X/Open CAE Specification

X/Open Transport Interface (XTI)

X/Open Company, Ltd.

cshotton
Click here to jump to the TOC

0 January 1992, X/Open Company Limited

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording or otherwise, without the prior permission of the copyright owners.

X/OpenCAE Specification
X/Open Transport Interfacetl)

ISBN: 1 872630 29 4
X/Open Document Number: XO/CAE/91/600

Set in Palatino by X/Open Company Ltd.K.
Printed by Maple Press,K.
Published by X/Open Company Ltdl,K.

Any comments relating to the material contained in this document may be submitted to the
X/Open Company at:

X/Open Company Limited
Apex Plaza

Forbury Road

Reading

Berkshire RG1 1AX

United Kingdom

X/Open CAE Specification (1992)
Page : ii X/Open Transport Interface (XTI)

or by Electronic Mail to:

XoSpecs@xopen.co.uk

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : iii

Page : iv

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI)

Contents

3X/OPEN TRANSPORT INTERFACE (XTH

GENERAL INTRODUCTION TO THE XTI
EXPLANATORY NOTES
2.1 TRANSPORT ENDPOINTS
2.2 TRANSPORT PROVIDERS
2.3 ASSOCIATION OFA UNIX PROCESS TO
AN ENDPOINT
2.4 USE OF THE SAME PROTOCOL ADDRESS
25 MODES OF SERVICE
2.6 ERROR HANDLING
2.7 SYNCHRONOUS AND ASYNCHRONOUS EXECUTION MODES
2.8 EVENT MANAGEMENT
2.9 CHANGE HISTORY FROM XPG3 VERSION

29.1 Changes Appearing in Revised (1990)
29.2 Changes Appearing in Addendum to Revised

XTI (1991)
Chapter 3 XTI OVERVIEW
3.1 OVERVIEW OF CONNECTIONORIENTED MODE
3.1.1 Initialisation/De-initialisation Phase
3.1.2 Overview of Connection Establishment
3.13 Overview of Data Transfer
3.1.4 Overview of Connection Release
3.2 OVERVIEW OF CONNECTIONLESS MODE
3.2.1 Initialisation/De-initialisation Phase
3.2.2 Overview of Data Transfer
3.3 XTI FEATURES
3.3.1 XTI Functions Versus Protocols
Chapter 4 STATES AND EVENTS IN XTI
4.1 TRANSPORT INTERFACES STATES
4.2 OUTGOING EVENTS

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : v

Contents

43 INCOMING EVENTS

4.4 TRANSPORT USER ACTIONS

45 STATE TABLES

4.6 EVENTS AND TLOOK ERROR INDICATION
Chapter 5 THE USE OF OPTIONS

5.1 GENERALITIES

5.2 THE FORMAT OF OPTIONS

53 THE ELEMENTS OF NEGOTIATION

5.3.1 Multiple Options and Options Levels

5.3.2 lllegal Options

5.3.3 Initiating an Option Negotiation

5.3.4 Responding to a Negotiation Proposal

5.35 Retrieving Information about Options

5.3.6 Privileged and Read-only Options

5.4 OPTION MANAGEMENT OFA TRANSPORT ENDPOINT

55 SUPPLEMENTS

55.1 The Option Valug_UNSPEC
5.5.2 The info Argument
553 Summary

5.6 PORTABILITY ASPECTS
Chapter 6 XTI LIBRARY FUNCTIONS AND PARAMETERS
6.1 HOW TO PREPARE XTI APPLICATIONS
6.2 KEY FOR PARAMETER ARRAYS
6.3 RETURN OF TLOOK ERROR
t_accept_ac
t_alloct_al
t_bind_bi
t close cl
t_connedt co
t_errort_er
t_free_fr
t_getinfd_ge

t_getprotaddt_ge
t_getstate ge

t listert_li

t _look_lo
t_opern_op
t_optmgmit_op
t_revt_rc

X/Open CAE Specification (1992)
Page : vi X/Open Transport Interface (XTI)

Contents

Al

A2
A21
A211

A21.2
A2.2

A221
A2.22

A3

B.1

B.2

B.2.1
B.2.2
B.2.3

B.3

Appendix C

Cl1
C.2
C3
C4

C5
C5.1
C5.2

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI)

t_rcvconnedt rc
t_rcvdig_rc
t_rcvrelt_rc
t_rcvudatd_rc
t_rcvudert_rc
t snd_sn
t_snddis sn
t_sndret_sn
t_sndudatt sn
t_strerrort_st
t_synd¢_sy

t unbind_un

ISO TRANSPORT PROTOCOL INFORMATION
GENERAL

OPTIONS

Connection-mode Service
Options for Quality of Service and
Expedited Datal60 8072:1986)
Management Options
Connectionless-mode Service
Options for Quality of ServiceO
8072/Add.1:1986)

Management Options

FUNCTIONS

INTERNET PROTOCOL -SPECIFIC INFORMATION

GENERAL

OPTIONS
TCP-level Options
UDP-level Options
IP-level Options

FUNCTIONS

GUIDELINES FOR USE OF XTI

TRANSPORT SERVICE INTERFACE SEQUENCE OF FUNCTIONS

EXAMPLE IN CONNECTION-ORIENTED MODE
EXAMPLE IN CONNECTIONLESS MODE

WRITING PROTOCOLINDEPENDENT SOFTWARE

EVENT MANAGEMENT
Introduction
Short-term Solution

Page : vii

C53
C54
C5.5

Appendix D

Page : viii

D.1
D.2
D.3
D.4
D.5
D.6
D.7
D.8

Appendix E

Appendix F

Appendix G

II.‘"'I.”".F"'I
= N

Appendix H

Contents

XTI Events

Guidelines for Use of System V poll()
Guidelines for Use &SsD select()
USE OF XTI TO ACCESS NETBIOS
INTRODUCTION

OBJECTIVES

SCOPE

ISSUES

NeBIOS NAMES AND ADDRESSES
NeBIOS CONNECTION RELEASE
OPTIONS

XTI FUNCTIONS

XTI AND TLI
RESTRICTIONS CONCERNING THE USE OF XTI
RELATIONSHIP BETWEEN XTI AND TLI

HEADERS AND DEFINITIONS

THE <xti.h>HEADER
ABBREVIATIONS

GLOSSARY

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI)

Preface

X/Open

X/Open is an independent, worldwide, open systems organisation supported by most of the
world’s largest information systems suppliers, user organisations and software companies.
Its mission is to bring to users greater value from computing, through the practical
implementation of open systems.

X/Open'’s strategy for achieving this goal is to combine existing and emerging standards into

a comprehensive, integrated, high-value and usable system environment, called the
Common Applications Environment (CAE). This environment covers the standards, above

the hardware level, that are needed to support open systems. It provides for portability and
interoperability of applications, and allows users to move between systems with a minimum

of retraining.

The components of the Common Applications Environment are defined in X/Open CAE
Specifications. These contain, among other things, an evolving portfolio of practical
application programming interfaces (APIs), which significantly enhance portability of
application programs at the source code level, and definitions of, and references to, protocols
and protocol profiles, which significantly enhance the interoperability of applications.

The X/Open CAE Specifications are supported by an extensive set of conformance tests and
a distinct X/Open trademark - the XPG brand - that is licensed by X/Open and may be
carried only on products that comply with the X/Open CAE Specifications.

The XPG brand, when associated with a vendor's product, communicates clearly and
unambiguously to a procurer that the software bearing the brand correctly implements the
corresponding X/Open CAE Specifications. Users specifying XPG-conformance in their

procurements are therefore certain that the branded products they buy conform to the CAE
Specifications.

X/Open is primarily concerned with the selection and adoption of standards. The policy is
to use formal approvede jurestandards, where they exist, and to adopt widely supported
de factostandards in other cases.

Where formal standards do not exist, it is X/Open policy to work closely with standards
development organisations to assist in the creation of formal standards covering the needed
functions, and to make its own work freely available to such organisations. Additionally,
X/Open has a commitment to align its definitions with formal approved standards.

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : ix

Preface

X/Open Specifications
There are two types of X/Open specification:
« CAE Specifications

CAE (Common Applications Environment) Specifications are the long-life specifications
that form the basis for conformant and branded X/Open systems. They are intended to
be used widely within the industry for product development and procurement purposes.

Developers who base their products on a current CAE Specification can be sure that
either the current specification or an upwards-compatible version of it will be referenced
by a future XPG brand (if not referenced already), and that a variety of compatible,
XPG-branded systems capable of hosting their products will be available, either
immediately or in the near future.

CAE Specifications are not published to coincide with the launch of a particular XPG
brand, but are published as soon as they are developed. By providing access to its
specifications in this way, X/Open makes it possible for products that conform to the
CAE (and hence are eligible for a future XPG brand) to be developed as soon as
practicable, enhancing the value of the XPG brand as a procurement aid to users.

Preliminary Specifications

These are specifications, usually addressing an emerging area of technology, and
consequently not yet supported by a base of conformant product implementations, that
are released in a controlled manner for the purpose of validation through practical
implementation or prototyping. A Preliminary Specification is not a “draft”
specification. Indeed, it is as stable as X/Open can make it, and on publication has gone
through the same rigorous X/Open development and review procedures as a CAE
Specification.

Preliminary Specifications are analogous with the “trial-use” standards issued by formal
standards organisations, and product development teams are intended to develop
products on the basis of them. However, because of the nature of the technology that a
Preliminary Specification is addressing, it is untried in practice and may therefore
change before being published as a CAE Specification. In such a case the CAE
Specification will be made as upwards-compatible as possible with the corresponding
Preliminary Specification, but complete upwards-compatibility in all cases is not
guaranteed.

In addition, X/Open periodically publishes:
« Snapshots

Snapshots are “draft” documents, which provide a mechanism for X/Open to
disseminate information on its current direction and thinking to an interested audience,
in advance of formal publication, with a view to soliciting feedback and comment.

X/Open CAE Specification (1992)
Page : x X/Open Transport Interface (XTI)

Preface

A Snapshot represents the interim results of an X/Open technical activity. Although at
the time of publication X/Open intends to progress the activity towards publication of an
X/Open Preliminary or CAE Specification, X/Open is a consensus organisation, and
makes no commitment regarding publication.

Similarly, a Snapshot does not represent any commitment by any X/Open member to
make any specific products available.

X/Open Guides

X/Open Guides provide information that X/Open believes is useful in the evaluation,
procurement, development or management of open systems, particularly those that are
X/Open-compliant.

X/Open Guides are not normative, and should not be referenced for purposes of specifying
or claiming X/Open-conformance.

This Document

This document is &AE Specification (see above). It defines the X/Open Transport Interface
(XTI), a transport service interface that is independent of any specific transport provider.
XTI is concerned primarily with théSO Transport Service Definition (connection-oriented

or connectionless). However, it may be adapted for use over other types of provider. In
particular,XTI has been extended to includ€P and UDP, since these types are widely
supported within the X/Open community.

This document merges the following two previous publications:

« X/Open Developers’ Specification (1990)
RevisedXTI (X/Open Transport Interface)
ISBN 1872630 05 7

« X/Open Addendum (August 1991)
Addendum to RevisedXTI
ISBN 1 872630 21 9

into a single publication.

It also contains a revisellppendix D, Use ofXTI to AccesSNETBIOS. This Appendix was
published as a Preliminary Specification in tRevised XTI Specification, and is now
revised and upgraded GAE status.

This XTI CAE Specification contains a number of changes and additions compared with the
version published in theX/Open Portability Guide, Issue 3 arising principally from
implementation experience by X/Open member companies. These changes and additions
are detailed irChapter 2, Explanatory Notes

A compliant system shall meet the definitive requirements described inxXthisSCAE
Specification.

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : xi

Page : xii

Preface

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI)

Trademarks

X/Open and the “X” device are trademarks of X/Open Company Limited inuhe and
other countries.

UNIX is a registered trademark ofNIX System Laboratories Inc. in th&S.A. and other
countries.

Palatino is a trademark of Linotypes and/or its subsidiaries.

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : xiii

Page : xiv

Referenced Documents

The following documents are referenced in this specification:

« TheOSImodel is described in:

ISO 7498, Information Processing Systems, Open Systems Interconnection, Basic

Reference Modell§: 1984)

« The reference documents fi@O transport are summarised below:

Connection-Oriented | Connectionless
Protocol Definition | 1S 8073-1986 IS 8602
Service Definition | 1S8072-1986 IS 8072/Add.1-1984§

« The reference document focP protocol is:

TCP, Transmission Control Protocol, Military Standard, Mil-std-1778 (Sour& and
RFC 793 (Source Bl

« The reference document foDP protocol is:
UDP, User Datagram ProtocdtFC 768 (Source BL)
« The reference document for thiel specifications is:
Networking Services Extension, draft versionssfiD Issue 2, Volumeil, 1986

« Mappings of NeBIOS services toOSI and IPS transport protocols are provided in the
X/Open specification entitleBrotocols for X/Open PC Interworking: SMB, published
by X/Open Company Ltd., 1991.

OSource A:
Defense Communication AgencdDN Protocol Handbook (Volume 1)DOD Military
Standard Protocols (December 1985).

[LJSource B:
Defense Communication AgencpDN Protocol Handbook (Volumé), DARPA Internet
Protocols (December 1985).

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI)

Chapter 1

General Introduction to the XTI

The XTI (X/Open Transportinterface) specification defines a transport service interface
which is independent of any specific transport provider. The interface is provided by way of
a set of library functions for the C programming languagel serves three main purposes:

« XTI describes a wide set of functions and facilities which vary in importance and/or
usefulness;

e XTI is concerned primarily with theSO Transport Service Definition (connection-
oriented or connectionless). However, it may be adapted for use over other types of
provider. In particularXTl has been extended to includeP andUDP since these types
are widely supported within the X/Open community (fferenced Documentg

« XTI is UNIX version-independent.

Note that in order for applications to usgl in a fully asynchronous manner, it will be
necessary for the application to include facilities of ausent ManagementgM) Interface.
The EM facilities will allow the application to be notified of a number of events, including
those events associated with flow control, over a range of active transport connections.

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 1

Page : 2

General Introduction to the XTI

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI)

21

2.2

2.3

Chapter 2

Explanatory Notes

TRANSPORT ENDPOINTS

A transport endpoinspecifies a communication path between a transport user and a specific
transport provider, which is identified by a local file descriptiol).(When a user opens a
transport provider identifier, a local file descriptfidt is returned which identifies the
transport endpoint. A transport provider is defined to be the transport protocol that provides
the services of the transport layer. All requests to the transport provider must pass through a
transport endpoint. The file descripfioris returned by the functioh oper() and is used as

an argument to the subsequent functions to identify the transport endpoint. A transport
endpoint {d and local address) can support only one established transport connection at a
time.

To be active, a transport endpoint must have a transport address associated with it by the
t_bind() function. A transport connection is characterised by the association of two active
endpoints, made by using the functions of establishment of transport connectiofal iStee
communication path to a transport provider. There is no direct assignation of the processes
to the transport provider, so multiple processes, which obtairfdH®y open(), fork() or

dup() operations, may access a given communication path. Note thap#) function

will work only if the opened character string is a pathname.

Note that in order to guarantee portability, the only operations which the applications may
perform on anyfd returned byt _oper() are those defined byTl and fentl(), dup() or
dup2(). Other operations are permitted but these will have system-dependent results.

TRANSPORT PROVIDERS

The transport layer may comprise one or mboensport provides at the same time. The
identifier parameter of the transport provider passed td_tbper() function determines the
required transport provider. To keep the applications portable, the identifier parameter of
the transport provider should not be hard-coded into the application source code.

An application which wants to manage multiple transport providers must agdler() for

each provider. For example, a server application which is waiting for incoming connect
indications from several transport providers must open a transport endpoint for each
provider and listen for connect indications on each of the associated file descriptors.

ASSOCIATION OF A UNIX PROCESS TO AN ENDPOINT

One process can simultaneously open sevital However, in synchronous mode, the
process must manage the different actions of the associated transport connections
sequentially. Conversely, several processes can share thefdathg fork() or dup()
operations) but they have to synchronise themselves so as not to issue a function that is
unsuitable to the current state of the transport endpoint.

It is important to remember that the transport provider treats all users of a transport endpoint
as a single user. If multiple processes are using the same endpoint, they should coordinate

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 3

Association of a UNIX Process to an Endpoint Explanatory Notes

2.4

2.5

2.6

Page : 4

their activities so as not to violate the state of the provider. fTlsgnd) function returns

the current state of the provider to the user, thereby enabling the user to verify the state
before taking further action. This coordination is only valid among cooperating processes; it
is possible that a process or an incoming event could change the provider’s state after a
t_synd) is issued.

A process can listen for an incoming connect indication onfdrend accept the connection
on a differentfd which has been bound with tligen parameter (set bind()) set to zero.
This facilitates the writing of a listener application whereby the listener waits for all
incoming connect indications on a given Transport Service Access PoiaP. The
listener will accept the connection on a nésy andfork() a child process to service the
request without blocking other incoming connect indications.

USE OF THE SAME PROTOCOL ADDRESS

If several endpoints are bound to the same protocol address, only one at the time may be
listening for incoming connections. However, others may be in data transfer state or
establishing a transport connection as initiators.

MODES OF SERVICE

The transport service interface supports two modes of service: connection mode and
connectionless mode. A single transport endpoint may not support both modes of service
simultaneously.

The connection-mode transport service is circuit-oriented and enables data to be transferred
over an established connection in a reliable, sequenced manner. This service enables the
negotiation of the parameters and options that govern the transfer of data. It provides an
identification mechanism that avoids the overhead of address transmission and resolution
during the data transfer phase. It also provides a context in which successive units of data,
transferred between peer users, are logically related. This service is attractive to
applications that require relatively long-lived, datastream-oriented interactions.

In contrast, the connectionless-mode transport service is message-oriented and supports data
transfer in self-contained units with no logical relationship required among multiple units.
These units are also known as datagrams. This service requires a pre-existing association
between the peer users involved, which determines the characteristics of the data to be
transmitted. No dynamic negotiation of parameters and options is supported by this service.
All the information required to deliver a unit of data (e.g., destination address) is presented
to the transport provider, together with the data to be transmitted, in a single service access
which need not relate to any other service access. Also, each unit of data transmitted is
entirely self-contained, and can be independently routed by the transport provider. This
service is attractive to applications that involve short-term request/response interactions,
exhibit a high level of redundancy, are dynamically reconfigurable or do not require
guaranteed, in-sequence delivery of data.

ERROR HANDLING

Two levels of error are defined for the transport interface. The first is the library error level.
Each library function has one or more error returns. Failures are indicated by a return value

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI)

Explanatory Notes Error Handling

2.7

of -1. An external integerf_errno, which is defined in the headexti.h>, holds the
specific error number when such a failure occurs. This value is set when errors occur but is
not cleared on successful library calls, so it should be tested only after an error has been
indicated. If implemented, a diagnostic functidnerror(), prints out information on the
current transport error. The state of the transport provider may change if a transport error
occurs.

The second level of error is the operating system service routine level. A special library
level error number has been defined called{SERA which is generated by each library
function when an operating system service routine fails or some general error occurs. When
a function set$_errno to [TSYSERHR, the specific system error may be accessed through the
external variablerrno.

For example, a system error can be generated by the transport provider when a protocol
error has occurred. If the error is severe, it may cause the file descriptor and transport
endpoint to be unusable. To continue in this case, all users dfithmist close it. Then the
transport endpoint may be re-opened and initialised.

SYNCHRONOUS AND ASYNCHRONOUS EXECUTION MODES

The transport service interface is inherently asynchronous; various events may occur which
are independent of the actions of a transport user. For example, a user may be sending data
over a transport connection when an asynchronous disconnect indication arrives. The user
must somehow be informed that the connection has been broken.

The transport service interface supports two execution modes for handling asynchronous
events: synchronous mode and asynchronous mode. In the synchronous mode of operation,
the transport primitives wait for specific events before returning control to the user. While
waiting, the user cannot perform other tasks. For example, a function that attempts to
receive data in synchronous mode will wait until data arrives before returning control to the
user. Synchronous mode is the default mode of execution. It is useful for user processes that
want to wait for events to occur, or for user processes that maintain only a single transport
connection. Note that if a signal arrives, blocking calls are interrupted and return a negative
return code witht_errno set to [TSYSERHA and errno set to EINTR]. In this case the call

will have no effect.

The asynchronous mode of operation, on the other hand, provides a mechanism for notifying
a user of some event without forcing the user to wait for the event. The handling of
networking events in an asynchronous manner is seen as a desirable capability of the
transport interface. This would enable users to perform useful work while expecting a
particular event. For example, a function that attempts to receive data in asynchronous
mode will return control to the user immediately if no data is available. The user may then
periodically poll for incoming data until it arrives. The asynchronous mode is intended for
those applications that expect long delays between events and have other tasks that they can
perform in the meantime or handle multiple connections concurrently.

The two execution modes are not provided through separate interfaces or different functions.
Instead, functions that process incoming events have two modes of operation: synchronous
and asynchronous. The desired mode is specified through tRONBLOCK flag, which

may be set when the transport provider is initially opened, or before any specific function or

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 5

Synchronous and Asynchronous Execution Modes Explanatory Notes

Page : 6

group of functions is executed using tfomtl() operating system service routine. The effect
of this flag is local to this process and is completely specified in the description of each
function.

Nine (only eight if the orderly release is not supported) asynchronous events are defined in
the transport service interface to cover both connection-mode and connectionless-mode
service. They are represented as separate bits in a bit-mask using the following defined
symbolic names:

e T_LISTEN
e T_CONNECT
o T_DATA
o T_EXDATA
o T_DISCONNECT
o T_ORDREL
e T_UDERR
o T_GODATA
o T_GOEXDATA
These are described 8ection 2.8 Event Management

A process that issues functions in synchronous mode must still be able to recognise certain
asynchronous events and act on them if necessary. This is handled through a special
transport error TLOOK] which is returned by a function when an asynchronous event
occurs. Thet_look() function is then invoked to identify the specific event that has
occurred when this error is returned.

Another means to notify a process that an asynchronous event has occurred is polling. The
polling capability enables processes to do useful work and periodically poll for one of the
above asynchronous events. This facility is provided by setbnyONBLOCK for the
appropriate primitive(s).

Events and t_look()

All events that occur at a transport endpoint are storedy These events are retrievable

one at the time via thé look() function. If multiple events occur, it is implementation-
dependent in what orddr look() will return the events. An event is outstanding on a
transport endpoint until it is consumed. Every event has a corresponding consuming
function which handles the event and clears it. BOtIDATA and T_EXDATA events are
consumed when the corresponding consuming function has read all the corresponding data
associated with that event. The intention of this is thadATA should always indicate that

there is data to receive. Two events,GODATA and T_GOEXDATA, are also cleared as

they are returned bl look(). Table 2-1 summarises this.

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI)

Explanatory Notes

2.8

Synchronous and Asynchronous Execution Modes

Event Cleared ont_look)? ConsumingXTI functions
T_LISTEN No t_lister()

T_CONNECT No t_{rcviconnect)*

T_DATA No t_rcv{udata))

T_EXDATA No t_rev)

T_DISCONNECT No t_revdiq)

T_UDERR No t_rcvuderi()

T_ORDREL No t_rcvrel()

T_GODATA Yes t_snd{udata})
T_GOEXDATA Yes t snd)

EVENT MANAGEMENT

Table 2-1 Events and t_look()

EachXTI call deals with one transport endpoint at a time. It is not possible to wait for
several events from different sources, particularly from several transport connections at a
time. We recognise the need for this functionality which may be available today in a
system-dependent fashion.

Throughout the document we refer to an event management service called Event
ManagementEM) which provides those functions usefulxal. This Event Management
will allow a process to be notified of the following events:

e T_LISTEN:

A connect request from a remote user was received by a transport provider (connection-
mode service only); this event may occur under the following conditions:

1. the file descriptor is bound to a valid address;

2. no transport connection is established at this time.

e T_CONNECT

In connection mode only; a connect response was received by the transport provider;
occurs after & connect) has been issued.

o T_DATA:

Normal data (whole or part of Transport Service Data URR{U)) was received by the

transport provider.

o T_EXDATA:

Expedited data was received by the transport provider.

e T_DISCONNECT

In connection mode only; a disconnect request was received by the transport provider. It

1. Inthe case of the connecf) function theT_CONNECTevent is both generated and consumed by the execution of the function
and is therefore not visible to the application.

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI)

Page : 7

Event Management Explanatory Notes

may be reported on both data transfer functions and connection establishment functions
and on the_snddig) function.

o T_ORDREL
An orderly release request was received by a transport provider (connection mode with
orderly release only).

o T_UDERR
In connectionless mode only; an error was found in a previously sent datagram. It may
be notified on the_rcvudatg) or t_unbind’) function calls.

o T_GODATA:
Flow control restrictions on normal data flow that led tgT&LOwW] error have been
lifted. Normal data may be sent again.

o T_GOEXDATA:
Flow control restrictions on expedited data flow that led foRLOW] error have been
lifted. Expedited data may be sent again.

2.9 CHANGE HISTORY FROM XPG3 VERSION

This section summarises the main revisions to Xiteé since publication of thex/Open
Portability Guide, Issue 3 known as<xPG3.

For ease of tracking, the changes are presented in two stages:
« those which appeared in tiRevisedXTI Developers’ Specification (1990)
« those which appeared in the follow-égldendum to RevisedXTl (August 1991)

These changes arise principally from implementation experience gathered by X/Open
member companies.

2.9.1 Changes Appearing in RevisekT! (1990)
The major changes which appeared in &@visedXTl (1990)are:

Delete optional functions
The concept of mandatory versus optional functions is contrary to the goal of
portability. All XTI functions are now mandatoryTNOTSUPPORT]should be
returned if the transport provider does not support the function requested.

Error messages
The format of messages produced by therror() function has been clarified. See
also the additional functiot strerror().

Multiple use of addresses
More stringent recommendations about multiple use of addresses have been made.
This enhances portability across different transport providers.

State behaviour
The state machine behaviour &ffi has been clarified by the addition of a
T_UNBND column in Table 4-7 oChapter 4, States and Events inXTl, and by
the identification of a number of additional cases where asynchronous events

X/Open CAE Specification (1992)
Page : 8 X/Open Transport Interface (XTI)

Explanatory Notes Change History From Xpg3 Version

result in the return of th&LOOK error.

Zero lengthTSDUs andTSDU fragments
The extent of support for zero lengtisDUs and zero lengtliSDU fragments has
been set out more clearly. See the descriptions of functibssid) and
t_getinfd) in Chapter 6, XTI Library Functions and Parameters.

T_MORE
The significance of th&_MORE flag for asynchronously received data has been
clarified. See the description ofrcw() in Chapter 6, XTI Library Functions
and Parameters

Protocol options
The description of protocol options for botisl andTCP has been much enhanced
(see Appendix A, ISO Transport Protocol Information and Appendix B,
Internet Protocol-specific Information).

Options and management structures
These have been extensively revised, especially those covering connection-
orientedosI (seeAppendix F, Headers and Definition3.

Expedited data
The different significance of expedited data in 8l and TCP cases has been
clarified.

Connect semantics
Differences in underlying protocol semantics betwes and TCP at connection
establishment have been clarified. Sggpendix B, Internet Protocol-specific
Information and the descriptions df accept) andt_lister() in Chapter 6, XTI
Library Functions and Parameters.

The main additions are:

Additional function: t_getprotaddr
This function yields the local and remote protocol addresses currently associated
with a transport endpoint.

Additional function: t_strerror
This function maps an error number into a language-dependent error message
string. The functionality corresponds to the error message changestirether()
function.

Addition of Valid States to function descriptions
All function descriptions now contain an indication of the interface states for
which they are valid.

Addition of new error codes
A number of new error codes have been added fgggendix F, Headers and
Definitions for summary).

A number of minor changes also appeared, including:

« Clarification of the use of the term “socket” in theCP case.

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 9

Change History From Xpg3 Version Explanatory Notes

« Clarification of support for automatic generation of addresses.

« Clarification of the management of flow control.

« Clarification of the significant differences between transport providers.

« Clarification of the issue of non-guaranteed delivery of data at connection close.

« Clarification of the ways in which error indications may be received in connectionless
working.

« Enhancement of optmgmg) to allow retrieval of current value of transport provider
options.

« Addition of extern definitions for all XTI functions in Appendix F, Headers and
Definitions.

« Numerous small corrections and clarifications.

2.9.2 Changes Appearing in Addendum to Revise&TI (1991)

The following list itemises the updates to tRevisedXTl (X/Open Transport Interface)
document, which appeared in tdeldendum to RevisedXTI (August 1991) This list
refers to the chapter, section and appendix references in theRi€88edXTI document.

All these changes are integrated into th¥$Open Transport Interface (XTI) CAE
Specification

« Chapter 2, Section 2.9.1, Changes
The “Protocol options” and “Options and management structures” paragraphs are
deleted and replaced with the following:

Option management
The management and usage of options have been
completely revised. The changes afféchapter 5, the
t_optmgmt) manual pages i€hapter 6, andAppendices
A, B andF.

« Chapter 4, Section 4.5, State Tables
Delete the row concerning “optmgmt” frorigure 5, and add a new row t&igure 7
for the event “optmgmt”, as follows:

optmgmt | T_IDLE | T_OUTCON | T_INCON | T_DATAXFER| T_OUTREL| T_INREL| T_UNBND

« Chapter 5, Transport Protocol-specific Options
Chapter 5 is renamed the Use of Optionsand is completely replaced with new text.

« Chapter 6,t_accept)
In the second paragraph, “protocol-specific parameters” is replaced with “options™.

X/Open CAE Specification (1992)
Page : 10 X/Open Transport Interface (XTI)

Explanatory Notes Change History From Xpg3 Version

In the sixth paragraph, the following sentence is removed:

“The values of parameters specified byt and the syntax of those values are protocol-
specific.”

In the seventh paragraph, “protocol-specific option” is replaced with “option”.

Chapter 6, t_connedt)
The half-sentence in the sixth paragraph:

“If used, sndcall->opt.buf must point to the corresponding options structures
(isoco_optionsor tcp_options);”

is replaced with:
“If used, sndcall->opt.bufmust point to a buffer with the corresponding options;”

Chapter 6, t_listen()
In the second paragraph, “protocol-specific parameters” is replaced with “options™.

Chapter 6, t_optmgmt)
The manual pages far optmgmg) in Chapter 6 are completely replaced with new text.

Chapter 6, t_rcvconnedt)
In the third paragraph, “protocol-specific information” is replaced with “options”.

Chapter 6, t_rcvudatd) andt_rcvudery)
In the third paragraph, “protocol-specific options” is replaced with “options”.

Chapter 6, t_sndudaté)
In the second paragraph, “protocol-specific options” is replaced with “options™.

« Appendix A, ISO Transport Protocol Information
The text inAppendix A is completely replaced with new text.

« Appendix B, Internet Protocol-specific Information
The text inAppendix B is completely replaced with new text.

« Appendix F, Headers and Definitions
The text inAppendix F is completely replaced with new text.

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 11

Change History From Xpg3 Version

Page : 12

Explanatory Notes

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI)

3.1

Chapter 3

XTI Overview

OVERVIEW OF CONNECTION -ORIENTED MODE

The connection-mode transport service consists of four phases of communication:

« Initialisation/De-initialisation;

« Connection Establishment;

« Data Transfer, and

« Connection Release.

A state machine is described Bection C.1 Transport Service Interface Sequence of
Functions and the figure irSection C.2 Example in Connection-oriented Mode which
defines the legal sequence in which functions from each phase may be issued.

In order to establish a transport connection, a user (application) must:

1.

Supply atransport provider identifiefor the appropriate type of transport provider
(usingt_open()); this establishes a transport endpoint through which the user may
communicate with the provider.

Associate (bind) an address with this endpoint (usitind()).

Use the appropriate connection functions (usingonnec), or t_listen() and
t_accepf)) to establish a transport connection. The set of functions depends on
whether the user is an initiator or responder.

Once the connection is established, normal, and if authorised, expedited data can be
exchanged. Of course, expedited data may be exchanged only if:

« the provider supports it;

« its use is not precluded by the selection of protocol characteristics, e.g., the use of
Class 0;

« Negotiation as to its use has been agreed between the two peer transport providers.

The semantics of expedited data may be quite different for different transport
providers.XTI’s notion of expedited data has been defined as the lowest reasonable
common denominator.

The transport connection can be released at any time by using the disconnect
functions. Then the user can either de-initialise the transport endpoint by closing the
file descriptor returned by oper() (thereby freeing the resource for future use), or
specify a new local address (after the old one has been unbound) or reuse the same
address and establish a new transport connection.

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 13

Overview of Connection-oriented Mode XTI Overview

3.1.1 Initialisation/De-initialisation Phase

The functions that support initialisation/de-initialisation tasks are described below. All such
functions provide local management functions; no information is sent over the network.

t_operf) This function creates a transport endpoint and returns protocol-specific
information associated with that endpoint. It also returns a file
descriptor that serves as the local identifier of the endpoint.

t_bind() This function associates a protocol address with a given transport
endpoint, thereby activating the endpoint. It also directs the transport
provider to begin accepting connect indications if so desired.

t_optmgmg) This function enables the user to get or negotiate protocol options with
the transport provider.

t_unbind) This function disables a transport endpoint such that no further request
destined for the given endpoint will be accepted by the transport
provider.

t_clos€) This function informs the transport provider that the user is finished with
the transport endpoint, and frees any local resources associated with that
endpoint.

The following functions are also local management functions, but can be issued during any
phase of communication:

t_getprotaddf) This function returns the addresses (local and remote) associated with
the specified transport endpoint.

t_getinfd) This function returns protocol-specific information associated with the
specified transport endpoint.

t_getstaté) This function returns the current state of the transport endpoint.

t_syng¢) This function synchronises the data structures managed by the transport
library with the transport provider.

t_allod() This function allocates storage for the specified library data structure.

t_freq) This function frees storage for a library data structure that was allocated
byt _alloc().

t_error() This function prints out a message describing the last error encountered

during a call to a transport library function.

t_look() This function returns the current event(s) associated with the given
transport endpoint.

t_strerron() This function maps arxTl error into a language-dependent error
message string.

X/Open CAE Specification (1992)
Page : 14 X/Open Transport Interface (XTI)

XTI Overview Overview of Connection-oriented Mode

3.1.2

Overview of Connection Establishment

This phase enables two transport users to establish a transport connection between them. In
the connection establishment scenario, one user is considered active and initiates the
conversation, while the second user is passive and waits for a transport user to request a
connection.

In connection mode:

the user has firstly to establish an endpoint, i.e., to open a communications path between
the application and the transport provider;

once established, an endpoint must be bound to an address and more than one endpoint
may be bound to the same address. A transport user can determine the addresses
associated with a connection using thgetprotadd() function;

an endpoint can be associated with one, and only one, established transport connection;

it is possible to use an endpoint to receive and enqueue incoming connect indications
(only if the provider is able to accept more than one outstanding connect indication; this

mode of operation is declared at the time of callingind() by settingglen greater than

0). However, if more than one endpoint is bound to the same address, only one of them
may be used in this way;

thet_listen() function is used to look for an enqueued connect indication; if it finds one
(at the head of the queue), it returns details of the connect indication, and a local
sequence number which uniquely identifies this indication, or it may return a negative
value witht_errno set to TNODATA]. The number of outstanding connect requests to
dequeue is limited by the value of tigken parameter accepted by the transport provider
on thet_bind() call;

if the endpoint has more than one connect indication enqueued, the user should dequeue
all connect indications (and disconnect indications) before accepting or rejecting any or
all of them. The number of outstanding connect indications is limited by the value of the
glen parameter accepted by the transport provider on the calbiad();

when accepting a connect indication, the transport service user may issue the accept on
the same (listening) endpoint or on a different endpoint.

If the same endpoint is used, the listening endpoint can no longer be used to receive and
enqueue incoming connect indications. The bound protocol address will be found to be
busy for the duration of the active transport endpoint. No other transport endpoints may
be bound for listening to the same protocol address while the listening endpoint is in the
data transfer or disconnect phase (i.e., untilenbind) call is issued).

If a different endpoint is used, the listening endpoint can continue to receive and
engueue incoming connect requests;

if the user issues & connect) on a listening endpoint, again, that endpoint can no
longer be used to receive and enqueue incoming connect requests;

a connect attempt failure will result in a value -1 returned from eithet_tbennect) or
t_rcvconnedt) call, with t_errno set to [TLOOK] indicating that a T_DISCONNECT
event has arrived. In this case, the reason for the failure may be identified by issuing a

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 15

Overview of Connection-oriented Mode XTI Overview

t_revdig() call.
The functions that support these operations of connection establishment are:

t_connedt) This function requests a connection to the transport user at a specified
destination and waits for the remote user’s response. This function may
be executed in either synchronous or asynchronous mode. In
synchronous mode, the function waits for the remote user’s response
before returning control to the local user. In asynchronous mode, the
function initiates connection establishment but returns control to the
local user before a response arrives.

t_rcvconned}) This function enables an active transport user to determine the status of
a previously sent connect request. If the request was accepted, the
connection establishment phase will be complete on return from this
function. This function is used in conjunction with connecf) to
establish a connection in an asynchronous manner.

t_listen() This function enables the passive transport user to receive connect
indications from other transport users.

t_accept) This function is issued by the passive user to accept a particular connect
request after an indication has been received.

3.1.3 Overview of Data Transfer

Once a transport connection has been established between two users, data may be
transferred back and forth over the connection in a full duplex way. Two functions have
been defined to support data transfer in connection mode as follows:

t snd) This function enables transport users to send either normal or expedited
data over a transport connection.

t_rev) This function enables transport users to receive either normal or
expedited data on a transport connection.

In data transfer phase, the occurence of théd[SCONNECT event implies an unsuccessful
return from the called functiort (snd) ort_rcv()) with t_errno set to [TLOOK]. The user
must then issue & look() call to get more detalils.

Receiving Data

If data (normal or expedited) is immediately available, then a calltov() returns data. If

the transport connection no longer exists, then the call returns immediately, indicating
failure. If data is not immediately available and the transport connection still exists, then the
result of a call ta¢_rcv() depends on the mode:

« Asynchronous mode:
The call returns immediately, indicating failure. The user must continue to “poll” for
incoming data, either by issuing repeated call_t@wv(), or by using the_look() or the
EM interface.

X/Open CAE Specification (1992)
Page : 16 X/Open Transport Interface (XTI)

XTI Overview Overview of Connection-oriented Mode

« Synchronous mode:
The call is blocked until one of the following conditions becomes true:

— data (normal or expedited) is received;

— adisconnect indication is received, or

— asignal has arrived.

The user may issuetalook() or useEM calls, to determine if data is available.

If a normal TSDU is to be received in multiplé_rcv() calls, then its delivery may be
interrupted at any time by the arrival of expedited data. The application can detect this by
checking theflags field on return from a call ta_rcv(); this will be indicated byt_rcv()
returning:

« data withT_EXPEDITEDflag not set and_MOREset (this is a fragment of normal data);

« data withT_EXPEDITED set (andT_MORE set or unset); this is an expedited message
(whole or part of, depending on the settingToMORE). The provider will continue to
return the expedited data (on this and subsequent catlg¢g()) until the end of the
Extended Transport Service Data UiTEDU) is reached, at which time it will continue
to return normal data. It is the user’s responsibility to remember that the receipt of
normal data has been interrupted in this way.

Sending Data

If the data can be accepted immediately by the provider, then it is accepted, and the call
returns the number of octets accepted. If the data cannot be accepted because of a
permanent failure condition (e.g., transport connection lost), then the call returns
immediately, indicating failure. If the data cannot be accepted immediately because of a
transient condition (e.g., lack of buffers, flow control in effect), then the result of a call to
t_snd) depends on the execution mode:

« Asynchronous mode:
The call returns immediately indicating failure. If the failure was due to flow control
restrictions, then it is possible that only part of the data will actually be accepted by the
transport provider. In this casesnd) will return a value that is less than the number of
octets requested to be sent. The user may either retry the ¢abind) or first receive
notification of the clearance of the flow control restriction via eithéook() or theEM
interface, then retry the call. The user may retry the call with the data remaining from
the original call or with more (or less) data, and with theMORE flag set appropriately
to indicate whether this is now the end of treDU.

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 17

Overview of Connection-oriented Mode XTI Overview

3.1.4

Page : 18

« Synchronous mode:
The call is blocked until one of the following conditions becomes true:

— the flow control restrictions are cleared and the transport provider is able to accept a
new data unit. Thé_snd) function then returns successfully;

— a disconnect indication is received. In this case thend) function returns
unsuccessfully with_errno set to [TLOOK]. The user can issuetalook() function
to determine the cause of the error. For this particular ¢aeek() will return a
T_DISCONNECTevent. Data that was being sent will be lost, or

— an internal problem occurs. In this case thend) function returns unsuccessfully
with t_errno set to TSYSERHR. Data that was being sent will be lost.

For some transport providers, normal data and expedited data constitute two distinct flows of
data. If either flow is blocked, the user may nevertheless continue using the other one, but in
synchronous mode a second process is needed. The user may send expedited data between
the fragments of a normaisby, that is, at_snd) call with theT_EXPEDITEDflag set may

follow at_snd) with theT_MOREflag set and th&_EXPEDITEDflag not set.

Note thatxTI supports two modes of sending data, record-oriented and stream-oriented. In
the record-oriented mode, the concept6DU is supported, that is, message boundaries are
preserved. In stream-oriented mode, message boundaries are not preserved and the concept
of a TSDU is not supported. A transport user can determine the mode by using the
t_getinfq() function, and examining thisdufield. If tsduis greater than zero, this indicates

that record-oriented mode is supported and the return value indicates the maxsmum

size. Iftsdu is zero, this indicates that stream-oriented transfer is supported. For more
details see€Chapter 6, t_getinfo().

Overview of Connection Release

The 1SO Connection-oriented Transport Service Definition supports only the abortive
release. However, th&CP Transport Service Definition also supports an orderly release.
SomeXTl implementations may support this orderly release.

An abortive release may be invoked from either the connection establishment phase or the
data transfer phase. When in the connection establishment phase, a transport user may use
the abortive release to reject a connect request. In the data transfer phase, either user may
abort a connection at any time. The abortive release is not negotiated by the transport users
and it takes effect immediately on request. The user on the other side of the connection is
notified when a connection is aborted. The transport provider may also initiate an abortive
release, in which case both users are informed that the connection no longer exists. There is
no guarantee of delivery of user data once an abortive release has been initiated.

Whatever the state of a transport connection, its user(s) will be informed as soon as possible
of the failure of the connection through a disconnect event or an unsuccessful return from a
blockingt_snd) or t_rcv() call. If the user wants to prevent loss of data by notifying the
remote user of an imminent connection release, it is the user’s responsibility to use an upper
level mechanism. For example, the user may send specific (expedited) data and wait for the
response of the remote user before issuing a disconnect request.

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI)

XTI Overview

Overview of Connection-oriented Mode

The orderly release capability is an optional featureTaP. If supported by therCP
transport provider, orderly release may be invoked from the data transfer phase to enable
two users to gracefully release a connection. The procedure for orderly release prevents the
loss of data that may occur during an abortive release.

The functions that support connection release are:

t_snddig)

t_revdiq)

t_sndre()

t_rcvrel()

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI)

This function can be issued by either transport user to initiate the
abortive release of a transport connection. It may also be used to reject
a connect request during the connection establishment phase.

This function identifies the reason for the abortive release of a
connection, where the connection is released by the transport provider or
another transport user.

This function can be called by either transport user to initiate an orderly
release. The connection remains intact until both users call this function
andt_rcvrel().

This function is called when a user is notified of an orderly release
request, as a means of informing the transport provider that the user is
aware of the remote user's actions.

Page : 19

Overview of Connectionless Mode XTI Overview

3.2

3.21

3.2.2

Page : 20

OVERVIEW OF CONNECTIONLESS MODE

The connectionless-mode transport service consists of two phases of communication:
initialisation/de-initialisation and data transfer. A brief description of each phase and its
associated functions is presented below. A state machine is describgection C.1
Transport Service Interface Sequence of Functionsand the figure inSection C.3
Example in Connectionless Modethat defines the legal sequence in which functions from
each phase may be issued.

In order to permit the transfer of connectionless data, a user (application) must:

1. supply a transport endpoint for the appropriate type of provider (dsoyen()); this
establishes a transport endpoint through which the user may communicate with the
provider;

2. associate (bind) an address with this transport endpoint (tdigd()), and

3. the user may then send and/or receive connectionless data, as required, using the
functionst_sndudaté) andt_rcvudatg). Once the data transfer phase is finished, the
application may either directly close the file descriptor returned_loyper() (using
t_closg))), thereby freeing the resource for future use, or start a new exchange of data
after disassociating the old address and binding a new one.

Initialisation/De-initialisation Phase

The functions that support the initialisation/de-initialisation tasks are the same functions
used in the connection-mode service.

Overview of Data Transfer

Once a transport endpoint has been activated, a user is free to send and receive data units
through that endpoint in connectionless mode as follows:

t_sndudatg) This function enables transport users to send a self-contained data unit
to the user at the specified protocol address.

t_rcvudatd) This function enables transport users to receive data units from other
users.

t_rcvuderi() This function enables transport users to retrieve error information

associated with a previously sent data unit.

The only possible events reported to the user ar&/PERR, [T_DATA] and [T_GODATA].
Expedited data cannot be used with a connectionless transport provider.

Receiving Data

If data is available (a datagram or a part), thecvudatg) call returns immediately
indicating the number of octets received. If data is notimmediately available, then the result
of thet_rcvudatd) call depends on the chosen mode:

« Asynchronous mode:
The call returns immediately indicating failure. The user must either retry the call
repeatedly, or “poll” for incoming data by using them interface or thet look()

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI)

XTI Overview Overview of Connectionless Mode

function so as not to be blocked.

« Synchronous mode:
The call is blocked until one of the following conditions becomes true:

— adatagram is received;
— an error is detected by the transport provider, or
— asignal has arrived.

The application may use thtelook() function or theEM mechanism to know if data is
available instead of issuingtarcvudatd) call which may be blocking.

Sending Data

« Synchronous mode:
In order to maintain some flow control, thesndudat4) function returns when sending
a new datagram becomes possible again. A process which sends data in synchronous
mode may be blocked for some time.

« Asynchronous mode:
The transport provider may refuse to send a new datagram for flow control restrictions.
In this case, thé_sndudatd) call fails returning a negative value and setttngrrno to
[TFLOW]. The user may retry later or use thdook() function orEM interface to be
informed of the flow control restriction removal.

If t_sndudat4) is called before the destination user has activated its transport endpoint, the
data unit may be discarded.

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 21

XTI Features XTI Overview

3.3 XTI FEATURES

The following functions, which correspond to the subset common to connection- oriented
and connectionless services, are always implemented:

t_bind()
t_closg)
t_look()
t_oper()
t_synq)
t_unbind)

If a Connection-oriented Transport Service is provided, then the following functions are
always implemented:

t_accept)
t_connect)
t_listen()
t_rev()
t_rcvconnect)
t_rcevdis()

t snd)
t_snddig)

If XTI supports the access to the Connectionless Transport Service, the following three
functions are always implemented:

t_rcvudaty)
t_rcvudern()
t_sndudatd)

Mandatory mechanisms:
« Synchronous mode
« Asynchronous mode

Utility functions:

t_alloc()
t_freg()
t_error()
t_getprotadd()
t_getinfq()
t_getstaté)
t_optmgm()
t_strerror()

The orderly release mechanism (usingndre() and t_rcvrel()), is supported only for
T_COTS_ORDtype providers. Use with other providers will cause fheOTSUPPORTJerror

to be returned. The use of orderly release is definitely not recommended in order to make
applications usingCP portable onto thésO Transport Layer.

X/Open CAE Specification (1992)
Page : 22 X/Open Transport Interface (XTI)

XTI Overview XTI Features

Optional mechanisms:

« the ability to manage (enqueue) more than one incoming connect indication at any one
time, and

« the address of the caller passed witlaccept) may optionally be checked by a(TI
implementation.

3.3.1 XTI Functions Versus Protocols

Table 3-1 presents all the functions definedXinl. The character ‘X’ indicates that the
mapping of that function is possible onto a Connection-oriented or Connectionless Transport
Service. The table indicates the type of utility functions as well.

Necessary for Protocol Utility Functions
Functions Con_nectlon Connectionless| General| Memory|
Oriented
t_accept) X
t_allod() X
t_bind() X X
t_clos€) X X
t_connedt) X
t_error() X
t_freq) X
t_getprotaddt) X
t_getinfd) X
t_getstaté) X
t_listen() X
t_look) X X
t_openf) X X
t_optmgmg) X
t_rev() X
t_rcvconned}) X
t_revdiq) X
t_rcvrel() X
t_rcvudatd) X
t_rcvudery() X
t_snd) X
t_snddig) X
t_sndre() X
t_sndudaté) X
t_strerron() X
t_syng) X
t_unbind) X X

Table 3-1 Classification of theT!I Functions

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 23

XTI Features

Page : 24

XTI Overview

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI)

Chapter 4

States and Events in XTI

Tables 4-1 to 4-7 are included to describe the possible states of the transport provider as
seen by the transport user, to describe the incoming and outgoing events that may occur on
any connection, and to identify the allowable sequence of function calls. Given a current
state and event, the transition to the next state is shown as well as any actions that must be
taken by the transport user.

The allowable sequence of functions is described in Tables 4-5, 4-6 and 4-7. The support
functions, t_getprotadd(), t getstaté), t_getinfd), t_alloc(), t_freg(), t_look() and
t_synd), are excluded from the state tables because they do not affect the state of the
interface. Each of these functions may be issued from any state except the uninitialised
state. Similarly, the_error() andt_strerror() functions have been excluded from the state
table because they do not affect the state of the interface.

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 25

Transport Interfaces States States and Events in XTI

4.1 TRANSPORT INTERFACES STATES
XTI manages a transport endpoint by using at most 8 states:
o T_UNINIT
o T_UNBND
e T_IDLE
e T_OUTCON
o T_INCON
o T_DATAXFER
o T_INREL
e T_OUTREL

The statesT_OUTREL and T_INREL are significant only if the optional orderly release
function is both supported and used.

Table 4-1 describes all possible states of the transport provider as seen by the transport user.
The service type may be connection mode, connection mode with orderly release or
connectionless mode.

State Description Service Type
T_UNINIT uninitialised- initial T _COTS
and final state of interface T CLTS
T_COTS_ORD
T_UNBND unbound T_COTS
T_COTS_ORD
T_CLTS
T_IDLE no connection established T_COTS
T_COTS_ORD
T_CLTS
T_OUTCON outgoing connection pending T_COTS
for active user T_COTS_ORD
T_INCON incoming connection pending T_COTS
for passive user T_COTS_ORD
T _DATAXFER | data transfer T_COTS
T_COTS_ORD
T_OUTREL outgoing orderly release T_COTS_ORD
(waiting for orderly release indication)
T_INREL incoming orderly release T_COTS_ORD
(waiting to send orderly release request)

Table 4-1 Transport Interface States

X/Open CAE Specification (1992)
Page : 26 X/Open Transport Interface (XTI)

States and Events in XTI Outgoing Events

4.2

OUTGOING EVENTS

The following outgoing events correspond to the successful return or error return of the
specified user-level transport functions causig to change state, where these functions
send a request or response to the transport provider. In Table 4-2, some events (e.g.,
acceptX are distinguished by the context in which they occur. The context is based on the
values of the following:

ocnt Count of outstanding connect indications (connect indications passed to the
user but not accepted or rejected).
fd File descriptor of the current transport endpoint.
resfd File descriptor of the transport endpoint where a connection will be accepted.
Event Description Service Type
opened successful returniofoper) T _COTST_COTS_ORDT_CLTS
bind successful return af bind() T _COTST_COTS_ORDT_CLTS
optmgmt | successful return bfoptmgmg) T_COTS T_COTS_ORDT_CLTS
unbind successful return 6funbind)) T _COTST_COTS_ORDT_CLTS
closed successful return bfclose) T _COTST_COTS_ORDT_CLTS
connectl| successful returniofconnedt) T _COTS T_COTS_ORD
in synchronous mode
connect2| TNODATA error ont_connedt) T_COTS T_COTS_ORD

in asynchronous mode, BLOOK

error due to a disconnect indication
arriving on the transport endpoint,

or TSYSERRerror and errno set tBINTR.

acceptl successful returntofaccept) T_COTS T_COTS_ORD
with ocnt== 1, fd ==resfd

accept2 successful returniofaccept) T _COTS T_COTS_ORD
with ocnt==1,fd resfd

accept3 successful returniofaccept) T_COTS T_COTS_ORD
with ocnt> 1

snd successful return ofsnd) T_COTS T_COTS_ORD

snddis1 successful return bfsnddig) T_COTS T_COTS_ORD
with ocnt<=1

snddis2 successful return bfsnddig) T _COTS T_COTS_ORD
with ocnt> 1

sndrel successful return bfsndre() T_COTS_ORD

sndudata| successful returntondudaté) T_CLTS

Table 4-2 Transport Interface Outgoing Events

ONote thatocntis only meaningful for the listening transport endpoiial) (

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 27

Incoming Events States and Events in XTI

4.3

Page : 28

INCOMING EVENTS

The following incoming events correspond to the successful return of the specified user-
level transport functions, where these functions retrieve data or event information from the
transport provider. One incoming event is not associated directly with the return of a
function on a given transport endpoint:

« pass_conn which occurs when a user transfers a connection to another transport
endpoint. This event occurs on the endpoint that is being passed the connection, despite
the fact that no function is issued on that endpoint. The epass_connis included in
the state tables to describe what happens when a user accepts a connection on another
transport endpoint.

In Table 4-3, thercvdis events are distinguished by the context in which they occur. The
context is based on the value @ént, which is the count of outstanding connect indications
on the current transport endpoint.

Incoming

Event Description Service Type

listen successful return of listen() T_COTS
T_COTS_ORD

rcvconnect| successful returntofrcvconnedt) | T_COTS
T_COTS_ORD

rcv successful return df rcv() T_COTS
T_COTS_ORD

rcvdisl successful return ofrcvdig) T_COTS
with ocnt== T_COTS_ORD

rcvdis2 successful return ofrcvdig) T_COTS
with ocnt== T_COTS_ORD

rcvdis3 successful return ofrcvdig) T_COTS
with ocnt> 1 T_COTS_ORD
rcvrel successful return aof rcvrel() T_COTS_ORD

rcvudata successful return bfrcvudatd) T_CLTS

rcvuderr successful return bfrcvudery) T_CLTS

pass_conn| receive a passed connection T_COTS
T_COTS_ORD

Table 4-3 Transport Interface Incoming Events

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI)

States and Events in XTI Transport User Actions

4.4 TRANSPORT USER ACTIONS

Some state transitions are accompanied by a list of actions the transport user must take.
These actions are represented by the notatinvwfheren is the number of the specific
action as described in Table 4-4.

[1] Setthe count of outstanding connect indications to zero
[2] Increment the count of outstanding connect indications.
[3] Decrement the count of outstanding connect indications,

[4] Pass a connection to another transport endpoint as indicated
int_accept).

Table 4-4 Transport Interface User Actions

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 29

State Tables States and Events in XTI

4.5 STATE TABLES

Tables 4-5, 4-6 and 4-7 describe the possible next states, given the current state and event.
The state is that of the transport provider as seen by the transport user.

The contents of each box represent the next state given the current state (column) and the
current incoming or outgoing event (row). An empty box represents a state/event
combination that is invalid. Along with the next state, each box may include an action list

(as specified in Table 4-4). The transport user must take the specific actions in the order
specified in the state table.

A separate table is shown for initialisation/de-initialisation, data transfer in connectionless
mode and connection/release/data transfer in connection mode.

2\5?; T_UNINIT T_UNBND T_IDLE
opened| T_UNBND

bind T_IDLE [1]

unbind T_UNBND
closed T_UNINIT T_UNINIT

Table 4-5. Initialisation/De-initialisation State Table

state
event

sndudata| T_IDLE
rcvudata | T_IDLE
rcvuderr | T_IDLE

T_IDLE

Table 4-6. Data Transfer State Table for Connectionless-Mode Service

X/Open CAE Specification (1992)
Page : 30 X/Open Transport Interface (XTI)

States and Events in XTI State Tables

:\t,zt:t T_IDLE T_OUTCON T_INCON [_DATAXFER T_OUTREL T_INREL |T_UNBND
connectl | T_DATAXFER
connect2 | T_OUTCON
rcveonnect T_DATAXFER
listen T_INCON[2] T_INCON[2]
acceptl T_DATAXFER[3]
accept2 T_IDLE[3][4]
accept3 T_INCONI[3][4]
snd T_DATAXFER T_INREL
rcv T_DATAXFER | T_OUTREL
snddis1 T_IDLE T_IDLE[3] T_IDLE T_IDLE T_IDLE
snddis2 T_INCON[3]
revdisl T_IDLE T_IDLE T_IDLE T_IDLE
revdis2 T_IDLE[3]
revdis3 T_INCON[3]
sndrel T_OUTREL T_IDLE
rcvrel T_INREL T_IDLE
pass_conn| T_DATAXFER T_DATAXFER
optmgmt | T_IDLE T_OUTCON | T_INCON T_DATAXFER| T_OUTREL| T_INREL| T_UNBIND
closed T_UNINIT | T_UNINIT T_UNINIT T_UNINIT T_UNINIT [T_UNINIT

Figure 4-7. Connection/Release/Data Transfer State Table for Connection-mode Service

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 31

Events and TLOOK Error Indication

4.6 EVENTS AND TLOOK ERROR INDICATION

States and Events in XTI

The following list describes the asynchronous events which caus@lacall to return with

a[TLOOK] error:

t_accept) T_DISCONNECT T_LISTEN
t_connedt) T_DISCONNECT T_LISTEN?
t_listen() T_DISCONNECT?

t_rev() T_DISCONNECT T_ORDREL?

t_rcvconned}) T_DISCONNECT

t_rcvrel() T_DISCONNECT
t_rcvudatd) T_UDERR

t_snd) T_DISCONNECT T_ORDREL
t_sndudaté) T_UDERR

t_unbind) T_LISTEN, T_DATA *
t_sndre() T_DISCONNECT

t_snddig) T_DISCONNECT

Once a[TLOOK] error has been received on a transport endpoint viaxEnfunction,
subsequent calls to that and oth@n functions, to which the san{@LOOK] error applies,
will continue to returr[TLOOK] until the event is consumed. An event causing[Th&®OK]
error can be determined by callinglook() and then can be consumed by calling the
corresponding consumingT! function as defined irChapter 2, Table 2-1, Events and

t_look().

1. This occurs only when & connectis done on an endpoint which has been bound witlies > 0 and for which a connect

indication is pending.

2. This eventindicates a disconnect on an outstanding connect indication.

3. This occurs only when all pending data has been read.
4. T_DATA may only occur for the connectionless mode.

Page : 32

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI)

Chapter 5

The Use of Options

5.1 GENERALITIES

The functions t_accept), t_conneqt), t_lister(), t_optmgmt), t_rcvconnedt),
t_rcvudatd), t_rcvuder() andt_sndudatd) contain anopt argument of typestruct netbuf

as an input or output parameter. This argument is used to convey options between the
transport user and the transport provider.

There is no general definition about the possible contents of options. There are g@neral
options and those that are specific for each transport provider. Some options allow the user
to tailor his communication needs, for instance by asking for high throughput or low delay.
Others allow the fine-tuning of the protocol behaviour so that communication with unusual
characteristics can be handled more effectively. Other options are for debugging purposes.

All options have default values. Their values have meaning to and are defined by the
protocol level in which they apply. However, their values can be negotiated by a transport
user. This includes the simple case where the transport user can simply enforce its use.
Often, the transport provider or even the remote transport user may have the right to
negotiate a value of lesser quality than the proposed one, i.e., a delay may become longer, or
a throughput may become lower.

It is useful to differentiate between options that association-relatetland those that are

not. Association-related options are intimately related to the particular transport connection
or datagram transmission. If the calling user specifies such an option, some ancillary
information is transferred across the network in most cases. The interpretation and further
processing of this information is protocol-dependent. For instance, iS@monnection-
oriented communication, the calling user may specify quality-of-service parameters on
connection establishment. These are first processed and possibly lowered by the local
transport provider, then sent to the remote transport provider that may degrade them again,
and finally conveyed to the called user that makes the final selection and transmits the
selected values back to the caller.

Options that are not association-related do not contain information destined for the remote
transport user. Some have purely local relevance, e.g., an option that enables debugging.
Others influence the transmission, for instance the option that satstihee-to-livefield, or
TCP_NODELAY (seeAppendix B, Internet Protocol-specific Information). Local options

are negotiated solely between the transport user and the local transport provider. The
distinction between these two categories of options is visibbTinthrough the following
relationship: on output, the functionslister() andt_rcvudatd) return association-related
options only. The function$_rcvconnedt) andt_rcvuder() may return options of both

1. The term “association” is used to denote a pair of communicating transport users.

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 33

Generalities The Use of Options

Page : 34

categories. On input, options of both categories may be specified twditcept) and
t _sndudat@). The functionst_connedt) andt_optmgm¢) can process and return both
categories of options.

The transport provider has a default value for each option it supports. These defaults are
sufficient for the majority of communication relations. Hence, a transport user should only
request options actually needed to perform the task, and leave all others at their default
value.

This chapter describes the general framework for the use of options. This framework is
obligatory for all transport providers. The specific options that are legal for use with a
specific transport provider are described in the provider-specific appendicesp(serdix

A, 1SO Transport Protocol Information, and Appendix B, Internet Protocol-specific
Information). General XTI options are described ih optmgmt) in Chapter 6, XTI
Library Functions and Parameters.

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI)

The Use of Options The Format of Options

5.2

THE FORMAT OF OPTIONS

Options are conveyed via ampt argument ofstruct netbuf. Each option in the buffer
specified is of the fornstruct t_opthdr possibly followed by an option value.

A transport provider embodies a stack of protocols. Téwel field of struct t_opthdr
identifies thexT! level or a protocol of the transport provideresP or ISO8073:1986. The
namefield identifies the option within the level, ardn contains its total length, i.e., the
length of the option headéropthdr plus the length of the option value. Theatusfield is
used by thexT! level or the transport provider to indicate success or failure of a negotiation
(seeSection 5.3.5Retrieving Information about Options andt_optmgmt) in Chapter 6,

XTI Library Functions and Parameters).

Several options can be concatenated. The transport user has, however, to ensure that each
option starts at a long-word boundary. The maorr_NEXTHDR (pbuf, buflen, poption)

can be used for that purpose. The parametauf denotes a pointer to an option buffer
opt.buf andbuflenis its length. The paramet@option points to the current option in the

option buffer. OPT_NEXTHDR returns a pointer to the position of the next option, or returns

a null pointer if the option buffer is exhausted. The macro is helpful for writing and reading.
See<xti.h> in Appendix F, Headers and Definitionsfor the exact definition.

The option buffer thus has the following form (unsigned long is abbreviatadltmg:

first option second option
len level name status value 11 len
u_long u_long u_long u_long
opt.buf alignment characters

The length of the option buffer is given lopt.len

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 35

The Elements of Negotiation The Use of Options

5.3

531

5.3.2

Page : 36

THE ELEMENTS OF NEGOTIATION

This section describes the general rules governing the passing and retrieving of options and
the error conditions that can occur. Unless explicitly restricted, these rules apply to all
functions that allow the exchange of options.

Multiple Options and Options Levels

When multiple options are specified in an option buffer on input, different rules apply to the
levels that may be specified, depending on the function call. Multiple options specified on
input to t_optmgmg) must address the same option level. Options specified on input to
t_connedt), t_accept) andt_sndudaté) can address different levels.

lllegal Options

Only legal options can be negotiated; illegal options cause failure. An option is illegal if the
following applies:

« The length specified in_opthdr.lenexceeds the remaining size of the option buffer
(counted from the beginning of the option).

« The option value is illegal. The legal values are defined for each option. (See
t_optmgmt) in Chapter 6, XTI Library Functions and Parameters, Appendix A, ISO
Transport Protocol Information and Appendix B, Internet Protocol-specific
Information .)

If an illegal option is passed %Tl, the following will happen:
« A call tot_optmgmg) fails with [TBADOPT].

« t_accept) or t_connedt) fail either with [TBADOPT], or the connection establishment
aborts, depending on the implementation and the time the illegal option is detected. If
the connection aborts, @ _DISCONNECT event occurs, and a synchronous call to
t_connedt) fails with [TLOOK]. It depends on timing and implementation conditions
whether &_accept) call still succeeds or fails witfTLOOK] in that case.

« A call to t_sndudatd) either fails with[TBADOPT], or it successfully returns, but a
T_UDERRevent occurs to indicate that the datagram was not sent.

If the transport user passes multiple options in one call and one of them is illegal, the call
fails as described above. It is, however, possible that some or even all of the submitted legal
options were successfully negotiated. The transport user can check the current status by a
call to t_optmgmt) with the T_CURRENT flag set (sed_optmgmt) in Chapter 6, XTI

Library Functions and Parameters).

Specifying an option level unknown to the transport provider does not cause failure in calls
to t_connedt), t_accept) or t_sndudatg); the option is discarded in these cases. The
functiont_optmgmt) fails with [TBADOPT].

Specifying an option name that is unknown to or not supported by the protocol selected by
the option level does not cause failure. The option is discarded in calisctmnedt),
t_accept) ort_sndudaté). The functiont_optmgm{) returnsT_NOTSUPPORTIn thelevel

field of the option.

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI)

The Use of Options The Elements of Negotiation

5.3.3

Initiating an Option Negotiation

A transport user initiates an option negotiation when caltingpnnedt), t_sndudaté) or
t_optmgmt) with the flagT_NEGOTIATE set.

The negotiation rules for these functions depend on whether an option request is an absolute
requirement or not. This is explicitly defined for each option (septmgmt) in Chapter

6, XTI Library Functions and Parameters, Appendix A, ISO Transport Protocol
Information andAppendix B, Internet Protocol-specific Information). In case of anso
transport provider, for example, the option that requests use of expedited data is not an
absolute requirement. On the other hand, the option that requests protection could be an
absolute requirement.

Note: The notion “absolute requirement” originates from the quality-of-service
parameters 50 8072:1986. Its use is extended here to all options.

If the proposed option value is an absolute requirement, three outcomes are possible:

« The negotiated value is the same as the proposed one. When the result of the negotiation
is retrieved, thestatusfield int_opthdr is set toT_SUCCESS.

The negotiation is rejected if the option is supported but the proposed value cannot be
negotiated. This leads to the following behaviour:

— t_optmgmt) successfully returns, but the returned option hasti#susfield set to
T_FAILURE.

— Any attempt to establish a connection abort3; BISCONNECTevent occurs, and a
synchronous call tb_connedt) fails with [TLOOK].

— t_sndudat@) fails with [TLOOK] or successfully returns, but & UDERR event
occurs to indicate that the datagram was not sent.

If multiple options are submitted in one call and one of them is rejeetedbehaves as

just described. Although the connection establishment or the datagram transmission
fails, options successfully negotiated before some option was rejected retain their
negotiated values. There is no roll-back mechanism (Seetion 5.4 Option
Management of a Transport Endpoint).

The functiont_optmgmt) attempts to negotiate each option. Téatusfields of the
returned options indicate succe3s$UCCES$ or failure (T_FAILURE).

If the local transport provider does not support the option attaiptmgmt) reports
T_NOTSUPPORTIn the statusfield. The functiond_connedt) andt_sndudaté) ignore
this option.

If the proposed option value is not an absolute requirement, two outcomes are possible:

« The negotiated value is of equal or lesser quality than the proposed one (e.g., a delay
may become longer).

When the result of the negotiation is retrieved, 8tatusfield in t_opthdr is set to
T_SUCCESSf the negotiated value equals the proposed one, or SEtRBRTSUCCESS
otherwise.

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 37

The Elements of Negotiation The Use of Options

5.3.4

Page : 38

« If the local transport provider does not support the option attalptmgmt) reports
T_NOTSUPPORTIn the statusfield. The functiond_connedt) andt_sndudaté) ignore
this option.

Unsupported options do not cause functions to fail or a connection to abort, since different
vendors possibly implement different subsets of options. Furthermore, future enhancements
of XTI might encompass additional options that are unknown to earlier implementations of
transport providers. The decision whether or not the missing support of an option is
acceptable for the communication is left to the transport user.

The transport provider does not check for multiple occurrences of the same option, possibly
with different option values. It simply processes the options in the option buffer one after
the other. However, the user should not make any assumption about the order of processing.

Not all options are independent of one another. A requested option value might conflict
with the value of another option that was specified in the same call or is currently effective
(seeSection 5.4 Option Management of a Transport Endpoint). These conflicts may not

be detected at once, but later they might lead to unpredictable results. If detected at
negotiation time, these conflicts are resolved within the rules stated above. The outcomes
may thus be quite different and depend on whether absolute or non-absolute requests are
involved in the conflict.

Conflicts are usually detected at the time a connection is established or a datagram is sent. If
options are negotiated withoptmgmg), conflicts are usually not detected at this time, since
independent processing of the requested options must allow for temporal inconsistencies.

When called, the function$ connedt) and t sndudatf) initiate a negotiation ofall
association-related options according to the rules of this section. Options not explicitly
specified in the function calls themselves are taken from an internal option buffer that
contains the values of a previous negotiation (Seetion 5.4 Option Management of a
Transport Endpoint).

Responding to a Negotiation Proposal

In connection-oriented communication, some protocols give the peer transport users the
opportunity to negotiate characteristics of the transport connection to be established. These
characteristics are association-related options. With the connect indication, the called user
receives (via_lister()) a proposal about the option values that should be effective for this
connection. The called user can accept this proposal or weaken it by choosing values of
lower quality (e.g., longer delays than proposed). The called user can, of course, refuse the
connection establishment altogether.

The called user responds to a negotiation proposat \aacept). If the called transport

user tries to negotiate an option of higher quality than proposed, the outcome depends on the
protocol to which that option applies. Some protocols may reject the option, some protocols
take other appropriate action described in protocol-specific appendices. If an option is
rejected, the following error occurs:

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI)

The Use of Options The Elements of Negotiation

535

The connection fails; &_DISCONNECTevent occurs. It depends on timing
and implementation conditions whether theccept) call still succeeds or
fails with [TLOOK].

If multiple options are submitted with accept) and one of them is rejected, the connection

fails as described above. Options that could be successfully negotiated before the erroneous
option was processed retain their negotiated value. There is no roll-back mechanism (see
Section 5.4 Option Management of a Transport Endpoint).

The response options can either be specified with thecept) call, or can be preset for the

r resfd in at_optmgmt) call (action

T_NEGOTIATE) prior tot_accept) (seeSection 5.4 Option Management of a Transport
Endpoint). Note that the response to a negotiation proposal is activated wheocept) is
called. At_optmgmt) call with erroneous option values as described above will succeed;
the connection aborts at the tirheaccept) is called.

The connection also fails if the selected option values lead to contradictions.

The functiont_accept) does not check for multiple specification of an option (Seetion
5.3.3 Initiating an Option Negotiation). Unsupported options are ignored.

Retrieving Information about Options

This section describes how a transport user can retrieve information about options. To be
explicit, a transport user must be able to:

« know the result of a negotiation (e.g., at the end of a connection establishment)
« know the proposed option values under negotiation (during connection establishment)

« retrieve option values sent by the remote transport user for notification only I@.g.,
options)

« check option values currently effective for the transport endpoint.

To this end, the functionst_connedt), t listen(), t optmgm{), t_rcvconnedt),
t_rcvudatd) andt_rcvuder() take an output argumenpt of struct netbuf. The transport
user has to supply a buffer where the options shall be writtengbbufmust point to this
buffer, andopt.maxlermust contain the buffer’s size. The transport user caogemaxien
to zero to indicate that no options are to be retrieved.

Which options are returned depend on the function call involved:

t_connedt) (synchronous mode) aridrcvconnedt)
The functions return the values of all association-related options that were
received with the connection response and the negotiated values of those
non-association-related options that had been specified on input. However,
options specified on input in thie connedf) call that are not supported or
refer to an unknown option level are discarded and not returned on output.

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 39

The Elements of Negotiation The Use of Options

5.3.6

Page : 40

t_listen()

t_rcvudatd)

t_rcvudery()

t_optmgmt)

The statusfield of each option returned with conneqt) or t_rcvconned})
indicates if the proposed valueT (SUCCES$ or a degraded value
(T_PARTSUCCES} has been negotiated. Thstatus field of received
ancillary information (e.g.JP options) that is not subject to negotiation is
always set ta_SUCCESS.

The received association-related options are related to the incoming
connection (identified by the sequence number), not to the listening endpoint.
(However, the option values currently effective for the listening endpoint can
affect the values retrieved hylister(), since the transport provider might be
involved in the negotiation process, too.) Thus, if the same options are
specified in a call ta_optmgm{) with actionT_CURRENT, t_optmgmt) will
usually not return the same values.

The number of received options may be variable for subsequent connect
indications, since many association-related options are only transmitted on
explicit demand by the calling user (e.dB options orISO 8072:1986
throughput). Itis even possible that no options at all are returned.

Thestatusfield is irrelevant.

The received association-related options are related to the incoming
datagram, not to the transport endpoidt Thus, if the same options are
specified in a call ta_optmgmg) with actionT_CURRENT, t_optmgmg) will
usually not return the same values.

The number of options received may vary from call to call.
Thestatusfield is irrelevant.

The returned options are related to the options input at the previous
t_sndudaté) call that produced the error. Which options are returned and
which values they have depend on the specific error condition.

Thestatusfield is irrelevant.

This call can process and return both categories of options. It acts on options
related to the specified transport endpoint, not on options related to a connect
indication or an incoming datagram. A detailed description is given in
t_optmgmt) in Chapter 6, XTI Library Functions and Parameters.

Privileged and Read-only Options

Privilegedoptions or option values are those that may be requested by privileged users only.
The meaning of privilege is hereby implementation-defined.

Read-onlyoptions serve for information purposes only. The transport user may be allowed
to read the option value but not to change it. For instance, to select the value of a protocol
timer or the maximum length of a protocol data unit may be too subtle to leave to the
transport user, though the knowledge about this value might be of some interest. An option
might be read-only for all users or solely for non-privileged users. A privileged option
might be inaccessible or read-only for non-privileged users.

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI)

The Use of Options The Elements of Negotiation

An option might be negotiable in som&| states and read-only in oth&ml states. For
instance, thésO quality-of-service options are negotiable in the stata®LE andT_INCON
and read-only in all other states (exCEpUNINIT).

If a transport user requests negotiation of a read-only option, or a non-privileged user
requests illegal access to a privileged option, the following outcomes are possible:

« t_optmgmt) successfully returns, but the returned option hasstttusfield set to
T_NOTSUPPORTIf a privileged option was requested illegally, andTtcREADONLY if
modification of a read-only option was requested.

If negotiation of a read-only option is requestédaccept) or t_connedt) either fail

with [TACCES], or the connection establishment aborts ant_BISCONNECT event
occurs. If the connection aborts, a synchronous catl tonnedt) fails with [TLOOK].

If a privileged option is illegally requested, the option is quietly ignored. (A non-
privileged user shall not be able to select an option which is privileged or unsupported.)
It depends on timing and implementation conditions whether accept) call still
succeeds or fails witfTLOOK].

If negotiation of a read-only option is requestédsndudaté) may return[TLOOK] or

successfully return, but & UDERR event occurs to indicate that the datagram was not
sent. If a privileged option is illegally requested, the option is quietly ignored. (A non-
privileged user shall not be able to select an option which is privileged or unsupported.)

If multiple options are submitted tio conneqt), t_accept) or t_sndudaté) and a read-only

option is rejected, the connection or the datagram transmission fails as described. Options
that could be successfully negotiated before the erroneous option was processed retain their
negotiated values. There is no roll-back mechanism (see @tiion 5.4 Option
Management of a Transport Endpoint).

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 41

Option Management of a Transport Endpoint The Use of Options

5.4

Page : 42

OPTION MANAGEMENT OF A TRANSPORT ENDPOINT

This section describes how option management works during the lifetime of a transport
endpoint.

Each transport endpoint is (logically) associated with an internal option buffer. When a
transport endpoint is created, this buffer is filled with a system default value for each
supported option. Depending on the option, the default may dRTION ENABLED,
‘OPTION DISABLED or denote a time span, etc. These default settings are appropriate for
most uses. Whenever an option value is modified in the course of an option negotiation, the
modified value is written to this buffer and overwrites the previous one. At any time, the
buffer contains all option values that are currently effective for this transport endpoint.

The current value of an option can be retrieved at any time by calliogtmgmg) with the
flag T_CURRENTSset. Callingt_optmgm{) with the flagT_DEFAULT set yields the system
default for the specified option.

A transport user can negotiate new option values by callimptmgmg) with the flag
T_NEGOTIATE set. The negotiation follows the rules Bection 5.3 The Elements of
Negotiation.

Some options may be modified only in specifitl states and are read-only in oth¢TI

states. Many association-related options, for instance, may not be changed in the state
T_DATAXFER, and an attempt to do so will fail (segection 5.3.6 Privileged and Read-

only Options). The legal states for each option are specified with its definition.

As usual, association-related options take effect at the time a connection is established or a
datagram is transmitted. This is the case if they contain information that is transmitted
across the network or determine specific transmission characteristics. If such an option is
modified by a call tot_optmgm¢), the transport provider checks whether the option is
supported and negotiates a value according to its current knowledge. This value is written to
the internal option buffer. The final negotiation takes place if the connection is established
or the datagram is transmitted. This can result in a degradation of the option value or even
in a negotiation failure. The negotiated values are written to the internal option buffer.

Some options may be changed in the statBATAXFER, e.g., those specifying buffer sizes.
Such changes might affect the transmission characteristics and lead to unexpected side
effects (e.g., data loss if a buffer size was shortened) if the user does not care.

The transport user can explicitly specify both categories of options on input when calling
t_connedt), t_accept) or t_sndudat§). The options are at first locally negotiated option-
by-option, and the resulting values written to the internal option buffer. The modified option
buffer is then used if a further negotiation step across the network is required, as for instance
in connection-orientetsO communication. The newly negotiated values are then written to
the internal option buffer.

At any stage, a negotiation failure can lead to an abort of the transmission. If a transmission
aborts, the option buffer will preserve the content it had at the time the failure occurred.
Options that could be negotiated just before the error occurred are written back to the option
buffer, whether th&T! call fails or succeeds.

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI)

The Use of Options Option Management of a Transport Endpoint

It is up to the transport user to decide which options it explicitly specifies on input when
callingt_conneqt), t_accept) or t_sndudat&). The transport user need not pass options at
all, by setting thden field of the function’s inpubptargument to zero. The current content
of the internal option buffer is then used for negotiation without prior modification.

The negotiation procedure for options at the time oft @onnedt), t accept) or

t sndudaté) call always obeys the rules ofection 5.3.3 Initiating an Option
Negotiation, and Section 5.3.4 Responding to a Negotiation Proposal whether the
options were explicitly specified during the call or implicitly taken from the internal option
buffer.

The transport user should not make assumptions about the order in which options are
processed during negotiation.

A value in the option buffer is only modified as a result of a successful negotiation of this
option. It is, in particular, not changed by a connection release. There is no history
mechanism that would restore the buffer state existing prior to the connection establishment
or the datagram transmission. The transport user must be aware that a connection
establishment or a datagram transmission may change the internal option buffer, even if
each option was originally initialised to its default value.

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 43

Supplements The Use of Options

55

55.1

55.2

Page : 44

SUPPLEMENTS

This section contains supplementary remarks and a short summary.

The Option Value T_UNSPEC

Some options may not have a fully specified value all the time.IS&ntransport provider,

for instance, that supports several protocol classes, might not have a preselected preferred
class before a connection establishment is initiated. At the time of the connection request,
the transport provider may conclude from the destination address, quality-of-service
parameters and other locally available information which preferred class it should use. A
transport user asking for the default value of the preferred class option inTstates

would get the valug_UNSPEC. This value indicates that the transport provider did not yet
select a value. The transport user could negotiate another value as the preferred class, e.g.,
T_CLASS2. The transport provider would then be forced to initiate a connect request with
class 2 as the preferred class.

An XTI implementation may also return the valteUNSPECIf it can currently not access

the option value. This may happen, for example, in the Statt\BND in systems where

the protocol stacks reside on separate controller cards and not in the host. The
implementation may never retufn UNSPECIf the option is not supported at all.

If T_UNSPECIs a legal value for a specific option, it may be used by the user on input, too.
It is used to indicate that it is left to the provider to choose an appropriate value. This is
especially useful in complex options &0 throughput, where the option value has an
internal structure (se@CO_THROUGHPUTIn Appendix A, ISO Transport Protocol
Information). The transport user may leave some fields unspecified by selecting this value.
If the user proposes_UNSPEG the transport provider is free to select an appropriate value.
This might be the default value, some other explicit valug, aNSPEC.

For each option, it is specified whether or MOtUNSPECIs a legal value for negotiation
purposes.

The info Argument

The functionst_oper{) andt_getinfq) return values representing characteristics of the
transport provider in the argumeimfo. The value ofinfo->optionsis used byt_alloq() to
allocate storage for an option buffer to be used irkxancall. The value is sufficient for all
uses.

In general,info->optionsalso includes the size of privileged options, even if these are not
read-only for non-privileged users. Alternatively, an implementation can choose to return
different values innfo->optionsfor privileged and non-privileged users.

The values irinfo->etsdy info->tsdu, info->connectandinfo->disconpossibly diminish as
soon as th@_DATAXFER state is entered. Calling optmgm¢) does not influence these
values (se€hapter 6, t_optmgmt)).

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI)

The Use of Options Supplements

5.5.3 Summary

« The format of an option is defined by a headeuct t_opthdr, followed by an option
value.

« On input, several options can be specified in an iguitargument. Each option must
begin on a long-word boundary.

There are options that are association-related and options that are not. On output, the
functions t_lister() and t_rcvudatd) return association-related options only. The
functionst_rcvconnedt) andt_rcvuder() may return options of both categories. On
input, options of both categories may be specified witaccepf) andt_sndudaté).

The functionst_connedt) andt_optmgmt) can process and return both categories of
options.

A transport endpoint is (logically) associated with an internal option buffer, where the
currently effective values are stored. Each successful negotiation of an option modifies
this buffer, regardless of whether the call initiating the negotiation succeeds or fails.

When callingt_conneqt), t_accept) or t_sndudat4), the transport user can choose to
submit the currently effective option values by setting tle field of the inputopt
argument to zero.

If a connection is accepted vtaaccept), the explicitly specified option values together
with the currently effective option values oésfd, not of fd, matter in this negotiation
step.

The options returned by rcvuder() are those negotiated with the outgoing datagram
that produced the error. If the error occurred during option negotiation, the returned
option might represent some mixture of partly negotiated and not-yet negotiated options.

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 45

Portability Aspects The Use of Options

5.6

Page : 46

PORTABILITY ASPECTS

An application programmer who writeg'| programs faces two portability aspects:
« Portability across protocol profiles.
« Portability across different system platforms (possibly from different vendors).

Options are intrinsically coupled with a definite protocol or protocol profile. Making
explicit use of them therefore degrades portability across protocol profiles.

Different vendors might offer transport providers with different option support. This is due

to different implementations and product policies. The lists of options o _thyetmgmt)

manual page and in the protocol-specific appendices are maximal sets but do not necessarily
reflect common implementation practice. Vendors will implement subsets that suit their
needs. Making careless use of options therefore endangers portability across different
system platforms.

Every implementation of a protocol profile accessiblexyy can be used with the default
values of options. Applications can thus be written that do not care about options at all.

An application program that processes options retrieved froxTafunction should discard
options it does not know in order to lessen its dependence from different system platforms
and futurexTl releases with possibly increased option support.

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI)

6.1

6.2

6.3

Chapter 6

XTI Library Functions and Parameters

HOW TO PREPARE XTI APPLICATIONS

In a software development environment, a program, for exarfifdec, that usesxTl
functions must be compiled with theTI Library. This can be done using the following
command:

cc file.c -Ixti (e.g., for normal library)
The syntax for shared libraries is implementation-dependent.
The XTI structures and constants are all defined intkih> header, which can be found in
Appendix F, Headers and Definitions
KEY FOR PARAMETER ARRAYS

For eachxTI function description, a table is given which summarises the contents of the
input and output parameter. The key is given below:

X The parameter value is meaningful. (Input parameter must be set before the call
and output parameter may be read after the call.)

x) The content of the object pointed to by the x pointer is meaningful.

? The parameter value is meaningful but the parameter is optional.

?) The content of the object pointed to by the ? pointer is optional.

/ The parameter value is meaningless.

= The parameter after the call keeps the same value as before the call.

RETURN OF TLOOK ERROR

Many of the XTI functions contained in this chapter returfTaOOK] error to report the
occurrence of an asynchronous event. For these functions a complete list describing the
function and the events is provided$®ction 4.6 Events andTLOOK Error Indication .

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 47

Return of TLOOK Error

Page : 48

XTI Library Functions and Parameters

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI)

XTI Library Functions and Parameters t _accept()

NAME
t_accept- accept a connect request

SYNOPSIS
#include <xti.h>

int t_accept(fd, resfd, call)
int fd;

int resfd;

struct t_call xall;

DESCRIPTION

Parameters Before call | After call
fd X /
resfd X /
call->addr.maxlen / /
call->addr.len X /
call->addr.buf ?(?) /
call->opt.maxlen / /
call->opt.len X /
call->opt.buf ?(?) /
call->udata.maxlen / /
call->udata.len X /
call->udata.buf ?(?) /
call->sequence X /

This function is issued by a transport user to accept a connect request. The parameter
identifies the local transport endpoint where the connect indication arnigsft] specifies the
local transport endpoint where the connection is to be established,calhdcontains
information required by the transport provider to complete the connection. The paraaéter
points to at_call structure which contains the following members:

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;
int sequence;

In call, addr is the protocol address of the calling transport usgt, indicates any options
associated with the connectiamgata points to any user data to be returned to the caller, and
sequenceis the value returned by listen() that uniquely associates the response with a
previously received connect indication. The address of the caltktt may be null (length
zero). Whereaddr is not null then it may optionally be checked ky!.

A transport user may accept a connection on either the same, or on a different, local transport
endpoint than the one on which the connect indication arrived. Before the connection can be
accepted on the same endpoinesfd==fd), the user must have responded to any previous
connect indications received on that transport endpoint {viccep{) or t_snddig)).

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 49

t _accept() XTI Library Functions and Parameters

Otherwisef_accept) will fail and sett_errnoto [TINDOUT].

If a different transport endpoint is specifiéesfd fd), then the user may or may not choose

to bind the endpoint before thteaccepf) is issued. If the endpoint is not bound prior to the
t_accept), then the transport provider will automatically bind it to the same protocol address
fd is bound to. If the transport user chooses to bind the endpoint it must be bound to a protocol
address with glenof zero and must be in the IDLE state before the accept) is issued.

The call tot_accepf) will fail with t_errno set to [TLOOK] if there are indications (e.g.,
connect or disconnect) waiting to be received on the endpaint

The udata argument enables the called transport user to send user data to the caller and the
amount of user data must not exceed the limits supported by the transport provider as returned
in the connectfield of theinfo argument ot_oper() ort_getinfd). If the len field of udatais

zero, no data will be sent to the caller. All theaxlenfields are meaningless.

When the user does not indicate any option (call->opt.len = 0) it is assumed that the connection
is to be accepted unconditionally. The transport provider may choose options other than the
defaults to ensure that the connection is accepted successfully.

CAVEATS
There may be transport provider-specific restrictions on address bindingAppeadix A, ISO
Transport Protocol Information andAppendix B, Internet Protocol-specific Information.

Some transport providers do not differentiate between a connect indication and the connection
itself. If the connection has already been established after a successful returistefy(),
t_accept) will assign the existing connection to the transport endpoint specifieediyd (see
Appendix B, Internet Protocol-specific Information).

VALID STATES

fd: T_INCON
rT_IDLE
ERRORS
On failure,t_errnois set to one of the following:
[TBADF] The file descriptofd or resfddoes not refer to a transport endpoint.
[TOUTSTATH The function was called in the wrong sequence on the transport

endpoint referenced bjd, or the transport endpoint referred to by
resfdis not in the appropriate state.

[TACCEY The user does not have permission to accept a connection on the
responding transport endpoint or to use the specified options.

[TBADOPT] The specified options were in an incorrect format or contained illegal
information.

[TBADDATA] The amount of user data specified was not within the bounds allowed

by the transport provider.

[TBADADDR] The specified protocol address was in an incorrect format or contained
illegal information.

X/Open CAE Specification (1992)
Page : 50 X/Open Transport Interface (XTI)

XTI Library Functions and Parameters t _accept()

[TBADSEQ
[TLOOK]

[TNOTSUPPORT
[TSYSERR
[TINDOUT]

[TPROVMISMATCH]|

[TRESQLEN

[TPROT]

[TRESADDR

RETURN VALUE

An invalid sequence number was specified.

An asynchronous event has occurred on the transport endpoint
referenced byd and requires immediate attention.

This function is not supported by the underlying transport provider.
A system error has occurred during execution of this function.

The function was called witifd==resfd but there are outstanding
connection indications on the endpoint. Those other connection
indications must be handled either by rejecting themtvénddig3) or
accepting them on a different endpoint viaccepg3).

The file descriptordd and resfd do not refer to the same transport
provider.

The endpoint referenced bysfd (whereresfd fd) was bound to a
protocol address with @len that is greater than zero.

This error indicates that a communication problem has been detected
betweenxT! and the transport provider for which there is no other
suitablexT! (t_errno).

This transport provider requires botth andresfd to be bound to the
same address. This error results if they are not.

Upon successful completion, a value of O is returned. Otherwise, a vakikisfreturned and
t_errnois set to indicate an error.

SEE ALSO

t_connedt), t_getstaté), t_lister(), t_operf), t_optmgmt), t_rcvconned}).

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI)

Page : 51

t alloc() XTI Library Functions and Parameters

NAME
t_alloc— allocate a library structure

SYNOPSIS
#include <xti.h>

char [@_alloc(fd, struct_type, fields)
int fd;

int struct_type;

int fields;

DESCRIPTION

Parameters | Before call | After call

fd X /
struct_type X /
fields X /

The t_alloc() function dynamically allocates memory for the various transport function
argument structures as specified below. This function will allocate memory for the specified
structure, and will also allocate memory for buffers referenced by the structure.

The structure to allocate is specified &tyuct_typeand must be one of the following:

T_BIND struct t_bind
T_CALL struct t_call
T_OPTMGMT struct t_optmgmt
T_DIS struct t_discon

T_UNITDATA struct t_unitdata
T_UDERROR struct t_uderr
T_INFO struct t_info

where each of these structures may subsequently be used as an argument to one or more

transport functions.

Each of the above structures, exc@ptNFO, contains at least one field of tyséruct netbuf.

For each field of this type, the user may specify that the buffer for that field should be allocated
as well. The length of the buffer allocated will be equal to or greater than the appropriate size

as returned in thénfo argument oft_oper() or t_getinfd'). The relevant fields of thanfo
argument are described in the following list. Thelds argument specifies which buffers to
allocate, where the argument is the bitwise-or of any of the following:

T_ADDR Theaddr field of thet_bind, t_call, t_unitdata ort_uderr structures.
T_OPT Theopt field of thet_optmgmt, t_call, t_unitdata ort_uderr structures.
T_UDATA Theudatafield of thet_call, t_disconort_unitdata structures.

X/Open CAE Specification (1992)
Page : 52 X/Open Transport Interface (XTI)

XTI Library Functions and Parameters t alloc()

T_ALL All relevant fields of the given structure. Fields which are not supported by
the transport provider specified bk will not be allocated.

For each relevant field specified fields, t_alloc() will allocate memory for the buffer
associated with the field, and initialise tlea field to zero and théuf pointer andmaxlenfield
accordingly. Irrelevant or unknown values passed in fields are ignored. Since the length of the
buffer allocated will be based on the same size information that is returned to the user on a call
to t_open() andt_getinfq), fd must refer to the transport endpoint through which the newly
allocated structure will be passed. In this way the appropriate size information can be accessed.
If the size value associated with any specified fieletisor —2 (seet_oper() or t_getinfq()),
t_alloc() will be unable to determine the size of the buffer to allocate and will fail, setting
t_errnoto [TSYSERR anderrno to [EINVAL]. For any field not specified ifields, buf will be

set to the null pointer anien andmaxlenwill be set to zero.

Use oft_alloc() to allocate structures will help ensure the compatibility of user programs with
future releases of the transport interface functions.

VALID STATES
ALL - apart fromT_UNINIT

ERRORS
On failure,t_errnois set to one of the following:
[TBADF] The specified file descriptor does not refer to a transport endpoint.
[TSYSERH A system error has occurred during execution of this function.
[TNOSTRUCTYPH Unsupportedstruct_typerequested. This can include a request for a

structure type which is inconsistent with the transport provider type
specified, i.e., connection-oriented or connectionless.

[TPROTQ This error indicates that a communication problem has been detected
betweenxT! and the transport provider for which there is no other
suitablexT! (t_errno).

RETURN VALUE
On successful completiort, alloc() returns a pointer to the newly allocated structure. On
failure, a null pointer is returned.

SEE ALSO
t_fred)), t_getinfd), t_opert).

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 53

t _bind() XTI Library Functions and Parameters

NAME
t_bind- bind an address to a transport endpoint

SYNOPSIS
#include <xti.h>
int t_bind(fd, req, ret)
int fd;
struct t_bind [teq;
struct t_bind Cret;

DESCRIPTION

Parameters Before call | After call
fd X /
reg->addr.maxlen / /
reg->addr.len x>=0 /
reg->addr.buf X (X) /
reg->glen X >= /
ret->addr.maxlen X /
ret->addr.len / X
ret->addr.buf ? (?)
ret->glen / X >=0

This function associates a protocol address with the transport endpoint speciffedalmgl
activates that transport endpoint. In connection mode, the transport provider may begin
enqueuing incoming connect indications, or servicing a connection request on the transport
endpoint. In connectionless mode, the transport user may send or receive data units through the
transport endpoint.

Thereq andret arguments point to & bind structure containing the following members:

struct netbuf addr;
unsigned glen;

Theaddr field of thet_bind structure specifies a protocol address, andjtka field is used to
indicate the maximum number of outstanding connect indications.

The parametereq is used to request that an address, represented hyethef structure, be
bound to the given transport endpoint. The paramletesspecifies the number of bytes in the
address, antbuf points to the address buffer. The parametexxlenhas no meaning for the
req argument. On returmet contains the address that the transport provider actually bound to
the transport endpoint; this is the same as the address specified by the tesgrimret, the

user specifiesnaxlen,which is the maximum size of the address buffer, Boflwhich points

to the buffer where the address is to be placed. On retemnspecifies the number of bytes in
the bound address, amdif points to the bound address. nifaxlenis not large enough to hold
the returned address, an error will result.

X/Open CAE Specification (1992)
Page : 54 X/Open Transport Interface (XTI)

XTI Library Functions and Parameters t bind()

If the requested address is not availabldind() will return -1 with t_errno set as appropriate.

If no address is specified ireq (the len field of addr in req is zero orreq is NULL), the
transport provider will assign an appropriate address to be bound, and will return that address in
the addr field of ret. If the transport provider could not allocate an addrédsind() will fail

with t_errno set tolTNOADDR].

The parametereq may be a null pointer if the user does not wish to specify an address to be
bound. Here, the value aflen is assumed to be zero, and the transport provider will assign an
address to the transport endpoint. Similart, may be a null pointer if the user does not care
what address was bound by the provider and is not interested in the negotiated \gllere tf

is valid to setreq andret to the null pointer for the same call, in which case the provider
chooses the address to bind to the transport endpoint and does not return that information to the
user.

The glen field has meaning only when initialising a connection-mode service. It specifies the
number of outstanding connect indications that the transport provider should support for the
given transport endpoint. An outstanding connect indication is one that has been passed to the
transport user by the transport provider but which has not been accepted or rejected. A value of
glen greater than zero is only meaningful when issued by a passive transport user that expects
other users to call it. The value gfen will be negotiated by the transport provider and may be
changed if the transport provider cannot support the specified number of outstanding connect
indications. However, this value daflen will never be negotiated from a requested value
greater than zero to zero. This is a requirement on transport providerSASEATS below.

On return, thelen field in ret will contain the negotiated value.

If fd refers to a connection-mode service, this function allows more than one transport endpoint
to be bound to the same protocol address (however, the transport provider must also support
this capability), but it is not possible to bind more than one protocol address to the same
transport endpoint. If a user binds more than one transport endpoint to the same protocol
address, only one endpoint can be used to listen for connect indications associated with that
protocol address. In other words, only anéind() for a given protocol address may specify a
value ofglen greater than zero. In this way, the transport provider can identify which transport
endpoint should be notified of an incoming connect indication. If a user attempts to bind a
protocol address to a second transport endpoint with a valg&enfgreater than zerd, bind()

will return -1 and set_errno to [TADDRBUSY]. When a user accepts a connection on the
transport endpoint that is being used as the listening endpoint, the bound protocol address will
be found to be busy for the duration of the connection, untilmbind) ort_closg) call has

been issued. No other transport endpoints may be bound for listening on that same protocol
address while that initial listening endpoint is active (in the data transfer phase orTinithe

state). This will prevent more than one transport endpoint bound to the same protocol address
from accepting connect indications.

If fd refers to a connectionless-mode service, only one endpoint may be associated with a
protocol address. If a user attempts to bind a second transport endpoint to an already bound
protocol addresg, bind() will return -1 and set_errno to [TADDRBUSY].

VALID STATES
T_UNBND

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 55

t_bind()

ERRORS

XTI Library Functions and Parameters

On failure,t_errnois set to one of the following:

[TBADF]
[TOUTSTATH
[TBADADDR]

[TNOADDR]
[TACCES
[TBUFOVFLW]

[TSYSERA
[TADDRBUSY]
[TPROT]

RETURN VALUE

The specified file descriptor does not refer to a transport endpoint.
The function was issued in the wrong sequence.

The specified protocol address was in an incorrect format or contained
illegal information.

The transport provider could not allocate an address.
The user does not have permission to use the specified address.

The number of bytes allowed for an incoming argum@néxlen)is greater
than 0 but not sufficient to store the value of that argument. The provider's
state will change td_IDLE and the information to be returnedriet will be
discarded.

A system error has occurred during execution of this function.
The requested address is in use.

This error indicates that a communication problem has been detected
betweenxTl and the transport provider for which there is no other suitable
XTI (t_errno).

Upon successful completion, a value of O is returned. Otherwise, a vakkisfreturned and
t_errnois set to indicate an error.

SEE ALSO

t_alloc(), t_closd), t_oper(), t_optmgm(), t_unbind).

CAVEATS

The requirement that the value glien never be negotiated from a requested value greater than
zero to zero implies that transport providers, rather tharkiheimplementation itself, accept

this restriction.

A transport provider may not allow an explicit binding of more than one transport endpoint to
the same protocol address, although it allows more than one connection to be accepted for the
same protocol address. To ensure portability, it is, therefore, recommended not to bind transport
endpoints that are used as responding endp(ies$d) in a call tot_accept), if the responding
address is to be the same as the called address.

Page : 56

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI)

XTI Library Functions and Parameters t close()

NAME
t_close- close a transport endpoint

SYNOPSIS
#include <xti.h>

intt_close(fd)
int fd;

DESCRIPTION

Parameters | Before call | After call
fd X /

Thet_clos€) function informs the transport provider that the user is finished with the transport
endpoint specified bfd, and frees any local library resources associated with the endpoint. In
addition,t_clos€) closes the file associated with the transport endpoint.

The functiont_clos€) should be called from the_UNBND state (seé_getstat¢)). However,

this function does not check state information, so it may be called from any state to close a
transport endpoint. If this occurs, the local library resources associated with the endpoint will
be freed automatically. In additioejosg) will be issued for that file descriptor; thedosd)

will be abortive if there are no other descriptors in this, or in another process which references
the transport endpoint, and in this case will break any transport connection that may be
associated with that endpoint.

A t_closq) issued on a connection endpoint may cause data previously sent, or data not yet
received, to be lost. It is the responsibility of the transport user to ensure that data is received
by the remote peer.

VALID STATES

ALL - apart fromT_UNINIT

ERRORS
On failure,t_errnois set to the following:
[TBADF] The specified file descriptor does not refer to a transport endpoint.
[TPROTA This error indicates that a communication problem has been detected

betweenxTl and the transport provider for which there is no other suitable
XTI (t_errno).

RETURN VALUE

Upon successful completion, a value of 0 is returned. Otherwise, a vakiisfreturned and
t_errnois set to indicate an error.

SEE ALSO

t_getstaté), t_opert), t_unbind).

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 57

t _connect() XTI Library Functions and Parameters

NAME
t_connect establish a connection with another transport user

SYNOPSIS
#include <xti.h>

int t_connect(fd, sndcall, rcvcall)
int fd;

struct t_call Csndcall;

struct t_call Crevcall;

DESCRIPTION
Parameters Before call | After call
fd X /
sndcall->addr.maxlen / /
sndcall->addr.len X /
sndcall->addr.buf X (X) /
sndcall->opt.maxlen / /
sndcall->opt.len X /
sndcall->opt.buf X (X) /
sndcall->udata.maxlen / /
sndcall->udata.len X /
sndcall->udata.buf ?(?) /
sndcall->sequence / /
rcvcall->addr.maxlen X /
rcvcall->addr.len / X
rcvcall->addr.buf ? ?
rcvcall->opt.maxlen X /
rcvcall->opt.len / X
rcvcall->opt.buf ? ?
rcvcall->udata.maxlen X /
rcvcall->udata.len / X
rcvcall->udata.buf ? ?
rcvcall->sequence / /

This function enables a transport user to request a connection to the specified destination
transport user. This function can only be issued in ThéDLE state. The parametdd
identifies the local transport endpoint where communication will be established, svitiGall
andrcvcall point to at_call structure which contains the following members:

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;
int sequence;

The parametesndcall specifies information needed by the transport provider to establish a
connection andcvcall specifies information that is associated with the newly established

X/Open CAE Specification (1992)
Page : 58 X/Open Transport Interface (XTI)

XTI Library Functions and Parameters t _connect()

connection.

In sndcall, addr specifies the protocol address of the destination transport agepresents

any protocol-specific information that might be needed by the transport providigta points

to optional user data that may be passed to the destination transport user during connection
establishment, ansequencénas no meaning for this function.

On return, inrcvcall, addr contains the protocol address associated with the responding
transport endpoint,opt represents any protocol-specific information associated with the

connectionudata points to optional user data that may be returned by the destination transport
user during connection establishment, aedquencdas no meaning for this function.

The opt argument permits users to define the options that may be passed to the transport
provider. These options are specific to the underlying protocol of the transport provider and are
described forSO and TCP protocols inAppendix A, ISO Transport Protocol Information ,
Appendix B, Internet Protocol-specific Information and Appendix F, Headers and
Definitions. The user may choose not to negotiate protocol options by settinigrteld of

optto zero. In this case, the provider may use default options.

If used,sndcall->opt.bufmust point to a buffer with the corresponding options; rieexlenand
buf fields of thenetbuf structure pointed bycvcall->addr andrcvcall->opt must be set before
the call.

The udata argument enables the caller to pass user data to the destination transport user and
receive user data from the destination user during connection establishment. However, the
amount of user data must not exceed the limits supported by the transport provider as returned
in the connectfield of theinfo argument oft_oper() or t_getinf). If the len of udatais zero

in sndcall, no data will be sent to the destination transport user.

On return, theaddr, opt andudatafields ofrcvcall will be updated to reflect values associated
with the connection. Thus, th@axlenfield of each argument must be set before issuing this
function to indicate the maximum size of the buffer for each. Howenamcall may be a null
pointer, in which case no information is given to the user on return fraronnect).

By default,t_connecf) executes in synchronous mode, and will wait for the destination user’s
response before returning control to the local user. A successful return (i.e., return value of
zero) indicates that the requested connection has been established. How@veRONBLOCK

is set (viat_oper() or fentl()), t_connect) executes in asynchronous mode. In this case, the
call will not wait for the remote user’s response, but will return control immediately to the local
user and returr1 with t_errno set to [NODATA] to indicate that the connection has not yet
been established. In this way, the function simply initiates the connection establishment
procedure by sending a connect request to the destination transport user.rcMeennect)
function is used in conjunction witlh_connecf) to determine the status of the requested
connection.

When a synchronous connect) call is interrupted by the arrival of a signal, the state of the
corresponding transport endpoint i$_OUTCON allowing a further call to either
t_rcvconnect), t_rcvdig() ort_snddig).

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 59

t _connect() XTI Library Functions and Parameters

VALID STATES
T_IDLE

ERRORS
On failure,t_errnois set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport endpoint.

[TOUTSTATH The function was issued in the wrong sequence.

[TNODATA] O_NONBLOCKwas set, so the function successfully initiated the connection
establishment procedure, but did not wait for a response from the remote
user.

[TBADADDR] The specified protocol address was in an incorrect format or contained

illegal information.

[TBADOPT] The specified protocol options were in an incorrect format or contained
illegal information.

[TBADDATA] The amount of user data specified was not within the bounds allowed by the
transport provider.

[TACCEY The user does not have permission to use the specified address or options.

[TBUFOVFLW] The number of bytes allocated for an incoming argumémaxlen) is
greater than O but not sufficient to store the value of that argument. If
executed in synchronous mode, the provider’s state, as seen by the user,
changes ta_DATAXFER, and the information to be returned iiavcall is
discarded.

[TLOOK] An asynchronous event has occurred on this transport endpoint and requires
immediate attention.

[TNOTSUPPORT This function is not supported by the underlying transport provider.
[TSYSERR A system error has occurred during execution of this function.

[TADDRBUSY] This transport provider does not support multiple connections with the
same local and remote addresses. This error indicates that a connection
already exists.

[TPROTG This error indicates that a communication problem has been detected
betweenxT!l and the transport provider for which there is no other suitable
XTI (t_errno).

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a vakkisfreturned and
t_errnois set to indicate an error.

SEE ALSO
t_accept), t_alloc(), t_getinfd), t_lister(), t_oper{), t_optmgmg¢), t_rcvconned).

X/Open CAE Specification (1992)
Page : 60 X/Open Transport Interface (XTI)

XTI Library Functions and Parameters t_error()

NAME
t_error— produce error message

SYNOPSIS
#include <xti.h>

int t_error(errmsg)
char Cerrmsg;

DESCRIPTION

Parameters | Before call | After call
errmsg X /

The t_error() function produces a language-dependent message on the standard error output
which describes the last error encountered during a call to a transport function. The argument
stringerrmsgis a user-supplied error message that gives context to the error.

The error message is written as follows: first€ifmsgis not a null pointer and the character
pointed to beerrmsgis not the null character) the string pointed to éiymsgfollowed by a
colon and a space; then a standard error message string for the current error defieecha

If t_errnohas a value different froffTSYSERR] the standard error message string is followed
by a newline character. If, howevet,errno is equal to[TSYSERR] the t_errno string is
followed by the standard error message string for the current error defimechmfollowed by

a newline.

The language for error message strings writteri_®rror() is implementation-defined. If it is

in English, the error message string describing the valuedrrnois identical to the comments
following the t_errno codes defined irxti.h. The contents of the error message strings
describing the value ierrno are the same as those returned bysdtrerror(3C) function with

an argument oérrno.

The error numbett_errno, is only set when an error occurs and it is not cleared on successful
calls.

EXAMPLE
If a t_connect) function fails on transport endpoifd2 because a bad address was given, the
following call might follow the failure:

t_error("t_connect failed on fd2");
The diagnostic message to be printed would look like:
t_connect failed on fd2: incorrect addr format

where “incorrect addr format” identifies the specific error that occurred, and “t_connect failed
on fd2” tells the user which function failed on which transport endpoint.

VALID STATES
All - apart fromT_UNINIT

ERRORS
No errors are defined for theerror() function.

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 61

t error() XTI Library Functions and Parameters

RETURN VALUE
Upon completion, a value of 0 is returned.

X/Open CAE Specification (1992)
Page : 62 X/Open Transport Interface (XTI)

XTI Library Functions and Parameters t free()

NAME
t_free- free a library structure

SYNOPSIS
#include <xti.h>

intt_free(ptr, struct_type)
char [ptr;
int struct_type;

DESCRIPTION

Parameters | Before call | After call

ptr X /
struct_type X /

Thet_freg() function frees memory previously allocated blloc(). This function will free
memory for the specified structure, and will also free memory for buffers referenced by the
structure.

The argumentptr points to one of the seven structure types describedt falloc(), and
struct_typeidentifies the type of that structure which must be one of the following:

T_BIND struct t_bind

T _CALL struct t_call
T_OPTMGMT struct t_optmgmt
T_DIS struct t_discon

T_UNITDATA struct t unitdata
T_UDERROR struct t uderr
T_INFO struct t_info

where each of these structures is used as an argument to one or more transport functions.

The functiont_free() will check the addr, opt and udata fields of the given structure (as
appropriate) and free the buffers pointed to by i field of the netbuf structure. Ifbufis a
null pointer,t_freg() will not attempt to free memory. After all buffers are freedfree() will
free the memory associated with the structure pointed tathy

Undefined results will occur iptr or any of thebuf pointers points to a block of memory that
was not previously allocated hyalloc().

VALID STATES
ALL - apart fromT_UNINIT

ERRORS
On failure,t_errnois set to the following:

[TSYSERH A system error has occurred during execution of this function.
[TNOSTRUCTYPH Unsupportedstruct_typeequested.

[TPROTJ This error indicates that a communication problem has been detected
betweenxT! and the transport provider for which there is no other

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 63

t free() XTI Library Functions and Parameters

suitablexT! (t_errno).

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a vakkisfreturned and
t_errnois set to indicate an error.

SEE ALSO
t_alloc().

X/Open CAE Specification (1992)
Page : 64 X/Open Transport Interface (XTI)

XTI Library Functions and Parameters

NAME
t_getinfo— get protocol-specific service information

SYNOPSIS
#include <xti.h>

int t_getinfo(fd, info)
int fd;
struct t_info Cinfo;

DESCRIPTION

Parameters Before call | After call

fd X /
info->addr
info->options
info->tsdu
info->etsdu
info->connect
info->discon
info->servtype
info->flags

~ e~~~ —~ —~ —
X X X X X X X X

t_getinfo()

This function returns the current characteristics of the underlying transport protocol and/or
transport connection associated with file descrifitbrThe info pointer is used to return the
same information returned by oper{), although not necessarily precisely the same values.
This function enables a transport user to access this information during any phase of

communication.
This argument points totainfo structure which contains the following members:

long addr; Nmax size of the transport protocol addréss
long options; Dmax number of bytes of protocol-specific optidrds
long tsdu;[Jmax size of a transport service data umispu) O
long etsdu; Imax size of an expedited transport senvite
/Odata unit ETSDU) O

Imax amount of data allowed on connectidn
/Oestablishment functiond

Omax amount of data allowed dnsnddi¢) O
/Oandt_rcvdig)) functionsJ

[IIservice type supported by the transport provider

Dother info about the transport providar

long connect;
long discon;

long servtype;
long flags;
The values of the fields have the following meanings:

addr

A value greater than zero indicates the maximum size of a transport

protocol address and a value-¢# specifies that the transport provider does

not provide user access to transport protocol addresses.

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI)

Page : 65

t_getinfo()

options

tsdu

etsdu

connect

discon

servtype

flags

XTI Library Functions and Parameters

A value greater than zero indicates the maximum number of bytes of
protocol-specific options supported by the provider, and a value of -2
specifies that the transport provider does not support user-settable options.

A value greater than zero specifies the maximum size of a transport service
data unit {SDU); a value of zero specifies that the transport provider does
not support the concept aSDU, although it does support the sending of a
datastream with no logical boundaries preserved across a connection; a
value of -1 specifies that there is no limit on the size off@Du; and a
value of-2 specifies that the transfer of normal data is not supported by the
transport provider.

A value greater than zero specifies the maximum size of an expedited
transport service data uniE{SDU); a value of zero specifies that the
transport provider does not support the conceETsDU, although it does
support the sending of an expedited data stream with no logical boundaries
preserved across a connection; a valuebpecifies that there is no limit

on the size of arETSDU, and a value of-2 specifies that the transfer of
expedited data is not supported by the transport provider. Note that the
semantics of expedited data may be quite different for different transport
providers (seeAppendix A, 1ISO Transport Protocol Information and
Appendix B, Internet Protocol-specific Information).

A value greater than zero specifies the maximum amount of data that may
be associated with connection establishment functions and a valu2 of
specifies that the transport provider does not allow data to be sent with
connection establishment functions.

A value greater than zero specifies the maximum amount of data that may
be associated with thie snddig) andt_rcvdis() functions and a value of

-2 specifies that the transport provider does not allow data to be sent with
the abortive release functions.

This field specifies the service type supported by the transport provider, as
described below.

This is a bit field used to specify other information about the transport
provider. If the T_SENDZERODbit is set in flags, this indicates that the
underlying transport provider supports the sending of zero-lemgthus.
SeeAppendix A, ISO Transport Protocol Information for a discussion of
the separate issue of zero-length fragments withis@U.

If a transport user is concerned with protocol independence, the above sizes may be accessed to
determine how large the buffers must be to hold each piece of information. Alternatively, the
t_alloc() function may be used to allocate these buffers. An error will result if a transport user
exceeds the allowed data size on any function. The value of each field may change as a result
of protocol option negotiation during connection establishment {toptmgmg) call has no

affect on the values returned lygetinf)). These values will only change from the values
presented td_oper{) after the endpoint enters tieDATAXFER state.

Page : 66

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI)

XTI Library Functions and Parameters t_getinfo()

Theservtypefield of info specifies one of the following values on return:

T_COTS The transport provider supports a connection-mode service but does not
support the optional orderly release facility.

T_COTS_ORD The transport provider supports a connection-mode service with the
optional orderly release facility.

T _CLTS The transport provider supports a connectionless-mode service. For this
service typet_oper() will return -2 for etsdy connectanddiscon

VALID STATES
ALL - apart fromT_UNINIT

ERRORS
On failure,t_errnois set to one of the following:
[TBADF] The specified file descriptor does not refer to a transport endpoint.
[TSYSERH A system error has occurred during execution of this function.
[TPROTG This error indicates that a communication problem has been detected

betweenxT! and the transport provider for which there is no other suitable
XTI (t_errno).
RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a vakkisfreturned and
t_errnois set to indicate an error.
SEE ALSO
t_alloq(), t_oper).

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 67

t _getprotaddr() XTI Library Functions and Parameters

NAME
t_getprotaddr get the protocol addresses

SYNOPSIS
#include <xti.h>

int t_getprotaddr(fd, boundaddr, peeraddr)
int fd;

struct t_bind Cboundaddr;

struct t_bind Cpeeraddr;

DESCRIPTION
Parameters Before call | After call
fd X /
boundaddr->maxlen X /
boundaddr->addr.len / X
boundaddr->addr.buf ? ?
boundaddr->glen / /
peeraddr->maxlen X /
peeraddr->addr.len / X
peeraddr->addr.buf ? (@)
peeraddr->glen / /

Thet_getprotadd() function returns local and remote protocol addresses currently associated
with the transport endpoint specified lig¢. In boundaddrand peeraddr the user specifies
maxlen,which is the maximum size of the address buffer, anflwhich points to the buffer
where the address is to be placed. On returnptifdield of boundaddrpoints to the address,

if any, currently bound tdd, and thelen field specifies the length of the address. If the
transport endpoint is in the_UNBND state, zero is returned in then field of boundaddr The

buf field of peeraddrpoints to the address, if any, currently connecteftitcand thelen field
specifies the length of the address. If the transport endpoint is not in_&TAXFER state,

zero is returned in thien field of peeraddr

VALID STATES
ALL - apart fromT_UNINIT

ERRORS
On failure,t_errnois set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport endpoint.

[TBUFOVFLW] The number of bytes allocated for an incoming argumemtxlen) is
greater than 0 but not sufficient to store the value of that argument.

[TSYSERH A system error has occurred during execution of this function.

[TPROTG This error indicates that a communication problem has been detected
betweenxTl and the transport provider for which there is no other suitable
XTI (t_errno).

X/Open CAE Specification (1992)
Page : 68 X/Open Transport Interface (XTI)

XTI Library Functions and Parameters t getprotaddr()

RETURN VALUE
Upon successful completion, a value of zero is returned. Otherwise, a vatieisfreturned
andt_errnois set to indicate the error.

SEE ALSO
t_bind().

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 69

t getstate() XTI Library Functions and Parameters

NAME
t_getstate- get the current state

SYNOPSIS
#include <xti.h>

int t_getstate(fd)
int fd;

DESCRIPTION

Parameters | Before call | After call
fd X /

Thet_getstaté) function returns the current state of the provider associated with the transport
endpoint specified bfd.

VALID STATES
ALL - apart fromT_UNINIT

ERRORS
On failure,t_errnois set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport endpoint.
[TSTATECHNG The transport provider is undergoing a transient state change.
[TSYSERH A system error has occurred during execution of this function.

[TPROTG This error indicates that a communication problem has been detected
betweenxTl and the transport provider for which there is no other suitable
XTI (t_errno).

RETURN VALUE
State is returned upon successful completion. Otherwise, a vakikisfreturned and_errno
is set to indicate an error. The current state is one of the following:

T_UNBND unbound

T_IDLE idle

T_OUTCON outgoing connection pending

T_INCON incoming connection pending

T_DATAXFER data transfer

T_OUTREL outgoing orderly release (waiting for an orderly release indication)
T_INREL incoming orderly release (waiting to send an orderly release request)

If the provider is undergoing a state transition whegetstat¢) is called, the function will fail.

SEE ALSO
t_open().

X/Open CAE Specification (1992)
Page : 70 X/Open Transport Interface (XTI)

XTI Library Functions and Parameters t_listen()

NAME
t_listen- listen for a connect indication

SYNOPSIS
#include <xti.h>
intt_listen(fd, call)
int fd;
struct t_call Ctall;

DESCRIPTION
Parameters Before call | After call
fd X /
call->addr.maxlen X /
call->addr.len / X
call->addr.buf ? @)
call->opt.maxlen X /
call->opt.len / X
call->opt.buf ? ?
call->udata.maxlen X /
call->udata.len / X
call->udata.buf ? ?
call->sequence / X

This function listens for a connect request from a calling transport user. The argtunent
identifies the local transport endpoint where connect indications arrive, and on realirn,
contains information describing the connect indication. The paransatepoints to at_call
structure which contains the following members:

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;
int sequence;

In call, addr returns the protocol address of the calling transport user. This address is in a
format usable in future calls tb connect). Note, however that_connect) may fail for other
reasons, for exampl& ADDRBUSY]. opt returns options associated with the connect request,
udatareturns any user data sent by the caller on the connect requesequences a number

that uniquely identifies the returned connect indication. The valsegfiencenables the user

to listen for multiple connect indications before responding to any of them.

Since this function returns values for thddr, opt andudatafields of call, the maxlenfield of
each must be set before issuing thésten() to indicate the maximum size of the buffer for
each.

By default,t_listen() executes in synchronous mode and waits for a connect indication to arrive
before returning to the user. However, @f NONBLOCK is set viat_oper() or fcntl(),
t_listen() executes asynchronously, reducing to a poll for existing connect indications. If none

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 71

t listen() XTI Library Functions and Parameters

are available, it returnsl and set$_errnoto [TNODATA].

VALID STATES
T_IDLE, T_INCON

ERRORS
On failure,t_errnois set to one of the following:
[TBADF] The specified file descriptor does not refer to a transport endpoint.
[TBADQLEN] The argumenglen of the endpoint referenced lfg is zero.

[TBUFOVFLW] The number of bytes allocated for an incoming argumémaxlen) is
greater than O but not sufficient to store the value of that argument. The
provider’s state, as seen by the user, changasIteCON, and the connect
indication information to be returned icall is discarded. The value of
sequenceeturned can be used to da &nddig).

[TNODATA] O_NONBLOCKwas set, but no connect indications had been queued.

[TLOOK] An asynchronous event has occurred on this transport endpoint and requires
immediate attention.

[TNOTSUPPORT This function is not supported by the underlying transport provider.

[TOUTSTATH The function was issued in the wrong sequence on the transport endpoint
referenced byd.

[TSYSERH A system error has occurred during execution of this function.

[TQFULL] The maximum number of outstanding indications has been reached for the
endpoint referenced Hgl.

[TPROTA This error indicates that a communication problem has been detected
betweenxTl and the transport provider for which there is no other suitable
XTI (t_errno).

CAVEATS
Some transport providers do not differentiate between a connect indication and the connection
itself. If this is the case, a successful returnt dfsten() indicates an existing connection (see
Appendix B, Internet Protocol-specific Information).

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a valdk isfreturned and
t_errnois set to indicate an error.

SEE ALSO
fentl(), t_accept), t_allod(), t_bind(), t_connedt), t_operf), t_optmgm{), t_rcvconnedt).

X/Open CAE Specification (1992)
Page : 72 X/Open Transport Interface (XTI)

XTI Library Functions and Parameters t look()

NAME
t_look— look at the current event on a transport endpoint

SYNOPSIS
#include <xti.h>

int t_look(fd)
int fd;

DESCRIPTION

Parameters | Before call | After call
fd X /

This function returns the current event on the transport endpoint specifilel Bjis function
enables a transport provider to notify a transport user of an asynchronous event when the user is
calling functions in synchronous mode. Certain events require immediate notification of the
user and are indicated by a specific erran.OK], on the current or next function to be
executed. Details on events which cause functions tqfailOOK] may be found inSection

4.6, Events andTLOOK Error Indication .

This function also enables a transport user to poll a transport endpoint periodically for
asynchronous events.

VALID STATES
ALL - apart fromT_UNINIT

ERRORS
On failure,t_errnois set to one of the following:
[TBADF] The specified file descriptor does not refer to a transport endpoint.
[TSYSERH A system error has occurred during execution of this function.
[TPROTG This error indicates that a communication problem has been detected

betweenxT! and the transport provider for which there is no other suitable
XTI (t_errno).

RETURN VALUE
Upon successt_look() returns a value that indicates which of the allowable events has
occurred, or returns zero if no event exists. One of the following events is returned:

T _LISTEN connection indication received
T _CONNECT connect confirmation received
T_DATA normal data received
T_EXDATA expedited data received

T_DISCONNECT disconnect received

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 73

t look() XTI Library Functions and Parameters

T_UDERR datagram error indication
T_ORDREL orderly release indication
T_GODATA Flow control restrictions on normal data flow that led tgraLow] error

have been lifted. Normal data may be sent again.

T_GOEXDATA Flow control restrictions on expedited data flow that led forLOW] error
have been lifted. Expedited data may be sent again.

On failure,-1 is returned andl_errnois set to indicate the error.

SEE ALSO
t_operf), t_snd), t_sndudatg).

APPLICATION USAGE
Additional functionality is provided through the Event Manageme&m)(interface.

X/Open CAE Specification (1992)
Page : 74 X/Open Transport Interface (XTI)

XTI Library Functions and Parameters t open()

NAME
t_open- establish a transport endpoint

SYNOPSIS
#include <xti.h>
#include <fcntl.h>

intt_open(name, oflag, info)

char Chame;

int oflag;

struct t_info Onfo;

DESCRIPTION
Parameters Before call | After call

name X /
oflag X /
info->addr / X
info->options / X
info->tsdu / X
info->etsdu / X
info->connect / X
info->discon / X
info->servtype / X
info->flags / X

The t_oper() function must be called as the first step in the initialisation of a transport
endpoint. This function establishes a transport endpoint by supplying a transport provider
identifier that indicates a particular transport provider (i.e., transport protocol) and returning a
file descriptor that identifies that endpoint.

The argumenhamepoints to a transport provider identifier anflag identifies any open flags
(as inopen()). The argumenbflag is constructed fron®_RDWR optionally bitwise inclusive-
or'ed withO_NONBLOCK. These flags are defined by the headfentl.h>. The file descriptor
returned byt_oper() will be used by all subsequent functions to identify the particular local
transport endpoint.

This function also returns various default characteristics of the underlying transport protocol by
setting fields in thet_info structure. This argument points totainfo which contains the
following members:

long addr; Nmax size of the transport protocdl
/Oaddress]
long options; OImax number of bytes dff

/Oprotocol-specific option&!
long tsdu;[Jmax size of a transport service daia
/Ounit (TSbu) O
long etsdu; Imax size of an expedited transpart

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 75

t open()

long connect;
long discon;
long servtype

long flags;

XTI Library Functions and Parameters

/Oservice data unit§TSDU) [
Imax amount of data allowed di
/Oconnection establishment functioils
Omax amount of data allowed ai
/0O0t_snddig¢) andt_rcvdiq) functions]
; [Iservice type supported by thé
/Otransport providefr!
Nother info about the transport providar

The values of the fields have the following meanings:

addr

options

tsdu

etsdu

connect

discon

servtype

Page : 76

A value greater than zero indicates the maximum size of a transport
protocol address and a value-¢# specifies that the transport provider does
not provide user access to transport protocol addresses.

A value greater than zero indicates the maximum number of bytes of
protocol-specific options supported by the provider and a value-2of
specifies that the transport provider does not support user-settable options.

A value greater than zero specifies the maximum size of a transport service
data unit fSDU); a value of zero specifies that the transport provider does
not support the concept DU, although it does support the sending of a
data stream with no logical boundaries preserved across a connection; a
value of-1 specifies that there is no limit to the size af$DU; and a value

of -2 specifies that the transfer of normal data is not supported by the
transport provider.

A value greater than zero specifies the maximum size of an expedited
transport service data unie{(sbuU); a value of zero specifies that the
transport provider does not support the conceETsDU, although it does
support the sending of an expedited data stream with no logical boundaries
preserved across a connection; a valuebipecifies that there is no limit

on the size of alETSDU, and a value of-2 specifies that the transfer of
expedited data is not supported by the transport provider. Note that the
semantics of expedited data may be quite different for different transport
providers (seeAppendix A, 1ISO Transport Protocol Information and
Appendix B, Internet Protocol-specific Information).

A value greater than zero specifies the maximum amount of data that may
be associated with connection establishment functions and a valu2 of
specifies that the transport provider does not allow data to be sent with
connection establishment functions.

A value greater than zero specifies the maximum amount of data that may
be associated with thie snddig) andt_rcvdig() functions and a value of

-2 specifies that the transport provider does not allow data to be sent with
the abortive release functions.

This field specifies the service type supported by the transport provider, as
described below.

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI)

XTI Library Functions and Parameters t open()

flags This is a bit field used to specify other information about the transport
provider. If theT_SENDZERObit is set in flags, this indicates the underlying
transport provider supports the sending of zero-leng8DUs. See
Appendix A, ISO Transport Protocol Information for a discussion of the
separate issue of zero-length fragments withitsBuU.

If a transport user is concerned with protocol independence, the above sizes may be accessed to
determine how large the buffers must be to hold each piece of information. Alternatively, the
t_alloc() function may be used to allocate these buffers. An error will result if a transport user
exceeds the allowed data size on any function.

Theservtypefield of info specifies one of the following values on return:

T_COTS The transport provider supports a connection-mode service but does not
support the optional orderly release facility.

T_COTS_ORD The transport provider supports a connection-mode service with the
optional orderly release facility.

T_CLTS The transport provider supports a connectionless-mode service. For this
service typet_oper() will return -2 for etsdy connectanddiscon

A single transport endpoint may support only one of the above services at one time.

If info is set to a null pointer by the transport user, no protocol information is returned by

t_open().
VALID STATES
T_UNINIT
ERRORS
On failure,t_errnois set to the following:
[TBADFLAG] An invalid flag is specified.
[TBADNAME] Invalid transport provider name.
[TSYSERA A system error has occurred during execution of this function.
[TPROTG This error indicates that a communication problem has been detected

betweenxT! and the transport provider for which there is no other suitable
XTI (t_errno).
RETURN VALUE

A valid file descriptor is returned upon successful completion. Otherwise, a valué o
returned and_errnois set to indicate an error.

SEE ALSO
open().

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 77

t _optmgmt() XTI Library Functions and Parameters

NAME
t_optmgmt - manage options for a transport endpoint

SYNOPSIS
#include <xti.h>

int t_optmgmt(fd,req,ret)
int fd;

struct t_optmgmt [teq;
struct t_optmgmt [tet;

DESCRIPTION

Parameters Before call | After call

fd
reg->opt.maxlen
reg->opt.len
reg->opt.buf X
reg->flags
ret->opt.maxlen
ret->opt.len
ret->opt.buf
ret->flags

~ D -~ X ></>-<\>< ~ X
<

The t_optmgmt) function enables a transport user to retrieve, verify or negotiate protocol
options with the transport provider. The argumfghidentifies a transport endpoint.

Thereqgandret arguments point to s optmgmt structure containing the following members:

struct netbuf opt;
long flags;

The opt field identifies protocol options and tlikagsfield is used to specify the action to take
with those options.

The options are represented bynatbuf structure in a manner similar to the address in
t_bind)). The argumenteq is used to request a specific action of the provider and to send
options to the provider. The argumeen specifies the number of bytes in the optiobsf
points to the options buffer, amdaxlenhas no meaning for theeq argument. The transport
provider may return options and flag values to the user threaghFor ret, maxlenspecifies

the maximum size of the options buffer abdf points to the buffer where the options are to be
placed. On returnen specifies the number of bytes of options returned. The valugaixien

has no meaning for theeq argument, but must be set in thet argument to specify the
maximum number of bytes the options buffer can hold.

Each option in the options buffer is of the fostruct t_opthdr possibly followed by an option
value.

X/Open CAE Specification (1992)
Page : 78 X/Open Transport Interface (XTI)

XTI Library Functions and Parameters t optmgmt()

The level field of struct t_opthdr identifies theXxTl level or a protocol of the transport
provider. Thenamefield identifies the option within the level, ateh contains its total length,
i.e., the length of the option headeopthdr plus the length of the option value.tifoptmgmt)

is called with the actiormT_NEGOTIATE set, thestatusfield of the returned options contains
information about the success or failure of a negotiation.

Each option in the input or output option buffer must start at a long-word boundary. The macro
OPT_NEXTHDR (pbuf, buflen, poption) can be used for that purpose. The parametauf
denotes a pointer to an option buffept.buf andbuflenis its length. The parametgoption
points to the current option in the option buffe@PT_NEXTHDR returns a pointer to the
position of the next option or returns a null pointer if the option buffer is exhausted. The macro
is helpful for writing and reading. Seexti.h> in Appendix F, Headers and Definitionsfor

the exact definition.

If the transport user specifies several options on input, all options must address the same level.

If any option in the options buffer does not indicate the same level as the first option, or the
level specified is unsupported, then theptmgmt) request will fail with[TBADOPT]. If the

error is detected, some options have possibly been successfully negotiated. The transport user
can check the current status by callingptmgmt) with theT_CURRENTflag set.

Chapter 5, The Use of Optionscontains a detailed description about the use of options and
should be read before using this function.

Theflagsfield of req must specify one of the following actions:
T_NEGOTIATE This action enables the transport user to negotiate option values.

The user specifies the options of interest and their values in the buffer
specified byreq->opt.bufandreg->opt.len The negotiated option values
are returned in the buffer pointed to bgt->opt.buf The statusfield of

each returned option is set to indicate the result of the negotiation. The
value is T_SUCCESS if the proposed value was negotiated,
T_PARTSUCCESSIf a degraded value was negotiatéd,FAILURE if the
negotiation failed (according to the negotiation rul&s)NOTSUPPORTIf

the transport provider does not support this option or illegally requests
negotiation of a privileged option, anmtl READONLY if modification of a
read-only option was requested. If the statu3 iSUCCESST_FAILURE,
T_NOTSUPPORTor T_READONLY, the returned option value is the same as
the one requested on input.

The overall result of the negotiation is returnedét->flags.

This field contains the worst single result, whereby the rating is done
according to the orderT_NOTSUPPORT T_READONLY, T_FAILURE,
T_PARTSUCCESST_SUCCESS. The valueT_NOTSUPPORTIs the worst
result andr_SUCCESSSs the best.

For each level, the option ALLOPT (see below) can be requested on input.
No value is given with this option; only thteopthdr part is specified. This
input requests to negotiate all supported options of this level to their default
values. The result is returned option by optiorrét->opt.buf. (Note that

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 79

t _optmgmt()

T_CHECK

T_DEFAULT

T_CURRENT

Page : 80

XTI Library Functions and Parameters

depending on the state of the transport endpoint, not all requests to
negotiate the default value may be successful.)

This action enables the user to verify whether the options specifieehin
are supported by the transport provider.

If an option is specified with no option value (it consists only of apthdr
structure), the option is returned with gtatusfield set toT_SUCCESSHf it

is supported]_NOTSUPPORTif it is not or needs additional user privileges,
and T_READONLY if it is read-only (in the currenkT! state). No option
value is returned.

If an option is specified with an option value, tstusfield of the returned
option has the same value, as if the user had tried to negotiate this value
with T_NEGOTIATE. If the status is T_SUCCESS T_FAILURE,
T_NOTSUPPORTor T_READONLY, the returned option value is the same as
the one requested on input.

The overall result of the option checks is returnedeat>flags. This field
contains the worst single result of the option checks, whereby the rating is
the same as for_NEGOTIATE.

Note that no negotiation takes place. All currently effective option values
remain unchanged.

This action enables the transport user to retrieve the default option values.
The user specifies the options of interestreag->opt.buf The option
values are irrelevant and will be ignored; it is sufficient to specify the
t_opthdr part of an option only. The default values are then returned in
ret->opt.buf

The statusfield returned isT_NOTSUPPORTIf the protocol level does not
support this option or the transport user illegally requested a privileged
option, T_READONLY if the option is read-only, and set © SUCCESSIn

all other cases. The overall result of the request is returnedtirflags.

This field contains the worst single result, whereby the rating is the same as
for T_NEGOTIATE.

For each level, the option ALLOPT (see below) can be requested on input.
All supported options of this level with their default values are then
returned. In this caseaet->opt.maxlenmust be given at least the value
info->options(seet_getinfd), t_operf)) before the call.

This action enables the transport user to retrieve the currently effective
option values. The user specifies the options of interesedp>opt.buft

The option values are irrelevant and will be ignored; it is sufficient to
specify thet_opthdr part of an option only. The currently effective values
are then returned iret->opt.buf.

The statusfield returned isT_NOTSUPPORTIf the protocol level does not
support this option or the transport user illegally requested a privileged
option, T_READONLY if the option is read-only, and set T SUCCESSIn

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI)

XTI Library Functions and Parameters t optmgmt()

all other cases. The overall result of the request is returnedtinflags.
This field contains the worst single result, whereby the rating is the same as
for T_NEGOTIATE.

For each level, the option ALLOPT (see below) can be requested on input.
All supported options of this level with their currently effective values are
then returned.

The optionT_ALLOPT can only be used with_optmgm{) and the actiond_NEGOTIATE,
T_DEFAULT and T_CURRENT. It can be used with any supported level and addresses all
supported options of this level. The option has no value; it consists asghdr only. Since

in at_optmgmt) call only options of one level may be addressed, this option should not be
requested together with other options. The function returns as soon as this option has been
processed.

Options are independently processed in the order they appear in the input option buffer. If an
option is multiply input, it depends on the implementation whether it is multiply output or
whether it is returned only once.

Transport providers may not be able to provide an interface capable of supporting
T_NEGOTIATE and/or T_CHECK functionalities. When this is the case, the error
[TNOTSUPPORTIis returned.

The functiont_optmgm{) may block under various circumstances and depending on the
implementation. The function will block, for instance, if the protocol addressed by the call
resides on a separate controller. It may also block due to flow control constraints, i.e., if data
sent previously across this transport endpoint has not yet been fully processed. If the function
is interrupted by a signal, the option negotiations that have been done so far may remain valid.
The behaviour of the function is not change®ifNONBLOCK s set.

XTI -LEVEL OPTIONS
XTl-level options are not specific for a particular transport provider. XA&himplementation
supports none, all or any subset of the options defined below. An implementation may restrict
the use of any of these options by offering them only in the privileged or read-only mode, or if
fd relates to specific transport providers.

The subsequent options are not association-related)sapter 5, The Use of Optiond. They
may be negotiated in al{TI states except_UNINIT.

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 81

t _optmgmt() XTI Library Functions and Parameters

The protocol level iXTI_GENERIC. For this level, the following options are defined:

option name type of option legal meaning
value option value
XTI_DEBUG array of unsigned longg see text enable debugging
XTI_LINGER struct linger see text linger on close if datd
is present
XTI_RCVBUF unsigned long size in octets receive buffer size
XTI_RCVLOWAT | unsigned long size in octets receive low-water mark
XTI_SNDBUF unsigned long sizeinoctets send buffer size
XTI_SNDLOWAT | unsigned long size in octets send low-water mar

XTI -level Options

A request forXTI_DEBUG is an absolute requirement. A request to activéte LINGER is an
absolute requirement; the timeout value to this option is Xa1. RCVBUF, XTI_RCVLOWAT,
XTI_SNDBUF andXTI_SNDLOWAT are not absolute requirements.

XTI_DEBUG This option enables debugging. The values of this option are
implementation-defined. Debugging is disabled if the option is specified
with “no value”, i.e., with an option header only.

The system supplies utilities to process the traces. Note that an
implementation may also provide other means for debugging.

XTI_LINGER This option is used to linger the execution of @los€) or closd) if send
data is still queued in the send buffer. The option value specifies the linger
period. If aclosd) ort_clos€) is issued and the send buffer is not empty,
the system attempts to send the pending data within the linger period before
closing the endpoint. Data still pending after the linger period has elapsed
is discarded.

Depending on the implementation,clos€) or closd) either block for at
maximum the linger period, or immediately return, whereupon the system
holds the connection in existence for at most the linger period.

The option value consists of a structaréinger declared as:

struct t_linger {
long |_onoff; Hswitch option on/off]
long I_linger; [Olinger period in secondd

}

Legal values for the fieltl onoffare:

T_NO switch option off
T_YES activate option

The valud_onoffis an absolute requirement.

X/Open CAE Specification (1992)
Page : 82 X/Open Transport Interface (XTI)

XTI Library Functions and Parameters t optmgmt()

XTI_RCVBUF

XTI_RCVLOWAT

XTI_SNDBUF

XTI_SNDLOWAT

The field |_linger determines the linger period in seconds. The transport
user can request the default value by setting the fieldl tdNSPEC. The
default timeout value depends on the underlying transport provider (it is
often T_INFINITE). Legal values for this field are_ UNSPEG T_INFINITE

and all non-negative numbers.

The |_linger value is not an absolute requirement. The implementation
may place upper and lower limits to this value. Requests that fall short of
the lower limit are negotiated to the lower limit.

Note that this option does not linger the execution ahddig).

This option is used to adjust the internal buffer size allocated for the receive
buffer. The buffer size may be increased for high-volume connections, or
decreased to limit the possible backlog of incoming data.

This request is not an absolute requirement. The implementation may place
upper and lower limits on the option value. Requests that fall short of the
lower limit are negotiated to the lower limit.

Legal values are all positive numbers.

This option is used to set a low-water mark in the receive buffer. The
option value gives the minimal number of bytes that must have
accumulated in the receive buffer before they become visible to the
transport user. If and when the amount of accumulated receive data exceeds
the low-water mark, &_DATA event is created, an event mechanism (e.g.,
poll() or select)) indicates the data, and the data can be read foy() or
t_rcvudatd).

This request is not an absolute requirement. The implementation may place
upper and lower limits on the option value. Requests that fall short of the
lower limit are negotiated to the lower limit.

Legal values are all positive numbers.

This option is used to adjust the internal buffer size allocated for the send
buffer.

This request is not an absolute requirement. The implementation may place
upper and lower limits on the option value. Requests that fall short of the
lower limit are negotiated to the lower limit.

Legal values are all positive numbers.

This option is used to set a low-water mark in the send buffer. The option
value gives the minimal number of bytes that must have accumulated in the
send buffer before they are sent.

This request is not an absolute requirement. The implementation may place
upper and lower limits on the option value. Requests that fall short of the
lower limit are negotiated to the lower limit.

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 83

t _optmgmt() XTI Library Functions and Parameters

Legal values are all positive numbers.

VALID STATES
ALL - apart fromT_UNINIT

ERRORS
On failure,t_errnois set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport endpoint.

[TOUTSTATH The function was issued in the wrong sequence.

[TACCEY The user does not have permission to negotiate the specified options.

[TBADOPT] The specified options were in an incorrect format or contained illegal
information.

[TBADFLAG] An invalid flag was specified.

[TBUFOVFLW] The number of bytes allowed for an incoming argum@néxlen)is greater
than O but not sufficient to store the value of that argument. The
information to be returned iret will be discarded.

[TSYSERHA A system error has occurred during execution of this function.

[TPROTA This error indicates that a communication problem has been detected
betweenxTl and the transport provider for which there is no other suitable
XTI (t_errno).

[TNOTSUPPORT This action is not supported by the transport provider.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
t_errnois set to indicate an error.

SEE ALSO
t_accept), t_alloc(), t_connedt), t_getinfd), t_listen(), t_oper{), t_rcvconnedt), Chapter 5,
The Use of Options

X/Open CAE Specification (1992)
Page : 84 X/Open Transport Interface (XTI)

XTI Library Functions and Parameters t rev()

NAME
t_rcv—receive data or expedited data sent over a connection

SYNOPSIS
#include <xti.h>

intt_rcv(fd, buf, nbytes, flags)

int fd;

char [buf;

unsigned int nbytes;

int (lags;

DESCRIPTION

Parameters | Before call | After call
fd X /
buf X (x)
nbytes X /
flags / X

This function receives either normal or expedited data. The argufdeidentifies the local
transport endpoint through which data will arrileyf points to a receive buffer where user data
will be placed, andhbytesspecifies the size of the receive buffer. The argunflegs may be
set on return front_rcv() and specifies optional flags as described below.

By default,t_rcv() operates in synchronous mode and will wait for data to arrive if none is
currently available. However, ib_NONBLOCK is set (viat_oper() or fcntl()), t_rcv() will
execute in asynchronous mode and will fail if no data is available. (8¢®ATA] below.)

On return from the call, if_MORE s set inflags, this indicates that there is more data, and the
current transport service data unitSpu) or expedited transport service data urgT$DU)
must be received in multiple rcv() calls. In the asynchronous mode, theMORE flag may be
set on return from thé _rcv() call even when the number of bytes received is less than the size
of the receive buffer specified. Eathrcv() with the T_MORE flag set indicates that another
t_rcv() must follow to get more data for the currer8DU. The end of thasDuU is identified

by the return of a_rcv() call with theT_MOREflag not set. If the transport provider does not
support the concept of B8SDU as indicated in thénfo argument on return from _oper() or
t_getinfq), theT_MOREflag is not meaningful and should be ignored nltfytesis greater than
zero on the call td_rcv(), t_rcv() will return 0 only if the end of aSDuU is being returned to
the user.

On return, the data returned is expedited dat EXPEDITEDIs set inflags. If the number of
bytes of expedited data exceeusytes t_rcv() will set T_EXPEDITEDandT_MORE on return
from the initial call. Subsequent calls to retrieve the remaingDU will have T_EXPEDITED
set on return. The end of theTSDU is identified by the return of & rcv() call with the
T_MOREflag not set.

In synchronous mode, the only way for the user to be notified of the arrival of normal or
expedited data is to issue this function or check forthRATA or T_EXDATA events using the

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 85

t rev() XTI Library Functions and Parameters

t_look() function. Additionally, the process can arrange to be notified vi&thaterface.

VALID STATES
T_DATAXFER, T_OUTREL

ERRORS
On failure,t_errnois set to one of the following:
[TBADF] The specified file descriptor does not refer to a transport endpoint.
[TNODATA] O_NONBLOCKwas set, but no data is currently available from the transport
provider.
[TLOOK] An asynchronous event has occurred on this transport endpoint and requires

immediate attention.
[TNOTSUPPORT This function is not supported by the underlying transport provider.

[TOUTSTATH The function was issued in the wrong sequence on the transport endpoint
referenced byd.

[TSYSERH A system error has occurred during execution of this function.

[TPROTG This error indicates that a communication problem has been detected
betweenxTl and the transport provider for which there is no other suitable
XTI (t_errno).
RETURN VALUE

On successful completiom, rcv() returns the number of bytes received. Otherwise, it returns
-1 on failure and_errnois set to indicate the error.

SEE ALSO
fentl(), t_getinfd), t_look(), t_operf), t_snd).

X/Open CAE Specification (1992)
Page : 86 X/Open Transport Interface (XTI)

XTI Library Functions and Parameters t _rcvconnect()

NAME
t_rcvconnect receive the confirmation from a connect request

SYNOPSIS
#include <xti.h>

int t_rcvconnect(fd, call)
int fd;
struct t_call Ctall;

DESCRIPTION
Parameters Before call | After call
fd X /
call->addr.maxlen X /
call->addr.len / X
call->addr.buf ? @)
call->opt.maxlen X /
call->opt.len / X
call->opt.buf ? ?
call->udata.maxlen X /
call->udata.len / X
call->udata.buf ? ?
call->sequence / /

This function enables a calling transport user to determine the status of a previously sent
connect request and is used in conjunction witlconnecf) to establish a connection in
asynchronous mode. The connection will be established on successful completion of this
function.

The argumentfd identifies the local transport endpoint where communication will be
established, andall contains information associated with the newly established connection.
The argumentall points to a_call structure which contains the following members:

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;
int sequence;

In call, addr returns the protocol address associated with the responding transport endipioint,
presents any options associated with the conneatidata points to optional user data that may
be returned by the destination transport user during connection establishmesggaedcdas

no meaning for this function.

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 87

t_rcvconnect() XTI Library Functions and Parameters

The maxlenfield of each argument must be set before issuing this function to indicate the
maximum size of the buffer for each. Howeveall may be a null pointer, in which case no
information is given to the user on return fromrcvconnect). By default, t_rcvconnect)
executes in synchronous mode and waits for the connection to be established before returning.
On return, theaddr, opt andudatafields reflect values associated with the connection.

If O_NONBLOCK is set (viat_open() or fentl()), t_rcvconnect) executes in asynchronous
mode, and reduces to a poll for existing connect confirmations. If none are available,
t_rcvconnect) fails and returns immediately without waiting for the connection to be
established. (SeerNODATA] below.) In this casef_rcvconnect) must be called again to
complete the connection establishment phase and retrieve the information retucaéd in

VALID STATES
T_OUTCON

ERRORS
On failure,t_errnois set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport endpoint.

[TBUFOVFLW] The number of bytes allocated for an incoming arguménaxlen) is
greater than 0 but not sufficient to store the value of that argument, and the
connect information to be returned ipall will be discarded. The
provider's state, as seen by the user, will be changgd D& TAXFER.

[TNODATA] O_NONBLOCKWwas set, but a connect confirmation has not yet arrived.

[TLOOK] An asynchronous event has occurred on this transport connection and
requires immediate attention.

[TNOTSUPPORT This function is not supported by the underlying transport provider.

[TOUTSTATH The function was issued in the wrong sequence on the transport endpoint
referenced byd.

[TSYSERR A system error has occurred during execution of this function.

[TPROTJ This error indicates that a communication problem has been detected
betweenxTl and the transport provider for which there is no other suitable
XTI (t_errno).

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a valdk isfreturned and
t_errnois set to indicate an error.

SEE ALSO
t_accept), t_alloq(), t_bind), t_connedt), t_listen(), t_opert), t_optmgmg).

X/Open CAE Specification (1992)
Page : 88 X/Open Transport Interface (XTI)

XTI Library Functions and Parameters t rcvdis()

NAME
t_rcvdis— retrieve information from disconnect

SYNOPSIS
#include <xti.h>

intt_rcvdis(fd, discon)
int fd;
struct t_discon Cdiscon;

DESCRIPTION

Parameters Before call | After call
fd X /
discon->udata.maxlen X /
discon->udata.len / X
discon->udata.buf ? ?)
discon->reason / X
discon->sequence / ?

This function is used to identify the cause of a disconnect and to retrieve any user data sent with
the disconnect. The argumeiat identifies the local transport endpoint where the connection
existed, andlisconpoints to a_disconstructure containing the following members:

struct netbuf udata;
int reason;
int sequence;

The fieldreasonspecifies the reason for the disconnect through a protocol-dependent reason
code, udata identifies any user data that was sent with the disconnect,sagdencemay
identify an outstanding connect indication with which the disconnect is associated. The field
sequences only meaningful when_rcvdig() is issued by a passive transport user who has
executed one or more listen() functions and is processing the resulting connect indications.

If a disconnect indication occursgquencecan be used to identify which of the outstanding
connect indications is associated with the disconnect.

If a user does not care if there is incoming data and does not need to know the vedasai

or sequencedisconmay be a null pointer and any user data associated with the disconnect will
be discarded. However, if a user has retrieved more than one outstanding connect indication
(via t_listen()) anddisconis a null pointer, the user will be unable to identify with which
connect indication the disconnect is associated.

VALID STATES
T_DATAXFER,T_OUTCONT_OUTRELT_INREL,T_INCON(ocnt > 0)

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 89

t revdis() XTI Library Functions and Parameters

ERRORS
On failure,t_errnois set to one of the following:
[TBADF] The specified file descriptor does not refer to a transport endpoint.
[TNODIS] No disconnect indication currently exists on the specified transport
endpoint.

[TBUFOVFLW] The number of bytes allocated for incoming détsaxlen)is greater than 0
but not sufficient to store the data. ftf is a passive endpoint witbcnt> 1,
it remains in stat@_INCON; otherwise, the endpoint state is seTtdDLE.

[TNOTSUPPORT This function is not supported by the underlying transport provider.
[TSYSERH A system error has occurred during execution of this function.

[TOUTSTATH The function was issued in the wrong sequence on the transport endpoint
referenced byd.

[TPROTA This error indicates that a communication problem has been detected
betweenxTl and the transport provider for which there is no other suitable
XTI (t_errno).

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a vakikisfreturned and
t_errnois set to indicate an error.

SEE ALSO
t_alloq(), t_connedt), t_lister(), t_operf), t_snddig).

X/Open CAE Specification (1992)
Page : 90 X/Open Transport Interface (XTI)

XTI Library Functions and Parameters t rcvrel()

NAME
t_rcvrel- acknowledge receipt of an orderly release indication

SYNOPSIS
#include <xti.h>

int t_rcvrel(fd)
int fd;

DESCRIPTION

Parameters | Before call | After call
fd X /

This function is used to acknowledge receipt of an orderly release indication. The argdment
identifies the local transport endpoint where the connection exists. After receipt of this
indication, the user may not attempt to receive more data because such an attempt will block
forever. However, the user may continue to send data over the connedtigndfre() has not

been called by the user. This function is an optional service of the transport provider, and is
only supported if the transport provider returned service typ@OTS_ORDon t_oper() or
t_getinfq().

VALID STATES
T_DATAXFER,T_OUTREL

ERRORS
On failure,t_errnois set to one of the following:
[TBADF] The specified file descriptor does not refer to a transport endpoint.
[TNOREL] No orderly release indication currently exists on the specified transport
endpoint.
[TLOOK] An asynchronous event has occurred on this transport endpoint and requires

immediate attention.
[TNOTSUPPORT This function is not supported by the underlying transport provider.
[TSYSERA A system error has occurred during execution of this function.

[TOUTSTATH The function was issued in the wrong sequence on the transport endpoint
referenced byd.

[TPROTG This error indicates that a communication problem has been detected
betweenxTl and the transport provider for which there is no other suitable
XTI (t_errno).

RETURN VALUE
Upon successful completion, a value of O is returned. Otherwise, a vakkisfreturned and
t_errnois set to indicate an error.

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 91

t rcvrel()

SEE ALSO
t_getinfd), t_operf), t_sndre().

Page : 92

XTI Library Functions and Parameters

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI)

XTI Library Functions and Parameters t rcvudata()

NAME
t_rcvudata- receive a data unit

SYNOPSIS
#include <xti.h>

intt_rcvudata(fd, unitdata, flags)

int fd;

struct t_unitdata Cunitdata;

int (lags;

DESCRIPTION
Parameters Before call | After call

fd X /
unitdata->addr.maxlen X /
unitdata->addr.len / X
unitdata->addr.buf ? (?
unitdata->opt.maxlen X /
unitdata->opt.len / X
unitdata->opt.buf ? (?)
unitdata->udata.maxlen X /
unitdata->udata.len / X
unitdata->udata.buf ? (?
flags / X

This function is used in connectionless mode to receive a data unit from another transport user.
The argumentd identifies the local transport endpoint through which data will be received,
unitdata holds information associated with the received data unit,feEgs is set on return to
indicate that the complete data unit was not received. The argumetaata points to a
t_unitdata structure containing the following members:

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;

Themaxlenfield of addr, opt andudata must be set before calling this function to indicate the
maximum size of the buffer for each.

On return from this calladdr specifies the protocol address of the sending uggEridentifies
options that were associated with this data unit, addta specifies the user data that was
received.

By default,t_rcvudatg) operates in synchronous mode and will wait for a data unit to arrive if
none is currently available. However, @_NONBLOCK is set (viat_oper() or fcntl()),
t_rcvudatg) will execute in asynchronous mode and will fail if no data units are available.

If the buffer defined in thaeidata field of unitdatais not large enough to hold the current data
unit, the buffer will be filled and”_MORE will be set inflags on return to indicate that another

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 93

t rcvudata() XTI Library Functions and Parameters

t_rcvudatg) should be called to retrieve the rest of the data unit. Subsequent calls to
t_rcvudatg) will return zero for the length of the address and options until the full data unit
has been received.

VALID STATES

T_IDLE
ERRORS
On failure,t_errnois set to one of the following:
[TBADF] The specified file descriptor does not refer to a transport endpoint.
[TNODATA] O_NONBLOCK was set, but no data units are currently available from the

transport provider.

[TBUFOVFLW] The number of bytes allocated for the incoming protocol address or options
(maxlen)is greater than 0 but not sufficient to store the information. The
unit data information to be returned imitdatawill be discarded.

[TLOOK] An asynchronous event has occurred on this transport endpoint and requires
immediate attention.

[TNOTSUPPORT This function is not supported by the underlying transport provider.

[TOUTSTATH The function was issued in the wrong sequence on the transport endpoint
referenced byd.

[TSYSERH A system error has occurred during execution of this function.

[TPROTG This error indicates that a communication problem has been detected
betweenxTl and the transport provider for which there is no other suitable
XTI (t_errno).

RETURN VALUE
Upon successful completion, a value of O is returned. Otherwise, a vakkisfreturned and
t_errnois set to indicate an error.

SEE ALSO
fentl(), t_alloo(), t_operf), t_rcvuder(), t_sndudaté).

X/Open CAE Specification (1992)
Page : 94 X/Open Transport Interface (XTI)

XTI Library Functions and Parameters t _rcvuderr()

NAME
t_rcvuderr— receive a unit data error indication

SYNOPSIS
#include <xti.h>

int t_rcvuderr(fd, uderr)
int fd;
struct t_uderr Cuderr;

DESCRIPTION
Parameters Before call | After call
fd X /
uderr->addr.maxlen X /
uderr->addr.len / X
uderr->addr.buf ? ?)
uderr->opt.maxlen X /
uderr->opt.len / X
uderr->opt.buf ? ?
uderr->error / X

This function is used in connectionless mode to receive information concerning an error on a
previously sent data unit, and should only be issued following a unit data error indication. It
informs the transport user that a data unit with a specific destination address and protocol
options produced an error. The arguméatidentifies the local transport endpoint through
which the error report will be received, anderr points to at_uderr structure containing the
following members:

struct netbuf addr;
struct netbuf opt;
long error;

The maxlenfield of addr and opt must be set before calling this function to indicate the
maximum size of the buffer for each.

On return from this call, theddr structure specifies the destination protocol address of the
erroneous data unit, thept structure identifies options that were associated with the data unit,
anderror specifies a protocol-dependent error code.

If the user does not care to identify the data unit that produced an eden; may be set to a
null pointer, andt_rcvuderr() will simply clear the error indication without reporting any
information to the user.

VALID STATES
T IDLE

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 95

t_rcvuderr() XTI Library Functions and Parameters

ERRORS
On failure,t_errnois set to one of the following:
[TBADF] The specified file descriptor does not refer to a transport endpoint.
[TNOUDERR No unit data error indication currently exists on the specified transport
endpoint.

[TBUFOVFLW] The number of bytes allocated for the incoming protocol address or options
(maxlen)is greater than 0 but not sufficient to store the information. The
unit data error information to be returneduderr will be discarded.

[TNOTSUPPORT This function is not supported by the underlying transport provider.
[TSYSERH A system error has occurred during execution of this function.

[TPROTJ This error indicates that a communication problem has been detected
betweenxTl and the transport provider for which there is no other suitable
XTI (t_errno).

RETURN VALUE
Upon successful completion, a value of O is returned. Otherwise, a vakkisfreturned and
t_errnois set to indicate an error.

SEE ALSO
t_rcvudatd), t_sndudaté).

X/Open CAE Specification (1992)
Page : 96 X/Open Transport Interface (XTI)

XTI Library Functions and Parameters t snd()

NAME
t_snd- send data or expedited data over a connection

SYNOPSIS
#include <xti.h>

intt_snd(fd, buf, nbytes, flags)

int fd;

char [buf;

unsigned int nbytes;

int flags;

DESCRIPTION

Parameters | Before call | After call
fd X /
buf X (X) /
nbytes X /
flags X /

This function is used to send either normal or expedited data. The argdidhilentifies the
local transport endpoint over which data should be seuat,points to the user databytes
specifies the number of bytes of user data to be sent,flagd specifies any optional flags
described below:

T_EXPEDITED If set inflags, the data will be sent as expedited data and will be subject to
the interpretations of the transport provider.

T_MORE If set in flags, this indicates to the transport provider that the transport
service data unitTSDU) (or expedited transport service data urT-SDU)
is being sent through multiplé_snd) calls. Eacht_snd) with the
T_MORE flag set indicates that anothersnd) will follow with more data
for the currentrSDU (or ETSDU).

The end of thersbu (or ETSDU) is identified by at_snd) call with the
T_MORE flag not set. Use of _MORE enables a user to break up large
logical data units without losing the boundaries of those units at the other
end of the connection. The flag implies nothing about how the data is
packaged for transfer below the transport interface. If the transport
provider does not support the concept of $DU as indicated in thénfo
argument on return fronh oper() or t_getinfq), the T_MORE flag is not
meaningful and will be ignored if set.

The sending of a zero-length fragment of T&8DU or ETSDU is only
permitted where this is used to indicate the end aBau or ETSDU, i.e.,
when theT_MORE flag is not set. Some transport providers also forbid
zero-length TSDUs and ETSDUs. See Appendix A, ISO Transport
Protocol Information for a fuller explanation.

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 97

t snd() XTI Library Functions and Parameters

By default,t_snd) operates in synchronous mode and may wait if flow control restrictions
prevent the data from being accepted by the local transport provider at the time the call is made.
However, if O_NONBLOCK is set (viat_oper() or fentl()), t_snd) will execute in
asynchronous mode, and will fail immediately if there are flow control restrictions. The
process can arrange to be informed when the flow control restrictions are cleared via either
t_look() or theEM interface.

On successful completiort, snd) returns the number of bytes accepted by the transport
provider. Normally this will equal the number of bytes specifiedninytes However, if
O_NONBLOCK is set, it is possible that only part of the data will actually be accepted by the
transport provider. In this case,snd) will return a value that is less than the valuentiytes

If nbytesis zero and sending of zero octets is not supported by the underlying transport service,
t_snd) will return -1 witht_errno set to[TBADDATA] .

The size of eaclrSDU or ETSDU must not exceed the limits of the transport provider as
specified by the current values in tm8DU or ETSDU fields in theinfo argument returned by

t_getinfq().
The error TLOOK] may be returned to inform the process that an event (e.g., a disconnect) has
occurred.

VALID STATES
T_DATAXFER, T_INREL

ERRORS
On failure,t_errnois set to one of the following:
[TBADF] The specified file descriptor does not refer to a transport endpoint.
[TBADDATA] lllegal amount of data:

— A single send was attempted specifyingsDU (ETSDU) or fragment
TSDU (ETSDU) greater than that specified by the current values of the
TSDU or ETSDUfields in theinfo argument;

— a send of a zero bytesSDU (ETSDU) or zero byte fragment of asbu
(ETSDU) is not supported by the provider (ségpendix A, ISO
Transport Protocol Information), or

— multiple sends were attempted resulting imsDU (ETSDU) larger than
that specified by the current value of theDU or ETSDU fields in the
info argument - the ability of aXTI implementation to detect such an
error case is implementation-dependent G&€EATS, below).

[TBADFLAG] An invalid flag was specified.

[TFLOW] O_NONBLOCK was set, but the flow control mechanism prevented the
transport provider from accepting any data at this time.

[TNOTSUPPORT This function is not supported by the underlying transport provider.
[TLOOK] An asynchronous event has occurred on this transport endpoint.

[TOUTSTATH The function was issued in the wrong sequence on the transport endpoint
referenced byd.

X/Open CAE Specification (1992)
Page : 98 X/Open Transport Interface (XTI)

XTI Library Functions and Parameters t snd()

[TSYSERR A system error has occurred during execution of this function.

[TPROTG This error indicates that a communication problem has been detected
betweenxTl and the transport provider for which there is no other suitable
XTI (t_errno).

RETURN VALUE
On successful completiort, snd)) returns the number of bytes accepted by the transport
provider. Otherwise, -1 is returned on failure &ndrrnois set to indicate the error.

Note that in asynchronous mode, if the number of bytes accepted by the transport provider is
less than the number of bytes requested, this may indicate that the transport provider is blocked
due to flow control.

SEE ALSO
t_getinfd), t_oper{), t_rcv).

CAVEATS
It is important to remember that the transport provider treats all users of a transport endpoint as
a single user. Therefore if several processes issue concurser) calls then the different
data may be intermixed.

Multiple sends which exceed the maximm®DU or ETSDU size may not be discovered Byl.

In this case an implementation-dependent error will result (generated by the transport provider)
perhaps on a subsequexitl call. This error may take the form of a connection abort, a
[TSYSERR] a[TBADDATA] or a[TPROTO]error.

If multiple sends which exceed the maximai®DU or ETSDU size are detected byri, t_snd)
fails with [TBADDATA].

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 99

t snddis() XTI Library Functions and Parameters

NAME
t_snddis- send user-initiated disconnect request

SYNOPSIS
#include <xti.h>

int t_snddis(fd, call)
int fd;
struct t_call Ctall;

DESCRIPTION

Parameters Before call | After call

fd
call->addr.maxlen
call->addr.len
call->addr.buf
call->opt.maxlen
call->opt.len
call->opt.buf
call->udata.maxlen
call->udata.len
call->udata.buf
call->sequence

~ — — — — o~~~ ~—

\)/:\;X ~ O~~~ —~ - - X
~
-~

-~

This function is used to initiate an abortive release on an already established connection, or to
reject a connect request. The arguméamtidentifies the local transport endpoint of the
connection, andall specifies information associated with the abortive release. The argument
call points to at_call structure which contains the following members:

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;
int sequence;

The values ircall have different semantics, depending on the context of the calktddig).
When rejecting a connect requesall must be non-null and contain a valid valuesaiquence

to uniquely identify the rejected connect indication to the transport provider. sEfaence
field is only meaningful if the transport connection is in theéNCON state. Theaddr andopt
fields of call are ignored. In all other casesall need only be used when data is being sent
with the disconnect request. Tleeldr, opt and sequencefields of thet_call structure are
ignored. If the user does not wish to send data to the remote user, the valak ofay be a
null pointer.

The udata structure specifies the user data to be sent to the remote user. The amount of user
data must not exceed the limits supported by the transport provider, as returnediacibre

field, of theinfo argument oft_oper() or t_getinfq)). If the len field of udatais zero, no data

will be sent to the remote user.

X/Open CAE Specification (1992)
Page : 100 X/Open Transport Interface (XTI)

XTI Library Functions and Parameters t snddis()

VALID STATES
T_DATAXFER,T_OUTCONT_ OUTRELT_INREL,T_INCON(ocnt > 0)

ERRORS
On failure,t_errnois set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport endpoint.

[TOUTSTATH The function was issued in the wrong sequence on the transport endpoint
referenced byd.

[TBADDATA] The amount of user data specified was not within the bounds allowed by the
transport provider.

[TBADSEQ] An invalid sequence number was specified, or a radll pointer was
specified, when rejecting a connect request.

[TNOTSUPPORT This function is not supported by the underlying transport provider.

[TSYSERH A system error has occurred during execution of this function.
[TLOOK] An asynchronous event, which requires attention, has occured.
[TPROTG This error indicates that a communication problem has been detected

betweenxTl and the transport provider for which there is no other suitable
XTI (t_errno).

RETURN VALUE
Upon successful completion, a value of O is returned. Otherwise, a vakkisfreturned and
t_errnois set to indicate an error.

SEE ALSO
t_connedt), t_getinfd), t_listen(), t_operf).

CAVEATS
t_snddig) is an abortive disconnect. Thereford_snddig) issued on a connection endpoint
may cause data previously sent vignd), or data not yet received, to be lost (even if an error
is returned).

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 101

t sndrel() XTI Library Functions and Parameters

NAME
t_sndrel- initiate an orderly release

SYNOPSIS
#include <xti.h>

int t_sndrel(fd)
int fd;

DESCRIPTION

Parameters | Before call | After call
fd X /

This function is used to initiate an orderly release of a transport connection and indicates to the
transport provider that the transport user has no more data to send. The arfgiidentifies

the local transport endpoint where the connection exists. After callisigdrel), the user may

not send any more data over the connection. However, a user may continue to receive data if
an orderly release indication has not been received. This function is an optional service of the
transport provider and is only supported if the transport provider returned service type
T_COTS_ORDont_oper() ort_getinfd).

VALID STATES
T_DATAXFER,T_INREL

ERRORS
On failure,t_errnois set to one of the following:
[TBADF] The specified file descriptor does not refer to a transport endpoint.
[TFLOW] O_NONBLOCK was set, but the flow control mechanism prevented the

transport provider from accepting the function at this time.

[TLOOK] An asynchronous event has occurred on this transport endpoint and requires
immediate attention.

[TNOTSUPPORT This function is not supported by the underlying transport provider.

[TOUTSTATH The function was issued in the wrong sequence on the transport endpoint
referenced byd.

[TSYSERH A system error has occurred during execution of this function.

[TPROTG This error indicates that a communication problem has been detected
betweenxTl and the transport provider for which there is no other suitable
XTI (t_errno).

RETURN VALUE

Upon successful completion, a value of O is returned. Otherwise, a vakkisfreturned and
t_errnois set to indicate an error.

X/Open CAE Specification (1992)
Page : 102 X/Open Transport Interface (XTI)

XTI Library Functions and Parameters

SEE ALSO
t_getinfq), t_open(), t_rcvrel().

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI)

t sndrel()

Page : 103

t sndudata() XTI Library Functions and Parameters

NAME
t_sndudata send a data unit

SYNOPSIS
#include <xti.h>

intt_sndudata(fd, unitdata)
int fd;
struct t_unitdata Cunitdata;

DESCRIPTION
Parameters Before call | After call
fd X /
unitdata->addr.maxlen / /
unitdata->addr.len X /
unitdata->addr.buf X(X) /
unitdata->opt.maxlen / /
unitdata->opt.len X /
unitdata->opt.buf ?2(?) /
unitdata->udata.maxlen / /
unitdata->udata.len X /
unitdata->udata.buf X(X) /

This function is used in connectionless mode to send a data unit to another transport user. The
argumenfd identifies the local transport endpoint through which data will be sentyaitdata
points to a_unitdata structure containing the following members:

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;

In unitdata, addr specifies the protocol address of the destination wggridentifies options

that the user wants associated with this request,uatada specifies the user data to be sent.
The user may choose not to specify what protocol options are associated with the transfer by
setting thden field of opt to zero. In this case, the provider may use default options.

If the len field of udatais zero, and sending of zero octets is not supported by the underlying
transport service, thie sndudatd) will return -1 witht_errno set to[TBADDATA] .

By default, t sndudatd) operates in synchronous mode and may wait if flow control
restrictions prevent the data from being accepted by the local transport provider at the time the
call is made. However, iO_NONBLOCK is set (viat_oper() or fcntl()), t_sndudatg) will

execute in asynchronous mode and will fail under such conditions. The process can arrange to
be notified of the clearance of a flow control restriction via eith&ok() or theEM interface.

If the amount of data specified imdata exceeds th@SDU size as returned in thesdu field of
the info argument oft_open() or t_getinfq), a [TBADDATA] error will be generated. If
t_sndudatd) is called before the destination user has activated its transport endpoint (see

X/Open CAE Specification (1992)
Page : 104 X/Open Transport Interface (XTI)

XTI Library Functions and Parameters t sndudata()

t_bind()), the data unit may be discarded.

If it is not possible for the transport provider to immediately detect the conditions that cause the
errors [TBADDADDR] and [TBADOPT]. These errors will alternatively be returned by
t_rcvuderr. Therefore, an application must be prepared to receive these errors in both of these
ways.

VALID STATES
T_IDLE

ERRORS
On failure,t_errnois set to one of the following:

[TBADDATA] lllegal amount of data. A single send was attempted specifyirngsau
greater than that specified in tl&fo argument, or a send of a zero byte
TSDU is not supported by the provider.

[TBADF] The specified file descriptor does not refer to a transport endpoint.

[TFLOW] O_NONBLOCK was set, but the flow control mechanism prevented the
transport provider from accepting any data at this time.

[TLOOK] An asynchronous event has occurred on this transport endpoint.
[TNOTSUPPORT This function is not supported by the underlying transport provider.

[TOUTSTATH The function was issued in the wrong sequence on the transport endpoint
referenced byd.

[TSYSERR A system error has occurred during execution of this function.

[TBADADDR] The specified protocol address was in an incorrect format or contained
illegal information.

[TBADOPT] The specified options were in an incorrect format or contained illegal
information.

[TPROTG This error indicates that a communication problem has been detected

betweenxTl and the transport provider for which there is no other suitable
XTI (t_errno).

RETURN VALUE
Upon successful completion, a value of O is returned. Otherwise, a vakkisfreturned and
t_errnois set to indicate an error.

SEE ALSO
fentl(), t_alloc(), t_oper{), t_rcvudatd), t_rcvudery).

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 105

t_strerror() XTI Library Functions and Parameters

NAME
t_strerror - produce an error message string

SYNOPSIS
#include <xti.h>

char OO_strerror(errnum)
int errnum;

DESCRIPTION

Parameters | Before call | After call
errnum X /

Thet_strerror() function maps the error number @rnumthat corresponds to &l error to

a language-dependent error message string and returns a pointer to the string. The string
pointed to will not be modified by the program, but may be overwritten by a subsequent call to
the t_strerror function. The string is not terminated by a newline character. The language for
error message strings written bystrerror() is implementation-defined. If it is English, the

error message string describing the valué ierrno is identical to the comments following the
t_errno codes defined irxti.h>. If an error code is unknown, and the language is English,
t_strerror() returns the string:

"<error>: error unknown"

where <error> is the error number supplied as input. In other languages, an equivalent text
is provided.

VALID STATES
ALL - apart fromT_UNINIT

RETURN VALUE
The functiont_strerror() returns a pointer to the generated message string.

SEE ALSO
t_error()

X/Open CAE Specification (1992)
Page : 106 X/Open Transport Interface (XTI)

XTI Library Functions and Parameters t sync()

NAME
t_sync- synchronise transport library

SYNOPSIS
#include <xti.h>

int t_sync(fd)
int fd;

DESCRIPTION

Parameters | Before call | After call
fd X /

For the transport endpoint specified fay t_synd) synchronises the data structures managed
by the transport library with information from the underlying transport provider. In doing so, it
can convert an uninitialised file descriptor (obtainedafien(), dup() or as a result of &ork()
andexed)) to an initialised transport endpoint, assuming that the file descriptor referenced a
transport endpoint, by updating and allocating the necessary library data structures. This
function also allows two cooperating processes to synchronise their interaction with a transport
provider.

For example, if a process forks a new process and issueze(), the new process must issue
at_synd) to build the private library data structure associated with a transport endpoint and to
synchronise the data structure with the relevant provider information.

It is important to remember that the transport provider treats all users of a transport endpoint as
a single user. If multiple processes are using the same endpoint, they should coordinate their
activities so as not to violate the state of the transport endpoint. The furicggnd) returns

the current state of the transport endpoint to the user, thereby enabling the user to verify the
state before taking further action. This coordination is only valid among cooperating processes;
it is possible that a process or an incoming event could change the endpoint'afttate
t_synd) is issued.

If the transport endpoint is undergoing a state transition wheynd) is called, the function
will fail.

VALID STATES
ALL - apart fromT_UNINIT

ERRORS
On failure,t_errnois set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport endpoint. This
error may be returned when thfd has been previously closed or an
erroneous number may have been passed to the call.

[TSTATECHNG The transport endpoint is undergoing a state change.

[TSYSERR A system error has occurred during execution of this function.

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 107

t sync() XTI Library Functions and Parameters

[TPROTG This error indicates that a communication problem has been detected
betweenxTl and the transport provider for which there is no other suitable
XTI (t_errno).

RETURN VALUE
On successful completion, the state of the transport endpoint is returned. Otherwise, a value of
-1is returned antl errnois set to indicate an error. The state returned is one of the following:

T_UNBND Unbound

T_IDLE Idle

T_OUTCON Outgoing connection pending
T_INCON Incoming connection pending

T_DATAXFER Data transfer

T_OUTREL Outgoing orderly release (waiting for an orderly release indication)
T_INREL Incoming orderly release (waiting for an orderly release request).
SEE ALSO

dup(), exed), fork(), open().

X/Open CAE Specification (1992)
Page : 108 X/Open Transport Interface (XTI)

XTI Library Functions and Parameters t_unbind()

NAME
t_unbind- disable a transport endpoint

SYNOPSIS
#include <xti.h>

int t_unbind(fd)
int fd;

DESCRIPTION

Parameters | Before call | After call
fd X /

Thet_unbind) function disables the transport endpoint specifieddyhich was previously
bound byt_bind(). On completion of this call, no further data or events destined for this
transport endpoint will be accepted by the transport provider. An endpoint which is disabled by
usingt_unbind) can be enabled by a subsequent catl tand().

VALID STATES

T_IDLE
ERRORS
On failure,t_errnois set to one of the following:
[TBADF] The specified file descriptor does not refer to a transport endpoint.
[TOUTSTATH The function was issued in the wrong sequence.
[TLOOK] An asynchronous event has occurred on this transport endpoint.
[TSYSERA A system error has occurred during execution of this function.
[TPROTA This error indicates that a communication problem has been detected

betweenxTl and the transport provider for which there is no other suitable
XTI (t_errno).

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a vakiisfreturned and
t_errnois set to indicate an error.

SEE ALSO
t_bind().

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 109

t_unbind()

Page : 110

XTI Library Functions and Parameters

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI)

Al

Appendix A

ISO Transport Protocol Information

GENERAL

This appendix describes the protocol-specific information that is relevamsdotransport
providers.

Notes

Protocol address
In anISO environment, the protocol address is the transport address.
Sending data of zero octets

The transport service definition, both in connection-oriented mode and in connectionless
mode, does not permit sending@DU of zero octets. So, in connectionless mode, if the
len parameter is set to zero, thesndudatd) call will always return unsuccessfully with

-1 and t_errno set to [TBADDATA]. In connection-oriented mode, if thabytes
parameter is set to zero, thtesnd) call will return with -1 andt_errno set to
[TBADDATA] if either theT_MORE flag is set, or the&_MORE flag is not set and the
preceding_snd)) call completed asbu or ETSDU(i.e., the call has requested sending a
zero byteTSDU or ETSDU).

Expedited data

In connection-oriented mode, and when the transport class permits it, the expedited data
option must be negotiated during the connection establishment phase. In connectionless
mode this feature is not supported.

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 111

Options ISO Transport Protocol Information

A2 OPTIONS

Options are formatted according to the structurepthdr as described iChapter 5, The

Use of Options A transport provider compliant to this specification supports none, all or
any subset of the options definedSection A.2.1 Connection-mode Serviceand Section
A.2.2, Connectionless-mode Service An implementation may restrict the use of any of
these options by offering them only in the privileged or read-only mode.

A.2.1 Connection-mode Service
The protocol level of all subsequent optionsd®_TP.

All options are association-related (s€hapter 5, The Use of Option3. They may be
negotiated in thexTl statesT_IDLE and T_INCON, and are read-only in all other states
excepfT_UNINIT.

A.2.1.1 Options for Quality of Service and Expedited Dataq8072:1986)

These options are all defined in th80 8072:1986 transport service definition. The
definitions are not repeated here.

Option Name Type of Option Legal Meaning
Value Option Value
TCO_THROUGHPUT struct thrpt octets per second throughput
TCO_TRANSDEL struct transdel time in milliseconds transit delay
TCO_RESERRORRATE | structrate OPT_RATIO residual error rate
TCO_TRANSFFAILPROB | struct rate OPT_RATIO transfer failure
probability
TCO_ESTFAILPROB struct rate OPT_RATIO connection establ.
failure probability
TCO_RELFAILPROB struct rate OPT_RATIO connection release
failure probability
TCO_ESTDELAY struct rate time in milliseconds connection establ.
delay
TCO_RELDELAY struct rate time in milliseconds connection release
delay
TCO_CONNRESIL struct rate OPT_RATIO connection resilience
TCO_PROTECTION unsigned long see text protection
TCO_PRIORITY unsigned long see text priority
TCO_EXPD unsigned long T_YEST_NO expedited data

Table A-1. Options for Quality of Service and Expedited Dats(8072:1986)

OPT_RATIO is defined asOPT_RATIO = -log,q(ratio). Theratio is dependent on the
parameter, but is always composed of a number of failures divided by a total number of
samples. This may be, for example, the numbersipus transferred in error divided by the
total number offSDU transfers {CO_RESERRORRATE

X/Open CAE Specification (1992)
Page : 112 X/Open Transport Interface (XTI)

ISO Transport Protocol Information Options

Absolute Requirements

For the options inTable A-1, the transport user can indicate whether the request is an
absolute requirement or whether a degraded value is acceptable. Epp$toptions based
onstruct rate an absolute requirement is specified via the fraidacceptvalugif that field

is given a value different frorm_UNSPEC. The value specified forCO_PROTECTIONS an
absolute requirement if the. ABSREQflag is set. The values specified foeO_EXPDand
TCO_PRIORITYare never absolute requirements.

Further Remarks

A detailed description of the options for Quality of Service can be found inisiae
8072:1986 specification. The field elements of the structures in use for the option values are
self-explanatory. Only the following details remain to be explained.

« If these options are returned withlister(), their values are related to the incoming
connection and not to the transport endpoint whetistern() was issued. To give an
example, the value ofCO_PROTECTIONs the value sent by the calling transport user,
and not the value currently effective for the endpoint (that could be retrieved by
t_optmgm{) with the flagT_CURRENT set). The option is not returned at all if the
calling user did not specify it. An analogous procedure applies for the other options.
See als@Chapter 5, The Use of Options

If, in a call tot_accept), the called transport user tries to negotiate an option of higher
quality than proposed, the option is rejected and the connection establishment fails (see
Section 5.3.4Reponding to a Negotiation Proposgl

e« The values of the QOS options TCO_THROUGHPUT TCO_TRANSDEL
TCO_RESERRORRATE TCO_TRANSFFAILPROB TCO_ESTFAILPROB
TCO_RELFAILPROB TCO_ESTDELAY, TCO_RELDELAY and TCO_CONNRESILhave a
structured format. A user requesting one of these options might leave a field of the
structure unspecified by setting it To UNSPEC. The transport provider is then free to
select an appropriate value for this field. The transport provider may retumSPECIn
a field of the structure to the user to indicate that it has not yet decided on a definite
value for this field.

T_UNSPECIs not a legal value forCO_PROTECTIONTCO_PRIORITYandTCO_EXPD.

TCO_THROUGHPUTandTCO_TRANSDEL

If avgthrpt (average throughput) is not defined (both fields setTtoNSPEQ, the
transport provider considers that the average throughput has the same values as the
maximum throughputrfaxthrp}. An analogous procedure appliesT®©O_TRANSDEL.

The ISO specification1SO 8073:1986 does not differentiate between average and
maximum transit delay. Transport providers that support this option adopt the values of
the maximum delay as input for tl@R TPDU.

¢ TCO_PROTECTION
This option defines the general level of protection. The symbolic constants in the
following list are used to specify the required level of protection:

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 113

Options ISO Transport Protocol Information

— T_NOPROTECT
no protection feature

— T_PASSIVEPROTECT
protection against passive monitoring

— T_ACTIVEPROTECT
protection against modification, replay, addition or deletion

Both flagsT_PASSIVEPROTECTandT_ACTIVEPROTECTmay be set simultaneously but

are exclusive withf_NOPROTECT. If the T_ACTIVEPROTECToOr T_PASSIVEPROTECT

flags are set, the user may indicate that this is an absolute requirement by also setting the
T_ABSREQflag.

e TCO_PRIORITY
Five priority levels are defined byTl:

— T_PRIDFLT:
lower level

— T_PRILOW
low level

— T_PRIMID:
medium level

— T_PRIHIGH
high level

— T_PRITOR
higher level

The number of priority levels is not defined yO 8072:1986. The parameter only has
meaning in the context of some management entity or structure able to judge relative
importance.

A.2.1.2 Management Options

These options are parameters of 18® transport protocol according S0 8073:1986.
They are not included in théSO transport service definitionSO 8072:1986, but are
additionally offered byxTl. Transport users wishing to be trulgo-compliant should thus
not adhere to them.

Avoid specifying botlQOSparameters and management options at the same time.

X/Open CAE Specification (1992)
Page : 114 X/Open Transport Interface (XTI)

ISO Transport Protocol Information

Options

Option Name

Type of Option
Value

Legal
Option Value

Meaning

TCO_LTPDU
TCO_ACKTIME
TCO_REASTIME
TCO_PREFCLASS
TCO_ALTCLASS1
TCO_ALTCLASS?2
TCO_ALTCLASS3
TCO_ALTCLASS4
TCO_EXTFORM
TCO_FLOWCTRL
TCO_CHECKSUM
TCO_NETEXP
TCO_NETRECPTC

unsigned long
unsigned long
unsigned long
unsigned long
unsigned long
unsigned long
unsigned long
unsigned long
unsigned long
unsigned long
unsigned long
unsigned long
runsigned long

length in octets

time in milliseconds

time in seconds

see text

see text

see text

see text

see text
T_YEST_NO/T_UNSPEQ
T_YEST_NOT_UNSPEQ
T_YEST_NOT_UNSPEQ
T_YEST_NO/T_UNSPEQ
T_YEST_NOT_UNSPEQ

maximum lengtirebu
acknowledge time
reassignment time
preferred class
1st alternative class
2nd alternative class
3rd alternative class
4th alternative class
extended format
flowctr
checksum
network expedited data
use of network

receipt confirmation

Table A-2. Management Options

Absolute Requirements

A request for any of these options is considered an absolute requirement.

Further Remarks

« If these options are returned withlister() their values are related to the incoming
connection and not to the transport endpoint whefister() was issued. That means
thatt_optmgmt) with the flagT_CURRENT set would usually yield a different result
(seeChapter 5, The Use of Options.

For management options that are subject to peer-to-peer negotiation the following holds:
If, in a call tot_accept), the called transport user tries to negotiate an option of higher
quality than proposed, the option is rejected and the connection establishment fails (see
Section 5.3.4Responding to a Negotiation Proposal

A connection-mode transport provider may allow the transport user to select more than
one alternative class. The transport user may use the optioR&TCLASSY,
T_ALTCLASS?2, etc. to denote the alternatives. A transport provider only supports an
implementation-dependent limit of alternatives and ignores the rest.

The valueT_UNSPECIs legal for all options inTable A-2. It may be set by the user to
indicate that the transport provider is free to choose any appropriate value. If returned
by the transport provider, it indicates that the transport provider has not yet decided on a
specific value.

Legal values for the optionsT_PREFCLASS T_ALTCLASS1 T_ALTCLASS2,
T_ALTCLASS3 and T_ALTCLASS4 are T_CLASSQ T_CLASS]1, T_CLASS2 T_CLASS3
T_CLASS4andT_UNSPEC.

If a connection has been establishedD PREFCLASSWiIll be set to the selected value,
andT_ALTCLASS1throughT_ALTCLASS4 will be set toT_UNSPEG if these options are

X/Open CAE Specification (1992)

X/Open Transport Interface (XTI) Page : 115

Options ISO Transport Protocol Information

A2.2

A221

Page : 116

supported.

« Warning on the use offTCO_LTPDU Sensible use of this option requires that the
application programmer knows about system internals. Careless setting of either a lower
or a higher value than the implementation-dependent default may degrade the
performance.

Legal values ar&_UNSPECand all positive values.

The action taken by a transport provider is implementation-dependent if a value is
specified which is not exactly as defined$® 8073:1986 or its addendums.

« The management options are not independent of one another, and not independent of the
options defined ifTable A-1. A transport user must take care not to request conflicting
values. If conflicts are detected at negotiation time, the negotiation fails according to the
rules for absolute requirements (s€bapter 5, The Use of Optiong. Conflicts that
cannot be detected at negotiation time will lead to unpredictable results in the course of
communication. Usually, conflicts are detected at the time the connection is established.

Some relations that must be obeyed are:

o If TCO_EXPis set toT_YESandTCO_PREFCLASSs set toT_CLASS2 TCO_FLOWCTRL
must also be set to YES.

o If TCO_PREFCLASSSs set toT_CLASSQ TCO_EXPmust be set td_NO.

« The value inTCO_PREFCLASSMust not be lower than the value TICO_ALTCLASS],
TCO_ALTCLASS2 and so on.

« Depending on the chos&DSoptions, further value conflicts might occur.

Connectionless-mode Service

The protocol level of all subsequent options$®©_TP (as in Section A.2.1 Connection-
mode Service.

All options are association-related (s€hapter 5, The Use of Option3. They may be
negotiated in alKTI states buT_UNINIT.

Options for Quality of Servicag08072/Add.1:1986)

These options are all defined in th&0 8072/Add.1:1986 transport service definition. The
definitions are not repeated here.

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI)

ISO Transport Protocol Information Options

Option Name Type of Option Legal Meaning
Value Option Value
TCL_TRANSDEL struct rate time in milliseconds transit delay
TCL_RESERRORRATE| struct rate OPT_RATIO residual error rate
TCL_PROTECTION unsigned long see text protection
TCL_PRIORITY unsigned long see text priority

Table A-3. Options for Quality of Servicea$0 8072/Add.1:1986)

Absolute Requirements

A request for any of these options is an absolute requirement.

Further Remarks

A detailed description of the options for Quality of Service can be foundS@
8072/Add.1:1986. The field elements of the structures in use for the option values are self-
explanatory. Only the following details remain to be explained.

« These options are negotiated only between the local user and the local transport
provider.

« The meaning, type of option value, and the range of legal option values are identical for
TCO_RESERRORRATEAND TCL_RESERRORRATETCO_PRIORITYandTCL_PRIORITY,
TCO_PROTECTIONand TCL_PROTECTION(seeSection A.2.1.1 Options for Quality
of Service and Expedited Data (5O 8072:1986).

e TCL_TRANSDEL and TCO_TRANSDEL are different. TCL_TRANSDEL specifies the
maximum transit delay expected during a datagram transmission. Note that the type of
option value is astruct rate contrary to thestruct transdel of TCO_TRANSDEL. The
range of legal option values for each field sfruct rate is the same as that of
TCO_TRANSDEL.

If these options are returned withrcvudatd) their values are related to the received
datagram and not to the transport endpoint wherevudatd) was issued. On the other
hand,t_optmgmt) with the flagT_CURRENT set returns the values that are currently
effective for outgoing datagrams.

« The functiont_rcvuder() returns the option value of the data unit previously sent that
produced the error.

A.2.2.2 Management Options

This option is a parameter of ag80 transport protocol, according 180 8602. It is not
included in thelSO transport service definitiorsO 8072/Add.1:1986, but is an additional
offer by XTI. Transport users wishing to be trulyo-compliant should thus not adhere to it.

Avoid specifying botrQOSparameters and this management option at the same time.

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 117

Options ISO Transport Protocol Information

Option Name Type of Option Legal Meaning
Value Option Value

TCL_CHECKSUM unsigned long | T_YEST_NO | checksum computation

Table A-4. Management Option

Absolute Requirements

A request for this option is an absolute requirement.

Further Remarks

TCL_CHECKSUM is the option allows disabling/enabling of the checksum computation.
The legal values are_YES (checksum enabled) andNO (checksum disabled).

If this option is returned wittt_rcvudatd), its value indicates whether or not a checksum
was present in the received datagram.

The advisability of turning off the checksum check is controversial.

X/Open CAE Specification (1992)
Page : 118 X/Open Transport Interface (XTI)

ISO Transport Protocol Information Functions

A3 FUNCTIONS
t_accept)

t_bind()

t_connedt)

t_getinfd)

The parametecall->udata.lenmust be in the range 0 to 32. The user may
send up to 32 octets of data when accepting the connection.

If fd is not equal taesfd, resfdshould have been bound to the same address
asfd with the glen parameter set to 0 when thebind) was called for that
resfd.

A process can listen for an incoming indication on a gifeéand then accept

the connection on another endpoiasfdwhich has been bound to the same

or a different protocol address with thgden parameter (of the_bind()
function) set to 0. The protocol address bound to the new accepting endpoint
(resfd should in general be the same as the listening endplointiecause at

the present time, th&s0 transport service definitiong0 8072:1986) does

not authorise acceptance of an incoming connection indication with a
responding address different from the called address, except under certain
conditions (se¢SO 8072:1986 paragraph 12.2.4, Responding Address), but it
also states that it may be changed in the future.

Theaddrfield of thet_bind() structure represents the loG@AP.

The sndcall->addrstructure specifies the remote callesiaP. In the present
version, the returned address setducall->addr will have the same value.

The setting ofsndcall->udatais optional foriISO connections, but with no
data, thden field of udatamust be set to 0. Thmaxlenandbuffields of the

netbuf structure, pointed to bycvcall->addr andrcvcall->opt, must be set
before the call.

The information returned by _getinfd) reflects the characteristics of the
transport connection or, if no connection is established, the maximum
characteristics a transport connection could take on using the underlying
transport provider. In all possible states excEgDATAXFER, the function

t getinfd) returns in the parameteinfo the same information as was
returned byt_oper{). In T_DATAXFER, however, the information returned
may differ from that returned bl oper{), depending on:

— the transport class negotiated during the connection establishment, and
— the negotiation of expedited data transfer for this connection.

In T_DATAXFER, the etsdufield in the t_info structure is set to -2 if no
expedited data transfer was negotiated, and to 16 otherwise. The remaining
fields are set according to the characteristics of the transport protocol class in
use for this connection, as defined in the table below.

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 119

Functions ISO Transport Protocol Information

Parameters Before Call After Call
Connection | Connection| Connectionless
Class 0 Class 1-4
fd X / / /
info->addr X X X
info->options / x (1) x (1) x (1)
info->tsdu / X (2) X (2) 0->63488
info->etsdu / -2 162 (3) -2
info->connect / -2 32 -2
info->discon / -2 64 -2
info->servtype / T_COTS T _COTS T _CLTS
info->flags / 0 0 0

1. ‘X' equals -2 or an integral number greater than zero.
2. 'X’'equals -1 or an integral number greater than 0.

3. Depending on the negotiation of expedited data transfer.

t_lister() The call->addr structure contains the remote callilf§AP. Since, at most,
32 octets of data will be returned with the connect indicationll-
>udata.maxlershould be set to 32 before the callttdister().

If the user has seailen greater than 1 (on the call tobind)), the user may
queue up several connect indications before responding to any of them. The
user should be forewarned that tl8© transport provider may start a timer to

be sure of obtaining a response to the connect request in a finite time. So if
the user queues the connect indications for too long before responding to
them, the transport provider initiating the connection will disconnect it.

t_operf) The functiont_oper{) is called as the first step in the initialisation of a
transport endpoint. This function returns various default characteristics
associated with the different classes. Accordingso 8073:1986, arosSI
transport provider supports one or several out of five different transport
protocols, class 0 through class 4. The default characteristics returned in the
parameteinfo are those of the highest-numbered protocol class the transport
provider is able to support. If, for example, a transport provider supports
classes 2 and 0, the characteristics returned are those of class 2. If the
transport provider is limited to class 0, the characteristics returned are those
of class 0. The table below gives the characteristics associated with the
different classes.

X/Open CAE Specification (1992)
Page : 120 X/Open Transport Interface (XTI)

ISO Transport Protocol Information Functions

Parameters Before Call After Call

Connection | Connection| Connectionless

Class 0 Class 1-4
name X / / /
oflag X / / /
info->addr / X X X
info->options / x (1) X (1) x (1)
info->tsdu / x (2) X (2) 0->63488
info->etsdu / -2 16 -2
info->connect / -2 32 -2
info->discon / -2 64 -2
info->servtype| / T_COTS T_COTS T _CLTS
info->flags / 0 0 0

1. ‘X’ equals -2 or an integral number greater than zero.

2. ‘X'equals -1 or an integral number greater than zero.

t_rev() If expedited data arrives after part off8DU has been retrieved, receipt of
the remainder of thasSbDuU will be suspended until th€TSDU has been
processed. Only after the fUiTSDU has been retrievedr (MORE not set),
will the remainder of th@SDU be available to the user.

t_rcvconned})
On return, thecall->addr structure contains the remote callif§AP. Since,
at most, 32 octets of data will be returned to the usatl->udata.maxlen
should be set to 32 before the callttacvconnedt).

t_revdiq) Since, at most, 64 octets of data will be returned to the udimgon-
>udata.maxlershould be set to 64 before the callttacvdig).

t rcvudatd) Theunitdata->addrstructure specifies the remoteAP. If the T_MORE flag
is set, an additional_rcvudatg) call is needed to retrieve the entifeDU.
Only normal data is returned via thercvudatg) call.

t_rcvuder() Theuderr->addrstructure contains the remoteAP.

t snd) Zero byteTSDUs are not supported. The EXPEDITED flag is not a legal
flag unless expedited data has been negotiated for this connection.

t_snddig) Since, at most, 64 octets of data may be sent with the disconoaitt,
>udata.lenwill have a value less than or equal to 64.

t sndudat@) The unitdata->addr structure specifies the remot&SAP. The ISO
connectionless transport service does not support the sending of expedited
data.

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 121

Functions

Page : 122

ISO Transport Protocol Information

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI)

Appendix B

Internet Protocol-specific Information

B.1 GENERAL

This appendix describes the protocol-specific information that is relevamcieand UDP
transport providers.

Notes

T_MOREflag andTSDUs

The notion of TSDU is not supported by &CP transport provider, so the_MORE flag
will be ignored whenTCP is used. TherCP PUSHflag cannot be used through thel
interface because thecP Military Standard (se®eferenced Documentsstates that:

“Successive pushes may not be preserved because two or more units of
pushed data may be joined into a single pushed unit by either the sending or
receivingTCP. Pushes are not visible to the receiviagperLevel Protocol

and are not intended to serve as a record boundary marker”.

Expedited data

TCP does not have a notion of expedited data in a sense comparalgde expedited
data. TCP defines an urgent mechanism, by which in-line data is marked for urgent
delivery. UDP has no urgent mechanism. See theP Military Standard for more
detailed information.

Orderly release

The orderly release functionts sndre() andt_rcvrel() were defined to support the
orderly release facility ofTCP. However, its use is not recommended so that
applications usingCP may be ported to usesO Transport. The specification aicP

states that only established connections may be closed with orderly release, i.e., on an
endpoint inT_DATAXFER or T_INREL state.

Connection establishment

TCP does not allow the possibility of refusing a connection indication. Each connect
indication causes th&CP transport provider to establish the connection. Therefore,
t_listen() andt_accept) have a semantic which is slightly different from that 8O
providers.

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 123

Options

B.2

OPTIONS

Internet Protocol-specific Information

Options are formatted according to the structurepthdr as described iChapter 5, The
Use of Options A transport provider compliant to this specification supports none, all or
any subset of the options definedSection B.2.1 TCP-level Optionsto Section B.2.3)P-
level Options An implementation may restrict the use of any of these options by offering
them only in the privileged or read-only mode.

B.2.1 TCP-level Options
The protocol level iSINET_TCP. For this level, Table B-1 shows the options that are
defined.
Option Name Type of Option Legal Meaning
Value Option Value
TCP_KEEPALIVE | structt kpalive see text check if connections are alive
TCP_MAXSEG unsigned long length in octets getTCP maximum segment size
TCP_NODELAY unsigned long T_YEST_NO don't delay send to coalesce packets

Table B-1. TCP-level Options

These options araot association-related. They may be negotiated irXall states except
T_UNBND andT_UNINIT. They are read-only in sta®@ UNBND. SeeChapter 5, The Use

of Options for the difference between options that are association-related and those that are
not.

Absolute Requirements

A request forTCP_NODELAY and a request to activalBCP_KEEPALIVE is an absolute
requirement.TCP_MAXSEGis a read-only option.

Further Remarks

TCP_KEEPALIVE If this option is set, a keep-alive timer is activated to monitor idle
connections that might no longer exist. If a connection has been idle
since the last keep-alive timeout, a keep-alive packet is sent to check

if the connection is still alive or broken.

Keep-alive packets are not an explicit featura o, and this practice
is not universally accepted. AccordingrReC 1122:

“a keep-alive mechanism should only be invoked in server
applications that might otherwise hang indefinitely and
consume resources unnecessarily if a client crashes or
aborts a connection during a network failure”.

X/Open CAE Specification (1992)

Page : 124 X/Open Transport Interface (XTI)

Internet Protocol-specific Information Options

The option value consists of a structaré&palive declared as:

struct t_kpalive {
long kp_onoff; Oswitch option on/offd
long kp_timeout; [keep-alive timeout in minuted

}

Legal values for the fieltp_onoffare:
T_NO switch keep-alive timer off
T_YES activate keep-alive timer
T_YES|T_GARBAGE activate keep-alive timer and

send garbage octet

Usually, an implementation should send a keep-alive packet with no
data _GARBAGE not set). If T_GARBAGE is set, the keep-alive
packet contains one garbage octet for compatibility with erroneous
TCPimplementations.

An implementation is, however, not obliged to SUppDrGARBAGE
(seeRFC 1122). Since th&p_onoffvalue is an absolute requirement,
the request T_YES| T_GARBAGE’ may therefore be rejected.

The fieldkp_timeoutdetermines the frequency of keep-alive packets
being sent, in minutes. The transport user can request the default
value by setting the field toT_UNSPEC. The default is
implementation-dependent, but at least 120 minutes R6€=1122).
Legal values for this field are_UNSPECand all positive numbers.

The timeout value is not an absolute requirement. The
implementation may pose upper and lower limits to this value.
Requests that fall short of the lower limit may be negotiated to the
lower limit.

The use of this option might be restricted to privileged users.

TCP_MAXSEG This option is read-only. It is used to retrieve the maximugpP
segment size.

TCP_NODELAY Under most circumstancesCP sends data as soon as it is presented.
When outstanding data has not yet been acknowledged, it gathers
small amounts of output to be sent in a single packet once an
acknowledgement is received. For a small number of clients, such as
window systems (e.gMIT X Window System) that send a stream of
mouse events which receive no replies, this packetisation may cause
significant delays.TCP_NODELAY is used to defeat this algorithm.
Legal option values are YES(“don’t delay”) and T_NO (“delay™).

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 125

Options Internet Protocol-specific Information

B.2.2 UDRlevel Options

The protocol level iSNET_UDP. The option defined for this level is shown in Table B-2.

Option Name Type of Option Legal Meaning
Value Option Value
UDP_CHECKSUM | unsignedlong | T_YEST_NO | checksum computation

Table B-2. UDP-level Option

This option is association-related. It may be negotiated irx@llstates except_UNBND
andT_UNINIT. Itis read-only in statd_UNBND. SeeChapter 5, The Use of Optionsfor
the difference between options that are association-related and those that are not.

Absolute Requirements

A request for this option is an absolute requirement.

Further Remarks

UDP_CHECKSUM The option allows disabling/enabling of theDP checksum
computation. The legal values areYES (checksum enabled) and

T_NO (checksum disabled).

If this option is returned witht_rcvudatd), its value indicates
whether a checksum was present in the received datagram or not.

Numerous cases of undetected errors have been reported when
applications chose to turn off checksums for efficiency. The
advisability of ever turning off the checksum check is very
controversial.

B.2.3 IP-level Options

The protocol level iSNET_IP. The options defined for this level are listed in Table B-3.

Page : 126

Option Name Type of Option Legal Meaning
Value Option Value
IP_BROADCAST | unsigned int T_YEST_NO permit sending of
broadcast messages
IP_DONTROUTE | unsigned int T_YEST_NO just use interface addresses
IP_OPTIONS array of unsigned | see text IP per-packet options
characters

IP_REUSEADDR | unsigned int T_YEST_NO allow local address reuse
IP_TOS unsigned char see text IP per-packet type of service
IP_TTL unsigned char time in seconds IP per packet time-to-live

Table B-3. IP-level Options

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI)

Internet Protocol-specific Information Options

IP_OPTIONSand IP_TOS are both association-related options. All other options reove
association-related. Se€hapter 5, The Use of Optionsfor the difference between
association-related options and options that are not.

IP_REUSEADDRMay be negotiated in akTI states except_UNINIT. All other options
may be negotiated in all oth&TI states except_ UNBND andT_UNINIT; they are read-only

in the statel_UNBND.

Absolute Requirements

A request for any of these options is an absolute requirement.

Further Remarks

IP_BROADCAST

IP_DONTROUTE

IP_OPTIONS

IP_REUSEADDR

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI)

This option requests permission to send broadcast datagrams. It was
defined to make sure that broadcasts are not generated by mistake.
The use of this option is often restricted to privileged users.

This option indicates that outgoing messages should bypass the
standard routing facilities. It is mainly used for testing and
development.

This option is used to set (retrieve) th@PTIONS field of each
outgoing (incoming)IP datagram. Its value is a string of octets
composed of a number oP options, whose format matches those
defined in thaP specification with one exception: the list of addresses
for the source routing options must include the first-hop gateway at
the beginning of the list of gateways. The first-hop gateway address
will be extracted from the option list and the size adjusted accordingly
before use.

The option is disabled if it is specified with “no value”, i.e., with an
option header only.

The functions t_conneqt) (in synchronous mode);t listen(),
t_rcvconnedt) andt_rcvudatd) return theOPTIONSfield, if any, of
the receivediP datagram associated with this call. The function
t_rcvuder() returns theOPTIONS field of the data unit previously
sent that produced the error. The functiadnoptmgmg¢) with
T_CURRENT set retrieves the currently effective_OPTIONSthat is
sent with outgoing datagrams.

Common applications never need this option. It is mainly used for
network debugging and control purposes.

Many TCP implementations do not allow the user to bind more than
one transport endpoint to addresses with identical port numbers. If
IP_REUSEADDRIS set toT_YESthis restriction is relaxed in the sense
that it is now allowed to bind a transport endpoint to an address with a
port number and an underspecified internet address (“wild card”
address) and further endpoints to addresses with the same port
number and (mutually exclusive) fully specified internet addresses.

Page : 127

Options

Page : 128

IP_TOS

IP_TTL

Internet Protocol-specific Information

This option is used to set (retrieve) thge-of-servicdield of an outgoing
(incoming) IP datagram. This field can be constructed by apied
combination of one of the precedence flags and the type-of-service flags
T_LDELAY, T_HITHRPTandT_HIREL:

— Precedence:
These flags specify datagram precedence, allowing senders to indicate
the importance of each datagram. They are intended for Department of
Defense applications. Legal flags are:

T_ROUTINE
T_PRIORITY
T_IMMEDIATE
T_FLASH
T_OVERRIDEFLASH
T_CRITIC_ECP
T_INETCONTROL
T_NETCONTROL.

Applications usingP_TOSbut not the precedence level should use the
valueT_ROUTINEfor precedence.

— Type of service:
These flags specify the type of service tRedatagram desires. Legal
flags are:

T_NOTOSequests no distinguished type of service
T_LDELAY requests low delay

T_HITHRPT requests high throughput
T_HIREL requests high reliability

The option value is set using the maSBT_TOSprec,to3, whereprec is
set to one of the precedence flags &osito one or arOR'ed combination
of the type-of-service flagsSET_TOS) returns the option value.

The functionst_conneqdt), t_listen(), t _rcvconnedt) and t_rcvudatd)
return thetype-of-servicdield of the receivedP datagram associated with
this call. The functiort_rcvudery) returns thetype-of-servicdield of the
data unit previously sent that produced the error.

The functiont_optmgmt) with T_CURRENT set retrieves the currently
effectivelP_TOSvalue that is sent with outgoing datagrams.

The requestedype-of-servicecannot be guaranteed. It is a hint to the
routing algorithm that helps it choose among various paths to a destination.
Note also, that most hosts and gateways in the Internet these days ignore
thetype-of-servicdield.

This option is used to set thane-to-livefield in an outgoingP datagram.

It specifies how long, in seconds, the datagram is allowed to remain in the
Internet. Thetime-to-livefield of an incoming datagram is not returned by
any function (since it is not an association-related option).

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI)

Internet Protocol-specific Information Options

B.3 FUNCTIONS
t_accept)

t_bind()

t_connedt)

t_listen()

t_look()

t_oper)

Issuingt_accept) assigns an already established connectiaeséd.

Since user data cannot be exchanged during the connection establishment phase,
call->udata.lenmust be set to 0. Alsaesfdmust be bound to the same address as

fd. A potential restriction on binding of endpoints to protocol addresses is
described under bind() below.

If association-related options?(OPTIONS IP_TOS are to be sent with the connect
confirmation, the values of these options must be set witptmgmt) before the
T_LISTEN event occurs. When the transport user detects lIASTEN, TCP has
already established the connection. Association-related options passed with
t_accept) become effective at once, but since the connection is already
established, they are transmitted with subsequierdatagrams sent out in the
T_DATAXFER state.

The addr field of thet_bind structure represents the local socket, i.e., an address
which specifically includes a port identifier.

In the connection-oriented mode (i.8CP), thet_bind) function may only bind

one transport endpoint to any particular protocol address. If that endpoint was
bound in passive mode, i.gjlen> 0, then other endpoints will be bound to the
passive endpoint’s protocol address via thaccept) function only; that is, iffd
refers to the passive endpoint aresfd refers to the new endpoint on which the
connection is to be acceptagsfdwill be bound to the same protocol addressdas
after the successful completion of theaccept) function.

The sndcall->addr structure specifies the remote socket. In the present version,
the returned address setrovcall->addr will have the same value. Since user data
cannot be exchanged during the connection establishment pisaseall-
>udata.lenmust be set to 0.

Note that the peeFCP, and not the peer transport user, confirms the connection.

Upon successful returrt,_lister() indicates an existing connection and not a
connection indication.

Since user data cannot be exchanged during the connection establishment phase,
call->udata.maxlemrmust be set to 0 before the call tdisten(). The call->addr
structure contains the remote calling socket.

As soon as a segment with tlieP urgent pointer set enters thi€P receive buffer,

the eventT_EXDATA is indicated. T_EXDATA remains set until all data up to the
byte pointed to by th@CP urgent pointer has been received. If the urgent pointer

is updated, and the user has not yet received the byte previously pointed to by the
urgent pointer, the update is invisible to the user.

t_oper{) is called as the first step in the initialisation of a transport endpoint. This
function returns various default characteristics of the underlying transport protocol
by setting fields in thé_info structure.

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 129

Functions Internet Protocol-specific Information

The following should be the values returned by the catl mper{) andt_getinfd)
with the indicated transport providers.

Parameters Before call After call
TCP/IP UDP/IP

name X / /
oflag X / /
info->addr / X X
info->options / X X
info->tsdu / 0 X
info->etsdu / -1 -2
info->connect / -2 -2
info->discon / -2 -2
info->servtype / T_COTYT_COTS_ORD T_CLTS
info->flags / T_SNDZERO T_SNDZERQ

‘X’ equals -2 or an integral number greater than zero.

t_rev() The T_MORE flag should be ignored if normal data is delivered. If a byte in the
data stream is pointed to by thecP urgent pointer, as many bytes as possible
preceding this marked byte and the marked byte itself are denoted as urgent data
and are received with the EXPEDITEDflag set. If the buffer supplied by the user
is too small to hold all urgent data, the MORE flag will be set, indicating that
urgent data still remains to be read. Note that the number of bytes received with
the T_EXPEDITEDflag set is not necessarily equal to the number of bytes sent by
the peer user with the_EXPEDITEDflag set.

t_rcvconned})
Since user data cannot be exchanged during the connection establishment phase,
call->udata.maxlenmust be set to 0 before the call torcvconnedt). On return,
thecall->addr structure contains the remote calling socket.

t_revdiq) Since data may not be sent with a disconnectdiseon->udatastructure will not
be meaningful.

t sndq) TheT_MORE flag should be ignored. I snd) is called with more than one byte
specified and with th&_EXPEDITEDflag set, then the last byte of the buffer will
be the byte pointed to by thecP urgent pointer. If th@_EXPEDITEDflag is set, at
least one byte must be sent.

Implementor’s Note: Data for a t_s(ji call with the T_EXPEDITEDflag set may
not pass data sent previously.

t_snddig) Since data may not be sent with a disconneall->udata.lenmust be set to zero.

t sndudaté) Be aware that the maximum size of a connectionl@s®U varies among
implementations.

X/Open CAE Specification (1992)
Page : 130 X/Open Transport Interface (XTI)

Appendix C

Guidelines for Use of XTI

Cl TRANSPORT SERVICE INTERFACE SEQUENCE OF FUNCTIONS

In order to describe the allowable sequence of function calls, this section gives some rules
regarding the maintenance of the state of the interface:

It is the responsibility of the transport provider to keep a record of the state of the
interface as seen by the transport user.

The transport provider will not process a function that places the interface out of state.

If the user issues a function out of sequence, the transport provider will indicate this
where possible through an error return on that function. The state will not change. In
this case, if any data is passed with the function when not i tDATAXFER state, that

data will not be accepted or forwarded by the transport provider.

The uninitialised stateT(UNINIT) of a transport endpoint is the initial state. The
endpoint must be initialised and bound before the transport provider may view it as
active.

The uninitialised state is also the final state, and the transport endpoint must be viewed
as unused by the transport provider. Thelose) function will close the transport
endpoint and free the transport library resources for another endpoint.

According to Table 4-5 irfChapter 4, States and Events inXTl, t_closg) should only

be issued from th&_UNBND state. If it is issued from any other state, and no other user
has that endpoint open, the action will be abortive, the transport endpoint will be
successfully closed, and the library resources will be freed for another endpoint. When
t_closg) is issued, the transport provider must ensure that the address associated with
the specified transport endpoint has been unbound from that endpoint. The provider
sends appropriate disconnects itlos€) is not issued from the unbound state.

The following rules apply only to the connection-mode transport service:

The transport connection release phase can be initiated at any time during the connection
establishment phase or data transfer phase.

The only time the state of a transport service interface of a transport endpoint may be
transferred to another transport endpoint is whenttlaecept) function specifies such
action. The following rules then apply to the cooperating transport endpoints:

— The endpoint that is to accept the current state of the interface must be bound to an
appropriate protocol address and must be inrthBLE state.

— The user transferring the current state of an endpoint must have correct permissions
for the use of the protocol address bound to the accepting transport endpoint.

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 131

Example in Connection-oriented Mode Guidelines for Use of XTI

C2

— The endpoint that transfers the state of the transport interface is placed into the
T_IDLE state by the transport provider after the completion of the transfer if there are
no more outstanding connect indications.

EXAMPLE IN CONNECTION -ORIENTED MODE

Figure C-1 shows the allowable sequence of functions of an active user and passive user
communicating using a connection-mode transport service. This example is not meant to
show all the functions that must be called, but rather to highlight the important functions that
request a particular service. Blank lines are used to indicate that the function would be
called by another user prior to a related function being called by the remote user. For
example, the active user callsconnecf) to request a connection and the passive user
would receive an indication of the connect request (via the return frdisten()) and then

would call thet_accept).

The state diagram in Figure C-1 shows the flow of the events through the various states.
The active user is represented by a solid line and the passive user is represented by a dashed
line. This example shows a successful connection being established and terminated using
connection-mode transport service without orderly release. For a detailed description of all
possible states and events, see Table 4Ghapter 4, States and Events irxTl .

X/Open CAE Specification (1992)

Page : 132 X/Open Transport Interface (XTI)

Guidelines for Use of XTI Example in Connection-oriented Mode

Active User Passive Use
t_opert) t_operf)
t_bind() t_bind()

t_listen()
t_conned)

t_accept)
t_rcvconned)
t_snq)

t_rev()
t_snddig¢)

t_revdiq)
t_unbind) t_unbind)
t_clos€) t_closd)

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 133

Example in Connectionless Mode Guidelines for Use of XTI

KEY:

Active User

|
Passive User !
|
|

t_connect

|
|
| .
|
|
|
|
- |
t_accept ~ ~ ! t_rcvconnect
AN |
T_DATAXFER
A b
t_rcv | : : | t_snd
L_J L_J

Figure C-1. Example of a Sequence of Transport Functions
in Connection-oriented Mode

X/Open CAE Specification (1992)
Page : 134 X/Open Transport Interface (XTI)

Guidelines for Use of XTI Example in Connectionless Mode

C3 EXAMPLE IN CONNECTIONLESS MODE

Figure C-2 shows the allowable sequence of functions of user A and user B communicating
using a connectionless transport service. This example is not meant to show all the
functions that must be called but rather to highlight the important functions that request a
particular service. Blank lines are used to indicate that a function would be called by
another user prior to a related function being called by the remote user.

The state diagram that follows shows the flow of the events through the various states. This
example shows a successful exchange of data between user A and user B. For a detailed
description of all possible states and events, Tagde 4-7in Chapter 4, States and Events

in XTI.

User A User B
t_operf) t_operf)
t_bind() t_bind)

t_sndudaté)

t_rcvudatd)
t_unbind) t_unbind)
t_clos€) t_closd)

t_open t close

t_bind t_unbind

t_rcvudata t_sndudata

St
L.

Figure C-2. Example of a Sequence of Transport Functions
in Connectionless Mode

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 135

Writing Protocol-independent Software Guidelines for Use of XTI

c4 WRITING PROTOCOL -INDEPENDENT SOFTWARE

In order to maximise portability ofTI applications between different kinds of machine and
to support protocol independence, there are some general rules:

1.

10.

Page : 136

An application should only make use of those functions and mechanisms described as
being mandatory features &f’.

In the connection-mode service, the concept of a transport service data $bi)
may not be supported by all transport providers. The user should make no
assumptions about the preservation of logical data boundaries across a connection.

If an application is not intended to run only over I8® transport provider, then the
name of the device should not be hard-coded into it. While software may be written
for a particular class of service (e.g., connectionless-mode service), it should not be
written to depend on any attribute of the underlying protocol.

The protocol-specific service limits returned on theoper() and t_getinfq()
functions must not be exceeded. It is the responsibility of the user to access these
limits and then adhere to the limits throughout the communication process.

The user program should not look at or change options that are specific to the
underlying protocol. The_optmgm() function enables a user to access default
protocol options from the transport provider, which may then be blindly passed as an
argument on the appropriate connect establishment function. Optionally, the user can
choose not to pass options as an argument on connect establishment functions.

Protocol-specific addressing issues should be hidden from the user program.
Similarly, the user must have some way of accessing destination addresses in an
invisible manner, such as through a name server. However, the details for doing so
are outside the scope of this interface specification.

The reason codes associated witltvdig() are protocol-dependent. The user should
not interpret this information if protocol independence is a concern.

The error codes associated withrcvuderr() are protocol-dependent. The user
should not interpret this information if protocol independence is a concern.

The optional orderly release facility of the connection-mode service t{isndrel)

and t_rcvrel()) should not be used by programs targeted for multiple protocol
environments. This facility is not supported by all connection-based transport
protocols. In particular, its use will prevent programs from successfully
communicating withSO open systems.

The semantics of expedited data are different across different transport providers (e.g.,
ISO and TCP). An application intended to run over different transport providers
should avoid their use.

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI)

Guidelines for Use of XTI Event Management

C5

C5.1

C5.2

EVENT MANAGEMENT

In the absence of a standardised Event Management interface, the following guidelines are
offered for the use of existing and widely available mechanismsTidyapplications.

These guidelines provide information additional to that giveéttion 2.7 Synchronous
and Asynchronous Execution ModesndSection 2.8 Event Management

Introduction

For applications to us&TI in a fully asynchronous manner, they will need to use the
facilities of an Event ManagemeriN) Interface. Such aBM will allow the application to

be notified of a number ofTI events over a range of active endpoints. These events may be
associated with:

« connection indication

« data indication

« disconnection indication
« flow control being lifted.

In the same way, theEM mechanism should allow the application to be notified of events
coming from external sources, such as:

« aynchronous I/O completion
« expiration of timer
« resource availability.
When handling multiple transport connections, the application could either:
« fork a process for each new connection to be handled
or
« handle all connections within a single process by making use @nhkacilities.

The application will have to maintain an appropriate balance and choose the right trade-off
between the number of processes and the number of connections managed per process in
order to minimise the resulting overhead.

Unfortunately, the system facilities to suspend and await notification of an event are
presently system-dependent, although work is in progress within standards bodies to provide
a unified and portable mechanism.

Hence, for the foreseeable future, applications could use whatever underlying system
facilities exist for event notification.
Short-term Solution

Many vendors currently provide either the Systenpdli() or BSD selecf) system calls
which both give the ability to suspend until there is activity on a member of a set of file
descriptors or a timeout.

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 137

Event

C.53

Page : 138

Management

Guidelines for Use of XTI

Given the fact that a transport endpoint identifying a transport connection maps to a file
descriptor, applications can take advantage of sEtmechanisms offered by the system
(e.g.,poll() or selecf)). The design of more efficient and sophisticated applications, that
make full use of all thT! features, then becomes easily possible.

XTI Events

TheXTI events can be divided into two classes of events.

« Class I events related to reception of data.

T_LISTEN
T_CONNECT

T _DATA
T_EXDATA
T_DISCONNECT
T_ORDREL
T_UDERR

Connect request indication.

Connect response indication.

Reception of normal data indication.

Reception of expedited data indication.

Disconnect request indication.

Orderly release request indication.

Notification of an error in a previously sent datagram.

This class of events should always be monitored by the application.

« Class 2 events related to emission of data (flow control).

T_GODATA
T_GOEXDATA

Normal data may be sent again.
Expedited data may be sent again.

This class of events informs the application that flow control restrictions have been lifted

on a given file descriptor.

The application should request to be notified of this class of events whenever a flow
control restriction has previously occurred on this endpoint (¢TgLOW] error has
been returned ontasnd) call).

Note that this class of event should not be monitored systematically otherwise the
application would be notified each time a message is sent.

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI)

Guidelines for Use of XTI Event Management

C.5.4 Guidelines for Use of System V poli()

poll() is defined in the System V Interface Definition, Third Edition as follows. Note that
this definition may vary slightly in other systems.

NAME
poll - input/output multiplexing

SYNOPSIS

#include <poll.h>
int poll(struct pollfd fds[], unsigned long nfds, int timeout);

DESCRIPTION
poll() provides users with a mechanism for multiplexing input/output over a set of file
descriptors. poll() identifies those file descriptors on which a user can read or write
data, or on which certain events have occurred. A user can read dataesitipand
write data usingwrite(). For STREAMS file descriptors, a user can also receive
messages usingetmsg) and getpms¢), and send messages usipgtmsg) and
putpmsg).

fds specifies the file descriptors to be examined and the events of interest for each file
descriptor. Itis a pointer to an array with one element for each open file descriptor of
interest. The array’'s elements apellfd structures which contain the following
members:

int fd; /Ofile descriptord
short events; /Orequested event3
shortrevents; /Oreturned event&!

where fd specifies an open file descriptor amdentsand reventsare bit-masks
constructed byRing a combination of the following event flags:

POLLIN Data other than high-priority data may be read without blocking.
For STREAMS this flag is set even if the message is of zero
length.

POLLRDNORM Normal data (priority band equals 0) may be read without
blocking. ForSTREAMS this flag is set even if the message is of
zero length.

POLLRDBAND Data from a non-zero priority band may be read without blocking.
For STREAMS this flag is set even if the message is of zero
length.

POLLPRI High-priority data may be received without blocking. For
STREAMS this flag is set even if the message is of zero length.

POLLOUT Normal data may be written without blocking.
POLLWRBAND Priority data (priority band greater than 0) may be written.

POLLER An error has occurred on the deviceSIREAM. This flag is only
valid in thereventshitmask; it is not used in theventdield.

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 139

Event Management Guidelines for Use of XTI

POLLUP The device has been disconnected. This eventPard OUT are
mutually exclusive; &8TREAM can never be writable if a hangup
has occurred. However, this event aPdLLIN, POLLRDNORM,
POLLRDBAND or POLLPRI are not mutually exclusive. This flag
is only valid in thereventsbitmask; it is not used in thevents
field.

POLLNVAL The specifiedd value is invalid. This flag is only valid in the
reventsfield; it is not used in theventdield.

For each element of the array pointed to fis poll() examines the given file
descriptor for the event(s) specified é@wents The number of file descriptors to be
examined is specified hyfds

If the value offd is less than zeragventsis ignored andeventsis set to zero in that
entry on return fronpoll().

The results of theoll() query are stored in theeventsfield in the pollfd structure.
Bits are set in theeventshitmask to indicate which of the requested events are true.
If none of the requested events are true, none of the specified bits is sateints
when thepoll() call returns. The events flag@OLLUP, POLLERRandPOLLNVAL, are
always set in theeventsif the conditions they indicate are true; this occurs even
though these flags were not presenguents

If none of the defined events have occurred on any selected file descppitgy),

waits at leastimeoutmilliseconds for an event to occur on any of the selected file
descriptors. On a computer where millisecond timing accuracy is not available,
timeoutis rounded up to the nearest legal value available on that system. If the value
of timeoutis 0, poll() returns immediately. If the value ¢imeoutis -1 poll() blocks

until a requested event occurs or until the call is interrupteall() is not affected by
theO_NDELAY andO_NONBLOCKflags.

RETURN VALUES
Upon successful completion, the functi@oll() returns a non-negative value. A
positive value indicates the total number of file descriptors that have been selected
(i.e., file descriptors for which theeventsfield is non-zero). A value of 0 indicates
that the call timed out and no file descriptors have been selected. Upon failure, the
functionpoll() returns a value -1 and setgrnoto indicate an error.

ERRORS
Under the following conditions, the functiguoll() fails and set®rrnoto:
EAGAIN If the allocation of internal data structures failed but the request should
be attempted again.
EINTR If a signal was caught during thmll() system call.
EINVAL If the argumennfdsis less than zero or greater th@PEN_MAX}.

X/Open CAE Specification (1992)
Page : 140 X/Open Transport Interface (XTI)

Guidelines for Use of XTI Event Management

For an application to be notified of anf1 events on each of its active endpoints, the array
pointed to byfds should contain as many elements as active endpoints identified by the file
descriptorfd, and theeventsmember of those elements should be set to the combination of
event flags as specified below:

« For Class 1 events
POLLIN | POLLPRI(for System V Release 3)
or
POLLIN | POLLRDNORM | POLLRDBAND | POLLPRI (for System V Release 4)
« For Class 2 events
POLLOUT (for System V Release 3)
or
POLLOUT | POLLWRBAND (for System V Release 4)

In a System V Release 3, the meaning POLLOUT may differ for different XTI
implementations. It could either mean:

« that both normal and expedited data may be sent
or

« that normal data may be sent and the flow of expedited data cannot be monitored via
poli().

A truly portablexTI application should, therefore, not assume that the flow of expedited data
is monitored bypoll(). This is not a serious restriction, since an application usually only
sends small amounts of expedited data and flow restrictions are not a major problem.

In a System V Release 4, the meaningPoiLLOUT andPOLLWRBAND is intended to be the
same for alXTI implementations.

POLLOUT Normal data may be sent.
POLLWRBAND Expedited data may be sent.

Hereafter we describe the outline of &ml server program making use of the System V
poll().

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 141

Event Management Guidelines for Use of XTI

/0
OThis is a simple server application example to show how poll() can
Obe used in a portable manner to wait for the occurrenc&rotvents.
Oln this example, poll() is used to wait for the evemt&ISTEN,
OT_DISCONNECT T_DATA andT_GODATA.
OThe number of poll flags has increased from System V Release 3 to System V
URelease 4. Hence, if this program is to be used in a System V Release 3,
Othe constansVR3must be defined during compile time.
O
OA transport endpoint is opened in asynchronous mode over a message-oriented
Otransport provider (e.gl$0). The endpoint is bound with glen = 1 and
Othe application enters an endless loop to wait for all incomingevents
Oon all its active endpoints.
OFor all connect indications received, a new endpoint is opened with glen = 0
Oand the connect request is accepted on that endpoint. For all established
Oconnections, the application waits for data to be received from one of its
Oclients, sends the received data back to the sender and waits for data again.
OThe cycle repeats until all the connections are released by the clients.
OThe disconnect indications are processed and the endpoints closed.
O
OThe example references two fictitious functions:
O
O- int get_provider(int tpid, chafltpname)
Given a number as transport provider id, the function returns in
tpname a string as transport provider name that can be used with
t_open(). This function hides the different naming schemes of
differentxTI implementations.

OooOoooao

0- int get_address(charsymb_name, struct netbuf address)

Given a symbolic name symb_name and a pointer to a struct netbuf
with allocated buffer space as input, the function returns a

protocol address. This function hides the different addressing
schemes of differemtTI implementations.

OoQoooo

/
OGeneral Includes

a

#include <sys/types.h>
#include <fcentl.h>
#include <stdio.h>
#include <xti.h>

/0

Olnclude files for poll()
o

#include <stropts.h>
#include <poll.h>

X/Open CAE Specification (1992)
Page : 142 X/Open Transport Interface (XTI)

Guidelines for Use of XTI

/0
OVarious Defines
a
/0

Event Management

OTheXTI eventsT_CONNECT, T_DISCONNECT T_LISTEN, T_ORDRELandT_UDERRare
Orelated to one of the poll flags INEVENTS (to which one, depends on

Othe implementationPOLLOUT means that (at least) normal data may be sent,
OandPOLLWRBAND that expedited data may be sent.

a
#ifdef SVR3
#defineERREVENTS (POLLERR| POLLHUP| POLLNVAL)
#defineINEVENTS (POLLIN | POLLPR)
#defineOUTEVENTS POLLOUT
#else

#defineERREVENTS (POLLERR| POLLHUP| POLLNVAL)
#defineINEVENTS (POLLIN | POLLRDNORM| POLLRDBAND | POLLPRY])
#defineOUTEVENTS (POLLOUT | POLLWRBAND)

#endif

#defineMY_PROVIDER 1
#defineMAXSIZE 4000
#defineTPLEN 30
#defineMAXCNX 10

externint errno;

/0

/Otransport provider idJ

[size of send/receive buffér
[Omaximum length of provider nanig
[Omaximum number of connections

[Declaration of non-integer external functions

o
void exit();
void perror();

/0

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI)

]

Page : 143

Event Management Guidelines for Use of XTI

main()

{
register int i; Dloop variable
register int num; Ureturn value of t_snd() and t_rcv(J
int discflag = 0; [flag to indicate a disc indication
int errflag = 0; [flag to indicate an errdd
int event; DOstores events returned by t_look{)
int fd; /Ocurrent file descriptol]
int fdd; /Ofile descriptor for t_accept(Y
int flags; Oused with t_rev()1
char [datbuf; [Ocurrent send/receive bufféf
unsigned int act=0; [active endpoint§!
struct t_info info; Dused with t_open()J
struct t_bind [preq; [Oused with t_bind()7
struct t_call [pcall; Dused with t_listen() and t_accepf())
structt_discon discon; Oused with t_rcvdis()7
char tpnam@PLEN]; /Otransport provider namd
char bufMAXCNX][MAXSIZE] ; /Osend/receive bufferd
int rcvdatgMAXCNX] ; /Oamount of data already received
int snddatfMAXCNX] ; /Oamount of data already sefnt
struct pollfd fd$MAXCNX] ; /Oused with poll()X
/0
OGet name of transport provider
o

if (get_providerf/Y_PROVIDER tpname) == -1) {
perror(">>> get_provider failed");
exit(1);

}

/0

[OEstablish a transport endpoint in asynchronous mode

o

if ((fd = t_open(tpname®_RDWR| O_NONBLOCK, &info)) ==-1) {
t_error(">>>t_open failed");
exit(1);

X/Open CAE Specification (1992)
Page : 144 X/Open Transport Interface (XTI)

Guidelines for Use of XTI Event Management

/0

OAllocate memory for the parameters passed with t_bind().

o

if ((preq = (struct t_bind) t_alloc(fd, T_BIND, T_ADDR)) == NULL) {
t_error(">>>t_alloct_BIND) failed");
t_close(fd);
exit(1);

}

/0
OGiven a symbolic name Iffy_NAME"), get_address returns an address
Oand its length in preg->addr.buf and preg->addr.len.
o
if (get_address(Y_NAME", &(preg->addr)) == -1) {
perror(">>> get_address failed");
t_close(fd);
exit(1);
}
preg->glen = 1; [Dis a listening endpoiri!

/0

[Bind the local protocol address to the transport endpoint.

[The returned information is discarded.

]

if (t_bind(fd, preqNULL) ==-1) {
t_error(">>>t_bind failed");
t_close(fd);
exit(1);

}

if (t_free(preq,T_BIND) == -1) {
t_error(">>>t_free failed");
t_close(fd);
exit(1);

}

/0

OAllocate memory for the parameters used with t_listen.

o

if ((pcall = (struct t_call) t_alloc(fd, T_CALL, T_ALL)) == NULL) {
t_error(">>>t_alloct_CALL) failed");
t_close(fd);
exit(1);

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 145

Event Management Guidelines for Use of XTI

/0

Olnitialise entry O of the fds array to the listening endpoint.
OTo be portable across differext! implementations,
Oregister fonNEVENTS and not forPOLLIN.

o

fds[act].fd = fd;

fds[act].events INEVENTS;

fds[act].revents = 0;

rcvdatafact] = 0;

snddatafact] = 0;

act=1;

/0
OEnter an endless loop to wait for all incoming events.
[OConnect requests are accepted on new opened endpoints.
OThe example assumes that data is first sent by the client.
OThen, the received data is sent back again and so on, until
Othe client disconnects.
ONote that the total number of active endpoints (act) should
Oat least be 1, corresponding to the listening endpoint.
o
fprintf(stderr, "Waiting forxTI events...\n");
while (act > 0) {
/0
OWait for any events
O
o
if (poll(&fds, (size_t)act, (int) -1) ==-1) {
perror(">>> poll failed");
exit(1);

/0
OProcess incoming events on all active endpoints
o
for(i=0;i<act;i++){
if (fds[i].revents == 0)
continue; [Ino event for this endpoiri
if (fds[i].revents & ERREVENTS {
fprintf(stderr, "[%d] Unexpected poll events: 0x%x\n",
fds[i].fd, fds[i].revents);
continue;
}
/0
Oset the current endpoint
Oset the current send/receive buffer
o
fd = fdsli].fd;

X/Open CAE Specification (1992)
Page : 146 X/Open Transport Interface (XTI)

Guidelines for Use of XTI Event Management

datbuf = buffi];

/0
COCheck for events
o
switch((event = t_look(fd))) {
caseT_LISTEN:
/0
OMust be a connect indication
o
if (t_listen(fd, pcall) == -1) {
t_error(">>>1_listen failed");
exit(1);

/0
OIf it will exceed the maximum number
Jof connections that the server can handle,
Oreject the connect indication.
o
if (act >=MAXCNX) {
fprintf(stderr, ">>> Connection request rejected\n");
if (t_snddis(fd, pcall) == -1)
t_error(">>>t_snddis failed");
continue;

/0
[OEstablish a transport endpoint
Oin asynchronous mode
o
if ((fdd = t_open(tpnamep_RDWR| O_NONBLOCK, &info)) == -1) {
t_error(">>>t_open failed");
continue;

/0
OAccept connection on this endpoint.
Ofdd no longer needs to be bound,
Ot_accept() will do it.
o
if (t_accept(fd, fdd, pcall) == -1) {
t_error(">>>1t_accept failed");
t_close(fdd);
continue;

}
fprintf(stderr, "Connection [%d] opened\n", fdd);

X/Open CAE Specification (1992)

X/Open Transport Interface (XTI) Page : 147

Event Management Guidelines for Use of XTI

Page : 148

/0
ORegister for all flags that might indicate
DaT_DATA or T_DISCONNECTevent, i. e.,
Oregister fonNEVENTS (to be portable
Othrough allXTl implementations).

o

fds[act].fd = fdd;

fds[act].events I]NEVENTS;

fds[act].revents = 0;

rcvdatafact] = 0;

snddatafact] = 0;

act++;

break;

caseT_DATA:

/0
OMust be a data indication
o
if ((num = t_rcv(fd, (datbuf + rcvdatali]),
(MAXSIZE - rcvdatali]), &flags)) == -1) {
switch (t_errno) {
CaseTNODATA:!
/ONo data is currently
Oavailable: repeat the loop
a
continue;
caseTLOOK:
/O0Must be ar_DISCONNECTevent:
Oset discflag
a
event = t_look(fd);
if (event ==T_DISCONNECT {
discflag = 1;
break;
}
else
fprintf(stderr, "Unexpected event %d\n", event);
default:
/O0Unexpected failurél
t_error(">>>t_rcv failed");
fprintf(stderr, "connection id: [%d]\n", fd);
errflag = 1;
break;

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI)

Guidelines for Use of XTI Event Management

if (discflag || errflag)
/Oexit from the event switchl
break;
fprintf(stderr, "[%d] %d bytes received\n”, fd, num);
rcvdata[i] += num;
if (rcvdatali] < MAXSIZE)
continue;
if (flags & T_MORE) {
fprintf(stderr, "[%d]TSDU too long for receive buffer\n”, fd);
errflag = 1;
break; [exit from the event switchl

}

/0
0Send the data back:
ORepeat t_snd() until either the whatebu
Ois sent back, or an event occurs.
o
fprintf(stderr, "[%d] sending data back\n", fd);
do {
if ((num =t_snd(fd, (datbuf + snddatali]),
(MAXSIZE - snddatali]), 0)) == -1) {
switch (t_errno) {
caseTFLOW:
/0
ORegister for the flags
CJOUTEVENTSto get awaken by
OT_GODATA, and forINEVENTS
Oto get aware of _DISCONNECT
Uor T_DATA.
a
fdsli].events |[=OUTEVENTS
continue;

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 149

Event Management Guidelines for Use of XTI

caseTLOOK:
/0
OMust be ar_DISCONNECTevent:
Oset discflag
a
event = t_look(fd);
if (event ==T_DISCONNECT {
discflag = 1;
break;
}
else
fprintf(stderr, "Unexpected event %d\n", event);

default:
t_error(">>>t_snd failed");
fprintf(stderr, "connection id: [%d]\n", fd);

errflag = 1;
break;
}
}
else {
snddatali] += num;
}
} while (MAXSIZEag);
/0
[OReset send/receive counters
a
rcvdata[i] = O;
snddatali] = 0;
break;

X/Open CAE Specification (1992)
Page : 150 X/Open Transport Interface (XTI)

Guidelines for Use of XTI Event Management

caseT_GODATA:
/0
OFlow control restriction has been lifted
Orestore initial event flags
o
fds[i].events AINEVENTS,
continue;
caser_DISCONNECT
/0
OMust be a disconnect indication
o
discflag = 1;
break;
case -1:
/0
OMust be an error
o
t_error(">>>t_look failed");
errflag = 1;
break;
default:
/0
OMust be an unexpected event
o
fprintf(stderr, "[%d] Unexpected event %d\n", fd, event);
errflag = 1;
break;
} /Oend event switchl/

if (discflag) {

/0

OT_DISCONNECThas been received.

OUser data is not expected.

o

if (t_rcvdis(fd, &discon) == -1)
t_error(">>>t_rcvdis failed");

else
fprintf(stderr, "[%d] Disconnect reason: 0x%x\n", fd, discon.reason);

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 151

Event Management Guidelines for Use of XTI

if (discflag || errflag) {
/0
OClose transport endpoint and
Odecrement number of active connections
o
t_close(fd);
act--;
/OMove last entry of fds array to current slot,
Oadjust internal counters and flags
o
fds[i].events = fds[act].events;
fds[i].revents = fds[act].revents;
fds[i].fd = fds[act].fd;
discflag = 0; [clear disconnect flag/
errflag =0; [clear error flagy
i--; /0Redo the for() event loop to consider
Oevents related to the last entry of
Ofds arraydd
fprintf(stderr, "Connection [%d] closed\n", fd);

} /Oend of for() event loop!
} /0end of while() loop

fprintf(stderr, ">>> Warning: no more active endpoints\n“);
exit(1);

X/Open CAE Specification (1992)
Page : 152 X/Open Transport Interface (XTI)

Guidelines for Use of XTI Event Management

C.5.5 Guidelines for Use ofBSD select()

selecf) is defined in the 4.3 Berkeley Software Distribution as follows. Note that this
definition may vary slightly in other systems.

NAME
select - synchronous I/O multiplexing

SYNOPSIS

#include <sys/types.h>
#include <sys/time.h>

nfound = select(nfds, readfds, writefds, exceptfds, timeout)
int nfound, nfds;

fd_set[teadfds, Owritefds, Cexceptfds;

struct timeval dimeout;

FD_SET(fd, &fdset)
FD_CLR(fd, &fdset)
FD_ISSET(fd, &fdset)
FD_ZERO(&fdset)

int fd;

fd_set fdset;

DESCRIPTION
selecf) examines the I/O descriptor sets whose addresses are passeddfds
writefdsand exceptfdgo see if some of their descriptors are ready for reading, ready
for writing, or have an exceptional condition pending, respectively. The rfiic
descriptors are checked in each set; i.e., the descriptors from O thnédgHi in the
descriptor sets are examined. On retwalect) replaces the given descriptor sets
with subsets consisting of those descriptors that are ready for the requested operation.
The total number of ready descriptors in all the sets is returnatbimd

The descriptor sets are stored as bit fields in arrays of integers. The following macros
are provided for manipulating such descriptor set®_ZER& fdset) initialises a
descriptor sefdsetto the null set.FD_SETfd, & fdset)includes a particular descriptor

fd in fdset FD_CLR({fd, &fdset)removesfd from fdset FD_ISSETfd, & fdset)is non-

zero if fd is a member offdset zero otherwise. The behaviour of these macros is
undefined if a descriptor value is less than zero or greater than or equal to
FD_SETSIZEwhich is normally at least equal to the maximum number of descriptors
supported by the system.

If timeoutis a non-zero pointer, it specifies a maximum interval to wait for the
selection to complete. limeoutis a zero pointer, the select blocks indefinitely. To
affect a poll, thetimeoutargument should be non-zero, pointing to a zero-valued
timevalstructure.

Any of readfds writefdsandexceptfdsnay be given as zero pointers if no descriptors
are of interest.

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 153

Event Management Guidelines for Use of XTI

RETURN VALUES
selecf) returns the number of ready descriptors that are contained in the descriptor
sets, or -1 if an error occurred. If the time limit expires theaiect) returns 0. If
selecf) returns with an error, including one due to an interrupted call, the descriptor
sets will be unmodified.

ERRORS
An error return fromselec() indicates:
[EBADF] One of the descriptor sets specified an invalid descriptor.
[EINTR] A signal was delivered before the time limit expired and before any of
the selected events occurred.
[EINVAL] The specified time limit is invalid. One of its components is negative or
too large.

X/Open CAE Specification (1992)
Page : 154 X/Open Transport Interface (XTI)

Guidelines for Use of XTI Event Management

Many systems provide the macrosD_SET FD_CLR FD_ISSET and FD_ZERO in
<sysl/types.h>or other header files to manipulate these bit masks. If not available they
should be defined by the user (see the program example below).

For an application to be notified of anf! events on each of its active endpoints identified
by a file descriptofd, this file descriptofd should be included in the appropriate descriptor
setsreadfds exceptfdor writefdsas specified below:

o For Class 1 events

Set the bit maskgeadfds and exceptfdsby FD_SETfd, readfds)and FD_SETXfd,
exceptfds)

« For Class 2 events
Set the bit maskvritefdsby FD_SETfd, writefds)

If, on return of selecf), the bit corresponding tdd is set inwritefds this can have a
different meaning for differentTl implementations. It could either mean:

« that both normal and expedited data may be sent, or

« that normal data may be sent and the flow of expedited data cannot be monitored via
selecf).

A truly portablexT! application should, therefore, not assume that the flow of expedited data
is monitored byselecf). This is not a serious restriction, since an application usually only
sends small amounts of expedited data and flow restrictions are not a major problem.

Hereafter we describe the outline of @nI server program making use of tBeD selecf).

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 155

Event Management Guidelines for Use of XTI

/0
OThis is a simple server application example to show how select() can
Obe used in a portable manner to wait for the occurrenc&rotvents.
Oln this example, select() is used to wait for the evanI9STEN,
OT_DISCONNECT T_DATA andT_GODATA.
g
OA transport endpoint is opened in asynchronous mode over a message-oriented
Otransport provider (e.gl$S0). The endpoint is bound with glen = 1, and
Othe application enters an endless loop to wait for all incomingevents
Oon all its active endpoints.
OFor all connect indications received, a new endpoint is opened with glen =0
Oand the connect request is accepted on that endpoint. For all established
Oconnections, the application waits for data to be received from one of its
Oclients, sends the received data back to the sender and waits for data again.
OThe cycle repeats until all the connections are released by the clients.
OThe disconnect indications are processed and the endpoints closed.
g
OThe example references two fictitious functions:
g
O- int get_provider(int tpid, chafltpname)
Given a number as transport provider id, the function returns in
tpname a string as transport provider name that can be used with
t_open(). This function hides the different naming schemes of
differentXTI implementations.

Oooooo

O- int get_address(chatsymb_name, struct netbuf address)

0 Given a symbolic name symb_name and a pointer to a struct netbuf
0O with allocated buffer space as input, the function returns a

O protocol address. This function hides the different addressing

O schemes of differemtTl implementations.

i

/0

OGeneral Includes

o

#include <fcntl.h>
#include <stdio.h>
#include <xti.h>
/0
Olnclude files for select(). SomeNIX derivatives use other includes,
Oe.g., <sys/times.h> instead of <sys/time.h>.
0 <sys/select.h> instead of <sys/types.h>.
a
#include <sys/types.h>
#include <time.h>

X/Open CAE Specification (1992)
Page : 156 X/Open Transport Interface (XTI)

Guidelines for Use of XTI Event Management

/0

Olncludes that are only relevant, if the type fd_set and the maoSET,
UFD_CLR FD_ISSETandFD_zZEROhave to be explicitly defined in this program.
a

#include <limits.h>

#include <string.h> [Ifor memset()J

/0

OVarious Defines

a

#defineMY_PROVIDER 1 /Otransport provider id/
#defineMAXSIZE 4000 [dsize of send/receive buffér
#defineTPLEN 30 /Mmaximum length of provider nanig
#defineMAXCNX 10 /[Omaximum number of connections
/0

OSelect uses bit masks of file descriptors in longs. Most systems provide a
Otype "fd_set" and macros in <sys/types.h> or <sys/select.h> to ease the use
Oof select().
OThey are explicitly defined below in case that they are not defined in
O<sys/types.h> or <sys/select.h>.
o
/0
OOPEN_MAXshould be >= number of maximum open files per process
a
#ifndef OPEN_MAX
#defineOPEN_MAX 256
#endif
#ifndef NFDBITS
#defineNFDBITS (sizeof(long)J)CHAR_BIT) /Obits per maskJ
#endif
#ifndef howmany
#define howmany(x, y) ((()+((y)-1))/(¥))
#endif
#ifndefFD_SET
typedef struct fd_set {
long fds_bits[howmanyfPEN_MAX, NFDBITS)];
} fd_set;
#defineFD_SET(n, p) ((p)->fds_bits[(NMFDBITS] |= (1 << ((n) %NFDBITS)))
#defineFD_CLR(n, p) ((p)->fds_bits[(NMFDBITS] &= "(1 << ((n) % NFDBITS)))
#defineFD_ISSETN, p) ((p)->fds_bits[(NNFDBITS] & (1 << ((n) % NFDBITS)))
#defineFD_zERQp) memset({p), (u_char) O, sizeof(p)))
#endif [FD_SETO

externint errno;

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 157

Event Management

/0

O Declaration of non-integer external functions.

a
void exit();
void perror();

Guidelines for Use of XTI

/0 £F
main()
{
register int i; [loop variable]
register int num; [@return value of t_snd() and t_rcv(d
int discflag = 0; [flag to indicate a disc indicatiod
int errflag = 0; [Dflag to indicate an errdd
int event; [stores events returned by t_look()
int fd; /Ocurrent file descriptol]
int fdd; /Ofile descriptor for t_accept(QY
int flags; [used with t_rev()1
char Cdatbuf; [Ocurrent send/receive buffét
size_t act=0; [Dactive endpoints!
struct t_info info; Dused with t_open(
struct t_bind Cpreq; Oused with t_bind()7
struct t_call [pcall; MOused with t_listen() and t_accepf()
structt_discon discon; Oused with t_rcvdis()J
char tpnam@PLEN]; /Otransport provider namgd
int fdMAXCNX] ; /Oarray of file descriptor§]
char bufMAXCNX][MAXSIZE] /Osend/receive bufferd
int rcvdatgMAXCNX] ; /Oamount of data already receivet
int snddatfMAXCNX] ; /Oamount of data already seldt

fd_set rfds, wfds, xfds;
fd_set rfdds, wfdds, xfdds;

Page : 158

[Ifile descriptor sets for select(j
initial values of file descriptol]
/Osets rfds, wfds and xfds

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI)

Guidelines for Use of XTI Event Management

/0
OGet name of transport provider
o
if (get_provider1Y_PROVIDER tpname) == -1) {
perror(">>> get_provider failed");
exit(1);
}

/0

[JEstablish a transport endpoint in asynchronous mode

o

if ((fd = t_open(tpname®_RDWR| O_NONBLOCK, &info)) == -1) {
t_error(">>>t_open failed");
exit(1);

}

/0
OAllocate memory for the parameters passed with t_bind().
o
if ((preq = (struct t_bind) t_alloc(fd, T_BIND, T_ADDR)) == NULL) {
t_error(">>>t_alloct_BIND) failed");
t_close(fd);
exit(1);
}

/0
OGiven a symbolic name Ifty_NAME"), get_address returns an address
Oand its length in preg->addr.buf and preg->addr.len.
]
if (get_address@Y_NAME", &(preg->addr)) == -1) {
perror(">>> get_address failed");
t_close(fd);
exit(1);
}
preg->glen =1, [Wis a listening endpoint!

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 159

Event Management Guidelines for Use of XTI

/0
0 Bind the local protocol address to the transport endpoint.
O The returned information is discarded.
o
if (t_bind(fd, preg,NULL) ==-1) {
t_error(">>>t_bind failed");
t_close(fd);
exit(1);
}
if (t_free(preq,T_BIND) ==-1){
t_error(">>>t_free failed");
t_close(fd);
exit(1);
}

/0

OAllocate memory for the parameters used with t_listen.

o

if ((pcall = (struct t_call)) t_alloc(fd,T_CALL, T_ALL)) == NULL) {
t_error(">>>t_alloct_CALL) failed");
t_close(fd);
exit(1);

}

/0
Olnitialise listening endpoint in descriptor set.
OTo be portable across differext! implementations,
Oregister for descriptor set rfdds and xfdds
o
FD_zZER{&rfdds);
FD_ZER(&xfdds);
FD_ZERQ&wfdds);
FD_SET(fd, &rfdds);
FD_SET(fd, &xfdds);
fds[act] = fd;
rcvdatafact] = 0;
snddatafact] = 0;
act=1;

X/Open CAE Specification (1992)
Page : 160 X/Open Transport Interface (XTI)

Guidelines for Use of XTI

/0

OEnter an endless loop to wait for all incoming events.
[JConnect requests are accepted on a new opened endpoint.
OThe example assumes that data is first sent by the client.
OThen, the received data is sent back again and so on, until
Othe client disconnects.

ONote that the total number of active endpoints (act) should
Oat least be 1, corresponding to the listening endpoint.

o

fprintf(stderr, "Waiting forxTl events...\n");

while (act > 0) {

/0
OWait for any events
o
/0
[Set the mask sets rfds, xfds and wfds to their initial values
a
rfds = rfdds;
xfds = xfdds;
wfds = wfdds;

if (selectOPEN_MAX, &rfds, &wfds, &xfds,
(struct timevall) NULL) == -1) {
perror(">>> select failed");
exit(1);

/0
OProcess incoming events on all active endpoints
o
for(i=0;i<act;i++){
/0
Oset the current endpoint
Oset the current send/receive buffer
a
fd = fdsli];
datbuf = bufi];

if (FD_ISSETfd, &xfds)) {
fprintf(stderr, "[%d] Unexpected select events\n", fd);
continue;

}

iFD_ISSEFD_ISSET(fd, &wfds))
continue; [Ino event for this endpoird

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI)

Event Management

Page : 161

Event Management Guidelines for Use of XTI

/0
OCheck for events
o
switch((event = t_look(fd))) {
caseT_LISTEN:
/0
OMust be a connect indication
o
if (t_listen(fd, pcall) ==-1) {
t_error(">>>t_listen failed");
exit(1);
}

/0
OIf it will exceed the maximum number
Oof connections that the server can handle,
Oreject the connect indication.
o
if (act >=MAXCNX) {
fprintf(stderr, ">>> Connection request rejected\n");
if (t_snddis(fd, pcall) == -1)
t_error(">>>t_snddis failed");
continue;
}
/0
OEstablish a transport endpoint
Oin asynchronous mode
o
if ((fdd = t_open(tpnamep_RDWR| O_NONBLOCK, &info)) == -1) {
t_error(">>>t_open failed");
continue;

/0
OAccept connection on this endpoint.
[fdd no longer needs to be bound,
Ot_accept() will do it
o
if (t_accept(fd, fdd, pcall) ==-1) {
t_error(">>>t_accept failed");
t_close(fdd);
continue;

}
fprintf(stderr, "Connection [%d] opened\n", fdd);

X/Open CAE Specification (1992)
Page : 162 X/Open Transport Interface (XTI)

Guidelines for Use of XTI Event Management

/0
ORegister for all flags that might indicate
DaT_DATA or T_DISCONNECTevent, i. e.,
Oregister for rfdds and xfdds (to be portable
Othrough allXTl implementations).

o

fds[act] = fdd;

FD_SET(fdd, &rfdds);

FD_SET(fdd, &xfdds);

rcvdatafact] = 0;

snddatafact] = 0;

act++;

break;

caseT_DATA:
/OMust be a data indication
o
if ((num = t_rcv(fd, (datbuf + rcvdatali]),
(MAXSIZE - rcvdatali]), &flags)) == -1) {
switch (t_errno) {
CaseTNODATA:!
/ONo data is currently
Oavailable: repeat the loop
a
continue;
CaseTLOOK:
/OMust be ar_DISCONNECTevent:
Oset discflag
a
event = t_look(fd);
if (event ==T_DISCONNECT {
discflag = 1;
break;
}
else
fprintf(stderr, "Unexpected event %d\n", event);
default:
/OUnexpected failurél
t_error(">>>t_rcv failed");
fprintf(stderr, "connection id: [%d]\n", fd);
errflag = 1;
break;

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 163

Event Management Guidelines for Use of XTI

if (discflag || errflag)
/Oexit from the event switch/
break;
fprintf(stderr, "[%d] %d bytes received\n”, fd, num);
rcvdata[i] += num;
if (rcvdatali] < MAXSIZE)
continue;
if (flags & T_MORE) {
fprintf(stderr, "[%d]TSDU too long for receive buffer\n”, fd);
errflag = 1;
break; [exit from the event switchl

}

/0
OSend the data back.
ORepeat t_snd() until either the whatebu
Ois sent back, or an event occurs.
o
fprintf(stderr, "[%d] sending data back\n", fd);
do {
if ((num =t_snd(fd, (datbuf + snddatali]),
(MAXSIZE - snddatali]), 0)) == -1) {
switch (t_errno) {
caseTFLOW:
/0
ORegister for wfds to get
Oawaken byr_GODATA, and for
Orfds and xfds to get aware of
OT_DISCONNECTOr T_DATA.
o
FD_SET(fd, &wfdds);
continue;

X/Open CAE Specification (1992)
Page : 164 X/Open Transport Interface (XTI)

Guidelines for Use of XTI Event Management

caseTLOOK:
/0
OMust be ar_DISCONNECTevent:
Oset discflag
a
event = t_look(fd);
if (event ==T_DISCONNECT {
discflag = 1;
break;
}
else
fprintf(stderr, "Unexpected event %d\n", event);

default:
t_error(">>>t_snd failed");
fprintf(stderr, "connection id: [%d]\n", fd);

errflag = 1;
break;
}
}
else {
snddatali] += num;
}
} while (MAXSIZEag);
/0
OReset send/receive counter
a
rcvdata[i] = O;
snddatali] = 0;
break;

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 165

Event Management Guidelines for Use of XTI

caseT_GODATA:
/0
OFlow control restriction has been lifted
Orestore initial event flags
o
FD_CLR(fd, &wfdds);
continue;
caser_DISCONNECT
/0
OMust be a disconnect indication
o
discflag = 1;
break;
case -1:
/0
OMust be an error
o
t_error(">>>t_look failed");
errflag = 1;
break;
default:
/0
OMust be an unexpected event
o
fprintf(stderr, "[%d] Unexpected event %d\n", fd, event);
errflag = 1;
break;
} /Oend event switchl/

if (discflag) {

/0

OT_DISCONNECThas been received.

OUser data is not expected.

o

if (t_rcvdis(fd, &discon) == -1)
t_error(">>>t_rcvdis failed");

else
fprintf(stderr, "[%d] Disconnect reason: 0x%x\n", fd, discon.reason);

X/Open CAE Specification (1992)
Page : 166 X/Open Transport Interface (XTI)

Guidelines for Use of XTI

}

if (discflag || errflag) {

/0

OClose transport endpoint and
Odecrement number of active connections
o

t_close(fd);

act--;
/0

OUnregister fd from initial mask sets

o

FD_CLR(fd, &rfdds);

FD_CLR(fd, &xfdds);

FD_CLR(fd, &wfdds);
/OMove last entry of fds array to current slot,
Oadjust internal counters and flags

o
fdsl[i] = fds[act];
discflag = 0; Oclear disconnect flagl
errflag =0; [clear error flagy

i--; /ORedo the for() event loop to consider

Uevents related to the last entry of
Ofds arrayd

fprintf(stderr, "Connection [%d] closed\n", fd);

/Oend of for() event loop!

} /0end of while() loop
fprintf(stderr, ">>> Warning: no more active endpoints\n");

exit(1);

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI)

Event Management

Page : 167

Event Management

Page : 168

Guidelines for Use of XTI

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI)

D.1

D.2

Appendix D

Use of XTI to Access NetBIOS

INTRODUCTION

NetBIOS represents an importade factostandard for networkin@Os andOS/2 PCs. The
X/Open SpecificationProtocols for X/Open PC Interworking: SMB (see Referenced
Documentg provides mappings of NBtOS services ta@S| andIPStransport protocols.

The following CAE Specification extends that work to provide a standard programming
interface to NeBIOS transport providers in X/Open-compliant systems, using an existing
X/Open Common Applications EnvironmerAE) interface XTI.

The X/Open Transport InterfacexTl) defines a transport service interface that is
independent of any specific transport provider.

This CAE Specification defines a standard for usikgl to access N@&IOS transport
providers. Applications that us€rl to access N&1OS transport providers are referred to as
“transport users”.

OBJECTIVES

The objectives of this standardisation are:

1. to facilitate the development and portability @AE applications that interwork with
the large installed base of NBOS applications in a Local Area Network AN)
environment;

2. to enable a single application to use the safme interface to communicate with
remote applications through either &s profile, anOSlI profile or a NeBIOS profile
(i.e.,RFC1001/1002 ofOFP/NetBIOS),

3. to provide a common interface that can be usedifar with clients using either
(PONFS or SMB protocols for resources sharing.

This CAE Specification provides a migration step to users moving from proprietary systems
in a NeBIOS environment to open systems, i.e., the X/OpaiE.

1. The mappings are defined by the Specification oBNes Interface and Name Service Support by Lower LaysrProtocols,

andRFG-1001RFC-1002 respectively. See thgOpen Developers’ SpecificationProtocols for X/Open PC Interworking:
SMB. The relevant chapters a@hapter 13, NetBIOS Interface to 1ISO Transport Services Chapter 14, Protocol Standard
for a NetBIOS Service on aTCP/UDP Transport: Concepts and Methods and Chapter 15, Protocol Standard for a
NetBIOS Service on arCP/UDP Transport: Detailed Specification

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 169

Scope Use of XTI to Access NetBIOS

D.3 SCOPE

No extensions t&Tl, as it is defined in the main body of tHi®\E Specification, are made in
this NeBIOS CAE Specification. This N&OS CAE Specification is concerned only with
standardisation of the mapping ¥T1 to the NeBIOS facilities, and not a new definition of
XTI itself.

This CAE Specification applies only to the use Tl in the single NeBIOS subnetwork
case, and does not provide for the support of applications operating in multiple, non-
overlapping NeBlOS name spaces.

The following NeBIOS facilities found in various N&OS implementations are considered
outside the scope ofTI (note that this list is not necessarily definitive):

e LAN.STATUS.ALERT

e RESET

o SESSION STATUS

e TRACE

o UNLINK

« RPL (Remote Program Load)
ADAPTER STATUS

FIND NAME

o SEND.NOACK
CHAIN.SEND.NOACK

o CANCEL
« receiving a datagram on any name
« receiving data on any connection.
It must also be noted that not all commands are specified in the protocols.

Omitting these does not restrict interoperability with the majority of B\@s
implementations, since they have local significance oRIESET, SESSION STATUS, are
concerned with systems managemesttil(INK, RPL, ADAPTER STATUS, or areLAN- and
vendor-specific KIND NAME). If and how these functions are made available to the
programmer is left to the implementor of this particutai implementation.

D.4 ISSUES

The primary issues foKTl as a transport interface to NBOS concern the passing of
NetBIOS names and name type information through, specification of restrictions oxl
functions in the Ne&lOS environment, and handling the highly dynamic assignment of
NetBIOS names.

X/Open CAE Specification (1992)
Page : 170 X/Open Transport Interface (XTI)

Use of XTI to Access NetBIOS NetBIOS Names and Addresses

D.5 NetBIOS NAMES AND ADDRESSES

NetBlOS uses 16-octet alphanumeric names as “transport” addressesld$atames must

be exactly 16 octets, with shorter names padded with spaces to 16 octets. In addition,
NetBIOS names are either unique names or group hames, and must be identified as such in
certain circumstances.

The following restrictions should be applied to BES names. Failure to observe these
restrictions may result in unpredictable results.

1. Byte 0 of the name is not allowed to be hexadecimal 00 (0x00).

2. Byte 0 of the name is not allowed to be an asterisk, except as noted elsewhere in this
specification to support broadcast datagrams.

3. Names should not begin with company names or trademarks.
4. Names should not begin with hexadecima(0xFF).
5. Byte 15 of the name should not be in the range 0x00 - Ox1F.

The concept of a permanent node name, as provided in the natiBgdSetnvironment, is
not supported in the X/OpeDAE.

The following definitions are supplied with any implementationxaf on top of NeBIOS.
They should be included inxti.h>.

#defineNB_UNIQUE 0

#defineNB_GROUP 1

#defineNB_NAMELEN 16

#defineNB_BCAST_NAME "0 /Oasterisk plus 15 spacés

The protocol addresses passed in callst thind), t_conneqt), etc., are structured as
follows:

1 2 17

Type NetBIOS Name

Type The first octet specifies the type of the BleiS name. It may be set
to NB_UNIQUE or NB_GROUP.

NetBIOS Name Octets 2 through 17 contain the 16-octet®Ngs name.

All NetBIOS names, complete with the name type identifier, are passed thpotigm a
netbufaddress structure (i.estruct netbuf addr), where addr.buf points to a Ne&IOS
protocol address as defined above. This applies t&®llfunctions that pass or return a
(NetBIOS) protocol address (e.d.,bind)), t_connect), t_rcvudatd), etc.).

Note, however, that only the bind) andt_getprotadd() functions use the name type
information. All other functions ignore it.

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 171

NetBIOS Names and Addresses Use of XTI to Access NetBIOS

D.6

Page : 172

If the NeBIOS protocol address is returned, the name type information is to be ignored since
the NeBIOS transport providers do not provide the type information in the connection
establishment phase.

NetBIOS names can become invalid even after they have been registered successfully due to
the NeBIOS name conflict resolution process (e.g., Topfes NameConflictAdvise
indication). For existing N&OS connections this has no effect since the connection
endpoint can still be identified by tHd. However, in the connection establishment phase
(t_listen() andt_connedt)) this event is indicated by settirigerrnoto [TBADF].

NetBIOS CONNECTION RELEASE

Native NeBIOS implementations provide a linger-on-close release mechanism whereby a
transport disconnect request (RE2S HANGUP will not complete until all outstanding send
commands have completed. H&dS attempts to deliver all queued data by delaying, if
necessary, disconnection for a period of time. The period of time might be configurable; a
value of 20 seconds is common practice. Data still queued after this time period may get
discarded so that delivery cannot be guaranteed.

XTI, however, offers two different modes to release a connection: an abortive mode via
t_snddig¢)/t_rcvdig), and a graceful mode viasndre()/t_rcvrel(). If a connection release

is initiated by at_snddi¢), queued send data may be discarded. Only the usesofire()
guarantees that the linger-on-close mechanism is enabled as described above. The support of
t_sndre()/t_rcvrel() is optional and only provided by implementations with servtype
T_COTS_ORD(seet_getinfd) in Section D.8 XTI Functions).

A call to t_sndre() initiates the linger-on-close mechanism and immediately returns with
the XTI state changed td_OUTREL. The NeBIOS provider sends all outstanding data
followed by a NeBIOS Close Request. After receipt of a M#DS Close Response, the
NetBlIOS provider informs the transport user, via the evanORDREL that is to be
consumed by callingt_rcvrel(). If a timeout occurs, however, & DISIN with a
corresponding reason code is generated.

Receive data arriving before the B&s Close Request is sent is indicated hyDATA and
can be read by the transport user.

Calling t_snddi¢) initiates an abortive connection release and immediately returns with the
XTI state changed to_IDLE. Outstanding send and receive data may be discarded. The
NetBIOS provider sends as many outstanding data as possible prior to closing the
connection, but discards any receive data. Some outstanding data may be discarded by the
t_snddi§¢) mechanism, so that not all data can be sent by theBIN&t provider.
Furthermore, an occurring timeout condition could not be indicated to the transport user.

An incoming connection release will always result im @DISCONNECTevent, never in a
T_ORDREL event. To be precise, if the N&DS provider receives a Close Request, it
discards any pending send and receive data, sends a Close Response and informs the
transport user vid_DISCONNECT.

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI)

Use of XTI to Access NetBIOS Options

D.7 OPTIONS

No NeBIOS-specific options are defined. An implementation may, however, proXide
level options (seé_optmgmt() in Chapter 6, Library Functions and Parameters).

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 173

XTI Functions Use of XTI to Access NetBIOS

D.8

Page : 174

XTI FUNCTIONS

t_accept()
No user data may be returned to the caller (call->udata.len=0).

This function may only be used with connection-oriented transport endpoints. The
t_accept) function will fail if a user attempts to accept a connection request on a
connectionless endpoint ahderrnowill be set to[TNOTSUPPORT].

t_alloc()

No special considerations for N®OS transport providers.

t_bind()

The NeBIOS name and name type values are passed to the transport provider rieqthe
parameter (reg->addr.buf) and the actual bound address is returned iiat tharameter
(ret->addr.buf), as described earlierSection D.5 NetBIOS Names and Addressedf the
NetBIOS transport provider is unable to register the name specified irethparameter, the
call tot_bind) will fail with t_errno set to[TADDRBUSY] if the name is already in use, or
to [TBADADDR] if it was an illegal NeBIOS name.

If the req parameter is a null pointer or reg->addr.len=0, the transport provider may assign
an address for the user. This may be useful for outgoing connections on which the name of
the caller is not important.

If the name specified imeq parameter iNB_BCAST_NAME, glen must be zero, and the
transport endpoint the name is bound to is enabled to receive broadcast datagrams. In this
case, the transport endpoint must support connectionless service, otherwiséititg)
function will fail andt_errnowill be set to[TBADADDR].

t_close()
No special considerations for N®OS transport providers.

It is assumed that the N&DS transport provider will release the N®OS name associated
with the closed endpoint if this is the only endpoint bound to this name and the name has not
already been released as the result of a previomsbind) call on this endpoint.

t_connect()

The NeBIOS name of the destination transport user is provided inghécall parameter
(sndcall->addr.buf), and the N®#OS name of the responding transport user is returned in
thercvcall parameter (rcvcall->addr.buf), as describe&ettion D.5 NetBIOS Names and
Addresses If the connection is successful, the BES name of the responding transport
user will always be the same as that specified irstidcallparameter.

Local NeBIOS connections are supported. B&dS datagrams are sent, if applicable, to
local names as well as remote names. No user data may be sent during connection
establishment (udata.len=0sndcal).

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI)

Use of XTI to Access NetBIOS XTI Functions

This function may only be used with connection-oriented transport endpoints. The
t_connedt) function will fail if a user attempts to initiate a connection on a connectionless
endpoint and_errnowill be set to[TNOTSUPPORT].

[TBADF] may be returned in the case that the BNes name associated with thtal
referenced in thé_conneqt) call is no longer in theCAE system name table (s&ection
D.5, NetBIOS Names and Addressés

t_error()

No special considerations for N®OS transport providers.

t_free()

No special considerations for N®OS transport providers.

t_getinfo()

The values of the parameters in theinfo structure will reflect Ne&lOS transport
limitations, as follows:

addr sizeof) the NeBIOS protocol address, as defined $ection D.5 NetBIOS
Names and Addresses

options Equals -2, indicating no user-settable options.

tsdu Equals the size returned by the transport provider. Ifdli& associated with

a connection-oriented endpoint it is a positive value, not larger than 131070.
If the fd is associated with a connectionless endpoint it is a positive value not
larger than 65535

etsdu Equals -2, indicating expedited data is not supported.

connect Equals -2, indicating data cannot be transferred during connection
establishment.

discon Equals -2, indicating data cannot be transferred during connection release.

servtype Set t@_COTSif the fd is associated with a connection-oriented endpoint, or

T_CLTSIif associated with a connectionless endpoint. Optionally, may be set
to T_COTS_ORDIf the fd is associated with a connection-oriented endpoint
and the transport provider supports the usetadndre()/t_rcvrel() as
described irSection D.§ NetBIOS Connection Release

flags Equald_SNDZERQ indicating that zeradSDUs may be sent.

2. For the mappings tosl andiPS protocols, the value cannot exceed 512 or 1064 respectively.

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 175

XTI Functions Use of XTI to Access NetBIOS

t_getprotaddr()

The NeBIOS name and name type of the transport endpoint referred to bigthee passed

in the boundaddrparameter (boundaddr->addr.buf), as describeSdation D.5 NetBIOS
Names and Addressed0 is returned in boundaddr->addr.len if the transport endpoint is in
the T_UNBND state. The N&IOS name currently connected fd, if any, is passed in the
peeraddrparameter (peeraddr->addr.buf); the value O is returned in peeraddr->addr.len if
the transport endpoint is not in tTeDATAXFER state.

t_getstate()

No special considerations for N®OS transport providers.

t_listen()

On return, thecall parameter provides the NBOS name of the calling transport user (that
issued the connection request), as describedSaction D.5 NetBIOS Names and
Addresses

No user data may be transferred during connection establishment (call->udata.len=0 on
return).

This function may only be used with connection-oriented transport endpoints. The
t_listen() function will fail if a user attempts to “listen” on a connectionless endpoint and
t_errno will be set to[TNOTSUPPORT]. [TBADF]may be returned in the case that the
NetBlIOS name associated with thid referenced in thé lister() function is no longer in the
CAE system name table, as may occur as a result of theistname conflict resolution
process (e.gTOP/NetBIOS NameConflictAdvise indication).

t_look()

Since expedited data is not supported inB@es, theT_EXDATA andT_GOEXDATA events
cannot be returned.

t_open()

No special considerations for NBOS transport providers, other than restrictions on the
values returned in thie info structure. These restrictions are described getinfo().
t_optmgmt()

No special considerations for N®OS transport providers.

t_rev()

This function may only be used with connection-oriented transport endpointst_Tdw)
function will fail if a user attempts a receive on a connectionless endpoint ancho will
be set tdTNOTSUPPORT].

Theflagsparameter will never be set To EXPEDITED, as expedited data is not supported.

Data transfer in the NBtOS environment is record-oriented, and the transport user should
expect to see usage of tmeMOREflag when the message size exceeds the available buffer

X/Open CAE Specification (1992)
Page : 176 X/Open Transport Interface (XTI)

Use of XTI to Access NetBIOS XTI Functions

size.

t_rcvconnect()

The NeBIOS name of the transport user responding to the previous connection request is
provided in thecall parameter (call->addr.buf), as describedSection D.5 NetBIOS
Names and Addresses

No user data may be returned to the caller (call->udata.len=0 on return).

This function may only be used with connection-oriented transport endpoints. The
t_rcvconnedt) function will fail if a user attempts to establish a connection on a
connectionless endpoint ahderrnowill be set tolTNOTSUPPORT].

t_rcvdis()

The following disconnect reason codes are valid for any implementation of BIO&t
provider undeTI:

#defineNB_ABORT 0x18 [dsession ended abnormally
#defineNB_CLOSED OxO0A /Osession closed
#defineNB_NOANSWER 0x14 [Ono answer (cannot find name called
#defineNB_OPREJ 0x12 [dsession open rejectéd

These definitions should be includeddrti.h>.

t_rcvrel()

As described irSection D.§ NetBIOS Connection ReleaseaT_ORDREL event will never
occour in theT_DATAXFER state, but only in th&_OUTREL state. A transport user thus has
only to prepare for a call ta_rcvrel() if it previously initiated a connection release by
callingt_sndre(). As a side effect, the stale INREL is unreachable for the transport user.

If T_COTS_ORDis not supported by the underlying M&DS transport provider, this function
will fail with t_errnoset toTNOTSUPPORT].

t_rcvudata()

The NeBIOS name of the sending transport user is provided in uhédata parameter
(unitdata->addr.buf), as describedSection D.5 NetBIOS Names and Addresses

The fd associated with thé rcvudatd) function must refer to a connectionless transport
endpoint. The function will fail if a user attempts to receive on a connection-oriented
endpoint and_errnowill be set to[TNOTSUPPORT]. [TBADF]may be returned in the case
that the NeBIOS name associated with tHd referenced in thé_rcvudatd) function is no
longer in theCAE system name table, as may occur as a result of thBiN8thame conflict
resolution process (e.g:OP/NetBIOS NameConflictAdvise indication).

To receive a broadcast datagram, the endpoint must be bound to tBtOSletame
NB_BCAST_NAME.

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 177

XTI Functions Use of XTI to Access NetBIOS

t_rcvuderr()

If attempted on a connectionless transport endpoint, this function will fail wighrno set to
[TNOUDERR], as no NeBlOS unit data error codes are defined. If attempted on a
connection-oriented transport endpoint, this function will fail witherrno set to
[TNOTSUPPORT].

t_snd()
TheT_EXPEDITEDflag may not be set, as N®#DS does not support expedited data transfer.

This function may only be used with connection-oriented transport endpointst_$hd)
function will fail if a user attempts a send on a connectionless endpoint @ncho will be
set to[TNOTSUPPORT].

The maximum value of th@bytesparameter is determined by the maximai®DU size
allowed by the transport provider. The maximur8DU size can be obtained from the
t_getinfd) call.

Data transfer in the NBtOS environment is record-oriented. The transport user can use the
T_MOREflag in order to fragment asbu and send it via multiple calls to snq). See
t_snd()in Chapter 6, XTI Library Functions and Parameters for more details.

NetBIOS does not support the notion of expedited data. A callttend) with the
T_EXPEDITEDflag will fail with t_errnoset to[TBADDATA].

If the NeBIOS provider has received lBANGUP request from the remote user and still has
receive data to deliver to the local usgml may not detect theANGUP situation during a
call tot_snd). The actions that are taken are implementation-dependent:

« t_snd) might fail witht_errnoset to[TPROTO]

« t_snd) might succeed, although the data is discarded by the transport provider, and an
implementation-dependent error (generated by theBi®&st provider) will result on a
subsequenxTl call. This could be dTSYSERR] a [TPROTO] or a connection release
indication after all the receive data has been delivered.

t_snddis()

The t_snddi¢) function initiates an abortive connection release. The function returns
immediately. Outstanding send and receive data may be discardedSegatien D.§
NetBIOS Connection Releasdor further details.

No user data may be sent in the disconnect request (call->udata.len=0).

This function may only be used with connection-oriented transport endpoints. The
t_snddi¢) function will fail if a user attempts a disconnect request on a connectionless
endpoint and_errnowill be set to[TNOTSUPPORT].

X/Open CAE Specification (1992)
Page : 178 X/Open Transport Interface (XTI)

Use of XTI to Access NetBIOS XTI Functions

t_sndrel()

Thet_sndre() function initiates the N&OS release mechanism that attempts to complete
outstanding sends within a timeout period before the connection is released. The function
returns immediately. The transport user is informedTb®RDREL when all sends have

been completed and the connection has been closed successfully. If, however, the timeout
occurs, the transport user is informed DyDISIN and an appropriate disconnect reason
code. Se&ection D.g§ NetBIOS Connection Releasdor further details.

If the NeBIOS transport provider did not returh COTS_ORDwith t_operf), this function
will fail with t_errnoset toTNOTSUPPORT].

t_sndudata()

The NeBIOS name of the destination transport user is provided inuhiédata parameter
(unitdata->addr.buf), as describedSection D.5 NetBIOS Names and Addresses

The fd associated with thé¢_sndudat@) function must refer to a connectionless transport
endpoint. The function will fail if a user attempts this function on a connection-oriented
endpoint and_errnowill be set to[TNOTSUPPORT]. [TBADF]may be returned in the case
that the NeBIOS name associated with tHd referenced in thé_sndudaté) function is no
longer in theCAE system name table, as may occur as a result of thBi8thame conflict
resolution process (e.g:OP/NetBIOS NameConflictAdvise indication).

To send a broadcast datagram, theB\@s name in the Ne&#IOS address structure provided
in unitdata->addr.bufmust beNB_BCAST_NAME.

t_strerror()

No special considerations for N®OS transport providers.

t_sync()

No special considerations for NBOS transport providers.

t_unbind()
No special considerations for N®OS transport providers.

It is assumed that the N®DS transport provider will release the N#OS name associated
with the endpoint if this is the only endpoint bound to this name.

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 179

XTI Functions

Page : 180

Use of XTI to Access NetBIOS

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI)

Appendix E

XTland TLI

XTIl is based on thesviD Issue 2, Volumelil, Networking Services Extensions (see
Referenced Documents

XTI provides refinement of the Transport Level Interfatel) where such refinement is
considered necessary. This refinement takes the form of:

« additional commentary or explanatory text, in cases whereTitletext is either
ambiguous or not sufficiently detailed

« modifications to the interface, to cater for service and protocol problems which have
been fully considered. In this case, it must be emphasised that such modifications are
kept to an absolute minimum, and are intended to avoid any fundamental changes to the
interface defined byLl

« the removal of dependencies on spedifidX versions and specific transport providers.

E.1 RESTRICTIONS CONCERNING THE USE OF XTI
It is important to bear in mind the following points when considering the usa bf

« It was stated thaXxTl “recommends” a subset of the total set of functions and facilities
defined inTLI, and also thaXT! introduces modifications to some of these functions
and/or facilities where this is considered essential. For these reasons, an application
which is written in conformance t&TI may not be immediately portable to work over a
provider which has been written in conformancato.

« XTI does not address management aspects of the interface, that is:
— how addressing may be done in such a way that an application is truly portable
— no selection and/or negotiation of service and protocol characteristics.

For addressing, the same is also trueTor. In this case, it is envisaged that addresses

will be managed by a higher-level directory function. For options selection and/or
negotiation XTI attempts to define a basic mechanism by which such information may
be passed across the transport service interface, although again, this selection/negotiation
may be done by a higher-level management function (rather than directly by the user).
Since address structure is not currently defined, the user protocol address is system-
dependent.

E.2 RELATIONSHIP BETWEEN XTI AND TLI

The following features can be considered a8 extensions to the System V Release 3
version ofTLI:

« Some functions may return more error types. The use of T@TSTATH error is
generalised to almost all protocol functions.

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 181

Relationship Between XTIl and TLI XTIl and TLI

Page : 182

The transport provider identifier has been generalised to remove the dependence on a
device driver implementation.

Additional events have been defined to help applications make full use of the
asynchronous features of the interface.

Additional features have been introduced tsnd), t_sndrel) andt_rcvrel() to allow
fuller use ofTCPtransport providers.

Usage of options for certain types of transport service has been defined to increase
application portability.

Because mostTI functions require read/write access to the transport provider, the usage
of flagsO_RDONLY andO_WRONLY has been withdrawn from theTl.

XTI checks the value ofllen and prevents an application from waiting forever when
issuingt_listen().

XTI allows an application to catl accept) with a which is not bound to a local address.

XTI provides the additional utility functiorts strerror() andt_getprotaddf).

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI)

Appendix F

Headers and Definitions

F.1 THE <xti.h> HEADER
/0

OThe following are the error codes needed by both the kernel
Olevel transport providers and the user level library.

a

#defineTBADADDR
#defineTBADOPT
#defineTACCES
#defineTBADF
#defineTNOADDR
#defineTOUTSTATE
#defineETBADSEQ
#defineTSYSERR
#defineTLOOK
#defineETBADDATA
#defineTBUFOVFLW
#defineTFLOW
#defineETNODATA
#defineTNODIS
#defineETNOUDERR
#defineTBADFLAG
#defineTNOREL
#defineTNOTSUPPORT
#defineTSTATECHNG
#defineTNOSTRUCTYPE
#defineTBADNAME
#defineTBADQLEN
#defineTADDRBUSY
#defineTINDOUT
#defineTPROVMISMATCH
#defineETRESQLEN
#defineETRESADDR
#defineTQFULL
#defineTPROTO

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI)

H
QWO ~NOOUAWNEE

NNNNNNMNNMNNNNRPRPRPRPREPRPRERPRRRERPR
O©CO~NOOPAWNPOOO~NOOODAWNPE

/dincorrect addr formaf/

/dincorrect option format!
/Oincorrect permissiond

/Oillegal transport fdJ

/dcouldn't allocate addr?

/Dout of state]

/Obad call sequence numbdr
/dsystem errof]

/Oevent requires attentidd

MOillegal amount of datal

[Obuffer not large enoughl

[Oflow control 0

[Ono datal

[Odiscon_ind not found on queug
[Ounitdata error not found!

[Obad flagd!

MOno ord rel found on queud
[Oprimitive/action not supported
[Ostate is in process of changify
[Ounsupported struct-type requestéd
Minvalid transport provider nanig
MOglen is zerd]

[Daddress in usél

[Doutstanding connection indicatiohk
[Otransport provider mismatdd
[Oresfd specified to accept w/glen =D
[resfd not bound to same addr ag1d
MOincoming connection queue full
[OXTI protocol errord

Page : 183

The<xti.h> Header Headers and Definitions

/0

OThe following are the events returned.

a
#defineT_LISTEN 0x0001 [Iconnection indication received
#defineT_CONNECT 0x0002 [Iconnect confirmation received
#defineT_DATA 0x0004 [Inormal data received
#defineT_EXDATA 0x0008 [lexpedited data received
#defineT_DISCONNECT 0x0010 [disconnect received
#defineT_UDERR 0x0040 [1datagram error indication
#defineT_ORDREL 0x0080 [Jorderly release indication
#defineT_GODATA 0x0100 [Isending normal data is again possible
#defineT_GOEXDATA 0x0200 [Isending expedited data is again possilile

/0

OThe following are the flag definitions needed by the
Ouser level library routines.

a
#defineT_MORE 0x001 [Imore datdl
#defineT_EXPEDITED 0x002 [expedited datal
#defineT_NEGOTIATE 0x004 [setoptd?
#defineT_CHECK 0x008 [Icheck optd’
#defineT_DEFAULT 0x010 [Iget default opts]
#defineT_SUCCESS 0x020 [successfull
#defineT_FAILURE 0x040 [failure
#defineT_CURRENT 0x080 [Iget current option§/
#defineT_PARTSUCCESS 0x100 [Ipartial succesEl
#defineT_READONLY 0x200 ([read-only™
#defineT_NOTSUPPORT 0x400 [Inot supported]

/0

XTI error return.

a

externint t_errno;

/OXTI LIBRARY FUNCTIONS [

/OXTI Library Function: t_accept accept a connect requekt
extern int t_accept();

/OXTI Library Function: t_alloc- allocate a library structurg
extern chafi_alloc();

/OXTI Library Function: t_bind- bind an address to a transport endp@int
extern int t_bind();

/OXTI Library Function: t_close- close a transport endpoirt
extern int t_close();

/OXTI Library Function: t_connect establish a connectidd
extern intt_connect();

/OXTI Library Function: t_error produce error message
extern int t_error();

/OXTI Library Function: t_free- free a library structuri@

X/Open CAE Specification (1992)
Page : 184 X/Open Transport Interface (XTI)

Headers and Definitions Thexti.h> Header

extern intt_free();

/OXTI Library Function: t_getprotaddr get protocol addressés

extern int t_getprotaddr();

/OXTI Library Function: t_getinfo- get protocol-specific service informatiah
extern int t_getinfo();

/OXTI Library Function: t_getstate get the current stafé

extern int t_getstate();

/OXTI Library Function: t_lister- listen for a connect indicatidn

extern int t_listen();

/OXTI Library Function: t_look- look at current event on a transport endpint
extern intt_look();

/OXTI Library Function: t_oper establish a transport endpdiht

extern int t_open();

/OXTI Library Function: t_optmgmt manage options for a transport endp@int
extern int t_optmgmt();

/OXTI Library Function: t_rcv- receive data or expedited data on a connetfion
extern intt_rcv();

/OXTI Library Function: t_rcvdis- retrieve information from disconnéddt
extern int t_rcvdis();

/OXTI Library Function: t_rcvret acknowledge receipt aff

/Oan orderly release indicatidd

extern int t_rcvrel();

/OXTI Library Function: t_rcvudata receive a data uriit

extern int t_rcvudata();

/OXTI Library Function: t_rcvuderr receive a unit data error indicatioh
extern int t_rcvuderr();

/OXTI Library Function: t_snd- send data or expedited data over a connettion
extern intt_snd();

/OXTI Library Function: t_snddis send user-initiated disconnect requiést
extern int t_snddis();

/OXTI Library Function: t_sndret initiate an orderly releagé

extern int t_sndrel();

/OXTI Library Function: t_sndudatasend a data uriit

extern intt_sndudata();

/OXTI Library Function: t_strerror generate error message strirdg

extern chaft_strerror();

/OXTI Library Function: t_syne- synchronise transport library

extern intt_sync();

/OXTI Library Function: t_unbind disable a transport endpoirit

extern int t_unbind();

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 185

The<xti.h> Header

/0

Headers and Definitions

OProtocol-specific service limits.

a

struct t_info {
long
long
long
long
long

long

long
long

/0

addr; Mmax size of the transport protocol addréts

options; Omax number of bytes of protocol-specific optidids

tsdu; Imax size of a transport service data udit

etsdu; Imax size of expedited transport service data Uhit

connect; max amount of data allowed on connectidn
/Oestablishment functiond

discon; MImax data allowed on t_snddis and t_rcvdis functibhs

servtype; [service type supported by transport provider

flags; [other info about the transport providar

OService type defines.

a

#defineT_CcoOTS
#defineT_COTS ORD 02

#defineT_CLTS
/00

01 /Mconnection-oriented transport servide
[Oconnection-oriented with orderly releaSe

03 /Mconnectionless transport servide

OFlags defines (other info about the transport provider).

o

#defineT_SENDZEROOx001

/0
Onetbuf structure.
a

struct netbuf {
unsigned int
unsigned int
char

k

Page : 186

[Osupports O-lengtiisbus

maxlen;
len;
Cbuf;

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI)

Headers and Definitions

/0
Ot_opthdr structure
a

struct t_opthdr {
unsigned long len;

unsigned long level;

unsigned long name;

unsigned long status;
/Ofollowed by the option valuél
2

/0

Thexti.h> Header

[Itotal length of option; i.e.
sizeof (struct t_opthdr) + length of
option value in byte§!

[protocol affected’

Ooption namet!

Oktatus valuél

Ot_bind- format of the address and options arguments of bind.

o
struct t_bind {

struct netbuf addr;
unsigned glen;
%
/0
OOptions management structure.
0

struct t_optmgmt {

struct netbuf opt;
long flags;
3
/0
ODisconnect structure.
a
struct t_discon {
struct netbuf udata;
int reason;
int sequence;
b
/0
[Call structure.
0

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI)

[Juser datdl
Mreason codé&l
[Isequence numbér

Page : 187

The<xti.h> Header Headers and Definitions

struct t_call {

struct netbuf addr; Haddress?
struct netbuf opt; Doptions
struct netbuf udata; user datal
int sequence; [Isequence numbé&r
2
/0
ODatagram structure.
o

struct t_unitdata {
struct netbuf addr; [address]
struct netbuf opt; (Doptions!
struct netbuf udata; Ouser datdl
h
/0
OUnitdata error structure.
a

struct t_uderr {
struct netbuf addr; [Jaddress]
struct netbuf opt; Doptions
long error; [error code]
5
/0
OThe following are structure types used when dynamically
(allocating the above structures via t_alloc().
a

#defineT_BIND
#defineT_OPTMGMT
#defineT_CALL
#defineT_DIS
#defineT_UNITDATA
#defineT_UDERROR
#defineT_INFO

/0
OThe following bits specify which fields of the above
Ostructures should be allocated by t_alloc().

/Ostruct t_bindd
/Ostruct t_optmgm(!
/Ostruct t_calld
/Ostruct t_discon/
/Ostruct t_unitdatal
/Ostruct t_uderf]
/Ostruct t_infoll

~NOoO O WNPRE

a
#defineT_ADDR 0x01 Daddress]
#defineT_OPT 0x02 [Moptionsd
#defineT_UDATA 0x04 Huser datal
#defineT_ALL Oxffff /Oall the above fields supportéd

X/Open CAE Specification (1992)
Page : 188 X/Open Transport Interface (XTI)

Headers and Definitions

/0

Thexti.h> Header

OThe following are the states for the user.

a

#defineT_UNBND
#defineT_IDLE
#defineT_OUTCON
#defineT_INCON
#defineT_DATAXFER
#defineT_OUTREL
#defineT_INREL

/0

1 /OunboundY

2 /Oidled

3 /Ooutgoing connection pendirid
4 /Oincoming connection pendind
5 /Odata transfef!

6 /Ooutgoing release pendingd

7 /Oincoming release pendirid

OGeneral purpose defines.

o

#define
#define
#define
#define
#define
#define
#define

T_YES
T_NO
T_UNUSED
T_NULL
T_ABSREQ
T_INFINITE
T_INVALID

1

0

-1

0
0x8000
-1

-2

/OT_INFINITE andT_INVALID are values of t_infal

/0

OGeneral definitions for option management

a

#defineT_UNSPEC
#defineT_ALLOPT
#defineT_ALIGN(p)

(0--2)

(((unsigned long) (p) + (sizeof(long)1)) \
& (sizeof(long)-- 1))

#defineOPT_NEXTHDRpbuf, buflen, popt) \

(((charD(popt) +T_ALIGN((popt)->len) <\
pbuf + buflen) 2\
(struct t_opthdif) ((charQ(popt) +T_ALIGN((popt)->len)) : \
(struct t_opthdi) NULL)

/OOPTIONS ON XTI LEVELO

[O0XTI-level I

#define

XTI_GENERIC Oxffff

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI)

/Oapplicable to u_long, long, char [J.

Page : 189

The<xti.h> Header Headers and Definitions

/0
OXTlI-level Options
a
#define XTI_DEBUG 0x0001 [enable debuggind
#define XTI_LINGER 0x0080 [llinger on close if data present
#define XTI_RCVBUF 0x1002 [receive buffer sizél
#define XTI_RCVLOWAT 0x1004 [receive low-water mark!
#define XTI_SNDBUF 0x1001 [send buffer siz&l
#define XTI_SNDLOWAT 0x1003 [Isend low-water mark!
/0
OStructure used with linger option.
a
struct t_linger {
long |_onoff;, Moption on/offd
long I_linger; Olinger timed
2
/OSPECIFIC ISO OPTION AND MANAGEMENT PARAMETERS!
/0
ODefinition of thelSO transport classes
a
#define T_CLASSO O
#define T _CLASS1 1
#define T _CLASS2 2
#define T _CLASS3 3
#define T_CLASS4 4
/0
ODefinition of the priorities.
a
#define T_PRITOP 0
#define T _PRIHIGH 1
#define T_PRIMID 2
#define T_PRILOW 3
#define T_PRIDFLT 4
/0
ODefinitions of the protection levels
a
#define T_NOPROTECT 1

#define T_PASSIVEPROTECT 2
#define T_ACTIVEPROTECT 4

X/Open CAE Specification (1992)
Page : 190 X/Open Transport Interface (XTI)

Headers and Definitions Thexti.h> Header

/0
ODefault value for the length ofPDUs.
a
#define T_LTPDUDFLT 128 [define obsolete ixPG4
/0
Urate structure.
a
struct rate {
long targetvalue; [target value
long minacceptvalue; [Ovalue of minimum acceptable qualify
2
/0
Oreqgvalue structure.
a
struct reqvalue {
struct rate called; [called rated
struct rate calling; [calling rated
%
/0
Othrpt structure.
a
struct thrpt {
structreqvalue maxthrpt; Ofmaximum throughpuf!
struct reqvalue avgthrpt; Oaverage throughpud
2
/a
Otransdel structure
o

struct transdel {
struct reqvalue maxdel; Omaximum transit delay!
structreqvalue avgdel; [average transit delay
%
/0
OProtocol Levels
a

#define I1SO_TP 0x0100

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI)

Page : 191

The<xti.h> Header Headers and Definitions

/0
OOptions for Quality of Service and Expedited Daite{8072:1986)
a
#define TCO_THROUGHPUT 0x0001
#define TCO_TRANSDEL 0x0002
#define TCO_RESERRORRATE 0x0003
#define TCO_TRANSFFAILPROB 0x0004
#define TCO_ESTFAILPROB 0x0005
#define TCO_RELFAILPROB 0x0006
#define TCO_ESTDELAY 0x0007
#define TCO_RELDELAY 0x0008
#define TCO_CONNRESIL 0x0009
#define TCO_PROTECTION 0x000a
#define TCO_PRIORITY 0x000b
#define TCO_EXPD 0x000c
#define TCL_TRANSDEL 0x000d
#define TCL_RESERRORRATE TCO_RESERRORRATE
#define TCL_PROTECTION TCO_PROTECTION
#define TCL_PRIORITY TCO_PRIORITY
/0
OManagement Options
a
#define TCO_LTPDU 0x0100
#define TCO_ACKTIME 0x0200
#define TCO_REASTIME 0x0300
#define TCO_EXTFORM 0x0400
#define TCO_FLOWCTRL 0x0500
#define TCO_CHECKSUM 0x0600
#define TCO_NETEXP 0x0700
#define TCO_NETRECPTCF 0x0800
#define TCO_PREFCLASS 0x0900
#define TCO_ALTCLASS1 0x0a00
#define TCO_ALTCLASS?2 0x0b00
#define TCO_ALTCLASS3 0x0c00
#define TCO_ALTCLASS4 0x0d00
#define TCL_CHECKSUM TCO_CHECKSUM
/OINTERNET SPECIFIC ENVIRONMENT
/00
gTcPlevel
a

#define INET_TCP 0x6

X/Open CAE Specification (1992)
Page : 192 X/Open Transport Interface (XTI)

Headers and Definitions Thexti.h> Header

/0
drcp-level Options
a
#define TCP_NODELAY 0x1 /Odon’t delay packets to coalestk
#define TCP_MAXSEG 0x2 [Mget maximum segment sizé
#define TCP_KEEPALIVE 0x8 [check, if connections are alivé
/0
OStructure used witliCP_KEEPALIVEoOption.
a
struct t_kpalive {
long kp_onoff; Doption on/offd
long kp_timeout; [timeout in minutes?
h
#define T_GARBAGE 0x02
/0
OUDP level
a
#define INET_UDP 0Ox11
/0
duDP-level Options
a
#define UDP_CHECKSUM TCO_CHECKSUM /Ochecksum computatiod
/0
dipP level
a
#define INET_IP Ox0
/0
diP-level Options
a
#define IP_OPTIONS 0x1 /OIP per-packet option&!
#define IP_TOS 0x2 /JIP per-packet type of servidd
#define IP_TTL 0x3 MIP per-packet time to live /

#define IP_REUSEADDR 0x4 [allow local address reusé
#define IP_DONTROUTE O0x10 [just use interface addresdgs
#define IP_BROADCAST 0x20 [permit sending of broadcast msgs

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 193

The<xti.h> Header

Page : 194

/0

dIP_TOSprecedence levels

o

/a

#define
#define
#define
#define
#define
#define
#define
#define

T_ROUTINE
T_PRIORITY
T_IMMEDIATE
T_FLASH
T_OVERRIDEFLASH
T_CRITIC_ECP
T_INETCONTROL
T_NETCONTROL

dIP_TOStype of service

o

#define
#define
#define
#define

#define

T_NOTOS
T_LDELAY
T_HITHRPT
T_HIREL

SET_TOgprec, tos)

Headers and Definitions

~NOoO ok WNEO

0

1<<4
1<<3
1<<2

((0x7 & (prec)) << 5| (0x1c & (tos)))

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI)

Appendix G

Abbreviations
co Connection-oriented
CL Connectionless
EM Event Management
ETSDU Extended Transport Service Data Unit
ISO International Organization for Standardization
Osil Open System Interconnection
SVID System V Interface Definition
TC Transport Connection
TCP Transmission Control Protocol
TLI Transport Level Interface
TSAP Transport Service Access Point
TSDU Transport Service Data Unit
UDP User Datagram Protocol
XTI X/Open Transport Interface
XEM X/Open Event Management Interface

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI)

Page : 195

Page : 196

Abbreviations

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI)

Appendix H

Glossary

Abortive release
An abrupt termination of a transport connection, which may result in the loss of data.

Asynchronous mode

The mode of execution in which transport service functions do not wait for specific
asynchronous events to occur before returning control to the user, but instead return
immediately if the event is not pending.

Connection establishment
The phase in connection mode that enables two transport users to create a transport
connection between them.

Connection mode
A mode of transfer where a logical link is established between two endpoints. Data is
passed over this link by a sequenced and reliable way.

Connectionless mode
A mode of transfer where different units of data are passed through the network without any
relationship between them.

Connection release
The phase in connection mode that terminates a previously established transport connection
between two users.

Datagram
A unit of data transferred between two users of the connectionless-mode service.

Data transfer
The phase in connection mode or connectionless mode that supports the transfer of data
between two transport users.

Expedited data
Data that are considered urgent. The specific semantiespedited datare defined by the
transport provider that provides the transport service.

Expedited transport service data unit
The amount of expedited user data, the identity of which is preserved from one end of a
transport connection to the other (that is, an expedited message).

Initiator
An entity that initiates a connect request.

Orderly release
A procedure for gracefully terminating a transport connection with no loss of data.

Responder
An entity with whom an initiator wishes to establish a transport connection.

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 197

Glossary

Synchronous mode
The mode of execution in which transport service functions wait for specific asynchronous
events to occur before returning control to the user.

Transport address
The identifier used to differentiate and locate specific transport endpoints in a network.

Transport connection
The communication circuit that is established between two transport users in connection
mode.

Transport endpoint

The communication path, which is identified by a file descriptor, between a transport user
and a specific transport provider. A transport endpoint is called passive before, and active
after, a relationship is established, with a specific instance of this transport provider,
identified by theTSAP.

Transport provider identifier
A character string used by thieopen() function to identify the transport service provider.

Transport service access point

A TSAP is a uniquely identified instance of the transport provider. T®AP is used to
identify a transport user on a certain endsystem. In connection mode, a E8&pemay
have more than one connection established to one or more ramams; each individual
connection then is identified by a transport endpoint at each end.

Transport service data unit

A unit of data transferred across the transport service with boundaries and content preserved
unchanged. A'SDU may be divided into sub-units passed between the useXandThe
T_MOREflag is set in all but the last fragment off@8DU sequence constitutingTsDU. The
T_MOREflag implies nothing about how the data is handled and passed to the lower level by
the transport provider, and how they are delivered to the remote user.

Transport service provider
A transport protocol providing the service of the transport layer.

Transport service user
An abstract representation of the totality of those entities within a single system that make
use of the transport service.

User application
The set of user programs, implemented as one or more process(es) in tetmgxof
semantics, written to realise a task, consisting of a set of user required functions.

X/Open CAE Specification (1992)
Page : 198 X/Open Transport Interface (XTI)

Index

abortive release: 18, 100, 197

accept: 119

acceptl: 27,31

accept2: 27,31

accept3: 27,31

address: 3-4, 13-15, 20, 23, 49-51, 54-56, 59-
61, 65, 68, 71, 75-76, 93-94, 104-105, 111

addresses:
multiple use: 8

application: 3-5, 136, 182

applications: 47
portability: 136, 181

applications portability: 3, 182

association-related: 116

association-related options: 33

asynchronous: 32,73

asynchronous events: 6

asynchronous mode: 5, 87,197

bind: 3, 22, 27, 30, 50, 54, 56, 109

buffer: 52-53, 63, 85

Call structure: 187

caller: 23,49-50,59, 71

character string: 3, 198

checksum check: 126

child process: 4

CL: 195

close: 22,30-31,57

closed: 27, 30-31

CO: 195

compatibility:
future: 53

connect indication: 29, 49-50, 54-55, 71, 89

connect request: 49, 71, 87, 100

Connect semantics: 9

connectl: 27,31

connect2: 27,31

connection: 3,49, 59, 85, 87, 100, 102

connection establishment: 13, 15-16, 59, 87,
123,131, 197

connection mode: 4,13, 15, 22, 31, 112, 129,
131-132, 197

connection mode service: 31

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI)

connection release: 13, 18-19, 131, 197
connection-oriented: 22, 131-132
connection-oriented mode: 13,129
connectionless: 22,121, 135
connectionless mode: 4, 20, 22, 30, 93, 95,
104, 116, 135, 197
constants: 47
create:
transport endpoint: 14
current event: 0, 30, 73
current state: 0, 4, 30, 70, 107
data: 85, 89, 93, 97, 100, 104
data transfer: 13, 16, 20, 30-31, 131, 197
data unit: 18, 20, 93, 104
discarded: 21
datagram: 4, 20, 197
datagram structure: 188
de-initialisation: 13-15, 20, 30
default: 75, 136
definitions: 11
Delete optional functions: 8
device: 136
device driver: 182
discarded data unit: 21
disconnect: 7,13, 32, 89
indication: 27
request: 100
disconnect structure: 187
dup: 3, 107-108
duplex: 16
EINVAL: 53
EM: 137, 195
enqueue: 15,23
errmsg: 61
errno: 61
errnum: 106
error: 184
error code: 95, 106
error codes: 183
TACCES 183
TADDRBUSY: 183
TBADADDR: 183

Page : 199

TBADDATA: 183
TBADF: 183
TBADFLAG: 183
TBADNAME: 183
TBADOPT: 183
TBADQLEN: 183
TBADSEQ 183
TBUFOVFLW: 183
TFLOW: 183
TINDOUT: 183
TLOOK: 183
TNOADDR: 183
TNODATA: 183
TNODIS: 183
TNOREL: 183
TNOSTRUCTYPE 183
TNOTSUPPORT 183
TNOUDERR 183
TOUTSTATE 183
TPROTQ 183
TPROVMISMATCH: 183
TQFULL : 183
TRESADDR 183
TRESQLEN 183
TSTATECHNG 183
TSYSERR 183
error handling: 4
error indication: 95
error message: 8, 61, 106
error number: 5, 106
established:
connection: 132
ETSDU. 17, 75-76, 85, 97-99, 195
event. 0, 30, 135
current: 0, 30, 73
event management: 7-8
Event Management: 137
events: 138,184
acceptl: 27,31
accept2: 27,31
accept3: 27,31
bind: 27, 30
closed: 27, 30-31
connectl: 27,31
connect2: 27,31
incoming: 28
listen: 28,31,71

Page : 200

Index

opened: 27,30
optmgmt: 27, 30
outgoing: 27
pass_conn: 28, 31
rcv: 28, 31, 85
rcvconnect: 28, 31
rcvdisl: 28,31
rcvdis2: 28, 31
rcvdis3: 28, 31
rcvrel: 28, 31
rcvudata: 28, 30
rcvuderr: 28, 30
snd: 27,31
snddisl: 27,31
snddis2: 27, 31
sndrel: 27, 31
sndudata: 27, 30
T_CONNECT 184
T _DATA: 184
T DISCONNECT 184
T _EXDATA: 184
T_GODATA. 184
T_GOEXDATA: 184
T_LISTEN: 184
T_ORDREL 184
T_UDERR 184
unbind: 27, 30
events and t_look: 6-7
example: 142,156
exceptfds: 155
exec: 107-108
execution mode: 5,17
Expedited data: 9
expedited data: 13, 17-18, 76, 85, 97, 111-
112,121, 123, 141, 155, 192, 197
expedited transport service data unit
(ETSDU): 76, 85, 197
fentl: 3, 6,59, 71-72, 85-86, 88, 93-94, 98,
104-105
fentl.h: 75
fd: 3,27
features: 22-23
file descriptor: 3, 57, 65, 75, 107, 141, 155
file.c: 47
flag: 75,78, 85
flags: 75, 78, 85, 121, 184, 186
T_CHECK 184

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI)

Index

T_CURRENT 184 ETSDU: 66, 76, 99
T_DEFAULT: 184 TSDU: 18, 66, 76, 99, 130
T_EXPEDITED 184 memory:
T_FAILURE: 184 allocate: 52, 63
T_MORE 184 mode:
T_NEGOTIATE 184 asynchronous: 5
T_NOTSUPPORT 184 connection-oriented: 13, 15, 22, 31, 112,
T_PARTSUCCESS 184 129, 131-132
T_READONLY: 184 connectionless: 20, 22, 30, 93, 95, 104,
T_SUCCESS 184 116, 135
flow control: 21 record-oriented: 18
fork: 3-4,107-108 stream-oriented: 18
full duplex: 16 synchronous: 5, 73
General purpose defines: 189 modes of service: 4
headers: 11 multiple options: 41
incoming events: 28 Multiple use of addresses: 8
INET_IP; 193 netbuf structure: 35, 52, 78
initialisation: 13-15, 20, 30, 75 next state: 30
initiator: 13, 197 NEXTHDR: 189
Internet protocol-specific information: 123 NULL: 55
Internet Transport-specific Information: 11 null:
IP-level options: 126 call: 100
IP-level Options: 193 caller address: 49
IP_BROADCAST 127, 193 null pointer: 53, 55, 59, 61, 63, 77, 88-89, 95
IP_DONTROUTE 127,193 ocnt: 27
IP_OPTIONS 127,193 open: 75
IP_REUSEADDR 127,193 opened: 27,30
IP_TOS 128,193 option:
IP_TOStype of service: 194 buffer: 35
IP_TTL: 128,193 value: 42
ISO: 111, 190, 195 Option management: 10
priorities: 190 option management: 189
protection levels: 190 option negotiation:
transport classes: 190 initiate: 37
ISO Transport Protocol: 11 response: 38
ISO_TP 191 option values: 112
language-dependent: 61 options:
library functions: 184 association-related: 33
library structure: 52 connection mode: 112
listen: 55,71, 119 connectionless mode: 116
listener application: 4 expedited data: 112
management options: 114,117,192 format: 45
mandatory features: 136 generalities: 33
maximum size: illegal: 36
address: 65, 76 IP-level: 126
address buffer: 54, 68 ISO-specific: 190-191
buffer: 59, 71, 88, 93, 95 management: 114

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 201

multiple: 41
privileged: 40
quality of service: 112
read-only: 40
retrieving information: 39
TCP-level: 124
transport endpoint: 78
transport provider: 59
UDP-level: 126
unsupported: 38
Options and management structures: 9
Options management structurd:87
optmgmt: 22,27, 30
orderly release: 18-19, 91, 102, 123, 197
oSl 9,195
transport classes: 120
outgoing events: 27
outstanding connect indications: 29, 55, 89
O_NONBLOCKflag: 5
pass_conn: 28, 31
permissions: 131
poll: 73
poli(): 139
POLLIN: 141
polling: 6
POLLOUT: 141
POLLPRL 141
POLLRDBAND: 141
POLLRDNORM 141
POLLWRBAND: 141
portability: 46
portable: 3,22, 136, 141, 155, 181
precedence levels:
IP: 194
primitives: 5-6
process: 3
program: 47
programs:
multiple protocol: 136
protocol: 3, 23, 33, 54-55, 59, 65, 68, 75, 78,
95,111, 136
protocol independence: 66, 77, 136
Protocol options: 9
protocol-specific servicelimits: 186
PUSHflag: 123
quality of service: 112,116, 192
queue: 15,23,72

Page : 202

Index

rate: 112
rate structure: 191
rcv: 28,31
rcvconnect: 28, 31
rcvdisl: 28,31
rcvdis2: 28, 31
rcvdis3: 28, 31
rcvrel: 28,31
rcvudata: 28
rcvuderr: 28
readfds: 155
reason:

disconnect: 89
receipt: 91
receive: 85, 93
Receiving Data: 16, 20
record-oriented: 18
release: 13,18, 31, 91, 100, 102
reliable: 4,197

remote user: 7,16, 18-19, 57, 59-60, 100, 132,

135, 198
regvalue: 112,191
regvalue structure:191
resfd: 27
responder: 13, 197
select(): 153
Sending Data: 17, 21
server program: 141, 155
service definition: 14
Iso: 1, 18,111,119
TCP. 18
service type defines: 186
snd: 27,31-32,111
snddisl: 27,31
snddis2: 27, 31
sndrel: 27, 31-32
sndudata: 27, 30, 32, 111
socket: 9,129-130
standard error: 61
state: 0, 25-26, 30, 189
current: 0, 30, 70, 107
next: 30
T _DATAXFER: 26, 189
T_IDLE: 26,189
T_INCON: 26,189
T_INREL: 26, 189
T_OUTCON 26, 189

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI)

Index

T_OUTREL 26, 189
T_UNBIND: 26
T_UNBND: 189
T_UNIT: 26
State behaviour: 8
state table: 30-31, 135
State tables:
optmgmt: 10
status:
connect request: 16, 87
connection: 59
stream-oriented: 18
strerror(3C): 61
struct netbuf: 186
struct rate: 191
struct reqvalue: 191
struct thrpt: 191
struct transdel: 191
structt_bind: 187
structt_call: 188
struct t_discon: 187
struct t_info: 186
struct t_kpalive: 193
struct t_linger: 190
struct t_opthdr: 187
struct t_optmgmt: 187
struct t_uderr: 188
struct t_unitdata: 188
structure types: 188
T_BIND: 188
T_CALL: 188
T_DIS: 188
T_INFO. 188
T_OPTMGMT. 188
T_UDERROR 188
T_UNITDATA: 188
SvID: 195
synchronise: 107
synchronous mode: 5, 73, 198
t-opthdr: 112
TACCES 183
TADDRBUSY: 183
TBADADDR: 183
TBADDATA: 183
TBADF: 183
TBADFLAG: 183
TBADNAME: 183

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI)

TBADOPT: 183
TBADQLEN: 183
TBADSEQ 183
TBUFOVFLW: 183
TC: 195
TCL_CHECKSUM 192
TCL_PRIORITY: 192
TCL_PROTECTION 192
TCL_RESERRORRATE 192
TCL_TRANSDEL 192
TCO_ACKTIME: 192
TCO_ALTCLASS: 192
TCO_ALTCLASS2 192
TCO_ALTCLASS3 192
TCO_ALTCLASS4 192
TCO_CHECKSUM 192
TCO_CLASS 192
TCO_CONNRESIL 192
TCO_ESTDELAY. 192
TCO_ESTFAILPROB 192
TCO_EXPD 192
TCO_EXTFORM 192
TCO_FLOWCTRL 192
TCO_LTPDU. 192
TCO_NETEXR 192
TCO_NETRECPTCF 192
TCO_PRIORITY. 192
TCO_PROTECTION 192
TCO_REASTIME 192
TCO_RELDELAY: 192
TCO_RELFAILPROB 192
TCO_RESERRORRATE 192
TCO_THROUGHPUT 192
TCO_TRANSDEL 192
TCO_TRANSFFAILPROB 192
TCP. 9,18-19, 123, 129, 195
TCP-level options: 124,193
TCP_KEEPALIVE 124, 193
TCP_MAXSEG 125, 193
TCP_NODELAY: 125,193
terminated:

connection: 132
TFLOW: 21, 138, 183
thrpt: 112,191
thrpt structure: 191
TINDOUT: 183
TLI: 181, 195

Page : 203

TLOOK: 6,18, 32,183

TNOADDR: 183

TNODATA: 183

TNODIS: 183

TNOREL: 183

TNOSTRUCTYPE 183

TNOTSUPPORT 8, 183

TNOUDERR 183

TOSprecedence levels: 194

TOUTSTATE 183

TPDU lengths: 191

TPROTQ 183

TPROVMISMATCH: 183

TQFULL: 183

transdel: 112

transdel structure: 191

transport address: 3, 111, 198

transport classes: 120, 190

transport connection: 3, 15, 57, 65, 102,
197-198

transport endpoint: 3, 26-27, 42, 49, 54, 56-
58, 73, 75, 77-78, 107, 109, 198

Transport Level Interfacer(l): 181

transport provider: 3, 13, 25-26, 30, 35, 59,
65, 75, 107,111, 131, 186

transport provider identifier:3, 13, 75, 198

transport service: 0, 111, 131

transport service access poilMs@pP): 4, 198

transport service data unit§pu): 7, 76, 85,
136, 198

transport service provider198

transport service user: 3, 13, 15, 18, 25-26, 58,

131, 198
transport user actions: 29
TRESADDR 183
TRESQLEN 183
TSAP. 4,195,198
TSDU:. 7,17, 75-76, 85, 97-99, 104, 111, 121,
123, 195, 198
TSTATECHNG 183
TSYSERR 5, 18, 61, 183
T_ABSREQ 189
t_accept: 22,49, 119, 123, 129, 184
t_accept(): 10
T_ACTIVEPROTECT 190
T_ADDR: 188
T_ALIGN: 189

Page : 204

Index

T ALL: 188

t alloc: 22,52, 63, 184, 188
T _ALLOPT: 189

t_bind: 3,22, 54,109, 119, 129, 184
T _BIND: 188

T _CALL: 188

T CHECK 184

T_CLASSQ 190

T CLASST 190

T _CLASS2 190

T_CLASS3 190

T _CLASS4 190

t close: 22,57,131, 184

T CLTS 186

T CONNECT 7

t_connect: 7,22,58, 87,119, 129
T _CONNECT 138, 184

t connect: 184
t_connect(): 11,39
T_COTS 186

T_COTS_ORD 186

T _CRITIC_ECP 194

T _CURRENT 184

T _DATA: 7,20, 31-32,138, 184
T _DATAXFER: 26, 31, 189

T DEFAULT:. 184

T DIS 7,32,188
T_DISCONNECT 7, 18, 32,138, 184
t_errno: 5, 106, 184

t error: 5,22,61, 106, 184

T _EXDATA: 7,129, 138, 184
T _EXPEDITED 17, 85,184
T _FAILURE: 184

T _FLASH:. 194

t free: 22,63, 185
t_getinfo: 22, 65, 119, 185
t_getprotaddr: 22, 68, 185

t getstate: 22, 70, 185

T _GODATA: 7-8, 20, 138, 184
T_GOEXDATA: 7-8, 138, 184
T _HIREL: 194

T_HITHRPT. 194

T IDLE: 26, 30-31, 58, 189

T IMMEDIATE: 194
T_INCON: 26, 31, 189
T_INETCONTROL 194
T_INFINITE: 189

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI)

Index

T_INFO: 188

T_INREL: 26, 31, 189
T_INVALID: 189

t_kpalive: 193

T_LDELAY: 194

T_LISTEN: 7

t listen: 7,22

T_LISTEN: 32

t listen: 32,71, 120, 123, 129
T_LISTEN: 138,184

t_listen: 185

t listen(): 11,40

t_look: 6, 22,73, 129, 185
T_LTPDUDFLT: 191

T_MORE 17, 85, 97, 184
T_MOREflag: 123
T_NEGOTIATE 184
T_NETCONTROL 194

T _NO. 189

T_NOPROTECT 190

T_NOTOS 194
T_NOTSUPPORT 184

T_NULL: 189

t_open: 3,22,75,120, 129, 185
T_OPT 188

t_optmgmt: 10-11, 22, 78, 185
T_OPTMGMT. 188
t_optmgmt(): 40

T_ORDREL 7-8, 32,138,184
T_OUTCON 26, 31, 189

T _OUTREL 26, 31, 189
T_OVERRIDEFLASH 194
T_PARTSUCCESS 184
T_PASSIVEPROTECT 190
T_PRIDFLT: 190

T_PRIHIGH 190

T_PRILOW: 190

T_PRIMID: 190

T_PRIORITY: 194

T_PRITOP 190

t rev: 7,22,32,85,121, 130, 185
t_rcvconnect: 22, 32,87,121, 130
t_rcvconnect(): 11, 39
t_revdis: 7, 22,89, 121, 130, 185
t_revrel: 7,32,91,123,185
t_rcvudata: 22, 32,93, 121, 185
t_rcvudata(): 11,40

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI)

t rcvuderr: 7,22,95,121, 185
t_rcvuderr(): 11,40
T _READONLY: 184
T _ROUTINE 194
T_SENDZERO 186
t snd: 7,22,97,121, 130, 185
t snddis: 22,100, 121, 130, 185
t_sndrel: 102 123, 185
t_sndudata: 22,104, 121, 130, 185
t_sndudata(): 11
t_strerror: 22, 106, 185
T_SUCCESS 184
t sync: 4, 22,107,185
T _UDATA: 188
T _UDERR 7-8, 20, 32,138, 184
T _UDERROR 188
t_unbind: 22
T_UNBIND: 26
t_unbind: 109 185
T _UNBND: 30-31, 189
T _UNIT: 26
T_UNITDATA: 188
T_UNSPEC 44,189
T_UNUSED 189
T _YES 189
UDP. 123,195
UDP-level options: 126
UDP-level Options: 193
UDP_CHECKSUM 126, 193
unbind: 22, 27, 30, 32
unitdata: 93, 104
Unitdata error structure: 188
UNIX:
process: 3
version-independent: 1
versions: 181
Use of Options: 10
user application: 13, 20, 198
user data: 89
writefds: 155
XEM: 195
XTI: 0, 195
applications: 47
features: 22-23
library: 47
XTI error return: 184
XTl-level options: 82, 189

Page : 205

xti.h: 47,71, 183

XTI_DEBUG: 190

XTI_GENERIC 189

XTI_LINGER: 190

XTI_RCVBUF: 190

XTI_RCVLOWAT: 190

XTI_SNDBUF: 190

XTI_SNTLOWAT: 190

Zero lengthrSDUs andTSDU fragments: 9,
66, 77,97-98, 111, 121

Page : 206

Index

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI)

	Contents
	Preface
	01 General Intro
	02 Explanatory Notes
	03 XTI Overview
	3.1 Connection-Oriented Mode
	3.1.2 Connection Establishment
	3.1.3 Data Transfer
	3.1.4 Connection Release

	3.2 Connectionless Mode
	3.2.2 Data Transfer

	3.3 XTI Features

	04 States & Events in XTI
	4.1 Transport Interface States
	4.2 Outgoing Events
	4.3 Incoming Events
	4.4 Transport User Actions
	4.5 State Tables
	4.6 Events and TLOOK Error Indication

	05 Use of Options
	5.2 Format of Options
	5.3 Elements of Negotiation
	5.4 Option Management of a Transport Endpoint
	5.5 Supplements
	5.6 Portability Aspects

	06 XTI Lib Functions & Parameters
	t_accept
	t_alloc
	t_bind
	t_close
	t_connect
	t_error
	t_free
	t_getinfo
	t_getprotaddr
	t_getstate
	t_listen
	t_look
	t_open
	t_optmgmt
	t_rcv
	t_rcvconnect
	t_rcvdis
	t_rcvrel
	t_rcvudata
	t_rcvuderr
	t_snd
	t_snddis
	t_sndrel
	t_sndudata
	t_strerror
	t_sync
	t_unbind

	A ISO Transport Protocol Info
	A.2 Options
	A.3 Functions

	B Internet Protocol-specific Information
	B.2 Options
	B.3 Functions

	C Guidelines for Use of XTI
	C.2 Example in Connection-Oriented Mode
	C.3 Example in Connectionless Mode
	C.4 Writing Protocol Independent Software
	C.5 Event Management
	C.5.3 XTI Events

	D Use of XTI to Access NetBIOS
	E XTI and TLI
	F Headers and Definitions
	G Abbreviations
	H Glossary
	Index

