 2-29

GetSubTable

 function 7-18
graphics devices 7-4
grayscale devices 1-15
gray spaces 3-6, 3-7

H

help balloons (for color pickers) 2-29 to 2-31
HiFi colors 3-15
HLS space 3-8 to 3-10
HSV space 3-8 to 3-10
hue 3-5, 3-9

I, J

icons (for custom color pickers) 2-47 to 2-48
index collisions (color) 1-16
indexed color spaces 3-14 to 3-15
indexed devices 7-3
indexed devices, defined 1-4
inhibited colors

on grayscale devices 1-15
in palettes 1-9, 1-15, 1-17

initialization request
defined 5-11
handling 5-23

input devices 6-5
interchange color spaces 3-12
inverse tables 7-4, 7-6 to 7-13
ITab type 7-8

K

kDrawPicker constant 2-35, 2-41
kEdit constant 2-35, 2-43
kEvent constant 2-35, 2-41
kExtractHelpItem constant 2-35

kGetColor constant 2-35, 2-44
kGetDialog constant 2-35, 2-40
kGetEditMenuState constant 2-35, 2-50
kGetIconData constant 2-35, 2-47
kGetItemList constant 2-35, 2-40
kGetProfile constant 2-35, 2-49
kGetPrompt constant 2-35, 2-48
kInitPicker constant 2-35, 2-37
kItemHit constant 2-35, 2-42
kSetBaseItem constant 2-35
kSetColor constant 2-35, 2-45
kSetOrigin constant 2-35
kSetProfile constant 2-35, 2-49
kSetPrompt constant 2-35, 2-48
kSetVisibility constant 2-35
kTestGraphicsWorld constant 2-35, 2-39

L

L*a*b* space 3-14
lightness, in HLS space 3-9
L*u*v* space 3-14

M

Macintosh Programmer’s Workshop xix
MakeITable function 7-12
matching colors, to tolerant palette requests 1-11

N

NCMBeginMatching function 4-21
NCMDrawMatchedPicture function 4-20, 4-23
NCMUseProfileComment function 4-36, A-6
NCWNewColorWorld function 4-32
new color 2-19
NSetPalette function, compared to

SetPalette 1-29

ACI Book : ACI IX Page 5 Thursday, July 13, 1995 8:40 AM

I N D E X

IN-6

O

original color 2-19
out-of-gamut colors 3-15
output devices 6-5

P

Palette data type 1-5
Palette Manager. See also palettes

allocation of colors 1-5 to 1-18
and the Color Manager 7-3, 7-16

palette resource 1-5, 1-23
palettes

animated colors 1-8, 1-12 to 1-13, 1-16
application default 1-29, 1-30
assigning a default 1-29
assigning to windows 1-5, 1-27
changing and restoring for a window 1-29
colors of 1-5
combining usage categories 1-16
combining usages 1-16
courteous colors 1-8 to 1-9
creating 1-5, 1-21 to 1-28
creating in code 1-21 to 1-23
data type 1-5
default 1-29
defined 1-5
for different pixel depths 1-6
on direct devices 1-4
drawing from palette colors 1-31
explicit colors 1-8, 1-14, 1-16
format 1-5
inhibited colors 1-9, 1-15, 1-16, 1-17
resources 1-6, 1-23
restoring a window’s 1-29
sequencing the colors 1-17
tolerant colors 1-8, 1-11, 1-16
usage categories 1-7 to 1-9

perceptual matching 3-23, 6-15
PickColor function 2-4 to 2-5, 2-8 to 2-12
PickerDialogInfo type 2-18
PickerIconData type 2-47

PickerMessages type 2-35
picture comments, for the ColorSync

Manager 4-15
pixel depths

default color tables for 1-19
palettes for different depths 1-6

pixel map color-checking request
defined 5-12
handling 5-31

pixel map color-matching request
defined 5-12
handling 5-30

pixel maps
for direct devices 7-6
for indexed devices 7-6

'pltt' resource 1-5, 1-23
PmBackColor function, drawing with 1-31
pmBlack palette usage category 1-9
PmForeColor function, drawing with 1-31
pmWhite colors 1-5
pmWhite palette usage category 1-9
PostScript color rendering intent request

handling 5-34
PostScript color rendering request

handling 5-34
PostScript color rendering VM size request

defined 5-13
handling 5-35

PostScript color space request
defined 5-12
handling 5-34

profile flattening request
defined 5-13
handling 5-36, 5-37

profile references 4-16 to 4-20
defined 4-17
obtaining 4-17

profiles 3-19 to 3-22
abstract 3-20
and device drivers 6-5
color space 3-20
concatenated 4-28
cross-platform portability 6-6
defined 3-3, 6-5
destination 3-24

ACI Book : ACI IX Page 6 Thursday, July 13, 1995 8:40 AM

I N D E X

IN-7

device 3-20
device-linked 3-21, 3-28, 4-53 to 4-56
device profile types 6-5
embedded 4-5
folder for 4-6
format of 6-6
locations for 4-18
opening and obtaining a reference to 4-17
properties of 3-21
restrictions on searching for 6-7
searching for 4-49 to 4-51
source 3-24
storage and use of 4-6, 6-6 to 6-8
system 3-3, 4-19
use with different device types 6-7
vendors 6-3

profile unflattening request, handling 5-37
profile validation request

defined 5-12
handling 5-26

prompts, in color pickers 2-9 to 2-10, 2-14, 2-48
to 2-49

ProtectEntry function 7-17

Q

quality flags 6-17 to 6-22
QuickDraw GX, and the Color Picker

Manager 2-3

R

RealColor function 7-17
reference white point 3-14
relative colorimetric matching 3-23, 6-16
rendering intents 3-23 to 3-24

absolute colorimetric matching 3-23
allowing the user to select 6-15 to 6-17
defined 3-23
perceptual matching 3-23
relative colorimetric matching 3-23

saturation matching 3-23
request codes (for color pickers) 2-35 to 2-37
request codes for CMMs

optional, defined 5-25
required, defined 5-21
responding to 5-10 to 5-38

bitmap color checking 5-28
bitmap color matching 5-27
can do an optional request 5-22
closing the CMM 5-21
CMM version number 5-22
color checking 5-25
color matching 5-23
device-linked profile 5-32
initialization request 5-23
obtaining PostScript-related data 5-33 to 5-36
opening the CMM 5-21
pixel map color checking 5-31
pixel map color matching 5-30
profile flattening 5-36
profile unflattening 5-37
profile validation 5-26
required 5-22 to 5-25

ReserveEntry function 7-17
resources

palette 1-6, 1-23
'pltt' 1-6, 1-23
'thng' 5-7
'thng' 2-32 to 2-33

response data fields, for color profiles A-3
RestoreEntries function 7-16
RGB-based color spaces 3-7 to 3-10

defined 3-6, 3-7
HLS spaces 3-8 to 3-10
HSV spaces 3-8
RGB spaces 3-8

RGB space 3-8

S

sample routines
MyCountProfilesInPicHandle 4-41
MyGetIndexedProfileFromPicHandle 4-43

ACI Book : ACI IX Page 7 Thursday, July 13, 1995 8:40 AM

I N D E X

IN-8

sample routines (continued)
MyGetPrinterProfile 6-20
MyGetSystemProfile 4-20
MyMatchImage 4-32
MyMatchingToDisplay 4-23
MyOpenProfileFSSpec 4-18
MyPrependProfileToPicHandle 4-36
MyProfileSearch 4-50
MyUnflattenProc 4-45

saturation 3-5, 3-9
saturation matching 3-23, 6-15
SaveEntries function 7-16
search functions 7-13 to 7-15
SetClientID function 7-14
SetEntries function 7-16, 7-17
SetPalette function 1-27

compared to NSetPalette 1-29
SetPickerColor function 2-15, 2-16, 2-18
SetPickerProfile function 2-29
SetPickerPrompt function 2-15, 2-16, 2-18
SetPickerVisibility function 2-15, 2-16, 2-18
soft proofing 3-28
soft proofs 4-56 to 4-58, 6-7
source profile 3-24
SProcRec constant 7-14
standard dialog box (for color pickers) 2-4 to 2-5,

2-9 to 2-12
subtractive color 3-6
SystemDialogInfo type 2-15
system-owned dialog box 2-13, 2-15
system profiles

configuring 4-21
control panel for 4-6
for the system display 3-3
identifying the current system profile 4-19 to

4-20
using quality mode and rendering intent

of 6-19

T

'thng' resources 2-32 to 2-33
tolerance, for color matching 1-11

tolerant colors
allocation of 1-17
defined 1-11
in palettes 1-8, 1-11

tristimulus values 3-12

U

undercolor removal 3-11
universal color spaces 3-11
usage categories

combining 1-15, 1-16
in palettes 1-7 to 1-9

V

value, in HSV space 3-9

W

white point 3-14
windows, palettes for 1-27

X

XYZ space 3-12

Y, Z

Yxy space 3-13

ACI Book : ACI IX Page 8 Thursday, July 13, 1995 8:40 AM

ACI Book : ACI IX Page 9 Thursday, July 13, 1995 8:40 AM

T H E A P P L E P U B L I S H I N G S Y S T E M

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh computers
and FrameMaker software. Proof pages
were created on an Apple LaserWriter Pro
printer. Final page negatives were output
directly from text files on an Agfa
Large-Format Imagesetter. Line art was
created using Adobe Illustrator

 and
Adobe Photoshop

. PostScript

, the
page-description language for the
LaserWriter, was developed by Adobe
Systems Incorporated.

Text type is Palatino

 and display type is
Helvetica

. Bullets are ITC Zapf
Dingbats

. Some elements, such as
program listings, are set in Adobe Letter
Gothic.

WRITERS

Judy Melanson, Tony Francis,
Michael Kline, Rob Dearborn

DEVELOPMENTAL EDITORS

Jeanne Woodward, Beverly McGuire

ILLUSTRATORS

Bruce Lee, Ruth Anderson, Lisa Hymel

PRODUCTION EDITORS

Pat Christenson, Alan Morgenegg

PROJECT MANAGER

Trish Eastman

LEAD WRITER

Tony Francis

LEAD EDITOR

Jeanne Woodward

LEAD ILLUSTRATOR

Bruce Lee

Special thanks to David Hayward ,
Don Moccia, Steve Swen, Tom Mohr, and
Anil Gursahani.

Acknowledgment to Richard Collyer,
Edgar Lee, David Van Brink,
Wei-Ling Chu, Han Nguyen,
Forrest Tanaka, John Myer, Josh Weisberg,
John Wang, and to Shannon Holland,
who, along with Dave Johnson, wrote the
article “Pick Your Picker With Color
Picker 2.0” in

develop

 issue 19 on which
much of the chapter “Color Picker
Manager” is based.

This document was created with FrameMaker 4.0.4

ACI Book : Colophon ACI Page 10 Thursday, July 13, 1995 8:40 AM

	Advanced Color Imaging on the Mac OS
	Contents
	Figures, Tables, and Listings
	About This Book
	Format of This Book and Its Companion Volume
	Conventions Used in This Book
	Special Fonts
	Types of Notes

	Development Environment
	For More Information

	Palette Manager
	About the Palette Manager
	Palette Format
	The Palette Paradigm
	Colors in a Palette
	Courteous Colors
	Tolerant Colors
	Animated Colors
	Displaying Animated Colors on Direct Devices
	Explicit Colors
	Inhibited Colors
	Combining Color Usage for an Entry
	Sequencing the Entries

	How the Palette Manager Allocates Colors for Display
	How the Palette Manager Restores the Color Environment

	Using the Palette Manager
	Creating Palettes
	Creating a Palette in Code
	Creating a Palette in a Resource File
	Selecting the Right Color Set
	Creating a Palette by Copying and Assigning It to a Window

	Designating a Default Palette for Your Application
	Drawing With a Palette's Colors
	Animating a Window With a Palette
	Disposing of a Palette and Restoring the Color Table
	Using Palettes With Offscreen Graphics Worlds

	Summary of the Palette Manager
	Constants
	Data Types
	Functions

	Color Picker Manager
	About the Color Picker Manager
	Color Picker Dialog Boxes
	Color Pickers as Components
	ColorSync Colors and the Color Picker Manager

	Using the Color Picker Manager
	Using the Standard Dialog Box for Color Pickers
	Defining an Event Filter Function
	Defining a Color- Changed Function

	Using Customized Dialog Boxes for Color Pickers
	Creating Dialog Boxes for Color Pickers
	Setting Colors for and Getting Colors From the Color Picker
	Handling Events in a Color Picker Dialog Box
	Handling Events in the Edit Menu
	Sending Event Forecasters to the Color Picker
	Setting the Destination Profile

	Controlling the Help Balloons for a Color Picker's Dialog Box

	Writing Your Own Color Pickers
	Creating a Component Resource for a Color Picker
	Dispatching to Functions Defined by a Color Picker
	Initializing Your Color Picker
	Handling Events for Your Color Picker
	Returning and Setting Color Picker Information

	Summary of the Color Picker Manager
	Constants and Data Types
	Color Picker Manager Functions
	Application- Defined Functions
	Color PickerÐ Defined Functions

	Introduction to the ColorSync Manager
	Introduction to Color and Color Management Systems
	Color: A Brief Overview
	Color Perception
	Hue, Saturation, and Brightness
	Additive and Subtractive Color

	Color Spaces
	Gray Spaces
	RGB- Based Color Spaces
	CMY- Based Color Spaces
	Device- Independent Color Spaces
	Indexed Color Spaces

	Color- Component Values, Color Values, and Colors
	Color Conversion and Color Matching
	Color Management Systems

	About the ColorSync Manager
	Programming Interfaces
	About the ColorSync Manager's Memory Allocation and Use
	Profiles
	Color Management Modules
	When Color Matching Occurs

	QuickDraw GX and the ColorSync Manager
	What Users Can Do With ColorSync- Supportive Applications
	Display Matching
	Gamut Checking
	Soft Proofing
	Device- Linked Profiles
	Calibration

	Developing ColorSync- Supportive Applications
	About ColorSync Application Development
	About the ColorSync Manager Programming Interface
	What Should a ColorSync- Supportive Application Do?
	At a Minimum
	Storing and Handling Profiles

	How the ColorSync Manager Selects the CMM to Be Used

	Developing Your ColorSync- Supportive Application
	Determining If the ColorSync Manager Is Available
	Providing Minimal ColorSync Support
	Obtaining Profile References
	Opening a Profile and Obtaining a Reference to It
	Identifying the Current System Profile
	Matching Colors to Displays Using ColorSync With QuickDraw Operations
	Matching Colors in a Picture Containing an Embedded Profile
	Matching Colors as Your User Draws a Picture

	Setting a Large Profile Element
	Creating a Color World for Color Matching and Checking Using the Low- Level Functions
	Matching Colors Using the Low- Level Functions
	Matching the Colors of a Pixel Map to the Display's Color Gamut
	Matching the Colors of a Bitmap Image to the Display's Color Gamut

	Embedding Profiles in Documents and Pictures
	Extracting Profiles Embedded in Pictures
	Step 1: Counting the Profiles in the PICT File
	Step 2: Extracting the Profile

	Searching for Profiles in the ColorSync Profiles Folder
	Checking Colors Against a Destination Device's Gamut
	Creating and Using Device- Linked Profiles
	Considerations

	Providing Soft Proofs
	Calibrating a Device

	Summary of the ColorSync Manager
	Constants
	Data Structures
	Functions

	Developing Color Management Modules
	About Color Management Modules
	Creating a Color Management Module
	Creating a Component Resource for a CMM
	How Your CMM Is Called by the Component Manager
	Handling Request Codes
	Responding to Required Component Manager Request Codes
	Responding to ColorSync Manager Required Request Codes
	Responding to ColorSync Manager Optional Request Codes

	Summary of the Color Management Modules
	Constants
	Functions

	Developing ColorSync- Supportive Device Drivers
	About ColorSync- Supportive Device Driver Development
	The ColorSync Manager Programming Interface
	Devices and Their Profiles
	The Profile Format and Its Cross- Platform Use
	Storing and Handling Device Profiles
	How You Use Profiles

	Devices and Color Management Modules
	Providing ColorSync- Supportive Device Drivers
	Providing Minimum Support
	Providing More Extensive ColorSync Support

	Developing Your ColorSync Supportive Device Driver
	Determining If the ColorSync Manager Is Available
	Interacting With the User
	Searching for Profiles and Displaying Their Names to the User
	Setting the Rendering Intent Selected by the User
	Setting the Color- Matching Quality Selected by the User

	Color Matching an Image to Be Printed

	Color Manager
	About the Color Manager
	Graphics Devices
	Color Tables
	Inverse Tables
	Inverse Tables in Action
	Hidden Colors
	Building Inverse Tables

	Using the Color Manager
	Customizing Search Functions
	Customizing Complement Functions
	Managing the Device CLUT

	Summary of the Color Manager
	Constants and Data Types
	Color Manager Functions
	Application- Defined Functions

	ColorSync Manager Backward Compatibility
	ColorSync 1.0 API Support
	ColorSync 1.0 Profile Support
	ColorSync 1.0 Profiles and Version 2.0 Profiles
	How ColorSync 1.0 Profiles and Version 2.0 Profiles Differ
	CMMs and Mixed Profiles

	Using the ColorSync Manager API With ColorSync 1.0 Profiles
	ColorSync Manager Functions Not Supported for ColorSync 1.0 Profiles
	Using ColorSync 1.0 Profiles With the ColorSync Manager
	Opening a ColorSync 1.0 Profile
	Obtaining a ColorSync 1.0 Profile Header
	Obtaining ColorSync 1.0 Profile Elements
	Embedding ColorSync 1.0 Profiles

	ColorSync 1.0 Functions With Parallel ColorSync Manager Counterparts

	Glossary
	Index

