
-- --

X/Open CAE Specification

X/Open Transport Interface (XTI)

X/Open Company, Ltd.

-- --

cshotton
Click here to jump to the TOC

-- --

 January 1992, X/Open Company Limited

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording or otherwise, without the prior permission of the copyright owners.

X/OpenCAE Specification

X/Open Transport Interface (XTI)

ISBN: 1 872630 29 4
X/Open Document Number: XO/CAE/91/600

Set in Palatino by X/Open Company Ltd.,U.K.
Printed by Maple Press,U.K.
Published by X/Open Company Ltd.,U.K.

Any comments relating to the material contained in this document may be submitted to the
X/Open Company at:

X/Open Company Limited
Apex Plaza
Forbury Road
Reading
Berkshire,RG1 1AX
United Kingdom

X/Open CAE Specification (1992)
Page : ii X/Open Transport Interface (XTI)

-- --

or by Electronic Mail to:

XoSpecs@xopen.co.uk

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : iii

-- --

X/Open CAE Specification (1992)
Page : iv X/Open Transport Interface (XTI)

-- --

-- --

Contents

3X/OPEN TRANSPORT INTERFACE (XTI)P

Chapter 1 GENERAL INTRODUCTION TO THE XTI

Chapter 2 EXPLANATORY NOTES

2.1 TRANSPORT ENDPOINTS

2.2 TRANSPORT PROVIDERS

2.3 ASSOCIATION OFA UNIX PROCESS TO
AN ENDPOINT

2.4 USE OF THE SAME PROTOCOL ADDRESS

2.5 MODES OF SERVICE

2.6 ERROR HANDLING

2.7 SYNCHRONOUS AND ASYNCHRONOUS EXECUTION MODES

2.8 EVENT MANAGEMENT

2.9 CHANGE HISTORY FROM XPG3 VERSION
2.9.1 Changes Appearing in RevisedXTI (1990)
2.9.2 Changes Appearing in Addendum to Revised

XTI (1991)

Chapter 3 XTI OVERVIEW

3.1 OVERVIEW OF CONNECTION-ORIENTED MODE
3.1.1 Initialisation/De-initialisation Phase
3.1.2 Overview of Connection Establishment
3.1.3 Overview of Data Transfer
3.1.4 Overview of Connection Release

3.2 OVERVIEW OF CONNECTIONLESS MODE
3.2.1 Initialisation/De-initialisation Phase
3.2.2 Overview of Data Transfer

3.3 XTI FEATURES
3.3.1 XTI Functions Versus Protocols

Chapter 4 STATES AND EVENTS IN XTI

4.1 TRANSPORT INTERFACES STATES

4.2 OUTGOING EVENTS

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : v

-- --

Contents

4.3 INCOMING EVENTS

4.4 TRANSPORT USER ACTIONS

4.5 STATE TABLES

4.6 EVENTS AND TLOOK ERROR INDICATION

Chapter 5 THE USE OF OPTIONS

5.1 GENERALITIES

5.2 THE FORMAT OF OPTIONS

5.3 THE ELEMENTS OF NEGOTIATION
5.3.1 Multiple Options and Options Levels
5.3.2 Illegal Options
5.3.3 Initiating an Option Negotiation
5.3.4 Responding to a Negotiation Proposal
5.3.5 Retrieving Information about Options
5.3.6 Privileged and Read-only Options

5.4 OPTION MANAGEMENT OFA TRANSPORT ENDPOINT

5.5 SUPPLEMENTS
5.5.1 The Option ValueT_UNSPEC
5.5.2 The info Argument
5.5.3 Summary

5.6 PORTABILITY ASPECTS

Chapter 6 XTI LIBRARY FUNCTIONS AND PARAMETERS

6.1 HOW TO PREPARE XTI APPLICATIONS

6.2 KEY FOR PARAMETER ARRAYS

6.3 RETURN OF TLOOK ERROR
t_acceptt_ac
t_alloct_al
t_bindt_bi
t_closet_cl
t_connectt_co
t_errort_er
t_freet_fr
t_getinfot_ge
t_getprotaddrt_ge
t_getstatet_ge
t_listent_li
t_lookt_lo
t_opent_op
t_optmgmtt_op
t_rcvt_rc

X/Open CAE Specification (1992)
Page : vi X/Open Transport Interface (XTI)

-- --

Contents

t_rcvconnectt_rc
t_rcvdist_rc
t_rcvrelt_rc
t_rcvudatat_rc
t_rcvuderrt_rc
t_sndt_sn
t_snddist_sn
t_sndrelt_sn
t_sndudatat_sn
t_strerrort_st
t_synct_sy
t_unbindt_un

Appendix A ISO TRANSPORT PROTOCOL INFORMATION

A.1 GENERAL

A.2 OPTIONS
A.2.1 Connection-mode Service
A.2.1.1 Options for Quality of Service and

Expedited Data (ISO 8072:1986)
A.2.1.2 Management Options
A.2.2 Connectionless-mode Service
A.2.2.1 Options for Quality of Service (ISO

8072/Add.1:1986)
A.2.2.2 Management Options

A.3 FUNCTIONS

Appendix B INTERNET PROTOCOL -SPECIFIC INFORMATION

B.1 GENERAL

B.2 OPTIONS
B.2.1 TCP-level Options
B.2.2 UDP-level Options
B.2.3 IP-level Options

B.3 FUNCTIONS

Appendix C GUIDELINES FOR USE OF XTI

C.1 TRANSPORT SERVICE INTERFACE SEQUENCE OF FUNCTIONS

C.2 EXAMPLE IN CONNECTION-ORIENTED MODE

C.3 EXAMPLE IN CONNECTIONLESS MODE

C.4 WRITING PROTOCOL-INDEPENDENT SOFTWARE

C.5 EVENT MANAGEMENT
C.5.1 Introduction
C.5.2 Short-term Solution

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : vii

-- --

Contents

C.5.3 XTI Events
C.5.4 Guidelines for Use of System V poll()
C.5.5 Guidelines for Use ofBSD select()

Appendix D USE OF XTI TO ACCESS NETBIOS

D.1 INTRODUCTION

D.2 OBJECTIVES

D.3 SCOPE

D.4 ISSUES

D.5 NetBIOS NAMES AND ADDRESSES

D.6 NetBIOS CONNECTION RELEASE

D.7 OPTIONS

D.8 XTI FUNCTIONS

Appendix E XTI AND TLI

E.1 RESTRICTIONS CONCERNING THE USE OF XTI

E.2 RELATIONSHIP BETWEEN XTI AND TLI

Appendix F HEADERS AND DEFINITIONS

F.1 THE <xti.h> HEADER

Appendix G ABBREVIATIONS

Appendix H GLOSSARY

X/Open CAE Specification (1992)
Page : viii X/Open Transport Interface (XTI)

-- --

-- --

Preface

X/Open

X/Open is an independent, worldwide, open systems organisation supported by most of the
world’s largest information systems suppliers, user organisations and software companies.
Its mission is to bring to users greater value from computing, through the practical
implementation of open systems.

X/Open’s strategy for achieving this goal is to combine existing and emerging standards into
a comprehensive, integrated, high-value and usable system environment, called the
Common Applications Environment (CAE). This environment covers the standards, above
the hardware level, that are needed to support open systems. It provides for portability and
interoperability of applications, and allows users to move between systems with a minimum
of retraining.

The components of the Common Applications Environment are defined in X/Open CAE
Specifications. These contain, among other things, an evolving portfolio of practical
application programming interfaces (APIs), which significantly enhance portability of
application programs at the source code level, and definitions of, and references to, protocols
and protocol profiles, which significantly enhance the interoperability of applications.

The X/Open CAE Specifications are supported by an extensive set of conformance tests and
a distinct X/Open trademark - the XPG brand - that is licensed by X/Open and may be
carried only on products that comply with the X/Open CAE Specifications.

The XPG brand, when associated with a vendor’s product, communicates clearly and
unambiguously to a procurer that the software bearing the brand correctly implements the
corresponding X/Open CAE Specifications. Users specifying XPG-conformance in their
procurements are therefore certain that the branded products they buy conform to the CAE
Specifications.

X/Open is primarily concerned with the selection and adoption of standards. The policy is
to use formal approvedde jurestandards, where they exist, and to adopt widely supported
de factostandards in other cases.

Where formal standards do not exist, it is X/Open policy to work closely with standards
development organisations to assist in the creation of formal standards covering the needed
functions, and to make its own work freely available to such organisations. Additionally,
X/Open has a commitment to align its definitions with formal approved standards.

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : ix

-- --

Preface

X/Open Specifications

There are two types of X/Open specification:

g CAE Specifications

CAE (Common Applications Environment) Specifications are the long-life specifications
that form the basis for conformant and branded X/Open systems. They are intended to
be used widely within the industry for product development and procurement purposes.

Developers who base their products on a current CAE Specification can be sure that
either the current specification or an upwards-compatible version of it will be referenced
by a future XPG brand (if not referenced already), and that a variety of compatible,
XPG-branded systems capable of hosting their products will be available, either
immediately or in the near future.

CAE Specifications are not published to coincide with the launch of a particular XPG
brand, but are published as soon as they are developed. By providing access to its
specifications in this way, X/Open makes it possible for products that conform to the
CAE (and hence are eligible for a future XPG brand) to be developed as soon as
practicable, enhancing the value of the XPG brand as a procurement aid to users.

g Preliminary Specifications

These are specifications, usually addressing an emerging area of technology, and
consequently not yet supported by a base of conformant product implementations, that
are released in a controlled manner for the purpose of validation through practical
implementation or prototyping. A Preliminary Specification is not a ‘‘draft’’
specification. Indeed, it is as stable as X/Open can make it, and on publication has gone
through the same rigorous X/Open development and review procedures as a CAE
Specification.

Preliminary Specifications are analogous with the ‘‘trial-use’’ standards issued by formal
standards organisations, and product development teams are intended to develop
products on the basis of them. However, because of the nature of the technology that a
Preliminary Specification is addressing, it is untried in practice and may therefore
change before being published as a CAE Specification. In such a case the CAE
Specification will be made as upwards-compatible as possible with the corresponding
Preliminary Specification, but complete upwards-compatibility in all cases is not
guaranteed.

In addition, X/Open periodically publishes:

g Snapshots

Snapshots are ‘‘draft’’ documents, which provide a mechanism for X/Open to
disseminate information on its current direction and thinking to an interested audience,
in advance of formal publication, with a view to soliciting feedback and comment.

X/Open CAE Specification (1992)
Page : x X/Open Transport Interface (XTI)

-- --

Preface

A Snapshot represents the interim results of an X/Open technical activity. Although at
the time of publication X/Open intends to progress the activity towards publication of an
X/Open Preliminary or CAE Specification, X/Open is a consensus organisation, and
makes no commitment regarding publication.

Similarly, a Snapshot does not represent any commitment by any X/Open member to
make any specific products available.

X/Open Guides

X/Open Guides provide information that X/Open believes is useful in the evaluation,
procurement, development or management of open systems, particularly those that are
X/Open-compliant.

X/Open Guides are not normative, and should not be referenced for purposes of specifying
or claiming X/Open-conformance.

This Document

This document is aCAE Specification (see above). It defines the X/Open Transport Interface
(XTI), a transport service interface that is independent of any specific transport provider.
XTI is concerned primarily with theISO Transport Service Definition (connection-oriented
or connectionless). However, it may be adapted for use over other types of provider. In
particular,XTI has been extended to includeTCP and UDP, since these types are widely
supported within the X/Open community.

This document merges the following two previous publications:

g X/Open Developers’ Specification (1990)
RevisedXTI (X/Open Transport Interface)
ISBN 1 872630 05 7

g X/Open Addendum (August 1991)
Addendum to RevisedXTI
ISBN 1 872630 21 9

into a single publication.

It also contains a revisedAppendix D, Use ofXTI to AccessNETBIOS. This Appendix was
published as a Preliminary Specification in theRevised XTI Specification, and is now
revised and upgraded toCAE status.

This XTI CAE Specification contains a number of changes and additions compared with the
version published in theX/Open Portability Guide , Issue 3, arising principally from
implementation experience by X/Open member companies. These changes and additions
are detailed inChapter 2, Explanatory Notes.

A compliant system shall meet the definitive requirements described in thisXTI CAE
Specification.

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : xi

-- --

Preface

X/Open CAE Specification (1992)
Page : xii X/Open Transport Interface (XTI)

-- --

-- --

Trademarks

X/Open and the ‘‘X’’ device are trademarks of X/Open Company Limited in theU.K. and
other countries.

UNIX is a registered trademark ofUNIX System Laboratories Inc. in theU.S.A. and other
countries.

Palatino is a trademark of LinotypeAG and/or its subsidiaries.

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : xiii

-- --

-- --

Referenced Documents

The following documents are referenced in this specification:

g TheOSI model is described in:

ISO 7498, Information Processing Systems, Open Systems Interconnection, Basic
Reference Model (IS: 1984)

g The reference documents forISO transport are summarised below:
ii

Connection-Oriented Connectionlessii
Protocol Definition IS 8073-1986 IS 8602ii
Service Definition IS 8072-1986 IS 8072/Add.1-1986iicc

c
c
c

cc
c
c
c

cc
c
c
c

cc
c
c
c

g The reference document forTCPprotocol is:

TCP, Transmission Control Protocol, Military Standard, Mil-std-1778 (Source A∗) and
RFC793 (Source B∗∗)

g The reference document forUDP protocol is:

UDP, User Datagram Protocol,RFC768 (Source B∗∗)

g The reference document for theTLI specifications is:

Networking Services Extension, draft version ofSVID Issue 2, VolumeIII , 1986

g Mappings of NetBIOS services toOSI and IPS transport protocols are provided in the
X/Open specification entitledProtocols for X/Open PC Interworking: SMB, published
by X/Open Company Ltd., 1991.

∗ Source A:
Defense Communication Agency,DDN Protocol Handbook (Volume I),DOD Military
Standard Protocols (December 1985).

∗∗ Source B:
Defense Communication Agency,DDN Protocol Handbook (VolumeII), DARPA Internet
Protocols (December 1985).

X/Open CAE Specification (1992)
Page : xiv X/Open Transport Interface (XTI)

-- --

-- --

Chapter 1

General Introduction to the XTI

The XTI (X/Open TransportInterface) specification defines a transport service interface
which is independent of any specific transport provider. The interface is provided by way of
a set of library functions for the C programming language.XTI serves three main purposes:

g XTI describes a wide set of functions and facilities which vary in importance and/or
usefulness;

g XTI is concerned primarily with theISO Transport Service Definition (connection-
oriented or connectionless). However, it may be adapted for use over other types of
provider. In particular,XTI has been extended to includeTCP andUDP since these types
are widely supported within the X/Open community (seeReferenced Documents);

g XTI is UNIX version-independent.

Note that in order for applications to useXTI in a fully asynchronous manner, it will be
necessary for the application to include facilities of anEvent Management (EM) Interface.
TheEM facilities will allow the application to be notified of a number of events, including
those events associated with flow control, over a range of active transport connections.

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 1

-- --

General Introduction to the XTI

X/Open CAE Specification (1992)
Page : 2 X/Open Transport Interface (XTI)

-- --

-- --

Chapter 2

Explanatory Notes

2.1 TRANSPORT ENDPOINTS

A transport endpointspecifies a communication path between a transport user and a specific
transport provider, which is identified by a local file descriptor (fd). When a user opens a
transport provider identifier, a local file descriptorfd is returned which identifies the
transport endpoint. A transport provider is defined to be the transport protocol that provides
the services of the transport layer. All requests to the transport provider must pass through a
transport endpoint. The file descriptorfd is returned by the functiont_open() and is used as
an argument to the subsequent functions to identify the transport endpoint. A transport
endpoint (fd and local address) can support only one established transport connection at a
time.

To be active, a transport endpoint must have a transport address associated with it by the
t_bind() function. A transport connection is characterised by the association of two active
endpoints, made by using the functions of establishment of transport connection. Thefd is a
communication path to a transport provider. There is no direct assignation of the processes
to the transport provider, so multiple processes, which obtain thefd by open(), fork() or
dup() operations, may access a given communication path. Note that theopen() function
will work only if the opened character string is a pathname.

Note that in order to guarantee portability, the only operations which the applications may
perform on anyfd returned byt_open() are those defined byXTI and fcntl(), dup() or
dup2(). Other operations are permitted but these will have system-dependent results.

2.2 TRANSPORT PROVIDERS

The transport layer may comprise one or moretransport providers at the same time. The
identifier parameter of the transport provider passed to thet_open() function determines the
required transport provider. To keep the applications portable, the identifier parameter of
the transport provider should not be hard-coded into the application source code.

An application which wants to manage multiple transport providers must callt_open() for
each provider. For example, a server application which is waiting for incoming connect
indications from several transport providers must open a transport endpoint for each
provider and listen for connect indications on each of the associated file descriptors.

2.3 ASSOCIATION OF A UNIX PROCESS TO AN ENDPOINT

One process can simultaneously open severalfds. However, in synchronous mode, the
process must manage the different actions of the associated transport connections
sequentially. Conversely, several processes can share the samefd (by fork() or dup()
operations) but they have to synchronise themselves so as not to issue a function that is
unsuitable to the current state of the transport endpoint.

It is important to remember that the transport provider treats all users of a transport endpoint
as a single user. If multiple processes are using the same endpoint, they should coordinate

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 3

-- --

Association of a UNIX Process to an Endpoint Explanatory Notes

their activities so as not to violate the state of the provider. Thet_sync() function returns
the current state of the provider to the user, thereby enabling the user to verify the state
before taking further action. This coordination is only valid among cooperating processes; it
is possible that a process or an incoming event could change the provider’s state after a
t_sync() is issued.

A process can listen for an incoming connect indication on onefd and accept the connection
on a differentfd which has been bound with theqlen parameter (seet_bind()) set to zero.
This facilitates the writing of a listener application whereby the listener waits for all
incoming connect indications on a given Transport Service Access Point (TSAP). The
listener will accept the connection on a newfd, and fork() a child process to service the
request without blocking other incoming connect indications.

2.4 USE OF THE SAME PROTOCOL ADDRESS

If several endpoints are bound to the same protocol address, only one at the time may be
listening for incoming connections. However, others may be in data transfer state or
establishing a transport connection as initiators.

2.5 MODES OF SERVICE

The transport service interface supports two modes of service: connection mode and
connectionless mode. A single transport endpoint may not support both modes of service
simultaneously.

The connection-mode transport service is circuit-oriented and enables data to be transferred
over an established connection in a reliable, sequenced manner. This service enables the
negotiation of the parameters and options that govern the transfer of data. It provides an
identification mechanism that avoids the overhead of address transmission and resolution
during the data transfer phase. It also provides a context in which successive units of data,
transferred between peer users, are logically related. This service is attractive to
applications that require relatively long-lived, datastream-oriented interactions.

In contrast, the connectionless-mode transport service is message-oriented and supports data
transfer in self-contained units with no logical relationship required among multiple units.
These units are also known as datagrams. This service requires a pre-existing association
between the peer users involved, which determines the characteristics of the data to be
transmitted. No dynamic negotiation of parameters and options is supported by this service.
All the information required to deliver a unit of data (e.g., destination address) is presented
to the transport provider, together with the data to be transmitted, in a single service access
which need not relate to any other service access. Also, each unit of data transmitted is
entirely self-contained, and can be independently routed by the transport provider. This
service is attractive to applications that involve short-term request/response interactions,
exhibit a high level of redundancy, are dynamically reconfigurable or do not require
guaranteed, in-sequence delivery of data.

2.6 ERROR HANDLING

Two levels of error are defined for the transport interface. The first is the library error level.
Each library function has one or more error returns. Failures are indicated by a return value

X/Open CAE Specification (1992)
Page : 4 X/Open Transport Interface (XTI)

-- --

Explanatory Notes Error Handling

of −1. An external integer,t_errno, which is defined in the header<xti.h>, holds the
specific error number when such a failure occurs. This value is set when errors occur but is
not cleared on successful library calls, so it should be tested only after an error has been
indicated. If implemented, a diagnostic function,t_error(), prints out information on the
current transport error. The state of the transport provider may change if a transport error
occurs.

The second level of error is the operating system service routine level. A special library
level error number has been defined called [TSYSERR] which is generated by each library
function when an operating system service routine fails or some general error occurs. When
a function setst_errno to [TSYSERR], the specific system error may be accessed through the
external variableerrno.

For example, a system error can be generated by the transport provider when a protocol
error has occurred. If the error is severe, it may cause the file descriptor and transport
endpoint to be unusable. To continue in this case, all users of thefd must close it. Then the
transport endpoint may be re-opened and initialised.

2.7 SYNCHRONOUS AND ASYNCHRONOUS EXECUTION MODES

The transport service interface is inherently asynchronous; various events may occur which
are independent of the actions of a transport user. For example, a user may be sending data
over a transport connection when an asynchronous disconnect indication arrives. The user
must somehow be informed that the connection has been broken.

The transport service interface supports two execution modes for handling asynchronous
events: synchronous mode and asynchronous mode. In the synchronous mode of operation,
the transport primitives wait for specific events before returning control to the user. While
waiting, the user cannot perform other tasks. For example, a function that attempts to
receive data in synchronous mode will wait until data arrives before returning control to the
user. Synchronous mode is the default mode of execution. It is useful for user processes that
want to wait for events to occur, or for user processes that maintain only a single transport
connection. Note that if a signal arrives, blocking calls are interrupted and return a negative
return code witht_errno set to [TSYSERR] and errno set to [EINTR]. In this case the call
will have no effect.

The asynchronous mode of operation, on the other hand, provides a mechanism for notifying
a user of some event without forcing the user to wait for the event. The handling of
networking events in an asynchronous manner is seen as a desirable capability of the
transport interface. This would enable users to perform useful work while expecting a
particular event. For example, a function that attempts to receive data in asynchronous
mode will return control to the user immediately if no data is available. The user may then
periodically poll for incoming data until it arrives. The asynchronous mode is intended for
those applications that expect long delays between events and have other tasks that they can
perform in the meantime or handle multiple connections concurrently.

The two execution modes are not provided through separate interfaces or different functions.
Instead, functions that process incoming events have two modes of operation: synchronous
and asynchronous. The desired mode is specified through theO_NONBLOCK flag, which
may be set when the transport provider is initially opened, or before any specific function or

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 5

-- --

Synchronous and Asynchronous Execution Modes Explanatory Notes

group of functions is executed using thefcntl() operating system service routine. The effect
of this flag is local to this process and is completely specified in the description of each
function.

Nine (only eight if the orderly release is not supported) asynchronous events are defined in
the transport service interface to cover both connection-mode and connectionless-mode
service. They are represented as separate bits in a bit-mask using the following defined
symbolic names:

g T_LISTEN

g T_CONNECT

g T_DATA

g T_EXDATA

g T_DISCONNECT

g T_ORDREL

g T_UDERR

g T_GODATA

g T_GOEXDATA

These are described inSection 2.8, Event Management.

A process that issues functions in synchronous mode must still be able to recognise certain
asynchronous events and act on them if necessary. This is handled through a special
transport error [TLOOK] which is returned by a function when an asynchronous event
occurs. Thet_look() function is then invoked to identify the specific event that has
occurred when this error is returned.

Another means to notify a process that an asynchronous event has occurred is polling. The
polling capability enables processes to do useful work and periodically poll for one of the
above asynchronous events. This facility is provided by settingO_NONBLOCK for the
appropriate primitive(s).

Events and t_look()

All events that occur at a transport endpoint are stored byXTI. These events are retrievable
one at the time via thet_look() function. If multiple events occur, it is implementation-
dependent in what ordert_look() will return the events. An event is outstanding on a
transport endpoint until it is consumed. Every event has a corresponding consuming
function which handles the event and clears it. BothT_DATA and T_EXDATA events are
consumed when the corresponding consuming function has read all the corresponding data
associated with that event. The intention of this is thatT_DATA should always indicate that
there is data to receive. Two events,T_GODATA and T_GOEXDATA, are also cleared as
they are returned byt_look(). Table 2-1 summarises this.

X/Open CAE Specification (1992)
Page : 6 X/Open Transport Interface (XTI)

-- --

Explanatory Notes Synchronous and Asynchronous Execution Modes

iii
Event Cleared ont_look()? ConsumingXTI functionsii
T_LISTEN No t_listen()
T_CONNECT No t_{rcv}connect()1

T_DATA No t_rcv{udata}()
T_EXDATA No t_rcv()
T_DISCONNECT No t_rcvdis()
T_UDERR No t_rcvuderr()
T_ORDREL No t_rcvrel()
T_GODATA Yes t_snd{udata}()
T_GOEXDATA Yes t_snd()iiic

c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c

Table 2-1. Events and t_look()

2.8 EVENT MANAGEMENT

EachXTI call deals with one transport endpoint at a time. It is not possible to wait for
several events from different sources, particularly from several transport connections at a
time. We recognise the need for this functionality which may be available today in a
system-dependent fashion.

Throughout the document we refer to an event management service called Event
Management (EM) which provides those functions useful toXTI. This Event Management
will allow a process to be notified of the following events:

g T_LISTEN:
A connect request from a remote user was received by a transport provider (connection-
mode service only); this event may occur under the following conditions:

1. the file descriptor is bound to a valid address;

2. no transport connection is established at this time.

g T_CONNECT:
In connection mode only; a connect response was received by the transport provider;
occurs after at_connect() has been issued.

g T_DATA:
Normal data (whole or part of Transport Service Data Unit (TSDU)) was received by the
transport provider.

g T_EXDATA:
Expedited data was received by the transport provider.

g T_DISCONNECT:
In connection mode only; a disconnect request was received by the transport provider. It

hhhhhhhhhhhhhhhhhhhhh

1. In the case of thet_connect() function theT_CONNECTevent is both generated and consumed by the execution of the function
and is therefore not visible to the application.

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 7

-- --

Event Management Explanatory Notes

may be reported on both data transfer functions and connection establishment functions
and on thet_snddis() function.

g T_ORDREL:
An orderly release request was received by a transport provider (connection mode with
orderly release only).

g T_UDERR:
In connectionless mode only; an error was found in a previously sent datagram. It may
be notified on thet_rcvudata() or t_unbind() function calls.

g T_GODATA:
Flow control restrictions on normal data flow that led to a[TFLOW] error have been
lifted. Normal data may be sent again.

g T_GOEXDATA:
Flow control restrictions on expedited data flow that led to a[TFLOW] error have been
lifted. Expedited data may be sent again.

2.9 CHANGE HISTORY FROM XPG3 VERSION

This section summarises the main revisions to theXTI since publication of theX/Open
Portability Guide , Issue 3, known asXPG3.

For ease of tracking, the changes are presented in two stages:

g those which appeared in theRevisedXTI Developers’ Specification (1990)

g those which appeared in the follow-upAddendum to RevisedXTI (August 1991).

These changes arise principally from implementation experience gathered by X/Open
member companies.

2.9.1 Changes Appearing in RevisedXTI (1990)

The major changes which appeared in theRevisedXTI (1990)are:

Delete optional functions
The concept of mandatory versus optional functions is contrary to the goal of
portability. All XTI functions are now mandatory;[TNOTSUPPORT]should be
returned if the transport provider does not support the function requested.

Error messages
The format of messages produced by thet_error() function has been clarified. See
also the additional functiont_strerror().

Multiple use of addresses
More stringent recommendations about multiple use of addresses have been made.
This enhances portability across different transport providers.

State behaviour
The state machine behaviour ofXTI has been clarified by the addition of a
T_UNBND column in Table 4-7 ofChapter 4, States and Events inXTI , and by
the identification of a number of additional cases where asynchronous events

X/Open CAE Specification (1992)
Page : 8 X/Open Transport Interface (XTI)

-- --

Explanatory Notes Change History From Xpg3 Version

result in the return of theTLOOK error.

Zero lengthTSDUs andTSDU fragments
The extent of support for zero lengthTSDUs and zero lengthTSDU fragments has
been set out more clearly. See the descriptions of functionst_snd() and
t_getinfo() in Chapter 6, XTI Library Functions and Parameters.

T_MORE
The significance of theT_MORE flag for asynchronously received data has been
clarified. See the description oft_rcv() in Chapter 6, XTI Library Functions
and Parameters.

Protocol options
The description of protocol options for bothOSI andTCPhas been much enhanced
(see Appendix A, ISO Transport Protocol Information and Appendix B,
Internet Protocol-specific Information).

Options and management structures
These have been extensively revised, especially those covering connection-
orientedOSI (seeAppendix F, Headers and Definitions).

Expedited data
The different significance of expedited data in theOSI and TCP cases has been
clarified.

Connect semantics
Differences in underlying protocol semantics betweenOSI andTCP at connection
establishment have been clarified. SeeAppendix B, Internet Protocol-specific
Information and the descriptions oft_accept() and t_listen() in Chapter 6, XTI
Library Functions and Parameters.

The main additions are:

Additional function: t_getprotaddr
This function yields the local and remote protocol addresses currently associated
with a transport endpoint.

Additional function: t_strerror
This function maps an error number into a language-dependent error message
string. The functionality corresponds to the error message changes in thet_error()
function.

Addition of Valid States to function descriptions
All function descriptions now contain an indication of the interface states for
which they are valid.

Addition of new error codes
A number of new error codes have been added (seeAppendix F, Headers and
Definitions for summary).

A number of minor changes also appeared, including:

g Clarification of the use of the term ‘‘socket’’ in theTCPcase.

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 9

-- --

Change History From Xpg3 Version Explanatory Notes

g Clarification of support for automatic generation of addresses.

g Clarification of the management of flow control.

g Clarification of the significant differences between transport providers.

g Clarification of the issue of non-guaranteed delivery of data at connection close.

g Clarification of the ways in which error indications may be received in connectionless
working.

g Enhancement oft_optmgmt() to allow retrieval of current value of transport provider
options.

g Addition of extern definitions for all XTI functions in Appendix F, Headers and
Definitions.

g Numerous small corrections and clarifications.

2.9.2 Changes Appearing in Addendum to RevisedXTI (1991)

The following list itemises the updates to theRevisedXTI (X/Open Transport Interface)
document, which appeared in theAddendum to RevisedXTI (August 1991). This list
refers to the chapter, section and appendix references in the 1990RevisedXTI document.

All these changes are integrated into thisX/Open Transport Interface (XTI) CAE
Specification.

g Chapter 2, Section 2.9.1, Changes
The ‘‘Protocol options’’ and ‘‘Options and management structures’’ paragraphs are
deleted and replaced with the following:

Option management
The management and usage of options have been
completely revised. The changes affectChapter 5, the
t_optmgmt() manual pages inChapter 6, andAppendices
A, B andF.

g Chapter 4, Section 4.5, State Tables
Delete the row concerning ‘‘optmgmt’’ fromFigure 5, and add a new row toFigure 7
for the event ‘‘optmgmt’’, as follows:

ii

optmgmt T_IDLE T_OUTCON T_INCON T_DATAXFER T_OUTREL T_INREL T_UNBND

iic
c
c
c

cc
c
c

cc
c
c

cc
c
c

cc
c
c

cc
c
c

cc
c
c

cc
c
c

c
c
c
c

g Chapter 5, Transport Protocol-specific Options
Chapter 5 is renamed toThe Use of Optionsand is completely replaced with new text.

g Chapter 6, t_accept()
In the second paragraph, ‘‘protocol-specific parameters’’ is replaced with ‘‘options’’.

X/Open CAE Specification (1992)
Page : 10 X/Open Transport Interface (XTI)

-- --

Explanatory Notes Change History From Xpg3 Version

In the sixth paragraph, the following sentence is removed:

‘‘The values of parameters specified byopt and the syntax of those values are protocol-
specific.’’

In the seventh paragraph, ‘‘protocol-specific option’’ is replaced with ‘‘option’’.

g Chapter 6, t_connect()
The half-sentence in the sixth paragraph:

‘‘If used, sndcall->opt.buf must point to the corresponding options structures
(isoco_optionsor tcp_options);’’

is replaced with:

‘‘If used, sndcall->opt.bufmust point to a buffer with the corresponding options;’’

g Chapter 6, t_listen()
In the second paragraph, ‘‘protocol-specific parameters’’ is replaced with ‘‘options’’.

g Chapter 6, t_optmgmt()
The manual pages fort_optmgmt() in Chapter 6 are completely replaced with new text.

g Chapter 6, t_rcvconnect()
In the third paragraph, ‘‘protocol-specific information’’ is replaced with ‘‘options’’.

g Chapter 6, t_rcvudata() andt_rcvuderr()
In the third paragraph, ‘‘protocol-specific options’’ is replaced with ‘‘options’’.

g Chapter 6, t_sndudata()
In the second paragraph, ‘‘protocol-specific options’’ is replaced with ‘‘options’’.

g Appendix A, ISO Transport Protocol Information
The text inAppendix A is completely replaced with new text.

g Appendix B, Internet Protocol-specific Information
The text inAppendix B is completely replaced with new text.

g Appendix F, Headers and Definitions
The text inAppendix F is completely replaced with new text.

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 11

-- --

Change History From Xpg3 Version Explanatory Notes

X/Open CAE Specification (1992)
Page : 12 X/Open Transport Interface (XTI)

-- --

-- --

Chapter 3

XTI Overview

3.1 OVERVIEW OF CONNECTION -ORIENTED MODE

The connection-mode transport service consists of four phases of communication:

g Initialisation/De-initialisation;

g Connection Establishment;

g Data Transfer, and

g Connection Release.

A state machine is described inSection C.1, Transport Service Interface Sequence of
Functions and the figure inSection C.2, Example in Connection-oriented Mode, which
defines the legal sequence in which functions from each phase may be issued.

In order to establish a transport connection, a user (application) must:

1. Supply atransport provider identifierfor the appropriate type of transport provider
(using t_open()); this establishes a transport endpoint through which the user may
communicate with the provider.

2. Associate (bind) an address with this endpoint (usingt_bind()).

3. Use the appropriate connection functions (usingt_connect(), or t_listen() and
t_accept()) to establish a transport connection. The set of functions depends on
whether the user is an initiator or responder.

4. Once the connection is established, normal, and if authorised, expedited data can be
exchanged. Of course, expedited data may be exchanged only if:

g the provider supports it;

g its use is not precluded by the selection of protocol characteristics, e.g., the use of
Class 0;

g negotiation as to its use has been agreed between the two peer transport providers.

The semantics of expedited data may be quite different for different transport
providers.XTI’s notion of expedited data has been defined as the lowest reasonable
common denominator.

5. The transport connection can be released at any time by using the disconnect
functions. Then the user can either de-initialise the transport endpoint by closing the
file descriptor returned byt_open() (thereby freeing the resource for future use), or
specify a new local address (after the old one has been unbound) or reuse the same
address and establish a new transport connection.

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 13

-- --

Overview of Connection-oriented Mode XTI Overview

3.1.1 Initialisation/De-initialisation Phase

The functions that support initialisation/de-initialisation tasks are described below. All such
functions provide local management functions; no information is sent over the network.

t_open() This function creates a transport endpoint and returns protocol-specific
information associated with that endpoint. It also returns a file
descriptor that serves as the local identifier of the endpoint.

t_bind() This function associates a protocol address with a given transport
endpoint, thereby activating the endpoint. It also directs the transport
provider to begin accepting connect indications if so desired.

t_optmgmt() This function enables the user to get or negotiate protocol options with
the transport provider.

t_unbind() This function disables a transport endpoint such that no further request
destined for the given endpoint will be accepted by the transport
provider.

t_close() This function informs the transport provider that the user is finished with
the transport endpoint, and frees any local resources associated with that
endpoint.

The following functions are also local management functions, but can be issued during any
phase of communication:

t_getprotaddr() This function returns the addresses (local and remote) associated with
the specified transport endpoint.

t_getinfo() This function returns protocol-specific information associated with the
specified transport endpoint.

t_getstate() This function returns the current state of the transport endpoint.

t_sync() This function synchronises the data structures managed by the transport
library with the transport provider.

t_alloc() This function allocates storage for the specified library data structure.

t_free() This function frees storage for a library data structure that was allocated
by t_alloc().

t_error() This function prints out a message describing the last error encountered
during a call to a transport library function.

t_look() This function returns the current event(s) associated with the given
transport endpoint.

t_strerror() This function maps anXTI error into a language-dependent error
message string.

X/Open CAE Specification (1992)
Page : 14 X/Open Transport Interface (XTI)

-- --

XTI Overview Overview of Connection-oriented Mode

3.1.2 Overview of Connection Establishment

This phase enables two transport users to establish a transport connection between them. In
the connection establishment scenario, one user is considered active and initiates the
conversation, while the second user is passive and waits for a transport user to request a
connection.

In connection mode:

g the user has firstly to establish an endpoint, i.e., to open a communications path between
the application and the transport provider;

g once established, an endpoint must be bound to an address and more than one endpoint
may be bound to the same address. A transport user can determine the addresses
associated with a connection using thet_getprotaddr() function;

g an endpoint can be associated with one, and only one, established transport connection;

g it is possible to use an endpoint to receive and enqueue incoming connect indications
(only if the provider is able to accept more than one outstanding connect indication; this
mode of operation is declared at the time of callingt_bind() by settingqlen greater than
0). However, if more than one endpoint is bound to the same address, only one of them
may be used in this way;

g the t_listen() function is used to look for an enqueued connect indication; if it finds one
(at the head of the queue), it returns details of the connect indication, and a local
sequence number which uniquely identifies this indication, or it may return a negative
value with t_errno set to [TNODATA]. The number of outstanding connect requests to
dequeue is limited by the value of theqlen parameter accepted by the transport provider
on thet_bind() call;

g if the endpoint has more than one connect indication enqueued, the user should dequeue
all connect indications (and disconnect indications) before accepting or rejecting any or
all of them. The number of outstanding connect indications is limited by the value of the
qlen parameter accepted by the transport provider on the call tot_bind();

g when accepting a connect indication, the transport service user may issue the accept on
the same (listening) endpoint or on a different endpoint.

If the same endpoint is used, the listening endpoint can no longer be used to receive and
enqueue incoming connect indications. The bound protocol address will be found to be
busy for the duration of the active transport endpoint. No other transport endpoints may
be bound for listening to the same protocol address while the listening endpoint is in the
data transfer or disconnect phase (i.e., until at_unbind() call is issued).

If a different endpoint is used, the listening endpoint can continue to receive and
enqueue incoming connect requests;

g if the user issues at_connect() on a listening endpoint, again, that endpoint can no
longer be used to receive and enqueue incoming connect requests;

g a connect attempt failure will result in a value -1 returned from either thet_connect() or
t_rcvconnect() call, with t_errno set to [TLOOK] indicating that a [T_DISCONNECT]
event has arrived. In this case, the reason for the failure may be identified by issuing a

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 15

-- --

Overview of Connection-oriented Mode XTI Overview

t_rcvdis() call.

The functions that support these operations of connection establishment are:

t_connect() This function requests a connection to the transport user at a specified
destination and waits for the remote user’s response. This function may
be executed in either synchronous or asynchronous mode. In
synchronous mode, the function waits for the remote user’s response
before returning control to the local user. In asynchronous mode, the
function initiates connection establishment but returns control to the
local user before a response arrives.

t_rcvconnect() This function enables an active transport user to determine the status of
a previously sent connect request. If the request was accepted, the
connection establishment phase will be complete on return from this
function. This function is used in conjunction witht_connect() to
establish a connection in an asynchronous manner.

t_listen() This function enables the passive transport user to receive connect
indications from other transport users.

t_accept() This function is issued by the passive user to accept a particular connect
request after an indication has been received.

3.1.3 Overview of Data Transfer

Once a transport connection has been established between two users, data may be
transferred back and forth over the connection in a full duplex way. Two functions have
been defined to support data transfer in connection mode as follows:

t_snd() This function enables transport users to send either normal or expedited
data over a transport connection.

t_rcv() This function enables transport users to receive either normal or
expedited data on a transport connection.

In data transfer phase, the occurence of the [T_DISCONNECT] event implies an unsuccessful
return from the called function (t_snd() or t_rcv()) with t_errno set to [TLOOK]. The user
must then issue at_look() call to get more details.

Receiving Data

If data (normal or expedited) is immediately available, then a call tot_rcv() returns data. If
the transport connection no longer exists, then the call returns immediately, indicating
failure. If data is not immediately available and the transport connection still exists, then the
result of a call tot_rcv() depends on the mode:

g Asynchronous mode:
The call returns immediately, indicating failure. The user must continue to ‘‘poll’’ for
incoming data, either by issuing repeated call tot_rcv(), or by using thet_look() or the
EM interface.

X/Open CAE Specification (1992)
Page : 16 X/Open Transport Interface (XTI)

-- --

XTI Overview Overview of Connection-oriented Mode

g Synchronous mode:
The call is blocked until one of the following conditions becomes true:

— data (normal or expedited) is received;

— a disconnect indication is received, or

— a signal has arrived.

The user may issue at_look() or useEM calls, to determine if data is available.

If a normal TSDU is to be received in multiplet_rcv() calls, then its delivery may be
interrupted at any time by the arrival of expedited data. The application can detect this by
checking theflags field on return from a call tot_rcv(); this will be indicated byt_rcv()
returning:

g data withT_EXPEDITEDflag not set andT_MOREset (this is a fragment of normal data);

g data withT_EXPEDITED set (andT_MORE set or unset); this is an expedited message
(whole or part of, depending on the setting ofT_MORE). The provider will continue to
return the expedited data (on this and subsequent calls tot_rcv()) until the end of the
Extended Transport Service Data Unit (ETSDU) is reached, at which time it will continue
to return normal data. It is the user’s responsibility to remember that the receipt of
normal data has been interrupted in this way.

Sending Data

If the data can be accepted immediately by the provider, then it is accepted, and the call
returns the number of octets accepted. If the data cannot be accepted because of a
permanent failure condition (e.g., transport connection lost), then the call returns
immediately, indicating failure. If the data cannot be accepted immediately because of a
transient condition (e.g., lack of buffers, flow control in effect), then the result of a call to
t_snd() depends on the execution mode:

g Asynchronous mode:
The call returns immediately indicating failure. If the failure was due to flow control
restrictions, then it is possible that only part of the data will actually be accepted by the
transport provider. In this caset_snd() will return a value that is less than the number of
octets requested to be sent. The user may either retry the call tot_snd() or first receive
notification of the clearance of the flow control restriction via eithert_look() or theEM
interface, then retry the call. The user may retry the call with the data remaining from
the original call or with more (or less) data, and with theT_MORE flag set appropriately
to indicate whether this is now the end of theTSDU.

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 17

-- --

Overview of Connection-oriented Mode XTI Overview

g Synchronous mode:
The call is blocked until one of the following conditions becomes true:

— the flow control restrictions are cleared and the transport provider is able to accept a
new data unit. Thet_snd() function then returns successfully;

— a disconnect indication is received. In this case thet_snd() function returns
unsuccessfully witht_errno set to [TLOOK]. The user can issue at_look() function
to determine the cause of the error. For this particular caset_look() will return a
T_DISCONNECTevent. Data that was being sent will be lost, or

— an internal problem occurs. In this case thet_snd() function returns unsuccessfully
with t_errno set to [TSYSERR]. Data that was being sent will be lost.

For some transport providers, normal data and expedited data constitute two distinct flows of
data. If either flow is blocked, the user may nevertheless continue using the other one, but in
synchronous mode a second process is needed. The user may send expedited data between
the fragments of a normalTSDU, that is, at_snd() call with theT_EXPEDITEDflag set may
follow a t_snd() with theT_MOREflag set and theT_EXPEDITEDflag not set.

Note thatXTI supports two modes of sending data, record-oriented and stream-oriented. In
the record-oriented mode, the concept ofTSDU is supported, that is, message boundaries are
preserved. In stream-oriented mode, message boundaries are not preserved and the concept
of a TSDU is not supported. A transport user can determine the mode by using the
t_getinfo() function, and examining thetsdufield. If tsdu is greater than zero, this indicates
that record-oriented mode is supported and the return value indicates the maximumTSDU
size. If tsdu is zero, this indicates that stream-oriented transfer is supported. For more
details seeChapter 6, t_getinfo().

3.1.4 Overview of Connection Release

The ISO Connection-oriented Transport Service Definition supports only the abortive
release. However, theTCP Transport Service Definition also supports an orderly release.
SomeXTI implementations may support this orderly release.

An abortive release may be invoked from either the connection establishment phase or the
data transfer phase. When in the connection establishment phase, a transport user may use
the abortive release to reject a connect request. In the data transfer phase, either user may
abort a connection at any time. The abortive release is not negotiated by the transport users
and it takes effect immediately on request. The user on the other side of the connection is
notified when a connection is aborted. The transport provider may also initiate an abortive
release, in which case both users are informed that the connection no longer exists. There is
no guarantee of delivery of user data once an abortive release has been initiated.

Whatever the state of a transport connection, its user(s) will be informed as soon as possible
of the failure of the connection through a disconnect event or an unsuccessful return from a
blocking t_snd() or t_rcv() call. If the user wants to prevent loss of data by notifying the
remote user of an imminent connection release, it is the user’s responsibility to use an upper
level mechanism. For example, the user may send specific (expedited) data and wait for the
response of the remote user before issuing a disconnect request.

X/Open CAE Specification (1992)
Page : 18 X/Open Transport Interface (XTI)

-- --

XTI Overview Overview of Connection-oriented Mode

The orderly release capability is an optional feature ofTCP. If supported by theTCP
transport provider, orderly release may be invoked from the data transfer phase to enable
two users to gracefully release a connection. The procedure for orderly release prevents the
loss of data that may occur during an abortive release.

The functions that support connection release are:

t_snddis() This function can be issued by either transport user to initiate the
abortive release of a transport connection. It may also be used to reject
a connect request during the connection establishment phase.

t_rcvdis() This function identifies the reason for the abortive release of a
connection, where the connection is released by the transport provider or
another transport user.

t_sndrel() This function can be called by either transport user to initiate an orderly
release. The connection remains intact until both users call this function
andt_rcvrel().

t_rcvrel() This function is called when a user is notified of an orderly release
request, as a means of informing the transport provider that the user is
aware of the remote user’s actions.

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 19

-- --

Overview of Connectionless Mode XTI Overview

3.2 OVERVIEW OF CONNECTIONLESS MODE

The connectionless-mode transport service consists of two phases of communication:
initialisation/de-initialisation and data transfer. A brief description of each phase and its
associated functions is presented below. A state machine is described inSection C.1,
Transport Service Interface Sequence of Functionsand the figure inSection C.3,
Example in Connectionless Mode, that defines the legal sequence in which functions from
each phase may be issued.

In order to permit the transfer of connectionless data, a user (application) must:

1. supply a transport endpoint for the appropriate type of provider (usingt_open()); this
establishes a transport endpoint through which the user may communicate with the
provider;

2. associate (bind) an address with this transport endpoint (usingt_bind()), and

3. the user may then send and/or receive connectionless data, as required, using the
functionst_sndudata() andt_rcvudata(). Once the data transfer phase is finished, the
application may either directly close the file descriptor returned byt_open() (using
t_close()), thereby freeing the resource for future use, or start a new exchange of data
after disassociating the old address and binding a new one.

3.2.1 Initialisation/De-initialisation Phase

The functions that support the initialisation/de-initialisation tasks are the same functions
used in the connection-mode service.

3.2.2 Overview of Data Transfer

Once a transport endpoint has been activated, a user is free to send and receive data units
through that endpoint in connectionless mode as follows:

t_sndudata() This function enables transport users to send a self-contained data unit
to the user at the specified protocol address.

t_rcvudata() This function enables transport users to receive data units from other
users.

t_rcvuderr() This function enables transport users to retrieve error information
associated with a previously sent data unit.

The only possible events reported to the user are [T_UDERR], [T_DATA] and [T_GODATA].
Expedited data cannot be used with a connectionless transport provider.

Receiving Data

If data is available (a datagram or a part), thet_rcvudata() call returns immediately
indicating the number of octets received. If data is not immediately available, then the result
of thet_rcvudata() call depends on the chosen mode:

g Asynchronous mode:
The call returns immediately indicating failure. The user must either retry the call
repeatedly, or ‘‘poll’’ for incoming data by using theEM interface or thet_look()

X/Open CAE Specification (1992)
Page : 20 X/Open Transport Interface (XTI)

-- --

XTI Overview Overview of Connectionless Mode

function so as not to be blocked.

g Synchronous mode:
The call is blocked until one of the following conditions becomes true:

— a datagram is received;

— an error is detected by the transport provider, or

— a signal has arrived.

The application may use thet_look() function or theEM mechanism to know if data is
available instead of issuing at_rcvudata() call which may be blocking.

Sending Data

g Synchronous mode:
In order to maintain some flow control, thet_sndudata() function returns when sending
a new datagram becomes possible again. A process which sends data in synchronous
mode may be blocked for some time.

g Asynchronous mode:
The transport provider may refuse to send a new datagram for flow control restrictions.
In this case, thet_sndudata() call fails returning a negative value and settingt_errno to
[TFLOW]. The user may retry later or use thet_look() function orEM interface to be
informed of the flow control restriction removal.

If t_sndudata() is called before the destination user has activated its transport endpoint, the
data unit may be discarded.

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 21

-- --

XTI Features XTI Overview

3.3 XTI FEATURES

The following functions, which correspond to the subset common to connection- oriented
and connectionless services, are always implemented:

t_bind()
t_close()
t_look()
t_open()
t_sync()
t_unbind()

If a Connection-oriented Transport Service is provided, then the following functions are
always implemented:

t_accept()
t_connect()
t_listen()
t_rcv()
t_rcvconnect()
t_rcvdis()
t_snd()
t_snddis()

If XTI supports the access to the Connectionless Transport Service, the following three
functions are always implemented:

t_rcvudata()
t_rcvuderr()
t_sndudata()

Mandatory mechanisms:

g Synchronous mode

g Asynchronous mode

Utility functions:

t_alloc()
t_free()
t_error()
t_getprotaddr()
t_getinfo()
t_getstate()
t_optmgmt()
t_strerror()

The orderly release mechanism (usingt_sndrel() and t_rcvrel()), is supported only for
T_COTS_ORDtype providers. Use with other providers will cause the[TNOTSUPPORT]error
to be returned. The use of orderly release is definitely not recommended in order to make
applications usingTCPportable onto theISO Transport Layer.

X/Open CAE Specification (1992)
Page : 22 X/Open Transport Interface (XTI)

-- --

XTI Overview XTI Features

Optional mechanisms:

g the ability to manage (enqueue) more than one incoming connect indication at any one
time, and

g the address of the caller passed witht_accept() may optionally be checked by anXTI
implementation.

3.3.1 XTI Functions Versus Protocols

Table 3-1 presents all the functions defined inXTI. The character ‘x’ indicates that the
mapping of that function is possible onto a Connection-oriented or Connectionless Transport
Service. The table indicates the type of utility functions as well.

iii
Necessary for Protocol Utility Functionsiii

ConnectionFunctions
Oriented

Connectionless General Memory
ii
t_accept() x
t_alloc() x
t_bind() x x
t_close() x x
t_connect() x
t_error() x
t_free() x
t_getprotaddr() x
t_getinfo() x
t_getstate() x
t_listen() x
t_look() x x
t_open() x x
t_optmgmt() x
t_rcv() x
t_rcvconnect() x
t_rcvdis() x
t_rcvrel() x
t_rcvudata() x
t_rcvuderr() x
t_snd() x
t_snddis() x
t_sndrel() x
t_sndudata() x
t_strerror() x
t_sync() x
t_unbind() x xiiicc

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 3-1. Classification of theXTI Functions

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 23

-- --

XTI Features XTI Overview

X/Open CAE Specification (1992)
Page : 24 X/Open Transport Interface (XTI)

-- --

-- --

Chapter 4

States and Events in XTI

Tables 4-1 to 4-7 are included to describe the possible states of the transport provider as
seen by the transport user, to describe the incoming and outgoing events that may occur on
any connection, and to identify the allowable sequence of function calls. Given a current
state and event, the transition to the next state is shown as well as any actions that must be
taken by the transport user.

The allowable sequence of functions is described in Tables 4-5, 4-6 and 4-7. The support
functions, t_getprotaddr(), t_getstate(), t_getinfo(), t_alloc(), t_free(), t_look() and
t_sync(), are excluded from the state tables because they do not affect the state of the
interface. Each of these functions may be issued from any state except the uninitialised
state. Similarly, thet_error() andt_strerror() functions have been excluded from the state
table because they do not affect the state of the interface.

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 25

-- --

Transport Interfaces States States and Events in XTI

4.1 TRANSPORT INTERFACES STATES

XTI manages a transport endpoint by using at most 8 states:

g T_UNINIT

g T_UNBND

g T_IDLE

g T_OUTCON

g T_INCON

g T_DATAXFER

g T_INREL

g T_OUTREL

The statesT_OUTREL and T_INREL are significant only if the optional orderly release
function is both supported and used.

Table 4-1 describes all possible states of the transport provider as seen by the transport user.
The service type may be connection mode, connection mode with orderly release or
connectionless mode.

iii
State Description Service Typeii

T_UNINIT uninitialised− initial T_COTS
and final state of interface T_CLTS

T_COTS_ORDiii
T_UNBND unbound T_COTS

T_COTS_ORD
T_CLTSiii

T_IDLE no connection established T_COTS
T_COTS_ORD
T_CLTSiii

T_OUTCON outgoing connection pending T_COTS
for active user T_COTS_ORDiii

T_INCON incoming connection pending T_COTS
for passive user T_COTS_ORDiii

T_DATAXFER data transfer T_COTS
T_COTS_ORDiii

T_OUTREL outgoing orderly release T_COTS_ORD
(waiting for orderly release indication)iii

T_INREL incoming orderly release T_COTS_ORD
(waiting to send orderly release request)iiicc

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 4-1. Transport Interface States

X/Open CAE Specification (1992)
Page : 26 X/Open Transport Interface (XTI)

-- --

States and Events in XTI Outgoing Events

4.2 OUTGOING EVENTS

The following outgoing events correspond to the successful return or error return of the
specified user-level transport functions causingXTI to change state, where these functions
send a request or response to the transport provider. In Table 4-2, some events (e.g.,
acceptX) are distinguished by the context in which they occur. The context is based on the
values of the following:

ocnt Count of outstanding connect indications (connect indications passed to the
user but not accepted or rejected).

fd File descriptor of the current transport endpoint.

resfd File descriptor of the transport endpoint where a connection will be accepted.

ii
Event Description Service Typeii

opened successful return oft_open() T_COTS, T_COTS_ORD, T_CLTSii
bind successful return oft_bind() T_COTS, T_COTS_ORD, T_CLTSii
optmgmt successful return oft_optmgmt() T_COTS, T_COTS_ORD, T_CLTSii
unbind successful return oft_unbind() T_COTS, T_COTS_ORD, T_CLTSii
closed successful return oft_close() T_COTS, T_COTS_ORD, T_CLTSii
connect1 successful return oft_connect() T_COTS, T_COTS_ORD

in synchronous modeii
connect2 TNODATA error ont_connect() T_COTS, T_COTS_ORD

in asynchronous mode, orTLOOK

error due to a disconnect indication
arriving on the transport endpoint,
or TSYSERRerror and errno set toEINTR.ii

accept1 successful return oft_accept() T_COTS, T_COTS_ORD

with ocnt== 1, fd == resfdii
accept2 successful return oft_accept() T_COTS, T_COTS_ORD

with ocnt== 1, fd resfdii
accept3 successful return oft_accept() T_COTS, T_COTS_ORD

with ocnt> 1ii
snd successful return oft_snd() T_COTS, T_COTS_ORDii
snddis1 successful return oft_snddis() T_COTS, T_COTS_ORD

with ocnt<= 1ii
snddis2 successful return oft_snddis() T_COTS, T_COTS_ORD

with ocnt> 1ii
sndrel successful return oft_sndrel() T_COTS_ORDii
sndudata successful return oft_sndudata() T_CLTSiicc

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 4-2. Transport Interface Outgoing Events

∗ Note thatocnt is only meaningful for the listening transport endpoint (fd).

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 27

-- --

Incoming Events States and Events in XTI

4.3 INCOMING EVENTS

The following incoming events correspond to the successful return of the specified user-
level transport functions, where these functions retrieve data or event information from the
transport provider. One incoming event is not associated directly with the return of a
function on a given transport endpoint:

g pass_conn, which occurs when a user transfers a connection to another transport
endpoint. This event occurs on the endpoint that is being passed the connection, despite
the fact that no function is issued on that endpoint. The eventpass_connis included in
the state tables to describe what happens when a user accepts a connection on another
transport endpoint.

In Table 4-3, thercvdis events are distinguished by the context in which they occur. The
context is based on the value ofocnt, which is the count of outstanding connect indications
on the current transport endpoint.

iii
Incoming

Event Description Service Typeii
listen successful return oft_listen() T_COTS

T_COTS_ORDiii
rcvconnect successful return oft_rcvconnect() T_COTS

T_COTS_ORDiii
rcv successful return oft_rcv() T_COTS

T_COTS_ORDiii
rcvdis1 successful return oft_rcvdis() T_COTS

with ocnt== 0 T_COTS_ORDiii
rcvdis2 successful return oft_rcvdis() T_COTS

with ocnt== 1 T_COTS_ORDiii
rcvdis3 successful return oft_rcvdis() T_COTS

with ocnt> 1 T_COTS_ORDiii
rcvrel successful return oft_rcvrel() T_COTS_ORDiii
rcvudata successful return oft_rcvudata() T_CLTSiii
rcvuderr successful return oft_rcvuderr() T_CLTSiii
pass_conn receive a passed connection T_COTS

T_COTS_ORDiiic
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 4-3. Transport Interface Incoming Events

X/Open CAE Specification (1992)
Page : 28 X/Open Transport Interface (XTI)

-- --

States and Events in XTI Transport User Actions

4.4 TRANSPORT USER ACTIONS

Some state transitions are accompanied by a list of actions the transport user must take.
These actions are represented by the notation [n], where n is the number of the specific
action as described in Table 4-4.

ii
[1] Set the count of outstanding connect indications to zero.

[2] Increment the count of outstanding connect indications.

[3] Decrement the count of outstanding connect indications.

[4] Pass a connection to another transport endpoint as indicated
in t_accept().iic

c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c

Table 4-4. Transport Interface User Actions

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 29

-- --

State Tables States and Events in XTI

4.5 STATE TABLES

Tables 4-5, 4-6 and 4-7 describe the possible next states, given the current state and event.
The state is that of the transport provider as seen by the transport user.

The contents of each box represent the next state given the current state (column) and the
current incoming or outgoing event (row). An empty box represents a state/event
combination that is invalid. Along with the next state, each box may include an action list
(as specified in Table 4-4). The transport user must take the specific actions in the order
specified in the state table.

A separate table is shown for initialisation/de-initialisation, data transfer in connectionless
mode and connection/release/data transfer in connection mode.

iii
state
event

T_UNINIT T_UNBND T_IDLE
ii
opened T_UNBNDiii
bind T_IDLE [1]iii
unbind T_UNBNDiii
closed T_UNINIT T_UNINITiiicc

c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c

Table 4-5. Initialisation/De-initialisation State Table

iiiiiiiiiiiiiiiiiii
state
event

T_IDLE
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
sndudata T_IDLEiiiiiiiiiiiiiiiiiii
rcvudata T_IDLEiiiiiiiiiiiiiiiiiii
rcvuderr T_IDLEiiiiiiiiiiiiiiiiiiic

c
c
c
c
c
c

c
c
c
c
c
c
c

c
c
c
c
c
c
c

Table 4-6. Data Transfer State Table for Connectionless-Mode Service

X/Open CAE Specification (1992)
Page : 30 X/Open Transport Interface (XTI)

-- --

States and Events in XTI State Tables

iii
state
event

T_IDLE T_OUTCON T_INCON T_DATAXFER T_OUTREL T_INREL T_UNBND
ii
connect1 T_DATAXFERiii
connect2 T_OUTCONiii
rcvconnect T_DATAXFERiii
listen T_INCON[2] T_INCON[2]iii
accept1 T_DATAXFER[3]iii
accept2 T_IDLE[3][4]iii
accept3 T_INCON[3][4]iii
snd T_DATAXFER T_INRELiii
rcv T_DATAXFER T_OUTRELiii
snddis1 T_IDLE T_IDLE[3] T_IDLE T_IDLE T_IDLEiii
snddis2 T_INCON[3]iii
rcvdis1 T_IDLE T_IDLE T_IDLE T_IDLEiii
rcvdis2 T_IDLE[3]iii
rcvdis3 T_INCON[3]iii
sndrel T_OUTREL T_IDLEiii
rcvrel T_INREL T_IDLEiii
pass_conn T_DATAXFER T_DATAXFERiii
optmgmt T_IDLE T_OUTCON T_INCON T_DATAXFER T_OUTREL T_INREL T_UNBINDiii
closed T_UNINIT T_UNINIT T_UNINIT T_UNINIT T_UNINIT T_UNINITiiic

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Figure 4-7. Connection/Release/Data Transfer State Table for Connection-mode Service

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 31

-- --

Events and TLOOK Error Indication States and Events in XTI

4.6 EVENTS AND TLOOK ERROR INDICATION

The following list describes the asynchronous events which cause anXTI call to return with
a[TLOOK] error:

t_accept() T_DISCONNECT, T_LISTEN

t_connect() T_DISCONNECT, T_LISTEN 1

t_listen() T_DISCONNECT2

t_rcv() T_DISCONNECT, T_ORDREL3

t_rcvconnect() T_DISCONNECT

t_rcvrel() T_DISCONNECT

t_rcvudata() T_UDERR

t_snd() T_DISCONNECT, T_ORDREL

t_sndudata() T_UDERR

t_unbind() T_LISTEN, T_DATA 4

t_sndrel() T_DISCONNECT

t_snddis() T_DISCONNECT

Once a[TLOOK] error has been received on a transport endpoint via anXTI function,
subsequent calls to that and otherXTI functions, to which the same[TLOOK] error applies,
will continue to return[TLOOK] until the event is consumed. An event causing the[TLOOK]
error can be determined by callingt_look() and then can be consumed by calling the
corresponding consumingXTI function as defined inChapter 2, Table 2-1, Events and
t_look().

hhhhhhhhhhhhhhhhhhhhh

1. This occurs only when at_connectis done on an endpoint which has been bound with aqlen > 0 and for which a connect
indication is pending.

2. This event indicates a disconnect on an outstanding connect indication.

3. This occurs only when all pending data has been read.

4. T_DATA may only occur for the connectionless mode.

X/Open CAE Specification (1992)
Page : 32 X/Open Transport Interface (XTI)

-- --

-- --

Chapter 5

The Use of Options

5.1 GENERALITIES

The functions t_accept(), t_connect(), t_listen(), t_optmgmt(), t_rcvconnect(),
t_rcvudata(), t_rcvuderr() andt_sndudata() contain anopt argument of typestruct netbuf
as an input or output parameter. This argument is used to convey options between the
transport user and the transport provider.

There is no general definition about the possible contents of options. There are generalXTI
options and those that are specific for each transport provider. Some options allow the user
to tailor his communication needs, for instance by asking for high throughput or low delay.
Others allow the fine-tuning of the protocol behaviour so that communication with unusual
characteristics can be handled more effectively. Other options are for debugging purposes.

All options have default values. Their values have meaning to and are defined by the
protocol level in which they apply. However, their values can be negotiated by a transport
user. This includes the simple case where the transport user can simply enforce its use.
Often, the transport provider or even the remote transport user may have the right to
negotiate a value of lesser quality than the proposed one, i.e., a delay may become longer, or
a throughput may become lower.

It is useful to differentiate between options that areassociation-related1 and those that are
not. Association-related options are intimately related to the particular transport connection
or datagram transmission. If the calling user specifies such an option, some ancillary
information is transferred across the network in most cases. The interpretation and further
processing of this information is protocol-dependent. For instance, in anISO connection-
oriented communication, the calling user may specify quality-of-service parameters on
connection establishment. These are first processed and possibly lowered by the local
transport provider, then sent to the remote transport provider that may degrade them again,
and finally conveyed to the called user that makes the final selection and transmits the
selected values back to the caller.

Options that are not association-related do not contain information destined for the remote
transport user. Some have purely local relevance, e.g., an option that enables debugging.
Others influence the transmission, for instance the option that sets theIP time-to-livefield, or
TCP_NODELAY (seeAppendix B, Internet Protocol-specific Information). Local options
are negotiated solely between the transport user and the local transport provider. The
distinction between these two categories of options is visible inXTI through the following
relationship: on output, the functionst_listen() and t_rcvudata() return association-related
options only. The functionst_rcvconnect() and t_rcvuderr() may return options of both

hhhhhhhhhhhhhhhhhhhhh

1. The term ‘‘association’’ is used to denote a pair of communicating transport users.

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 33

-- --

Generalities The Use of Options

categories. On input, options of both categories may be specified witht_accept() and
t_sndudata(). The functionst_connect() and t_optmgmt() can process and return both
categories of options.

The transport provider has a default value for each option it supports. These defaults are
sufficient for the majority of communication relations. Hence, a transport user should only
request options actually needed to perform the task, and leave all others at their default
value.

This chapter describes the general framework for the use of options. This framework is
obligatory for all transport providers. The specific options that are legal for use with a
specific transport provider are described in the provider-specific appendices (seeAppendix
A, ISO Transport Protocol Information , and Appendix B, Internet Protocol-specific
Information). GeneralXTI options are described int_optmgmt() in Chapter 6, XTI
Library Functions and Parameters.

X/Open CAE Specification (1992)
Page : 34 X/Open Transport Interface (XTI)

-- --

The Use of Options The Format of Options

5.2 THE FORMAT OF OPTIONS

Options are conveyed via anopt argument ofstruct netbuf. Each option in the buffer
specified is of the formstruct t_opthdr possibly followed by an option value.

A transport provider embodies a stack of protocols. Thelevel field of struct t_opthdr
identifies theXTI level or a protocol of the transport provider asTCPor ISO 8073:1986. The
namefield identifies the option within the level, andlen contains its total length, i.e., the
length of the option headert_opthdr plus the length of the option value. Thestatusfield is
used by theXTI level or the transport provider to indicate success or failure of a negotiation
(seeSection 5.3.5, Retrieving Information about Options andt_optmgmt() in Chapter 6,
XTI Library Functions and Parameters).

Several options can be concatenated. The transport user has, however, to ensure that each
option starts at a long-word boundary. The macroOPT_NEXTHDR(pbuf, buflen, poption)
can be used for that purpose. The parameterpbuf denotes a pointer to an option buffer
opt.buf, andbuflen is its length. The parameterpoptionpoints to the current option in the
option buffer. OPT_NEXTHDR returns a pointer to the position of the next option, or returns
a null pointer if the option buffer is exhausted. The macro is helpful for writing and reading.
See<xti.h> in Appendix F, Headers and Definitionsfor the exact definition.

The option buffer thus has the following form (unsigned long is abbreviated tou_long):

len level name status / /value len

u_long u_long u_long u_long

opt.buf alignment characters

first option second option

The length of the option buffer is given byopt.len.

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 35

-- --

The Elements of Negotiation The Use of Options

5.3 THE ELEMENTS OF NEGOTIATION

This section describes the general rules governing the passing and retrieving of options and
the error conditions that can occur. Unless explicitly restricted, these rules apply to all
functions that allow the exchange of options.

5.3.1 Multiple Options and Options Levels

When multiple options are specified in an option buffer on input, different rules apply to the
levels that may be specified, depending on the function call. Multiple options specified on
input to t_optmgmt() must address the same option level. Options specified on input to
t_connect(), t_accept() andt_sndudata() can address different levels.

5.3.2 Illegal Options

Only legal options can be negotiated; illegal options cause failure. An option is illegal if the
following applies:

g The length specified int_opthdr.lenexceeds the remaining size of the option buffer
(counted from the beginning of the option).

g The option value is illegal. The legal values are defined for each option. (See
t_optmgmt() in Chapter 6, XTI Library Functions and Parameters, Appendix A, ISO
Transport Protocol Information and Appendix B, Internet Protocol-specific
Information .)

If an illegal option is passed toXTI, the following will happen:

g A call to t_optmgmt() fails with [TBADOPT].

g t_accept() or t_connect() fail either with [TBADOPT], or the connection establishment
aborts, depending on the implementation and the time the illegal option is detected. If
the connection aborts, aT_DISCONNECT event occurs, and a synchronous call to
t_connect() fails with [TLOOK]. It depends on timing and implementation conditions
whether at_accept() call still succeeds or fails with[TLOOK] in that case.

g A call to t_sndudata() either fails with [TBADOPT], or it successfully returns, but a
T_UDERRevent occurs to indicate that the datagram was not sent.

If the transport user passes multiple options in one call and one of them is illegal, the call
fails as described above. It is, however, possible that some or even all of the submitted legal
options were successfully negotiated. The transport user can check the current status by a
call to t_optmgmt() with the T_CURRENT flag set (seet_optmgmt() in Chapter 6, XTI
Library Functions and Parameters).

Specifying an option level unknown to the transport provider does not cause failure in calls
to t_connect(), t_accept() or t_sndudata(); the option is discarded in these cases. The
functiont_optmgmt() fails with [TBADOPT].

Specifying an option name that is unknown to or not supported by the protocol selected by
the option level does not cause failure. The option is discarded in calls tot_connect(),
t_accept() or t_sndudata(). The functiont_optmgmt() returnsT_NOTSUPPORTin the level
field of the option.

X/Open CAE Specification (1992)
Page : 36 X/Open Transport Interface (XTI)

-- --

The Use of Options The Elements of Negotiation

5.3.3 Initiating an Option Negotiation

A transport user initiates an option negotiation when callingt_connect(), t_sndudata() or
t_optmgmt() with the flagT_NEGOTIATEset.

The negotiation rules for these functions depend on whether an option request is an absolute
requirement or not. This is explicitly defined for each option (seet_optmgmt() in Chapter
6, XTI Library Functions and Parameters, Appendix A, ISO Transport Protocol
Information andAppendix B, Internet Protocol-specific Information). In case of anISO
transport provider, for example, the option that requests use of expedited data is not an
absolute requirement. On the other hand, the option that requests protection could be an
absolute requirement.

Note: The notion ‘‘absolute requirement’’ originates from the quality-of-service
parameters inISO 8072:1986. Its use is extended here to all options.

If the proposed option value is an absolute requirement, three outcomes are possible:

g The negotiated value is the same as the proposed one. When the result of the negotiation
is retrieved, thestatusfield in t_opthdr is set toT_SUCCESS.

g The negotiation is rejected if the option is supported but the proposed value cannot be
negotiated. This leads to the following behaviour:

— t_optmgmt() successfully returns, but the returned option has itsstatusfield set to
T_FAILURE.

— Any attempt to establish a connection aborts; aT_DISCONNECTevent occurs, and a
synchronous call tot_connect() fails with [TLOOK].

— t_sndudata() fails with [TLOOK] or successfully returns, but aT_UDERR event
occurs to indicate that the datagram was not sent.

If multiple options are submitted in one call and one of them is rejected,XTI behaves as
just described. Although the connection establishment or the datagram transmission
fails, options successfully negotiated before some option was rejected retain their
negotiated values. There is no roll-back mechanism (seeSection 5.4, Option
Management of a Transport Endpoint).

The functiont_optmgmt() attempts to negotiate each option. Thestatusfields of the
returned options indicate success (T_SUCCESS) or failure (T_FAILURE).

g If the local transport provider does not support the option at all,t_optmgmt() reports
T_NOTSUPPORTin thestatusfield. The functionst_connect() andt_sndudata() ignore
this option.

If the proposed option value is not an absolute requirement, two outcomes are possible:

g The negotiated value is of equal or lesser quality than the proposed one (e.g., a delay
may become longer).

When the result of the negotiation is retrieved, thestatusfield in t_opthdr is set to
T_SUCCESSif the negotiated value equals the proposed one, or set toT_PARTSUCCESS
otherwise.

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 37

-- --

The Elements of Negotiation The Use of Options

g If the local transport provider does not support the option at all,t_optmgmt() reports
T_NOTSUPPORTin thestatusfield. The functionst_connect() andt_sndudata() ignore
this option.

Unsupported options do not cause functions to fail or a connection to abort, since different
vendors possibly implement different subsets of options. Furthermore, future enhancements
of XTI might encompass additional options that are unknown to earlier implementations of
transport providers. The decision whether or not the missing support of an option is
acceptable for the communication is left to the transport user.

The transport provider does not check for multiple occurrences of the same option, possibly
with different option values. It simply processes the options in the option buffer one after
the other. However, the user should not make any assumption about the order of processing.

Not all options are independent of one another. A requested option value might conflict
with the value of another option that was specified in the same call or is currently effective
(seeSection 5.4, Option Management of a Transport Endpoint). These conflicts may not
be detected at once, but later they might lead to unpredictable results. If detected at
negotiation time, these conflicts are resolved within the rules stated above. The outcomes
may thus be quite different and depend on whether absolute or non-absolute requests are
involved in the conflict.

Conflicts are usually detected at the time a connection is established or a datagram is sent. If
options are negotiated witht_optmgmt(), conflicts are usually not detected at this time, since
independent processing of the requested options must allow for temporal inconsistencies.

When called, the functionst_connect() and t_sndudata() initiate a negotiation ofall
association-related options according to the rules of this section. Options not explicitly
specified in the function calls themselves are taken from an internal option buffer that
contains the values of a previous negotiation (seeSection 5.4, Option Management of a
Transport Endpoint).

5.3.4 Responding to a Negotiation Proposal

In connection-oriented communication, some protocols give the peer transport users the
opportunity to negotiate characteristics of the transport connection to be established. These
characteristics are association-related options. With the connect indication, the called user
receives (viat_listen()) a proposal about the option values that should be effective for this
connection. The called user can accept this proposal or weaken it by choosing values of
lower quality (e.g., longer delays than proposed). The called user can, of course, refuse the
connection establishment altogether.

The called user responds to a negotiation proposal viat_accept(). If the called transport
user tries to negotiate an option of higher quality than proposed, the outcome depends on the
protocol to which that option applies. Some protocols may reject the option, some protocols
take other appropriate action described in protocol-specific appendices. If an option is
rejected, the following error occurs:

X/Open CAE Specification (1992)
Page : 38 X/Open Transport Interface (XTI)

-- --

The Use of Options The Elements of Negotiation

The connection fails; aT_DISCONNECTevent occurs. It depends on timing
and implementation conditions whether thet_accept() call still succeeds or
fails with [TLOOK].

If multiple options are submitted witht_accept() and one of them is rejected, the connection
fails as described above. Options that could be successfully negotiated before the erroneous
option was processed retain their negotiated value. There is no roll-back mechanism (see
Section 5.4, Option Management of a Transport Endpoint).

The response options can either be specified with thet_accept() call, or can be preset for the
r resfd in a t_optmgmt() call (action
T_NEGOTIATE) prior to t_accept() (seeSection 5.4, Option Management of a Transport
Endpoint). Note that the response to a negotiation proposal is activated whent_accept() is
called. A t_optmgmt() call with erroneous option values as described above will succeed;
the connection aborts at the timet_accept() is called.

The connection also fails if the selected option values lead to contradictions.

The functiont_accept() does not check for multiple specification of an option (seeSection
5.3.3, Initiating an Option Negotiation). Unsupported options are ignored.

5.3.5 Retrieving Information about Options

This section describes how a transport user can retrieve information about options. To be
explicit, a transport user must be able to:

g know the result of a negotiation (e.g., at the end of a connection establishment)

g know the proposed option values under negotiation (during connection establishment)

g retrieve option values sent by the remote transport user for notification only (e.g.,IP
options)

g check option values currently effective for the transport endpoint.

To this end, the functionst_connect(), t_listen(), t_optmgmt(), t_rcvconnect(),
t_rcvudata() andt_rcvuderr() take an output argumentopt of struct netbuf. The transport
user has to supply a buffer where the options shall be written to;opt.bufmust point to this
buffer, andopt.maxlenmust contain the buffer’s size. The transport user can setopt.maxlen
to zero to indicate that no options are to be retrieved.

Which options are returned depend on the function call involved:

t_connect() (synchronous mode) andt_rcvconnect()
The functions return the values of all association-related options that were
received with the connection response and the negotiated values of those
non-association-related options that had been specified on input. However,
options specified on input in thet_connect() call that are not supported or
refer to an unknown option level are discarded and not returned on output.

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 39

-- --

The Elements of Negotiation The Use of Options

The statusfield of each option returned witht_connect() or t_rcvconnect()
indicates if the proposed value (T_SUCCESS) or a degraded value
(T_PARTSUCCESS) has been negotiated. Thestatus field of received
ancillary information (e.g.,IP options) that is not subject to negotiation is
always set toT_SUCCESS.

t_listen() The received association-related options are related to the incoming
connection (identified by the sequence number), not to the listening endpoint.
(However, the option values currently effective for the listening endpoint can
affect the values retrieved byt_listen(), since the transport provider might be
involved in the negotiation process, too.) Thus, if the same options are
specified in a call tot_optmgmt() with actionT_CURRENT, t_optmgmt() will
usually not return the same values.

The number of received options may be variable for subsequent connect
indications, since many association-related options are only transmitted on
explicit demand by the calling user (e.g.,IP options or ISO 8072:1986
throughput). It is even possible that no options at all are returned.

Thestatusfield is irrelevant.

t_rcvudata() The received association-related options are related to the incoming
datagram, not to the transport endpointfd. Thus, if the same options are
specified in a call tot_optmgmt() with actionT_CURRENT, t_optmgmt() will
usually not return the same values.

The number of options received may vary from call to call.

Thestatusfield is irrelevant.

t_rcvuderr() The returned options are related to the options input at the previous
t_sndudata() call that produced the error. Which options are returned and
which values they have depend on the specific error condition.

Thestatusfield is irrelevant.

t_optmgmt() This call can process and return both categories of options. It acts on options
related to the specified transport endpoint, not on options related to a connect
indication or an incoming datagram. A detailed description is given in
t_optmgmt() in Chapter 6, XTI Library Functions and Parameters.

5.3.6 Privileged and Read-only Options

Privilegedoptions or option values are those that may be requested by privileged users only.
The meaning of privilege is hereby implementation-defined.

Read-onlyoptions serve for information purposes only. The transport user may be allowed
to read the option value but not to change it. For instance, to select the value of a protocol
timer or the maximum length of a protocol data unit may be too subtle to leave to the
transport user, though the knowledge about this value might be of some interest. An option
might be read-only for all users or solely for non-privileged users. A privileged option
might be inaccessible or read-only for non-privileged users.

X/Open CAE Specification (1992)
Page : 40 X/Open Transport Interface (XTI)

-- --

The Use of Options The Elements of Negotiation

An option might be negotiable in someXTI states and read-only in otherXTI states. For
instance, theISO quality-of-service options are negotiable in the statesT_IDLE andT_INCON
and read-only in all other states (exceptT_UNINIT).

If a transport user requests negotiation of a read-only option, or a non-privileged user
requests illegal access to a privileged option, the following outcomes are possible:

g t_optmgmt() successfully returns, but the returned option has itsstatus field set to
T_NOTSUPPORTif a privileged option was requested illegally, and toT_READONLY if
modification of a read-only option was requested.

g If negotiation of a read-only option is requested,t_accept() or t_connect() either fail
with [TACCES], or the connection establishment aborts and aT_DISCONNECT event
occurs. If the connection aborts, a synchronous call tot_connect() fails with [TLOOK].
If a privileged option is illegally requested, the option is quietly ignored. (A non-
privileged user shall not be able to select an option which is privileged or unsupported.)
It depends on timing and implementation conditions whether at_accept() call still
succeeds or fails with[TLOOK].

g If negotiation of a read-only option is requested,t_sndudata() may return[TLOOK] or
successfully return, but aT_UDERR event occurs to indicate that the datagram was not
sent. If a privileged option is illegally requested, the option is quietly ignored. (A non-
privileged user shall not be able to select an option which is privileged or unsupported.)

If multiple options are submitted tot_connect(), t_accept() or t_sndudata() and a read-only
option is rejected, the connection or the datagram transmission fails as described. Options
that could be successfully negotiated before the erroneous option was processed retain their
negotiated values. There is no roll-back mechanism (see alsoSection 5.4, Option
Management of a Transport Endpoint).

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 41

-- --

Option Management of a Transport Endpoint The Use of Options

5.4 OPTION MANAGEMENT OF A TRANSPORT ENDPOINT

This section describes how option management works during the lifetime of a transport
endpoint.

Each transport endpoint is (logically) associated with an internal option buffer. When a
transport endpoint is created, this buffer is filled with a system default value for each
supported option. Depending on the option, the default may be ‘OPTION ENABLED’,
‘OPTION DISABLED’ or denote a time span, etc. These default settings are appropriate for
most uses. Whenever an option value is modified in the course of an option negotiation, the
modified value is written to this buffer and overwrites the previous one. At any time, the
buffer contains all option values that are currently effective for this transport endpoint.

The current value of an option can be retrieved at any time by callingt_optmgmt() with the
flag T_CURRENTset. Callingt_optmgmt() with the flagT_DEFAULT set yields the system
default for the specified option.

A transport user can negotiate new option values by callingt_optmgmt() with the flag
T_NEGOTIATE set. The negotiation follows the rules inSection 5.3, The Elements of
Negotiation.

Some options may be modified only in specificXTI states and are read-only in otherXTI
states. Many association-related options, for instance, may not be changed in the state
T_DATAXFER, and an attempt to do so will fail (seeSection 5.3.6, Privileged and Read-
only Options). The legal states for each option are specified with its definition.

As usual, association-related options take effect at the time a connection is established or a
datagram is transmitted. This is the case if they contain information that is transmitted
across the network or determine specific transmission characteristics. If such an option is
modified by a call tot_optmgmt(), the transport provider checks whether the option is
supported and negotiates a value according to its current knowledge. This value is written to
the internal option buffer. The final negotiation takes place if the connection is established
or the datagram is transmitted. This can result in a degradation of the option value or even
in a negotiation failure. The negotiated values are written to the internal option buffer.

Some options may be changed in the stateT_DATAXFER, e.g., those specifying buffer sizes.
Such changes might affect the transmission characteristics and lead to unexpected side
effects (e.g., data loss if a buffer size was shortened) if the user does not care.

The transport user can explicitly specify both categories of options on input when calling
t_connect(), t_accept() or t_sndudata(). The options are at first locally negotiated option-
by-option, and the resulting values written to the internal option buffer. The modified option
buffer is then used if a further negotiation step across the network is required, as for instance
in connection-orientedISO communication. The newly negotiated values are then written to
the internal option buffer.

At any stage, a negotiation failure can lead to an abort of the transmission. If a transmission
aborts, the option buffer will preserve the content it had at the time the failure occurred.
Options that could be negotiated just before the error occurred are written back to the option
buffer, whether theXTI call fails or succeeds.

X/Open CAE Specification (1992)
Page : 42 X/Open Transport Interface (XTI)

-- --

The Use of Options Option Management of a Transport Endpoint

It is up to the transport user to decide which options it explicitly specifies on input when
calling t_connect(), t_accept() or t_sndudata(). The transport user need not pass options at
all, by setting thelen field of the function’s inputopt argument to zero. The current content
of the internal option buffer is then used for negotiation without prior modification.

The negotiation procedure for options at the time of at_connect(), t_accept() or
t_sndudata() call always obeys the rules ofSection 5.3.3, Initiating an Option
Negotiation, and Section 5.3.4, Responding to a Negotiation Proposal, whether the
options were explicitly specified during the call or implicitly taken from the internal option
buffer.

The transport user should not make assumptions about the order in which options are
processed during negotiation.

A value in the option buffer is only modified as a result of a successful negotiation of this
option. It is, in particular, not changed by a connection release. There is no history
mechanism that would restore the buffer state existing prior to the connection establishment
or the datagram transmission. The transport user must be aware that a connection
establishment or a datagram transmission may change the internal option buffer, even if
each option was originally initialised to its default value.

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 43

-- --

Supplements The Use of Options

5.5 SUPPLEMENTS

This section contains supplementary remarks and a short summary.

5.5.1 The Option Value T_UNSPEC

Some options may not have a fully specified value all the time. AnISO transport provider,
for instance, that supports several protocol classes, might not have a preselected preferred
class before a connection establishment is initiated. At the time of the connection request,
the transport provider may conclude from the destination address, quality-of-service
parameters and other locally available information which preferred class it should use. A
transport user asking for the default value of the preferred class option in stateT_IDLE
would get the valueT_UNSPEC. This value indicates that the transport provider did not yet
select a value. The transport user could negotiate another value as the preferred class, e.g.,
T_CLASS2. The transport provider would then be forced to initiate a connect request with
class 2 as the preferred class.

An XTI implementation may also return the valueT_UNSPECif it can currently not access
the option value. This may happen, for example, in the stateT_UNBND in systems where
the protocol stacks reside on separate controller cards and not in the host. The
implementation may never returnT_UNSPECif the option is not supported at all.

If T_UNSPECis a legal value for a specific option, it may be used by the user on input, too.
It is used to indicate that it is left to the provider to choose an appropriate value. This is
especially useful in complex options asISO throughput, where the option value has an
internal structure (seeTCO_THROUGHPUT in Appendix A, ISO Transport Protocol
Information). The transport user may leave some fields unspecified by selecting this value.
If the user proposesT_UNSPEC, the transport provider is free to select an appropriate value.
This might be the default value, some other explicit value, orT_UNSPEC.

For each option, it is specified whether or notT_UNSPECis a legal value for negotiation
purposes.

5.5.2 The info Argument

The functionst_open() and t_getinfo() return values representing characteristics of the
transport provider in the argumentinfo. The value ofinfo->optionsis used byt_alloc() to
allocate storage for an option buffer to be used in anXTI call. The value is sufficient for all
uses.

In general,info->optionsalso includes the size of privileged options, even if these are not
read-only for non-privileged users. Alternatively, an implementation can choose to return
different values ininfo->optionsfor privileged and non-privileged users.

The values ininfo->etsdu, info->tsdu, info->connectandinfo->disconpossibly diminish as
soon as theT_DATAXFER state is entered. Callingt_optmgmt() does not influence these
values (seeChapter 6, t_optmgmt()).

X/Open CAE Specification (1992)
Page : 44 X/Open Transport Interface (XTI)

-- --

The Use of Options Supplements

5.5.3 Summary

g The format of an option is defined by a headerstruct t_opthdr , followed by an option
value.

g On input, several options can be specified in an inputopt argument. Each option must
begin on a long-word boundary.

g There are options that are association-related and options that are not. On output, the
functions t_listen() and t_rcvudata() return association-related options only. The
functions t_rcvconnect() and t_rcvuderr() may return options of both categories. On
input, options of both categories may be specified witht_accept() and t_sndudata().
The functionst_connect() and t_optmgmt() can process and return both categories of
options.

g A transport endpoint is (logically) associated with an internal option buffer, where the
currently effective values are stored. Each successful negotiation of an option modifies
this buffer, regardless of whether the call initiating the negotiation succeeds or fails.

g When callingt_connect(), t_accept() or t_sndudata(), the transport user can choose to
submit the currently effective option values by setting thelen field of the inputopt
argument to zero.

g If a connection is accepted viat_accept(), the explicitly specified option values together
with the currently effective option values ofresfd, not of fd, matter in this negotiation
step.

g The options returned byt_rcvuderr() are those negotiated with the outgoing datagram
that produced the error. If the error occurred during option negotiation, the returned
option might represent some mixture of partly negotiated and not-yet negotiated options.

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 45

-- --

Portability Aspects The Use of Options

5.6 PORTABILITY ASPECTS

An application programmer who writesXTI programs faces two portability aspects:

g Portability across protocol profiles.

g Portability across different system platforms (possibly from different vendors).

Options are intrinsically coupled with a definite protocol or protocol profile. Making
explicit use of them therefore degrades portability across protocol profiles.

Different vendors might offer transport providers with different option support. This is due
to different implementations and product policies. The lists of options on thet_optmgmt()
manual page and in the protocol-specific appendices are maximal sets but do not necessarily
reflect common implementation practice. Vendors will implement subsets that suit their
needs. Making careless use of options therefore endangers portability across different
system platforms.

Every implementation of a protocol profile accessible byXTI can be used with the default
values of options. Applications can thus be written that do not care about options at all.

An application program that processes options retrieved from anXTI function should discard
options it does not know in order to lessen its dependence from different system platforms
and futureXTI releases with possibly increased option support.

X/Open CAE Specification (1992)
Page : 46 X/Open Transport Interface (XTI)

-- --

-- --

Chapter 6

XTI Library Functions and Parameters

6.1 HOW TO PREPARE XTI APPLICATIONS

In a software development environment, a program, for examplefile.c, that usesXTI
functions must be compiled with theXTI L ibrary. This can be done using the following
command:

cc file.c -lxti (e.g., for normal library)

The syntax for shared libraries is implementation-dependent.

TheXTI structures and constants are all defined in the<xti.h> header, which can be found in
Appendix F, Headers and Definitions.

6.2 KEY FOR PARAMETER ARRAYS

For eachXTI function description, a table is given which summarises the contents of the
input and output parameter. The key is given below:

x The parameter value is meaningful. (Input parameter must be set before the call
and output parameter may be read after the call.)

(x) The content of the object pointed to by the x pointer is meaningful.

? The parameter value is meaningful but the parameter is optional.

(?) The content of the object pointed to by the ? pointer is optional.

/ The parameter value is meaningless.

= The parameter after the call keeps the same value as before the call.

6.3 RETURN OF TLOOK ERROR

Many of theXTI functions contained in this chapter return a[TLOOK] error to report the
occurrence of an asynchronous event. For these functions a complete list describing the
function and the events is provided inSection 4.6, Events andTLOOK Error Indication .

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 47

-- --

Return of TLOOK Error XTI Library Functions and Parameters

X/Open CAE Specification (1992)
Page : 48 X/Open Transport Interface (XTI)

-- --

-- --

XTI Library Functions and Parameters t_accept()

NAME
t_accept− accept a connect request

SYNOPSIS
#include <xti.h>

int t_accept(fd, resfd, call)
int fd;
int resfd;
struct t_call ∗call;

DESCRIPTION

ii
Parameters Before call After callii

fd x /
resfd x /
call->addr.maxlen / /
call->addr.len x /
call->addr.buf ? (?) /
call->opt.maxlen / /
call->opt.len x /
call->opt.buf ? (?) /
call->udata.maxlen / /
call->udata.len x /
call->udata.buf ? (?) /
call->sequence x /iicc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

This function is issued by a transport user to accept a connect request. The parameterfd
identifies the local transport endpoint where the connect indication arrived;resfd specifies the
local transport endpoint where the connection is to be established, andcall contains
information required by the transport provider to complete the connection. The parametercall
points to at_call structure which contains the following members:

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;
int sequence;

In call, addr is the protocol address of the calling transport user,opt indicates any options
associated with the connection,udata points to any user data to be returned to the caller, and
sequenceis the value returned byt_listen() that uniquely associates the response with a
previously received connect indication. The address of the caller,addr may be null (length
zero). Whereaddr is not null then it may optionally be checked byXTI.

A transport user may accept a connection on either the same, or on a different, local transport
endpoint than the one on which the connect indication arrived. Before the connection can be
accepted on the same endpoint (resfd==fd), the user must have responded to any previous
connect indications received on that transport endpoint (viat_accept() or t_snddis()).

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 49

-- --

t_accept() XTI Library Functions and Parameters

Otherwise,t_accept() will fail and sett_errno to [TINDOUT].

If a different transport endpoint is specified(resfd fd), then the user may or may not choose
to bind the endpoint before thet_accept() is issued. If the endpoint is not bound prior to the
t_accept(), then the transport provider will automatically bind it to the same protocol address
fd is bound to. If the transport user chooses to bind the endpoint it must be bound to a protocol
address with aqlenof zero and must be in theT_IDLE state before thet_accept() is issued.

The call to t_accept() will fail with t_errno set to [TLOOK] if there are indications (e.g.,
connect or disconnect) waiting to be received on the endpointfd.

The udata argument enables the called transport user to send user data to the caller and the
amount of user data must not exceed the limits supported by the transport provider as returned
in theconnectfield of theinfo argument oft_open() or t_getinfo(). If the len field of udata is
zero, no data will be sent to the caller. All themaxlenfields are meaningless.

When the user does not indicate any option (call->opt.len = 0) it is assumed that the connection
is to be accepted unconditionally. The transport provider may choose options other than the
defaults to ensure that the connection is accepted successfully.

CAVEATS
There may be transport provider-specific restrictions on address binding. SeeAppendix A, ISO
Transport Protocol Information andAppendix B, Internet Protocol-specific Information.

Some transport providers do not differentiate between a connect indication and the connection
itself. If the connection has already been established after a successful return oft_listen(),
t_accept() will assign the existing connection to the transport endpoint specified byresfd (see
Appendix B, Internet Protocol-specific Information).

VALID STATES
fd: T_INCON
r T_IDLE

ERRORS
On failure,t_errno is set to one of the following:

[TBADF] The file descriptorfd or resfddoes not refer to a transport endpoint.

[TOUTSTATE] The function was called in the wrong sequence on the transport
endpoint referenced byfd, or the transport endpoint referred to by
resfd is not in the appropriate state.

[TACCES] The user does not have permission to accept a connection on the
responding transport endpoint or to use the specified options.

[TBADOPT] The specified options were in an incorrect format or contained illegal
information.

[TBADDATA] The amount of user data specified was not within the bounds allowed
by the transport provider.

[TBADADDR] The specified protocol address was in an incorrect format or contained
illegal information.

X/Open CAE Specification (1992)
Page : 50 X/Open Transport Interface (XTI)

-- --

XTI Library Functions and Parameters t_accept()

[TBADSEQ] An invalid sequence number was specified.

[TLOOK] An asynchronous event has occurred on the transport endpoint
referenced byfd and requires immediate attention.

[TNOTSUPPORT] This function is not supported by the underlying transport provider.

[TSYSERR] A system error has occurred during execution of this function.

[TINDOUT] The function was called withfd==resfd but there are outstanding
connection indications on the endpoint. Those other connection
indications must be handled either by rejecting them viat_snddis(3) or
accepting them on a different endpoint viat_accept(3).

[TPROVMISMATCH] The file descriptorsfd and resfd do not refer to the same transport
provider.

[TRESQLEN] The endpoint referenced byresfd (whereresfd fd) was bound to a
protocol address with aqlen that is greater than zero.

[TPROTO] This error indicates that a communication problem has been detected
betweenXTI and the transport provider for which there is no other
suitableXTI (t_errno).

[TRESADDR] This transport provider requires bothfd and resfd to be bound to the
same address. This error results if they are not.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of−1 is returned and
t_errno is set to indicate an error.

SEE ALSO
t_connect(), t_getstate(), t_listen(), t_open(), t_optmgmt(), t_rcvconnect().

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 51

-- --

-- --

t_alloc() XTI Library Functions and Parameters

NAME
t_alloc− allocate a library structure

SYNOPSIS
#include <xti.h>

char ∗t_alloc(fd, struct_type, fields)
int fd;
int struct_type;
int fields;

DESCRIPTION

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Parameters Before call After callii
fd x /
struct_type x /
fields x /iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
c
c
c
c

cc
c
c
c
c

cc
c
c
c
c

cc
c
c
c
c

The t_alloc() function dynamically allocates memory for the various transport function
argument structures as specified below. This function will allocate memory for the specified
structure, and will also allocate memory for buffers referenced by the structure.

The structure to allocate is specified bystruct_typeand must be one of the following:

T_BIND struct t_bind
T_CALL struct t_call
T_OPTMGMT struct t_optmgmt
T_DIS struct t_discon
T_UNITDATA struct t_unitdata
T_UDERROR struct t_uderr
T_INFO struct t_info

where each of these structures may subsequently be used as an argument to one or more
transport functions.

Each of the above structures, exceptT_INFO, contains at least one field of typestruct netbuf.
For each field of this type, the user may specify that the buffer for that field should be allocated
as well. The length of the buffer allocated will be equal to or greater than the appropriate size
as returned in theinfo argument oft_open() or t_getinfo(). The relevant fields of theinfo
argument are described in the following list. Thefields argument specifies which buffers to
allocate, where the argument is the bitwise-or of any of the following:

T_ADDR Theaddr field of thet_bind, t_call, t_unitdata or t_uderr structures.

T_OPT Theopt field of thet_optmgmt, t_call, t_unitdata or t_uderr structures.

T_UDATA Theudatafield of thet_call, t_disconor t_unitdata structures.

X/Open CAE Specification (1992)
Page : 52 X/Open Transport Interface (XTI)

-- --

XTI Library Functions and Parameters t_alloc()

T_ALL All relevant fields of the given structure. Fields which are not supported by
the transport provider specified byfd will not be allocated.

For each relevant field specified infields, t_alloc() will allocate memory for the buffer
associated with the field, and initialise thelen field to zero and thebuf pointer andmaxlenfield
accordingly. Irrelevant or unknown values passed in fields are ignored. Since the length of the
buffer allocated will be based on the same size information that is returned to the user on a call
to t_open() and t_getinfo(), fd must refer to the transport endpoint through which the newly
allocated structure will be passed. In this way the appropriate size information can be accessed.
If the size value associated with any specified field is−1 or −2 (seet_open() or t_getinfo()),
t_alloc() will be unable to determine the size of the buffer to allocate and will fail, setting
t_errno to [TSYSERR] anderrno to [EINVAL]. For any field not specified infields, buf will be
set to the null pointer andlen andmaxlenwill be set to zero.

Use oft_alloc() to allocate structures will help ensure the compatibility of user programs with
future releases of the transport interface functions.

VALID STATES
ALL - apart fromT_UNINIT

ERRORS
On failure,t_errno is set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport endpoint.

[TSYSERR] A system error has occurred during execution of this function.

[TNOSTRUCTYPE] Unsupportedstruct_typerequested. This can include a request for a
structure type which is inconsistent with the transport provider type
specified, i.e., connection-oriented or connectionless.

[TPROTO] This error indicates that a communication problem has been detected
betweenXTI and the transport provider for which there is no other
suitableXTI (t_errno).

RETURN VALUE
On successful completion,t_alloc() returns a pointer to the newly allocated structure. On
failure, a null pointer is returned.

SEE ALSO
t_free(), t_getinfo(), t_open().

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 53

-- --

-- --

t_bind() XTI Library Functions and Parameters

NAME
t_bind− bind an address to a transport endpoint

SYNOPSIS
#include <xti.h>

int t_bind(fd, req, ret)
int fd;
struct t_bind ∗req;
struct t_bind ∗ret;

DESCRIPTION

ii
Parameters Before call After callii

fd x /
req->addr.maxlen / /
req->addr.len x>=0 /
req->addr.buf x (x) /
req->qlen x >=0 /
ret->addr.maxlen x /
ret->addr.len / x
ret->addr.buf ? (?)
ret->qlen / x >=0iic

c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c

This function associates a protocol address with the transport endpoint specified byfd and
activates that transport endpoint. In connection mode, the transport provider may begin
enqueuing incoming connect indications, or servicing a connection request on the transport
endpoint. In connectionless mode, the transport user may send or receive data units through the
transport endpoint.

Thereq andret arguments point to at_bind structure containing the following members:

struct netbuf addr;
unsigned qlen;

Theaddr field of thet_bind structure specifies a protocol address, and theqlen field is used to
indicate the maximum number of outstanding connect indications.

The parameterreq is used to request that an address, represented by thenetbuf structure, be
bound to the given transport endpoint. The parameterlen specifies the number of bytes in the
address, andbuf points to the address buffer. The parametermaxlenhas no meaning for the
req argument. On return,ret contains the address that the transport provider actually bound to
the transport endpoint; this is the same as the address specified by the user inreq. In ret, the
user specifiesmaxlen,which is the maximum size of the address buffer, andbuf which points
to the buffer where the address is to be placed. On return,len specifies the number of bytes in
the bound address, andbuf points to the bound address. Ifmaxlenis not large enough to hold
the returned address, an error will result.

X/Open CAE Specification (1992)
Page : 54 X/Open Transport Interface (XTI)

-- --

XTI Library Functions and Parameters t_bind()

If the requested address is not available,t_bind() will return -1 with t_errno set as appropriate.
If no address is specified inreq (the len field of addr in req is zero orreq is NULL), the
transport provider will assign an appropriate address to be bound, and will return that address in
the addr field of ret. If the transport provider could not allocate an address,t_bind() will fail
with t_errno set to[TNOADDR].

The parameterreq may be a null pointer if the user does not wish to specify an address to be
bound. Here, the value ofqlen is assumed to be zero, and the transport provider will assign an
address to the transport endpoint. Similarly,ret may be a null pointer if the user does not care
what address was bound by the provider and is not interested in the negotiated value ofqlen. It
is valid to setreq and ret to the null pointer for the same call, in which case the provider
chooses the address to bind to the transport endpoint and does not return that information to the
user.

The qlen field has meaning only when initialising a connection-mode service. It specifies the
number of outstanding connect indications that the transport provider should support for the
given transport endpoint. An outstanding connect indication is one that has been passed to the
transport user by the transport provider but which has not been accepted or rejected. A value of
qlen greater than zero is only meaningful when issued by a passive transport user that expects
other users to call it. The value ofqlen will be negotiated by the transport provider and may be
changed if the transport provider cannot support the specified number of outstanding connect
indications. However, this value ofqlen will never be negotiated from a requested value
greater than zero to zero. This is a requirement on transport providers; seeCAVEATS below.
On return, theqlen field in ret will contain the negotiated value.

If fd refers to a connection-mode service, this function allows more than one transport endpoint
to be bound to the same protocol address (however, the transport provider must also support
this capability), but it is not possible to bind more than one protocol address to the same
transport endpoint. If a user binds more than one transport endpoint to the same protocol
address, only one endpoint can be used to listen for connect indications associated with that
protocol address. In other words, only onet_bind() for a given protocol address may specify a
value ofqlen greater than zero. In this way, the transport provider can identify which transport
endpoint should be notified of an incoming connect indication. If a user attempts to bind a
protocol address to a second transport endpoint with a value ofqlen greater than zero,t_bind()
will return -1 and sett_errno to [TADDRBUSY]. When a user accepts a connection on the
transport endpoint that is being used as the listening endpoint, the bound protocol address will
be found to be busy for the duration of the connection, until at_unbind() or t_close() call has
been issued. No other transport endpoints may be bound for listening on that same protocol
address while that initial listening endpoint is active (in the data transfer phase or in theT_IDLE
state). This will prevent more than one transport endpoint bound to the same protocol address
from accepting connect indications.

If fd refers to a connectionless-mode service, only one endpoint may be associated with a
protocol address. If a user attempts to bind a second transport endpoint to an already bound
protocol address,t_bind() will return -1 and sett_errno to [TADDRBUSY].

VALID STATES
T_UNBND

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 55

-- --

t_bind() XTI Library Functions and Parameters

ERRORS
On failure,t_errno is set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport endpoint.

[TOUTSTATE] The function was issued in the wrong sequence.

[TBADADDR] The specified protocol address was in an incorrect format or contained
illegal information.

[TNOADDR] The transport provider could not allocate an address.

[TACCES] The user does not have permission to use the specified address.

[TBUFOVFLW] The number of bytes allowed for an incoming argument(maxlen)is greater
than 0 but not sufficient to store the value of that argument. The provider’s
state will change toT_IDLE and the information to be returned inret will be
discarded.

[TSYSERR] A system error has occurred during execution of this function.

[TADDRBUSY] The requested address is in use.

[TPROTO] This error indicates that a communication problem has been detected
betweenXTI and the transport provider for which there is no other suitable
XTI (t_errno).

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of−1 is returned and
t_errno is set to indicate an error.

SEE ALSO
t_alloc(), t_close(), t_open(), t_optmgmt(), t_unbind().

CAVEATS
The requirement that the value ofqlen never be negotiated from a requested value greater than
zero to zero implies that transport providers, rather than theXTI implementation itself, accept
this restriction.

A transport provider may not allow an explicit binding of more than one transport endpoint to
the same protocol address, although it allows more than one connection to be accepted for the
same protocol address. To ensure portability, it is, therefore, recommended not to bind transport
endpoints that are used as responding endpoints(resfd) in a call tot_accept(), if the responding
address is to be the same as the called address.

X/Open CAE Specification (1992)
Page : 56 X/Open Transport Interface (XTI)

-- --

-- --

XTI Library Functions and Parameters t_close()

NAME
t_close− close a transport endpoint

SYNOPSIS
#include <xti.h>

int t_close(fd)
int fd;

DESCRIPTION

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Parameters Before call After callii
fd x /iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
c
c

c
c
c

c
c
c

c
c
c

The t_close() function informs the transport provider that the user is finished with the transport
endpoint specified byfd, and frees any local library resources associated with the endpoint. In
addition,t_close() closes the file associated with the transport endpoint.

The functiont_close() should be called from theT_UNBND state (seet_getstate()). However,
this function does not check state information, so it may be called from any state to close a
transport endpoint. If this occurs, the local library resources associated with the endpoint will
be freed automatically. In addition,close() will be issued for that file descriptor; theclose()
will be abortive if there are no other descriptors in this, or in another process which references
the transport endpoint, and in this case will break any transport connection that may be
associated with that endpoint.

A t_close() issued on a connection endpoint may cause data previously sent, or data not yet
received, to be lost. It is the responsibility of the transport user to ensure that data is received
by the remote peer.

VALID STATES
ALL - apart fromT_UNINIT

ERRORS
On failure,t_errno is set to the following:

[TBADF] The specified file descriptor does not refer to a transport endpoint.

[TPROTO] This error indicates that a communication problem has been detected
betweenXTI and the transport provider for which there is no other suitable
XTI (t_errno).

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of−1 is returned and
t_errno is set to indicate an error.

SEE ALSO
t_getstate(), t_open(), t_unbind().

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 57

-- --

-- --

t_connect() XTI Library Functions and Parameters

NAME
t_connect− establish a connection with another transport user

SYNOPSIS
#include <xti.h>

int t_connect(fd, sndcall, rcvcall)
int fd;
struct t_call ∗sndcall;
struct t_call ∗rcvcall;

DESCRIPTION

ii
Parameters Before call After callii

fd x /
sndcall->addr.maxlen / /
sndcall->addr.len x /
sndcall->addr.buf x (x) /
sndcall->opt.maxlen / /
sndcall->opt.len x /
sndcall->opt.buf x (x) /
sndcall->udata.maxlen / /
sndcall->udata.len x /
sndcall->udata.buf ? (?) /
sndcall->sequence / /
rcvcall->addr.maxlen x /
rcvcall->addr.len / x
rcvcall->addr.buf ? (?)
rcvcall->opt.maxlen x /
rcvcall->opt.len / x
rcvcall->opt.buf ? (?)
rcvcall->udata.maxlen x /
rcvcall->udata.len / x
rcvcall->udata.buf ? (?)
rcvcall->sequence / /iicc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

This function enables a transport user to request a connection to the specified destination
transport user. This function can only be issued in theT_IDLE state. The parameterfd
identifies the local transport endpoint where communication will be established, whilesndcall
andrcvcall point to at_call structure which contains the following members:

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;
int sequence;

The parametersndcall specifies information needed by the transport provider to establish a
connection andrcvcall specifies information that is associated with the newly established

X/Open CAE Specification (1992)
Page : 58 X/Open Transport Interface (XTI)

-- --

XTI Library Functions and Parameters t_connect()

connection.

In sndcall, addr specifies the protocol address of the destination transport user,opt presents
any protocol-specific information that might be needed by the transport provider,udata points
to optional user data that may be passed to the destination transport user during connection
establishment, andsequencehas no meaning for this function.

On return, in rcvcall, addr contains the protocol address associated with the responding
transport endpoint,opt represents any protocol-specific information associated with the
connection,udatapoints to optional user data that may be returned by the destination transport
user during connection establishment, andsequencehas no meaning for this function.

The opt argument permits users to define the options that may be passed to the transport
provider. These options are specific to the underlying protocol of the transport provider and are
described forISO andTCP protocols inAppendix A, ISO Transport Protocol Information ,
Appendix B, Internet Protocol-specific Information and Appendix F, Headers and
Definitions. The user may choose not to negotiate protocol options by setting thelen field of
opt to zero. In this case, the provider may use default options.

If used,sndcall->opt.bufmust point to a buffer with the corresponding options; themaxlenand
buf fields of thenetbuf structure pointed byrcvcall->addr andrcvcall->opt must be set before
the call.

The udata argument enables the caller to pass user data to the destination transport user and
receive user data from the destination user during connection establishment. However, the
amount of user data must not exceed the limits supported by the transport provider as returned
in theconnectfield of theinfo argument oft_open() or t_getinfo(). If the len of udata is zero
in sndcall, no data will be sent to the destination transport user.

On return, theaddr, opt andudatafields of rcvcall will be updated to reflect values associated
with the connection. Thus, themaxlenfield of each argument must be set before issuing this
function to indicate the maximum size of the buffer for each. However,rcvcall may be a null
pointer, in which case no information is given to the user on return fromt_connect().

By default,t_connect() executes in synchronous mode, and will wait for the destination user’s
response before returning control to the local user. A successful return (i.e., return value of
zero) indicates that the requested connection has been established. However, ifO_NONBLOCK
is set (viat_open() or fcntl()), t_connect() executes in asynchronous mode. In this case, the
call will not wait for the remote user’s response, but will return control immediately to the local
user and return−1 with t_errno set to [TNODATA] to indicate that the connection has not yet
been established. In this way, the function simply initiates the connection establishment
procedure by sending a connect request to the destination transport user. Thet_rcvconnect()
function is used in conjunction witht_connect() to determine the status of the requested
connection.

When a synchronoust_connect() call is interrupted by the arrival of a signal, the state of the
corresponding transport endpoint isT_OUTCON, allowing a further call to either
t_rcvconnect(), t_rcvdis() or t_snddis().

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 59

-- --

t_connect() XTI Library Functions and Parameters

VALID STATES
T_IDLE

ERRORS
On failure,t_errno is set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport endpoint.

[TOUTSTATE] The function was issued in the wrong sequence.

[TNODATA] O_NONBLOCKwas set, so the function successfully initiated the connection
establishment procedure, but did not wait for a response from the remote
user.

[TBADADDR] The specified protocol address was in an incorrect format or contained
illegal information.

[TBADOPT] The specified protocol options were in an incorrect format or contained
illegal information.

[TBADDATA] The amount of user data specified was not within the bounds allowed by the
transport provider.

[TACCES] The user does not have permission to use the specified address or options.

[TBUFOVFLW] The number of bytes allocated for an incoming argument(maxlen) is
greater than 0 but not sufficient to store the value of that argument. If
executed in synchronous mode, the provider’s state, as seen by the user,
changes toT_DATAXFER, and the information to be returned inrcvcall is
discarded.

[TLOOK] An asynchronous event has occurred on this transport endpoint and requires
immediate attention.

[TNOTSUPPORT] This function is not supported by the underlying transport provider.

[TSYSERR] A system error has occurred during execution of this function.

[TADDRBUSY] This transport provider does not support multiple connections with the
same local and remote addresses. This error indicates that a connection
already exists.

[TPROTO] This error indicates that a communication problem has been detected
betweenXTI and the transport provider for which there is no other suitable
XTI (t_errno).

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of−1 is returned and
t_errno is set to indicate an error.

SEE ALSO
t_accept(), t_alloc(), t_getinfo(), t_listen(), t_open(), t_optmgmt(), t_rcvconnect().

X/Open CAE Specification (1992)
Page : 60 X/Open Transport Interface (XTI)

-- --

-- --

XTI Library Functions and Parameters t_error()

NAME
t_error− produce error message

SYNOPSIS
#include <xti.h>

int t_error(errmsg)
char ∗errmsg;

DESCRIPTION

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Parameters Before call After callii
errmsg x /iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
c
c

c
c
c

c
c
c

c
c
c

The t_error() function produces a language-dependent message on the standard error output
which describes the last error encountered during a call to a transport function. The argument
stringerrmsgis a user-supplied error message that gives context to the error.

The error message is written as follows: first (iferrmsgis not a null pointer and the character
pointed to beerrmsg is not the null character) the string pointed to byerrmsgfollowed by a
colon and a space; then a standard error message string for the current error defined int_errno.
If t_errnohas a value different from[TSYSERR], the standard error message string is followed
by a newline character. If, however,t_errno is equal to[TSYSERR], the t_errno string is
followed by the standard error message string for the current error defined inerrno followed by
a newline.

The language for error message strings written byt_error() is implementation-defined. If it is
in English, the error message string describing the value int_errno is identical to the comments
following the t_errno codes defined inxti.h. The contents of the error message strings
describing the value inerrno are the same as those returned by thestrerror(3C) function with
an argument oferrno.

The error number,t_errno, is only set when an error occurs and it is not cleared on successful
calls.

EXAMPLE
If a t_connect() function fails on transport endpointfd2 because a bad address was given, the
following call might follow the failure:

t_error("t_connect failed on fd2");

The diagnostic message to be printed would look like:

t_connect failed on fd2: incorrect addr format

where ‘‘incorrect addr format’’ identifies the specific error that occurred, and ‘‘t_connect failed
on fd2’’ tells the user which function failed on which transport endpoint.

VALID STATES
All - apart fromT_UNINIT

ERRORS
No errors are defined for thet_error() function.

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 61

-- --

t_error() XTI Library Functions and Parameters

RETURN VALUE
Upon completion, a value of 0 is returned.

X/Open CAE Specification (1992)
Page : 62 X/Open Transport Interface (XTI)

-- --

-- --

XTI Library Functions and Parameters t_free()

NAME
t_free− free a library structure

SYNOPSIS
#include <xti.h>

int t_free(ptr, struct_type)
char ∗ptr;
int struct_type;

DESCRIPTION

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Parameters Before call After callii
ptr x /
struct_type x /iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
c
c
c

cc
c
c
c

cc
c
c
c

cc
c
c
c

The t_free() function frees memory previously allocated byt_alloc(). This function will free
memory for the specified structure, and will also free memory for buffers referenced by the
structure.

The argumentptr points to one of the seven structure types described fort_alloc(), and
struct_typeidentifies the type of that structure which must be one of the following:

T_BIND struct t_bind
T_CALL struct t_call
T_OPTMGMT struct t_optmgmt
T_DIS struct t_discon
T_UNITDATA struct t_unitdata
T_UDERROR struct t_uderr
T_INFO struct t_info

where each of these structures is used as an argument to one or more transport functions.

The function t_free() will check the addr, opt and udata fields of the given structure (as
appropriate) and free the buffers pointed to by thebuf field of thenetbuf structure. Ifbuf is a
null pointer,t_free() will not attempt to free memory. After all buffers are freed,t_free() will
free the memory associated with the structure pointed to byptr.

Undefined results will occur ifptr or any of thebuf pointers points to a block of memory that
was not previously allocated byt_alloc().

VALID STATES
ALL - apart fromT_UNINIT

ERRORS
On failure,t_errno is set to the following:

[TSYSERR] A system error has occurred during execution of this function.

[TNOSTRUCTYPE] Unsupportedstruct_typerequested.

[TPROTO] This error indicates that a communication problem has been detected
betweenXTI and the transport provider for which there is no other

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 63

-- --

t_free() XTI Library Functions and Parameters

suitableXTI (t_errno).

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of−1 is returned and
t_errno is set to indicate an error.

SEE ALSO
t_alloc().

X/Open CAE Specification (1992)
Page : 64 X/Open Transport Interface (XTI)

-- --

-- --

XTI Library Functions and Parameters t_getinfo()

NAME
t_getinfo− get protocol-specific service information

SYNOPSIS
#include <xti.h>

int t_getinfo(fd, info)
int fd;
struct t_info ∗info;

DESCRIPTION

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Parameters Before call After callii

fd x /
info->addr / x
info->options / x
info->tsdu / x
info->etsdu / x
info->connect / x
info->discon / x
info->servtype / x
info->flags / xiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c

This function returns the current characteristics of the underlying transport protocol and/or
transport connection associated with file descriptorfd. The info pointer is used to return the
same information returned byt_open(), although not necessarily precisely the same values.
This function enables a transport user to access this information during any phase of
communication.

This argument points to at_info structure which contains the following members:

long addr; /∗ max size of the transport protocol address∗/
long options; /∗ max number of bytes of protocol-specific options∗/
long tsdu;/∗ max size of a transport service data unit (TSDU) ∗/
long etsdu; /∗ max size of an expedited transport service∗/

/∗ data unit (ETSDU) ∗/
long connect; /∗ max amount of data allowed on connection∗/

/∗ establishment functions∗/
long discon; /∗ max amount of data allowed ont_snddis() ∗/

/∗ andt_rcvdis() functions∗/
long servtype; /∗ service type supported by the transport provider∗/
long flags; /∗ other info about the transport provider∗/

The values of the fields have the following meanings:

addr A value greater than zero indicates the maximum size of a transport
protocol address and a value of−2 specifies that the transport provider does
not provide user access to transport protocol addresses.

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 65

-- --

t_getinfo() XTI Library Functions and Parameters

options A value greater than zero indicates the maximum number of bytes of
protocol-specific options supported by the provider, and a value of -2
specifies that the transport provider does not support user-settable options.

tsdu A value greater than zero specifies the maximum size of a transport service
data unit (TSDU); a value of zero specifies that the transport provider does
not support the concept ofTSDU, although it does support the sending of a
datastream with no logical boundaries preserved across a connection; a
value of −1 specifies that there is no limit on the size of aTSDU; and a
value of−2 specifies that the transfer of normal data is not supported by the
transport provider.

etsdu A value greater than zero specifies the maximum size of an expedited
transport service data unit (ETSDU); a value of zero specifies that the
transport provider does not support the concept ofETSDU, although it does
support the sending of an expedited data stream with no logical boundaries
preserved across a connection; a value of−1 specifies that there is no limit
on the size of anETSDU; and a value of−2 specifies that the transfer of
expedited data is not supported by the transport provider. Note that the
semantics of expedited data may be quite different for different transport
providers (seeAppendix A, ISO Transport Protocol Information and
Appendix B, Internet Protocol-specific Information).

connect A value greater than zero specifies the maximum amount of data that may
be associated with connection establishment functions and a value of−2
specifies that the transport provider does not allow data to be sent with
connection establishment functions.

discon A value greater than zero specifies the maximum amount of data that may
be associated with thet_snddis() and t_rcvdis() functions and a value of
−2 specifies that the transport provider does not allow data to be sent with
the abortive release functions.

servtype This field specifies the service type supported by the transport provider, as
described below.

flags This is a bit field used to specify other information about the transport
provider. If the T_SENDZERO bit is set in flags, this indicates that the
underlying transport provider supports the sending of zero-lengthTSDUs.
SeeAppendix A, ISO Transport Protocol Information for a discussion of
the separate issue of zero-length fragments within aTSDU.

If a transport user is concerned with protocol independence, the above sizes may be accessed to
determine how large the buffers must be to hold each piece of information. Alternatively, the
t_alloc() function may be used to allocate these buffers. An error will result if a transport user
exceeds the allowed data size on any function. The value of each field may change as a result
of protocol option negotiation during connection establishment (thet_optmgmt() call has no
affect on the values returned byt_getinfo()). These values will only change from the values
presented tot_open() after the endpoint enters theT_DATAXFER state.

X/Open CAE Specification (1992)
Page : 66 X/Open Transport Interface (XTI)

-- --

XTI Library Functions and Parameters t_getinfo()

Theservtypefield of info specifies one of the following values on return:

T_COTS The transport provider supports a connection-mode service but does not
support the optional orderly release facility.

T_COTS_ORD The transport provider supports a connection-mode service with the
optional orderly release facility.

T_CLTS The transport provider supports a connectionless-mode service. For this
service type,t_open() will return −2 for etsdu, connectanddiscon.

VALID STATES
ALL - apart fromT_UNINIT

ERRORS
On failure,t_errno is set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport endpoint.

[TSYSERR] A system error has occurred during execution of this function.

[TPROTO] This error indicates that a communication problem has been detected
betweenXTI and the transport provider for which there is no other suitable
XTI (t_errno).

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of−1 is returned and
t_errno is set to indicate an error.

SEE ALSO
t_alloc(), t_open().

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 67

-- --

-- --

t_getprotaddr() XTI Library Functions and Parameters

NAME
t_getprotaddr− get the protocol addresses

SYNOPSIS
#include <xti.h>

int t_getprotaddr(fd, boundaddr, peeraddr)
int fd;
struct t_bind ∗boundaddr;
struct t_bind ∗peeraddr;

DESCRIPTION

iii
Parameters Before call After callii

fd x /
boundaddr->maxlen x /
boundaddr->addr.len / x
boundaddr->addr.buf ? (?)
boundaddr->qlen / /
peeraddr->maxlen x /
peeraddr->addr.len / x
peeraddr->addr.buf ? (?)
peeraddr->qlen / /iiic
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c

The t_getprotaddr() function returns local and remote protocol addresses currently associated
with the transport endpoint specified byfd. In boundaddrand peeraddr the user specifies
maxlen,which is the maximum size of the address buffer, andbuf which points to the buffer
where the address is to be placed. On return, thebuf field of boundaddrpoints to the address,
if any, currently bound tofd, and thelen field specifies the length of the address. If the
transport endpoint is in theT_UNBND state, zero is returned in thelen field of boundaddr. The
buf field of peeraddrpoints to the address, if any, currently connected tofd, and thelen field
specifies the length of the address. If the transport endpoint is not in theT_DATAXFER state,
zero is returned in thelen field of peeraddr.

VALID STATES
ALL - apart fromT_UNINIT

ERRORS
On failure,t_errno is set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport endpoint.

[TBUFOVFLW] The number of bytes allocated for an incoming argument (maxlen) is
greater than 0 but not sufficient to store the value of that argument.

[TSYSERR] A system error has occurred during execution of this function.

[TPROTO] This error indicates that a communication problem has been detected
betweenXTI and the transport provider for which there is no other suitable
XTI (t_errno).

X/Open CAE Specification (1992)
Page : 68 X/Open Transport Interface (XTI)

-- --

XTI Library Functions and Parameters t_getprotaddr()

RETURN VALUE
Upon successful completion, a value of zero is returned. Otherwise, a value of−1 is returned
andt_errno is set to indicate the error.

SEE ALSO
t_bind().

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 69

-- --

-- --

t_getstate() XTI Library Functions and Parameters

NAME
t_getstate− get the current state

SYNOPSIS
#include <xti.h>

int t_getstate(fd)
int fd;

DESCRIPTION

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Parameters Before call After callii
fd x /iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
c
c

c
c
c

c
c
c

c
c
c

The t_getstate() function returns the current state of the provider associated with the transport
endpoint specified byfd.

VALID STATES
ALL - apart fromT_UNINIT

ERRORS
On failure,t_errno is set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport endpoint.

[TSTATECHNG] The transport provider is undergoing a transient state change.

[TSYSERR] A system error has occurred during execution of this function.

[TPROTO] This error indicates that a communication problem has been detected
betweenXTI and the transport provider for which there is no other suitable
XTI (t_errno).

RETURN VALUE
State is returned upon successful completion. Otherwise, a value of−1 is returned andt_errno
is set to indicate an error. The current state is one of the following:

T_UNBND unbound

T_IDLE idle

T_OUTCON outgoing connection pending

T_INCON incoming connection pending

T_DATAXFER data transfer

T_OUTREL outgoing orderly release (waiting for an orderly release indication)

T_INREL incoming orderly release (waiting to send an orderly release request)

If the provider is undergoing a state transition whent_getstate() is called, the function will fail.

SEE ALSO
t_open().

X/Open CAE Specification (1992)
Page : 70 X/Open Transport Interface (XTI)

-- --

-- --

XTI Library Functions and Parameters t_listen()

NAME
t_listen− listen for a connect indication

SYNOPSIS
#include <xti.h>

int t_listen(fd, call)
int fd;
struct t_call ∗call;

DESCRIPTION

ii
Parameters Before call After callii

fd x /
call->addr.maxlen x /
call->addr.len / x
call->addr.buf ? (?)
call->opt.maxlen x /
call->opt.len / x
call->opt.buf ? (?)
call->udata.maxlen x /
call->udata.len / x
call->udata.buf ? (?)
call->sequence / xiicc
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c

This function listens for a connect request from a calling transport user. The argumentfd
identifies the local transport endpoint where connect indications arrive, and on return,call
contains information describing the connect indication. The parametercall points to at_call
structure which contains the following members:

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;
int sequence;

In call, addr returns the protocol address of the calling transport user. This address is in a
format usable in future calls tot_connect(). Note, however thatt_connect() may fail for other
reasons, for example [TADDRBUSY]. opt returns options associated with the connect request,
udata returns any user data sent by the caller on the connect request, andsequenceis a number
that uniquely identifies the returned connect indication. The value ofsequenceenables the user
to listen for multiple connect indications before responding to any of them.

Since this function returns values for theaddr, opt andudatafields ofcall, themaxlenfield of
each must be set before issuing thet_listen() to indicate the maximum size of the buffer for
each.

By default,t_listen() executes in synchronous mode and waits for a connect indication to arrive
before returning to the user. However, ifO_NONBLOCK is set via t_open() or fcntl(),
t_listen() executes asynchronously, reducing to a poll for existing connect indications. If none

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 71

-- --

t_listen() XTI Library Functions and Parameters

are available, it returns−1 and setst_errno to [TNODATA].

VALID STATES
T_IDLE, T_INCON

ERRORS
On failure,t_errno is set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport endpoint.

[TBADQLEN] The argumentqlen of the endpoint referenced byfd is zero.

[TBUFOVFLW] The number of bytes allocated for an incoming argument(maxlen) is
greater than 0 but not sufficient to store the value of that argument. The
provider’s state, as seen by the user, changes toT_INCON, and the connect
indication information to be returned incall is discarded. The value of
sequencereturned can be used to do at_snddis().

[TNODATA] O_NONBLOCKwas set, but no connect indications had been queued.

[TLOOK] An asynchronous event has occurred on this transport endpoint and requires
immediate attention.

[TNOTSUPPORT] This function is not supported by the underlying transport provider.

[TOUTSTATE] The function was issued in the wrong sequence on the transport endpoint
referenced byfd.

[TSYSERR] A system error has occurred during execution of this function.

[TQFULL] The maximum number of outstanding indications has been reached for the
endpoint referenced byfd.

[TPROTO] This error indicates that a communication problem has been detected
betweenXTI and the transport provider for which there is no other suitable
XTI (t_errno).

CAVEATS
Some transport providers do not differentiate between a connect indication and the connection
itself. If this is the case, a successful return oft_listen() indicates an existing connection (see
Appendix B, Internet Protocol-specific Information).

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of−1 is returned and
t_errno is set to indicate an error.

SEE ALSO
fcntl(), t_accept(), t_alloc(), t_bind(), t_connect(), t_open(), t_optmgmt(), t_rcvconnect().

X/Open CAE Specification (1992)
Page : 72 X/Open Transport Interface (XTI)

-- --

-- --

XTI Library Functions and Parameters t_look()

NAME
t_look − look at the current event on a transport endpoint

SYNOPSIS
#include <xti.h>

int t_look(fd)
int fd;

DESCRIPTION

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Parameters Before call After callii
fd x /iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
c
c

c
c
c

c
c
c

c
c
c

This function returns the current event on the transport endpoint specified byfd. This function
enables a transport provider to notify a transport user of an asynchronous event when the user is
calling functions in synchronous mode. Certain events require immediate notification of the
user and are indicated by a specific error, [TLOOK], on the current or next function to be
executed. Details on events which cause functions to fail[T_LOOK] may be found inSection
4.6, Events andTLOOK Error Indication .

This function also enables a transport user to poll a transport endpoint periodically for
asynchronous events.

VALID STATES
ALL - apart fromT_UNINIT

ERRORS
On failure,t_errno is set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport endpoint.

[TSYSERR] A system error has occurred during execution of this function.

[TPROTO] This error indicates that a communication problem has been detected
betweenXTI and the transport provider for which there is no other suitable
XTI (t_errno).

RETURN VALUE
Upon success,t_look() returns a value that indicates which of the allowable events has
occurred, or returns zero if no event exists. One of the following events is returned:

T_LISTEN connection indication received

T_CONNECT connect confirmation received

T_DATA normal data received

T_EXDATA expedited data received

T_DISCONNECT disconnect received

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 73

-- --

t_look() XTI Library Functions and Parameters

T_UDERR datagram error indication

T_ORDREL orderly release indication

T_GODATA Flow control restrictions on normal data flow that led to a[TFLOW] error
have been lifted. Normal data may be sent again.

T_GOEXDATA Flow control restrictions on expedited data flow that led to a[TFLOW] error
have been lifted. Expedited data may be sent again.

On failure,−1 is returned andt_errno is set to indicate the error.

SEE ALSO
t_open(), t_snd(), t_sndudata().

APPLICATION USAGE
Additional functionality is provided through the Event Management (EM) interface.

X/Open CAE Specification (1992)
Page : 74 X/Open Transport Interface (XTI)

-- --

-- --

XTI Library Functions and Parameters t_open()

NAME
t_open− establish a transport endpoint

SYNOPSIS
#include <xti.h>
#include <fcntl.h>

int t_open(name, oflag, info)
char ∗name;
int oflag;
struct t_info ∗info;

DESCRIPTION

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Parameters Before call After callii

name x /
oflag x /
info->addr / x
info->options / x
info->tsdu / x
info->etsdu / x
info->connect / x
info->discon / x
info->servtype / x
info->flags / xiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c

The t_open() function must be called as the first step in the initialisation of a transport
endpoint. This function establishes a transport endpoint by supplying a transport provider
identifier that indicates a particular transport provider (i.e., transport protocol) and returning a
file descriptor that identifies that endpoint.

The argumentnamepoints to a transport provider identifier andoflag identifies any open flags
(as inopen()). The argumentoflag is constructed fromO_RDWRoptionally bitwise inclusive-
or’ed withO_NONBLOCK. These flags are defined by the header<fcntl.h>. The file descriptor
returned byt_open() will be used by all subsequent functions to identify the particular local
transport endpoint.

This function also returns various default characteristics of the underlying transport protocol by
setting fields in thet_info structure. This argument points to at_info which contains the
following members:

long addr; /∗ max size of the transport protocol∗/
/∗ address∗/

long options; /∗ max number of bytes of∗/
/∗ protocol-specific options∗/

long tsdu;/∗ max size of a transport service data∗/
/∗ unit (TSDU) ∗/

long etsdu; /∗ max size of an expedited transport∗/

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 75

-- --

t_open() XTI Library Functions and Parameters

/∗ service data unit (ETSDU) ∗/
long connect; /∗ max amount of data allowed on∗/

/∗ connection establishment functions∗/
long discon; /∗ max amount of data allowed on∗/

/∗ t_snddis() andt_rcvdis() functions∗/
long servtype; /∗ service type supported by the∗/

/∗ transport provider∗/
long flags; /∗ other info about the transport provider∗/

The values of the fields have the following meanings:

addr A value greater than zero indicates the maximum size of a transport
protocol address and a value of−2 specifies that the transport provider does
not provide user access to transport protocol addresses.

options A value greater than zero indicates the maximum number of bytes of
protocol-specific options supported by the provider and a value of−2
specifies that the transport provider does not support user-settable options.

tsdu A value greater than zero specifies the maximum size of a transport service
data unit (TSDU); a value of zero specifies that the transport provider does
not support the concept ofTSDU, although it does support the sending of a
data stream with no logical boundaries preserved across a connection; a
value of−1 specifies that there is no limit to the size of aTSDU; and a value
of −2 specifies that the transfer of normal data is not supported by the
transport provider.

etsdu A value greater than zero specifies the maximum size of an expedited
transport service data unit (ETSDU); a value of zero specifies that the
transport provider does not support the concept ofETSDU, although it does
support the sending of an expedited data stream with no logical boundaries
preserved across a connection; a value of−1 specifies that there is no limit
on the size of anETSDU; and a value of−2 specifies that the transfer of
expedited data is not supported by the transport provider. Note that the
semantics of expedited data may be quite different for different transport
providers (seeAppendix A, ISO Transport Protocol Information and
Appendix B, Internet Protocol-specific Information).

connect A value greater than zero specifies the maximum amount of data that may
be associated with connection establishment functions and a value of−2
specifies that the transport provider does not allow data to be sent with
connection establishment functions.

discon A value greater than zero specifies the maximum amount of data that may
be associated with thet_snddis() and t_rcvdis() functions and a value of
−2 specifies that the transport provider does not allow data to be sent with
the abortive release functions.

servtype This field specifies the service type supported by the transport provider, as
described below.

X/Open CAE Specification (1992)
Page : 76 X/Open Transport Interface (XTI)

-- --

XTI Library Functions and Parameters t_open()

flags This is a bit field used to specify other information about the transport
provider. If theT_SENDZERObit is set in flags, this indicates the underlying
transport provider supports the sending of zero-lengthTSDUs. See
Appendix A, ISO Transport Protocol Information for a discussion of the
separate issue of zero-length fragments within aTSDU.

If a transport user is concerned with protocol independence, the above sizes may be accessed to
determine how large the buffers must be to hold each piece of information. Alternatively, the
t_alloc() function may be used to allocate these buffers. An error will result if a transport user
exceeds the allowed data size on any function.

Theservtypefield of info specifies one of the following values on return:

T_COTS The transport provider supports a connection-mode service but does not
support the optional orderly release facility.

T_COTS_ORD The transport provider supports a connection-mode service with the
optional orderly release facility.

T_CLTS The transport provider supports a connectionless-mode service. For this
service type,t_open() will return −2 for etsdu, connectanddiscon.

A single transport endpoint may support only one of the above services at one time.

If info is set to a null pointer by the transport user, no protocol information is returned by
t_open().

VALID STATES
T_UNINIT

ERRORS
On failure,t_errno is set to the following:

[TBADFLAG] An invalid flag is specified.

[TBADNAME] Invalid transport provider name.

[TSYSERR] A system error has occurred during execution of this function.

[TPROTO] This error indicates that a communication problem has been detected
betweenXTI and the transport provider for which there is no other suitable
XTI (t_errno).

RETURN VALUE
A valid file descriptor is returned upon successful completion. Otherwise, a value of−1 is
returned andt_errno is set to indicate an error.

SEE ALSO
open().

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 77

-- --

-- --

t_optmgmt() XTI Library Functions and Parameters

NAME
t_optmgmt - manage options for a transport endpoint

SYNOPSIS
#include <xti.h>

int t_optmgmt(fd,req,ret)
int fd;
struct t_optmgmt ∗req;
struct t_optmgmt ∗ret;

DESCRIPTION

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Parameters Before call After callii

fd x /
req->opt.maxlen / /
req->opt.len x /
req->opt.buf x (x) /
req->flags x /
ret->opt.maxlen x /
ret->opt.len / x
ret->opt.buf ? (?)
ret->flags / xiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c

The t_optmgmt() function enables a transport user to retrieve, verify or negotiate protocol
options with the transport provider. The argumentfd identifies a transport endpoint.

Thereqandret arguments point to at_optmgmt structure containing the following members:

struct netbuf opt;
long flags;

Theopt field identifies protocol options and theflagsfield is used to specify the action to take
with those options.

The options are represented by anetbuf structure in a manner similar to the address in
t_bind(). The argumentreq is used to request a specific action of the provider and to send
options to the provider. The argumentlen specifies the number of bytes in the options,buf
points to the options buffer, andmaxlenhas no meaning for thereq argument. The transport
provider may return options and flag values to the user throughret. For ret, maxlenspecifies
the maximum size of the options buffer andbuf points to the buffer where the options are to be
placed. On return,len specifies the number of bytes of options returned. The value inmaxlen
has no meaning for thereq argument, but must be set in theret argument to specify the
maximum number of bytes the options buffer can hold.

Each option in the options buffer is of the formstruct t_opthdr possibly followed by an option
value.

X/Open CAE Specification (1992)
Page : 78 X/Open Transport Interface (XTI)

-- --

XTI Library Functions and Parameters t_optmgmt()

The level field of struct t_opthdr identifies theXTI level or a protocol of the transport
provider. Thenamefield identifies the option within the level, andlen contains its total length,
i.e., the length of the option headert_opthdr plus the length of the option value. Ift_optmgmt()
is called with the actionT_NEGOTIATE set, thestatusfield of the returned options contains
information about the success or failure of a negotiation.

Each option in the input or output option buffer must start at a long-word boundary. The macro
OPT_NEXTHDR(pbuf, buflen, poption) can be used for that purpose. The parameterpbuf
denotes a pointer to an option bufferopt.buf, andbuflen is its length. The parameterpoption
points to the current option in the option buffer.OPT_NEXTHDR returns a pointer to the
position of the next option or returns a null pointer if the option buffer is exhausted. The macro
is helpful for writing and reading. See<xti.h> in Appendix F, Headers and Definitionsfor
the exact definition.

If the transport user specifies several options on input, all options must address the same level.

If any option in the options buffer does not indicate the same level as the first option, or the
level specified is unsupported, then thet_optmgmt() request will fail with[TBADOPT]. If the
error is detected, some options have possibly been successfully negotiated. The transport user
can check the current status by callingt_optmgmt() with theT_CURRENTflag set.

Chapter 5, The Use of Optionscontains a detailed description about the use of options and
should be read before using this function.

Theflagsfield of reqmust specify one of the following actions:

T_NEGOTIATE This action enables the transport user to negotiate option values.

The user specifies the options of interest and their values in the buffer
specified byreq->opt.bufand req->opt.len. The negotiated option values
are returned in the buffer pointed to byret->opt.buf. The statusfield of
each returned option is set to indicate the result of the negotiation. The
value is T_SUCCESS if the proposed value was negotiated,
T_PARTSUCCESSif a degraded value was negotiated,T_FAILURE if the
negotiation failed (according to the negotiation rules),T_NOTSUPPORTif
the transport provider does not support this option or illegally requests
negotiation of a privileged option, andT_READONLY if modification of a
read-only option was requested. If the status isT_SUCCESS, T_FAILURE,
T_NOTSUPPORTor T_READONLY, the returned option value is the same as
the one requested on input.

The overall result of the negotiation is returned inret->flags.

This field contains the worst single result, whereby the rating is done
according to the orderT_NOTSUPPORT, T_READONLY, T_FAILURE,
T_PARTSUCCESS, T_SUCCESS. The valueT_NOTSUPPORTis the worst
result andT_SUCCESSis the best.

For each level, the optionT_ALLOPT (see below) can be requested on input.
No value is given with this option; only thet_opthdr part is specified. This
input requests to negotiate all supported options of this level to their default
values. The result is returned option by option inret->opt.buf. (Note that

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 79

-- --

t_optmgmt() XTI Library Functions and Parameters

depending on the state of the transport endpoint, not all requests to
negotiate the default value may be successful.)

T_CHECK This action enables the user to verify whether the options specified inreq
are supported by the transport provider.

If an option is specified with no option value (it consists only of at_opthdr
structure), the option is returned with itsstatusfield set toT_SUCCESSif it
is supported,T_NOTSUPPORTif it is not or needs additional user privileges,
andT_READONLY if it is read-only (in the currentXTI state). No option
value is returned.

If an option is specified with an option value, thestatusfield of the returned
option has the same value, as if the user had tried to negotiate this value
with T_NEGOTIATE. If the status is T_SUCCESS, T_FAILURE,
T_NOTSUPPORTor T_READONLY, the returned option value is the same as
the one requested on input.

The overall result of the option checks is returned inret->flags. This field
contains the worst single result of the option checks, whereby the rating is
the same as forT_NEGOTIATE.

Note that no negotiation takes place. All currently effective option values
remain unchanged.

T_DEFAULT This action enables the transport user to retrieve the default option values.
The user specifies the options of interest inreq->opt.buf. The option
values are irrelevant and will be ignored; it is sufficient to specify the
t_opthdr part of an option only. The default values are then returned in
ret->opt.buf.

The statusfield returned isT_NOTSUPPORTif the protocol level does not
support this option or the transport user illegally requested a privileged
option,T_READONLY if the option is read-only, and set toT_SUCCESSin
all other cases. The overall result of the request is returned inret->flags.
This field contains the worst single result, whereby the rating is the same as
for T_NEGOTIATE.

For each level, the optionT_ALLOPT (see below) can be requested on input.
All supported options of this level with their default values are then
returned. In this case,ret->opt.maxlenmust be given at least the value
info->options(seet_getinfo(), t_open()) before the call.

T_CURRENT This action enables the transport user to retrieve the currently effective
option values. The user specifies the options of interest inreq->opt.buf.
The option values are irrelevant and will be ignored; it is sufficient to
specify thet_opthdr part of an option only. The currently effective values
are then returned inret->opt.buf.

The statusfield returned isT_NOTSUPPORTif the protocol level does not
support this option or the transport user illegally requested a privileged
option,T_READONLY if the option is read-only, and set toT_SUCCESSin

X/Open CAE Specification (1992)
Page : 80 X/Open Transport Interface (XTI)

-- --

XTI Library Functions and Parameters t_optmgmt()

all other cases. The overall result of the request is returned inret->flags.
This field contains the worst single result, whereby the rating is the same as
for T_NEGOTIATE.

For each level, the optionT_ALLOPT (see below) can be requested on input.
All supported options of this level with their currently effective values are
then returned.

The optionT_ALLOPT can only be used witht_optmgmt() and the actionsT_NEGOTIATE,
T_DEFAULT and T_CURRENT. It can be used with any supported level and addresses all
supported options of this level. The option has no value; it consists of at_opthdr only. Since
in a t_optmgmt() call only options of one level may be addressed, this option should not be
requested together with other options. The function returns as soon as this option has been
processed.

Options are independently processed in the order they appear in the input option buffer. If an
option is multiply input, it depends on the implementation whether it is multiply output or
whether it is returned only once.

Transport providers may not be able to provide an interface capable of supporting
T_NEGOTIATE and/or T_CHECK functionalities. When this is the case, the error
[TNOTSUPPORT]is returned.

The function t_optmgmt() may block under various circumstances and depending on the
implementation. The function will block, for instance, if the protocol addressed by the call
resides on a separate controller. It may also block due to flow control constraints, i.e., if data
sent previously across this transport endpoint has not yet been fully processed. If the function
is interrupted by a signal, the option negotiations that have been done so far may remain valid.
The behaviour of the function is not changed ifO_NONBLOCKis set.

XTI -LEVEL OPTIONS
XTI-level options are not specific for a particular transport provider. AnXTI implementation
supports none, all or any subset of the options defined below. An implementation may restrict
the use of any of these options by offering them only in the privileged or read-only mode, or if
fd relates to specific transport providers.

The subsequent options are not association-related (seeChapter 5, The Use of Options). They
may be negotiated in allXTI states exceptT_UNINIT.

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 81

-- --

t_optmgmt() XTI Library Functions and Parameters

The protocol level isXTI_GENERIC. For this level, the following options are defined:
iii

option name type of option legal meaning
value option valueii

XTI_DEBUG array of unsigned longs see text enable debugging
linger on close if data
is present

XTI_LINGER struct linger see text

XTI_RCVBUF unsigned long size in octets receive buffer size
XTI_RCVLOWAT unsigned long size in octets receive low-water mark
XTI_SNDBUF unsigned long size in octets send buffer size
XTI_SNDLOWAT unsigned long size in octets send low-water markiiicc

c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c

XTI -level Options

A request forXTI_DEBUG is an absolute requirement. A request to activateXTI_LINGER is an
absolute requirement; the timeout value to this option is not.XTI_RCVBUF, XTI_RCVLOWAT,
XTI_SNDBUF andXTI_SNDLOWAT are not absolute requirements.

XTI_DEBUG This option enables debugging. The values of this option are
implementation-defined. Debugging is disabled if the option is specified
with ‘‘no value’’, i.e., with an option header only.

The system supplies utilities to process the traces. Note that an
implementation may also provide other means for debugging.

XTI_LINGER This option is used to linger the execution of at_close() or close() if send
data is still queued in the send buffer. The option value specifies the linger
period. If aclose() or t_close() is issued and the send buffer is not empty,
the system attempts to send the pending data within the linger period before
closing the endpoint. Data still pending after the linger period has elapsed
is discarded.

Depending on the implementation,t_close() or close() either block for at
maximum the linger period, or immediately return, whereupon the system
holds the connection in existence for at most the linger period.

The option value consists of a structuret_linger declared as:

struct t_linger {
long l_onoff; /∗ switch option on/off∗/
long l_linger; /∗ linger period in seconds∗/

}

Legal values for the fieldl_onoffare:

T_NO switch option off
T_YES activate option

The valuel_onoff is an absolute requirement.

X/Open CAE Specification (1992)
Page : 82 X/Open Transport Interface (XTI)

-- --

XTI Library Functions and Parameters t_optmgmt()

The field l_linger determines the linger period in seconds. The transport
user can request the default value by setting the field toT_UNSPEC. The
default timeout value depends on the underlying transport provider (it is
often T_INFINITE). Legal values for this field areT_UNSPEC, T_INFINITE
and all non-negative numbers.

The l_linger value is not an absolute requirement. The implementation
may place upper and lower limits to this value. Requests that fall short of
the lower limit are negotiated to the lower limit.

Note that this option does not linger the execution oft_snddis().

XTI_RCVBUF This option is used to adjust the internal buffer size allocated for the receive
buffer. The buffer size may be increased for high-volume connections, or
decreased to limit the possible backlog of incoming data.

This request is not an absolute requirement. The implementation may place
upper and lower limits on the option value. Requests that fall short of the
lower limit are negotiated to the lower limit.

Legal values are all positive numbers.

XTI_RCVLOWAT This option is used to set a low-water mark in the receive buffer. The
option value gives the minimal number of bytes that must have
accumulated in the receive buffer before they become visible to the
transport user. If and when the amount of accumulated receive data exceeds
the low-water mark, aT_DATA event is created, an event mechanism (e.g.,
poll() or select()) indicates the data, and the data can be read byt_rcv() or
t_rcvudata().

This request is not an absolute requirement. The implementation may place
upper and lower limits on the option value. Requests that fall short of the
lower limit are negotiated to the lower limit.

Legal values are all positive numbers.

XTI_SNDBUF This option is used to adjust the internal buffer size allocated for the send
buffer.

This request is not an absolute requirement. The implementation may place
upper and lower limits on the option value. Requests that fall short of the
lower limit are negotiated to the lower limit.

Legal values are all positive numbers.

XTI_SNDLOWAT This option is used to set a low-water mark in the send buffer. The option
value gives the minimal number of bytes that must have accumulated in the
send buffer before they are sent.

This request is not an absolute requirement. The implementation may place
upper and lower limits on the option value. Requests that fall short of the
lower limit are negotiated to the lower limit.

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 83

-- --

t_optmgmt() XTI Library Functions and Parameters

Legal values are all positive numbers.

VALID STATES
ALL - apart fromT_UNINIT

ERRORS
On failure,t_errno is set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport endpoint.

[TOUTSTATE] The function was issued in the wrong sequence.

[TACCES] The user does not have permission to negotiate the specified options.

[TBADOPT] The specified options were in an incorrect format or contained illegal
information.

[TBADFLAG] An invalid flag was specified.

[TBUFOVFLW] The number of bytes allowed for an incoming argument(maxlen)is greater
than 0 but not sufficient to store the value of that argument. The
information to be returned inret will be discarded.

[TSYSERR] A system error has occurred during execution of this function.

[TPROTO] This error indicates that a communication problem has been detected
betweenXTI and the transport provider for which there is no other suitable
XTI (t_errno).

[TNOTSUPPORT] This action is not supported by the transport provider.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
t_errno is set to indicate an error.

SEE ALSO
t_accept(), t_alloc(), t_connect(), t_getinfo(), t_listen(), t_open(), t_rcvconnect(), Chapter 5,
The Use of Options.

X/Open CAE Specification (1992)
Page : 84 X/Open Transport Interface (XTI)

-- --

-- --

XTI Library Functions and Parameters t_rcv()

NAME
t_rcv − receive data or expedited data sent over a connection

SYNOPSIS
#include <xti.h>

int t_rcv(fd, buf, nbytes, flags)
int fd;
char ∗buf;
unsigned int nbytes;
int ∗flags;

DESCRIPTION

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Parameters Before call After callii
fd x /
buf x (x)
nbytes x /
flags / xiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc

c
c
c
c
c

cc
c
c
c
c
c

cc
c
c
c
c
c

cc
c
c
c
c
c

This function receives either normal or expedited data. The argumentfd identifies the local
transport endpoint through which data will arrive,buf points to a receive buffer where user data
will be placed, andnbytesspecifies the size of the receive buffer. The argumentflags may be
set on return fromt_rcv() and specifies optional flags as described below.

By default, t_rcv() operates in synchronous mode and will wait for data to arrive if none is
currently available. However, ifO_NONBLOCK is set (viat_open() or fcntl()), t_rcv() will
execute in asynchronous mode and will fail if no data is available. (See [TNODATA] below.)

On return from the call, ifT_MORE is set inflags, this indicates that there is more data, and the
current transport service data unit (TSDU) or expedited transport service data unit (ETSDU)
must be received in multiplet_rcv() calls. In the asynchronous mode, theT_MOREflag may be
set on return from thet_rcv() call even when the number of bytes received is less than the size
of the receive buffer specified. Eacht_rcv() with the T_MORE flag set indicates that another
t_rcv() must follow to get more data for the currentTSDU. The end of theTSDU is identified
by the return of at_rcv() call with theT_MORE flag not set. If the transport provider does not
support the concept of aTSDU as indicated in theinfo argument on return fromt_open() or
t_getinfo(), theT_MOREflag is not meaningful and should be ignored. Ifnbytesis greater than
zero on the call tot_rcv(), t_rcv() will return 0 only if the end of aTSDU is being returned to
the user.

On return, the data returned is expedited data ifT_EXPEDITEDis set inflags. If the number of
bytes of expedited data exceedsnbytes, t_rcv() will set T_EXPEDITEDandT_MORE on return
from the initial call. Subsequent calls to retrieve the remainingETSDUwill haveT_EXPEDITED
set on return. The end of theETSDU is identified by the return of at_rcv() call with the
T_MOREflag not set.

In synchronous mode, the only way for the user to be notified of the arrival of normal or
expedited data is to issue this function or check for theT_DATA or T_EXDATA events using the

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 85

-- --

t_rcv() XTI Library Functions and Parameters

t_look() function. Additionally, the process can arrange to be notified via theEM interface.

VALID STATES
T_DATAXFER, T_OUTREL

ERRORS
On failure,t_errno is set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport endpoint.

[TNODATA] O_NONBLOCKwas set, but no data is currently available from the transport
provider.

[TLOOK] An asynchronous event has occurred on this transport endpoint and requires
immediate attention.

[TNOTSUPPORT] This function is not supported by the underlying transport provider.

[TOUTSTATE] The function was issued in the wrong sequence on the transport endpoint
referenced byfd.

[TSYSERR] A system error has occurred during execution of this function.

[TPROTO] This error indicates that a communication problem has been detected
betweenXTI and the transport provider for which there is no other suitable
XTI (t_errno).

RETURN VALUE
On successful completion,t_rcv() returns the number of bytes received. Otherwise, it returns
−1 on failure andt_errno is set to indicate the error.

SEE ALSO
fcntl(), t_getinfo(), t_look(), t_open(), t_snd().

X/Open CAE Specification (1992)
Page : 86 X/Open Transport Interface (XTI)

-- --

-- --

XTI Library Functions and Parameters t_rcvconnect()

NAME
t_rcvconnect− receive the confirmation from a connect request

SYNOPSIS
#include <xti.h>

int t_rcvconnect(fd, call)
int fd;
struct t_call ∗call;

DESCRIPTION

ii
Parameters Before call After callii

fd x /
call->addr.maxlen x /
call->addr.len / x
call->addr.buf ? (?)
call->opt.maxlen x /
call->opt.len / x
call->opt.buf ? (?)
call->udata.maxlen x /
call->udata.len / x
call->udata.buf ? (?)
call->sequence / /iicc
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c

This function enables a calling transport user to determine the status of a previously sent
connect request and is used in conjunction witht_connect() to establish a connection in
asynchronous mode. The connection will be established on successful completion of this
function.

The argumentfd identifies the local transport endpoint where communication will be
established, andcall contains information associated with the newly established connection.
The argumentcall points to at_call structure which contains the following members:

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;
int sequence;

In call, addr returns the protocol address associated with the responding transport endpoint,opt
presents any options associated with the connection,udatapoints to optional user data that may
be returned by the destination transport user during connection establishment, andsequencehas
no meaning for this function.

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 87

-- --

t_rcvconnect() XTI Library Functions and Parameters

The maxlen field of each argument must be set before issuing this function to indicate the
maximum size of the buffer for each. However,call may be a null pointer, in which case no
information is given to the user on return fromt_rcvconnect(). By default, t_rcvconnect()
executes in synchronous mode and waits for the connection to be established before returning.
On return, theaddr, opt andudatafields reflect values associated with the connection.

If O_NONBLOCK is set (via t_open() or fcntl()), t_rcvconnect() executes in asynchronous
mode, and reduces to a poll for existing connect confirmations. If none are available,
t_rcvconnect() fails and returns immediately without waiting for the connection to be
established. (See [TNODATA] below.) In this case,t_rcvconnect() must be called again to
complete the connection establishment phase and retrieve the information returned incall.

VALID STATES
T_OUTCON

ERRORS
On failure,t_errno is set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport endpoint.

[TBUFOVFLW] The number of bytes allocated for an incoming argument(maxlen) is
greater than 0 but not sufficient to store the value of that argument, and the
connect information to be returned incall will be discarded. The
provider’s state, as seen by the user, will be changed toT_DATAXFER.

[TNODATA] O_NONBLOCKwas set, but a connect confirmation has not yet arrived.

[TLOOK] An asynchronous event has occurred on this transport connection and
requires immediate attention.

[TNOTSUPPORT] This function is not supported by the underlying transport provider.

[TOUTSTATE] The function was issued in the wrong sequence on the transport endpoint
referenced byfd.

[TSYSERR] A system error has occurred during execution of this function.

[TPROTO] This error indicates that a communication problem has been detected
betweenXTI and the transport provider for which there is no other suitable
XTI (t_errno).

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of−1 is returned and
t_errno is set to indicate an error.

SEE ALSO
t_accept(), t_alloc(), t_bind(), t_connect(), t_listen(), t_open(), t_optmgmt().

X/Open CAE Specification (1992)
Page : 88 X/Open Transport Interface (XTI)

-- --

-- --

XTI Library Functions and Parameters t_rcvdis()

NAME
t_rcvdis− retrieve information from disconnect

SYNOPSIS
#include <xti.h>

int t_rcvdis(fd, discon)
int fd;
struct t_discon ∗discon;

DESCRIPTION

ii
Parameters Before call After callii

fd x /
discon->udata.maxlen x /
discon->udata.len / x
discon->udata.buf ? (?)
discon->reason / x
discon->sequence / ?iic
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c

This function is used to identify the cause of a disconnect and to retrieve any user data sent with
the disconnect. The argumentfd identifies the local transport endpoint where the connection
existed, anddisconpoints to at_disconstructure containing the following members:

struct netbuf udata;
int reason;
int sequence;

The field reasonspecifies the reason for the disconnect through a protocol-dependent reason
code, udata identifies any user data that was sent with the disconnect, andsequencemay
identify an outstanding connect indication with which the disconnect is associated. The field
sequenceis only meaningful whent_rcvdis() is issued by a passive transport user who has
executed one or moret_listen() functions and is processing the resulting connect indications.
If a disconnect indication occurs,sequencecan be used to identify which of the outstanding
connect indications is associated with the disconnect.

If a user does not care if there is incoming data and does not need to know the value ofreason
or sequence, disconmay be a null pointer and any user data associated with the disconnect will
be discarded. However, if a user has retrieved more than one outstanding connect indication
(via t_listen()) and discon is a null pointer, the user will be unable to identify with which
connect indication the disconnect is associated.

VALID STATES
T_DATAXFER,T_OUTCON,T_OUTREL,T_INREL,T_INCON(ocnt > 0)

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 89

-- --

t_rcvdis() XTI Library Functions and Parameters

ERRORS
On failure,t_errno is set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport endpoint.

[TNODIS] No disconnect indication currently exists on the specified transport
endpoint.

[TBUFOVFLW] The number of bytes allocated for incoming data(maxlen)is greater than 0
but not sufficient to store the data. Iffd is a passive endpoint withocnt> 1,
it remains in stateT_INCON; otherwise, the endpoint state is set toT_IDLE.

[TNOTSUPPORT] This function is not supported by the underlying transport provider.

[TSYSERR] A system error has occurred during execution of this function.

[TOUTSTATE] The function was issued in the wrong sequence on the transport endpoint
referenced byfd.

[TPROTO] This error indicates that a communication problem has been detected
betweenXTI and the transport provider for which there is no other suitable
XTI (t_errno).

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of−1 is returned and
t_errno is set to indicate an error.

SEE ALSO
t_alloc(), t_connect(), t_listen(), t_open(), t_snddis().

X/Open CAE Specification (1992)
Page : 90 X/Open Transport Interface (XTI)

-- --

-- --

XTI Library Functions and Parameters t_rcvrel()

NAME
t_rcvrel− acknowledge receipt of an orderly release indication

SYNOPSIS
#include <xti.h>

int t_rcvrel(fd)
int fd;

DESCRIPTION

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Parameters Before call After callii
fd x /iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
c
c

c
c
c

c
c
c

c
c
c

This function is used to acknowledge receipt of an orderly release indication. The argumentfd
identifies the local transport endpoint where the connection exists. After receipt of this
indication, the user may not attempt to receive more data because such an attempt will block
forever. However, the user may continue to send data over the connection ift_sndrel() has not
been called by the user. This function is an optional service of the transport provider, and is
only supported if the transport provider returned service typeT_COTS_ORDon t_open() or
t_getinfo().

VALID STATES
T_DATAXFER,T_OUTREL

ERRORS
On failure,t_errno is set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport endpoint.

[TNOREL] No orderly release indication currently exists on the specified transport
endpoint.

[TLOOK] An asynchronous event has occurred on this transport endpoint and requires
immediate attention.

[TNOTSUPPORT] This function is not supported by the underlying transport provider.

[TSYSERR] A system error has occurred during execution of this function.

[TOUTSTATE] The function was issued in the wrong sequence on the transport endpoint
referenced byfd.

[TPROTO] This error indicates that a communication problem has been detected
betweenXTI and the transport provider for which there is no other suitable
XTI (t_errno).

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of−1 is returned and
t_errno is set to indicate an error.

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 91

-- --

t_rcvrel() XTI Library Functions and Parameters

SEE ALSO
t_getinfo(), t_open(), t_sndrel().

X/Open CAE Specification (1992)
Page : 92 X/Open Transport Interface (XTI)

-- --

-- --

XTI Library Functions and Parameters t_rcvudata()

NAME
t_rcvudata− receive a data unit

SYNOPSIS
#include <xti.h>

int t_rcvudata(fd, unitdata, flags)
int fd;
struct t_unitdata ∗unitdata;
int ∗flags;

DESCRIPTION

iii
Parameters Before call After callii

fd x /
unitdata->addr.maxlen x /
unitdata->addr.len / x
unitdata->addr.buf ? (?)
unitdata->opt.maxlen x /
unitdata->opt.len / x
unitdata->opt.buf ? (?)
unitdata->udata.maxlen x /
unitdata->udata.len / x
unitdata->udata.buf ? (?)
flags / xiiicc
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c

This function is used in connectionless mode to receive a data unit from another transport user.
The argumentfd identifies the local transport endpoint through which data will be received,
unitdata holds information associated with the received data unit, andflags is set on return to
indicate that the complete data unit was not received. The argumentunitdata points to a
t_unitdata structure containing the following members:

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;

Themaxlenfield of addr, opt andudatamust be set before calling this function to indicate the
maximum size of the buffer for each.

On return from this call,addr specifies the protocol address of the sending user,opt identifies
options that were associated with this data unit, andudata specifies the user data that was
received.

By default,t_rcvudata() operates in synchronous mode and will wait for a data unit to arrive if
none is currently available. However, ifO_NONBLOCK is set (via t_open() or fcntl()),
t_rcvudata() will execute in asynchronous mode and will fail if no data units are available.

If the buffer defined in theudata field of unitdata is not large enough to hold the current data
unit, the buffer will be filled andT_MORE will be set inflags on return to indicate that another

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 93

-- --

t_rcvudata() XTI Library Functions and Parameters

t_rcvudata() should be called to retrieve the rest of the data unit. Subsequent calls to
t_rcvudata() will return zero for the length of the address and options until the full data unit
has been received.

VALID STATES
T_IDLE

ERRORS
On failure,t_errno is set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport endpoint.

[TNODATA] O_NONBLOCK was set, but no data units are currently available from the
transport provider.

[TBUFOVFLW] The number of bytes allocated for the incoming protocol address or options
(maxlen) is greater than 0 but not sufficient to store the information. The
unit data information to be returned inunitdatawill be discarded.

[TLOOK] An asynchronous event has occurred on this transport endpoint and requires
immediate attention.

[TNOTSUPPORT] This function is not supported by the underlying transport provider.

[TOUTSTATE] The function was issued in the wrong sequence on the transport endpoint
referenced byfd.

[TSYSERR] A system error has occurred during execution of this function.

[TPROTO] This error indicates that a communication problem has been detected
betweenXTI and the transport provider for which there is no other suitable
XTI (t_errno).

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of−1 is returned and
t_errno is set to indicate an error.

SEE ALSO
fcntl(), t_alloc(), t_open(), t_rcvuderr(), t_sndudata().

X/Open CAE Specification (1992)
Page : 94 X/Open Transport Interface (XTI)

-- --

-- --

XTI Library Functions and Parameters t_rcvuderr()

NAME
t_rcvuderr− receive a unit data error indication

SYNOPSIS
#include <xti.h>

int t_rcvuderr(fd, uderr)
int fd;
struct t_uderr ∗uderr;

DESCRIPTION

ii
Parameters Before call After callii

fd x /
uderr->addr.maxlen x /
uderr->addr.len / x
uderr->addr.buf ? (?)
uderr->opt.maxlen x /
uderr->opt.len / x
uderr->opt.buf ? (?)
uderr->error / xiicc
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c

This function is used in connectionless mode to receive information concerning an error on a
previously sent data unit, and should only be issued following a unit data error indication. It
informs the transport user that a data unit with a specific destination address and protocol
options produced an error. The argumentfd identifies the local transport endpoint through
which the error report will be received, anduderr points to at_uderr structure containing the
following members:

struct netbuf addr;
struct netbuf opt;
long error;

The maxlen field of addr and opt must be set before calling this function to indicate the
maximum size of the buffer for each.

On return from this call, theaddr structure specifies the destination protocol address of the
erroneous data unit, theopt structure identifies options that were associated with the data unit,
anderror specifies a protocol-dependent error code.

If the user does not care to identify the data unit that produced an error,uderr may be set to a
null pointer, andt_rcvuderr() will simply clear the error indication without reporting any
information to the user.

VALID STATES
T_IDLE

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 95

-- --

t_rcvuderr() XTI Library Functions and Parameters

ERRORS
On failure,t_errno is set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport endpoint.

[TNOUDERR] No unit data error indication currently exists on the specified transport
endpoint.

[TBUFOVFLW] The number of bytes allocated for the incoming protocol address or options
(maxlen) is greater than 0 but not sufficient to store the information. The
unit data error information to be returned inuderr will be discarded.

[TNOTSUPPORT] This function is not supported by the underlying transport provider.

[TSYSERR] A system error has occurred during execution of this function.

[TPROTO] This error indicates that a communication problem has been detected
betweenXTI and the transport provider for which there is no other suitable
XTI (t_errno).

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of−1 is returned and
t_errno is set to indicate an error.

SEE ALSO
t_rcvudata(), t_sndudata().

X/Open CAE Specification (1992)
Page : 96 X/Open Transport Interface (XTI)

-- --

-- --

XTI Library Functions and Parameters t_snd()

NAME
t_snd− send data or expedited data over a connection

SYNOPSIS
#include <xti.h>

int t_snd(fd, buf, nbytes, flags)
int fd;
char ∗buf;
unsigned int nbytes;
int flags;

DESCRIPTION

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Parameters Before call After callii
fd x /
buf x (x) /
nbytes x /
flags x /iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
c
c
c
c
c

cc
c
c
c
c
c

cc
c
c
c
c
c

cc
c
c
c
c
c

This function is used to send either normal or expedited data. The argumentfd identifies the
local transport endpoint over which data should be sent,buf points to the user data,nbytes
specifies the number of bytes of user data to be sent, andflags specifies any optional flags
described below:

T_EXPEDITED If set in flags, the data will be sent as expedited data and will be subject to
the interpretations of the transport provider.

T_MORE If set in flags, this indicates to the transport provider that the transport
service data unit (TSDU) (or expedited transport service data unit -ETSDU)
is being sent through multiplet_snd() calls. Each t_snd() with the
T_MORE flag set indicates that anothert_snd() will follow with more data
for the currentTSDU (or ETSDU).

The end of theTSDU (or ETSDU) is identified by at_snd() call with the
T_MORE flag not set. Use ofT_MORE enables a user to break up large
logical data units without losing the boundaries of those units at the other
end of the connection. The flag implies nothing about how the data is
packaged for transfer below the transport interface. If the transport
provider does not support the concept of aTSDU as indicated in theinfo
argument on return fromt_open() or t_getinfo(), the T_MORE flag is not
meaningful and will be ignored if set.

The sending of a zero-length fragment of aTSDU or ETSDU is only
permitted where this is used to indicate the end of aTSDU or ETSDU, i.e.,
when theT_MORE flag is not set. Some transport providers also forbid
zero-length TSDUs and ETSDUs. See Appendix A, ISO Transport
Protocol Information for a fuller explanation.

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 97

-- --

t_snd() XTI Library Functions and Parameters

By default, t_snd() operates in synchronous mode and may wait if flow control restrictions
prevent the data from being accepted by the local transport provider at the time the call is made.
However, if O_NONBLOCK is set (via t_open() or fcntl()), t_snd() will execute in
asynchronous mode, and will fail immediately if there are flow control restrictions. The
process can arrange to be informed when the flow control restrictions are cleared via either
t_look() or theEM interface.

On successful completion,t_snd() returns the number of bytes accepted by the transport
provider. Normally this will equal the number of bytes specified innbytes. However, if
O_NONBLOCK is set, it is possible that only part of the data will actually be accepted by the
transport provider. In this case,t_snd() will return a value that is less than the value ofnbytes.
If nbytesis zero and sending of zero octets is not supported by the underlying transport service,
t_snd() will return -1 with t_errno set to[TBADDATA] .

The size of eachTSDU or ETSDU must not exceed the limits of the transport provider as
specified by the current values in theTSDU or ETSDU fields in theinfo argument returned by
t_getinfo().

The error [TLOOK] may be returned to inform the process that an event (e.g., a disconnect) has
occurred.

VALID STATES
T_DATAXFER, T_INREL

ERRORS
On failure,t_errno is set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport endpoint.

[TBADDATA] Illegal amount of data:

— A single send was attempted specifying aTSDU (ETSDU) or fragment
TSDU (ETSDU) greater than that specified by the current values of the
TSDU or ETSDUfields in theinfo argument;

— a send of a zero byteTSDU (ETSDU) or zero byte fragment of aTSDU
(ETSDU) is not supported by the provider (seeAppendix A, ISO
Transport Protocol Information), or

— multiple sends were attempted resulting in aTSDU (ETSDU) larger than
that specified by the current value of theTSDU or ETSDU fields in the
info argument - the ability of anXTI implementation to detect such an
error case is implementation-dependent (seeCAVEATS , below).

[TBADFLAG] An invalid flag was specified.

[TFLOW] O_NONBLOCK was set, but the flow control mechanism prevented the
transport provider from accepting any data at this time.

[TNOTSUPPORT] This function is not supported by the underlying transport provider.

[TLOOK] An asynchronous event has occurred on this transport endpoint.

[TOUTSTATE] The function was issued in the wrong sequence on the transport endpoint
referenced byfd.

X/Open CAE Specification (1992)
Page : 98 X/Open Transport Interface (XTI)

-- --

XTI Library Functions and Parameters t_snd()

[TSYSERR] A system error has occurred during execution of this function.

[TPROTO] This error indicates that a communication problem has been detected
betweenXTI and the transport provider for which there is no other suitable
XTI (t_errno).

RETURN VALUE
On successful completion,t_snd() returns the number of bytes accepted by the transport
provider. Otherwise, -1 is returned on failure andt_errno is set to indicate the error.

Note that in asynchronous mode, if the number of bytes accepted by the transport provider is
less than the number of bytes requested, this may indicate that the transport provider is blocked
due to flow control.

SEE ALSO
t_getinfo(), t_open(), t_rcv().

CAVEATS
It is important to remember that the transport provider treats all users of a transport endpoint as
a single user. Therefore if several processes issue concurrentt_snd() calls then the different
data may be intermixed.

Multiple sends which exceed the maximumTSDU or ETSDUsize may not be discovered byXTI.
In this case an implementation-dependent error will result (generated by the transport provider)
perhaps on a subsequentXTI call. This error may take the form of a connection abort, a
[TSYSERR], a[TBADDATA] or a[TPROTO]error.

If multiple sends which exceed the maximumTSDU or ETSDUsize are detected byXTI, t_snd()
fails with [TBADDATA].

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 99

-- --

-- --

t_snddis() XTI Library Functions and Parameters

NAME
t_snddis− send user-initiated disconnect request

SYNOPSIS
#include <xti.h>

int t_snddis(fd, call)
int fd;
struct t_call ∗call;

DESCRIPTION

ii
Parameters Before call After callii

fd x /
call->addr.maxlen / /
call->addr.len / /
call->addr.buf / /
call->opt.maxlen / /
call->opt.len / /
call->opt.buf / /
call->udata.maxlen / /
call->udata.len x /
call->udata.buf ?(?) /
call->sequence ? /iicc
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c

This function is used to initiate an abortive release on an already established connection, or to
reject a connect request. The argumentfd identifies the local transport endpoint of the
connection, andcall specifies information associated with the abortive release. The argument
call points to at_call structure which contains the following members:

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;
int sequence;

The values incall have different semantics, depending on the context of the call tot_snddis().
When rejecting a connect request,call must be non-null and contain a valid value ofsequence
to uniquely identify the rejected connect indication to the transport provider. Thesequence
field is only meaningful if the transport connection is in theT_INCON state. Theaddr andopt
fields of call are ignored. In all other cases,call need only be used when data is being sent
with the disconnect request. Theaddr, opt and sequencefields of the t_call structure are
ignored. If the user does not wish to send data to the remote user, the value ofcall may be a
null pointer.

The udata structure specifies the user data to be sent to the remote user. The amount of user
data must not exceed the limits supported by the transport provider, as returned in thediscon
field, of theinfo argument oft_open() or t_getinfo(). If the len field of udata is zero, no data
will be sent to the remote user.

X/Open CAE Specification (1992)
Page : 100 X/Open Transport Interface (XTI)

-- --

XTI Library Functions and Parameters t_snddis()

VALID STATES
T_DATAXFER,T_OUTCON,T_OUTREL,T_INREL,T_INCON(ocnt > 0)

ERRORS
On failure,t_errno is set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport endpoint.

[TOUTSTATE] The function was issued in the wrong sequence on the transport endpoint
referenced byfd.

[TBADDATA] The amount of user data specified was not within the bounds allowed by the
transport provider.

[TBADSEQ] An invalid sequence number was specified, or a nullcall pointer was
specified, when rejecting a connect request.

[TNOTSUPPORT] This function is not supported by the underlying transport provider.

[TSYSERR] A system error has occurred during execution of this function.

[TLOOK] An asynchronous event, which requires attention, has occured.

[TPROTO] This error indicates that a communication problem has been detected
betweenXTI and the transport provider for which there is no other suitable
XTI (t_errno).

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of−1 is returned and
t_errno is set to indicate an error.

SEE ALSO
t_connect(), t_getinfo(), t_listen(), t_open().

CAVEATS
t_snddis() is an abortive disconnect. Therefore at_snddis() issued on a connection endpoint
may cause data previously sent viat_snd(), or data not yet received, to be lost (even if an error
is returned).

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 101

-- --

-- --

t_sndrel() XTI Library Functions and Parameters

NAME
t_sndrel− initiate an orderly release

SYNOPSIS
#include <xti.h>

int t_sndrel(fd)
int fd;

DESCRIPTION

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Parameters Before call After callii
fd x /iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
c
c

c
c
c

c
c
c

c
c
c

This function is used to initiate an orderly release of a transport connection and indicates to the
transport provider that the transport user has no more data to send. The argumentfd identifies
the local transport endpoint where the connection exists. After callingt_sndrel(), the user may
not send any more data over the connection. However, a user may continue to receive data if
an orderly release indication has not been received. This function is an optional service of the
transport provider and is only supported if the transport provider returned service type
T_COTS_ORDon t_open() or t_getinfo().

VALID STATES
T_DATAXFER,T_INREL

ERRORS
On failure,t_errno is set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport endpoint.

[TFLOW] O_NONBLOCK was set, but the flow control mechanism prevented the
transport provider from accepting the function at this time.

[TLOOK] An asynchronous event has occurred on this transport endpoint and requires
immediate attention.

[TNOTSUPPORT] This function is not supported by the underlying transport provider.

[TOUTSTATE] The function was issued in the wrong sequence on the transport endpoint
referenced byfd.

[TSYSERR] A system error has occurred during execution of this function.

[TPROTO] This error indicates that a communication problem has been detected
betweenXTI and the transport provider for which there is no other suitable
XTI (t_errno).

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of−1 is returned and
t_errno is set to indicate an error.

X/Open CAE Specification (1992)
Page : 102 X/Open Transport Interface (XTI)

-- --

XTI Library Functions and Parameters t_sndrel()

SEE ALSO
t_getinfo(), t_open(), t_rcvrel().

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 103

-- --

-- --

t_sndudata() XTI Library Functions and Parameters

NAME
t_sndudata− send a data unit

SYNOPSIS
#include <xti.h>

int t_sndudata(fd, unitdata)
int fd;
struct t_unitdata ∗unitdata;

DESCRIPTION

iii
Parameters Before call After callii

fd x /
unitdata->addr.maxlen / /
unitdata->addr.len x /
unitdata->addr.buf x(x) /
unitdata->opt.maxlen / /
unitdata->opt.len x /
unitdata->opt.buf ?(?) /
unitdata->udata.maxlen / /
unitdata->udata.len x /
unitdata->udata.buf x(x) /iiic
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c

This function is used in connectionless mode to send a data unit to another transport user. The
argumentfd identifies the local transport endpoint through which data will be sent, andunitdata
points to at_unitdata structure containing the following members:

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;

In unitdata, addr specifies the protocol address of the destination user,opt identifies options
that the user wants associated with this request, andudata specifies the user data to be sent.
The user may choose not to specify what protocol options are associated with the transfer by
setting thelen field of opt to zero. In this case, the provider may use default options.

If the len field of udata is zero, and sending of zero octets is not supported by the underlying
transport service, thet_sndudata() will return -1 with t_errno set to[TBADDATA] .

By default, t_sndudata() operates in synchronous mode and may wait if flow control
restrictions prevent the data from being accepted by the local transport provider at the time the
call is made. However, ifO_NONBLOCK is set (viat_open() or fcntl()), t_sndudata() will
execute in asynchronous mode and will fail under such conditions. The process can arrange to
be notified of the clearance of a flow control restriction via eithert_look() or theEM interface.

If the amount of data specified inudata exceeds theTSDU size as returned in thetsdu field of
the info argument oft_open() or t_getinfo(), a [TBADDATA] error will be generated. If
t_sndudata() is called before the destination user has activated its transport endpoint (see

X/Open CAE Specification (1992)
Page : 104 X/Open Transport Interface (XTI)

-- --

XTI Library Functions and Parameters t_sndudata()

t_bind()), the data unit may be discarded.

If it is not possible for the transport provider to immediately detect the conditions that cause the
errors [TBADDADDR] and [TBADOPT]. These errors will alternatively be returned by
t_rcvuderr.Therefore, an application must be prepared to receive these errors in both of these
ways.

VALID STATES
T_IDLE

ERRORS
On failure,t_errno is set to one of the following:

[TBADDATA] Illegal amount of data. A single send was attempted specifying aTSDU
greater than that specified in theinfo argument, or a send of a zero byte
TSDU is not supported by the provider.

[TBADF] The specified file descriptor does not refer to a transport endpoint.

[TFLOW] O_NONBLOCK was set, but the flow control mechanism prevented the
transport provider from accepting any data at this time.

[TLOOK] An asynchronous event has occurred on this transport endpoint.

[TNOTSUPPORT] This function is not supported by the underlying transport provider.

[TOUTSTATE] The function was issued in the wrong sequence on the transport endpoint
referenced byfd.

[TSYSERR] A system error has occurred during execution of this function.

[TBADADDR] The specified protocol address was in an incorrect format or contained
illegal information.

[TBADOPT] The specified options were in an incorrect format or contained illegal
information.

[TPROTO] This error indicates that a communication problem has been detected
betweenXTI and the transport provider for which there is no other suitable
XTI (t_errno).

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of−1 is returned and
t_errno is set to indicate an error.

SEE ALSO
fcntl(), t_alloc(), t_open(), t_rcvudata(), t_rcvuderr().

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 105

-- --

-- --

t_strerror() XTI Library Functions and Parameters

NAME
t_strerror - produce an error message string

SYNOPSIS
#include <xti.h>

char ∗t_strerror(errnum)
int errnum;

DESCRIPTION

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Parameters Before call After callii
errnum x /iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
c
c

c
c
c

c
c
c

c
c
c

Thet_strerror() function maps the error number inerrnum that corresponds to anXTI error to
a language-dependent error message string and returns a pointer to the string. The string
pointed to will not be modified by the program, but may be overwritten by a subsequent call to
the t_strerror function. The string is not terminated by a newline character. The language for
error message strings written byt_strerror() is implementation-defined. If it is English, the
error message string describing the value int_errno is identical to the comments following the
t_errno codes defined in<xti.h>. If an error code is unknown, and the language is English,
t_strerror() returns the string:

"<error>: error unknown"

where <error> is the error number supplied as input. In other languages, an equivalent text
is provided.

VALID STATES
ALL - apart fromT_UNINIT

RETURN VALUE
The functiont_strerror() returns a pointer to the generated message string.

SEE ALSO
t_error()

X/Open CAE Specification (1992)
Page : 106 X/Open Transport Interface (XTI)

-- --

-- --

XTI Library Functions and Parameters t_sync()

NAME
t_sync− synchronise transport library

SYNOPSIS
#include <xti.h>

int t_sync(fd)
int fd;

DESCRIPTION

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Parameters Before call After callii
fd x /iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
c
c

c
c
c

c
c
c

c
c
c

For the transport endpoint specified byfd, t_sync() synchronises the data structures managed
by the transport library with information from the underlying transport provider. In doing so, it
can convert an uninitialised file descriptor (obtained viaopen(), dup() or as a result of afork()
andexec()) to an initialised transport endpoint, assuming that the file descriptor referenced a
transport endpoint, by updating and allocating the necessary library data structures. This
function also allows two cooperating processes to synchronise their interaction with a transport
provider.

For example, if a process forks a new process and issues anexec(), the new process must issue
a t_sync() to build the private library data structure associated with a transport endpoint and to
synchronise the data structure with the relevant provider information.

It is important to remember that the transport provider treats all users of a transport endpoint as
a single user. If multiple processes are using the same endpoint, they should coordinate their
activities so as not to violate the state of the transport endpoint. The functiont_sync() returns
the current state of the transport endpoint to the user, thereby enabling the user to verify the
state before taking further action. This coordination is only valid among cooperating processes;
it is possible that a process or an incoming event could change the endpoint’s stateafter a
t_sync() is issued.

If the transport endpoint is undergoing a state transition whent_sync() is called, the function
will fail.

VALID STATES
ALL - apart fromT_UNINIT

ERRORS
On failure,t_errno is set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport endpoint. This
error may be returned when thefd has been previously closed or an
erroneous number may have been passed to the call.

[TSTATECHNG] The transport endpoint is undergoing a state change.

[TSYSERR] A system error has occurred during execution of this function.

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 107

-- --

t_sync() XTI Library Functions and Parameters

[TPROTO] This error indicates that a communication problem has been detected
betweenXTI and the transport provider for which there is no other suitable
XTI (t_errno).

RETURN VALUE
On successful completion, the state of the transport endpoint is returned. Otherwise, a value of
-1 is returned andt_errno is set to indicate an error. The state returned is one of the following:

T_UNBND Unbound

T_IDLE Idle

T_OUTCON Outgoing connection pending

T_INCON Incoming connection pending

T_DATAXFER Data transfer

T_OUTREL Outgoing orderly release (waiting for an orderly release indication)

T_INREL Incoming orderly release (waiting for an orderly release request).

SEE ALSO
dup(), exec(), fork(), open().

X/Open CAE Specification (1992)
Page : 108 X/Open Transport Interface (XTI)

-- --

-- --

XTI Library Functions and Parameters t_unbind()

NAME
t_unbind− disable a transport endpoint

SYNOPSIS
#include <xti.h>

int t_unbind(fd)
int fd;

DESCRIPTION

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Parameters Before call After callii
fd x /iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
c
c

c
c
c

c
c
c

c
c
c

The t_unbind() function disables the transport endpoint specified byfd which was previously
bound by t_bind(). On completion of this call, no further data or events destined for this
transport endpoint will be accepted by the transport provider. An endpoint which is disabled by
usingt_unbind() can be enabled by a subsequent call tot_bind().

VALID STATES
T_IDLE

ERRORS
On failure,t_errno is set to one of the following:

[TBADF] The specified file descriptor does not refer to a transport endpoint.

[TOUTSTATE] The function was issued in the wrong sequence.

[TLOOK] An asynchronous event has occurred on this transport endpoint.

[TSYSERR] A system error has occurred during execution of this function.

[TPROTO] This error indicates that a communication problem has been detected
betweenXTI and the transport provider for which there is no other suitable
XTI (t_errno).

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of−1 is returned and
t_errno is set to indicate an error.

SEE ALSO
t_bind().

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 109

-- --

t_unbind() XTI Library Functions and Parameters

X/Open CAE Specification (1992)
Page : 110 X/Open Transport Interface (XTI)

-- --

-- --

Appendix A

ISO Transport Protocol Information

A.1 GENERAL

This appendix describes the protocol-specific information that is relevant forISO transport
providers.

Notes

g Protocol address

In anISO environment, the protocol address is the transport address.

g Sending data of zero octets

The transport service definition, both in connection-oriented mode and in connectionless
mode, does not permit sending aTSDU of zero octets. So, in connectionless mode, if the
len parameter is set to zero, thet_sndudata() call will always return unsuccessfully with
-1 and t_errno set to [TBADDATA]. In connection-oriented mode, if thenbytes
parameter is set to zero, thet_snd() call will return with −1 and t_errno set to
[TBADDATA] if either theT_MORE flag is set, or theT_MORE flag is not set and the
precedingt_snd() call completed aTSDU or ETSDU(i.e., the call has requested sending a
zero byteTSDU or ETSDU).

g Expedited data

In connection-oriented mode, and when the transport class permits it, the expedited data
option must be negotiated during the connection establishment phase. In connectionless
mode this feature is not supported.

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 111

-- --

Options ISO Transport Protocol Information

A.2 OPTIONS

Options are formatted according to the structuret_opthdr as described inChapter 5, The
Use of Options. A transport provider compliant to this specification supports none, all or
any subset of the options defined inSection A.2.1, Connection-mode ServiceandSection
A.2.2, Connectionless-mode Service. An implementation may restrict the use of any of
these options by offering them only in the privileged or read-only mode.

A.2.1 Connection-mode Service

The protocol level of all subsequent options isISO_TP.

All options are association-related (seeChapter 5, The Use of Options). They may be
negotiated in theXTI statesT_IDLE and T_INCON, and are read-only in all other states
exceptT_UNINIT.

A.2.1.1 Options for Quality of Service and Expedited Data (ISO8072:1986)

These options are all defined in theISO 8072:1986 transport service definition. The
definitions are not repeated here.

iii
Option Name Type of Option Legal Meaning

Value Option Valueii

TCO_THROUGHPUT struct thrpt octets per second throughput
TCO_TRANSDEL struct transdel time in milliseconds transit delay
TCO_RESERRORRATE struct rate OPT_RATIO residual error rate

transfer failure
probability

TCO_TRANSFFAILPROB struct rate OPT_RATIO

connection establ.
failure probability

TCO_ESTFAILPROB struct rate OPT_RATIO

connection release
failure probability

TCO_RELFAILPROB struct rate OPT_RATIO

connection establ.
delay

TCO_ESTDELAY struct rate time in milliseconds

connection release
delay

TCO_RELDELAY struct rate time in milliseconds

TCO_CONNRESIL struct rate OPT_RATIO connection resilience
TCO_PROTECTION unsigned long see text protection
TCO_PRIORITY unsigned long see text priorityiii
TCO_EXPD unsigned long T_YES/T_NO expedited dataiiic

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table A-1. Options for Quality of Service and Expedited Data (ISO 8072:1986)

OPT_RATIO is defined asOPT_RATIO = −log10(ratio). The ratio is dependent on the
parameter, but is always composed of a number of failures divided by a total number of
samples. This may be, for example, the number ofTSDUs transferred in error divided by the
total number ofTSDU transfers (TCO_RESERRORRATE).

X/Open CAE Specification (1992)
Page : 112 X/Open Transport Interface (XTI)

-- --

ISO Transport Protocol Information Options

Absolute Requirements

For the options inTable A-1, the transport user can indicate whether the request is an
absolute requirement or whether a degraded value is acceptable. For theQOSoptions based
on struct rate an absolute requirement is specified via the fieldminacceptvalue, if that field
is given a value different fromT_UNSPEC. The value specified forTCO_PROTECTIONis an
absolute requirement if theT_ABSREQflag is set. The values specified forTCO_EXPDand
TCO_PRIORITYare never absolute requirements.

Further Remarks

A detailed description of the options for Quality of Service can be found in theISO
8072:1986 specification. The field elements of the structures in use for the option values are
self-explanatory. Only the following details remain to be explained.

g If these options are returned witht_listen(), their values are related to the incoming
connection and not to the transport endpoint wheret_listen() was issued. To give an
example, the value ofTCO_PROTECTIONis the value sent by the calling transport user,
and not the value currently effective for the endpoint (that could be retrieved by
t_optmgmt() with the flagT_CURRENT set). The option is not returned at all if the
calling user did not specify it. An analogous procedure applies for the other options.
See alsoChapter 5, The Use of Options.

g If, in a call to t_accept(), the called transport user tries to negotiate an option of higher
quality than proposed, the option is rejected and the connection establishment fails (see
Section 5.3.4, Reponding to a Negotiation Proposal).

g The values of the QOS options TCO_THROUGHPUT, TCO_TRANSDEL,
TCO_RESERRORRATE, TCO_TRANSFFAILPROB, TCO_ESTFAILPROB,
TCO_RELFAILPROB, TCO_ESTDELAY, TCO_RELDELAY and TCO_CONNRESILhave a
structured format. A user requesting one of these options might leave a field of the
structure unspecified by setting it toT_UNSPEC. The transport provider is then free to
select an appropriate value for this field. The transport provider may returnT_UNSPECin
a field of the structure to the user to indicate that it has not yet decided on a definite
value for this field.

T_UNSPECis not a legal value forTCO_PROTECTION, TCO_PRIORITYandTCO_EXPD.

g TCO_THROUGHPUTandTCO_TRANSDEL
If avgthrpt (average throughput) is not defined (both fields set toT_UNSPEC), the
transport provider considers that the average throughput has the same values as the
maximum throughput (maxthrpt). An analogous procedure applies toTCO_TRANSDEL.

g The ISO specification ISO 8073:1986 does not differentiate between average and
maximum transit delay. Transport providers that support this option adopt the values of
the maximum delay as input for theCR TPDU.

g TCO_PROTECTION
This option defines the general level of protection. The symbolic constants in the
following list are used to specify the required level of protection:

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 113

-- --

Options ISO Transport Protocol Information

— T_NOPROTECT:
no protection feature

— T_PASSIVEPROTECT:
protection against passive monitoring

— T_ACTIVEPROTECT:
protection against modification, replay, addition or deletion

Both flagsT_PASSIVEPROTECTandT_ACTIVEPROTECTmay be set simultaneously but
are exclusive withT_NOPROTECT. If the T_ACTIVEPROTECTor T_PASSIVEPROTECT
flags are set, the user may indicate that this is an absolute requirement by also setting the
T_ABSREQflag.

g TCO_PRIORITY
Five priority levels are defined byXTI:

— T_PRIDFLT:
lower level

— T_PRILOW:
low level

— T_PRIMID:
medium level

— T_PRIHIGH:
high level

— T_PRITOP:
higher level

The number of priority levels is not defined byISO 8072:1986. The parameter only has
meaning in the context of some management entity or structure able to judge relative
importance.

A.2.1.2 Management Options

These options are parameters of anISO transport protocol according toISO 8073:1986.
They are not included in theISO transport service definitionISO 8072:1986, but are
additionally offered byXTI. Transport users wishing to be trulyISO-compliant should thus
not adhere to them.

Avoid specifying bothQOSparameters and management options at the same time.

X/Open CAE Specification (1992)
Page : 114 X/Open Transport Interface (XTI)

-- --

ISO Transport Protocol Information Options

ii
Option Name Type of Option Legal Meaning

Value Option Valueii

TCO_LTPDU unsigned long length in octets maximum length ofTPDU

TCO_ACKTIME unsigned long time in milliseconds acknowledge time
TCO_REASTIME unsigned long time in seconds reassignment time
TCO_PREFCLASS unsigned long see text preferred class
TCO_ALTCLASS1 unsigned long see text 1st alternative class
TCO_ALTCLASS2 unsigned long see text 2nd alternative class
TCO_ALTCLASS3 unsigned long see text 3rd alternative class
TCO_ALTCLASS4 unsigned long see text 4th alternative class
TCO_EXTFORM unsigned long T_YES/T_NO/T_UNSPECextended format
TCO_FLOWCTRL unsigned long T_YES/T_NO/T_UNSPECflowctr
TCO_CHECKSUM unsigned long T_YES/T_NO/T_UNSPECchecksum
TCO_NETEXP unsigned long T_YES/T_NO/T_UNSPECnetwork expedited data

use of network
receipt confirmation

TCO_NETRECPTCFunsigned long T_YES/T_NO/T_UNSPEC

iic
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table A-2. Management Options

Absolute Requirements

A request for any of these options is considered an absolute requirement.

Further Remarks

g If these options are returned witht_listen() their values are related to the incoming
connection and not to the transport endpoint wheret_listen() was issued. That means
that t_optmgmt() with the flagT_CURRENT set would usually yield a different result
(seeChapter 5, The Use of Options).

g For management options that are subject to peer-to-peer negotiation the following holds:
If, in a call to t_accept(), the called transport user tries to negotiate an option of higher
quality than proposed, the option is rejected and the connection establishment fails (see
Section 5.3.4, Responding to a Negotiation Proposal).

g A connection-mode transport provider may allow the transport user to select more than
one alternative class. The transport user may use the optionsT_ALTCLASS1,
T_ALTCLASS2, etc. to denote the alternatives. A transport provider only supports an
implementation-dependent limit of alternatives and ignores the rest.

g The valueT_UNSPECis legal for all options inTable A-2. It may be set by the user to
indicate that the transport provider is free to choose any appropriate value. If returned
by the transport provider, it indicates that the transport provider has not yet decided on a
specific value.

g Legal values for the optionsT_PREFCLASS, T_ALTCLASS1, T_ALTCLASS2,
T_ALTCLASS3 and T_ALTCLASS4 are T_CLASS0, T_CLASS1, T_CLASS2, T_CLASS3,
T_CLASS4andT_UNSPEC.

g If a connection has been established,TCO_PREFCLASSwill be set to the selected value,
andT_ALTCLASS1 throughT_ALTCLASS4 will be set toT_UNSPEC, if these options are

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 115

-- --

Options ISO Transport Protocol Information

supported.

g Warning on the use ofTCO_LTPDU: Sensible use of this option requires that the
application programmer knows about system internals. Careless setting of either a lower
or a higher value than the implementation-dependent default may degrade the
performance.

Legal values areT_UNSPECand all positive values.

The action taken by a transport provider is implementation-dependent if a value is
specified which is not exactly as defined inISO 8073:1986 or its addendums.

g The management options are not independent of one another, and not independent of the
options defined inTable A-1. A transport user must take care not to request conflicting
values. If conflicts are detected at negotiation time, the negotiation fails according to the
rules for absolute requirements (seeChapter 5, The Use of Options). Conflicts that
cannot be detected at negotiation time will lead to unpredictable results in the course of
communication. Usually, conflicts are detected at the time the connection is established.

Some relations that must be obeyed are:

g If TCO_EXPis set toT_YESandTCO_PREFCLASSis set toT_CLASS2, TCO_FLOWCTRL
must also be set toT_YES.

g If TCO_PREFCLASSis set toT_CLASS0, TCO_EXPmust be set toT_NO.

g The value inTCO_PREFCLASSmust not be lower than the value inTCO_ALTCLASS1,
TCO_ALTCLASS2, and so on.

g Depending on the chosenQOSoptions, further value conflicts might occur.

A.2.2 Connectionless-mode Service

The protocol level of all subsequent options isISO_TP(as in Section A.2.1, Connection-
mode Service).

All options are association-related (seeChapter 5, The Use of Options). They may be
negotiated in allXTI states butT_UNINIT.

A.2.2.1 Options for Quality of Service (ISO8072/Add.1:1986)

These options are all defined in theISO 8072/Add.1:1986 transport service definition. The
definitions are not repeated here.

X/Open CAE Specification (1992)
Page : 116 X/Open Transport Interface (XTI)

-- --

ISO Transport Protocol Information Options

iii
Option Name Type of Option Legal Meaning

Value Option Valueii

TCL_TRANSDEL struct rate time in milliseconds transit delay
TCL_RESERRORRATE struct rate OPT_RATIO residual error rate
TCL_PROTECTION unsigned long see text protection
TCL_PRIORITY unsigned long see text priorityiiicc

c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c

Table A-3. Options for Quality of Service (ISO 8072/Add.1:1986)

Absolute Requirements

A request for any of these options is an absolute requirement.

Further Remarks

A detailed description of the options for Quality of Service can be found inISO
8072/Add.1:1986. The field elements of the structures in use for the option values are self-
explanatory. Only the following details remain to be explained.

g These options are negotiated only between the local user and the local transport
provider.

g The meaning, type of option value, and the range of legal option values are identical for
TCO_RESERRORRATEandTCL_RESERRORRATE, TCO_PRIORITYandTCL_PRIORITY,
TCO_PROTECTIONandTCL_PROTECTION(seeSection A.2.1.1, Options for Quality
of Service and Expedited Data (ISO 8072:1986)).

g TCL_TRANSDEL and TCO_TRANSDEL are different. TCL_TRANSDEL specifies the
maximum transit delay expected during a datagram transmission. Note that the type of
option value is astruct rate contrary to thestruct transdel of TCO_TRANSDEL. The
range of legal option values for each field ofstruct rate is the same as that of
TCO_TRANSDEL.

g If these options are returned witht_rcvudata() their values are related to the received
datagram and not to the transport endpoint wheret_rcvudata() was issued. On the other
hand,t_optmgmt() with the flagT_CURRENT set returns the values that are currently
effective for outgoing datagrams.

g The functiont_rcvuderr() returns the option value of the data unit previously sent that
produced the error.

A.2.2.2 Management Options

This option is a parameter of anISO transport protocol, according toISO 8602. It is not
included in theISO transport service definitionISO 8072/Add.1:1986, but is an additional
offer byXTI. Transport users wishing to be trulyISO-compliant should thus not adhere to it.

Avoid specifying bothQOSparameters and this management option at the same time.

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 117

-- --

Options ISO Transport Protocol Information

ii
Option Name Type of Option Legal Meaning

Value Option Valueii

TCL_CHECKSUM unsigned long T_YES/T_NO checksum computationiicc
c
c
c
c

cc
c
c
c
c

cc
c
c
c
c

cc
c
c
c
c

cc
c
c
c
c

Table A-4. Management Option

Absolute Requirements

A request for this option is an absolute requirement.

Further Remarks

TCL_CHECKSUM is the option allows disabling/enabling of the checksum computation.
The legal values areT_YES(checksum enabled) andT_NO (checksum disabled).

If this option is returned witht_rcvudata(), its value indicates whether or not a checksum
was present in the received datagram.

The advisability of turning off the checksum check is controversial.

X/Open CAE Specification (1992)
Page : 118 X/Open Transport Interface (XTI)

-- --

ISO Transport Protocol Information Functions

A.3 FUNCTIONS

t_accept() The parametercall->udata.lenmust be in the range 0 to 32. The user may
send up to 32 octets of data when accepting the connection.

If fd is not equal toresfd, resfdshould have been bound to the same address
as fd with the qlen parameter set to 0 when thet_bind() was called for that
resfd.

A process can listen for an incoming indication on a givenfd and then accept
the connection on another endpointresfdwhich has been bound to the same
or a different protocol address with theqlen parameter (of thet_bind()
function) set to 0. The protocol address bound to the new accepting endpoint
(resfd) should in general be the same as the listening endpoint (fd), because at
the present time, theISO transport service definition (ISO 8072:1986) does
not authorise acceptance of an incoming connection indication with a
responding address different from the called address, except under certain
conditions (seeISO 8072:1986 paragraph 12.2.4, Responding Address), but it
also states that it may be changed in the future.

t_bind() Theaddrfield of thet_bind() structure represents the localTSAP.

t_connect() Thesndcall->addrstructure specifies the remote calledTSAP. In the present
version, the returned address set inrcvcall->addr will have the same value.

The setting ofsndcall->udatais optional forISO connections, but with no
data, thelen field of udatamust be set to 0. Themaxlenandbuf fields of the
netbuf structure, pointed to byrcvcall->addr and rcvcall->opt, must be set
before the call.

t_getinfo() The information returned byt_getinfo() reflects the characteristics of the
transport connection or, if no connection is established, the maximum
characteristics a transport connection could take on using the underlying
transport provider. In all possible states exceptT_DATAXFER, the function
t_getinfo() returns in the parameterinfo the same information as was
returned byt_open(). In T_DATAXFER, however, the information returned
may differ from that returned byt_open(), depending on:

— the transport class negotiated during the connection establishment, and

— the negotiation of expedited data transfer for this connection.

In T_DATAXFER, the etsdufield in the t_info structure is set to -2 if no
expedited data transfer was negotiated, and to 16 otherwise. The remaining
fields are set according to the characteristics of the transport protocol class in
use for this connection, as defined in the table below.

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 119

-- --

Functions ISO Transport Protocol Information

ii
Parameters Before Call After Call

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Connection Connection Connectionless
Class 0 Class 1-4ii

fd x / / /
info->addr x x x
info->options / x (1) x (1) x (1)
info->tsdu / x (2) x (2) 0->63488
info->etsdu / −2 16/−2 (3) −2
info->connect / −2 32 −2
info->discon / −2 64 −2
info->servtype / T_COTS T_COTS T_CLTS

info->flags / 0 0 0iic
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

1. ‘x’ equals -2 or an integral number greater than zero.

2. ‘x’ equals -1 or an integral number greater than 0.

3. Depending on the negotiation of expedited data transfer.

t_listen() The call->addr structure contains the remote callingTSAP. Since, at most,
32 octets of data will be returned with the connect indication,call-
>udata.maxlenshould be set to 32 before the call tot_listen().

If the user has setqlen greater than 1 (on the call tot_bind()), the user may
queue up several connect indications before responding to any of them. The
user should be forewarned that theISO transport provider may start a timer to
be sure of obtaining a response to the connect request in a finite time. So if
the user queues the connect indications for too long before responding to
them, the transport provider initiating the connection will disconnect it.

t_open() The function t_open() is called as the first step in the initialisation of a
transport endpoint. This function returns various default characteristics
associated with the different classes. According toISO 8073:1986, anOSI
transport provider supports one or several out of five different transport
protocols, class 0 through class 4. The default characteristics returned in the
parameterinfo are those of the highest-numbered protocol class the transport
provider is able to support. If, for example, a transport provider supports
classes 2 and 0, the characteristics returned are those of class 2. If the
transport provider is limited to class 0, the characteristics returned are those
of class 0. The table below gives the characteristics associated with the
different classes.

X/Open CAE Specification (1992)
Page : 120 X/Open Transport Interface (XTI)

-- --

ISO Transport Protocol Information Functions

ii
Parameters Before Call After Call

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Connection Connection Connectionless
Class 0 Class 1-4ii

name x / / /
oflag x / / /
info->addr / x x x
info->options / x (1) x (1) x (1)
info->tsdu / x (2) x (2) 0->63488
info->etsdu / −2 16 −2
info->connect / −2 32 −2
info->discon / −2 64 −2
info->servtype / T_COTS T_COTS T_CLTS

info->flags / 0 0 0iic
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

1. ‘x’ equals -2 or an integral number greater than zero.

2. ‘x’ equals -1 or an integral number greater than zero.

t_rcv() If expedited data arrives after part of aTSDU has been retrieved, receipt of
the remainder of theTSDU will be suspended until theETSDU has been
processed. Only after the fullETSDU has been retrieved (T_MORE not set),
will the remainder of theTSDU be available to the user.

t_rcvconnect()
On return, thecall->addr structure contains the remote callingTSAP. Since,
at most, 32 octets of data will be returned to the user,call->udata.maxlen
should be set to 32 before the call tot_rcvconnect().

t_rcvdis() Since, at most, 64 octets of data will be returned to the user,discon-
>udata.maxlenshould be set to 64 before the call tot_rcvdis().

t_rcvudata() Theunitdata->addrstructure specifies the remoteTSAP. If the T_MORE flag
is set, an additionalt_rcvudata() call is needed to retrieve the entireTSDU.
Only normal data is returned via thet_rcvudata() call.

t_rcvuderr() Theuderr->addrstructure contains the remoteTSAP.

t_snd() Zero byteTSDUs are not supported. TheT_EXPEDITED flag is not a legal
flag unless expedited data has been negotiated for this connection.

t_snddis() Since, at most, 64 octets of data may be sent with the disconnect,call-
>udata.lenwill have a value less than or equal to 64.

t_sndudata() The unitdata->addr structure specifies the remoteTSAP. The ISO
connectionless transport service does not support the sending of expedited
data.

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 121

-- --

Functions ISO Transport Protocol Information

X/Open CAE Specification (1992)
Page : 122 X/Open Transport Interface (XTI)

-- --

-- --

Appendix B

Internet Protocol-specific Information

B.1 GENERAL

This appendix describes the protocol-specific information that is relevant forTCP andUDP
transport providers.

Notes

g T_MOREflag andTSDUs

The notion ofTSDU is not supported by aTCP transport provider, so theT_MORE flag
will be ignored whenTCP is used. TheTCP PUSHflag cannot be used through theXTI
interface because theTCPMilitary Standard (seeReferenced Documents) states that:

‘‘Successive pushes may not be preserved because two or more units of
pushed data may be joined into a single pushed unit by either the sending or
receivingTCP. Pushes are not visible to the receivingUpperLevel Protocol
and are not intended to serve as a record boundary marker’’.

g Expedited data

TCP does not have a notion of expedited data in a sense comparable toISO expedited
data. TCP defines an urgent mechanism, by which in-line data is marked for urgent
delivery. UDP has no urgent mechanism. See theTCP Military Standard for more
detailed information.

g Orderly release

The orderly release functionst_sndrel() and t_rcvrel() were defined to support the
orderly release facility ofTCP. However, its use is not recommended so that
applications usingTCP may be ported to useISO Transport. The specification ofTCP
states that only established connections may be closed with orderly release, i.e., on an
endpoint inT_DATAXFER or T_INREL state.

g Connection establishment

TCP does not allow the possibility of refusing a connection indication. Each connect
indication causes theTCP transport provider to establish the connection. Therefore,
t_listen() and t_accept() have a semantic which is slightly different from that forISO
providers.

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 123

-- --

Options Internet Protocol-specific Information

B.2 OPTIONS

Options are formatted according to the structuret_opthdr as described inChapter 5, The
Use of Options. A transport provider compliant to this specification supports none, all or
any subset of the options defined inSection B.2.1, TCP-level Options to Section B.2.3,IP-
level Options. An implementation may restrict the use of any of these options by offering
them only in the privileged or read-only mode.

B.2.1 TCP-level Options

The protocol level isINET_TCP. For this level, Table B-1 shows the options that are
defined.

iii
Option Name Type of Option Legal Meaning

Value Option Valueii

check if connections are aliveTCP_KEEPALIVE struct t_kpalive see text

getTCPmaximum segment sizeTCP_MAXSEG unsigned long length in octets

don’t delay send to coalesce packetsTCP_NODELAY unsigned long T_YES/T_NOiiic
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c

Table B-1. TCP-level Options

These options arenot association-related. They may be negotiated in allXTI states except
T_UNBND andT_UNINIT. They are read-only in stateT_UNBND. SeeChapter 5, The Use
of Options for the difference between options that are association-related and those that are
not.

Absolute Requirements

A request forTCP_NODELAY and a request to activateTCP_KEEPALIVE is an absolute
requirement.TCP_MAXSEGis a read-only option.

Further Remarks

TCP_KEEPALIVE If this option is set, a keep-alive timer is activated to monitor idle
connections that might no longer exist. If a connection has been idle
since the last keep-alive timeout, a keep-alive packet is sent to check
if the connection is still alive or broken.

Keep-alive packets are not an explicit feature ofTCP, and this practice
is not universally accepted. According toRFC1122:

‘‘a keep-alive mechanism should only be invoked in server
applications that might otherwise hang indefinitely and
consume resources unnecessarily if a client crashes or
aborts a connection during a network failure’’.

X/Open CAE Specification (1992)
Page : 124 X/Open Transport Interface (XTI)

-- --

Internet Protocol-specific Information Options

The option value consists of a structuret_kpalive declared as:

struct t_kpalive {
long kp_onoff; /∗ switch option on/off∗/
long kp_timeout; /∗ keep-alive timeout in minutes∗/

}

Legal values for the fieldkp_onoffare:

T_NO switch keep-alive timer off
T_YES activate keep-alive timer
T_YES| T_GARBAGE activate keep-alive timer and

send garbage octet

Usually, an implementation should send a keep-alive packet with no
data (T_GARBAGE not set). If T_GARBAGE is set, the keep-alive
packet contains one garbage octet for compatibility with erroneous
TCPimplementations.

An implementation is, however, not obliged to supportT_GARBAGE
(seeRFC 1122). Since thekp_onoffvalue is an absolute requirement,
the request ‘‘T_YES| T_GARBAGE’’ may therefore be rejected.

The fieldkp_timeoutdetermines the frequency of keep-alive packets
being sent, in minutes. The transport user can request the default
value by setting the field toT_UNSPEC. The default is
implementation-dependent, but at least 120 minutes (seeRFC 1122).
Legal values for this field areT_UNSPECand all positive numbers.

The timeout value is not an absolute requirement. The
implementation may pose upper and lower limits to this value.
Requests that fall short of the lower limit may be negotiated to the
lower limit.

The use of this option might be restricted to privileged users.

TCP_MAXSEG This option is read-only. It is used to retrieve the maximumTCP
segment size.

TCP_NODELAY Under most circumstances,TCP sends data as soon as it is presented.
When outstanding data has not yet been acknowledged, it gathers
small amounts of output to be sent in a single packet once an
acknowledgement is received. For a small number of clients, such as
window systems (e.g.,MIT X Window System) that send a stream of
mouse events which receive no replies, this packetisation may cause
significant delays.TCP_NODELAY is used to defeat this algorithm.
Legal option values areT_YES(‘‘don’t delay’’) and T_NO (‘‘delay’’).

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 125

-- --

Options Internet Protocol-specific Information

B.2.2 UDP-level Options

The protocol level isINET_UDP. The option defined for this level is shown in Table B-2.

iii
Option Name Type of Option Legal Meaning

Value Option Valueii

UDP_CHECKSUM unsigned long T_YES/T_NO checksum computationiiicc
c
c
c
c

cc
c
c
c
c

cc
c
c
c
c

cc
c
c
c
c

cc
c
c
c
c

Table B-2. UDP-level Option

This option is association-related. It may be negotiated in allXTI states exceptT_UNBND
andT_UNINIT. It is read-only in stateT_UNBND. SeeChapter 5, The Use of Optionsfor
the difference between options that are association-related and those that are not.

Absolute Requirements

A request for this option is an absolute requirement.

Further Remarks

UDP_CHECKSUM The option allows disabling/enabling of theUDP checksum
computation. The legal values areT_YES (checksum enabled) and
T_NO (checksum disabled).

If this option is returned witht_rcvudata(), its value indicates
whether a checksum was present in the received datagram or not.

Numerous cases of undetected errors have been reported when
applications chose to turn off checksums for efficiency. The
advisability of ever turning off the checksum check is very
controversial.

B.2.3 IP-level Options

The protocol level isINET_IP. The options defined for this level are listed in Table B-3.
ii

Option Name Type of Option Legal Meaning
Value Option Valueii

permit sending of
broadcast messages

IP_BROADCAST unsigned int T_YES/T_NO

just use interface addressesIP_DONTROUTE unsigned int T_YES/T_NO

array of unsigned
characters

IP per-packet optionsIP_OPTIONS see text

allow local address reuseIP_REUSEADDR unsigned int T_YES/T_NO

IP per-packet type of serviceIP_TOS unsigned char see text

IP per packet time-to-liveIP_TTL unsigned char time in secondsiic
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table B-3. IP-level Options

X/Open CAE Specification (1992)
Page : 126 X/Open Transport Interface (XTI)

-- --

Internet Protocol-specific Information Options

IP_OPTIONSand IP_TOS are both association-related options. All other options arenot
association-related. SeeChapter 5, The Use of Options for the difference between
association-related options and options that are not.

IP_REUSEADDRmay be negotiated in allXTI states exceptT_UNINIT. All other options
may be negotiated in all otherXTI states exceptT_UNBND andT_UNINIT; they are read-only
in the stateT_UNBND.

Absolute Requirements

A request for any of these options is an absolute requirement.

Further Remarks

IP_BROADCAST This option requests permission to send broadcast datagrams. It was
defined to make sure that broadcasts are not generated by mistake.
The use of this option is often restricted to privileged users.

IP_DONTROUTE This option indicates that outgoing messages should bypass the
standard routing facilities. It is mainly used for testing and
development.

IP_OPTIONS This option is used to set (retrieve) theOPTIONS field of each
outgoing (incoming)IP datagram. Its value is a string of octets
composed of a number ofIP options, whose format matches those
defined in theIP specification with one exception: the list of addresses
for the source routing options must include the first-hop gateway at
the beginning of the list of gateways. The first-hop gateway address
will be extracted from the option list and the size adjusted accordingly
before use.

The option is disabled if it is specified with ‘‘no value’’, i.e., with an
option header only.

The functions t_connect() (in synchronous mode),t_listen(),
t_rcvconnect() and t_rcvudata() return theOPTIONSfield, if any, of
the receivedIP datagram associated with this call. The function
t_rcvuderr() returns theOPTIONS field of the data unit previously
sent that produced the error. The functiont_optmgmt() with
T_CURRENT set retrieves the currently effectiveIP_OPTIONSthat is
sent with outgoing datagrams.

Common applications never need this option. It is mainly used for
network debugging and control purposes.

IP_REUSEADDR Many TCP implementations do not allow the user to bind more than
one transport endpoint to addresses with identical port numbers. If
IP_REUSEADDRis set toT_YESthis restriction is relaxed in the sense
that it is now allowed to bind a transport endpoint to an address with a
port number and an underspecified internet address (‘‘wild card’’
address) and further endpoints to addresses with the same port
number and (mutually exclusive) fully specified internet addresses.

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 127

-- --

Options Internet Protocol-specific Information

IP_TOS This option is used to set (retrieve) thetype-of-servicefield of an outgoing
(incoming) IP datagram. This field can be constructed by anyOR’ed
combination of one of the precedence flags and the type-of-service flags
T_LDELAY, T_HITHRPTandT_HIREL:

— Precedence:
These flags specify datagram precedence, allowing senders to indicate
the importance of each datagram. They are intended for Department of
Defense applications. Legal flags are:

T_ROUTINE
T_PRIORITY
T_IMMEDIATE
T_FLASH
T_OVERRIDEFLASH
T_CRITIC_ECP
T_INETCONTROL
T_NETCONTROL.

Applications usingIP_TOSbut not the precedence level should use the
valueT_ROUTINEfor precedence.

— Type of service:
These flags specify the type of service theIP datagram desires. Legal
flags are:

T_NOTOSrequests no distinguished type of service
T_LDELAY requests low delay
T_HITHRPT requests high throughput
T_HIREL requests high reliability

The option value is set using the macroSET_TOS(prec,tos), whereprec is
set to one of the precedence flags andtos to one or anOR’ed combination
of the type-of-service flags.SET_TOS() returns the option value.

The functions t_connect(), t_listen(), t_rcvconnect() and t_rcvudata()
return thetype-of-servicefield of the receivedIP datagram associated with
this call. The functiont_rcvuderr() returns thetype-of-servicefield of the
data unit previously sent that produced the error.

The function t_optmgmt() with T_CURRENT set retrieves the currently
effectiveIP_TOSvalue that is sent with outgoing datagrams.

The requestedtype-of-servicecannot be guaranteed. It is a hint to the
routing algorithm that helps it choose among various paths to a destination.
Note also, that most hosts and gateways in the Internet these days ignore
thetype-of-servicefield.

IP_TTL This option is used to set thetime-to-livefield in an outgoingIP datagram.
It specifies how long, in seconds, the datagram is allowed to remain in the
Internet. Thetime-to-livefield of an incoming datagram is not returned by
any function (since it is not an association-related option).

X/Open CAE Specification (1992)
Page : 128 X/Open Transport Interface (XTI)

-- --

Internet Protocol-specific Information Options

B.3 FUNCTIONS

t_accept() Issuingt_accept() assigns an already established connection toresfd.

Since user data cannot be exchanged during the connection establishment phase,
call->udata.lenmust be set to 0. Also,resfdmust be bound to the same address as
fd. A potential restriction on binding of endpoints to protocol addresses is
described undert_bind() below.

If association-related options (IP_OPTIONS, IP_TOS) are to be sent with the connect
confirmation, the values of these options must be set witht_optmgmt() before the
T_LISTEN event occurs. When the transport user detects aT_LISTEN, TCP has
already established the connection. Association-related options passed with
t_accept() become effective at once, but since the connection is already
established, they are transmitted with subsequentIP datagrams sent out in the
T_DATAXFER state.

t_bind() The addr field of the t_bind structure represents the local socket, i.e., an address
which specifically includes a port identifier.

In the connection-oriented mode (i.e.,TCP), the t_bind() function may only bind
one transport endpoint to any particular protocol address. If that endpoint was
bound in passive mode, i.e.,qlen > 0, then other endpoints will be bound to the
passive endpoint’s protocol address via thet_accept() function only; that is, iffd
refers to the passive endpoint andresfd refers to the new endpoint on which the
connection is to be accepted,resfdwill be bound to the same protocol address asfd
after the successful completion of thet_accept() function.

t_connect() The sndcall->addr structure specifies the remote socket. In the present version,
the returned address set inrcvcall->addr will have the same value. Since user data
cannot be exchanged during the connection establishment phase,sndcall-
>udata.lenmust be set to 0.

Note that the peerTCP, and not the peer transport user, confirms the connection.

t_listen() Upon successful return,t_listen() indicates an existing connection and not a
connection indication.

Since user data cannot be exchanged during the connection establishment phase,
call->udata.maxlenmust be set to 0 before the call tot_listen(). Thecall->addr
structure contains the remote calling socket.

t_look() As soon as a segment with theTCPurgent pointer set enters theTCPreceive buffer,
the eventT_EXDATA is indicated.T_EXDATA remains set until all data up to the
byte pointed to by theTCP urgent pointer has been received. If the urgent pointer
is updated, and the user has not yet received the byte previously pointed to by the
urgent pointer, the update is invisible to the user.

t_open() t_open() is called as the first step in the initialisation of a transport endpoint. This
function returns various default characteristics of the underlying transport protocol
by setting fields in thet_info structure.

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 129

-- --

Functions Internet Protocol-specific Information

The following should be the values returned by the call tot_open() andt_getinfo()
with the indicated transport providers.

ii
Parameters Before call After call

TCP/IP UDP/IPii

name x / /
oflag x / /
info->addr / x x
info->options / x x
info->tsdu / 0 x
info->etsdu / −1 −2
info->connect / −2 −2
info->discon / −2 −2
info->servtype / T_COTS/T_COTS_ORD T_CLTS

info->flags / T_SNDZERO T_SNDZEROiic
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

‘x’ equals -2 or an integral number greater than zero.

t_rcv() The T_MORE flag should be ignored if normal data is delivered. If a byte in the
data stream is pointed to by theTCP urgent pointer, as many bytes as possible
preceding this marked byte and the marked byte itself are denoted as urgent data
and are received with theT_EXPEDITEDflag set. If the buffer supplied by the user
is too small to hold all urgent data, theT_MORE flag will be set, indicating that
urgent data still remains to be read. Note that the number of bytes received with
theT_EXPEDITEDflag set is not necessarily equal to the number of bytes sent by
the peer user with theT_EXPEDITEDflag set.

t_rcvconnect()
Since user data cannot be exchanged during the connection establishment phase,
call->udata.maxlenmust be set to 0 before the call tot_rcvconnect(). On return,
thecall->addr structure contains the remote calling socket.

t_rcvdis() Since data may not be sent with a disconnect, thediscon->udatastructure will not
be meaningful.

t_snd() TheT_MORE flag should be ignored. Ift_snd() is called with more than one byte
specified and with theT_EXPEDITEDflag set, then the last byte of the buffer will
be the byte pointed to by theTCPurgent pointer. If theT_EXPEDITEDflag is set, at
least one byte must be sent.

Implementor’s Note: Data for a t_snd() call with theT_EXPEDITEDflag set may
not pass data sent previously.

t_snddis() Since data may not be sent with a disconnect,call->udata.lenmust be set to zero.

t_sndudata() Be aware that the maximum size of a connectionlessTSDU varies among
implementations.

X/Open CAE Specification (1992)
Page : 130 X/Open Transport Interface (XTI)

-- --

-- --

Appendix C

Guidelines for Use of XTI

C.1 TRANSPORT SERVICE INTERFACE SEQUENCE OF FUNCTIONS

In order to describe the allowable sequence of function calls, this section gives some rules
regarding the maintenance of the state of the interface:

g It is the responsibility of the transport provider to keep a record of the state of the
interface as seen by the transport user.

g The transport provider will not process a function that places the interface out of state.

g If the user issues a function out of sequence, the transport provider will indicate this
where possible through an error return on that function. The state will not change. In
this case, if any data is passed with the function when not in theT_DATAXFER state, that
data will not be accepted or forwarded by the transport provider.

g The uninitialised state (T_UNINIT) of a transport endpoint is the initial state. The
endpoint must be initialised and bound before the transport provider may view it as
active.

g The uninitialised state is also the final state, and the transport endpoint must be viewed
as unused by the transport provider. Thet_close() function will close the transport
endpoint and free the transport library resources for another endpoint.

g According to Table 4-5 inChapter 4, States and Events inXTI , t_close() should only
be issued from theT_UNBND state. If it is issued from any other state, and no other user
has that endpoint open, the action will be abortive, the transport endpoint will be
successfully closed, and the library resources will be freed for another endpoint. When
t_close() is issued, the transport provider must ensure that the address associated with
the specified transport endpoint has been unbound from that endpoint. The provider
sends appropriate disconnects ift_close() is not issued from the unbound state.

The following rules apply only to the connection-mode transport service:

g The transport connection release phase can be initiated at any time during the connection
establishment phase or data transfer phase.

g The only time the state of a transport service interface of a transport endpoint may be
transferred to another transport endpoint is when thet_accept() function specifies such
action. The following rules then apply to the cooperating transport endpoints:

— The endpoint that is to accept the current state of the interface must be bound to an
appropriate protocol address and must be in theT_IDLE state.

— The user transferring the current state of an endpoint must have correct permissions
for the use of the protocol address bound to the accepting transport endpoint.

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 131

-- --

Example in Connection-oriented Mode Guidelines for Use of XTI

— The endpoint that transfers the state of the transport interface is placed into the
T_IDLE state by the transport provider after the completion of the transfer if there are
no more outstanding connect indications.

C.2 EXAMPLE IN CONNECTION -ORIENTED MODE

Figure C-1 shows the allowable sequence of functions of an active user and passive user
communicating using a connection-mode transport service. This example is not meant to
show all the functions that must be called, but rather to highlight the important functions that
request a particular service. Blank lines are used to indicate that the function would be
called by another user prior to a related function being called by the remote user. For
example, the active user callst_connect() to request a connection and the passive user
would receive an indication of the connect request (via the return fromt_listen()) and then
would call thet_accept().

The state diagram in Figure C-1 shows the flow of the events through the various states.
The active user is represented by a solid line and the passive user is represented by a dashed
line. This example shows a successful connection being established and terminated using
connection-mode transport service without orderly release. For a detailed description of all
possible states and events, see Table 4-7 inChapter 4, States and Events inXTI .

X/Open CAE Specification (1992)
Page : 132 X/Open Transport Interface (XTI)

-- --

Guidelines for Use of XTI Example in Connection-oriented Mode

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Active User Passive Userii

t_open() t_open()
t_bind() t_bind()

t_listen()
t_connect()

t_accept()
t_rcvconnect()
t_snd()

t_rcv()
t_snddis()

t_rcvdis()
t_unbind() t_unbind()
t_close() t_close()iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 133

-- --

Example in Connectionless Mode Guidelines for Use of XTI

KEY:

Active User

Passive User

t_sndt_rcv

t_accept

t_closet_open

t_connectt_listen

T_DATAXFER

T_INCON T_OUTCON

T_IDLE

T_UNBND

T_UNINIT

t_unbindt_bind

t_snddist_rcvdis

t_rcvconnect

Figure C-1. Example of a Sequence of Transport Functions
in Connection-oriented Mode

X/Open CAE Specification (1992)
Page : 134 X/Open Transport Interface (XTI)

-- --

Guidelines for Use of XTI Example in Connectionless Mode

C.3 EXAMPLE IN CONNECTIONLESS MODE

Figure C-2 shows the allowable sequence of functions of user A and user B communicating
using a connectionless transport service. This example is not meant to show all the
functions that must be called but rather to highlight the important functions that request a
particular service. Blank lines are used to indicate that a function would be called by
another user prior to a related function being called by the remote user.

The state diagram that follows shows the flow of the events through the various states. This
example shows a successful exchange of data between user A and user B. For a detailed
description of all possible states and events, seeTable 4-7 in Chapter 4, States and Events
in XTI .

iiiiiiiiiiiiiiiiiiiiiiiiiiiii
User A User Bii

t_open() t_open()
t_bind() t_bind()
t_sndudata()

t_rcvudata()
t_unbind() t_unbind()
t_close() t_close()iiiiiiiiiiiiiiiiiiiiiiiiiiiiic

c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c

t_sndudatat_rcvudata

t_closet_open

T_IDLE

T_UNBND

T_UNINIT

t_unbindt_bind

Figure C-2. Example of a Sequence of Transport Functions
in Connectionless Mode

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 135

-- --

Writing Protocol-independent Software Guidelines for Use of XTI

C.4 WRITING PROTOCOL -INDEPENDENT SOFTWARE

In order to maximise portability ofXTI applications between different kinds of machine and
to support protocol independence, there are some general rules:

1. An application should only make use of those functions and mechanisms described as
being mandatory features ofXTI.

2. In the connection-mode service, the concept of a transport service data unit (TSDU)
may not be supported by all transport providers. The user should make no
assumptions about the preservation of logical data boundaries across a connection.

3. If an application is not intended to run only over anISO transport provider, then the
name of the device should not be hard-coded into it. While software may be written
for a particular class of service (e.g., connectionless-mode service), it should not be
written to depend on any attribute of the underlying protocol.

4. The protocol-specific service limits returned on thet_open() and t_getinfo()
functions must not be exceeded. It is the responsibility of the user to access these
limits and then adhere to the limits throughout the communication process.

5. The user program should not look at or change options that are specific to the
underlying protocol. Thet_optmgmt() function enables a user to access default
protocol options from the transport provider, which may then be blindly passed as an
argument on the appropriate connect establishment function. Optionally, the user can
choose not to pass options as an argument on connect establishment functions.

6. Protocol-specific addressing issues should be hidden from the user program.
Similarly, the user must have some way of accessing destination addresses in an
invisible manner, such as through a name server. However, the details for doing so
are outside the scope of this interface specification.

7. The reason codes associated witht_rcvdis() are protocol-dependent. The user should
not interpret this information if protocol independence is a concern.

8. The error codes associated witht_rcvuderr() are protocol-dependent. The user
should not interpret this information if protocol independence is a concern.

9. The optional orderly release facility of the connection-mode service (i.e.,t_sndrel()
and t_rcvrel()) should not be used by programs targeted for multiple protocol
environments. This facility is not supported by all connection-based transport
protocols. In particular, its use will prevent programs from successfully
communicating withISO open systems.

10. The semantics of expedited data are different across different transport providers (e.g.,
ISO and TCP). An application intended to run over different transport providers
should avoid their use.

X/Open CAE Specification (1992)
Page : 136 X/Open Transport Interface (XTI)

-- --

Guidelines for Use of XTI Event Management

C.5 EVENT MANAGEMENT

In the absence of a standardised Event Management interface, the following guidelines are
offered for the use of existing and widely available mechanisms byXTI applications.

These guidelines provide information additional to that given inSection 2.7, Synchronous
and Asynchronous Execution ModesandSection 2.8, Event Management.

C.5.1 Introduction

For applications to useXTI in a fully asynchronous manner, they will need to use the
facilities of an Event Management (EM) Interface. Such anEM will allow the application to
be notified of a number ofXTI events over a range of active endpoints. These events may be
associated with:

g connection indication

g data indication

g disconnection indication

g flow control being lifted.

In the same way, theEM mechanism should allow the application to be notified of events
coming from external sources, such as:

g aynchronous I/O completion

g expiration of timer

g resource availability.

When handling multiple transport connections, the application could either:

g fork a process for each new connection to be handled

or

g handle all connections within a single process by making use of theEM facilities.

The application will have to maintain an appropriate balance and choose the right trade-off
between the number of processes and the number of connections managed per process in
order to minimise the resulting overhead.

Unfortunately, the system facilities to suspend and await notification of an event are
presently system-dependent, although work is in progress within standards bodies to provide
a unified and portable mechanism.

Hence, for the foreseeable future, applications could use whatever underlying system
facilities exist for event notification.

C.5.2 Short-term Solution

Many vendors currently provide either the System Vpoll() or BSD select() system calls
which both give the ability to suspend until there is activity on a member of a set of file
descriptors or a timeout.

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 137

-- --

Event Management Guidelines for Use of XTI

Given the fact that a transport endpoint identifying a transport connection maps to a file
descriptor, applications can take advantage of suchEM mechanisms offered by the system
(e.g.,poll() or select()). The design of more efficient and sophisticated applications, that
make full use of all theXTI features, then becomes easily possible.

C.5.3 XTI Events

TheXTI events can be divided into two classes of events.

g Class 1: events related to reception of data.
iii

T_LISTEN Connect request indication.
T_CONNECT Connect response indication.
T_DATA Reception of normal data indication.
T_EXDATA Reception of expedited data indication.
T_DISCONNECT Disconnect request indication.
T_ORDREL Orderly release request indication.
T_UDERR Notification of an error in a previously sent datagram.iiic

c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c

This class of events should always be monitored by the application.

g Class 2: events related to emission of data (flow control).
iii

T_GODATA Normal data may be sent again.
T_GOEXDATA Expedited data may be sent again.iiic

c
c

c
c
c

c
c
c

This class of events informs the application that flow control restrictions have been lifted
on a given file descriptor.

The application should request to be notified of this class of events whenever a flow
control restriction has previously occurred on this endpoint (e.g.,[TFLOW] error has
been returned on at_snd() call).

Note that this class of event should not be monitored systematically otherwise the
application would be notified each time a message is sent.

X/Open CAE Specification (1992)
Page : 138 X/Open Transport Interface (XTI)

-- --

Guidelines for Use of XTI Event Management

C.5.4 Guidelines for Use of System V poll()

poll() is defined in the System V Interface Definition, Third Edition as follows. Note that
this definition may vary slightly in other systems.

NAME
poll - input/output multiplexing

SYNOPSIS

#include <poll.h>
int poll(struct pollfd fds[], unsigned long nfds, int timeout);

DESCRIPTION
poll() provides users with a mechanism for multiplexing input/output over a set of file
descriptors.poll() identifies those file descriptors on which a user can read or write
data, or on which certain events have occurred. A user can read data usingread() and
write data usingwrite(). For STREAMS file descriptors, a user can also receive
messages usinggetmsg() and getpmsg(), and send messages usingputmsg() and
putpmsg().

fdsspecifies the file descriptors to be examined and the events of interest for each file
descriptor. It is a pointer to an array with one element for each open file descriptor of
interest. The array’s elements arepollfd structures which contain the following
members:

int fd; /∗ file descriptor∗/
short events; /∗ requested events∗/
short revents; /∗ returned events∗/

where fd specifies an open file descriptor andeventsand revents are bit-masks
constructed byOR’ing a combination of the following event flags:

POLLIN Data other than high-priority data may be read without blocking.
For STREAMS, this flag is set even if the message is of zero
length.

POLLRDNORM Normal data (priority band equals 0) may be read without
blocking. ForSTREAMS, this flag is set even if the message is of
zero length.

POLLRDBAND Data from a non-zero priority band may be read without blocking.
For STREAMS, this flag is set even if the message is of zero
length.

POLLPRI High-priority data may be received without blocking. For
STREAMS, this flag is set even if the message is of zero length.

POLLOUT Normal data may be written without blocking.

POLLWRBAND Priority data (priority band greater than 0) may be written.

POLLER An error has occurred on the device orSTREAM. This flag is only
valid in thereventsbitmask; it is not used in theeventsfield.

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 139

-- --

Event Management Guidelines for Use of XTI

POLLUP The device has been disconnected. This event andPOLLOUT are
mutually exclusive; aSTREAM can never be writable if a hangup
has occurred. However, this event andPOLLIN, POLLRDNORM,
POLLRDBAND or POLLPRI are not mutually exclusive. This flag
is only valid in thereventsbitmask; it is not used in theevents
field.

POLLNVAL The specifiedfd value is invalid. This flag is only valid in the
reventsfield; it is not used in theeventsfield.

For each element of the array pointed to byfds, poll() examines the given file
descriptor for the event(s) specified inevents. The number of file descriptors to be
examined is specified bynfds.

If the value offd is less than zero,eventsis ignored andreventsis set to zero in that
entry on return frompoll().

The results of thepoll() query are stored in thereventsfield in thepollfd structure.
Bits are set in thereventsbitmask to indicate which of the requested events are true.
If none of the requested events are true, none of the specified bits is set inrevents
when thepoll() call returns. The events flagsPOLLUP, POLLERRandPOLLNVAL, are
always set in thereventsif the conditions they indicate are true; this occurs even
though these flags were not present inevents.

If none of the defined events have occurred on any selected file descriptor,poll()
waits at leasttimeoutmilliseconds for an event to occur on any of the selected file
descriptors. On a computer where millisecond timing accuracy is not available,
timeoutis rounded up to the nearest legal value available on that system. If the value
of timeoutis 0, poll() returns immediately. If the value oftimeoutis -1 poll() blocks
until a requested event occurs or until the call is interrupted.poll() is not affected by
theO_NDELAY andO_NONBLOCKflags.

RETURN VALUES
Upon successful completion, the functionpoll() returns a non-negative value. A
positive value indicates the total number of file descriptors that have been selected
(i.e., file descriptors for which thereventsfield is non-zero). A value of 0 indicates
that the call timed out and no file descriptors have been selected. Upon failure, the
functionpoll() returns a value -1 and setserrno to indicate an error.

ERRORS
Under the following conditions, the functionpoll() fails and setserrno to:

EAGAIN If the allocation of internal data structures failed but the request should
be attempted again.

EINTR If a signal was caught during thepoll() system call.

EINVAL If the argumentnfdsis less than zero or greater than{OPEN_MAX}.

X/Open CAE Specification (1992)
Page : 140 X/Open Transport Interface (XTI)

-- --

Guidelines for Use of XTI Event Management

For an application to be notified of anyXTI events on each of its active endpoints, the array
pointed to byfdsshould contain as many elements as active endpoints identified by the file
descriptorfd, and theeventsmember of those elements should be set to the combination of
event flags as specified below:

g For Class 1 events:

POLLIN | POLLPRI(for System V Release 3)

or

POLLIN | POLLRDNORM| POLLRDBAND | POLLPRI(for System V Release 4)

g For Class 2 events:

POLLOUT (for System V Release 3)

or

POLLOUT | POLLWRBAND (for System V Release 4)

In a System V Release 3, the meaning ofPOLLOUT may differ for different XTI
implementations. It could either mean:

g that both normal and expedited data may be sent

or

g that normal data may be sent and the flow of expedited data cannot be monitored via
poll().

A truly portableXTI application should, therefore, not assume that the flow of expedited data
is monitored bypoll(). This is not a serious restriction, since an application usually only
sends small amounts of expedited data and flow restrictions are not a major problem.

In a System V Release 4, the meaning ofPOLLOUT andPOLLWRBAND is intended to be the
same for allXTI implementations.

POLLOUT Normal data may be sent.

POLLWRBAND Expedited data may be sent.

Hereafter we describe the outline of anXTI server program making use of the System V
poll().

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 141

-- --

Event Management Guidelines for Use of XTI

/∗
∗ This is a simple server application example to show how poll() can
∗ be used in a portable manner to wait for the occurrence ofXTI events.
∗ In this example, poll() is used to wait for the eventsT_LISTEN,
∗ T_DISCONNECT, T_DATA andT_GODATA.

∗ The number of poll flags has increased from System V Release 3 to System V
∗ Release 4. Hence, if this program is to be used in a System V Release 3,
∗ the constantSVR3must be defined during compile time.
∗
∗ A transport endpoint is opened in asynchronous mode over a message-oriented
∗ transport provider (e.g.,ISO). The endpoint is bound with qlen = 1 and
∗ the application enters an endless loop to wait for all incomingXTI events
∗ on all its active endpoints.
∗ For all connect indications received, a new endpoint is opened with qlen = 0
∗ and the connect request is accepted on that endpoint. For all established
∗ connections, the application waits for data to be received from one of its
∗ clients, sends the received data back to the sender and waits for data again.
∗ The cycle repeats until all the connections are released by the clients.
∗ The disconnect indications are processed and the endpoints closed.
∗
∗ The example references two fictitious functions:
∗
∗ - int get_provider(int tpid, char∗ tpname)
∗ Given a number as transport provider id, the function returns in
∗ tpname a string as transport provider name that can be used with
∗ t_open(). This function hides the different naming schemes of
∗ differentXTI implementations.
∗
∗ - int get_address(char∗ symb_name, struct netbuf address)
∗ Given a symbolic name symb_name and a pointer to a struct netbuf
∗ with allocated buffer space as input, the function returns a
∗ protocol address. This function hides the different addressing
∗ schemes of differentXTI implementations.
∗/
/∗
∗ General Includes
∗/
#include <sys/types.h>
#include <fcntl.h>
#include <stdio.h>
#include <xti.h>

/∗
∗ Include files for poll()
∗/
#include <stropts.h>
#include <poll.h>

X/Open CAE Specification (1992)
Page : 142 X/Open Transport Interface (XTI)

-- --

Guidelines for Use of XTI Event Management

/∗
∗ Various Defines
∗/
/∗
∗ TheXTI eventsT_CONNECT, T_DISCONNECT, T_LISTEN, T_ORDRELandT_UDERRare
∗ related to one of the poll flags inINEVENTS(to which one, depends on
∗ the implementation).POLLOUTmeans that (at least) normal data may be sent,
∗ andPOLLWRBAND that expedited data may be sent.
∗/
#ifdef SVR3

#defineERREVENTS (POLLERR| POLLHUP| POLLNVAL)
#defineINEVENTS (POLLIN | POLLPRI)
#defineOUTEVENTS POLLOUT

#else
#defineERREVENTS (POLLERR| POLLHUP| POLLNVAL)
#defineINEVENTS (POLLIN | POLLRDNORM| POLLRDBAND | POLLPRI)
#defineOUTEVENTS (POLLOUT| POLLWRBAND)
#endif
#defineMY_PROVIDER 1 /∗ transport provider id∗/
#defineMAXSIZE 4000 /∗ size of send/receive buffer∗/
#defineTPLEN 30 /∗ maximum length of provider name∗/
#defineMAXCNX 10 /∗ maximum number of connections∗/

extern int errno;

/∗
∗ Declaration of non-integer external functions
∗/
void exit();
void perror();

/∗ ==∗/

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 143

-- --

Event Management Guidelines for Use of XTI

main()
{

register int i; /∗ loop variable∗/
register int num; /∗ return value of t_snd() and t_rcv()∗/

int discflag = 0; /∗ flag to indicate a disc indication∗/
int errflag = 0; /∗ flag to indicate an error∗/
int event; /∗ stores events returned by t_look()∗/
int fd; /∗ current file descriptor∗/
int fdd; /∗ file descriptor for t_accept()∗/
int flags; /∗ used with t_rcv()∗/
char ∗datbuf; /∗ current send/receive buffer∗/
unsigned int act = 0; /∗ active endpoints∗/
struct t_info info; /∗ used with t_open()∗/
struct t_bind ∗preq; /∗ used with t_bind()∗/
struct t_call ∗pcall; /∗ used with t_listen() and t_accept()∗/
struct t_discon discon; /∗ used with t_rcvdis()∗/
char tpname[TPLEN]; /∗ transport provider name∗/

char buf[MAXCNX][MAXSIZE] ; /∗ send/receive buffers∗/
int rcvdata[MAXCNX] ; /∗ amount of data already received∗/
int snddata[MAXCNX] ; /∗ amount of data already sent∗/

struct pollfd fds[MAXCNX] ; /∗ used with poll()∗/

/∗
∗ Get name of transport provider
∗/
if (get_provider(MY_PROVIDER, tpname) == -1) {

perror(">>> get_provider failed");
exit(1);

}

/∗
∗ Establish a transport endpoint in asynchronous mode
∗/
if ((fd = t_open(tpname,O_RDWR| O_NONBLOCK, &info)) == -1) {

t_error(">>> t_open failed");
exit(1);

}

X/Open CAE Specification (1992)
Page : 144 X/Open Transport Interface (XTI)

-- --

Guidelines for Use of XTI Event Management

/∗
∗ Allocate memory for the parameters passed with t_bind().
∗/
if ((preq = (struct t_bind∗) t_alloc(fd,T_BIND, T_ADDR)) == NULL) {

t_error(">>> t_alloc(T_BIND) failed");
t_close(fd);
exit(1);

}

/∗
∗ Given a symbolic name ("MY_NAME"), get_address returns an address
∗ and its length in preq->addr.buf and preq->addr.len.
∗/
if (get_address("MY_NAME", &(preq->addr)) == -1) {

perror(">>> get_address failed");
t_close(fd);
exit(1);

}
preq->qlen = 1; /∗ is a listening endpoint∗/

/∗
∗ Bind the local protocol address to the transport endpoint.
∗ The returned information is discarded.
∗/
if (t_bind(fd, preq,NULL) == -1) {

t_error(">>> t_bind failed");
t_close(fd);
exit(1);

}
if (t_free(preq,T_BIND) == -1) {

t_error(">>> t_free failed");
t_close(fd);
exit(1);

}

/∗
∗ Allocate memory for the parameters used with t_listen.
∗/
if ((pcall = (struct t_call∗) t_alloc(fd,T_CALL, T_ALL)) == NULL) {

t_error(">>> t_alloc(T_CALL) failed");
t_close(fd);
exit(1);

}

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 145

-- --

Event Management Guidelines for Use of XTI

/∗
∗ Initialise entry 0 of the fds array to the listening endpoint.
∗ To be portable across differentXTI implementations,
∗ register forINEVENTSand not forPOLLIN.

∗/
fds[act].fd = fd;
fds[act].events =INEVENTS;
fds[act].revents = 0;
rcvdata[act] = 0;
snddata[act] = 0;
act = 1;

/∗
∗ Enter an endless loop to wait for all incoming events.
∗ Connect requests are accepted on new opened endpoints.
∗ The example assumes that data is first sent by the client.
∗ Then, the received data is sent back again and so on, until
∗ the client disconnects.
∗ Note that the total number of active endpoints (act) should
∗ at least be 1, corresponding to the listening endpoint.
∗/
fprintf(stderr, "Waiting forXTI events...\n");
while (act > 0) {

/∗
∗ Wait for any events
∗
∗/
if (poll(&fds, (size_t)act, (int) -1) == -1) {

perror(">>> poll failed");
exit(1);

}
/∗
∗ Process incoming events on all active endpoints
∗/
for (i = 0 ; i < act ; i++) {

if (fds[i].revents == 0)
continue; /∗ no event for this endpoint∗/

if (fds[i].revents &ERREVENTS) {
fprintf(stderr, "[%d] Unexpected poll events: 0x%x\n",

fds[i].fd, fds[i].revents);
continue;

}
/∗
∗ set the current endpoint
∗ set the current send/receive buffer
∗/
fd = fds[i].fd;

X/Open CAE Specification (1992)
Page : 146 X/Open Transport Interface (XTI)

-- --

Guidelines for Use of XTI Event Management

datbuf = buf[i];

/∗
∗ Check for events
∗/
switch((event = t_look(fd))) {
caseT_LISTEN:

/∗
∗ Must be a connect indication
∗/
if (t_listen(fd, pcall) == -1) {

t_error(">>> t_listen failed");
exit(1);

}
/∗
∗ If it will exceed the maximum number
∗ of connections that the server can handle,
∗ reject the connect indication.
∗/
if (act >= MAXCNX) {

fprintf(stderr, ">>> Connection request rejected\n");
if (t_snddis(fd, pcall) == -1)

t_error(">>> t_snddis failed");
continue;

}
/∗
∗ Establish a transport endpoint
∗ in asynchronous mode
∗/
if ((fdd = t_open(tpname,O_RDWR| O_NONBLOCK, &info)) == -1) {

t_error(">>> t_open failed");
continue;

}
/∗
∗ Accept connection on this endpoint.
∗ fdd no longer needs to be bound,
∗ t_accept() will do it.
∗/
if (t_accept(fd, fdd, pcall) == -1) {

t_error(">>> t_accept failed");
t_close(fdd);
continue;

}
fprintf(stderr, "Connection [%d] opened\n", fdd);

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 147

-- --

Event Management Guidelines for Use of XTI

/∗
∗ Register for all flags that might indicate
∗ a T_DATA or T_DISCONNECTevent, i. e.,
∗ register forINEVENTS(to be portable
∗ through allXTI implementations).
∗/
fds[act].fd = fdd;
fds[act].events =INEVENTS;
fds[act].revents = 0;
rcvdata[act] = 0;
snddata[act] = 0;
act++;
break;

caseT_DATA:
/∗
∗ Must be a data indication
∗/
if ((num = t_rcv(fd, (datbuf + rcvdata[i]),

(MAXSIZE - rcvdata[i]), &flags)) == -1) {
switch (t_errno) {
caseTNODATA:

/∗ No data is currently
∗ available: repeat the loop
∗/
continue;

caseTLOOK:
/∗ Must be aT_DISCONNECTevent:
∗ set discflag
∗/
event = t_look(fd);
if (event ==T_DISCONNECT) {

discflag = 1;
break;

}
else

fprintf(stderr, "Unexpected event %d\n", event);
default:

/∗ Unexpected failure∗/
t_error(">>> t_rcv failed");
fprintf(stderr, "connection id: [%d]\n", fd);
errflag = 1;
break;

}
}

X/Open CAE Specification (1992)
Page : 148 X/Open Transport Interface (XTI)

-- --

Guidelines for Use of XTI Event Management

if (discflag || errflag)
/∗ exit from the event switch∗/

break;
fprintf(stderr, "[%d] %d bytes received\n", fd, num);
rcvdata[i] += num;
if (rcvdata[i] < MAXSIZE)

continue;
if (flags & T_MORE) {

fprintf(stderr, "[%d]TSDU too long for receive buffer\n", fd);
errflag = 1;
break; /∗ exit from the event switch∗/

}

/∗
∗ Send the data back:
∗ Repeat t_snd() until either the wholeTSDU

∗ is sent back, or an event occurs.
∗/
fprintf(stderr, "[%d] sending data back\n", fd);
do {

if ((num = t_snd(fd, (datbuf + snddata[i]),
(MAXSIZE - snddata[i]), 0)) == -1) {

switch (t_errno) {
caseTFLOW:

/∗
∗ Register for the flags
∗ OUTEVENTSto get awaken by
∗ T_GODATA, and forINEVENTS

∗ to get aware ofT_DISCONNECT

∗ or T_DATA.

∗/
fds[i].events |=OUTEVENTS;
continue;

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 149

-- --

Event Management Guidelines for Use of XTI

caseTLOOK:
/∗
∗ Must be aT_DISCONNECTevent:
∗ set discflag
∗/
event = t_look(fd);
if (event ==T_DISCONNECT) {

discflag = 1;
break;

}
else

fprintf(stderr, "Unexpected event %d\n", event);

default:
t_error(">>> t_snd failed");
fprintf(stderr, "connection id: [%d]\n", fd);
errflag = 1;
break;

}
}
else {

snddata[i] += num;
}

} while (MAXSIZEag);
/∗
∗ Reset send/receive counters
∗/
rcvdata[i] = 0;
snddata[i] = 0;
break;

X/Open CAE Specification (1992)
Page : 150 X/Open Transport Interface (XTI)

-- --

Guidelines for Use of XTI Event Management

caseT_GODATA:
/∗
∗ Flow control restriction has been lifted
∗ restore initial event flags
∗/
fds[i].events =INEVENTS;
continue;

caseT_DISCONNECT:
/∗
∗ Must be a disconnect indication
∗/
discflag = 1;
break;

case -1:
/∗
∗ Must be an error
∗/
t_error(">>> t_look failed");
errflag = 1;
break;

default:
/∗
∗ Must be an unexpected event
∗/
fprintf(stderr, "[%d] Unexpected event %d\n", fd, event);
errflag = 1;
break;

} / ∗ end event switch∗/

if (discflag) {
/∗
∗ T_DISCONNECThas been received.
∗ User data is not expected.
∗/
if (t_rcvdis(fd, &discon) == -1)

t_error(">>> t_rcvdis failed");
else

fprintf(stderr, "[%d] Disconnect reason: 0x%x\n", fd, discon.reason);
}

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 151

-- --

Event Management Guidelines for Use of XTI

if (discflag || errflag) {
/∗
∗ Close transport endpoint and
∗ decrement number of active connections
∗/
t_close(fd);
act--;
/∗ Move last entry of fds array to current slot,
∗ adjust internal counters and flags
∗/
fds[i].events = fds[act].events;
fds[i].revents = fds[act].revents;
fds[i].fd = fds[act].fd;
discflag = 0; /∗ clear disconnect flag∗/
errflag = 0; /∗ clear error flag∗/
i--; /∗ Redo the for() event loop to consider

∗ events related to the last entry of
∗ fds array∗/

fprintf(stderr, "Connection [%d] closed\n", fd);
}

} / ∗ end of for() event loop∗/

} / ∗ end of while() loop∗/
fprintf(stderr, ">>> Warning: no more active endpoints\n");
exit(1);

}

X/Open CAE Specification (1992)
Page : 152 X/Open Transport Interface (XTI)

-- --

Guidelines for Use of XTI Event Management

C.5.5 Guidelines for Use ofBSD select()

select() is defined in the 4.3 Berkeley Software Distribution as follows. Note that this
definition may vary slightly in other systems.

NAME
select - synchronous I/O multiplexing

SYNOPSIS

#include <sys/types.h>
#include <sys/time.h>

nfound = select(nfds, readfds, writefds, exceptfds, timeout)
int nfound, nfds;
fd_set∗readfds,∗writefds, ∗exceptfds;
struct timeval ∗timeout;

FD_SET(fd, &fdset)
FD_CLR(fd, &fdset)
FD_ISSET(fd, &fdset)
FD_ZERO(&fdset)
int fd;
fd_set fdset;

DESCRIPTION
select() examines the I/O descriptor sets whose addresses are passed inreadfds,
writefdsandexceptfdsto see if some of their descriptors are ready for reading, ready
for writing, or have an exceptional condition pending, respectively. The firstnfds
descriptors are checked in each set; i.e., the descriptors from 0 throughnfds-1 in the
descriptor sets are examined. On return,select() replaces the given descriptor sets
with subsets consisting of those descriptors that are ready for the requested operation.
The total number of ready descriptors in all the sets is returned innfound.

The descriptor sets are stored as bit fields in arrays of integers. The following macros
are provided for manipulating such descriptor sets:FD_ZERO(& fdset) initialises a
descriptor setfdsetto the null set.FD_SET(fd, & fdset)includes a particular descriptor
fd in fdset. FD_CLR(fd, & fdset)removesfd from fdset. FD_ISSET(fd, & fdset)is non-
zero if fd is a member offdset, zero otherwise. The behaviour of these macros is
undefined if a descriptor value is less than zero or greater than or equal to
FD_SETSIZE, which is normally at least equal to the maximum number of descriptors
supported by the system.

If timeout is a non-zero pointer, it specifies a maximum interval to wait for the
selection to complete. Iftimeoutis a zero pointer, the select blocks indefinitely. To
affect a poll, thetimeout argument should be non-zero, pointing to a zero-valued
timevalstructure.

Any of readfds, writefdsandexceptfdsmay be given as zero pointers if no descriptors
are of interest.

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 153

-- --

Event Management Guidelines for Use of XTI

RETURN VALUES
select() returns the number of ready descriptors that are contained in the descriptor
sets, or -1 if an error occurred. If the time limit expires thenselect() returns 0. If
select() returns with an error, including one due to an interrupted call, the descriptor
sets will be unmodified.

ERRORS
An error return fromselect() indicates:

[EBADF] One of the descriptor sets specified an invalid descriptor.

[EINTR] A signal was delivered before the time limit expired and before any of
the selected events occurred.

[EINVAL] The specified time limit is invalid. One of its components is negative or
too large.

X/Open CAE Specification (1992)
Page : 154 X/Open Transport Interface (XTI)

-- --

Guidelines for Use of XTI Event Management

Many systems provide the macrosFD_SET, FD_CLR, FD_ISSET and FD_ZERO in
<sys/types.h>or other header files to manipulate these bit masks. If not available they
should be defined by the user (see the program example below).

For an application to be notified of anyXTI events on each of its active endpoints identified
by a file descriptorfd, this file descriptorfd should be included in the appropriate descriptor
setsreadfds, exceptfdsor writefdsas specified below:

g For Class 1 events:

Set the bit masksreadfds and exceptfdsby FD_SET(fd, readfds) and FD_SET(fd,
exceptfds).

g For Class 2 events:

Set the bit maskwritefdsby FD_SET(fd, writefds).

If, on return of select(), the bit corresponding tofd is set in writefds, this can have a
different meaning for differentXTI implementations. It could either mean:

g that both normal and expedited data may be sent, or

g that normal data may be sent and the flow of expedited data cannot be monitored via
select().

A truly portableXTI application should, therefore, not assume that the flow of expedited data
is monitored byselect(). This is not a serious restriction, since an application usually only
sends small amounts of expedited data and flow restrictions are not a major problem.

Hereafter we describe the outline of anXTI server program making use of theBSD select().

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 155

-- --

Event Management Guidelines for Use of XTI

/∗
∗ This is a simple server application example to show how select() can
∗ be used in a portable manner to wait for the occurrence ofXTI events.
∗ In this example, select() is used to wait for the eventsT_LISTEN,
∗ T_DISCONNECT, T_DATA andT_GODATA.

∗
∗ A transport endpoint is opened in asynchronous mode over a message-oriented
∗ transport provider (e.g.,ISO). The endpoint is bound with qlen = 1, and
∗ the application enters an endless loop to wait for all incomingXTI events
∗ on all its active endpoints.
∗ For all connect indications received, a new endpoint is opened with qlen = 0
∗ and the connect request is accepted on that endpoint. For all established
∗ connections, the application waits for data to be received from one of its
∗ clients, sends the received data back to the sender and waits for data again.
∗ The cycle repeats until all the connections are released by the clients.
∗ The disconnect indications are processed and the endpoints closed.
∗
∗ The example references two fictitious functions:
∗
∗ - int get_provider(int tpid, char∗ tpname)
∗ Given a number as transport provider id, the function returns in
∗ tpname a string as transport provider name that can be used with
∗ t_open(). This function hides the different naming schemes of
∗ differentXTI implementations.
∗
∗ - int get_address(char∗ symb_name, struct netbuf address)
∗ Given a symbolic name symb_name and a pointer to a struct netbuf
∗ with allocated buffer space as input, the function returns a
∗ protocol address. This function hides the different addressing
∗ schemes of differentXTI implementations.
∗/
/∗
∗ General Includes
∗/
#include <fcntl.h>
#include <stdio.h>
#include <xti.h>
/∗
∗ Include files for select(). SomeUNIX derivatives use other includes,
∗ e.g., <sys/times.h> instead of <sys/time.h>.
∗ <sys/select.h> instead of <sys/types.h>.
∗/
#include <sys/types.h>
#include <time.h>

X/Open CAE Specification (1992)
Page : 156 X/Open Transport Interface (XTI)

-- --

Guidelines for Use of XTI Event Management

/∗
∗ Includes that are only relevant, if the type fd_set and the macrosFD_SET,
∗ FD_CLR, FD_ISSETandFD_ZEROhave to be explicitly defined in this program.
∗/
#include <limits.h>
#include <string.h> /∗ for memset()∗/

/∗
∗ Various Defines
∗/
#defineMY_PROVIDER 1 /∗ transport provider id∗/
#defineMAXSIZE 4000 /∗ size of send/receive buffer∗/
#defineTPLEN 30 /∗ maximum length of provider name∗/
#defineMAXCNX 10 /∗ maximum number of connections∗/
/∗
∗ Select uses bit masks of file descriptors in longs. Most systems provide a
∗ type "fd_set" and macros in <sys/types.h> or <sys/select.h> to ease the use
∗ of select().
∗ They are explicitly defined below in case that they are not defined in
∗ <sys/types.h> or <sys/select.h>.
∗/
/∗
∗ OPEN_MAXshould be >= number of maximum open files per process
∗/
#ifndefOPEN_MAX

#defineOPEN_MAX 256
#endif
#ifndefNFDBITS

#defineNFDBITS (sizeof(long)∗ CHAR_BIT) /∗ bits per mask∗/
#endif
#ifndef howmany
#define howmany(x, y) (((x)+((y)-1))/(y))
#endif
#ifndefFD_SET

typedef struct fd_set {
long fds_bits[howmany(OPEN_MAX, NFDBITS)];

} fd_set;
#defineFD_SET(n, p) ((p)->fds_bits[(n)/NFDBITS] |= (1 << ((n) %NFDBITS)))
#defineFD_CLR(n, p) ((p)->fds_bits[(n)/NFDBITS] &= ˜(1 << ((n) %NFDBITS)))
#defineFD_ISSET(n, p) ((p)->fds_bits[(n)/NFDBITS] & (1 << ((n) % NFDBITS)))
#defineFD_ZERO(p) memset(∗(p), (u_char) 0, sizeof(∗(p)))
#endif /∗FD_SET∗/

extern int errno;

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 157

-- --

Event Management Guidelines for Use of XTI

/∗
∗ Declaration of non-integer external functions.
∗/
void exit();
void perror();

/∗ ==∗/

main()
{

register int i; /∗ loop variable∗/
register int num; /∗ return value of t_snd() and t_rcv()∗/

int discflag = 0; /∗ flag to indicate a disc indication∗/
int errflag = 0; /∗ flag to indicate an error∗/
int event; /∗ stores events returned by t_look()∗/
int fd; /∗ current file descriptor∗/
int fdd; /∗ file descriptor for t_accept()∗/
int flags; /∗ used with t_rcv()∗/
char ∗datbuf; /∗ current send/receive buffer∗/
size_t act = 0; /∗ active endpoints∗/
struct t_info info; /∗ used with t_open()∗/
struct t_bind ∗preq; /∗ used with t_bind()∗/
struct t_call ∗pcall; /∗ used with t_listen() and t_accept()∗/
struct t_discon discon; /∗ used with t_rcvdis()∗/
char tpname[TPLEN]; /∗ transport provider name∗/

int fds[MAXCNX] ; /∗ array of file descriptors∗/
char buf[MAXCNX][MAXSIZE] /∗ send/receive buffers∗/
int rcvdata[MAXCNX] ; /∗ amount of data already received∗/
int snddata[MAXCNX] ; /∗ amount of data already sent∗/

fd_set rfds, wfds, xfds; /∗ file descriptor sets for select()∗/
fd_set rfdds, wfdds, xfdds; /∗ initial values of file descriptor∗/

/∗ sets rfds, wfds and xfds∗/

X/Open CAE Specification (1992)
Page : 158 X/Open Transport Interface (XTI)

-- --

Guidelines for Use of XTI Event Management

/∗
∗ Get name of transport provider
∗/
if (get_provider(MY_PROVIDER, tpname) == -1) {

perror(">>> get_provider failed");
exit(1);

}

/∗
∗ Establish a transport endpoint in asynchronous mode
∗/
if ((fd = t_open(tpname,O_RDWR| O_NONBLOCK, &info)) == -1) {

t_error(">>> t_open failed");
exit(1);

}

/∗
∗ Allocate memory for the parameters passed with t_bind().
∗/
if ((preq = (struct t_bind∗) t_alloc(fd,T_BIND, T_ADDR)) == NULL) {

t_error(">>> t_alloc(T_BIND) failed");
t_close(fd);
exit(1);

}

/∗
∗ Given a symbolic name ("MY_NAME"), get_address returns an address
∗ and its length in preq->addr.buf and preq->addr.len.
∗/
if (get_address("MY_NAME", &(preq->addr)) == -1) {

perror(">>> get_address failed");
t_close(fd);
exit(1);

}
preq->qlen = 1; /∗ is a listening endpoint∗/

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 159

-- --

Event Management Guidelines for Use of XTI

/∗
∗ Bind the local protocol address to the transport endpoint.
∗ The returned information is discarded.
∗/
if (t_bind(fd, preq,NULL) == -1) {

t_error(">>> t_bind failed");
t_close(fd);
exit(1);

}
if (t_free(preq,T_BIND) == -1) {

t_error(">>> t_free failed");
t_close(fd);
exit(1);

}

/∗
∗ Allocate memory for the parameters used with t_listen.
∗/
if ((pcall = (struct t_call∗) t_alloc(fd,T_CALL, T_ALL)) == NULL) {

t_error(">>> t_alloc(T_CALL) failed");
t_close(fd);
exit(1);

}

/∗
∗ Initialise listening endpoint in descriptor set.
∗ To be portable across differentXTI implementations,
∗ register for descriptor set rfdds and xfdds
∗/

FD_ZERO(&rfdds);
FD_ZERO(&xfdds);
FD_ZERO(&wfdds);
FD_SET(fd, &rfdds);
FD_SET(fd, &xfdds);
fds[act] = fd;
rcvdata[act] = 0;
snddata[act] = 0;
act = 1;

X/Open CAE Specification (1992)
Page : 160 X/Open Transport Interface (XTI)

-- --

Guidelines for Use of XTI Event Management

/∗
∗ Enter an endless loop to wait for all incoming events.
∗ Connect requests are accepted on a new opened endpoint.
∗ The example assumes that data is first sent by the client.
∗ Then, the received data is sent back again and so on, until
∗ the client disconnects.
∗ Note that the total number of active endpoints (act) should
∗ at least be 1, corresponding to the listening endpoint.
∗/
fprintf(stderr, "Waiting forXTI events...\n");
while (act > 0) {

/∗
∗ Wait for any events
∗/
/∗
∗ Set the mask sets rfds, xfds and wfds to their initial values
∗/
rfds = rfdds;
xfds = xfdds;
wfds = wfdds;
if (select(OPEN_MAX, &rfds, &wfds, &xfds,

(struct timeval∗) NULL) == -1) {
perror(">>> select failed");
exit(1);

}
/∗
∗ Process incoming events on all active endpoints
∗/
for (i = 0 ; i < act ; i++) {

/∗
∗ set the current endpoint
∗ set the current send/receive buffer
∗/
fd = fds[i];
datbuf = buf[i];

if (FD_ISSET(fd, &xfds)) {
fprintf(stderr, "[%d] Unexpected select events\n", fd);
continue;

}
iFD_ISSETFD_ISSET(fd, &wfds))

continue; /∗ no event for this endpoint∗/

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 161

-- --

Event Management Guidelines for Use of XTI

/∗
∗ Check for events
∗/
switch((event = t_look(fd))) {
caseT_LISTEN:

/∗
∗ Must be a connect indication
∗/
if (t_listen(fd, pcall) == -1) {

t_error(">>> t_listen failed");
exit(1);

}

/∗
∗ If it will exceed the maximum number
∗ of connections that the server can handle,
∗ reject the connect indication.
∗/
if (act >= MAXCNX) {

fprintf(stderr, ">>> Connection request rejected\n");
if (t_snddis(fd, pcall) == -1)

t_error(">>> t_snddis failed");
continue;

}
/∗
∗ Establish a transport endpoint
∗ in asynchronous mode
∗/
if ((fdd = t_open(tpname,O_RDWR| O_NONBLOCK, &info)) == -1) {

t_error(">>> t_open failed");
continue;

}
/∗
∗ Accept connection on this endpoint.
∗ fdd no longer needs to be bound,
∗ t_accept() will do it
∗/
if (t_accept(fd, fdd, pcall) == -1) {

t_error(">>> t_accept failed");
t_close(fdd);
continue;

}
fprintf(stderr, "Connection [%d] opened\n", fdd);

X/Open CAE Specification (1992)
Page : 162 X/Open Transport Interface (XTI)

-- --

Guidelines for Use of XTI Event Management

/∗
∗ Register for all flags that might indicate
∗ a T_DATA or T_DISCONNECTevent, i. e.,
∗ register for rfdds and xfdds (to be portable
∗ through allXTI implementations).
∗/
fds[act] = fdd;
FD_SET(fdd, &rfdds);
FD_SET(fdd, &xfdds);
rcvdata[act] = 0;
snddata[act] = 0;
act++;
break;

caseT_DATA:
/∗ Must be a data indication
∗/
if ((num = t_rcv(fd, (datbuf + rcvdata[i]),

(MAXSIZE - rcvdata[i]), &flags)) == -1) {
switch (t_errno) {
caseTNODATA:

/∗ No data is currently
∗ available: repeat the loop
∗/
continue;

caseTLOOK:
/∗ Must be aT_DISCONNECTevent:
∗ set discflag
∗/
event = t_look(fd);
if (event ==T_DISCONNECT) {

discflag = 1;
break;

}
else

fprintf(stderr, "Unexpected event %d\n", event);
default:

/∗ Unexpected failure∗/
t_error(">>> t_rcv failed");
fprintf(stderr, "connection id: [%d]\n", fd);
errflag = 1;
break;

}
}

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 163

-- --

Event Management Guidelines for Use of XTI

if (discflag || errflag)
/∗ exit from the event switch∗/
break;

fprintf(stderr, "[%d] %d bytes received\n", fd, num);
rcvdata[i] += num;
if (rcvdata[i] < MAXSIZE)

continue;
if (flags & T_MORE) {

fprintf(stderr, "[%d]TSDU too long for receive buffer\n", fd);
errflag = 1;
break; /∗ exit from the event switch∗/

}

/∗
∗ Send the data back.
∗ Repeat t_snd() until either the wholeTSDU

∗ is sent back, or an event occurs.
∗/
fprintf(stderr, "[%d] sending data back\n", fd);
do {

if ((num = t_snd(fd, (datbuf + snddata[i]),
(MAXSIZE - snddata[i]), 0)) == -1) {

switch (t_errno) {
caseTFLOW:

/∗
∗ Register for wfds to get
∗ awaken byT_GODATA, and for
∗ rfds and xfds to get aware of
∗ T_DISCONNECTor T_DATA.

∗/
FD_SET(fd, &wfdds);
continue;

X/Open CAE Specification (1992)
Page : 164 X/Open Transport Interface (XTI)

-- --

Guidelines for Use of XTI Event Management

caseTLOOK:
/∗
∗ Must be aT_DISCONNECTevent:
∗ set discflag
∗/
event = t_look(fd);
if (event ==T_DISCONNECT) {

discflag = 1;
break;

}
else

fprintf(stderr, "Unexpected event %d\n", event);

default:
t_error(">>> t_snd failed");
fprintf(stderr, "connection id: [%d]\n", fd);
errflag = 1;
break;

}
}
else {

snddata[i] += num;
}

} while (MAXSIZEag);
/∗
∗ Reset send/receive counter
∗/
rcvdata[i] = 0;
snddata[i] = 0;
break;

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 165

-- --

Event Management Guidelines for Use of XTI

caseT_GODATA:
/∗
∗ Flow control restriction has been lifted
∗ restore initial event flags
∗/

FD_CLR(fd, &wfdds);
continue;

caseT_DISCONNECT:
/∗
∗ Must be a disconnect indication
∗/
discflag = 1;
break;

case -1:
/∗
∗ Must be an error
∗/
t_error(">>> t_look failed");
errflag = 1;
break;

default:
/∗
∗ Must be an unexpected event
∗/
fprintf(stderr, "[%d] Unexpected event %d\n", fd, event);
errflag = 1;
break;

} / ∗ end event switch∗/

if (discflag) {
/∗
∗ T_DISCONNECThas been received.
∗ User data is not expected.
∗/
if (t_rcvdis(fd, &discon) == -1)

t_error(">>> t_rcvdis failed");
else

fprintf(stderr, "[%d] Disconnect reason: 0x%x\n", fd, discon.reason);
}

X/Open CAE Specification (1992)
Page : 166 X/Open Transport Interface (XTI)

-- --

Guidelines for Use of XTI Event Management

if (discflag || errflag) {
/∗
∗ Close transport endpoint and
∗ decrement number of active connections
∗/
t_close(fd);
act--;
/∗
∗ Unregister fd from initial mask sets
∗/

FD_CLR(fd, &rfdds);
FD_CLR(fd, &xfdds);
FD_CLR(fd, &wfdds);
/∗ Move last entry of fds array to current slot,
∗ adjust internal counters and flags
∗/
fds[i] = fds[act];
discflag = 0; /∗ clear disconnect flag∗/
errflag = 0; /∗ clear error flag∗/
i--; /∗ Redo the for() event loop to consider

∗ events related to the last entry of
∗ fds array∗/

fprintf(stderr, "Connection [%d] closed\n", fd);
}

} / ∗ end of for() event loop∗/

} / ∗ end of while() loop∗/
fprintf(stderr, ">>> Warning: no more active endpoints\n");
exit(1);

}

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 167

-- --

Event Management Guidelines for Use of XTI

X/Open CAE Specification (1992)
Page : 168 X/Open Transport Interface (XTI)

-- --

-- --

Appendix D

Use of XTI to Access NetBIOS

D.1 INTRODUCTION

NetBIOS represents an importantde factostandard for networkingDOS andOS/2 PCs. The
X/Open SpecificationProtocols for X/Open PC Interworking: SMB (see Referenced
Documents) provides mappings of NetBIOS services toOSI andIPStransport protocols.1.

The following CAE Specification extends that work to provide a standard programming
interface to NetBIOS transport providers in X/Open-compliant systems, using an existing
X/Open Common Applications Environment (CAE) interface,XTI.

The X/Open Transport Interface (XTI) defines a transport service interface that is
independent of any specific transport provider.

This CAE Specification defines a standard for usingXTI to access NetBIOS transport
providers. Applications that useXTI to access NetBIOS transport providers are referred to as
‘‘transport users’’.

D.2 OBJECTIVES

The objectives of this standardisation are:

1. to facilitate the development and portability ofCAE applications that interwork with
the large installed base of NetBIOS applications in a Local Area Network (LAN)
environment;

2. to enable a single application to use the sameXTI interface to communicate with
remote applications through either anIPS profile, anOSI profile or a NetBIOS profile
(i.e.,RFC1001/1002 orTOP/NetBIOS),

3. to provide a common interface that can be used forIPC with clients using either
(PC)NFSor SMB protocols for resources sharing.

This CAE Specification provides a migration step to users moving from proprietary systems
in a NetBIOS environment to open systems, i.e., the X/OpenCAE.

hhhhhhhhhhhhhhhhhhhhh

1. The mappings are defined by the Specification of NetBIOS Interface and Name Service Support by Lower LayerOSI Protocols,
andRFC-1001/RFC-1002 respectively. See theX/Open Developers’ Specification, Protocols for X/Open PC Interworking:
SMB. The relevant chapters areChapter 13, NetBIOS Interface to ISO Transport Services, Chapter 14, Protocol Standard
for a NetBIOS Service on aTCP/UDP Transport: Concepts and Methods and Chapter 15, Protocol Standard for a
NetBIOS Service on aTCP/UDP Transport: Detailed Specification.

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 169

-- --

Scope Use of XTI to Access NetBIOS

D.3 SCOPE

No extensions toXTI, as it is defined in the main body of thisCAE Specification, are made in
this NetBIOS CAE Specification. This NetBIOS CAE Specification is concerned only with
standardisation of the mapping ofXTI to the NetBIOS facilities, and not a new definition of
XTI itself.

This CAE Specification applies only to the use ofXTI in the single NetBIOS subnetwork
case, and does not provide for the support of applications operating in multiple, non-
overlapping NetBIOS name spaces.

The following NetBIOS facilities found in various NetBIOS implementations are considered
outside the scope ofXTI (note that this list is not necessarily definitive):

g LAN.STATUS.ALERT

g RESET

g SESSION STATUS

g TRACE

g UNLINK

g RPL (Remote Program Load)

g ADAPTER STATUS

g FIND NAME

g SEND.NOACK

g CHAIN.SEND.NOACK

g CANCEL

g receiving a datagram on any name

g receiving data on any connection.

It must also be noted that not all commands are specified in the protocols.

Omitting these does not restrict interoperability with the majority of NetBIOS
implementations, since they have local significance only (RESET, SESSION STATUS), are
concerned with systems management (UNLINK , RPL, ADAPTER STATUS), or areLAN- and
vendor-specific (FIND NAME). If and how these functions are made available to the
programmer is left to the implementor of this particularXTI implementation.

D.4 ISSUES

The primary issues forXTI as a transport interface to NetBIOS concern the passing of
NetBIOS names and name type information throughXTI, specification of restrictions onXTI
functions in the NetBIOS environment, and handling the highly dynamic assignment of
NetBIOS names.

X/Open CAE Specification (1992)
Page : 170 X/Open Transport Interface (XTI)

-- --

Use of XTI to Access NetBIOS NetBIOS Names and Addresses

D.5 NetBIOS NAMES AND ADDRESSES

NetBIOS uses 16-octet alphanumeric names as ‘‘transport’’ addresses. NetBIOS names must
be exactly 16 octets, with shorter names padded with spaces to 16 octets. In addition,
NetBIOS names are either unique names or group names, and must be identified as such in
certain circumstances.

The following restrictions should be applied to NetBIOS names. Failure to observe these
restrictions may result in unpredictable results.

1. Byte 0 of the name is not allowed to be hexadecimal 00 (0x00).

2. Byte 0 of the name is not allowed to be an asterisk, except as noted elsewhere in this
specification to support broadcast datagrams.

3. Names should not begin with company names or trademarks.

4. Names should not begin with hexadecimalFF (0xFF).

5. Byte 15 of the name should not be in the range 0x00 - 0x1F.

The concept of a permanent node name, as provided in the native NetBIOS environment, is
not supported in the X/OpenCAE.

The following definitions are supplied with any implementation ofXTI on top of NetBIOS.
They should be included in<xti.h>.

#defineNB_UNIQUE 0
#defineNB_GROUP 1
#defineNB_NAMELEN 16
#defineNB_BCAST_NAME "∗ /∗ asterisk plus 15 spaces∗/

The protocol addresses passed in calls tot_bind(), t_connect(), etc., are structured as
follows:

Type NetBIOS Name

1 2 17

Type The first octet specifies the type of the NetBIOS name. It may be set
to NB_UNIQUE or NB_GROUP.

NetBIOS Name Octets 2 through 17 contain the 16-octet NetBIOS name.

All NetBIOS names, complete with the name type identifier, are passed throughXTI in a
netbuf address structure (i.e.,struct netbuf addr), where addr.buf points to a NetBIOS
protocol address as defined above. This applies to allXTI functions that pass or return a
(NetBIOS) protocol address (e.g.,t_bind(), t_connect(), t_rcvudata(), etc.).

Note, however, that only thet_bind() and t_getprotaddr() functions use the name type
information. All other functions ignore it.

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 171

-- --

NetBIOS Names and Addresses Use of XTI to Access NetBIOS

If the NetBIOS protocol address is returned, the name type information is to be ignored since
the NetBIOS transport providers do not provide the type information in the connection
establishment phase.

NetBIOS names can become invalid even after they have been registered successfully due to
the NetBIOS name conflict resolution process (e.g., Top/NetBIOS NameConflictAdvise
indication). For existing NetBIOS connections this has no effect since the connection
endpoint can still be identified by thefd. However, in the connection establishment phase
(t_listen() andt_connect()) this event is indicated by settingt_errnoto [TBADF].

D.6 NetBIOS CONNECTION RELEASE

Native NetBIOS implementations provide a linger-on-close release mechanism whereby a
transport disconnect request (NetBIOS HANGUP) will not complete until all outstanding send
commands have completed. NetBIOS attempts to deliver all queued data by delaying, if
necessary, disconnection for a period of time. The period of time might be configurable; a
value of 20 seconds is common practice. Data still queued after this time period may get
discarded so that delivery cannot be guaranteed.

XTI, however, offers two different modes to release a connection: an abortive mode via
t_snddis()/t_rcvdis(), and a graceful mode viat_sndrel()/t_rcvrel(). If a connection release
is initiated by at_snddis(), queued send data may be discarded. Only the use oft_sndrel()
guarantees that the linger-on-close mechanism is enabled as described above. The support of
t_sndrel()/t_rcvrel() is optional and only provided by implementations with servtype
T_COTS_ORD(seet_getinfo() in Section D.8, XTI Functions).

A call to t_sndrel() initiates the linger-on-close mechanism and immediately returns with
the XTI state changed toT_OUTREL. The NetBIOS provider sends all outstanding data
followed by a NetBIOS Close Request. After receipt of a NetBIOS Close Response, the
NetBIOS provider informs the transport user, via the eventT_ORDREL, that is to be
consumed by callingt_rcvrel(). If a timeout occurs, however, aT_DISIN with a
corresponding reason code is generated.

Receive data arriving before the NetBIOS Close Request is sent is indicated byT_DATA and
can be read by the transport user.

Calling t_snddis() initiates an abortive connection release and immediately returns with the
XTI state changed toT_IDLE. Outstanding send and receive data may be discarded. The
NetBIOS provider sends as many outstanding data as possible prior to closing the
connection, but discards any receive data. Some outstanding data may be discarded by the
t_snddis() mechanism, so that not all data can be sent by the NetBIOS provider.
Furthermore, an occurring timeout condition could not be indicated to the transport user.

An incoming connection release will always result in aT_DISCONNECTevent, never in a
T_ORDREL event. To be precise, if the NetBIOS provider receives a Close Request, it
discards any pending send and receive data, sends a Close Response and informs the
transport user viaT_DISCONNECT.

X/Open CAE Specification (1992)
Page : 172 X/Open Transport Interface (XTI)

-- --

Use of XTI to Access NetBIOS Options

D.7 OPTIONS

No NetBIOS-specific options are defined. An implementation may, however, provideXTI-
level options (seet_optmgmt() in Chapter 6, Library Functions and Parameters).

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 173

-- --

XTI Functions Use of XTI to Access NetBIOS

D.8 XTI FUNCTIONS

t_accept()

No user data may be returned to the caller (call->udata.len=0).

This function may only be used with connection-oriented transport endpoints. The
t_accept() function will fail if a user attempts to accept a connection request on a
connectionless endpoint andt_errnowill be set to[TNOTSUPPORT].

t_alloc()

No special considerations for NetBIOS transport providers.

t_bind()

The NetBIOS name and name type values are passed to the transport provider in thereq
parameter (req->addr.buf) and the actual bound address is returned in theret parameter
(ret->addr.buf), as described earlier inSection D.5, NetBIOS Names and Addresses. If the
NetBIOS transport provider is unable to register the name specified in thereq parameter, the
call to t_bind() will fail with t_errnoset to[TADDRBUSY] if the name is already in use, or
to [TBADADDR] if it was an illegal NetBIOS name.

If the req parameter is a null pointer or req->addr.len=0, the transport provider may assign
an address for the user. This may be useful for outgoing connections on which the name of
the caller is not important.

If the name specified inreq parameter isNB_BCAST_NAME, qlen must be zero, and the
transport endpoint the name is bound to is enabled to receive broadcast datagrams. In this
case, the transport endpoint must support connectionless service, otherwise thet_bind()
function will fail andt_errnowill be set to[TBADADDR].

t_close()

No special considerations for NetBIOS transport providers.

It is assumed that the NetBIOS transport provider will release the NetBIOS name associated
with the closed endpoint if this is the only endpoint bound to this name and the name has not
already been released as the result of a previoust_unbind() call on this endpoint.

t_connect()

The NetBIOS name of the destination transport user is provided in thesndcall parameter
(sndcall->addr.buf), and the NetBIOS name of the responding transport user is returned in
thercvcall parameter (rcvcall->addr.buf), as described inSection D.5, NetBIOS Names and
Addresses. If the connection is successful, the NetBIOS name of the responding transport
user will always be the same as that specified in thesndcallparameter.

Local NetBIOS connections are supported. NetBIOS datagrams are sent, if applicable, to
local names as well as remote names. No user data may be sent during connection
establishment (udata.len=0 insndcall).

X/Open CAE Specification (1992)
Page : 174 X/Open Transport Interface (XTI)

-- --

Use of XTI to Access NetBIOS XTI Functions

This function may only be used with connection-oriented transport endpoints. The
t_connect() function will fail if a user attempts to initiate a connection on a connectionless
endpoint andt_errnowill be set to[TNOTSUPPORT].

[TBADF] may be returned in the case that the NetBIOS name associated with thefd
referenced in thet_connect() call is no longer in theCAE system name table (seeSection
D.5, NetBIOS Names and Addresses).

t_error()

No special considerations for NetBIOS transport providers.

t_free()

No special considerations for NetBIOS transport providers.

t_getinfo()

The values of the parameters in thet_info structure will reflect NetBIOS transport
limitations, as follows:

addr sizeof() the NetBIOS protocol address, as defined inSection D.5, NetBIOS
Names and Addresses.

options Equals -2, indicating no user-settable options.

tsdu Equals the size returned by the transport provider. If thefd is associated with
a connection-oriented endpoint it is a positive value, not larger than 131070.
If the fd is associated with a connectionless endpoint it is a positive value not
larger than 655352.

etsdu Equals -2, indicating expedited data is not supported.

connect Equals -2, indicating data cannot be transferred during connection
establishment.

discon Equals -2, indicating data cannot be transferred during connection release.

servtype Set toT_COTSif the fd is associated with a connection-oriented endpoint, or
T_CLTSif associated with a connectionless endpoint. Optionally, may be set
to T_COTS_ORDif the fd is associated with a connection-oriented endpoint
and the transport provider supports the use oft_sndrel()/t_rcvrel() as
described inSection D.6, NetBIOS Connection Release.

flags EqualsT_SNDZERO, indicating that zeroTSDUs may be sent.

hhhhhhhhhhhhhhhhhhhhh

2. For the mappings toOSI andIPSprotocols, the value cannot exceed 512 or 1064 respectively.

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 175

-- --

XTI Functions Use of XTI to Access NetBIOS

t_getprotaddr()

The NetBIOS name and name type of the transport endpoint referred to by thefd are passed
in the boundaddrparameter (boundaddr->addr.buf), as described inSection D.5, NetBIOS
Names and Addresses; 0 is returned in boundaddr->addr.len if the transport endpoint is in
the T_UNBND state. The NetBIOS name currently connected tofd, if any, is passed in the
peeraddrparameter (peeraddr->addr.buf); the value 0 is returned in peeraddr->addr.len if
the transport endpoint is not in theT_DATAXFER state.

t_getstate()

No special considerations for NetBIOS transport providers.

t_listen()

On return, thecall parameter provides the NetBIOS name of the calling transport user (that
issued the connection request), as described inSection D.5, NetBIOS Names and
Addresses.

No user data may be transferred during connection establishment (call->udata.len=0 on
return).

This function may only be used with connection-oriented transport endpoints. The
t_listen() function will fail if a user attempts to ‘‘listen’’ on a connectionless endpoint and
t_errno will be set to [TNOTSUPPORT]. [TBADF] may be returned in the case that the
NetBIOS name associated with thefd referenced in thet_listen() function is no longer in the
CAE system name table, as may occur as a result of the NetBIOS name conflict resolution
process (e.g.,TOP/NetBIOS NameConflictAdvise indication).

t_look()

Since expedited data is not supported in NetBIOS, theT_EXDATA andT_GOEXDATA events
cannot be returned.

t_open()

No special considerations for NetBIOS transport providers, other than restrictions on the
values returned in thet_infostructure. These restrictions are described int_getinfo().

t_optmgmt()

No special considerations for NetBIOS transport providers.

t_rcv()

This function may only be used with connection-oriented transport endpoints. Thet_rcv()
function will fail if a user attempts a receive on a connectionless endpoint andt_errnowill
be set to[TNOTSUPPORT].

Theflagsparameter will never be set toT_EXPEDITED, as expedited data is not supported.

Data transfer in the NetBIOS environment is record-oriented, and the transport user should
expect to see usage of theT_MOREflag when the message size exceeds the available buffer

X/Open CAE Specification (1992)
Page : 176 X/Open Transport Interface (XTI)

-- --

Use of XTI to Access NetBIOS XTI Functions

size.

t_rcvconnect()

The NetBIOS name of the transport user responding to the previous connection request is
provided in thecall parameter (call->addr.buf), as described inSection D.5, NetBIOS
Names and Addresses.

No user data may be returned to the caller (call->udata.len=0 on return).

This function may only be used with connection-oriented transport endpoints. The
t_rcvconnect() function will fail if a user attempts to establish a connection on a
connectionless endpoint andt_errnowill be set to[TNOTSUPPORT].

t_rcvdis()

The following disconnect reason codes are valid for any implementation of a NetBIOS
provider underXTI:

#defineNB_ABORT 0x18 /∗ session ended abnormally∗/
#defineNB_CLOSED 0x0A /∗ session closed∗/
#defineNB_NOANSWER 0x14 /∗ no answer (cannot find name called∗/
#defineNB_OPREJ 0x12 /∗ session open rejected∗/

These definitions should be included in<xti.h>.

t_rcvrel()

As described inSection D.6, NetBIOS Connection Release, a T_ORDRELevent will never
occour in theT_DATAXFER state, but only in theT_OUTRELstate. A transport user thus has
only to prepare for a call tot_rcvrel() if it previously initiated a connection release by
calling t_sndrel(). As a side effect, the stateT_INREL is unreachable for the transport user.

If T_COTS_ORDis not supported by the underlying NetBIOS transport provider, this function
will fail with t_errnoset to[TNOTSUPPORT].

t_rcvudata()

The NetBIOS name of the sending transport user is provided in theunitdata parameter
(unitdata->addr.buf), as described inSection D.5, NetBIOS Names and Addresses.

The fd associated with thet_rcvudata() function must refer to a connectionless transport
endpoint. The function will fail if a user attempts to receive on a connection-oriented
endpoint andt_errnowill be set to[TNOTSUPPORT]. [TBADF]may be returned in the case
that the NetBIOS name associated with thefd referenced in thet_rcvudata() function is no
longer in theCAE system name table, as may occur as a result of the NetBIOS name conflict
resolution process (e.g.,TOP/NetBIOS NameConflictAdvise indication).

To receive a broadcast datagram, the endpoint must be bound to the NetBIOS name
NB_BCAST_NAME.

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 177

-- --

XTI Functions Use of XTI to Access NetBIOS

t_rcvuderr()

If attempted on a connectionless transport endpoint, this function will fail witht_errnoset to
[TNOUDERR], as no NetBIOS unit data error codes are defined. If attempted on a
connection-oriented transport endpoint, this function will fail witht_errno set to
[TNOTSUPPORT].

t_snd()

TheT_EXPEDITEDflag may not be set, as NetBIOS does not support expedited data transfer.

This function may only be used with connection-oriented transport endpoints. Thet_snd()
function will fail if a user attempts a send on a connectionless endpoint andt_errnowill be
set to[TNOTSUPPORT].

The maximum value of thenbytesparameter is determined by the maximumTSDU size
allowed by the transport provider. The maximumTSDU size can be obtained from the
t_getinfo() call.

Data transfer in the NetBIOS environment is record-oriented. The transport user can use the
T_MOREflag in order to fragment aTSDU and send it via multiple calls tot_snd(). See
t_snd() in Chapter 6, XTI Library Functions and Parameters for more details.

NetBIOS does not support the notion of expedited data. A call tot_snd() with the
T_EXPEDITEDflag will fail with t_errnoset to[TBADDATA].

If the NetBIOS provider has received aHANGUP request from the remote user and still has
receive data to deliver to the local user,XTI may not detect theHANGUP situation during a
call to t_snd(). The actions that are taken are implementation-dependent:

g t_snd() might fail with t_errnoset to[TPROTO]

g t_snd() might succeed, although the data is discarded by the transport provider, and an
implementation-dependent error (generated by the NetBIOS provider) will result on a
subsequentXTI call. This could be a[TSYSERR], a [TPROTO] or a connection release
indication after all the receive data has been delivered.

t_snddis()

The t_snddis() function initiates an abortive connection release. The function returns
immediately. Outstanding send and receive data may be discarded. SeeSection D.6,
NetBIOS Connection Releasefor further details.

No user data may be sent in the disconnect request (call->udata.len=0).

This function may only be used with connection-oriented transport endpoints. The
t_snddis() function will fail if a user attempts a disconnect request on a connectionless
endpoint andt_errnowill be set to[TNOTSUPPORT].

X/Open CAE Specification (1992)
Page : 178 X/Open Transport Interface (XTI)

-- --

Use of XTI to Access NetBIOS XTI Functions

t_sndrel()

The t_sndrel() function initiates the NetBIOS release mechanism that attempts to complete
outstanding sends within a timeout period before the connection is released. The function
returns immediately. The transport user is informed byT_ORDREL when all sends have
been completed and the connection has been closed successfully. If, however, the timeout
occurs, the transport user is informed byT_DISIN and an appropriate disconnect reason
code. SeeSection D.6, NetBIOS Connection Releasefor further details.

If the NetBIOS transport provider did not returnT_COTS_ORDwith t_open(), this function
will fail with t_errnoset to[TNOTSUPPORT].

t_sndudata()

The NetBIOS name of the destination transport user is provided in theunitdata parameter
(unitdata->addr.buf), as described inSection D.5, NetBIOS Names and Addresses.

The fd associated with thet_sndudata() function must refer to a connectionless transport
endpoint. The function will fail if a user attempts this function on a connection-oriented
endpoint andt_errnowill be set to[TNOTSUPPORT]. [TBADF]may be returned in the case
that the NetBIOS name associated with thefd referenced in thet_sndudata() function is no
longer in theCAE system name table, as may occur as a result of the NetBIOS name conflict
resolution process (e.g.,TOP/NetBIOS NameConflictAdvise indication).

To send a broadcast datagram, the NetBIOS name in the NetBIOS address structure provided
in unitdata->addr.bufmust beNB_BCAST_NAME.

t_strerror()

No special considerations for NetBIOS transport providers.

t_sync()

No special considerations for NetBIOS transport providers.

t_unbind()

No special considerations for NetBIOS transport providers.

It is assumed that the NetBIOS transport provider will release the NetBIOS name associated
with the endpoint if this is the only endpoint bound to this name.

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 179

-- --

XTI Functions Use of XTI to Access NetBIOS

X/Open CAE Specification (1992)
Page : 180 X/Open Transport Interface (XTI)

-- --

-- --

Appendix E

XTI and TLI

XTI is based on theSVID Issue 2, VolumeIII , Networking Services Extensions (see
Referenced Documents).

XTI provides refinement of the Transport Level Interface (TLI) where such refinement is
considered necessary. This refinement takes the form of:

g additional commentary or explanatory text, in cases where theTLI text is either
ambiguous or not sufficiently detailed

g modifications to the interface, to cater for service and protocol problems which have
been fully considered. In this case, it must be emphasised that such modifications are
kept to an absolute minimum, and are intended to avoid any fundamental changes to the
interface defined byTLI

g the removal of dependencies on specificUNIX versions and specific transport providers.

E.1 RESTRICTIONS CONCERNING THE USE OF XTI

It is important to bear in mind the following points when considering the use ofXTI:

g It was stated thatXTI ‘‘recommends’’ a subset of the total set of functions and facilities
defined inTLI, and also thatXTI introduces modifications to some of these functions
and/or facilities where this is considered essential. For these reasons, an application
which is written in conformance toXTI may not be immediately portable to work over a
provider which has been written in conformance toTLI.

g XTI does not address management aspects of the interface, that is:

— how addressing may be done in such a way that an application is truly portable

— no selection and/or negotiation of service and protocol characteristics.

For addressing, the same is also true forTLI. In this case, it is envisaged that addresses
will be managed by a higher-level directory function. For options selection and/or
negotiation,XTI attempts to define a basic mechanism by which such information may
be passed across the transport service interface, although again, this selection/negotiation
may be done by a higher-level management function (rather than directly by the user).
Since address structure is not currently defined, the user protocol address is system-
dependent.

E.2 RELATIONSHIP BETWEEN XTI AND TLI

The following features can be considered asXTI extensions to the System V Release 3
version ofTLI:

g Some functions may return more error types. The use of the [TOUTSTATE] error is
generalised to almost all protocol functions.

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 181

-- --

Relationship Between XTI and TLI XTI and TLI

g The transport provider identifier has been generalised to remove the dependence on a
device driver implementation.

g Additional events have been defined to help applications make full use of the
asynchronous features of the interface.

g Additional features have been introduced tot_snd(), t_sndrel() andt_rcvrel() to allow
fuller use ofTCPtransport providers.

g Usage of options for certain types of transport service has been defined to increase
application portability.

g Because mostXTI functions require read/write access to the transport provider, the usage
of flagsO_RDONLY andO_WRONLY has been withdrawn from theXTI.

g XTI checks the value ofqlen and prevents an application from waiting forever when
issuingt_listen().

g XTI allows an application to callt_accept) with a which is not bound to a local address.

g XTI provides the additional utility functionst_strerror() andt_getprotaddr().

X/Open CAE Specification (1992)
Page : 182 X/Open Transport Interface (XTI)

-- --

-- --

Appendix F

Headers and Definitions

F.1 THE <xti.h> HEADER

/∗
∗ The following are the error codes needed by both the kernel
∗ level transport providers and the user level library.
∗/

#defineTBADADDR 1 /∗ incorrect addr format∗/
#defineTBADOPT 2 /∗ incorrect option format∗/
#defineTACCES 3 /∗ incorrect permissions∗/
#defineTBADF 4 /∗ illegal transport fd∗/
#defineTNOADDR 5 /∗ couldn’t allocate addr∗/
#defineTOUTSTATE 6 /∗ out of state∗/
#defineTBADSEQ 7 /∗ bad call sequence number∗/
#defineTSYSERR 8 /∗ system error∗/
#defineTLOOK 9 /∗ event requires attention∗/
#defineTBADDATA 10 /∗ illegal amount of data∗/
#defineTBUFOVFLW 11 /∗ buffer not large enough∗/
#defineTFLOW 12 /∗ flow control∗/
#defineTNODATA 13 /∗ no data∗/
#defineTNODIS 14 /∗ discon_ind not found on queue∗/
#defineTNOUDERR 15 /∗ unitdata error not found∗/
#defineTBADFLAG 16 /∗ bad flags∗/
#defineTNOREL 17 /∗ no ord rel found on queue∗/
#defineTNOTSUPPORT 18 /∗ primitive/action not supported∗/
#defineTSTATECHNG 19 /∗ state is in process of changing∗/
#defineTNOSTRUCTYPE 20 /∗ unsupported struct-type requested∗/
#defineTBADNAME 21 /∗ invalid transport provider name∗/
#defineTBADQLEN 22 /∗ qlen is zero∗/
#defineTADDRBUSY 23 /∗ address in use∗/
#defineTINDOUT 24 /∗ outstanding connection indications∗/
#defineTPROVMISMATCH 25 /∗ transport provider mismatch∗/
#defineTRESQLEN 26 /∗ resfd specified to accept w/qlen >0∗/
#defineTRESADDR 27 /∗ resfd not bound to same addr as fd∗/
#defineTQFULL 28 /∗ incoming connection queue full∗/
#defineTPROTO 29 /∗ XTI protocol error∗/

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 183

-- --

The<xti.h> Header Headers and Definitions

/∗
∗ The following are the events returned.
∗/

#defineT_LISTEN 0x0001 /∗ connection indication received∗/
#defineT_CONNECT 0x0002 /∗ connect confirmation received∗/
#defineT_DATA 0x0004 /∗ normal data received∗/
#defineT_EXDATA 0x0008 /∗ expedited data received∗/
#defineT_DISCONNECT 0x0010 /∗ disconnect received∗/
#defineT_UDERR 0x0040 /∗ datagram error indication∗/
#defineT_ORDREL 0x0080 /∗ orderly release indication∗/
#defineT_GODATA 0x0100 /∗ sending normal data is again possible∗/
#defineT_GOEXDATA 0x0200 /∗ sending expedited data is again possible∗/

/∗
∗ The following are the flag definitions needed by the
∗ user level library routines.
∗/

#defineT_MORE 0x001 /∗ more data∗/
#defineT_EXPEDITED 0x002 /∗ expedited data∗/
#defineT_NEGOTIATE 0x004 /∗ set opts∗/
#defineT_CHECK 0x008 /∗ check opts∗/
#defineT_DEFAULT 0x010 /∗ get default opts∗/
#defineT_SUCCESS 0x020 /∗ successful∗/
#defineT_FAILURE 0x040 /∗ failure ∗/
#defineT_CURRENT 0x080 /∗ get current options∗/
#defineT_PARTSUCCESS 0x100 /∗ partial success∗/
#defineT_READONLY 0x200 /∗ read-only∗/
#defineT_NOTSUPPORT 0x400 /∗ not supported∗/

/∗
∗ XTI error return.
∗/

extern int t_errno;
/∗ XTI LIBRARY FUNCTIONS ∗/
/∗ XTI Library Function: t_accept− accept a connect request∗/
extern int t_accept();
/∗ XTI Library Function: t_alloc− allocate a library structure∗/
extern char∗t_alloc();
/∗ XTI Library Function: t_bind− bind an address to a transport endpoint∗/
extern int t_bind();
/∗ XTI Library Function: t_close− close a transport endpoint∗/
extern int t_close();
/∗ XTI Library Function: t_connect− establish a connection∗/
extern int t_connect();
/∗ XTI Library Function: t_error− produce error message∗/
extern int t_error();
/∗ XTI Library Function: t_free− free a library structure∗/

X/Open CAE Specification (1992)
Page : 184 X/Open Transport Interface (XTI)

-- --

Headers and Definitions The<xti.h> Header

extern int t_free();
/∗ XTI Library Function: t_getprotaddr− get protocol addresses∗/
extern int t_getprotaddr();
/∗ XTI Library Function: t_getinfo− get protocol-specific service information∗/
extern int t_getinfo();
/∗ XTI Library Function: t_getstate− get the current state∗/
extern int t_getstate();
/∗ XTI Library Function: t_listen− listen for a connect indication∗/
extern int t_listen();
/∗ XTI Library Function: t_look− look at current event on a transport endpoint∗/
extern int t_look();
/∗ XTI Library Function: t_open− establish a transport endpoint∗/
extern int t_open();
/∗ XTI Library Function: t_optmgmt− manage options for a transport endpoint∗/
extern int t_optmgmt();
/∗ XTI Library Function: t_rcv− receive data or expedited data on a connection∗/
extern int t_rcv();
/∗ XTI Library Function: t_rcvdis− retrieve information from disconnect∗/
extern int t_rcvdis();
/∗ XTI Library Function: t_rcvrel− acknowledge receipt of∗/
/∗ an orderly release indication∗/
extern int t_rcvrel();
/∗ XTI Library Function: t_rcvudata− receive a data unit∗/
extern int t_rcvudata();
/∗ XTI Library Function: t_rcvuderr− receive a unit data error indication∗/
extern int t_rcvuderr();
/∗ XTI Library Function: t_snd− send data or expedited data over a connection∗/
extern int t_snd();
/∗ XTI Library Function: t_snddis− send user-initiated disconnect request∗/
extern int t_snddis();
/∗ XTI Library Function: t_sndrel− initiate an orderly release∗/
extern int t_sndrel();
/∗ XTI Library Function: t_sndudata− send a data unit∗/
extern int t_sndudata();
/∗ XTI Library Function: t_strerror− generate error message string∗/
extern char∗t_strerror();
/∗ XTI Library Function: t_sync− synchronise transport library∗/
extern int t_sync();
/∗ XTI Library Function: t_unbind− disable a transport endpoint∗/
extern int t_unbind();

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 185

-- --

The<xti.h> Header Headers and Definitions

/∗
∗ Protocol-specific service limits.
∗/

struct t_info {
long addr; /∗ max size of the transport protocol address∗/
long options; /∗ max number of bytes of protocol-specific options∗/
long tsdu; /∗ max size of a transport service data unit∗/
long etsdu; /∗ max size of expedited transport service data unit∗/
long connect; /∗ max amount of data allowed on connection∗/

/∗ establishment functions∗/
long discon; /∗ max data allowed on t_snddis and t_rcvdis functions∗/
long servtype; /∗ service type supported by transport provider∗/
long flags; /∗ other info about the transport provider∗/

};

/∗
∗ Service type defines.
∗/

#defineT_COTS 01 /∗ connection-oriented transport service∗/
#defineT_COTS_ORD 02 /∗ connection-oriented with orderly release∗/
#defineT_CLTS 03 /∗ connectionless transport service∗/

/∗
∗ Flags defines (other info about the transport provider).
∗/

#defineT_SENDZERO0x001 /∗ supports 0-lengthTSDUs ∗/

/∗
∗ netbuf structure.
∗/

struct netbuf {
unsigned int maxlen;
unsigned int len;
char ∗buf;

};

X/Open CAE Specification (1992)
Page : 186 X/Open Transport Interface (XTI)

-- --

Headers and Definitions The<xti.h> Header

/∗
∗ t_opthdr structure
∗/

struct t_opthdr {
unsigned long len; /∗ total length of option; i.e.

sizeof (struct t_opthdr) + length of
option value in bytes∗/

unsigned long level; /∗ protocol affected∗/
unsigned long name; /∗ option name∗/
unsigned long status; /∗ status value∗/

/∗ followed by the option value∗/
};

/∗
∗ t_bind− format of the address and options arguments of bind.
∗/

struct t_bind {
struct netbuf addr;
unsigned qlen;

};

/∗
∗ Options management structure.
∗/

struct t_optmgmt {
struct netbuf opt;
long flags;

};

/∗
∗ Disconnect structure.
∗/

struct t_discon {
struct netbuf udata; /∗ user data∗/
int reason; /∗ reason code∗/
int sequence; /∗ sequence number∗/

};

/∗
∗ Call structure.
∗/

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 187

-- --

The<xti.h> Header Headers and Definitions

struct t_call {
struct netbuf addr; /∗ address∗/
struct netbuf opt; /∗ options∗/
struct netbuf udata; /∗ user data∗/
int sequence; /∗ sequence number∗/

};

/∗
∗ Datagram structure.
∗/

struct t_unitdata {
struct netbuf addr; /∗ address∗/
struct netbuf opt; /∗ options∗/
struct netbuf udata; /∗ user data∗/

};

/∗
∗ Unitdata error structure.
∗/

struct t_uderr {
struct netbuf addr; /∗ address∗/
struct netbuf opt; /∗ options∗/
long error; /∗ error code∗/

};

/∗
∗ The following are structure types used when dynamically
∗ allocating the above structures via t_alloc().
∗/

#defineT_BIND 1 /∗ struct t_bind∗/
#defineT_OPTMGMT 2 /∗ struct t_optmgmt∗/
#defineT_CALL 3 /∗ struct t_call∗/
#defineT_DIS 4 /∗ struct t_discon∗/
#defineT_UNITDATA 5 /∗ struct t_unitdata∗/
#defineT_UDERROR 6 /∗ struct t_uderr∗/
#defineT_INFO 7 /∗ struct t_info∗/

/∗
∗ The following bits specify which fields of the above
∗ structures should be allocated by t_alloc().
∗/

#defineT_ADDR 0x01 /∗ address∗/
#defineT_OPT 0x02 /∗ options∗/
#defineT_UDATA 0x04 /∗ user data∗/
#defineT_ALL 0xffff / ∗ all the above fields supported∗/

X/Open CAE Specification (1992)
Page : 188 X/Open Transport Interface (XTI)

-- --

Headers and Definitions The<xti.h> Header

/∗
∗ The following are the states for the user.
∗/

#defineT_UNBND 1 /∗ unbound∗/
#defineT_IDLE 2 /∗ idle ∗/
#defineT_OUTCON 3 /∗ outgoing connection pending∗/
#defineT_INCON 4 /∗ incoming connection pending∗/
#defineT_DATAXFER 5 /∗ data transfer∗/
#defineT_OUTREL 6 /∗ outgoing release pending∗/
#defineT_INREL 7 /∗ incoming release pending∗/

/∗
∗ General purpose defines.
∗/

#define T_YES 1
#define T_NO 0
#define T_UNUSED −1
#define T_NULL 0
#define T_ABSREQ 0x8000
#define T_INFINITE −1
#define T_INVALID −2

/∗ T_INFINITE andT_INVALID are values of t_info∗/

/∗
∗ General definitions for option management
∗/

#defineT_UNSPEC (˜0 −- 2) /∗ applicable to u_long, long, char ...∗/
#defineT_ALLOPT 0
#defineT_ALIGN(p) (((unsigned long) (p) + (sizeof(long)− 1)) \

&˜ (sizeof(long)−- 1))
#defineOPT_NEXTHDR(pbuf, buflen, popt) \

(((char∗)(popt) +T_ALIGN((popt)->len) < \
pbuf + buflen) ? \
(struct t_opthdr∗) ((char∗)(popt) +T_ALIGN((popt)->len)) : \
(struct t_opthdr∗) NULL)

/∗ OPTIONS ON XTI LEVEL∗/

/∗ XTI-level ∗/

#define XTI_GENERIC 0xffff

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 189

-- --

The<xti.h> Header Headers and Definitions

/∗
∗ XTI-level Options
∗/

#define XTI_DEBUG 0x0001 /∗ enable debugging∗/
#define XTI_LINGER 0x0080 /∗ linger on close if data present∗/
#define XTI_RCVBUF 0x1002 /∗ receive buffer size∗/
#define XTI_RCVLOWAT 0x1004 /∗ receive low-water mark∗/
#define XTI_SNDBUF 0x1001 /∗ send buffer size∗/
#define XTI_SNDLOWAT 0x1003 /∗ send low-water mark∗/

/∗
∗ Structure used with linger option.
∗/

struct t_linger {
long l_onoff; /∗ option on/off∗/
long l_linger; /∗ linger time∗/

};

/∗ SPECIFIC ISO OPTION AND MANAGEMENT PARAMETERS∗/

/∗
∗ Definition of theISO transport classes
∗/

#define T_CLASS0 0
#define T_CLASS1 1
#define T_CLASS2 2
#define T_CLASS3 3
#define T_CLASS4 4

/∗
∗ Definition of the priorities.
∗/

#define T_PRITOP 0
#define T_PRIHIGH 1
#define T_PRIMID 2
#define T_PRILOW 3
#define T_PRIDFLT 4

/∗
∗ Definitions of the protection levels
∗/

#define T_NOPROTECT 1
#define T_PASSIVEPROTECT 2
#define T_ACTIVEPROTECT 4

X/Open CAE Specification (1992)
Page : 190 X/Open Transport Interface (XTI)

-- --

Headers and Definitions The<xti.h> Header

/∗
∗ Default value for the length ofTPDUs.
∗/

#define T_LTPDUDFLT 128 /∗ define obsolete inXPG4∗/

/∗
∗ rate structure.
∗/

struct rate {
long targetvalue; /∗ target value∗/
long minacceptvalue; /∗ value of minimum acceptable quality∗/

};

/∗
∗ reqvalue structure.
∗/

struct reqvalue {
struct rate called; /∗ called rate∗/
struct rate calling; /∗ calling rate∗/

};

/∗
∗ thrpt structure.
∗/

struct thrpt {
struct reqvalue maxthrpt; /∗ maximum throughput∗/
struct reqvalue avgthrpt; /∗ average throughput∗/

};

/∗
∗ transdel structure
∗/

struct transdel {
struct reqvalue maxdel; /∗ maximum transit delay∗/
struct reqvalue avgdel; /∗ average transit delay∗/

};

/∗
∗ Protocol Levels
∗/

#define ISO_TP 0x0100

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 191

-- --

The<xti.h> Header Headers and Definitions

/∗
∗ Options for Quality of Service and Expedited Data (ISO 8072:1986)
∗/

#define TCO_THROUGHPUT 0x0001
#define TCO_TRANSDEL 0x0002
#define TCO_RESERRORRATE 0x0003
#define TCO_TRANSFFAILPROB 0x0004
#define TCO_ESTFAILPROB 0x0005
#define TCO_RELFAILPROB 0x0006
#define TCO_ESTDELAY 0x0007
#define TCO_RELDELAY 0x0008
#define TCO_CONNRESIL 0x0009
#define TCO_PROTECTION 0x000a
#define TCO_PRIORITY 0x000b
#define TCO_EXPD 0x000c

#define TCL_TRANSDEL 0x000d
#define TCL_RESERRORRATE TCO_RESERRORRATE
#define TCL_PROTECTION TCO_PROTECTION
#define TCL_PRIORITY TCO_PRIORITY

/∗
∗ Management Options
∗/

#define TCO_LTPDU 0x0100
#define TCO_ACKTIME 0x0200
#define TCO_REASTIME 0x0300
#define TCO_EXTFORM 0x0400
#define TCO_FLOWCTRL 0x0500
#define TCO_CHECKSUM 0x0600
#define TCO_NETEXP 0x0700
#define TCO_NETRECPTCF 0x0800
#define TCO_PREFCLASS 0x0900
#define TCO_ALTCLASS1 0x0a00
#define TCO_ALTCLASS2 0x0b00
#define TCO_ALTCLASS3 0x0c00
#define TCO_ALTCLASS4 0x0d00

#define TCL_CHECKSUM TCO_CHECKSUM

/∗ INTERNET SPECIFIC ENVIRONMENT∗/

/∗
∗ TCPlevel
∗/

#define INET_TCP 0x6

X/Open CAE Specification (1992)
Page : 192 X/Open Transport Interface (XTI)

-- --

Headers and Definitions The<xti.h> Header

/∗
∗TCP-level Options
∗/

#define TCP_NODELAY 0x1 /∗ don’t delay packets to coalesce∗/
#define TCP_MAXSEG 0x2 /∗ get maximum segment size∗/
#define TCP_KEEPALIVE 0x8 /∗ check, if connections are alive∗/

/∗
∗ Structure used withTCP_KEEPALIVEoption.
∗/

struct t_kpalive {
long kp_onoff; /∗ option on/off∗/
long kp_timeout; /∗ timeout in minutes∗/

};

#define T_GARBAGE 0x02

/∗
∗ UDP level
∗/

#define INET_UDP 0x11

/∗
∗ UDP-level Options
∗/

#define UDP_CHECKSUM TCO_CHECKSUM /∗ checksum computation∗/

/∗
∗ IP level
∗/

#define INET_IP 0x0

/∗
∗ IP-level Options
∗/

#define IP_OPTIONS 0x1 /∗ IP per-packet options∗/
#define IP_TOS 0x2 /∗ IP per-packet type of service∗/
#define IP_TTL 0x3 /∗ IP per-packet time to live /
#define IP_REUSEADDR 0x4 /∗ allow local address reuse∗/
#define IP_DONTROUTE 0x10 /∗ just use interface addresses∗/
#define IP_BROADCAST 0x20 /∗ permit sending of broadcast msgs∗/

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 193

-- --

The<xti.h> Header Headers and Definitions

/∗
∗ IP_TOSprecedence levels
∗/

#define T_ROUTINE 0
#define T_PRIORITY 1
#define T_IMMEDIATE 2
#define T_FLASH 3
#define T_OVERRIDEFLASH 4
#define T_CRITIC_ECP 5
#define T_INETCONTROL 6
#define T_NETCONTROL 7

/∗
∗ IP_TOStype of service
∗/

#define T_NOTOS 0
#define T_LDELAY 1 << 4
#define T_HITHRPT 1 << 3
#define T_HIREL 1 << 2

#define SET_TOS(prec, tos) ((0x7 & (prec)) << 5 | (0x1c & (tos)))

X/Open CAE Specification (1992)
Page : 194 X/Open Transport Interface (XTI)

-- --

-- --

Appendix G

Abbreviations

CO Connection-oriented

CL Connectionless

EM Event Management

ETSDU Extended Transport Service Data Unit

ISO International Organization for Standardization

OSI Open System Interconnection

SVID System V Interface Definition

TC Transport Connection

TCP Transmission Control Protocol

TLI Transport Level Interface

TSAP Transport Service Access Point

TSDU Transport Service Data Unit

UDP User Datagram Protocol

XTI X/Open Transport Interface

XEM X/Open Event Management Interface

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 195

-- --

Abbreviations

X/Open CAE Specification (1992)
Page : 196 X/Open Transport Interface (XTI)

-- --

-- --

Appendix H

Glossary

Abortive release
An abrupt termination of a transport connection, which may result in the loss of data.

Asynchronous mode
The mode of execution in which transport service functions do not wait for specific
asynchronous events to occur before returning control to the user, but instead return
immediately if the event is not pending.

Connection establishment
The phase in connection mode that enables two transport users to create a transport
connection between them.

Connection mode
A mode of transfer where a logical link is established between two endpoints. Data is
passed over this link by a sequenced and reliable way.

Connectionless mode
A mode of transfer where different units of data are passed through the network without any
relationship between them.

Connection release
The phase in connection mode that terminates a previously established transport connection
between two users.

Datagram
A unit of data transferred between two users of the connectionless-mode service.

Data transfer
The phase in connection mode or connectionless mode that supports the transfer of data
between two transport users.

Expedited data
Data that are considered urgent. The specific semantics ofexpedited dataare defined by the
transport provider that provides the transport service.

Expedited transport service data unit
The amount of expedited user data, the identity of which is preserved from one end of a
transport connection to the other (that is, an expedited message).

Initiator
An entity that initiates a connect request.

Orderly release
A procedure for gracefully terminating a transport connection with no loss of data.

Responder
An entity with whom an initiator wishes to establish a transport connection.

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 197

-- --

Glossary

Synchronous mode
The mode of execution in which transport service functions wait for specific asynchronous
events to occur before returning control to the user.

Transport address
The identifier used to differentiate and locate specific transport endpoints in a network.

Transport connection
The communication circuit that is established between two transport users in connection
mode.

Transport endpoint
The communication path, which is identified by a file descriptor, between a transport user
and a specific transport provider. A transport endpoint is called passive before, and active
after, a relationship is established, with a specific instance of this transport provider,
identified by theTSAP.

Transport provider identifier
A character string used by thet_open() function to identify the transport service provider.

Transport service access point
A TSAP is a uniquely identified instance of the transport provider. ATSAP is used to
identify a transport user on a certain endsystem. In connection mode, a singleTSAP may
have more than one connection established to one or more remoteTSAPs; each individual
connection then is identified by a transport endpoint at each end.

Transport service data unit
A unit of data transferred across the transport service with boundaries and content preserved
unchanged. ATSDU may be divided into sub-units passed between the user andXTI. The
T_MOREflag is set in all but the last fragment of aTSDU sequence constituting aTSDU. The
T_MOREflag implies nothing about how the data is handled and passed to the lower level by
the transport provider, and how they are delivered to the remote user.

Transport service provider
A transport protocol providing the service of the transport layer.

Transport service user
An abstract representation of the totality of those entities within a single system that make
use of the transport service.

User application
The set of user programs, implemented as one or more process(es) in terms ofUNIX
semantics, written to realise a task, consisting of a set of user required functions.

X/Open CAE Specification (1992)
Page : 198 X/Open Transport Interface (XTI)

-- --

-- --

Index

abortive release: 18, 100, 197
accept: 119
accept1: 27, 31
accept2: 27, 31
accept3: 27, 31
address: 3-4, 13-15, 20, 23, 49-51, 54-56, 59-

61, 65, 68, 71, 75-76, 93-94, 104-105, 111
addresses:

multiple use: 8
application: 3-5, 136, 182
applications: 47

portability: 136, 181
applications portability: 3, 182
association-related: 116
association-related options: 33
asynchronous: 32, 73
asynchronous events: 6
asynchronous mode: 5, 87, 197
bind: 3, 22, 27, 30, 50, 54, 56, 109
buffer: 52-53, 63, 85
Call structure: 187
caller: 23, 49-50, 59, 71
character string: 3, 198
checksum check: 126
child process: 4
CL: 195
close: 22, 30-31, 57
closed: 27, 30-31
CO: 195
compatibility:

future: 53
connect indication: 29, 49-50, 54-55, 71, 89
connect request: 49, 71, 87, 100
Connect semantics: 9
connect1: 27, 31
connect2: 27, 31
connection: 3, 49, 59, 85, 87, 100, 102
connection establishment: 13, 15-16, 59, 87,

123, 131, 197
connection mode: 4, 13, 15, 22, 31, 112, 129,

131-132, 197
connection mode service: 31

connection release: 13, 18-19, 131, 197
connection-oriented: 22, 131-132
connection-oriented mode: 13, 129
connectionless: 22, 121, 135
connectionless mode: 4, 20, 22, 30, 93, 95,

104, 116, 135, 197
constants: 47
create:

transport endpoint: 14
current event: 0, 30, 73
current state: 0, 4, 30, 70, 107
data: 85, 89, 93, 97, 100, 104
data transfer: 13, 16, 20, 30-31, 131, 197
data unit: 18, 20, 93, 104

discarded: 21
datagram: 4, 20, 197
datagram structure: 188
de-initialisation: 13-15, 20, 30
default: 75, 136
definitions: 11
Delete optional functions: 8
device: 136
device driver: 182
discarded data unit: 21
disconnect: 7, 13, 32, 89

indication: 27
request: 100

disconnect structure: 187
dup: 3, 107-108
duplex: 16
EINVAL : 53
EM: 137, 195
enqueue: 15, 23
errmsg: 61
errno: 61
errnum: 106
error: 184
error code: 95, 106
error codes: 183

TACCES: 183
TADDRBUSY: 183
TBADADDR: 183

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 199

-- --

Index

TBADDATA : 183
TBADF: 183
TBADFLAG: 183
TBADNAME: 183
TBADOPT: 183
TBADQLEN: 183
TBADSEQ: 183
TBUFOVFLW: 183
TFLOW: 183
TINDOUT: 183
TLOOK: 183
TNOADDR: 183
TNODATA: 183
TNODIS: 183
TNOREL: 183
TNOSTRUCTYPE: 183
TNOTSUPPORT: 183
TNOUDERR: 183
TOUTSTATE: 183
TPROTO: 183
TPROVMISMATCH: 183
TQFULL : 183
TRESADDR: 183
TRESQLEN: 183
TSTATECHNG: 183
TSYSERR: 183

error handling: 4
error indication: 95
error message: 8, 61, 106
error number: 5, 106
established:

connection: 132
ETSDU: 17, 75-76, 85, 97-99, 195
event: 0, 30, 135

current: 0, 30, 73
event management: 7-8
Event Management: 137
events: 138, 184

accept1: 27, 31
accept2: 27, 31
accept3: 27, 31
bind: 27, 30
closed: 27, 30-31
connect1: 27, 31
connect2: 27, 31
incoming: 28
listen: 28, 31, 71

opened: 27, 30
optmgmt: 27, 30
outgoing: 27
pass_conn: 28, 31
rcv: 28, 31, 85
rcvconnect: 28, 31
rcvdis1: 28, 31
rcvdis2: 28, 31
rcvdis3: 28, 31
rcvrel: 28, 31
rcvudata: 28, 30
rcvuderr: 28, 30
snd: 27, 31
snddis1: 27, 31
snddis2: 27, 31
sndrel: 27, 31
sndudata: 27, 30
T_CONNECT: 184
T_DATA: 184
T_DISCONNECT: 184
T_EXDATA: 184
T_GODATA: 184
T_GOEXDATA: 184
T_LISTEN: 184
T_ORDREL: 184
T_UDERR: 184
unbind: 27, 30

events and t_look: 6-7
example: 142, 156
exceptfds: 155
exec: 107-108
execution mode: 5, 17
Expedited data: 9
expedited data: 13, 17-18, 76, 85, 97, 111-

112, 121, 123, 141, 155, 192, 197
expedited transport service data unit

(ETSDU): 76, 85, 197
fcntl: 3, 6, 59, 71-72, 85-86, 88, 93-94, 98,

104-105
fcntl.h: 75
fd: 3, 27
features: 22-23
file descriptor: 3, 57, 65, 75, 107, 141, 155
file.c: 47
flag: 75, 78, 85
flags: 75, 78, 85, 121, 184, 186

T_CHECK: 184

X/Open CAE Specification (1992)
Page : 200 X/Open Transport Interface (XTI)

-- --

Index

T_CURRENT: 184
T_DEFAULT: 184
T_EXPEDITED: 184
T_FAILURE: 184
T_MORE: 184
T_NEGOTIATE: 184
T_NOTSUPPORT: 184
T_PARTSUCCESS: 184
T_READONLY: 184
T_SUCCESS: 184

flow control: 21
fork: 3-4, 107-108
full duplex: 16
General purpose defines: 189
headers: 11
incoming events: 28
INET_IP: 193
initialisation: 13-15, 20, 30, 75
initiator: 13, 197
Internet protocol-specific information: 123
Internet Transport-specific Information: 11
IP-level options: 126
IP-level Options: 193
IP_BROADCAST: 127, 193
IP_DONTROUTE: 127, 193
IP_OPTIONS: 127, 193
IP_REUSEADDR: 127, 193
IP_TOS: 128, 193
IP_TOStype of service: 194
IP_TTL: 128, 193
ISO: 111, 190, 195

priorities: 190
protection levels: 190
transport classes: 190

ISO Transport Protocol: 11
ISO_TP: 191
language-dependent: 61
library functions: 184
library structure: 52
listen: 55, 71, 119
listener application: 4
management options: 114, 117, 192
mandatory features: 136
maximum size:

address: 65, 76
address buffer: 54, 68
buffer: 59, 71, 88, 93, 95

ETSDU: 66, 76, 99
TSDU: 18, 66, 76, 99, 130

memory:
allocate: 52, 63

mode:
asynchronous: 5
connection-oriented: 13, 15, 22, 31, 112,
129, 131-132
connectionless: 20, 22, 30, 93, 95, 104,
116, 135
record-oriented: 18
stream-oriented: 18
synchronous: 5, 73

modes of service: 4
multiple options: 41
Multiple use of addresses: 8
netbuf structure: 35, 52, 78
next state: 30
NEXTHDR: 189
NULL: 55
null:

call: 100
caller address: 49

null pointer: 53, 55, 59, 61, 63, 77, 88-89, 95
ocnt: 27
open: 75
opened: 27, 30
option:

buffer: 35
value: 42

Option management: 10
option management: 189
option negotiation:

initiate: 37
response: 38

option values: 112
options:

association-related: 33
connection mode: 112
connectionless mode: 116
expedited data: 112
format: 45
generalities: 33
illegal: 36
IP-level: 126
ISO-specific: 190-191
management: 114

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 201

-- --

Index

multiple: 41
privileged: 40
quality of service: 112
read-only: 40
retrieving information: 39
TCP-level: 124
transport endpoint: 78
transport provider: 59
UDP-level: 126
unsupported: 38

Options and management structures: 9
Options management structure:187
optmgmt: 22, 27, 30
orderly release: 18-19, 91, 102, 123, 197
OSI: 9, 195

transport classes: 120
outgoing events: 27
outstanding connect indications: 29, 55, 89
O_NONBLOCKflag: 5
pass_conn: 28, 31
permissions: 131
poll: 73
poll(): 139
POLLIN: 141
polling: 6
POLLOUT: 141
POLLPRI: 141
POLLRDBAND: 141
POLLRDNORM: 141
POLLWRBAND: 141
portability: 46
portable: 3, 22, 136, 141, 155, 181
precedence levels:

IP: 194
primitives: 5-6
process: 3
program: 47
programs:

multiple protocol: 136
protocol: 3, 23, 33, 54-55, 59, 65, 68, 75, 78,

95, 111, 136
protocol independence: 66, 77, 136
Protocol options: 9
protocol-specific servicelimits: 186
PUSHflag: 123
quality of service: 112, 116, 192
queue: 15, 23, 72

rate: 112
rate structure:191
rcv: 28, 31
rcvconnect: 28, 31
rcvdis1: 28, 31
rcvdis2: 28, 31
rcvdis3: 28, 31
rcvrel: 28, 31
rcvudata: 28
rcvuderr: 28
readfds: 155
reason:

disconnect: 89
receipt: 91
receive: 85, 93
Receiving Data: 16, 20
record-oriented: 18
release: 13, 18, 31, 91, 100, 102
reliable: 4, 197
remote user: 7, 16, 18-19, 57, 59-60, 100, 132,

135, 198
reqvalue: 112, 191
reqvalue structure:191
resfd: 27
responder: 13, 197
select(): 153
Sending Data: 17, 21
server program: 141, 155
service definition: 14

ISO: 1, 18, 111, 119
TCP: 18

service type defines: 186
snd: 27, 31-32, 111
snddis1: 27, 31
snddis2: 27, 31
sndrel: 27, 31-32
sndudata: 27, 30, 32, 111
socket: 9, 129-130
standard error: 61
state: 0, 25-26, 30, 189

current: 0, 30, 70, 107
next: 30
T_DATAXFER: 26, 189
T_IDLE: 26, 189
T_INCON: 26, 189
T_INREL: 26, 189
T_OUTCON: 26, 189

X/Open CAE Specification (1992)
Page : 202 X/Open Transport Interface (XTI)

-- --

Index

T_OUTREL: 26, 189
T_UNBIND: 26
T_UNBND: 189
T_UNIT: 26

State behaviour: 8
state table: 30-31, 135
State tables:

optmgmt: 10
status:

connect request: 16, 87
connection: 59

stream-oriented: 18
strerror(3C): 61
struct netbuf: 186
struct rate: 191
struct reqvalue: 191
struct thrpt: 191
struct transdel: 191
struct t_bind: 187
struct t_call: 188
struct t_discon: 187
struct t_info: 186
struct t_kpalive: 193
struct t_linger: 190
struct t_opthdr: 187
struct t_optmgmt: 187
struct t_uderr: 188
struct t_unitdata: 188
structure types: 188

T_BIND: 188
T_CALL: 188
T_DIS: 188
T_INFO: 188
T_OPTMGMT: 188
T_UDERROR: 188
T_UNITDATA: 188

SVID: 195
synchronise: 107
synchronous mode: 5, 73, 198
t-opthdr: 112
TACCES: 183
TADDRBUSY: 183
TBADADDR: 183
TBADDATA : 183
TBADF: 183
TBADFLAG: 183
TBADNAME: 183

TBADOPT: 183
TBADQLEN: 183
TBADSEQ: 183
TBUFOVFLW: 183
TC: 195
TCL_CHECKSUM: 192
TCL_PRIORITY: 192
TCL_PROTECTION: 192
TCL_RESERRORRATE: 192
TCL_TRANSDEL: 192
TCO_ACKTIME: 192
TCO_ALTCLASS1: 192
TCO_ALTCLASS2: 192
TCO_ALTCLASS3: 192
TCO_ALTCLASS4: 192
TCO_CHECKSUM: 192
TCO_CLASS: 192
TCO_CONNRESIL: 192
TCO_ESTDELAY: 192
TCO_ESTFAILPROB: 192
TCO_EXPD: 192
TCO_EXTFORM: 192
TCO_FLOWCTRL: 192
TCO_LTPDU: 192
TCO_NETEXP: 192
TCO_NETRECPTCF: 192
TCO_PRIORITY: 192
TCO_PROTECTION: 192
TCO_REASTIME: 192
TCO_RELDELAY: 192
TCO_RELFAILPROB: 192
TCO_RESERRORRATE: 192
TCO_THROUGHPUT: 192
TCO_TRANSDEL: 192
TCO_TRANSFFAILPROB: 192
TCP: 9, 18-19, 123, 129, 195
TCP-level options: 124, 193
TCP_KEEPALIVE: 124, 193
TCP_MAXSEG: 125, 193
TCP_NODELAY: 125, 193
terminated:

connection: 132
TFLOW: 21, 138, 183
thrpt: 112, 191
thrpt structure: 191
TINDOUT: 183
TLI: 181, 195

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 203

-- --

Index

TLOOK: 6, 18, 32, 183
TNOADDR: 183
TNODATA: 183
TNODIS: 183
TNOREL: 183
TNOSTRUCTYPE: 183
TNOTSUPPORT: 8, 183
TNOUDERR: 183
TOSprecedence levels: 194
TOUTSTATE: 183
TPDU lengths: 191
TPROTO: 183
TPROVMISMATCH: 183
TQFULL: 183
transdel: 112
transdel structure: 191
transport address: 3, 111, 198
transport classes: 120, 190
transport connection: 3, 15, 57, 65, 102,

197-198
transport endpoint: 3, 26-27, 42, 49, 54, 56-

58, 73, 75, 77-78, 107, 109, 198
Transport Level Interface (TLI): 181
transport provider: 3, 13, 25-26, 30, 35, 59,

65, 75, 107, 111, 131, 186
transport provider identifier:3, 13, 75, 198
transport service: 0, 111, 131
transport service access point (TSAP): 4, 198
transport service data unit (TSDU): 7, 76, 85,

136, 198
transport service provider:198
transport service user: 3, 13, 15, 18, 25-26, 58,

131, 198
transport user actions: 29
TRESADDR: 183
TRESQLEN: 183
TSAP: 4, 195, 198
TSDU: 7, 17, 75-76, 85, 97-99, 104, 111, 121,

123, 195, 198
TSTATECHNG: 183
TSYSERR: 5, 18, 61, 183
T_ABSREQ: 189
t_accept: 22, 49, 119, 123, 129, 184
t_accept(): 10
T_ACTIVEPROTECT: 190
T_ADDR: 188
T_ALIGN: 189

T_ALL: 188
t_alloc: 22, 52, 63, 184, 188
T_ALLOPT: 189
t_bind: 3, 22, 54, 109, 119, 129, 184
T_BIND: 188
T_CALL: 188
T_CHECK: 184
T_CLASS0: 190
T_CLASS1: 190
T_CLASS2: 190
T_CLASS3: 190
T_CLASS4: 190
t_close: 22, 57, 131, 184
T_CLTS: 186
T_CONNECT: 7
t_connect: 7, 22, 58, 87, 119, 129
T_CONNECT: 138, 184
t_connect: 184
t_connect(): 11, 39
T_COTS: 186
T_COTS_ORD: 186
T_CRITIC_ECP: 194
T_CURRENT: 184
T_DATA: 7, 20, 31-32, 138, 184
T_DATAXFER: 26, 31, 189
T_DEFAULT: 184
T_DIS: 7, 32, 188
T_DISCONNECT: 7, 18, 32, 138, 184
t_errno: 5, 106, 184
t_error: 5, 22, 61, 106, 184
T_EXDATA: 7, 129, 138, 184
T_EXPEDITED: 17, 85, 184
T_FAILURE: 184
T_FLASH: 194
t_free: 22, 63, 185
t_getinfo: 22, 65, 119, 185
t_getprotaddr: 22, 68, 185
t_getstate: 22, 70, 185
T_GODATA: 7-8, 20, 138, 184
T_GOEXDATA: 7-8, 138, 184
T_HIREL: 194
T_HITHRPT: 194
T_IDLE: 26, 30-31, 58, 189
T_IMMEDIATE: 194
T_INCON: 26, 31, 189
T_INETCONTROL: 194
T_INFINITE: 189

X/Open CAE Specification (1992)
Page : 204 X/Open Transport Interface (XTI)

-- --

Index

T_INFO: 188
T_INREL: 26, 31, 189
T_INVALID : 189
t_kpalive: 193
T_LDELAY: 194
T_LISTEN: 7
t_listen: 7, 22
T_LISTEN: 32
t_listen: 32, 71, 120, 123, 129
T_LISTEN: 138, 184
t_listen: 185
t_listen(): 11, 40
t_look: 6, 22, 73, 129, 185
T_LTPDUDFLT: 191
T_MORE: 17, 85, 97, 184
T_MOREflag: 123
T_NEGOTIATE: 184
T_NETCONTROL: 194
T_NO: 189
T_NOPROTECT: 190
T_NOTOS: 194
T_NOTSUPPORT: 184
T_NULL: 189
t_open: 3, 22, 75, 120, 129, 185
T_OPT: 188
t_optmgmt: 10-11, 22, 78, 185
T_OPTMGMT: 188
t_optmgmt(): 40
T_ORDREL: 7-8, 32, 138, 184
T_OUTCON: 26, 31, 189
T_OUTREL: 26, 31, 189
T_OVERRIDEFLASH: 194
T_PARTSUCCESS: 184
T_PASSIVEPROTECT: 190
T_PRIDFLT: 190
T_PRIHIGH: 190
T_PRILOW: 190
T_PRIMID: 190
T_PRIORITY: 194
T_PRITOP: 190
t_rcv: 7, 22, 32, 85, 121, 130, 185
t_rcvconnect: 22, 32, 87, 121, 130
t_rcvconnect(): 11, 39
t_rcvdis: 7, 22, 89, 121, 130, 185
t_rcvrel: 7, 32, 91, 123, 185
t_rcvudata: 22, 32, 93, 121, 185
t_rcvudata(): 11, 40

t_rcvuderr: 7, 22, 95, 121, 185
t_rcvuderr(): 11, 40
T_READONLY: 184
T_ROUTINE: 194
T_SENDZERO: 186
t_snd: 7, 22, 97, 121, 130, 185
t_snddis: 22, 100, 121, 130, 185
t_sndrel: 102, 123, 185
t_sndudata: 22, 104, 121, 130, 185
t_sndudata(): 11
t_strerror: 22, 106, 185
T_SUCCESS: 184
t_sync: 4, 22, 107, 185
T_UDATA: 188
T_UDERR: 7-8, 20, 32, 138, 184
T_UDERROR: 188
t_unbind: 22
T_UNBIND: 26
t_unbind: 109, 185
T_UNBND: 30-31, 189
T_UNIT: 26
T_UNITDATA: 188
T_UNSPEC: 44, 189
T_UNUSED: 189
T_YES: 189
UDP: 123, 195
UDP-level options: 126
UDP-level Options: 193
UDP_CHECKSUM: 126, 193
unbind: 22, 27, 30, 32
unitdata: 93, 104
Unitdata error structure: 188
UNIX:

process: 3
version-independent: 1
versions: 181

Use of Options: 10
user application: 13, 20, 198
user data: 89
writefds: 155
XEM: 195
XTI: 0, 195

applications: 47
features: 22-23
library: 47

XTI error return: 184
XTI-level options: 82, 189

X/Open CAE Specification (1992)
X/Open Transport Interface (XTI) Page : 205

-- --

Index

xti.h: 47, 71, 183
XTI_DEBUG: 190
XTI_GENERIC: 189
XTI_LINGER: 190
XTI_RCVBUF: 190
XTI_RCVLOWAT: 190
XTI_SNDBUF: 190
XTI_SNTLOWAT: 190
Zero lengthTSDUs andTSDU fragments: 9,

66, 77, 97-98, 111, 121

X/Open CAE Specification (1992)
Page : 206 X/Open Transport Interface (XTI)

-- --

	Contents
	Preface
	01 General Intro
	02 Explanatory Notes
	03 XTI Overview
	3.1 Connection-Oriented Mode
	3.1.2 Connection Establishment
	3.1.3 Data Transfer
	3.1.4 Connection Release

	3.2 Connectionless Mode
	3.2.2 Data Transfer

	3.3 XTI Features

	04 States & Events in XTI
	4.1 Transport Interface States
	4.2 Outgoing Events
	4.3 Incoming Events
	4.4 Transport User Actions
	4.5 State Tables
	4.6 Events and TLOOK Error Indication

	05 Use of Options
	5.2 Format of Options
	5.3 Elements of Negotiation
	5.4 Option Management of a Transport Endpoint
	5.5 Supplements
	5.6 Portability Aspects

	06 XTI Lib Functions & Parameters
	t_accept
	t_alloc
	t_bind
	t_close
	t_connect
	t_error
	t_free
	t_getinfo
	t_getprotaddr
	t_getstate
	t_listen
	t_look
	t_open
	t_optmgmt
	t_rcv
	t_rcvconnect
	t_rcvdis
	t_rcvrel
	t_rcvudata
	t_rcvuderr
	t_snd
	t_snddis
	t_sndrel
	t_sndudata
	t_strerror
	t_sync
	t_unbind

	A ISO Transport Protocol Info
	A.2 Options
	A.3 Functions

	B Internet Protocol-specific Information
	B.2 Options
	B.3 Functions

	C Guidelines for Use of XTI
	C.2 Example in Connection-Oriented Mode
	C.3 Example in Connectionless Mode
	C.4 Writing Protocol Independent Software
	C.5 Event Management
	C.5.3 XTI Events

	D Use of XTI to Access NetBIOS
	E XTI and TLI
	F Headers and Definitions
	G Abbreviations
	H Glossary
	Index

