
K AppleTalk Wide Area
Developer’s Toolkit

 Apple Computer, Inc.
This manual and the software described in it are
copyrighted, with all rights reserved. Under the
copyright laws, this manual or the software may not be
copied, in whole or part, without written consent of
Apple, except in the normal use of the software or to
make a backup copy of the software. The same
proprietary and copyright notices must be affixed to
any permitted copies as were affixed to the original.
This exception does not allow copies to be made for
others, whether or not sold, but all of the material
purchased (with all backup copies) may be sold, given,
or loaned to another person. Under the law, copying
includes translating into another language or format.

You may use the software on any computer owned by
you, but extra copies cannot be made for this purpose.

The Apple logo is a registered trademark of Apple
Computer, Inc. Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes without the
prior written consent of Apple may constitute
trademark infringement and unfair competition in
violation of federal and state laws.

Every effort has been made to ensure that the
information in this manual is accurate. Apple is not
responsible for printing or clerical errors.

© Apple Computer, Inc., 1993
20525 Mariani Avenue
Cupertino, CA 95014-6299
(408) 996-1010

Apple, the Apple logo, AppleTalk, EtherTalk, and
MacTCP are trademarks of Apple Computer, Inc.,
registered in the United States and other countries.

Simultaneously published in the United States and
Canada.

Mention of third-party products is for informational
purposes only and constitutes neither an endorsement
nor a recommendation. Apple assumes no
responsibility with regard to the performance or use of
these products.

Toolkit Contents and Overview

The AppleTalk Wide Area Developer’s Toolkit contains the following
items:

n AppleTalk Update-Based Routing Protocol: Enhanced AppleTalk Routing

This document is the protocol specification for the AppleTalk Update-
based Routing Protocol (AURP), which provides wide area routing
enhancements to the AppleTalk routing protocols. It is useful for
reference, and it provides information router developers need to
implement AURP.

n Apple Internet Router: User-Interface Extensions to the adev File

This document provides information needed to support the new adev
resource calls. (An adev file is a file that provides support for one or
more network connections.) These calls include a hierarchical display
call and specific user-interface calls for configuration of AURP adevs.

n Apple Internet Router: Developing an AURP adev File

This document provides information needed to develop an AURP adev.
Included are the AURP calls to and from the atlk resource; some clues
about the adev resource calls from the Apple Internet Router
management application, Router Manager; and hints on using the XTI
(X/Open Transport Interface) Shell sample code. The XTI Shell sample
code provides a base for writing an AURP adev over XTI and explicit
instructions on how to modify it to implement your link.

n Apple Internet Router: Extending IP Tunnel and DialUp

This document provides information needed to enhance the
AppleTalk/IP Wide Area Extension (IP Tunnel adev) and the DialUp
adev to support your MacTCP mdev file or serial driver.

n Apple Internet Tunnel Simulator and Apple Tunnel Simulator software

Apple Tunnel Simulator is an application that simulates an AURP tunnel
over TCP/IP. It is useful in testing your AURP implementations. The
document Apple Internet Tunnel Simulator explains how to use the
Apple Tunnel Simulator software.

iv Toolkit Contents and Overview

How to use the Developer’s Toolkit

The AppleTalk Wide Area Developer’s Toolkit is intended for two kinds of
Apple developers: router developers who wish to develop an AURP-
speaking router that interoperates with the Apple Internet Router, and adev
developers who wish to develop a network connection file for the Apple
Internet Router. Figure 1 illustrates the different parts of the toolkit that
developers should reference.

AppleTalk Wide Area Developer

Are you a router developer implementing AURP
or an Apple Internet Router adev developer?

Apple Internet Router adev Developer

Do you want to provide local AppleTalk
connectivity or wide area connectivity using AURP?

AURP adev

Refer to the following within this toolkit:

Router Developer (AURP)

Refer to the following within this toolkit:

AppleTalk adev

Refer to the following within this toolkit:

AppleTalk Update-Based Routing Protocol:
Enhanced AppleTalk Routing
Provides information on AURP.

Apple Internet Tunnel Simulator and
Apple Tunnel Simulator software
Provides a headstart in testing AURP
implementations.

AppleTalk Internet Router:
User-Interface Extensions to the adev File
Provides calling interfaces to support
hierarchical views in Router Manager.

AppleTalk Update-Based Routing
Protocol: Enhanced AppleTalk Routing
Provides information on AURP.

Apple Internet Router:
Developing an AURP adev File
Provides detailed information
on AURP adev files.

Apple Internet Router: User-Interface
Extensions to the adev File
Provides information on user-interface
support for adev files in Router Manager.

Apple Internet Router: Extending
IP Tunnel and DialUp
Provides information on supporting
MacTCP mdevs and serial drivers.

n n

n

n

n

n

n

Figure 1 AppleTalk Wide Area Developer’s Toolkit road map

Toolkit Contents and Overview v

Apple Internet Router and adevs

If you are an adev file developer, there are several things you need to
consider. As always, you need to implement the standard calls as specified
in the Macintosh AppleTalk Connections Programmer’s Guide (M7056/A).
You should fully understand the information in that guide before delving
into the materials included in this toolkit. In addition to those standard
calls, however, you now have several new options to consider with the Apple
Internet Router.

The first of these options is a new feature that allows Router Manager to
display adevs in a hierarchical (tree) fashion. The tree levels are device,
subport (if any), and method. For instance, within an Ethernet physical port
(device), there can be an EtherTalk adev (method) and an IP tunneling
adev (method) displayed. Those adevs that do not support this feature will
not appear in the Router Manager Setup window in the physical device
hierarchy. This option is highly recommended for all adev developers.

The second option is to write an AppleTalk Update-based Routing Protocol
(AURP) adev. This enables the Apple Internet Router to provide AppleTalk
connectivity by tunneling through a new type of link. The IP Tunnel, X.25,
and DialUp adevs are provided with the Apple Internet Router Basic
Connectivity Package and Extensions; these tunnel through TCP/IP, X.25,
and standard modem phone lines, respectively. Creating new AURP adevs
makes it possible to connect remote AppleTalk networks using other types
of networks (such as ISDN or T1).

AURP can be used on what are referred to as non-AppleTalk data links.
Such links do not provide AppleTalk addressability (that is, they don’t
have a network range or zone list), although they may provide
addressability through another network system (such as TCP/IP). AURP
adevs include an atlk resource with significant extensions, providing the
functionality needed by the router to implement AURP on top of the
adev’s data link.

The third option is the ability to append an “extension” to the window
used by Router Manager in configuration of a particular port. This window
can contain any adev-specific configuration information needed to specify
the tunnel fully. AppleTalk adevs should not need to use this feature,
because a default window containing the necessary information is provided.
This option is provided mainly for AURP adev developers.

Finally, MacTCP mdev developers can easily add their link to the IP Tunnel
functionality by creating a resource and adding it to the IP Tunnel adev
file. Serial driver developers can also add their link to the DialUp
functionality by creating a resource and adding it to the DialUp adev file.

vi Toolkit Contents and Overview

The following table shows which document contains the information
needed to accomplish each of the tasks described here.

Task/Option Document

Writing an AURP adev Apple Internet Router: Developing an AURP
adev File

Displaying adevs in a hierarchical fashion Apple Internet Router: User-Interface
Extensions to the adev File

Creating an adev-specific configuration Apple Internet Router: User-Interface
extension Extensions to the adev File

Updating IP Tunnel or DialUp to support Apple Internet Router: Extending IP Tunnel
your mdev or serial driver and DialUp

K Apple Internet Router: User-Interface
Extensions to the adev File

 Apple Computer, Inc.
This manual and the software described in it are
copyrighted, with all rights reserved. Under the
copyright laws, this manual or the software may not be
copied, in whole or part, without written consent of
Apple, except in the normal use of the software or to
make a backup copy of the software. The same
proprietary and copyright notices must be affixed to
any permitted copies as were affixed to the original.
This exception does not allow copies to be made for
others, whether or not sold, but all of the material
purchased (with all backup copies) may be sold, given,
or loaned to another person. Under the law, copying
includes translating into another language or format.

You may use the software on any computer owned by
you, but extra copies cannot be made for this purpose.

The Apple logo is a registered trademark of Apple
Computer, Inc. Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes without the
prior written consent of Apple may constitute
trademark infringement and unfair competition in
violation of federal and state laws.

Every effort has been made to ensure that the
information in this manual is accurate. Apple is not
responsible for printing or clerical errors.

© Apple Computer, Inc., 1993
20525 Mariani Avenue
Cupertino, CA 95014-6299
(408) 996-1010

Apple, the Apple logo, AppleTalk, EtherTalk,
LocalTalk, Macintosh, and TokenTalk are trademarks
of Apple Computer, Inc., registered in the United States
and other countries.

Finder and System 7 are trademarks of Apple Computer,
Inc.

Simultaneously published in the United States and
Canada.

Mention of third-party products is for informational
purposes only and constitutes neither an endorsement
nor a recommendation. Apple assumes no
responsibility with regard to the performance or use of
these products.

Contents

About this document / 2

Prerequisite reading / 2

Overview / 2
Setup window / 3
Port Info dialog box / 3

Supporting the hierarchical Setup window / 4
xtlk resource / 4
Records used by MGetADEV / 6
Method-based adev file data interface / 10

MGetADEV (D0=104) / 10

Supporting the extended configuration user-interface calls / 11
adev file configuration user-interface call overview / 11

Initialization/termination routines / 11
Dialog box event processing routines / 12
Configuration data exchange routines / 12

TAdevWind data structure / 13
adev file configuration user-interface call syntax / 15

MAGetAttribs (D0 = 106) / 15
MAInit (D0 = 107) / 16
MAKill (D0 = 108) / 17
MAActivate (D0 = 109) / 18
MAClick (D0 = 110) / 19
MADraw (D0 = 111) / 20
MAMessage (D0 = 112) / 21
MAIdle (D0 = 113) / 22
MAKey (D0 = 114) / 22
MASelectTE (D0 = 115) / 24
MAGetConfig (D0 = 116) / 25
MAGetLine(D0 = 117) / 26

2 AppleTalk Wide Area Developer’s Toolkit

About this document

The user interface for configuring the Apple Internet Router displays
available ports in a hierarchical outline similiar to the Finder. To support
this, and to allow for the configuration of AppleTalk Update-based Routing
Protocol (AURP) ports, the existing adev file-calling interface has been
extended. This document describes these extensions.

This document is divided into three parts:

n “Overview” describes the user interface for configuring a router using
Router Manager.

n “ Supporting the Hierarchical Setup Window” contains all the
information needed to develop an AppleTalk adev file.

n “Supporting the Extended Configuration User-Interface Calls”
describes the standard routines that have been defined to allow AURP
adev file developers to extend the configuration user interface of the
Port Info dialog box by displaying port-specific information in the
bottom part of the dialog box. This is required reading for all AURP
adev file developers.

Prerequisite reading

The Macintosh AppleTalk Connections Programmer’s Guide (available
through APDA; order number M7056/A) contains general information
about extended and nonextended AppleTalk adev files, the xtlk resource,
and other information about AppleTalk programming. Chapter 2 details
the procedures for calling adev resources. Make sure you are familiar with
the information contained in that guide before proceeding.

Overview

This section presents a general description of the user interface for
configuring a router in Router Manager. Detailed step-by-step instructions
are provided in the Apple Internet Router Administrator’s Guide.

Apple Internet Router: User-Interface Extensions to the adev File 3

Setup window

In Router Manager, configuring a router starts in the Setup window.

Figure 1 The Setup window

The Setup window contains a hierarchical outline of ports installed on the
router Macintosh. This outline consists of a single line item for each
physical networking device installed (built-in or slot-based) in the machine.
Device-level items can be opened to reveal hardware subdivisions (ports) on
the card, if this level is appropriate for the device. The device- and port-
level line items can be opened to reveal the link protocols (methods) that
are compatible with the physical port.

In the example shown in Figure 1, the printer port has two levels of
information: it has a device (Printer Port) and two methods (DialUp and
LocalTalk).

The built-in Ethernet port also has two levels of information: it has a device
(Ethernet Built-In) and two methods (EtherTalk and IP Tunnel).

An Apple Serial NB Card located in slot 3 of a Macintosh II computer
might have three levels of information available: a device (SerialNB slot 3),
four ports (1A, 1B, 2A, and 2B), and one method (DialUp).

Port Info dialog box

The method line items can be opened to display a Port Info dialog box that
shows the port’s current configuration. The Port Info dialog box is divided
into two sections. The top section contains information, text fields, and
controls common to all port types. The bottom section contains
information, text fields, and controls specific to the port type.

4 AppleTalk Wide Area Developer’s Toolkit

Figure 2 Port Info dialog box (AppleTalk nonextended)

Because the configuration requirements of AppleTalk ports (extended and
nonextended) are well known, Router Manager handles the entire Port Info
dialog box for these ports on its own. To configure an AURP port,
however, Router Manager needs help from the adev file.

Apple has defined a standard set of routines to allow AURP adev file
developers to extend the configuration user interface of the Port Info
dialog box by displaying port-specific information in the bottom section of
the dialog box. Whenever the user opens an AURP Port Info dialog box,
Router Manager calls these routines, which allow the user to display and
edit port-specific data. The relationship of these routines to Router
Manager is roughly analogous to the control panel/cdev file interface, but
somewhat more complex due to Router Manager’s requirements.

Supporting the hierarchical Setup window

This section provides the information you need to develop an AppleTalk
adev file.

xtlk resource

To indicate that an adev file supports the new method-based interface, the
xtlk resource, which was introduced in AppleTalk Phase 2, now defines
some additional flags. Those adev files that do not contain this resource, or
adev files that contain the resource but do not have these flags set (that is,
Phase 2 adev files) will be treated as non-method based.

The new xtlk resource format is as follows:

X R P A Reserved for future use C M

31 30 29 28 27 2 1 0

Figure 3 The xtlk resource

Apple Internet Router: User-Interface Extensions to the adev File 5

The definitions of the xtlk flags are as follows:

31 extendedAddr For AppleTalk ports: indicates that the port supports
Phase 2 addressing.

30 routerOnly Set by an AURP port to indicate that it is connected
to a “Router Only” network (link distance = 0
hops). This flag is usually not set.

29 noRtmpData Set by ports that implement AURP for transmitting
routing data between routers instead of RTMP. This
flag should be set for all AURP ports.

28 noAppleTalkPort AURP ports must set this flag to indicate to Router
Manager that they are not AppleTalk ports.

27– 02 Reserved

01 extendedConfig Non-AppleTalk method-based ports must set this
flag and support the extended configuration user-
interface calls from the Router Manager application
(see details in “Supporting the Extended
Configuration User-Interface Calls” later in this
document). For AppleTalk ports, classic and method-
based, the configuration user interface is provided by
the Router Manager application, and this flag should
not be set.

00 methodADEV Specifies that the adev file supports, as a minimum,
the MGetADEV call, making it a method-based adev
file. Additionally, AURP adev files must set the
extendedConfig flag and support the extended
configuration user-interface calls (see details in
“ Supporting the Extended Configuration User-
Interface Calls” later in this document).

Router Manager tests those adev files that contain an xtlk resource to see if
the “method-based adev file” flag is set. If that flag is set, then the adev
file supports the MGetADEV method-based adev file call. AppleTalk adev
files that support Phase 2 addressing should also set the extendedAddr flag.

AURP adev files should set the noRtmpData, noAppleTalkPort, and
extendedConfig flags and support the extended configuration user-
interface calls from Router Manager.

6 AppleTalk Wide Area Developer’s Toolkit

Records used by MGetADEV

The old adev file interface allowed for only one global flag (the xtlk
resource) and a single icon and string to represent the adev file visually.
The extensions to the adev file user interface require additional attributes
and visual elements related to the device, port, and method layers supported
by the adev file.

The structure used to pass this information between the adev file code
(contained in the adev resource) and the calling application is TAdevRec.
The Pascal format of this record is:

TAdevRec = RECORD

 adevRecVers : Integer;

 adevId : TADevIdRec;

 adevLocals : ARRAY [1.. 2] OF LongInt;

 adevDevice : TAdevItem;

 adevPort : TAdevItem;

 adevMethod : TAdevItem;

END;

TAdevRecPtr = ^TAdevRec;

The adevRecVers field contains the version number of the TAdevRec
structure, to detect conflict with future TAdevRec formats. This field is zero
for this version of TAdevRec.

The adev file uses the adevId subrecord to store information about a
particular port and to match configuration data with a particular adev file.
The format of the adevId subrecord is:

TADevIdRec = RECORD

 aidSize : Integer;

 aidData : ARRAY [1..8] OF LongInt;

END

TADevIdRecPtr = ^TADevIdRec;

The aidSize field contains the number of longs in the aidData array. The
adevLocals field can be used internally by the adev file. The last three
fields, adevDevice, adevPort, and adevMethod, are subrecords that describe
the attributes of the device, port, and method levels of the adev file, as well
as the icons and text used in representing the adev file visually. The
TAdevItem record format is shown in the following display:

Apple Internet Router: User-Interface Extensions to the adev File 7

TAdevItem = RECORD

 itemFlags : LongInt;

 itemRef : LongInt;

 itemIcon : Handle;

 itemStr : StringHandle;

END;

TAdevItemPtr = ^TAdevItem;

The itemIcon and itemStr fields contain handles to the icon and string to be
associated with the device, port, or method level being displayed. If
itemIcon contains a handle to an icon suite (see Tech Note #306:
“Drawing Icons the System 7 Way”), then the Router Manager application
will draw the icon in color on color monitors.

The itemRef field contains a unique reference code for each device, port,
and method returned from the adev file. Using these fields, the Router
Manager program can associate link protocol methods from different adev
files with the same device- and port-level items.

For example, an EtherTalk adev file would return a TAdevRec containing
the following information:

device = ‘Ethernet (slot 1)’; port = no info; method = ‘EtherTalk’

An IPTunnel adev file would return a TAdevRec containing:

device = ‘Ethernet (slot 1)’; port = no info; method = ‘IP Tunnel’

The adevDevice.itemRef field for ‘Ethernet (slot 1)’ would be the same
from both adev files, allowing the Router Manager application to sort both
‘EtherTalk’ and ‘IP Tunnel’ under the same device item.

Similarly, a LocalTalk adev file would return a TAdevRec of:

device = ‘Printer Port’; port = no info; method = ‘LocalTalk’

A DialUp adev file would return a TAdevRec containing:

device = ‘Printer Port’; port = no info; method = ‘DialUp’

Note that the adevDevice.itemRef field for the Printer Port would be the
same from both adev files, allowing the Router Manager application to sort
both LocalTalk and DialUp under the same device item.

The reference codes assigned to devices, ports, and methods are
administered by Apple Developer Technical Support. Reference codes for
existing devices, ports, and methods are defined as follows:

8 AppleTalk Wide Area Developer’s Toolkit

{___ Ref codes for itemRef field of TAdevItem record ___}

{___ DEVICES: hi word = hardware, low word = id/slot ___}

kBuiltInRef = $00010000 {add port id to this number}

kModemPort = 1 {modem port id}

kPrinterPort = 2 {printer port id}

kNuBusRef = $00020000 {add slot # to this number}

kSCSIRef = $00030000 {add scsi id to this number}

{___ METHODS (use adev res id, or existing ref) ___}

kLocalTalkRef = 1

kEtherTalk1Ref = 2

kTokenTalkRef = 5

kEtherTalk2Ref = 10

kIPTunnelRef = 4

kDialUpRef = 6

kX25TunnelRef = 25

For example, to get your adev file to show up under the printer port, set the
itemRef to kBuiltInRef + kPrinterPort. For a slot-based device, set the
itemRef to kNuBusRef + slot number (as defined by the Slot Manager in
the range $9–$F).

The definition of the itemFlags field will vary, depending on the level of
the item (device, port, or method). The general format of the flag word is
illustrated in Figure 4.

I Reserved for future use X

31 30 1 0

Figure 4 TAdevItem.itemFlags general format

At each level, the general meaning of the flag is the same but only applies
to the level of the item being discussed.

31 kAIHasInfo Definition of adevDevice.itemFlags: If set to 1, the other
device-level fields (itemRef, itemIcon, and itemStr) are
significant and should be used to compare and display
the device-level information for this adev file. If this level
has no significance, the information should be ignored
and the item not be displayed.

Definition of adevPort.itemFlags: Same as the
adevDevice flag, but pertaining to the port-level fields.This
flag is cleared by adev files with single port devices (for
example, EtherTalk and TokenTalk).

Definition of adevMethod.itemFlags: Same as the
adevDevice flag, but pertaining to the method-level fields.

Apple Internet Router: User-Interface Extensions to the adev File 9

00 kAIExclusive Definition of adevDevice.itemFlags: If set to 1, the
device may not be configured by a different method
concurrent with the method for this adev file. Typically
used to denote hardware that is incapable of running
two data-link protocols on the same device.

Definition of adevPort.itemFlags: Same as the
adevDevice
flag, but restricting only the configuration of the port,
not the entire device.

Definition of adevMethod.itemFlags: If set to 1, the
method may be configured only once. Typically used
for methods like IP Tunnel, which can be configured
only once in a router setup document but which show
up under multiple devices.

30–01 Reserved.

The kAIExclusive flag is used by Router Manager to arbitrate the
configuration of the specific device, port, or method. An adev file would set
the device’s Exclusive flag if the method required exclusive use of the
device, including all available ports on the device. When a user tries to
configure a method with this flag set on a device for which another method
is already configured (including methods configured on other ports of that
device), Router Manager reports the conflict. Similarly, the adev file would
set the port Exclusive flag if the method required exclusive use of the port.
When a user tries to configure a method with this flag set on a port for
which another method is already configured, Router Manager reports the
conflict. The adev file would set the method Exclusive flag if the method
itself were “ exclusive” and could only be configured once.

Note All methods sharing a given device/port level should agree on the
exclusivity of that level. To assure that your adev file does not conflict with
another third-party developer’ s adev file, contact Apple Developer
Technical Support.

10 AppleTalk Wide Area Developer’s Toolkit

Method-based adev file data interface

All method-based adev files need to support MGetADEV, which provides
attribute and icon/string information for all ports supported by an adev file.

MGetADEV (D0=104)

Call D1 (long) Current value of parameter RAM

D2 (long) Value returned from previous MGetADEV call or 0 if this is
the first MGetADEV call

A0 (long) Pointer to caller-provided TAdevRec

Return D0 (byte) Status flag

D2 (long) Next value for D2 to call; also used by SelectADEV call

A0 (long) Pointer to TAdevRec (with data filled in by adev file)

MGetADEV is identical to the GetADEV call described in the Macintosh
AppleTalk Connections Programmer’s Guide, with the exception that A0
now points to a TAdevRec to be filled in by the adev file.

In typical usage, after determining that the adev file supports the
MGetADEV call, the Router Manager application calls MGetADEV
repeatedly until the status flag (D0) returned indicates that the adev file has
no additional information. See the definition of GetADEV in the
Macintosh AppleTalk Connections Programmer’s Guide for a general
description of this status flag.

Router Manager is responsible for allocating and disposing of the memory
for the TAdevRec and passing a TAdevRecPtr to MGetADEV through A0.
The adev file should fill in the appropriate TAdevRec fields with data. If
icon suites are used, Router Manager also calls DisposeIconSuite (with
disposeData set to TRUE) on these handles when it is done with them.

The first MGetADEV call to the adev file contains the current value of
parameter RAM in D1 to indicate the currently selected AppleTalk
connection, 0 in D2 to indicate that this is the first MGetADEV call, and a
pointer to a TAdevRec. The TAdevRec aidSize field is set to 0 initially. The
adev file responds to the first MGetADEV call by returning a status-flag
value in D0 to indicate whether there are any connections to support.

For AppleTalk adev files, D1 and D2 are used the same way they are used
in the GetADEV call as explained in the Macintosh AppleTalk Connections
Programmer’s Guide. AURP adev files can ignore D1 and D2 and use the
adevId instead.

Apple Internet Router: User-Interface Extensions to the adev File 11

Supporting the extended configuration user-interface calls

This section describes the routines that can be used to extend the
configuration user interface of the Port Info dialog box in Router Manager.

Figure 5 illustrates a Port Info dialog box for a DialUp port.

Figure 5 The Port Info dialog box for a DialUp port

AURP adev files are required to provide the configuration user interface.
Router Manager leaves the bottom section of the dialog box blank and calls
the adev file to fill in the contents of that part of the dialog box.

Because the adev file shares a GrafPort with the Router Manager
application, it must cooperate with the application in maintaining the dialog
box. This is accomplished through the programmatic interface described in
the remainder of this document.

adev file configuration user-interface call overview

The adev file configuration interface is a series of related functions that
handle all the events the user generates. The calls fall into three broad
categories: initialization/termination, dialog box event processing, and
configuration data exchange.

Initialization/termination routines

The following routines are used to create and dispose of the environment
used by the adev file during the life of the Port Info dialog box:

MAGetAttribs Called prior to the creation of the dialog box to determine its
size and the size of the configuration record needed by this port.

MAInit Called to have the adev file allocate and initialize local variables,
and to initialize the configuration record for newly created port
configurations.

MAKill Called to have the adev file dispose of local variables.

12 AppleTalk Wide Area Developer’s Toolkit

Dialog box event processing routines

The following routines are used to process events that occur during the life of
the Port Info dialog box and are related to the bottom half of the dialog box:

MAActivate Called whenever the dialog box is activated (becomes
the frontmost window) or inactivated (goes behind
other windows).

MAClick Called whenever a mouseDown event occurs in the
bottom section of the dialog box. If a user clicks a
TextEdit field, activation of the field does not occur
until the MASelectTE routine is called (described later).

MADraw Called whenever an update event occurs.

MAMessage Called to pass messages to the adev file (similar to an
editing command when the user selects an item in the
Edit menu).

MAIdle Called during idle periods to update the visual
appearance of the dialog box (flash the insertion bar in
text boxes, for instance).

MAKey Called whenever a keyDown/autoKey event occurs and
the adev file has an active TextEdit field. The exceptions
to this are the Tab and Return keys, which are used to
activate a TextEdit field and click the “default” button.
If a TextEdit field will become active when the key is
pressed, activation of the field does not occur until the
MASelectTE routine is called (described next).

MASelectTE Called to activate a specific TextEdit field in response to a
previous mouseDown or keyDown event. This action is
separated from the MAClick and MAKey routines so that
the Router Manager can prevent more than one TextEdit
field from being active (see the routine for details).

Configuration data exchange routines

The following routines are used to retrieve and set the displayed
configuration data:

MAGetConfig Called to retrieve the current state of the configuration
fields, buttons, and so forth. Called whenever the data is
to be saved to the Setup document.

MAGetLine Called to retrieve the current state of the configuration
fields, buttons, and so forth in a printable format. Called
whenever Router Manager is to print the data.

Apple Internet Router: User-Interface Extensions to the adev File 13

TAdevWind data structure

Communication of data between the Router Manager application and the
adev file is for the most part accomplished though the TAdevWind record
structure. The TAdevWind record provides data and events to the various
routines and also provides a global environment for the adev file during the
life of the Port Info dialog box. The definition of the TAdevWind record
(in Pascal) is as follows:

TAdevWind = RECORD

 awWiPtr : WindowPtr; {dialog where drawing occurs}

 awRect : Rect; {dialog rect where adev file may draw}

 awMessage : LongInt; {event message (varies according to call) }

 awModifiers : Integer; {flags that affect awMessage }

 awConfig : Handle; {config data filled in by adev file}

 awVars : Handle; {used by adev file’s temporary variables}

 awSumStr : Str255; {summary string of current config data}

 awSum2Str : Str255; {2nd summary string of config data}

END; {TAdevWind}

TAdevWindPtr = ^TAdevWind;

awWiPtr Points to the WindowRecord of the GrafPort where
drawing will occur. The adev file should never directly
reference fields in this record. It is provided primarily
to be passed into the Control Manager when controls
are created so that they may be linked into the current
window. (Note that the Router Manager application, not
the adev file, will call DrawControls to display all
controls linked to the Port Info dialog box).

awRect Defines the bound where adev file drawing will occur.
The adev file should use this rect to determine where to
position controls, text fields, and so forth. The adev file
should never make any assumptions about the
dimensions of this rect. As a general rule, the layout of
the adev file configuration section should be designed
with a standard compact Macintosh screen (512 × 342
pixels) in mind.

awMessage Contains a long word value whose meaning is determined
by the adev file user-interface routine being called.

awModifiers Contains an integer value whose meaning is determined
by the adev file user-interface routine being called.

14 AppleTalk Wide Area Developer’s Toolkit

awConfig Contains a handle to the configuration data buffer. The
Router Manager application does not inspect the
contents of this buffer, but allocates its size according to
the buffer size parameter returned from
MAGetAttribs(). The adev file receives the initial
configuration data (if any exists) though this buffer
when the dialog box is opened (MAInit), and returns
the current configuration data though this buffer when
MAGetConfig() is called. The adev file must never
deallocate this handle, but may resize it if needed.

awVars Defines a field in which the adev file may allocate and
store a handle for its local (persistent) variables across
calls. The handle may be allocated by the adev file
during MAInit() (the field is initially set to NIL by the
Router Manager) and must be deallocated by the adev
file during MAKill(). The contents of this buffer are
never examined by the Router Manager application.

awSumStr Contains an Str255 string that the adev file uses to
provide a descriptive text summary of the configuration
data contained in the awConfig handle. The Router
Manager application needs this string in order to display
decimal summary data for that port (Router Manager
does not know what awConfig contains). Router Manager
draws this string in the Setup window whenever the
configuration data is saved to the Setup window. This
string is initially set to blanks by the Router Manager
application and must be updated during MAInit() and
MAGetConfig(). This field is also used to provide the
first column of text to be printed by MAGetLine().

awSum2Str Contains a second Str255 string that the adev file uses
to provide a descriptive text summary of the
configuration data contained in the awConfig handle.
The Router Manager application needs this string in
order to display hexadecimal summary data for that
port (Router Manager does not know what awConfig
contains). Router Manager draws this string in the Setup
window whenever the configuration data is saved to the
Setup window. This string is initially set to blanks by
the Router Manager application and must be updated
during MAInit() and MAGetConfig(). If the adev file
does not have a hex mode, this string should be set
equal to awSumStr. This field is also used to provide the
second column of text to be printed by MAGetLine().

Apple Internet Router: User-Interface Extensions to the adev File 15

adev file configuration user-interface call syntax

This section contains the assembly language syntax for calling the adev file
configuration user-interface routines. Like the existing MGetADEV,
GetADEV, and SelectADEV calls, these routines are part of the adev
resource of the adev file.

MAGetAttribs (D0 = 106)

Call A0 (long) TAdevWind record pointer
awRect → bottom = Max adev file drawing height

Return A0 (long) TAdevWind record pointer
awRect ← bottom = height needed by adev file
awMessage ← Minimum awConfig buffer size

D0 (byte) Status code: -1 insufficient drawing height
0 no errors

This call is made prior to initializing the dialog box to determine the height
of the area needed by the adev file for drawing. Upon entry, awRect.bottom
contains the maximum available height in the Port Info dialog box for the
adev file to draw into. If the available height is not enough to draw the
configuration, the adev file returns an error in D0. If it is enough,
awRect.bottom should contain the actual height (in pixels) required by the
adev file to draw its configuration user interface, and awMessage specifies
the minimum size for the awConfig data buffer. This size is used by the
Router Manager application to allocate an initial awConfig handle
whenever a new port is configured for the first time. The awConfig handle
may be resized later by the adev file if the configuration data grows or
shrinks during editing.

16 AppleTalk Wide Area Developer’s Toolkit

MAInit (D0 = 107)

Call A0 (long) TAdevWind record pointer
awWiPtr → pointer to Port Info window record
awRect → drawing bounds for adev file
awModifiers → Bit 0: 1 = awConfig needs initialization

0 = awConfig contains valid data
Bit 1: 1 = Router active

0 = Router inactive
Bit 2: 1 = Display numbers in hex

0 = Display numbers in decimal
awConfig → handle to config data buffer
awVars → nil
awSumStr → '' (zero length Pascal string)
awSum2Str → '' (zero length Pascal string)

Return A0 (long) TAdevWind record pointer
awVars ← handle to adev file’s local variables
awConfig ← initialized data (if needed)
awSumStr ← text summary of config data (decimal)
awSum2Str ← text summary of config data (hex)

D0 (byte) Status code: -2 initialization error reported by adev file
-1 initialization error not reported by adev file
0 no errors

This routine is called for initialization prior to editing the configuration
data. If this is a new port configuration, then awModifiers Bit 0 will be set
to signal the adev file that the awConfig handle points to uninitialized data,
which the adev file should then set up with default values. When the Router
is running awModifiers, Bit 1 will be set. The adev file may also allocate a
handle to a local set of variables for its own internal use and store the
handle in awVars (Router Manager never references this handle). The adev
file must also initialize awSumStr and awSum2Str with a text summary of
the configuration data in awConfig. (Note: Make sure you set awSum2Str,
even if your adev file doesn’t have a hex mode.)

If an error occurs during initialization, return an error code based on
whether or not you have reported the error to the user. If you have not
reported the error, Router Manager will put up a dialog box for you.

Apple Internet Router: User-Interface Extensions to the adev File 17

MAKill (D0 = 108)

Call A0 (long) TAdevWind record pointer
awVars → handle to adev file’s local variables
awModifiers → Bit 0: 1 = Cannot fail

0 = Can fail

Return A0 (long) TAdevWind record pointer
awVars ← NIL

D0 (byte) Status code: -1 can’t close at this time
0 no errors

This routine is called to terminate editing of the configuration data. The adev
file must release any local storage allocated during the life of the dialog box
and return a NIL value in awVars. If awModifiers is set to 1, then the Router
Manager application is indicating that the adev file will not be called again
for this dialog box, even if it returns a failure code in D0. In the current
version of Router Manager, this bit is always set, because MAGetConfig is
called before MAKill if data is going to be saved. Returning an error from
MAGetConfig will cancel the closing of the dialog box.

Note This call must not change the contents of the awConfig buffer or the
awSumStr field, because MAGetConfig has already been called.

If, for some reason, you want the adev file to keep the dialog box open and
awModifiers is not set, it must return an error status in D0. Except as noted
previously, Router Manager will keep the dialog box open in that case.

18 AppleTalk Wide Area Developer’s Toolkit

MAActivate (D0 = 109)

Call A0 (long) TAdevWind record pointer
awWiPtr → pointer to Port Info window record
awRect → drawing bounds for adev file
awMessage → Bit 0: 1 = activating the dialog box

0 = inactivating the dialog box
awConfig → handle to config data buffer
awVars → handle to adev file’s local variables

Return D0 (byte) Status code: -1 fatal error(s) occurred
0 no errors

This routine is called whenever the dialog box is made active (becomes the
front window) or inactive (goes behind other windows). On entry,
awMessage contains a flag: Bit 0 indicates whether the dialog box is being
activated (1) or deactivated (0). If the router is active and the Port Info
dialog box is in the front window, the adev file may need to change the
appearance of various fields in its drawing area to indicate that certain
editing functions are disabled.

During this routine, the adev file should change the visual appearance of
items to reflect the state of the dialog box. If the adev file currently has an
active TextEdit field, its status must be changed to make the flashing
insertion bar appear or disappear.

This routine should always return a status code of zero (no errors).

Apple Internet Router: User-Interface Extensions to the adev File 19

MAClick (D0 = 110)

Call A0 (long) TAdevWind record pointer
awWiPtr → pointer to Port Info window record
awRect → drawing bounds for adev file
awMessage → mouse location of click (Point)
awModifiers → Bit 0: 1 = Shift key pressed

0 = unshifted
awConfig → handle to config data buffer
awVars → handle to adev file’s local variables

Return A0 (long) TAdevWind record pointer
awMessage ← adev file’s TextEdit field ID code
awModifiers ← Bit 0: 1 = configuration has changed

0 = no changes made
Bit 1: 1 = message OK, TextEdit ID valid

0 = ignore this message
Bit 2: 1 = adev file TE has selection

0 = adev file has no selection

D0 (long) Status code: -1 fatal error(s) occurred
0 no errors

This routine is called whenever a mouseDown event occurs in the adev
file’s portion of the Port Info dialog box. On entry, the mouse location is
contained in the awMessage field (it must be cast as a Point record type),
and awModifiers contains a flag: Bit 0 indicates the status of the Shift key
(1=shift pressed, 0=unshifted).

If the mouseDown event causes the contents of the configuration data to
change, the adev file should return a 1 in awModifiers; otherwise, it should
be set to 0.

If the click was on an inactive TextEdit field, the adev file should return its
nonzero ID for that field in awMessage, and then set or clear the changed
bit and the message OK bit in awModifiers. Assuming no other errors
occur, the Router Manager application then follows up with a
MASelectTE() call (described later in this document) to activate the
TextEdit field. If no TextEdit field was clicked, or if an already active
TextEdit field was clicked, the adev file should clear Bit 1 of awModifiers.
Before returning from this call, the adev file should also deactivate the
current TextEdit field.

If this call leaves text selected, it should set Bit 2 of awModifiers so that
Router Manager will know to enable the menu items Cut, Copy, and Clear.

20 AppleTalk Wide Area Developer’s Toolkit

Note The adev file must not assume that the TextEdit field will be activated
when returning a nonzero field ID. If the Router Manager portion of the
dialog box has an active TextEdit field at the time, it may fail to deactivate
this field due to a data validation error.

This routine should always return a status code of zero (no errors).

IMPORTANT Editing while a router is active The general rule is that no
changes in the configuration data should be allowed while the router is
active. MouseDown events that are used to inspect the configuration data
are permitted, but mouseDown events that alter the configuration data
should be disabled.

MADraw (D0 = 111)

Call A0 (long) TAdevWind record pointer
awWiPtr → pointer to Port Info window record
awRect → drawing bounds for adev file
awConfig → handle to config data buffer
awVars → handle to adev file’s local variables

Return D0 (byte) Status code: -1 fatal error(s) occurred
0 no errors

This routine is called whenever an update event occurs. The adev file
should use this call to draw all of its visual elements.

Note Because all controls belong to the Port Info dialog box, the Router
Manager application will call DrawControls(). The adev file should not
make this call.

This routine should always return a status code of zero (no errors).

Apple Internet Router: User-Interface Extensions to the adev File 21

MAMessage (D0 = 112)

Call A0 (long) TAdevWind record pointer
awWiPtr → pointer to Port Info window record
awRect → drawing bounds for adev file
awMessage → Edit event code:

0 = Undo (not implemented yet)
1 = Cut
2 = Copy
3 = Paste
4 = Clear
5 = Router active
6 = Router inactive
8 = Adjust cursor

awConfig → handle to config data buffer
awVars → handle to adev file’s local variables

Return A0 (long) TAdevWind record pointer
awModifiers ← Bit 0: 1 = configuration has changed

0 = no changes made
Bit 2: 1 = adev file TE has selection

0 = adev file has no selection

D0 (byte) Status code: -1 fatal error(s) occurred
0 no errors

This routine is called for one of three reasons: (1) the Router is being
activated or deactivated; (2) an Edit menu command (or its keyboard
equivalent) was selected and the adev file has an active TextEdit field; and (3)
the cursor needs to be adjusted. When editing occurs, on entry awMessage
contains a code that specifies which edit function has been selected: 0=Undo,
1=Cut, 2=Copy, 3=Paste, and 4=Clear. When the Router is being activated or
deactivated, awMessage indicates the new Router state: 5=Active, 6=Inactive.
When the cursor needs to be adjusted, awMessage is set to 8, and the adev file
should get the current mouse location and set the cursor.

If the Edit command results in changes to the configuration data, the adev
file should return a 1 in Bit 0 of awModifiers; otherwise, it should return 0.

If this call leaves text selected, it should set Bit 2 of awModifiers to 1 so that
Router Manager will know to enable the menu items Cut, Copy, and Clear.

This routine should always return a status code of zero (no errors). If an
error is returned, Router Manager will ignore the return bits but will not
close the dialog box.

22 AppleTalk Wide Area Developer’s Toolkit

MAIdle (D0 = 113)

Call A0 (long) TAdevWind record pointer
awWiPtr → pointer to Port Info window record
awRect → drawing bounds for adev file
awConfig → handle to config data buffer
awVars → handle to adev file’s local variables

Return D0 (byte) Status code: -1 fatal error(s) occurred
0 no errors

This routine is called for periodic updating of the dialog box when no
other events occur. The adev file should use this time to call TEIdle (if it
has an active TextEdit field) or any other periodic function required.

This routine should always return a status code of zero (no errors).

MAKey (D0 = 114)

Call A0 (long) TAdevWind record pointer
awWiPtr → pointer to Port Info window record
awRect → drawing bounds for adev file
awMessage → key character code
awModifiers → Bit 0: 1 = Shift key pressed

0 = unshifted
awConfig → handle to config data buffer
awVars → handle to adev file’s local variables

Return A0 (long) TAdevWind record pointer
awMessage ← adev file’s TextEdit field ID code

(Tab key events only)
awModifiers ← Bit 0: 1 = configuration has changed

0 = no changes made
Bit 1: 1 = message OK, TextEdit ID valid

0 = ignore this message
Bit 2: 1 = adev file TE has selection

0 = adev file has no selection

D0 (byte) Status code: -1 fatal error(s) occurred
0 no errors

Apple Internet Router: User-Interface Extensions to the adev File 23

This routine is called whenever a keyDown or autoKey event occurs and
the adev file has an active TextEdit field. On entry, awMessage contains the
character code for the key that was pressed, and awModifiers contains one
flag: Bit 0 indicates the status of the Shift key (1=Shift pressed,
0=unshifted). Command keys are never passed to this routine. For most
keyDown events, the adev file will pass the character code to the current
TextEdit field by means of a call to TEKey(). The notable exception to this
rule is the Tab key. Processing this key event is described later in “Text
Field Selection Using the Tab Key.” On exit you should return “message
OK” or “ignore message” by setting or clearing Bit 1 of the awModifiers
field. No message indicates the returned TextEdit ID should be ignored.

IMPORTANT Editing while a router is active The general rule is that no
changes in the configuration data should be allowed while the router is
active. Key events that are used to inspect the configuration data are
permitted, but key events that alter the configuration data should be disabled.

Text field selection using the Tab key A Tab key event indicates the user wishes
to select the next TextEdit field. If the adev file portion of the dialog box
contains more than one TextEdit field, then it is up to the adev file to
determine which field is “next.” As a rule of thumb, the next TextEdit
field is to the right of (or below, if there is no field to the right) the current
field activated for editing. If the Shift key is pressed (test the awModifiers
field for Shift key status), then the next field is to the left of (or above, if
there is no field to the left) the current field.

Only one TextEdit field may be active in the Port Info dialog box at any
one time. Initially, the Router Manager portion of the dialog box contains
the active field. When the Tab key is pressed, the Router Manager will
determine if it needs to activate one of the fields in its portion of the dialog
box. If the Router Manager is positioned at its “last” field (in a given
direction of tabbing), then it will pass the Tab key to MAKey(). If the adev
file has no TextEdit fields, then it returns a value of zero in awMessage. If it
has one or more TextEdit fields, then it returns a nonzero ID to the Router
Manager, which will later be passed back to the adev file in MASelectTE()
(described next). The ID may be any integer value that the adev file uses to
distinguish one field from another.

Note The adev file must not assume that the TextEdit field will be activated
when returning a nonzero field ID. If the Router Manager portion of the
dialog box has an active TextEdit field at the time, it may fail to deactivate
this field due to a data validation error.

Note If the adev file has no currently active TextEdit field and it receives a
Tab to activate one of its fields, it should examine awModifiers to see if the
Shift key is pressed. If the Shift key is pressed, the adev file should activate
its “last” field; otherwise, it should activate its “first” TextEdit field.

24 AppleTalk Wide Area Developer’s Toolkit

If the adev file receives a Tab and its “last” field (in the direction specified
by the Shift key status) is the currently active field, then it signals that it is
releasing control of text editing back to Router Manager by returning a
value of zero in awMessage. When returning control back to Router
Manager, the adev file must ensure that all its TextEdit fields are
deactivated (no flashing insertion point or selection range). If the adev file
cannot deactivate its TextEdit field for some reason (for example, a data
validation error), then it should pass the current (nonzero) field ID back to
Router Manager. Router Manager will then call MASelectTE() with that ID.

If this call leaves text selected, it should set Bit 2 of awModifiers to 1 so that
Router Manager will know to enable the menu items Cut, Copy, and Clear.

The routine should always return a status code of zero (no errors). If an
error is returned, Router Manager will ignore the return bits but will not
close the dialog box.

MASelectTE (D0 = 115)

Call A0 (long) TAdevWind record pointer
awWiPtr → pointer to Port Info window record
awRect → drawing bounds for adev file
awMessage → adev file’s TextEdit field ID code

(from MAClick or MAKey routines)
awConfig → handle to config data buffer
awVars → handle to adev file’s local variables

Return A0 (long) TAdevWind record pointer
awModifiers ← Bit 2: 1 = adev file TE has selection

0 = adev file has no selection

D0 (byte) Status code: -1 cannot deactivate the current TE field
0 no errors

This routine is called to activate the adev file TextEdit field indicated by the
ID number returned from MAClick() or MAKey() (described previously).
If the ID is zero, then the adev file must deactivate its current TextEdit field
and relinquish control of text editing back to Router Manager. If the
current TextEdit field cannot be deactivated for some reason (for example,
a data validation error), then return the status code -1; otherwise, return a
status code of 0 (no errors).

If this call leaves text selected, it should set Bit 2 of awModifiers to 1 so that
Router Manager will know to enable the menu items Cut, Copy, and Clear.

Apple Internet Router: User-Interface Extensions to the adev File 25

MAGetConfig (D0 = 116)

Call A0 (long) TAdevWind record pointer
awWiPtr → pointer to Port Info window record
awRect → drawing bounds for adev file
awConfig → handle to old config data buffer
awVars → handle to adev file’s local variables
awSumStr → text summary of old config data (decimal)
awSum2Strr → text summary of old config data (hex)

Return A0 (long) TAdevWind record pointer
awMessage ← adev file’s TextEdit field ID code
awModifiers ← Bit 0: 1 = configuration has changed

0 = no changes made
Bit 1: 1 = message OK, TextEdit ID valid

0 = ignore this message
Bit 2: 1 = adev file TE has selection

0 = adev file has no selection
awConfig ← updated configuration data buffer
awSumStr ← updated text summary of config (decimal)
awSum2Str ← updated text summary of config (hex)

D0 (byte) Status code: -1 invalid configuration field data
0 no errors, save changes

This routine is called to retrieve the current contents of the adev file
configuration editing fields before the dialog box is closed. If one or more
fields contain invalid data, then return an error code in D0; otherwise,
return a status code of zero (no errors). When an error is returned, the
configuration dialog box is not closed.

Make sure to set all the bits in awModifiers correctly, especially when
returning an error.

Note If your adev file does not have a hex mode, awSum2Str should be set
equal to awSumStr.

26 AppleTalk Wide Area Developer’s Toolkit

MAGetLine(D0 = 117)

Call A0 (long) TAdevWind record pointer
awWiPtr → nil
awRect → undefined
awMessage → 'line'
awModifiers → line number (1,2...n)
awConfig → handle to config data buffer
awVars → nil

Return A0 (long) TAdevWind record pointer
awSumStr ← updated text for column 1 of line
awSum2Str ← updated text for column 2 of line

D0 (byte) Status code: -1 no more lines to print after this one
0 more lines to come

This routine is called to retrieve the current contents of the adev file
configuration in printable format. The adev file is responsible for
determining the text to return for column 1 of a printed page in awSumStr,
and similarly, if desired, for column 2 in awSum2Str. If more lines remain
to be printed, then return zero in D0. When a status code of –1 is returned,
there are no more lines to print and this routine is not called again.

K Apple Internet Router: Developing an AURP
adev File

 Apple Computer, Inc.
This manual and the software described in it are
copyrighted, with all rights reserved. Under the
copyright laws, this manual or the software may not be
copied, in whole or part, without written consent of
Apple, except in the normal use of the software or to
make a backup copy of the software. The same
proprietary and copyright notices must be affixed to
any permitted copies as were affixed to the original.
This exception does not allow copies to be made for
others, whether or not sold, but all of the material
purchased (with all backup copies) may be sold, given,
or loaned to another person. Under the law, copying
includes translating into another language or format.

You may use the software on any computer owned by
you, but extra copies cannot be made for this purpose.

The Apple logo is a registered trademark of Apple
Computer, Inc. Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes without the
prior written consent of Apple may constitute
trademark infringement and unfair competition in
violation of federal and state laws.

Every effort has been made to ensure that the
information in this manual is accurate. Apple is not
responsible for printing or clerical errors.

© Apple Computer, Inc., 1993
20525 Mariani Avenue
Cupertino, CA 95014-6299
(408) 996-1010

Apple, the Apple logo, AppleTalk, MacOSI and
MacTCP are trademarks of Apple Computer, Inc.,
registered in the United States and other countries.

NuBus is a trademark of Texas Instruments.

Simultaneously published in the United States and
Canada.

Mention of third-party products is for informational
purposes only and constitutes neither an endorsement
nor a recommendation. Apple assumes no
responsibility with regard to the performance or use of
these products.

Contents

About this document / 2

Calls to and from the atlk resource / 3
Definition of terms / 4
Overview of AURP interface calls / 4
Calls to the AURP atlk module (assembly interface) / 7

AInstall (D0 = 1) / 7
AShutdown (D0 = 2) / 9
AGetInfo (D0 = 3) / 10
ATnlConnect (D0 = 32) / 11
ATnlDisconnect (D0 = 33) / 11
ATnlGetNextIR (D0 = 34) / 11

Calls to the AURP atlk module (C interface) / 12
ATnlDoWrite / 12
ATnlReadDone / 12

Calls from the AURP atlk module (assembly interface) / 13
AURPLapWrite / 13

Calls from the AURP atlk module (C interface) / 13
AURPInstallDone / 13
AURPTnlConnDone / 14
AURPRead / 15
AURPLogMsg / 16
AURPWriteDone / 16
AURPTnlDiscDone / 16

Developing an adev file using XTI / 17
Source code map / 18

Modifications that may be needed / 18

Open sequence / 20
Read sequence / 20
Write sequence / 21
Close/Shutdown sequence / 21

2 AppleTalk Wide Area Developer’s Toolkit

About this document

This document is intended for developers who wish to write an Apple Update-
based Routing Protocol (AURP) adev file. As with any adev file, an AURP
adev includes two main resources: the adev resource and the atlk resource.

When developing the adev resource, refer to the Macintosh AppleTalk
Connections Programmer’s Guide (available through APDA; order number
M7056/A), and the Apple Internet Router: User-Interface Extensions to the
adev File document in this toolkit. Note that since an AURP adev is a non-
AppleTalk adev, it should not appear in the Network cdev. Therefore, calls
used explicitly by the Network cdev (GetAdev and SelectAdev) should be
implemented but only need to return an error. The XTI Shell sample code
briefly covers the adev resource, as does “Developing an adev File Using
XTI” section of this document.

This document includes detailed information on developing the atlk resource.
Developers are encouraged to develop an AURP adev that uses XTI, the
X/Open Transport Interface, to ease the transition to Apple’s upcoming
Transport Independent Interface (TII). Developers can combine link-specific
XTI libraries with a modified XTI adev shell to create an AURP adev that uses
XTI. It is envisioned that in the future, the XTI libraries will continue to work
with TII with little work required on the developer’s part.

In some cases, a developer may not need to implement an AURP adev as
described in this document. These cases are:

n If the developer wishes to support AURP over TCP/IP over the developer’s
data link (for example, SMDS or ISDN) and the developer already has a
MacTCP mdev, the developer can use the Apple-provided IP tunneling
adev that ships with the Apple Internet Router AppleTalk/IP Wide Area
Extension and need only insert certain resources into this adev (see the
Apple Internet Router: Extending IP Tunnel and DialUp document in this
toolkit for details).

n If the developer wishes to support AURP over dial-up modems over
alternate serial ports (for example, on a four-port card) and the developer
already has an .AIN/.AOUT style driver, the developer will be able to use
the DialUp adev provided by Apple. No documentation on this is available,
however, as it is not currently supported by the DialUp adev version that
ships with the Apple Internet Router Basic Connectivity Package.

Apple Internet Router: Developing an AURP adev File 3

Calls to and from the atlk resource

An AURP atlk interfaces with the AURP module within the Apple Internet
Router. The programming interface resembles the standard atlk interface, but
contains enhancements that facilitate use of AURP (see Figure 1). For more
information on AURP, refer to the AppleTalk Update-Based Routing Protocol:
Enhanced AppleTalk Routing document.

Router

AURPLAP Manager

tunnel atlk

AURP/atlk interface

Figure 1 Interface block diagram

This document describes the AURP programming interface (assembly and C
calling conventions) and the responsibilities of the AURP atlk code. The atlk
is responsible for handling the data link: setting up any data-link connections
necessary, and reading, writing, and shutting down the data-link connections if
necessary. Procedural access to the AURP module is provided dynamically
when the atlk is called initially to install itself. AURPInterface.h, a C include
file, and AURPEqu.a, an assembly equates file, contain defines and prototypes
for the AURP interface. Routine names preceded by ‘A’ or ‘ATnl’ reside in
the atlk and are calls made by the AURP module to the atlk; those preceded by
‘AURP’ reside in the AURP module and are calls made by the atlk to the
AURP module.

In order for the router to identify an atlk as an AURP atlk, certain flags must
be set in the adev file’s xtlk resource. The xtlk flags are defined as follows in
Rez format:

type 'xtlk' { /* extended AppleTalk adev flags */

 Boolean noExtendedAddr, extendedAddr;

 Boolean noRouterOnly, routerOnly;

 Boolean rtmpData, noRtmpData;

 Boolean appleTalkPort, noAppleTalkPort;

 fill bit[26];

 Boolean noExtendedConfig, extendedConfig;

 Boolean noMethodADEV, methodADEV;

};

4 AppleTalk Wide Area Developer’s Toolkit

To identify itself as an AURP atlk (that is, a port that does not use RTMP and
is not an AppleTalk port), an AURP atlk must set the flags for noRtmpData
and noAppleTalkPort. The xtlk would be defined in Rez format as:

resource 'xtlk' (-4032) {

 extendedAddr, /* bit 31 set = extended address ADEV */

 noRouterOnly, /* bit 30 clear for no router only */

 noRtmpData, /* bit 29 set = no RTMPs sent to ADEV */

 noAppleTalkPort, /* bit 28 set = ADEV does not use AT

 addresses */

 extendedConfig, /* bit 1 set = expanded config support */

 methodADEV /* bit 0 set = supports MGetADEV */

};

For more information about the xtlk resource, see the Macintosh AppleTalk
Connections Programmer’s Guide, and the Apple Internet Router: User-
Interface Extensions to the adev File document in this toolkit.

Definition of terms

configuration record Information referenced by the awConfig structure as
described in detail in the Apple Internet Router: User-Interface Extensions to
the adev File document of this toolkit. The adev builds this configuration
record from user settings made in the adev’s Port Info dialog box under Router
Manager.

adev signature Data referenced by the adevID structure as described in detail in
the Apple Internet Router: User-Interface Extensions to the adev File
document in this toolkit. The adev creates its signature and may embed
machine-specific port configuration information in the signature.

indicator A four-byte (long) reference to the actual address of an entity that the
atlk is sending packets to or receiving packets from (also known as the next
internet router or next IR). The atlk is responsible for defining a value for the
indicator that is unique on that port for the given entity.

Overview of AURP interface calls

Administrator action
in Router Manager AURP call triggered

Start Router AInstall, ATnlConnect
Stop Router ATnlDisconnect, AShutdown
Activate Port ATnlConnect
Inactivate Port ATnlDisconnect

Apple Internet Router: Developing an AURP adev File 5

When the router is starting up, the AURP module makes the AInstall call so
that the atlk may initialize and register its write and readDone routines. The
AURP module makes the ATnlConnect call to set up any necessary data-link
connections.

If the router wishes to close any open connections, the AURP module makes
the ATnlDisconnect call . When the router is shutting down, the AURP module
calls ATnlDisconnect, if necessary, and AShutdown to dispose of any memory
allocated. Note that while the router is running, the administrator may
deactivate an AURP port, resulting in a call to ATnlDisconnect or, conversely,
the administrator may activate an AURP port, resulting in a call to
ATnlConnect (see Figure 2).

Router/AURP

atlk

AInstall,
AShutdown,
AGetInfo,
ATnlConnect,
AtnlDisconnect,
ATnlGetNextIR,
ATnlDoWrite,
ATnlReadDone

AURPLapWrt,
AURPInstallDone,
AURPTnlConnDone,
AURPRead,
AURPWriteDone

Figure 2 Direction of calls

Because of the varying lengths and formats of next IRs, the atlk is responsible
for maintaining its own list of known next IRs and the corresponding indicators.
When it makes the AURPInstallDone call after AInstall is called, the atlk passes
a list of the indicators to the AURP module. The AURP module references this
list for a given next IR. The AURP module may at any time make the AGetInfo
or ATnlGetNextIR call to get information about the data link.

The atlk drives the process of receiving incoming packets, while the AURP
module drives the process of sending outgoing packets. When the atlk receives
an incoming packet, it calls the AURPRead routine (accessed through the
AURP dispatch routine passed in AInstall) with a pointer to the packet data
following the link-specific headers. After the AURP module is done
processing the packet, it indicates it is ready to process the next incoming
packet by calling the ATnlReadDone routine passed back in the AInstall call.
Note that the atlk cannot free up its read buffer until the ATnlReadDone
routine is called (see Figure 3).

6 AppleTalk Wide Area Developer’s Toolkit

Router/AURP

atlk

AURPRead ATnlReadDone

incoming packet

Figure 3 Read mechanism

When the atlk’s LAP write code is called, the atlk passes the write on to the
AURP module. The AURP module then calls the atlk’s ATnlDoWrite routine
when it wishes to send a packet out the data link. After processing the
outgoing packet, the atlk calls the AURPWriteDone routine (accessed through
the AURP dispatch routine passed in AInstall). (See Figure 4.)

Router/AURP

atlk

write out packet

LAP manager

outgoing write ATnlDoWrite AURPWriteDone
AURPLapWrt

Figure 4 Write mechanism

The atlk should only allocate memory during AInstall. Most of the routines
return an error result of type 0Serr, which is defined as a short. A zero result
indicates no error; a nonzero result indicates an error. Note that the type Ptr
refers to a pointer to a char (unsigned char *). In addition, the type
NIRIndicator refers to the indicator of a next IR, a four-byte (long) quantity.

Apple Internet Router: Developing an AURP adev File 7

Calls to the AURP atlk module (assembly interface)

AInstall (D0 = 1)

Call D3 (long) AURP LAP write code entry point
D4 (byte) port number on which to perform the install operation
A0 (long) AURP Interface Dispatch Routine
A1 (long) pointer to ATnlConfig parameter block
A2 (long) AURP refnum

Return D0 (word) result code (nonzero if error)
A1 (long) pointer to ATnlConfig parameter block

The ATnlConfig parameter block is defined as follows:

typedef struct ATnlConfigPBlk {

short reserved; /* Reserved -- do not modify */

short hopCntWgt; /* → Hop count weight specified in

 Options… window */

long reserved2; /* Reserved -- do not modify */

Ptr acfgPtr; /* → Ptr to adev’s ‘acfg’ rsrc */

Ptr paidPtr; /* → Ptr to adev’s ‘paid’ rsrc */

short maxRPktSz; /* ← maximum packet size */

long atlkFlags; /* ← flags for configuration */

Ptr atlkWriteCode; /* ← address of atlk write code */

Ptr atlkReadDone; /* ← address of atlk read done */

char srcDILen; /* ← length of Domain Identifier */

char filler;

short numNextIRs; /* ← number of nextIRs configured*/

};

When the AInstall routine is called, the code allocates its variables, opens an I/O
driver (if this is required), and performs any other initialization necessary. The
AInstall call does not establish any connections. (Connections may be established
in the ATnlConnect call.) This extended AInstall call is different from the AInstall
call described in the Macintosh AppleTalk Connections Programmer’s Guide and
is only available for AURP atlks (if the xtlk flags are set appropriately).

The AURP interface dispatch-routine address passed in the AInstall call enables
the atlk to call the AURP module. The atlk should store this address and JSR to it
on every call to the AURP module except for the LAP write call. (See “Calls From
the AURP atlk Module (C Interface)” later in this document for more details.)

The hopCntWgt field in ATnlConfigPBlk refers to the weighting associated
with this particular AURP port’s data link. The hopCntWgt value plus one
should be stored and returned in the bandwidth field of ATnlGetInfoRec (see
the description of AGetInfo later in this document).

8 AppleTalk Wide Area Developer’s Toolkit

The adev signature referenced by the paidPtr in ATnlConfigPBlk may contain
machine-specific port configuration information necessary for setting up the
AURP data link. (Note that the signature is defined in the extensions to the
adev interface.) For example, if the atlk needs the slot number of the NuBus™
card chosen by the administrator, the adev signature may contain the specified
slot number. The acfgPtr points to a configuration record containing the AURP
port’s user settings. Since paidPtr and acfgPtr are temporary pointers, the atlk
may wish to save their contents locally for use in the ATnlConnect call
(described later). Note that both the adev signature and the configuration
record are built using the extensions to the adev interface and may vary from
adev to adev. The adev signature is defined in the MGetAdev call, and the
configuration record is defined in the configuration user-interface calls.

The AURP refnum that is passed in the AInstall call is needed for the AURP
module to identify the particular atlk if multiple AURP atlks exist. The atlk
should store the AURP refnum and pass it on every call it makes to the AURP
module (usually in the variable aurpRef).

Like standard atlks, the AURP atlk should call the LAP Manager to insert the
atlk’s code in the LAP write hook (using LWrtInsert and the port number
passed in D4). Note that the code that is inserted is the beginning of the atlk
resource. When the atlk’s code is called on a LAP write, the AURP atlk should
not process the LAP write itself; instead, the atlk should pass the call to the
AURP module by jumping to the code location passed into the AInstall call in
D3 (see “Calls From the AURP atlk Module (Assembly Interface)” later in this
document).

The atlk code must communicate its initial values for AURP options by
returning them in the ATnlConfigPBlk. The maxRPktSz is the maximum
AURP routing packet size (in number of bytes) that the atlk will support.
(Note that the value for maxRPktSz must be a value from 618 to 4096.)
Currently only the high bit of the atlkFlags field is defined. If it is set, the
AURP module will only establish AURP connections with routers specified in
the initial ATnlNextIRBlk (returned in AURPInstallDone). If it is clear, the
AURP module will learn about new routers from received packets and
establish AURP connections with them.

The atlk registers its ATnlDoWrite code with the AURP module by passing the
address of the routine in atlkWriteCode in ATnlConfigPBlk. The ATnlDoWrite
code is then called when the AURP module wishes to write a packet out the
atlk’s link. When the LAP Manager calls the atlk’s code that was installed in
the LAP write hook (by LWrtInsert), the atlk passes the call to the AURP
module by jumping to the AURP module’s LAP write code. After adding its
headers to the data, the AURP module calls the atlk’s registered write code,
ATnlDoWrite, with a parameter list to write the packet out the link.

Apple Internet Router: Developing an AURP adev File 9

The atlk also registers its ATnlReadDone code with the AURP module by
passing the address of the routine in atlkReadDone.The AURP module calls
the ATnlReadDone code after AURPRead is called and after the AURP
module is done processing the incoming packet. The AURP module makes the
ATnlReadDone call to notify the atlk that it is ready to receive the next
incoming packet.

The Domain Identifier (DI) is used to distinguish between connected
AppleTalk internets. The format of the DI is a length byte followed by an
authority byte, followed by the identifier itself. Used primarily on point-to-
point links, a null DI is simply 0x01 00. The IP form of the DI is 0x07 01 00
00 XX XX XX XX, where XX XX XX XX corresponds to the configured IP
address. For more information about DIs and their formats, see the AppleTalk
Update-Based Routing Protocol: Enhanced AppleTalk Routing document. The
length of the DI is passed back in srcDILen in ATnlConfigPBlk.

The atlk is responsible for passing the number of next IRs, numNextIRs, that
the AURP module should initially connect to. The full list of next IRs is
passed when the atlk calls AURPInstallDone. AURPInstallDone may be called
at a later time so that the atlk may asynchronously resolve the addresses or
map addresses to indicators as necessary.

Note that errors returned by the AInstall call may cause the router to abort
startup.

AShutdown (D0 = 2)

Call D4 (byte) port number on which to perform the shutdown operation

Return D0 (word) result code (nonzero if error)

When the atlk code is called with an AShutdown call, it issues an
LWrtRemove call to the LAP Manager with the port number passed in D4,
disposes of its variables, and performs any other necessary operations before
the router shuts down. Refer to the Macintosh AppleTalk Connections
Programmer’s Guide for more information.

10 AppleTalk Wide Area Developer’s Toolkit

AGetInfo (D0 = 3)

Call D1(word) length (in bytes) of reply buffer
A1 (long) pointer to reply buffer

Return A1 (long) getInfo record
D0 (word) result code (nonzero if error)

The AGetInfo routine is responsible for filling the getInfo record with the
appropriate information, if known. If the caller’s buffer is not large enough to
hold the record, an error is returned in D0 and partial information is returned.

typedef struct ATnlGetInfoRec {

 short version; /* of AGetInfo, set to two (2) */

 short length; /* of this record in bytes */

 long speed; /* of link in bits/sec */

 char bandwidth; /* link speed weight factor */

 char reserved; /* set to zero */

 char slotNum; /* physical slot number */

 char reserved; /* set to zero */

 char flags; /* set = 0x80 for backward

 compatibility*/

 char linkAddrSize; /* of link addr in bytes */

 char linkAddress[20]; /* link (or logical) address */

};

If the link speed is unknown, the maximum possible speed (in bits/sec) should
be returned.

Note If links slower than 56 KB per second are supported, it is recommended
that the maximum speed returned be less than 56 KB.

The bandwidth field contains the hopCntWgt plus one as described above in
the description of AInstall. The slotNum represents the physical slot number
that the Slot Manager uses to identify this atlk’s port (usually from 0x09 to
0x0F). Set the slotNum to zero for nonslot hardware (for example, built-in
networking ports). The linkAddress represents the address of the particular
link: the address may be a hardware address (for example, an Ethernet
hardware address) or a configured address (for example, an IP address),
depending on the nature of the link. If 20 bytes isn’t long enough for the link
address, the address may be a unique logical address for the port. Refer to the
Macintosh AppleTalk Connections Programmer’s Guide for more information
on the AGetInfo call. (Note that the ATnlGetInfoRec structure is slightly
different from the AGetInfo record.)

Apple Internet Router: Developing an AURP adev File 11

ATnlConnect (D0 = 32)

Call

Return D0 (word) result code (nonzero if error)

The ATnlConnect routine is called when the AURP module wishes to establish
an AURP connection. During this routine, the atlk establishes the data-link
connection, if necessary. Connect configuration information may be found in the
adev signature and in the configuration record passed in the AInstall call.

Because establishing a data-link connection may be an asynchronous activity and
may take some time, the atlk must notify the AURP module when the connection has
been established. The atlk notifies the AURP module by calling AURPTnlConnDone
(see the section “Calls From the AURP atlk Module (C Interface)” later in this
document). The AURPTnlConnDone call may be made from this ATnlConnect
routine or at some later time after the data-link connection has been established.

Note If an error is returned from this call, the Apple Internet Router will
attempt to make the port inactive.

ATnlDisconnect (D0 = 33)

Call

Return D0 (word) result code (nonzero if error)

The ATnlDisconnect routine is called when the AURP module wishes to bring
down the AURP connection. After this routine is called, the atlk completes any
outstanding writes and closes any open connections. When the connection has
been closed, the atlk notifies the AURP module by calling AURPTnlDiscDone
(see the section “Calls From the AURP atlk Module (C Interface)” later in this
document). The AURPTnlDiscDone call may be made from this ATnlDisconnect
routine or at some later time after the data-link connection has been torn down.

ATnlGetNextIR (D0 = 34)

Call D1 (long) indicator of next IR address
A1 (long) location to store next IR string

Return A1 (long) next IR string
D0 (word) result code (nonzero if error)

On entry, A1 holds a pointer to a 32-byte block allocated by the caller for the
string (Pascal format).

The ATnlGetNextIR routine provides a mapping between the value of an
indicator (next IR) and a string description of the indicator. The AURP module
passes in the next IR indicator. The routine is responsible for filling the block
referenced by A1 with the string equivalent of the next IR in Pascal format
(length byte followed by ASCII characters). The length of the string is limited
to a maximum of 31 characters.

12 AppleTalk Wide Area Developer’s Toolkit

Calls to the AURP atlk module (C interface)

ATnlDoWrite
OSErr ATnlDoWrite (NIRIndicator dstNextIR, WDSElement

 *wdsPtr)

→ dstNextIR indicator of the destination router

→ wdsPtr pointer to array of wds elements containing AURP data to
be written out (starting at the domain header)

When sending a packet, the AURP module calls the atlk routine
ATnlDoWrite. The atlk write routine asynchronously writes the packet out the
data link to the entity corresponding to the given dstNextIR. After the atlk
completes sending the packet, it calls the AURPWriteDone routine (accessed
through the AURPDispatch routine). If an error occurs, the atlk calls the
AURPWriteDone routine with an error and may also return from
ATnlDoWrite with an error. The atlk is guaranteed that only one write will be
issued at a time; ATnlDoWrite will not be called again until after the
AURPWriteDone routine is called. Note that AURPWriteDone
must always be called, even if there is an error on the write.

The AURP module provides the indicator of the destination (dstNextIR). The
wds elements referenced by wdsPtr are owned by the AURP module and thus
should not be modified by the atlk. Note that the AURP module learns about
this routine through the AInstall call described previously.

ATnlReadDone
void ATnlReadDone (Ptr dataPtr, OSErr readResult)

→ dataPtr pointer to data that was read in

→ readResult error result of read

After the AURP module is done processing the incoming packet (passed in the
AURPRead call), it calls the atlk routine ATnlReadDone (which was passed
back in the AInstall call), to notify the atlk that the AURP module is ready to
process the next incoming packet. The dataPtr points to the data that was read
in by the AURP module and is the same value that was passed in the
AURPRead call. The readResult indicates whether the packet was processed
successfully. (Refer to the description of the AURPRead call in the section
“Calls From the AURP atlk Module (C Interface)” later in this document). The
atlk may release the processed read buffer in this routine, but not before.
Before returning to the caller, the atlk should restore the interrupt level to the
level that was saved before calling AURPRead.

Apple Internet Router: Developing an AURP adev File 13

Calls from the AURP atlk module (assembly interface)
AURPLapWrite

Call D1 (long) aurpRef, AURP refnum
D0,D2,D3 (unchanged)
A0–A2 (unchanged)

When the beginning of the atlk’s code (the code that is inserted with
LWrtInsert) is called, the atlk should pass the LAP write call directly to the
AURP module by jumping to this AURP LAP write code (passed in AInstall).
The atlk should pass aurpRef (passed in AInstall) in register D1. In addition,
the atlk should not modify any of the original input values (in registers A0–
A2, D0, D2, or D3). It may, however, use register A3 to do the indirect jump
necessary to call AURPLapWrite.

Calls from the AURP atlk module (C interface)

The AURP interface dispatch routine passed in the AInstall call enables the
atlk to make calls to the AURP module. Calls to the AURP module follow C
calling conventions. The atlk should call the dispatch routine, AURPDispatch,
with the appropriate command type and subsequent parameter list. The
command types are defined as follows:

#define kAURPInstallDone 1

#define kAURPTnlConnDone 2

#define kAURPRead 3

#define kAURPLogMsg 5

#define kAURPWriteDone 6

#define kAURPTnlDiscDone 7

AURPInstallDone
void AURPDispatch(char cmdType = kAURPInstallDone, long

 aurpRef, Ptr atlkDIPtr, ATnlNextIRBlkPtr

 nextIRBlkPtr)

→ aurpRef AURP refnum

→ atlkDIPtr pointer to default Domain Identifier for this port (source)

→ nextIRBlkPtr pointer to structure containing information about next IRs

The AURPInstallDone routine is called after the atlk is done installing itself and
has acquired its full list of initial nextIRs. The aurpRef value is the same as was
passed in AInstall. The atlk passes the default DI to be used for this port in
atlkDIPtr. The default DI consists of a length byte followed by that number of
bytes (Pascal string format). The length byte of the DI must have the same value
as the srcDILen passed back in the ATnlConfigPBlk in the AInstall call. For a
description of DIs, refer to the description of AInstall in “Calls to the AURP atlk
Module (Assembly Interface),” earlier in this document.

14 AppleTalk Wide Area Developer’s Toolkit

The ATnlNextIRBlk is defined as follows:

struct ATnlNextIRBlk {

short numNextIRs; /* The number of next IRs */

NIRIndicator nextIR; /* Indicator of next IR */

 /* Repeat nextIR for numNextIRs */

};

The information in ATnlNextIRBlk describes the atlk’s initial configuration of
nextIRs. The numNextIRs should be equal to the value passed back in
AInstall. If the value is not initially known, the numNextIRs should be zero,
and the rest of the block is ignored. Note that the nextIR is a four-byte
indicator of the next router’s actual address.

The atlk must ensure that the pointers for both atlkDIPtr and nextIRBlkPtr
remain valid until the first ATnlConnect call is made. The AURP module may
reference the blocks until the first ATnlConnect call is made.

AURPTnlConnDone
OSErr AURPDispatch(char cmdType = kAURPTnlConnDone, long

 aurpRef, OSErr connResult)

→ aurpRef AURP refnum

→ connResult Zero if no error, nonzero if unable to establish connection

When the atlk successfully establishes the data-link connection (after
ATnlConnect is called), the atlk must notify the AURP module so that the
AURP module may begin establishing AURP connections over the data link.
To notify the AURP module, the atlk calls AURPTnlConnDone with
connResult equal to zero (noErr). The aurpRef value is the same as was passed
in AInstall. After the data link is set up and any connections are established,
the atlk may deliver incoming packets to the AURP module.

If the atlk is unable to establish a data-link connection, the atlk may call
AURPTnlConnDone with the connResult equal to a nonzero error code, to
notify the AURP module that a data-link connection cannot be established.

Apple Internet Router: Developing an AURP adev File 15

AURPRead
OSErr AURPDispatch(char cmdType = kAURPRead, long aurpRef,

 NIRIndicator srcNextIR, short dataLen, Ptr

 dataPtr)

→ aurpRef AURP refnum

→ srcNextIR indicator of the source router

→ dataLen length of received data

→ dataPtr pointer to received data (at start of AURP data)

Upon receiving a packet, the atlk calls the AURP routine AURPRead to
process the packet. The atlk may not release the read buffer while AURP is
processing the packet. After processing is complete, the AURP module calls
the ATnlReadDone routine passed back in the AInstall routine. If an error
occurs, the AURP module calls the ATnlReadDone routine with an error and
should also return from AURPRead with an error.

Before calling AURPRead, the atlk should save off its current interrupt level.
This precaution is necessary because the router treats the read similarly to
AppleTalk reads and changes the interrupt level. (It sets the interrupt level to
the VSCCEnable level indicated by MPP.) The atlk should restore the interrupt
level when ATnlReadDone is called.

The aurpRef value is the same as was passed in AInstall. The atlk provides an
indicator of the sender of the packet (srcNextIR) to the AURP module so that
the AURP module can associate the packet with the appropriate AURP
connection. The data received is referenced by dataLen, the length of the data,
and dataPtr, a pointer to the data itself. Note that the atlk should remove link-
specific headers before passing the data to the AURP module; the dataPtr
should point to the packet data following the link headers.

16 AppleTalk Wide Area Developer’s Toolkit

AURPLogMsg
void AURPDispatch(char cmdType = kAURPLogMsg, long aurpRef,

 long reserved, Ptr messageStr)

→ aurpRef AURP refnum

→ reserved set to zero

→ messageStr Pascal string containing message to be logged

Whenever the atlk wishes to log a message to the Router Manager router log,
it calls AURPLogMsg with aurpRef (passed in AInstall) and the messageStr, a
pointer to a length byte followed by the log message. The length of the log
message is limited to 223 characters. The reserved parameter should be set to
zero. When this routine is called, the AURP module posts the given message
to the router’s log.

Note It is recommended that at install time, the atlk preload the log messages
into memory from a resource.

AURPWriteDone
OSErr AURPDispatch(char cmdType = kAURPWriteDone, long aurpRef,

 WDSElement *wdsPtr, OSErr writeResult)

→ aurpRef AURP refnum

→ aurpRef wds pointer passed in ATnlDoWrite

→ writeResult error result of read

After the atlk completes the ATnlDoWrite call and is done sending a packet,
the atlk calls AURPWriteDone. The aurpRef value is the same as was passed
in AInstall. The aurpRef is the pointer to the write structure that was passed in
ATnlDoWrite. The writeResult indicates whether the packet was sent
successfully.

AURPTnlDiscDone
OSErr AURPDispatch(char cmdType = kAURPTnlDiscDone, long

 aurpRef, OSErr discResult)

→ aurpRef AURP refnum

→ discResult zero if no error, nonzero if error in closing connection

When the atlk completes bringing down the data-link connection (after
ATnlDisconnect is called), the atlk must notify the AURP module. To notify
the AURP module, the atlk calls AURPTnlDiscDone with discResult equal to
the error result. The aurpRef value is the same as was passed in AInstall.

Apple Internet Router: Developing an AURP adev File 17

Developing an adev file using XTI

This section details the XTI adev Shell sample code. This shell is meant to be
a base for writing a point-to-point AURP adev using the X/Open Transport
Interface (XTI). If a multipoint adev is desired, this code is still useful in
understanding the flow of data between the adev and AURP as well as
between Router Manager and the adev. This section includes some hints for
multipoint links, but they are by no means comprehensive.

IMPORTANT The sample code in this section is included as a guide only. Apple
makes no warranty or representation, express or implied, with respect to the
code, its quality, performance, or fitness for a particular purpose.

There are two main reasons the XTI adev Shell exists. The foremost reason is
that with the upcoming Transport Independent Interface (TII), programming of
the AppleTalk Network System will be moving to an XTI-like standard. If
adevs are written to XTI, the migration to TII will likely be straightforward.
The second reason this shell exists is to give developers an example of how to
use the AURP/atlk interface and, to a somewhat lesser extent, how to use the
Router Manager/adev interface (see Figure 1).

This code was written to the MacOSI transport specifications that are currently
in step with the TII specifications. This may change before TII is released,
however, so care should be taken. Other XTI implementations may not work,
because substantial effort has been put into making TII, and hence the XTI
shell, capable of operating asynchronously. (Standard XTI is not by nature
asynchronous.)

The code is a hypothetical adev that uses an X.25 addressing scheme and
appears in Router Manager under the printer and modem ports. (This is
admittedly not a real-life application, but it makes a good example!)

Router/AURP

adev

atlk resource adev resource

Router Manager

AInstall,
AShutdown,
ATnlConnect, etc.

AURPInstallDone,
AURPRead,
AURPWriteDone, etc.

MGetAdev,
MAClick,
MAIdle, etc.

Figure 5 adev interfaces

18 AppleTalk Wide Area Developer’s Toolkit

The best plan of attack is to go through the source code, reading the comments
carefully. For each procedure, the comments state whether or not the code may
need to be modified and why. Below is a kind of checklist, or map, of the
modifications that may need to be made, as well as an overview of some of the
more complicated sequences.

Source code map

The table below lists the files provided and gives a brief description of their
contents.

Filename Description

AURPEqu.a Assembler equates for the AURP/atlk interface.

AURPInterface.h C include file for the AURP/atlk interface.

TADev.h C include file that contains definitions needed by all Apple Internet
Router adevs.

X25_Addr.h C include file that contains X.25 addressing defines.

XTI.h C include file that contains defines for XTI events and errors, and
prototypes for XTI calls.

XTIShell.a The main assembly code for the atlk portion of the adev. The calls from
AURP to the atlk are implemented here.

XTIShell.c The C code that supports the XTIShell.a code. All the routines in this
file are called from the .a file.

XTIShell.h Main C Include file for both adev and atlk portions of the adev.

XTIShell.r Main resource file.

XTIShellADev.a Main assembly code for the adev portion of the adev. The calls from
Router Manager are received here and passed on to XTIShellADev.c.

XTIShellADev.c Main C code that supports the XTIShellADev.a code. All the routines in
this file are called from the .a file.

XTIShell_r.h Resource includes.

Modifications that may be needed

The following table indicates what changes may be required for each file.

Apple Internet Router: Developing an AURP adev File 19

Filename What to Change

AURPEqu.a Nothing.

AURPInterface.h Nothing.

TADev.h When an itemRef is assigned to you by MacDTS, it should be entered here.

X25_Addr.h This file should be replaced by an include file that outlines the structures
involved in addressing your particular link.

XTI.h This is included merely for sake of compilation. Your code would need to
include the headers of the XTI implementation you are using (TII,
MacOSI, or other).

XTIShell.a
n DoInstall If you would like to specify a Domain Indicator other than 0x0100 (null

DI), do so here.

If you would like to specify your next internet router (nextIR) more
explicitly than a code indicating call or answer, do so here.

n GetNextIR On a point-to-point link, there is only one nextIR to map, so if you have a
multipoint link, you will have to look at the indicator passed in by AURP.
On the other hand, if you have a point-to-point link but would like to use
something other than the remote address as the string, do so here. An
example of this is DialUp using the string “Answering.”

n FreeReadBuf If you intend to change the method by which packets are read (see the
section “Read Sequence” later in this document), this routine may need
to change. This should not be necessary, however.

XTIShell.c
n DoXTIInstall Fill in the line speed and maximum buffer size of your link here.

Fill in the remote address of the router you are connecting to in the
format appropriate to your link.

If you need memory other than what is already allocated, allocate it here.

n DoXTIShutdown If you allocated any extra memory, make sure to dispose of it here.

n try_open If you would like to limit the number of times a connection is attempted
before giving up, add that capability here.

n do_open If you would like to have a provider name other than the slot ID,
substitute the name here.

n do_bind Change this to use the addressing scheme appropriate for your link.

n do_connect Change this to use the addressing scheme appropriate for your link.

n get_listen If password protection is desired, add code here to verify the password
before accepting the connection.

XTIShell.h Review all data structures and add variables you need as appropriate.

XTIShell.r Add any extra log messages in this file as well as any other strings or
resources you need.

XTIShellADev.a Nothing.

XTIShellADev.c This file is a shell containing place holders for the routines you need to
implement to communicate with Router Manager. You will need to
modify the entire file.

XTIShell_r.h Put any resource defines you may add in here.

20 AppleTalk Wide Area Developer’s Toolkit

Open sequence

At install time, the adev allocates memory and initializes variables. When
AURP calls the adev to connect, a time manager task is installed (through the
Time Manager); it in turn installs a deferred task (through the Deferred Task
Manager) that is responsible for the open, bind, and connect (if calling). The
flow chart of this deferred task (try_open) is shown in Figure 6.

The try_open routine is confusing because it is called repeatedly to do several
tasks. Each time it is called it may be in a different state; the states are defined
as follows:

1. The routine has never before been entered; it requires an open, a bind, and a
connect.

2. The open is complete; it requires a bind and a connect.

3. The bind has been initiated but not completed; the routine is waiting for the
bind to complete.

4. The bind is complete; it requires a connect.

What state the try_open routine is in needs to be determined before action can
be taken (see Figure 6).

Read sequence

When a T_DATA event is received, the buffer is checked for availability. If it
is available, the get_data routine is called to read the data. If it isn’t available,
a variable indicating the number of packets waiting is incremented. The
get_data routine is responsible for reading all the data currently available on
the link or one packet’s worth (whichever comes first), where a packet must be
less than or equal to the max read packet size (maxRPktSz).

When a T_DATA event occurs is likely dependent on the XTI
implementation. This code assumes a T_DATA event will be received for
some sequence of fragments that likely add up to a complete packet. A
T_DATA event will be generated for a partial packet only if one or more
fragments do not arrive in a timely manner.

When a full packet has been read, it is handed off to AURP. When AURP is
done with it, the FreeReadBuf routine is called. This routine checks to see if
there are any more packets waiting to be read, and if so, it calls the get_data
routine to read them. If an error other than T_NODATA occurs, the adev will
disconnect, tell AURP the connection went down, and attempt to reconnect.

Figure 7 shows the flow chart of the read sequence.

Apple Internet Router: Developing an AURP adev File 21

Write sequence

When the adev is called by AURP to write a packet, it copies the WDS into
one buffer and sends it by means of XTI. When the T_SENDCOMPLETE
event is received, it checks to see if all the data was sent. If not, it resends the
remainder of the data. If all the data was sent, it tells AURP the write
completed successfully.

Errors in the write sequence are handled in a similar manner to errors in the
read sequence, with the exception of the T_FLOW error. If this error occurs,
the link is flow-controlled, and the packet is held until a T_GODATA event is
received. Because the write complete routine has not been called, AURP will
not send any more data to the adev at this time.

Close/Shutdown sequence

When an error occurs or the port is made inactive, the adev performs its close
sequence. If there is an outstanding write, it is canceled by calling the write
done routine with an error. The endpoint is then closed, and the file descriptor
set accordingly. In the case of a shutdown, memory is also released.

22 AppleTalk Wide Area Developer’s Toolkit

Called by
Time Manager

Reinstall Time
Manager routine

Connect

Done

Is there an
outstanding

bind?

No
(State unknown)

Is the open
complete?

Yes
(State unknown)

Yes
(State 3)

Is the bind
complete?

Yes

Clear waiting flag and
check error.

Do open.
No
(State 1)

Was the open
successful? No

Yes

Is the bind
complete?

Yes
(State 4)

Do bind.
No
(State 2)

Was there an
immediate
bind error? No

Yes

Close the endpoint.

Set flag indicating
bind outstanding.

Are we the
calling router?

Yes

No

Figure 6 try_open flow chart

Apple Internet Router: Developing an AURP adev File 23

T_Data event
received

No

Is the read
buffer available?

Is the buffer
partially filled?

Initialize variables.

Yes

Yes

No

Clear waiting for
more data flag.

Increment packets
waiting count.

Read.

Did a read
error occur?

No

More data?
(T_MORE set)?

No

Yes

Read buffer returned
from AURP.

Are there
packets
waiting?

Set flag indicating
buffer available.

No

Yes

Yes

Continued

Figure 7 Read sequence flow chart (continued on next page)

24 AppleTalk Wide Area Developer’s Toolkit

Yes

Did we read
the whole
 packet?

Did we get
an error ? No

No

Yes

Done.

Was it a
T_NODATA

error?

Send to AURP.

Yes
We have a partial

buffer now, set flag.

No
Other error. Disconnect,
tell AURP the connection

dropped, and try to reconnect.

Yes

No

Was it a T_LOOK
indicating a

disconnect event?

Get the disconnect.

Figure 7 Read sequence flow chart (continued)

K Apple Internet Router: Extending
IP Tunnel and DialUp

K Apple Computer, Inc.
This manual and the software described in it are
copyrighted, with all rights reserved. Under the copyright
laws, this manual or the software may not be copied, in
whole or part, without written consent of Apple, except in
the normal use of the software or to make a backup copy
of the software. The same proprietary and copyright
notices must be affixed to any permitted copies as were
affixed to the original. This exception does not allow
copies to be made for others, whether or not sold, but all
of the material purchased (with all backup copies) may be
sold, given, or loaned to another person. Under the law,
copying includes translating into another language or
format.

You may use the software on any computer owned by
you, but extra copies cannot be made for this purpose.

The Apple logo is a registered trademark of Apple
Computer, Inc. Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes without the
prior written consent of Apple may constitute trademark
infringement and unfair competition in violation of
federal and state laws.

Every effort has been made to ensure that the information
in this manual is accurate. Apple is not responsible for
printing or clerical errors.

© Apple Computer, Inc., 1993
20525 Mariani Avenue
Cupertino, CA 95014-6299
(408) 996-1010

Apple, the Apple logo, AppleTalk, Macintosh, and
MacTCP are trademarks of Apple Computer, Inc.,
registered in the United States and other countries.

Simultaneously published in the United States and
Canada.

Mention of third-party products is for informational
purposes only and constitutes neither an endorsement nor
a recommendation. Apple assumes no responsibility with
regard to the performance or use of these products.

Contents

About this document / 2

IP Tunnel / 2

DialUp / 4

2 AppleTalk Wide Area Developer’s Toolkit

About this document

This document outlines the process for extending the IP Tunnel and DialUp
adev files to support your mdev or serial driver. To get a copy of the adevs that
support this functionality please contact your Apple evangelist.

IP Tunnel

The AppleTalk/IP Wide Area Extension (IP Tunnel adev), which is layered on
top of MacTCP, supports different physical media much as MacTCP does (see
Figure 1). IP Tunnel contains built-in support for Ethernet and may be
extended to run over any other medium.

Note IP Tunnel does not support the concept of subports as defined in the
Apple Internet Router.

Router

AURP

IP Tunnel adev

MacTCP

Ethernet
mdev

Token Ring
mdev

ISDN
mdev

Other
mdevs

Figure 1 IP tunneling over alternate links

In order to configure IP Tunnel to run over media other than Ethernet, the
following building blocks and “glue” pieces are necessary:

n An mdev file, as described in “Building Alternate Link Access Modules for
MacTCP,” which is available on Essentials•Tools•Objects (E.T.O.) (order
number M0895LL). The IP Tunnel adev relies on implementation of the
LAP_statistics mdev call to return correctly the “slot” number of the
interface for which the mdev is currently configured.

n If the mdev is not slot based, it must only conform to the latest “Building
Alternate Link Access Modules for MacTCP,” specifically the new
definition of the LAP_Statistics call. If the “slot” number returned is 1 or 2,
IP Tunnel will include itself underneath the modem and printer ports,
respectively. If the slot number is -1 or 3 (SCSI or other), a new device
“MacTCP port” will be created containing the IP Tunnel method. No other
pieces are necessary.

n If the mdev is slot based (such as Ethernet or Token Ring), an IDv2
resource in the IP Tunnel file with a res ID equal to (-4032 – x), where x is
a unique positive number (0,1,2, . . .) that you can get from Apple
Developer Technical Support. The IDv2 resource is formatted as follows:

Apple Internet Router: Extended IP Tunnel and DialUp 3

type 'IDv2' { /* IP Tunnel device block (v2) */

 integer; /* base res ID for device strings */

 integer; /* res ID for device 'ICON' */

 integer; /* spCategory */

 integer; /* spCType */

};

The first field, a word, contains the base res ID for strings ('STR ')
describing the device (see details later in this document). The second field,
also a word, contains the res ID for the device small icon suite (icn#). The
third and fourth fields are the category and type of card as defined by the
Slot Manager sResource.

The Token Ring IDv2 is shown below as an example (x = 0):

#define catNetwork 4

#define typeToken 2

resource 'IDv2' (-4032) { /* Token Ring */

 -4044, /* res id for 'STR ' */

 -4034, /* res id for small icon

 suite */

 catNetwork, /* spCategory */

 typeToken, /* spCType */

};

n The device string resources ('STR ') starting at the res ID specified in the
IDv2. The seven strings must have sequential res IDs. The IDs should start
at (-4044 – 7x), where x is the same unique positive number as described
previously (0,1,2, . . .). The IDs should increment in the negative direction.
The first string resource contains the name of the device. The remaining
string resources contain the name of the device plus “(Slot n),” where n is
the logical slot number from 1 to 6 (in order).

The Token Ring STR resources are shown below as examples (x = 0):

resource 'STR ' (-4044, "", preload) {

 "Token Ring";

};

resource 'STR ' (-4045, "", preload) {

 "Token Ring (Slot 1)";

};

resource 'STR ' (-4046, "", preload) {

 "Token Ring (Slot 2)";

};

resource 'STR ' (-4047, "", preload) {

 0"Token Ring (Slot 3)";

};

4 AppleTalk Wide Area Developer’s Toolkit

resource 'STR ' (-4048, "", preload) {

 "Token Ring (Slot 4)";

};

resource 'STR ' (-4049, "", preload) {

 "Token Ring (Slot 5)";

};

resource 'STR ' (-4050, "", preload) {

 "Token Ring (Slot 6)";

};

n The device small icon suite (ics#) with the res ID specified in the IDv2. The
ID should be equal to (-4034 – x), where x is the same unique positive
number as described previously (0,1,2, . . .). The device icon is a graphical
representation of the device. It should be easy for the user to associate the
icon with the actual card. The entire small icon suite (ics#, ics8, ics4)
should exist so Router Manager can display the appropriate icon based on
the current display.

The Token Ring icon resource is shown below as an example (x = 0):

resource 'ics#' (-4034) {

 {

 // icon data here

 }

};

resource 'ics4' (-4034) {

 // icon data here

};

resource 'ics8' (-4034) {

 // icon data here

};

DialUp

The DialUp adev is layered on top of the AppleTalk Remote Access Link Tool
Manager, which supports Macintosh serial drivers such as the .AIn and .AOut
drivers. DialUp contains built-in support for the printer and modem ports, and may
be extended to run over slot-based devices with a single port or multiple ports.

In order to configure DialUp to run over media other than the printer and
modem ports, the following building blocks and “glue” pieces are necessary:

n Input and output drivers for the card.

n A 'DDev' resource in the DialUp file with a res ID equal to (-4032 – x),
where x is a unique positive number (0,1,2, . . .) that you can get from Apple
Developer Technical Support. The DDev resource is formatted as follows:

Apple Internet Router: Extended IP Tunnel and DialUp 5

type 'DDev' { /* DialUp device block */

 integer; /* base res ID for device strings */

 integer; /* res ID for device small icon suite */

 integer; /* res ID for STR# containing driver names */

 integer; /* spCategory */

 integer; /* spCType */

 integer; /* number of ports */

 longint; /* type of file where INIT code resides */

 longint; /* creator of above file */

};

Field 1 The base resource ID for the strings describing the device
and its ports (see details provided later).

Field 2 The base resource ID for the small icon suites for the
device and its ports (see details provided later).

Field 3 The resource ID of the string list resource containing the
names of the input and output drivers for the device.

Field 4 and 5 The Slot Manager spCategory of the card (this value will
probably be 4 – catNetwork) and spCType of the card,
respectively.

Field 6 If the card is multiport, this is the number of ports on the
card; otherwise, this field should be 0.

Field 7 and 8 If there is any INIT code used to load the drivers, the type
and creator of the file containing the INIT code,
respectively. The file is assumed to be in the Extensions
folder. When the router is set to run at startup, this INIT
code will be loaded and run. If no INIT code exists, these
fields should be 0.

The Serial NB Card DDev is shown below as an example (x = 0):

resource 'DDev' (-4032) {

 kSerNBStrRes,

 kSerNBIconRes,

 kSerNBstrlRes,

 6, // communications category

 25, // Serial NB card type

 4, // 4 ports

 'INIT',

 'xxxx'

};

6 AppleTalk Wide Area Developer’s Toolkit

n The device string resources ('STR ') starting at the res ID specified in the
DDev. The seven strings must have sequential res IDs. The IDs should start
at (-4044 – 25x), where x is the same unique positive number as described
previously (0,1,2, . . .), and should increment in the negative direction. The
first string resource contains the name of the device. The next 6 string
resources contain the name of the device plus “(Slot n),” where n is the
logical slot number from 1 to 6 (in order). Following these should be the
string resource containing the port names if the device is multiport.

The Serial NB STR resources are shown below as examples (x = 0):

resource 'STR ' (-4044, "", preload) {

 "Serial NB";

};

resource 'STR ' (-4045, "", preload) {

 "Serial NB (Slot 1)";

};

resource 'STR ' (-4046, "", preload) {

 "Serial NB (Slot 2)";

};

resource 'STR ' (-4047, "", preload) {

 "Serial NB (Slot 3)";

};

resource 'STR ' (-4048, "", preload) {

 "Serial NB (Slot 4)";

};

resource 'STR ' (-4049, "", preload) {

 "Serial NB (Slot 5)";

};

resource 'STR ' (-4050, "", preload) {

 "Serial NB (Slot 6)";

};

resource 'STR ' (-4051, "", preload) {

 "Port 1A";

};

resource 'STR ' (-4052, "", preload) {

 "Port 1B";

};

resource 'STR ' (-4053, "", preload) {

 "Port 2A";

};

resource 'STR ' (-4054, "", preload) {

 "Port 2B";

};

Apple Internet Router: Extended IP Tunnel and DialUp 7

n The device and port small icon suites (ics#) starting with the res ID specified in
the DDev. The ID should be equal to (-4034 – 20x), where x is the same unique
positive number as described previously (0,1,2, . . .). The entire small icon suite
(ics#, ics8, ics4) should exist so Router Manager can display the appropriate
icon based on the current display. The first small icon suite should be for the
device and the remaining should be for the ports if the card is multiport.

The Serial NB Card icons (ics# only) are shown below as an example (x = 0):

resource 'ics#' (-4034) {
 {
 // device icon data here
 }
};

resource 'ics4' (-4034) {
 // device icon data here
};

resource 'ics8' (-4034) {
 // device icon data here
};

resource 'ics#' (-4035) {
 {
 // port 1 icon data here
 }
};

other port 1 icons . . .

resource 'ics#' (-4036) {
 {
 // port 2 icon data here
 }
};

other port 2 icons . . .

resource 'ics#' (-4037) {
 {
 // port 3 icon data here
 }
};

other port 3 icons . . .

resource 'ics#' (-4038) {
 {
 // port 4 icon data here
 }
};

other port 4 icons . . .

8 AppleTalk Wide Area Developer’s Toolkit

n A string list resource containing the names of the drivers for each port (or
one name if it is a single port device) with resource ID (-4038 – x), where x
is the same unique positive number as described previously (0,1,2, . . .).

The Serial NB Card driver names are shown below as an example (x = 0):

resource 'STR#' (-4038) {

 {

 ".SNB0In",

 ".SNB0Out",

 ".SNB1In",

 ".SNB1Out",

 ".SNB2In",

 ".SNB2Out",

 ".SNBC3In",

 ".SNBC3Out"

 }

};

K Apple Internet Tunnel Simulator

 Apple Computer, Inc.
This manual and the software described in it are
copyrighted, with all rights reserved. Under the
copyright laws, this manual or the software may not be
copied, in whole or part, without written consent of
Apple, except in the normal use of the software or to
make a backup copy of the software. The same
proprietary and copyright notices must be affixed to
any permitted copies as were affixed to the original.
This exception does not allow copies to be made for
others, whether or not sold, but all of the material
purchased (with all backup copies) may be sold, given,
or loaned to another person. Under the law, copying
includes translating into another language or format.

You may use the software on any computer owned by
you, but extra copies cannot be made for this purpose.

The Apple logo is a registered trademark of Apple
Computer, Inc. Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes without the
prior written consent of Apple may constitute
trademark infringement and unfair competition in
violation of federal and state laws.

Every effort has been made to ensure that the
information in this manual is accurate. Apple is not
responsible for printing or clerical errors.

© Apple Computer, Inc., 1993
20525 Mariani Avenue
Cupertino, CA 95014-6299
(408) 996-1010

Apple, the Apple logo, AppleTalk, Macintosh, and
MacTCP are trademarks of Apple Computer, Inc.,
registered in the United States and other countries.

Simultaneously published in the United States and
Canada.

Mention of third-party products is for informational
purposes only and constitutes neither an endorsement
nor a recommendation. Apple assumes no
responsibility with regard to the performance or use of
these products.

Contents

About this document / 2

Features / 2

Setup / 2

Commands / 3
File menu / 3

New Log File / 3
Close Log File / 3
Quit / 3

Setup menu / 4
Preferences / 4
Update Timers / 6
Update Events / 7
Load Configuration / 7
Add Simulated Router / 8
Add Test Router / 9
Set IP Gateway / 9
Run / 10

Routers menu / 10
Select Simulated Routers / 10
Select Test Routers / 11

Send menu / 11
Open Request / 11
RI Request / 11
RI Update / 12
Null RI Update / 12
Router Down / 12
ZI Request / 13
Get Zone Nets / 13
Get Domain Zone List / 13
Tickle / 13

Misc menu / 13
Router Up/Down / 13
Use Extended ZI-Rsp / 13
Block Next Packet / 13

Log display / 14
Outgoing packet capture / 15
Other features / 15

Known problems, limitations, and troubleshooting / 16

2 AppleTalk Wide Area Developer’s Toolkit

About this document

The Apple Tunnel Simulator is a tool for testing AppleTalk Update-based
Routing Protocol (AURP) compliant routers. It is designed to work
specifically with AURP IP tunneling. This document explains how to set up
the Tunnel Simulator and describes features of the software.

IMPORTANT The Apple Tunnel Simulator is a test tool to help developers
check many of the functions and features of the AURP protocol. It should
not be taken as a reference standard. Apple makes no warranty or
representation, express or implied, with respect to the program, its quality,
performance, or fitness for a particular purpose.

Features

The Apple Tunnel Simulator has the following features:

n It acts as one or more routers.

n It simulates large AppleTalk network topologies.

n It creates multiple AURP connections.

n It connects and exchanges network and zone information, and maintains
the AURP protocol link between the routers.

n It displays information on packets received and sent.

n It does sanity checking on packet IDs and sequencing numbers.

n It can simulate randomly changing network topology.

n It can load configurations and topologies from files.

Setup

The Apple Tunnel Simulator is a stand-alone application that can be
launched by double-clicking its icon. The following steps show how to set
up the simulator.

IMPORTANT The Apple Tunnel Simulator does not use MacTCP, and
MacTCP must be removed before the simulator is run. The Apple Tunnel
Simulator must be run on an independent Macintosh computer connected
by Ethernet to the router being tested.

1 Select the Add Simulated Router command in the Setup menu.

2 Type in the IP address for a simulated router.

3 Click the Generate Network button to create a default network topology for the
simulated router.

Apple Internet Tunnel Simulator 3

4 Select the Add Test Router command in the Setup menu.

5 Type in the IP address of the router to be tested.

6 Select the Run command in the Setup menu.

The Tunnel Simulator activates the simulated router and attempts
handshaking with the test router. To initiate a connection, either the test
router must have the address of the simulated router, or the test router must
be set up to accept connections from any router.

Commands

This section describes in detail the commands in each menu of Apple
Tunnel Simulator.

File menu

New Log File

All output to the Log display window is captured in a text file.

Close Log File

Output capture is turned off and the log file is closed.

Quit

Before Apple Tunnel Simulator quits, it sends a “router down” command
on all open AURP connections. The simulator waits 5 seconds for any ACK
responses and then quits.

Note Apple Tunnel Simulator does not currently support the Open Log
File, Save Log File, and Save Log File as menu commands. The
corresponding menu items appear dimmed.

4 AppleTalk Wide Area Developer’s Toolkit

Setup menu

Preferences

Brings up the Tunnel Simulator Preferences dialog box. Each item in the
dialog box is described below.

Display Packet Headers (checkbox) When this option is selected, all AURP
packets sent and received by the simulator have their header information
displayed in the status window.

Display Raw Packet Data (checkbox) When this option is selected, all packets
received and sent by the simulator are displayed in the status window. (This
option is not implemented in this version of Apple Tunnel Simulator).

Display ARP information (checkbox) When this option is selected, all AURP
packets sent and received by the simulator have their header information
displayed in the status window.

Display Status messages (checkbox) When this option is selected, status
messages such as “router alive” and “update event” are displayed.

Initiate Router Connections (checkbox) When this option is selected, the
simulated routers initiate connections to routers under test. If this option is
not selected, the test routers must know about the simulated routers in order
to open AURP connections.

Apple Internet Tunnel Simulator 5

Network card slot (value) The slot number of the network card to be used by
the simulator. This is the physical slot number (9..E) and not the virtual slot
number (1..6). If a network card is not found in the slot indicated, a slot
with a network card is selected.

Max Zones per Net (value) The maximum number of zones that can be
associated with one simulated network. Apple Tunnel Simulator selects a
random number from 1 to the value entered here.

Maximum Number of Generated Zone Names (value) The simulated routers
randomly generate zone names for their networks. Multiple network ranges
may have the same zone name. The number of zones generated by the
simulator will not exceed the value specified here. This value should be set
to the test router’s maximum number of zones minus the number of zones
the test router has created for itself. If multiple test routers are used, then all
the zones they create must be taken into account. This value should be set
before any simulated routers are created.

Start & End of Generated Net Addresses (values) These values define a range of
network numbers that the simulated routers can create when randomly
generating AppleTalk networks. These values must be set before any
simulated routers are created. Once a router is created, these values are
stored internally and cannot be changed. The network range can be shared
by multiple simulated routers without duplication. However, between
creating the routers, change these values so that multiple simulated routers
have separate ranges. These values do not limit networks loaded by a
topology file.

Address of first simulated router (value) Can be used in conjunction with the
Save as default button to store the IP internet address of the first simulated
router. This value is used by the Add Simulated Router command.

Address of first router under test (value) Can be used in conjunction with the
Save as default button to store the IP internet address of the first router to
be tested. This value is used by the Add Test Router command.

Save as default (button) When this button is clicked, the values and
checkbox states
are saved in a resource of the program and are used as defaults each time
the program is run. Clicking this button also saves the values in the Update
Timers dialog box (see the next section).

6 AppleTalk Wide Area Developer’s Toolkit

Update Timers

This command displays the dialog box shown below. The values entered in
this dialog box are saved as defaults when you click the “Save as defaults”
button in the Preferences dialog box.

This dialog box is used to set the quantity and time intervals for random
update events. Each event has one to four values. The first two values set
the time an event will occur, in seconds. The time will be a randomly
selected number between the two values. If there is only one value, then the
time will not be random. The third and fourth values set how many of that
event will occur. This quantity will also be a random amount between the
two values.

The NULL event does not do anything in this revision of the software. The
NA event generates new networks in the router, and the ND, NRC, NDC,
and ZC events are applied to current networks.

The number of networks actually affected may be less than what is
specified. When the RI-Update interval is reached, an RI-Update packet is
created with the networks affected by these events.

The Router Up and Router Down intervals control the amount of time that
a simulated router is actively talking to the test router and how long it can
go down and be inactive. The cycle repeats, based on the quantity values
entered in the dialog box.

The Open-Req value is the interval the router polls when a connection is
not open, and the Tickle value is the interval that tickle packets are sent on
an open connection.

To enable the events, use the Update Events command. The Open-Req and
Tickle events are always enabled. To keep an event from occurring, set the
event’s time to a large number.

Apple Internet Tunnel Simulator 7

Update Events

Starts the update events based on the timers set in the Update Timers dialog box.

Load Configuration

Brings up the directory dialog box, so you can select a configuration file.
The configuration file is a text file that gives Apple Tunnel Simulator setup
information. The contents and format of the file are as follows:

! Commands are the first letter of a line and are as follows:

!

! ! - comment lines

! T - Test routers ie. T ip-address

! S - Simulated routers ie. S ip-address [topology

! filename]

! (If no topology filename is given, a default network

! topology is generated)

! NR - network range ie. NR 10000 19999

! MZ - maximum zones ie. MZ 150

!

! For example:

!

! Routers under test

!

T 90.190.51.200

t 90.190.51.201

!

! Simulated tunnel routers

!

NR 10000 19999

S 90.190.51.1

!

NR 20000 29999

S 90.190.51.2

!

nr 30000 39999

S 90.190.51.5 5Mixed.Ext

s 90.190.51.110 100Mixed.Ext

!

! Set the maximum number of zones

!

MZ 200

!

! end

8 AppleTalk Wide Area Developer’s Toolkit

Apple Tunnel Simulator uses two types of files: the configuration file, which
provides the simulator with setup information (shown previously), and the
network topology file, which provides a simulated router with a network
topology. The topology file can be used by the configuration file in the “S”
command, or it can be used manually with the Add Simulated Router menu
option, which includes the format of the topology file (see the next section).

Add Simulated Router

Creates a simulated AURP router with an AppleTalk network topology.
Selecting this command first brings up a dialog box in which you enter the
IP address of the simulated router.

The initial address displayed is based on the address given in the
Preferences dialog box. The next time the command is invoked, the address
is incremented by one from the previous address used. A maximum of
1000 simulated routers can be created.

Clicking the Generate Network button randomly creates a small topology
based upon the start and end network numbers set in the Preferences dialog
box.

Clicking the Load Network Config button brings up the directory dialog
box, so you can select a topology file. The topology file can be used to set
up the network numbers and ranges for the simulated AppleTalk network.
If you have not specified zone names, Apple Tunnel Simulator randomly
generates them and assigns them to the network numbers. The topology
file format is as follows:

Non/Extended Flag, NetStart, [NetEnd], NetDistance=0,

 [Zone Name]

Number of Network Ranges

Non/Extended Flag, NetStart, [NetEnd], NetDistance,

 [Zone Name]

<Repeat the network range descriptions for the number of

 network ranges>

Following is an example of data within a topology file:

1 158 160 0

3

1 7000 7010 10

1 7011 7017 6 West Zone

0 7018 4

Apple Internet Tunnel Simulator 9

A network can be either nonextended or extended. Zero represents a
nonextended network, and 1 represents an extended network.

NetEnd is required when entering extended networks.

The zone name is optional. If it is not specified, it will be randomly
generated. Only one zone name can be used. The zone name consists of
the first nonspace character following the network distance (NetDistance)
and all the characters to the end of the line.

The Number of Network Ranges is the number of networks (or network
ranges) that are defined in the list that follows.

Note The first network specified in the topology file must have a distance
of zero. The file format is the same as the format used by the BridgeSim
test tool, except that zone names may be added. Gaps between the numbers
of the file can be either spaces or tabs.

Add Test Router

Brings up a dialog box in which you enter the IP address of the router
under test. The initial address displayed is based on the address given in the
Preferences dialog box. If the command is invoked again, the default
address is the previous address plus one. The maximum number of routers
that can be specified is 50.

Set IP Gateway

Displays the IP Router Information dialog box (shown here), which allows
Apple Tunnel Simulator to communicate to IP gateways and routers.

Since Apple Tunnel Simulator can create several IP addresses, it does not
use MacTCP and thus does not have the information in the MacTCP
control panel. The IP Router Information dialog box is the micro
substitution for the control panel. Selecting the Enable Routing option
causes Apple Tunnel Simulator to poll for the gateway and direct all traffic
to IP addresses out of its network to the gateway. “Number of NODE bits”
defines what is in Apple Tunnel Simulator’s local network. “Address of IP
Gateway” is the IP address of the local gateway.

10 AppleTalk Wide Area Developer’s Toolkit

Run

Starts the simulation. If Initiate Router Connections is selected in the
Preferences dialog box, then all of the simulated routers try to establish
AURP connections with all of the test routers. Additional simulated routers
and test routers may be added when the simulation is running.

The Run command toggles with the Stop command. When Stop is selected,
Apple Tunnel Simulator does not produce nor respond to any packet data,
and the menu command reverts to Run. When the router is restarted, any
packets received in the interval between stopping and starting again are
purged and lost.

Note Stopping the simulator does not tear down the connections; it freezes
them.

Routers menu

The Routers menu is used to select the routers, both simulated and those
under test, to be used as source and destination for packets sent by the Send
menu. All combinations of addresses are used. If you select two simulated
routers and two test routers, then four operations occur.

Select Simulated Routers

Brings up a dialog box with a list of IP addresses for all simulated routers.
Any highlighted router addresses are used in conjunction with the
commands in the Send menu. The dialog box is similar to the Select Test
Routers dialog box (see the next section), except that the simulated routers
are identified by numbers instead of letters.

Apple Internet Tunnel Simulator 11

Select Test Routers

Brings up a dialog box with a list of IP addresses for all test routers. Any
highlighted router addresses are used in conjunction with the commands in
the Send menu.

Below is an example of the Select Test Routers dialog box. The two letters
preceding each router’s IP address are used to identify the router in the
packet headers shown in the log window.

Send menu

Note This menu is used to send AURP packets. The packets are sent from
selected simulated routers to selected test routers designated in the Router
menu.

Open Request

Sends an Open Request packet from all selected simulated routers to all
selected test routers.

RI Request

Sends an RI Request packet from all selected simulated routers to all
selected test routers.

12 AppleTalk Wide Area Developer’s Toolkit

RI Update

For each selected simulated router, displays a directory dialog box with a listing
of all the networks created for that router. The buttons in the dialog box
control attributes attached to those networks. Each button is described below.

Add (Random) Asks for and then adds the specified number of networks to
the network list. The new networks will have network numbers in the range
set in the Preferences dialog box.

Add (Custom) Asks for a network range and a zone name. Any network
numbers can be used except numbers already in use by the simulator.

Delete Lets you mark for deletion any networks that are highlighted in the list.

Route Change and Zone Change Mark any selected networks for those
respective updates. The Zone Change update command has not been fully
defined in the AURP specifications, which means that Apple Tunnel
Simulator sends the proper data, but the current implementation of the
router ignores it.

Distance Change Asks for a new network distance for each highlighted
network in the list and marks the networks for this change.

OK When the OK button is clicked, a packet is created based on the network
updates selected. The packet is sent to the selected test routers.

Note If the number of update events created exceed one packet, Apple
Tunnel Simulator gives a warning. The extra events are not sent but can be
sent later by reselecting the RI Update command.

Null RI Update

Sends a Null RI Update packet from all selected simulated routers to all
selected test routers.

Apple Internet Tunnel Simulator 13

Router Down

Sends a Router Down packet from all selected simulated routers to all selected
test routers. The simulated routers reset to initial preconnection conditions.

ZI Request

Sends a ZI request packet from all selected simulated routers to all selected
test routers. (This command is not implemented in this release.)

Get Zone Nets

Sends a GetZoneNets packet from all selected simulated routers to all selected
test routers. Displays a dialog to enter the zone name to use in the packet.

Get Domain Zone List

Sends a GetDomainZoneList packet from all selected simulated routers to
all selected test routers. Displays a dialog box in which you enter the
starting reference number to use in the packet. The default is 1, which gets
the zone list from the beginning.

Tickle

Sends a Tickle packet from all selected simulated routers to all selected test routers

Misc menu

Router Up/Down

Forces each simulated router selected under the Routers menu to change
state from up to down or down to up. If the simulated router is up, it sends
a Router Down packet to all connected test routers and then ignores open
requests from the test routers. If the simulated router is down, then selecting
this command allows the simulated routers to connect to the test routers.

Use Extended ZI-Rsp

Forces each simulated router to send extended ZI-Rsp packets. The data in
all normal ZI-Rsp packets is divided between two extended ZI-Rsp packets.

14 AppleTalk Wide Area Developer’s Toolkit

Block Next Packet

Tells Apple Tunnel Simulator to ignore the next packet sent to it. Apple
Tunnel Simulator ignores one packet each time this command is selected.
Thus, if this command is activated five times in quick succession, the
simulator ignores the next five packets.

Log display

This window displays information text and status messages. It may be
output to a long file by using the New Log File command in the File menu.
A typical display of packet headers is shown below:

Lines starting with four dashes (----) are information messages. Lines
starting with asterisks (****) are error messages.

The bulk of the lines above are packet headers. The format of the packet
headers is as follows: A line that starts with a dot (•) is sent from the
simulator to a test router. “D” is destination and “S” is source. “AA”
signifies the first test router; subsequent routers would be AB, AC, and so
forth. Simulated routers are numbered. The next column is the packet type.
CID is the AURP connection ID in hex. SEQ is the sequence number in
decimal. FLG is the packet flags in hex. If the sequence number and flags
are zero, then those columns are not displayed.

Apple Internet Tunnel Simulator 15

Outgoing packet capture

Apple Tunnel Simulator supports outgoing packet capture and
manipulation. Any packet that the simulator is about to send can be
displayed and then sent as is, modified before being sent, or dropped. To
intercept a packet, hold down the x and Shift keys before the packet is sent.
A window containing the packet data in hex appears.

This feature is useful for testing router error detection by corrupting the
packet headers and changing the packet content. It also can be used to
duplicate or send custom packets.

WARNING The window displays only the first 100 bytes of a packet. If
the packet is larger than 100 bytes, you will not be able to modify the
data beyond the first 100 bytes. Also, the code that decodes hex back
into binary is not extremely robust.

Other features
n Apple Tunnel Simulator continues to run when any dialog box is

displayed except for a directory dialog box. The simulator can also run
in the background and with other programs, as long as the other
programs multitask properly.

Note Do not leave directory dialog boxes open; if they are left open too
long, Apple Tunnel Simulator will not handle received packets in a timely
fashion.

n Apple Tunnel Simulator allows connections to test routers it does not
have listed. If a test router sends an open request to a simulated router
and Apple Tunnel Simulator does not know that test router’s address,
then it will be added. The simulator will eventually attempt to connect to
the test router.

16 AppleTalk Wide Area Developer’s Toolkit

Known problems, limitations, and troubleshooting
n Simulated routers cannot be removed while the program is operating; to

remove them, you must restart the application.

n You can have duplicate IP addresses for simulated routers (no checking
is done).

n Apple Tunnel Simulator does not implement all the timeout features for
AURP, and thus can be coerced into a confused state.

n Apple Tunnel Simulator does not work with Token Ring or Macintosh
SE and SE/30 Ethernet cards.

n If a packet with a sequence number is dropped, then any further packets
with sequence numbers on that channel will be out of sequence and
Apple Tunnel Simulator will complain. However, the simulator should
be able to resynchronize the packets.

n Apple Tunnel Simulator can run in 512 KB of memory and is able to
generate a small network topology. One megabyte of memory is
recommended. Larger topologies or multiple simulated routers require
greater amounts of memory. Operating Apple Tunnel Simulator under
low memory conditions causes unpredictable behavior and crashes.

n The packet display slows Apple Tunnel Simulator considerably. If there
is a lot of information to display, connections may timeout or packets
may be retransmitted. You can speed up the simulator by reducing the
size of the display window or by deselecting Display Packet Headers in
the Preferences dialog box.

n If Apple Tunnel Simulator displays “**** ERROR, ARP attach: - 94”
when launched, remove MacTCP (or another protocol handler) and
restart your computer before running Apple Tunnel Simulator again.

n Apple Tunnel Simulator has not been tested under System 6 and may
work only under System 7.

	AppleTalk Wide Area Developer’s Toolkit
	Toolkit Contents and Overview
	How to use the Developer’s Toolkit
	Apple Internet Router and adevs

	Apple Internet Router: User- Interface Extensions to the adev File
	Contents
	About this document
	Prerequisite reading
	Overview
	Setup window
	Port Info dialog box

	Supporting the hierarchical Setup window
	xtlk resource
	Records used by MGetADEV
	Method- based adev file data interface

	Supporting the extended configuration user- interface calls
	adev file configuration user- interface call overview
	TAdevWind data structure
	adev file configuration user- interface call syntax

	Apple Internet Router: Developing an AURP adev File
	Contents
	About this document
	Calls to and from the atlk resource
	Definition of terms
	Overview of AURP interface calls
	Calls to the AURP atlk module (assembly interface)
	Calls to the AURP atlk module (C interface)
	Calls from the AURP atlk module (assembly interface)
	Calls from the AURP atlk module (C interface)

	Developing an adev file using XTI
	Source code map
	Open sequence
	Read sequence
	Write sequence
	Close/ Shutdown sequence

	Apple Internet Router: Extending IP Tunnel and DialUp
	Contents
	About this document
	IP Tunnel
	DialUp

	Apple Internet Tunnel Simulator
	Contents
	About this document
	Features
	Setup
	Commands
	File menu
	Setup menu
	Routers menu
	Send menu
	Misc menu
	Log display
	Outgoing packet capture
	Other features

	Known problems, limitations, and troubleshooting

