

C H A P T E R 9

9

A
uthentication M

anager

Authentication Manager 9

This chapter describes the AOCE Authentication Manager, which provides
authentication services for users of PowerShare catalog servers. Providers of other
AOCE-compatible catalog servers can also use the Authentication Manager and the
AppleTalk Secure Data Stream Protocol (ASDSP) to provide authentication services for
users of their catalog servers. The services provided by the Authentication Manager
ensure both ends of a connection that the entity on the other end is who or what it claims
to be. The Authentication Manager does not encrypt data or guarantee the integrity of
transmitted data. For other security services, see the chapter “Digital Signature
Manager” in this book.

The Authentication Manager application programming interface (API) provides the tools
you need to implement an authenticated connection between two entities. Also, the API
includes a function that provides a common server-based time service.

The Authentication Manager provides low-level functions that are called by the AOCE
Collaboration package, the AOCE Collaboration toolbox, the PowerTalk Key Chain, and
the PowerShare Admin program.

An application running in the background might call the Authentication Manager to get
a local identity or a specific identity. You might want to add your application to the
local-identity notification queue, so that the Authentication Manager calls your
notification routine when the local identity is locked or unlocked or when the
local-identity name is changed.

You must read this chapter if you want to create your own authentication service using
AOCE functions. For example, if you want to authenticate connections between users
who are not connected over an AppleTalk network, you can use the Authentication
Manager functions described in this chapter.

This chapter starts with a brief introduction to authentication, including an introduction
to the role of servers in authentication. The chapter then presents information to help
you use the Authentication Manager functions to

■ generate and use encryption keys

■ create and use authentication identities

■ acquire and use credentials for mutual verification of users’ identities

■ generate proxies and use them

■ resolve creation IDs for records

■ obtain the universal coordinated time

■ implement your own challenge process for authenticating two entities

The language specific to this technology is defined as the concepts are introduced in the
chapter.

For a general overview of AOCE services, see the chapter “Introduction to Apple Open
Collaboration Environment” in this book.
9-399

C H A P T E R 9

Authentication Manager

Introduction to Authentication 9

To avoid fraud or impersonation, two users or services communicating over a network
may need to identify each other conclusively. For example, a user may want to verify
that a piece of electronic mail came from the sender named in the letter. In the world of
networking, verification of the identity of an entity on a network or of one end of a
communication link is called authentication.

The authentication process involves the exchange between two parties of a sequence of
messages referred to as challenges and replies. The Authentication Manager uses the Data
Encryption Standard (DES, a symmetric private-key encryption algorithm that uses the
same key for encryption and decryption) and a secret key derived from the user’s
password to encrypt each challenge or reply message. The authentication server knows
the keys of both ends of the connection. Keys are discussed in the next section.

These are the basic assumptions fundamental to authentication:

■ Each user or service has a key, and that key is known only to the user and the
authentication server.

■ The authentication server is trusted to reveal the secret key to no one.

The originator of a message is called the initiator; the addressee is the recipient. The
initiator and recipient do not share a key. If they did, they could use that key to encrypt
every message they exchange.

Keys 9
Encryption keys are numbers used by an encryption algorithm to encrypt and decrypt
data. The keys of the initiator and recipient are referred to as client keys . Because the
authentication process requires that a trusted third party know everyone’s keys,
Authentication Manager functions allow you to store client keys in a server-based
catalog.

The Authentication Manager uses client keys for encrypting requests to the server and
for encrypting the response the server returns to an initiator. The server also uses client
keys to verify that a user typed his or her password correctly.

During the authentication process, the authentication server creates a unique
time-limited session key , encrypts it, and transmits it to the initiator, who sends it to the
recipient. The initiator and recipient use the session key to exchange challenges and
replies. The section “Steps in the Authentication Process” beginning on page 9-401
describes the use of client keys and session keys.
9-400 Introduction to Authentication

C H A P T E R 9

Authentication Manager

9

A
uthentication M

anager

Credentials 9

Credentials consist of an identifier for the initiator and a session key, encrypted in the
key of the recipient. The initiator requests credentials from the authentication server and
sends them to the recipient. With these, the recipient can determine which initiator wants
to make an authenticated connection and can obtain the session key needed to complete
the authentication process. Because the credentials are encrypted in the recipient’s client
key, only the intended recipient can use them, and the initiator cannot alter them.
Therefore, the initiator can be sure that anyone responding with the correct session key is
the intended recipient, and the recipient can be sure of the identity of the initiator.

Credentials are valid only for a particular initiator and recipient and only for a specific
time period. After that time period, they cannot be used to establish a connection.
However, once a communication stream is open and authenticated, the two ends of a
connection can elect to maintain the connection even after the credentials have expired.

Steps in the Authentication Process 9

The authentication process consists of two phases: the precontact phase and the challenge
phase. Figure 9-1 on page 9-402 shows the authentication process; in this figure, step 1
and step 2 represent the precontact phase, and the remaining steps represent the
challenge phase of authentication. In Figure 9-1, For each step in the process, the figure
shows what key was used to encrypt the data, who sends the data and to whom, and the
nature of the data sent.
Introduction to Authentication 9-401

C H A P T E R 9

Authentication Manager

Figure 9-1 The authentication process

Authentication
Server

Initiator Recipient

Name of initiator
Name of recipient

Step 1

Authentication
Server

Initiator Recipient

Initiator's key

Step 2

Authentication
Server

Initiator Recipient

Step 3

I

Recipient's key

Session key

Session key

Credentials

Credentials

R

S

I
R

R
I

 Key used to encrypt data

Authentication
Server

Initiator Recipient

Step 4

Authentication
Server

Initiator Recipient

Step 5

Authentication
Server

Initiator Recipient

Step 6

Challenge
S

Reply
S

Challenge
S

 Authentication
Server

Initiator Recipient

Step 7

Reply
S

9-402 Introduction to Authentication

C H A P T E R 9

Authentication Manager

9

A
uthentication M

anager

Here is what happens in the precontact phase of authentication:

1. The initiator encrypts both the name of the initiator and the name of the recipient in
the initiator’s client key and asks the server for credentials.

2. The server returns two quantities to the initiator: a session key and a credentials block.
The session key is encrypted in the initiator’s key. The credentials block is encrypted
in the recipient’s key so that not even the initiator can see what is in it.

Receipt of the credentials by the initiator completes the precontact phase of
authentication. Next, the initiator can either use AppleTalk Secure Data Stream Protocol
(ASDSP) to perform the challenge phase of authentication or else implement the
challenge phase as described below. See the chapter “AppleTalk Data Stream Protocol”
in Inside Macintosh: Networking for a discussion of ASDSP.

3. The initiator sends the credentials block to the recipient. This credentials block is
encrypted in the recipient’s key and contains the name of the initiator and a copy of
the session key.

Now both the initiator and the recipient have a copy of the same session key. They now
exchange challenges and replies to verify that each has the same session key.

4. The initiator selects a random number, encrypts it with the session key, and sends it to
the recipient as a challenge.

5. The recipient decrypts the challenge, adds 1 to the number, encrypts the sum with the
session key, and sends the new encrypted number to the initiator as a reply.

Because only the intended recipient can decrypt the credentials and therefore obtain the
session key, the initiator has now established that the challenge was not intercepted by
an impostor. The recipient must now issue a challenge to ensure that the initiator is truly
the entity identified in the credentials.

6. The recipient selects a new random number, encrypts it with the session key, and
sends it to the initiator as a challenge.

7. The initiator decrypts the number, adds 1, encrypts the sum with the session key, and
sends it as a reply.

After two entities desiring a connection successfully complete this authentication
process, they are ready to exchange authenticated messages. If you use ASDSP as the
transport mechanism between an initiator and a recipient, the challenge phase of the
authentication process is handled by the ASDSP function. If you are using another
transport protocol, such as TCP/IP (Transmission Control Protocol/Internet Protocol),
you can implement steps 4 through 7 of the authentication process using Authentication
Manager functions described in “Non-ASDSP Authentication Utilities” beginning on
page 9-450.

Identities 9
An identity, sometimes referred to as an authentication identity, is a number used as
shorthand for the name and key of a user or service. Many AOCE functions require an
identity to determine if the initiator is authorized to make a particular service request.
There are two types of authentication identities: local identities and specific identities.
Introduction to Authentication 9-403

C H A P T E R 9

Authentication Manager

Whereas a local identity is associated with a particular computer, a specific identity is
associated with a particular server or service. In most cases you use the local identity
when you call an AOCE function, except when providing access to a service on behalf of
someone other than the principal user of the computer. Local identities and specific
identities are discussed in the following sections.

Local Identities 9

Because a user may have multiple “accounts” for a variety of applications or services,
the PowerTalk system software provides a Setup catalog that contains (in encrypted
form) the names and passwords for the services available to the user. A local identity is
a number used as shorthand for the name and password associated with the user of a
particular computer. This local identity is a “master” identity because it provides access
to all catalogs and services in the PowerTalk Setup catalog without requiring each
service’s password individually. Any AOCE function that requires an identity as input
can use the local identity.

The Standard Catalog Package function, SDPPromptForID, described in the chapter
“Standard Catalog Package” in this book, prompts the user for his or her name and
password and uses this information to generate the local identity.

A background application can obtain the local identity generated by the
SDPPromptForID function by calling the Authentication Manager’s
AuthGetLocalIdentity function, described on page 9-424. If a local identity is not set
up, you can install your application in a notification queue, so that the application is
notified when the local identity is created or unlocked.

By supplying a valid local identity to any AOCE function that requires an identity
parameter, you tell the AOCE toolbox what user is requesting the service. The toolbox
prepares an authenticated stream to the server, and during this process the server learns
the name of the user. Then the server checks the access controls for the user represented
by the identity to ensure that the user has the privileges necessary to access the
requested function. If the access controls are sufficient, the AOCE software provides the
requested service. Otherwise, you receive a result code stating that the user’s access
rights are insufficient. Access controls are discussed in the chapter “Catalog Manager” in
this book.

The functions you can use to manage local identities are described in “Local Identity
Management” beginning on page 9-424.

Locking and Unlocking Local Identities 9

The PowerTalk system software gives users the option of protecting their accounts from
unauthorized access. To do so, the user chooses Lock Key Chain from the Special menu
of the Finder or sets the PowerTalk Setup control panel to lock the Key Chain after some
specified period of inactivity. Upon returning, the user chooses Unlock Key Chain from
the Finder’s Special menu and is prompted for a password. You can also lock and unlock
the local identity from within your application.

If the local identity is locked, it is the responsibility of your application to disable its own
services appropriately. For example, if you are designing a mail application, you may
9-404 Introduction to Authentication

C H A P T E R 9

Authentication Manager

9

A
uthentication M

anager

want it to continue receiving mail even when the local identity is locked but would
probably not want to allow users to read mail that has been received.

Local Identity Status Notification 9

If your application needs to enable or disable features based on whether the local
identity is unlocked, you may want to be notified of changes in the status of the local
identity. If so, you can add your application to a notification queue. The applications in
this queue are notified when the local identity is unlocked or locked. Through the
notification queue, you can deny locking of the local identity when your application is in
use. For instance, you might want to deny locking when your application is engaged in
some process that would be seriously disrupted if the lock function succeeded.

Specific Identities 9

To provide a service to a user other than the principal user of a computer, you can use a
specific identity rather than the local identity. The specific identity is a number used as
shorthand for the name and key of the alternate user. You can use the specific identity in
any AOCE function that requires an identity.

The Standard Catalog Package function SDPPromptForID prompts a user for a name
and password and returns a specific identity. The SDPPromptForID function is
described in the chapter “Standard Catalog Package” in this book.

Guest Access 9

When your application needs to accommodate users with no accounts on the computer
or server, you can specify a “guest identity” by using the value 0 for the identity
parameter in AOCE functions.

The PowerTalk Setup Catalog 9
The AOCE Catalog Manager defines a special personal catalog called the PowerTalk
Setup catalog, which contains information about the catalogs and other services that are
available to the principal user of the computer. The PowerTalk Setup catalog is stored on
the user’s local disk. The records in the PowerTalk Setup catalog represent such entities
as PowerShare catalogs, external catalogs, and catalog service access modules (CSAMs).
Catalogs and CSAMs represented by records in the PowerTalk Setup catalog are said to
be “listed in the PowerTalk Setup catalog.” The contents of the Setup catalog and the
process of adding a CSAM or mail service access module (MSAM) to the Setup catalog
are described in the chapter “Service Access Module Setup” in Inside Macintosh: AOCE
Service Access Modules.

You can use the functions described in “PowerTalk Setup Catalog Management”
beginning on page 9-457 to set up, change, remove, or get information about items in the
PowerTalk Setup catalog.
Introduction to Authentication 9-405

C H A P T E R 9

Authentication Manager

Proxies 9
A proxy allows an alternate entity to be authenticated as the user for a limited time. It is
a privilege provided to an intermediary : a representative of the user or service. The
intermediary uses the proxy to obtain the credentials needed to complete the
authentication process. The proxy gives the intermediary access to a particular recipient
to perform some task on behalf of an initiator.

For example, suppose a user of your application plans to be away from the computer but
wants to back up some data when the server is not busy. In this case, your application
can request a proxy for the user. You may assign the proxy to an intermediary, who can
do the backup. With this proxy, the intermediary obtains credentials from the server and
then uses them to create an authenticated connection in the usual way. Functions you
can use to create and use proxies are described in “Credentials Management” beginning
on page 9-439.

About the Authentication Manager 9

The Authentication Manager, the Digital Signature Manager, the Catalog Manager, and
the Interprogram Messaging Manager together constitute the fundamental services of
the AOCE system software. The Standard Catalog Package and the Standard Mail
Package provide high-level interfaces to the Authentication Manager.

The Authentication Manager is a collection of functions that runs on the user’s computer
and communicates with the authentication server to set up authenticated connections.

The Authentication Manager includes routines that provide the following services:

■ key management: translating passwords to keys and adding, changing, and deleting
keys in the server

■ local identity management: determining the local identity for a computer; locking,
unlocking, creating, changing, and removing local identities; and adding applications
to and removing them from a notification queue for changes in the status of the local
identity

■ specific identity management: binding, unbinding, and getting information about
specific identities

■ credentials management: obtaining and using credentials and making and using
proxies

■ resolution of creation IDs: resolving creation IDs when multiple records have the
same name and type

■ time service: obtaining the universal coordinated time

■ non-ASDSP authentication utilities: performing authentication as a step-by-step
process

■ PowerTalk Setup catalog management: setting up, changing, removing, and getting
information about catalogs in the PowerTalk Setup catalog
9-406 About the Authentication Manager

C H A P T E R 9

Authentication Manager

9

A
uthentication M

anager

Using the Authentication Manager 9

This section discusses the techniques you can use to perform tasks related to
authentication. You can use the techniques in this section to

■ perform the authentication process for initiators and recipients using ASDSP

■ perform the precontact phase and challenge process of authentication for initiators
and recipients using a different transport mechanism

■ use a proxy in either of the above authentication processes

■ monitor the status of access to the PowerTalk Setup catalog by installing your
application in a notification queue

For more detailed descriptions of the routines described in this section, see
“Authentication Manager Functions” beginning on page 9-416.

Determining Whether the Collaboration Toolbox Is Available 9
Before calling any of the Authentication Manager functions, you should verify that the
Collaboration toolbox is available by calling the Gestalt function with the selector
gestaltOCEToolboxAttr. If the Collaboration toolbox is present but not running (for
example, if the user deactivated it from the PowerTalk Setup control panel), the
Gestalt function sets the bit gestaltOCETBPresent in the response parameter. If
the Collaboration toolbox is running and available, the function sets the bit
gestaltOCETBAvailable in the response parameter. The Gestalt Manager is
described in the chapter “Gestalt Manager” of Inside Macintosh: Operating System Utilities.

If you want to be informed when the Authentication Manager starts up or shuts down,
you can install an entry in the AppleTalk Transition Queue (ATQ). Then the AppleTalk
LAP Manager calls your ATQ routine with the transition selector ATTransAuthStart
when the Authentication Manager has finished starting up and with the selector
ATTransAuthShutdown when the Authentication Manager has started to shut down.
The ATQ is described in the chapter “Link-Access Protocol (LAP) Manager” in Inside
Macintosh: Networking.

Determining the Version of the Authentication Manager 9
To determine the version of the Authentication Manager that is available, call the
Gestalt function with the selector gestaltOCEToolboxVersion. The function
returns the version number of the Collaboration toolbox in the low-order word of the
response parameter. For example, a value of 0x0101 indicates version 1.0.1. If you are
using the Collaboration toolbox on a computer that has a PowerShare server, the
function returns the version number of the server in the high-order word of the
Using the Authentication Manager 9-407

C H A P T E R 9

Authentication Manager

response parameter. If the Collaboration toolbox or server is not present and available,
the Gestalt function returns 0 for the relevant version number. You can use the
constant gestaltOCETB for AOCE Collaboration toolbox version 1.0.

Authentication Using ASDSP 9
To establish mutual authentication between an initiator and a recipient, you use
credentials that you get from the server. When you use ASDSP as the transport
mechanism to complete the secure connection, you place these credentials in the
appropriate field of the parameter block for the sdspOpen function. ASDSP is discussed
in the chapter “AppleTalk Data Stream Protocol” in Inside Macintosh: Networking.

To get credentials, follow these steps:

1. Specify an expiration time for the AuthGetCredentials function (page 9-439). It is
your responsibility to determine how long you want the connection to be available.
Credentials are valid for at most 8 hours after they are returned to an initiator by the
server. When you call the AuthGetCredentials function you may use the expiry
field to specify a shorter time for credentials to be valid. Two ways to determine your
expiration time are as follows:
n Call the AuthGetUTCTime function (page 9-449) to get the current universal

coordinated time (UTC) and an offset. Then, your expiration time is the UTC plus
the amount of time, in seconds, that you want the credentials to be valid.

n If you get credentials often, you may choose to remember the time provided by the
AuthGetUTCTime function when you first call it and then add the results of the
GetDateTime function to that time along with the amount of time, in seconds, that
you want the credentials to be valid. Remembering the UTC makes it unnecessary
to call the AuthGetUTCTime function each time you need credentials. The
GetDateTime function is described in Inside Macintosh: Operating System Utilities.

2. Determine the initiator’s identity and the recipient’s record ID. You can use either the
local identity or a specific identity for the initiator. A background application can get
the local identity by calling the AuthGetLocalIdentity function (page 9-424). A
foreground application can call the PromptForIdentity function, which is
described in the chapter “Standard Catalog Package” in this book.
To get a specific identity for an initiator, first call the AuthPasswordToKey function
(page 9-417), providing the record ID and password for the initiator, to get the
initiator’s client key. Then call the AuthBindSpecificIdentity function
(page 9-435) to get the specific identity.
You must provide your own means for obtaining the recipient’s record ID.
9-408 Using the Authentication Manager

C H A P T E R 9

Authentication Manager

9
A

uthentication M
anager
3. Call the AuthGetCredentials function to get credentials. The Authentication
Manager expects you to provide the expected length of the credentials, as well as a
pointer to a memory block for the credentials. A buffer three times the size of a packed
record ID is usually sufficient for credentials. Use the kPackedRecordIDMaxBytes
constant defined in the chapter “AOCE Utilities” in this book to determine the size of
a packed record ID.

4. To use the ASDSP transport mechanism, call the Device Manager’s PBControl
function using the SDSPParamBlock parameter block defined in Inside Macintosh:
Networking.

Authentication for Non-ASDSP Users 9
To establish mutual authentication between users without using ASDSP, first complete
steps 1 through 3 of “Authentication Using ASDSP” on page 9-408. Then continue as
indicated in the following sections.

The Initiator’s Authentication Process 9

To complete the authentication process as an initiator, follow these steps. Note that you
must devise your own protocol for exchanging the challenges and replies.

1. Call the AuthMakeChallenge function (page 9-451) to make a challenge. You
provide a buffer and a buffer size. The buffer must be at least 8 bytes in length. The
AuthMakeChallenge function returns the encrypted challenge in the buffer you
supplied, and also returns the actual length of the challenge.

2. Send the credentials and challenge to the specified recipient, using the available
transport mechanism.

3. Obtain the challenge reply from the recipient. The challenge reply includes both the
reply to your challenge and a counterchallenge from the recipient (steps 5 and 6 in
“Steps in the Authentication Process” beginning on page 9-401).

4. Call the AuthVerifyReply function (page 9-454) to verify the reply sent by the
recipient and to generate a reply to the recipient’s counterchallenge. You provide the
session key that was supplied by the server as well as the challenge and challenge
length returned by the AuthMakeChallenge function. You also provide the reply
and reply buffer length sent by the recipient. If the AuthVerifyReply function finds
that the recipient’s reply was not valid, it returns an error and does not generate a
reply to the counterchallenge.

5. If there was no error, then send the counterchallenge reply generated by the
AuthVerifyReply function to the recipient.
Using the Authentication Manager 9-409

C H A P T E R 9

Authentication Manager
The Recipient’s Authentication Process 9

To complete authentication as a recipient, follow these steps:

1. Call the AuthDecryptCredentials function (page 9-455), passing it the credentials
sent by the initiator. The function returns the session key, the issue and expiration
times, and the record ID for the initiator. It is your responsibility to ensure that the
times are acceptable for your application. Additionally, if there is an intermediary and
you provide a pointer to a record ID for it, the AuthDecryptCredentials function
provides the intermediary’s record ID to you.

2. Call the AuthMakeReply function (page 9-452) to generate a reply to the challenge
received from the initiator and to issue a challenge in return. The challenge pointer
and challengeLength fields are received from the initiator and supplied to this
function. The reply field contains the reply generated by the function and also the
counterchallenge generated by the function.

3. Send this challenge reply and the counterchallenge to the initiator.

4. Obtain the counterchallenge reply from the initiator.

5. Call the AuthVerifyReply function to verify the reply sent by the initiator. You
provide the session key that was supplied by the server with the credentials, the
challenge and challenge length that you sent to the initiator, a pointer to the reply
buffer, and the length of the reply.

Authentication Using a Proxy 9
To use a proxy to authenticate a connection, you request and receive a proxy and then
give the proxy to an intermediary, who then uses the proxy to obtain credentials. After
the intermediary obtains the credentials, it uses them to create an authenticated
connection in the standard way, as described previously.

To obtain and use a proxy, follow these steps:

1. Call the AuthMakeProxy function (page 9-441). You must specify the identity of the
initiator who wants to create a proxy, the record ID of the recipient with whom the
intermediary wishes to communicate, and the record ID of the intermediary.
Additionally, you provide times that you want the proxy to be become valid and to
expire, a pointer to the buffer into which the AuthMakeProxy function will place the
proxy, and the length of the buffer. A buffer twice the size of a packed record ID is
usually sufficient for the proxy. The kPackedRecordIDMaxBytes constant,
described in the chapter “AOCE Utilities” in this book, defines the maximum size of a
packed record ID.

2. Send the proxy and the recipient record ID to the intermediary.

3. The intermediary calls the AuthTradeProxyForCredentials function
(page 9-443), supplying the pointer to the proxy buffer and the buffer length. It also
supplies its own identity and the recipient’s record ID. The intermediary provides a
pointer to the credentials and the expected length of the credentials. A buffer three
times the size of a packed record ID is usually sufficient for credentials.
9-410 Using the Authentication Manager

C H A P T E R 9

Authentication Manager

9
A

uthentication M
anager
Using the Notification Queue 9
You can add your application’s notification callback routine to a notification queue so
that it is notified when the local identity is locked or unlocked. When you no longer need
to know the status of the local identity, you can remove your callback routine from the
notification queue. The DoNoteQueue routine in Listing 9-1 checks for a local identity
and, if there is one, saves it in a global variable. It installs the SurfWriter application’s
notification callback routine in the notification queue, which informs it if the status of the
local identity changes. Finally, the DoNoteQueue routine removes the callback routine
from the queue.

If the local identity is locked and your application runs in the foreground, you should
disable any functions or commands that require the user to be authenticated. You can
then prompt the user to unlock or set up the local identity. If the application runs in the
background, you would probably postpone some operations until the local identity is
unlocked.

To install an application in or remove an application from the notification queue, you
first set up the header block, as shown in the DoInitializeASPB function in Listing
9-1. Both the DoInstallNotificationProc function and
DoRemoveNotificationProc function call the DoInitializeASPB function and
then initialize the remaining fields for their respective functions.

The MyNotificationProc function in Listing 9-1 is a sample notification routine for
the AuthAddToLocalIdentityQueue and AuthRemoveFromLocalIdentityQueue
functions (page 9-426 and page 9-427). The MyNotificationProc callback routine is
described on page 9-465.

In Listing 9-1, the notification routine updates a flag in the application’s global data (the
identityIsLocked field in the MyClientData structure) to notify the SurfWriter
application when access to the PowerTalk Setup catalog is locked or unlocked. If the
identityIsLocked field has the value true, the identity might be locked or might not
be set up.

Listing 9-1 Using the notification queue

/* function to initialize header block */

pascal void DoInitializeASPB(AuthParamBlock *aspb)

{

*(long *)&aspb->header.serverHint = 0; /* set up serverHint */

aspb->header.identity = 0; /* identity setup */

aspb->header.dsRefNum = kRefNumUnknown; /* refNum specifier */

}

/* function to install an application’s notification proc in the queue */

pascal OSErr DoInstallNotificationProc(NotificationProc notificationProc,

AuthNotifications notifyFlags,

StringPtr appName,

long clientData)
Using the Authentication Manager 9-411

C H A P T E R 9

Authentication Manager
{

OSErr err;

AuthParamBlock aspb;

DoInitializeASPB(&aspb); /* initialize header block */

aspb.header.clientData = clientData;

aspb.localIdentityQInstallPB.fNotificationProc=notificationProc;

aspb.localIdentityQInstallPB.notifyFlags = notifyFlags;

aspb.localIdentityQInstallPB.appName = appName;

err = AuthAddToLocalIdentityQueue(&aspb, false);

return err;

}

/* function to remove an application’s notification proc from the queue */

pascal OSErr DoRemoveNotificationProc(NotificationProc notificationProc)

{

OSErr err;

AuthParamBlock aspb;

InitializeASPB(&aspb); /* Initialize header block */

aspb.localIdentityQInstallPB.fNotificationProc=nNotificationProc;

err = AuthRemoveFromLocalIdentityQueue(&aspb, false);

return err;

}

struct MyClientData {

LocalIdentity localID;

Boolean identityIsLocked;

};

pascal OSErr MyGetLocalIdentity(LocalIdentity *localID)

{

OSErr err;

AuthParamBlock aspb;

DoInitializeASPB(&aspb); /* Initialize header block */

err = AuthGetLocalIdentity(&aspb, false);

if (err == noErr)

*localID = aspb.getLocalIdentityPB.theLocalIdentity;

return err;

}

/* notification procedure for your application */

pascal Boolean MyNotificationProc(long clientData,

 AuthLocalIdentityOp callValue,

 AuthLocalIdentityLockAction actionValue,

 LocalIdentity identity)
9-412 Using the Authentication Manager

C H A P T E R 9

Authentication Manager

9
A

uthentication M
anager
{

struct MyClientData *myClientData = (struct MyClientData *)clientData;

if ((callValue == kAuthLockLocalIdentityOp) &&

(actionValue == kAuthLockWillBeDone)) {

myClientData->identityIsLocked = true;

myClientData->localID = 0;

}

else

if (callValue == kAuthUnlockLocalIdentityOp) {

myClientData->identityIsLocked = false;

myClientData->localID = identity;

}

return false; /* the sample app never denies a lock pending */

}

DoNoteQueue () /* using the notification queue for your application */

{

OSErr err;

struct MyClientData myClientData;

err = MyGetLocalIdentity(&myClientData.localID);

if (err == noErr)

myClientData.identityIsLocked = false; /* the function returned a

 local identity, therefore

 it's not locked */

else {

myClientData.identityIsLocked = true; /* it's either not set up or

 else locked */

/* Set up the local ID if app is not in background, or else wait for

 local ID to be set up and unlocked. If the latter, when the local

 ID is unlocked, you can get the local identity by looking at

 the localID field in MyClientData. */

}

err = DoInstallNotificationProc(

MyNotificationProc, kNotifyLockMask|kNotifyUnlockMask,

"\pSurfWriter", (long)&myClientData);

/* ... perform your application's functions */
Using the Authentication Manager 9-413

C H A P T E R 9

Authentication Manager
/* If identityIsLocked is true, postpone some operations until local ID

 becomes unlocked. */

RemoveNotificationProc(MyNotificationProc);

}

Authentication Manager Reference 9

This section describes the data structures and routines provided by the Authentication
Manager.

Data Structures 9
This section describes the data structures that are specific to the Authentication Manager.
See the chapter “AOCE Utilities” for descriptions of other data structures that you use to
provide information to or obtain information from Authentication Manager routines.

Parameter Block Header 9

Each Authentication Manager routine takes, as input, a pointer to a parameter block of
type AuthParamBlockPtr. This parameter block defines a union of substructures, each
of which is a parameter block for one of the Authentication Manager functions. See the
descriptions of individual routines, beginning on page 9-416, for a listing of fields in the
corresponding parameter blocks. Each of these parameter blocks has the following
header:

#define AuthDirParamHeader

Ptr qLink; /* reserved */

long reserved1; /* reserved */

long reserved2; /* reserved */

ProcPtr ioCompletion; /* your completion routine */

OSErr ioResult; /* result code */

unsigned long saveA5; /* reserved */

short reqCode; /* reserved */

long reserved[2]; /* reserved */

AddrBlock serverHint; /* PowerShare server AppleTalk

addr */

short dsRefNum; /* Set to kRefNumUnknown */

unsigned long callID; /* reserved */

AuthIdentity identity; /* initiator’s identity */

long gReserved1; /* reserved */
9-414 Authentication Manager Reference

C H A P T E R 9

Authentication Manager

9
A

uthentication M
anager
long gReserved2; /* reserved */

long gReserved3; /* reserved */

long clientData; /* you define this field */

Field descriptions

qLink Reserved.
reserved1 Reserved.
reserved2 Reserved.
ioCompletion A pointer to a completion routine that you can provide. If you call

an Authentication Manager routine asynchronously, it calls your
completion function upon returning. Set this field to nil if you do
not wish to provide a completion routine. The function ignores this
field if you call it synchronously.

ioResult The result of the routine. When you execute the routine
asynchronously, the Authentication Manager sets this field to 1 as
soon as it queues the routine for execution. When the routine
completes execution, the Authentication Manager sets this field to
the result code.

saveA5 Reserved.
reqCode Reserved.
reserved[2] Reserved.
serverHint The AppleTalk address of the PowerShare server to which you want

to direct your request. Normally, you specify the value 0 for all
fields of this structure, and the Authentication Manager directs the
request to an appropriate PowerShare server. The AddrBlock data
structure is described in Inside Macintosh: Networking.

dsRefNum The personal catalog reference number. Because the Authentication
Manager works only with server-based catalogs, you must set this
parameter to the value kRefNumUnknown for all Authentication
Manager functions.

callID Reserved.
identity The authentication identity of the entity calling a function. The

authentication identity can be either a local identity, a specific
identity, or 0 for guest access. The PowerShare server or CSAM uses
the identity to determine if the requestor has the access privileges
necessary to perform the requested operation. Functions that fail
because of insufficient access privileges return either the
kOCEReadAccessDenied or kOCEWriteAccessDenied result
code. The AuthGetLocalIdentity function described on
page 9-424 returns the local identity, and the
AuthBindSpecificIdentity function described on page 9-435
returns a specific identity. See the chapter “Catalog Manager” in this
book for more information about access controls.

gReserved1 Reserved.
gReserved2 Reserved.
gReserved3 Reserved.
Authentication Manager Reference 9-415

C H A P T E R 9

Authentication Manager
clientData Available for your use. The Authentication Manager passes the
value in this field to your completion or callback routine. If you use
the same completion routine to process more than one
asynchronous request, for example, your routine can use the
clientData field to determine for which request it is processing
results. You may also use this field to store a pointer to your
application’s private data.

The Key Structures 9

Keys are translated passwords used in cryptographic algorithms. See “Keys” on
page 9-400. The client keys and session keys used by some Authentication Manager
functions are defined by a structure of type AuthKey.

typedef unsigned long AuthKeyType;

typedef Byte RC4Key[kRC4KeySizeInBytes];

struct AuthKey {/* key type followed by its data */

AuthKeyType keyType;

union {

DESKey des;

RC4Key rc4;

}u;

};

typedef AuthKey *AuthKeyPtr;

struct DESKey {/* A DES key is 8 bytes of data */

unsigned long a;

unsigned long b;

};

Authentication Manager Functions 9
This section describes functions provided by the Authentication Manager for your use.
These functions make it possible for you to manage keys, local identities, specific
identities, and credentials; resolve creation IDs; obtain universal coordinated time;
implement non-ASDSP authentication, and manage the PowerTalk Setup catalog.

Note
As is generally true, to ensure that asynchronously called functions
operate correctly, you must allocate nonrelocatable memory for all
parameter blocks and any buffers required for the function. ◆
9-416 Authentication Manager Reference

C H A P T E R 9

Authentication Manager

9
A

uthentication M
anager
Assembly-Language Interface 9

To call an Authentication Manager function from assembly language, push the address
of the AuthParamBlock parameter block and the async flag onto the stack using the
Pascal calling convention, and place the appropriate routine selector value in register D0.
Then invoke the _oceTBDispatch trap. Each function description includes the selector
value for that function. The function returns its result code in the ioResult field of the
parameter block.

Key Management 9

The Authentication Manager provides functions to

■ translate a password into a key (AuthPasswordToKey)

■ add a key to a server-based catalog (AuthAddKey)

■ change a key in a server-based catalog (AuthChangeKey)

■ delete a key from a server-based catalog (AuthDeleteKey)

The three functions that communicate with the server are subject to the access controls
specified in the record of the entity for whom you’re making the request. Access controls
are discussed in the chapter “Catalog Manager” in this book.

Note
These functions operate only on client keys, not on session keys. Session
keys are created by servers and are valid only for a limited time period.
See “Keys” on page 9-400. ◆

AuthPasswordToKey 9

The AuthPasswordToKey function translates a password string into a client key.

pascal OSErr AuthPasswordToKey (AuthParamBlockPtr paramBlock,

Boolean async);

paramBlock
A pointer to a parameter block.

async A value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.
Authentication Manager Reference 9-417

C H A P T E R 9

Authentication Manager
Parameter block

See page 9-415 for descriptions of the ioCompletion and ioResult fields.

Field descriptions

userRecord A pointer to the record ID of the user or service for which you want
a client key.

key A pointer to an AuthKey structure you allocate. The function places
the key in this structure.

password A pointer to the password string of the user or service whose record
ID you specified in the userRecord parameter. Passwords must be
at least 5 bytes and not more than 255 bytes.

DESCRIPTION

The AuthPasswordToKey function creates a new key from a new or changed
password. The Authentication Manager returns the key to your local computer only; it
does not store the key on the server.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The AuthKey structure is described in “The Key Structures” on page 9-416.

The AuthPasswordToKey function is used in an example in “Authentication Using
ASDSP” on page 9-408.

The AuthAddKey function is discussed next.

The AuthChangeKey function is described on page 9-420.

The AuthDeleteKey function is described on page 9-422.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ userRecord RecordIDPtr Target’s record ID
↔ key AuthKeyPtr Target’s key
→ password RStringPtr Target’s password

Trap macro Selector

_oceTBDispatch $020A

noErr 0 No error
kOCEParamErr –50 Password too long
kOCEUndesirableKey –1556 Password too short or resulting key is

undesirable
9-418 Authentication Manager Reference

C H A P T E R 9

Authentication Manager

9
A

uthentication M
anager
AuthAddKey 9

The AuthAddKey function adds a key for an authentication client to the server-based
catalog.

pascal OSErr AuthAddKey (AuthParamBlockPtr paramBlock,

Boolean async);

paramBlock
A pointer to a parameter block.

async A value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See page 9-415 for descriptions of the ioCompletion, ioResult, and identity fields.

Field descriptions

userRecord A pointer to the record ID of the user or service whose key you are
adding to a catalog.

userKey A pointer to the new key you are providing.
password A pointer to the password string of the user or service whose key

you are providing. Specify nil for this field if you are not
providing a password. If you provide a password, the
Authentication Manager checks that the key was properly
translated from the password before adding the key to the catalog.

DESCRIPTION

During the authentication process, the authentication server encrypts data using the
keys of both the initiator and the recipient. For this reason, the server must store the key
of every user of the system.

You must provide an identity to this function so that the server can check whether the
caller has permission to add a key to the user’s record.

Call the AuthPasswordToKey function before calling the AuthAddKey function to
obtain a key corresponding to the user’s password.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ identity AuthIdentity Initiator’s identity
→ userRecord RecordIDPtr Target’s record ID
→ userKey AuthKeyPtr Target’s key
→ password RStringPtr Target’s password
Authentication Manager Reference 9-419

C H A P T E R 9

Authentication Manager
ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The use of keys in the authentication process is described in “Steps in the Authentication
Process” beginning on page 9-401.

Access controls are discussed in the chapter “Catalog Manager” in this book.

Use the AuthPasswordToKey function (page 9-417) to create a key.

Use the AuthChangeKey function, described next, to replace a key already stored in the
server-based catalog.

AuthChangeKey 9

The AuthChangeKey function changes a user’s key stored in a server-based catalog.

pascal OSErr AuthChangeKey (AuthParamBlockPtr paramBlock,

Boolean async);

paramBlock
A pointer to a parameter block.

async A value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Trap macro Selector

_oceTBDispatch $0207

noErr 0 No error
kOCEAWriteAccessDenied –1541 Write access denied
kOCEKeyAlreadyRegistered –1554 A key already exists
kOCEMalFormedKey –1555 Key not derived properly

from password
kOCEUnknownID –1567 Identity passed is not valid
kOCENotLocal –1610 Internal AOCE error
kOCETargetDirectoryInaccessible –1613 Catalog server not responding
kOCENoSuchDNode –1615 The dNode was not found
kOCEBadRecordID –1617 Name and type incorrect for

creation ID
kOCENoSuchRecord –1618 No such record
kOCEStreamCreationErr –1625 An error occurred in creating

the stream
9-420 Authentication Manager Reference

C H A P T E R 9

Authentication Manager

9
A

uthentication M
anager
Parameter block

See page 9-415 for descriptions of the ioCompletion, ioResult, and identity fields.

Field descriptions

userRecord A pointer to the record ID of the user or service whose changed key
you are storing in a catalog.

userKey A pointer to the new key you are providing.
password A pointer to the password string of the user or service whose key

you are providing. Specify nil for this field if you are not
providing a password. If you provide a password, the
Authentication Manager checks that the key was properly
translated from the password before adding the key to the catalog.

DESCRIPTION

Call the AuthChangeKey function when a password has been changed and you need to
store a new key in a server-based catalog. Call the AuthPasswordToKey function
before calling the AuthChangeKey function to obtain a key corresponding to the new
password.

You must provide an identity to this function so that the server can verify that the caller
has permission to change a key in the user’s record.

SPECIAL CONSIDERATIONS

If you change a key for a user or service and later attempt to use a local or specific
identity that was created using the old key, the function may fail. It is important to
update identities when changes are made to the passwords and therefore to the keys.
Before executing some functions, the Collaboration toolbox communicates with the
server to check identities and keys relative to each other.

ASSEMBLY-LANGUAGE INFORMATION

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ identity AuthIdentity Initiator’s identity
→ userRecord RecordIDPtr Target’s record ID
→ userKey AuthKeyPtr Target’s key
→ password RStringPtr Target’s password

Trap macro Selector

_oceTBDispatch $0208
Authentication Manager Reference 9-421

C H A P T E R 9

Authentication Manager
RESULT CODES

SEE ALSO

Use the AuthBindSpecificIdentity function (page 9-435) to update an identity
when you change a key.

The AuthPasswordToKey function is described on page 9-417.

The AuthAddKey function is discussed on page 9-419.

The AuthDeleteKey function is described next.

AuthDeleteKey 9

Call the AuthDeleteKey function to delete a key for a specified authentication client
from the server-based catalog.

pascal OSErr AuthDeleteKey (AuthParamBlockPtr paramBlock,

Boolean async);

paramBlock
A pointer to a parameter block.

async A value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See page 9-415 for descriptions of the ioCompletion, ioResult, and identity fields.

noErr 0 No error
kOCEAWriteAccessDenied –1541 Write access denied
kOCENoKeyFound –1550 No key was found
kOCEMalFormedKey –1555 Key not derived properly

from password
kOCEUnknownID –1567 Identity passed is not valid
kOCENotLocal –1610 Internal AOCE error
kOCETargetDirectoryInaccessible –1613 Catalog server not responding
kOCENoSuchDNode –1615 The dNode was not found
kOCEBadRecordID –1617 Name and Type incorrect for

creation ID
kOCENoSuchRecord –1618 No such record
kOCEStreamCreationErr –1625 An error occurred in creating

the stream

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ identity AuthIdentity Initiator’s identity
→ userRecord RecordIDPtr Target’s record ID
9-422 Authentication Manager Reference

C H A P T E R 9

Authentication Manager

9
A

uthentication M
anager
Field descriptions

userRecord A pointer to the record ID of the user or service whose key is to be
deleted.

DESCRIPTION

Call the AuthDeleteKey function to remove a key from the server-based catalog.

If you wish a new key to take the place of the deleted one in the server-based catalog,
you can call the AuthPasswordToKey function and then the AuthAddKey function.

SPECIAL CONSIDERATIONS

When you remove a key for a user or service from the server-based catalog, the
Authentication Manager can no longer create an authentication identity for that user or
service, build credentials, or have others build credentials to authenticate connections to
the user or service.

If you remove a key for a user and then later attempt to use a local or specific identity
that was created using the key, the function may fail. It is important to update identities
when changes are made to passwords and therefore to keys. Identities and keys are
checked relative to each other before some functions are allowed.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The AuthPasswordToKey function is described on page 9-417.

The AuthAddKey function is discussed on page 9-419

Trap macro Selector

_oceTBDispatch $0209

noErr 0 No error
kOCEAWriteAccessDenied –1541 Write access denied
kOCENoKeyFound –1550 No key was found
kOCEUnknownID –1567 Identity passed is not valid
kOCENotLocal –1610 Internal AOCE error
kOCETargetDirectoryInaccessible –1613 Catalog server not responding
kOCENoSuchDNode –1615 The dNode was not found
kOCEBadRecordID –1617 Name and type incorrect for

creation ID
kOCENoSuchRecord –1618 No such record
kOCEStreamCreationErr –1625 An error occurred in creating

the stream
Authentication Manager Reference 9-423

C H A P T E R 9

Authentication Manager
The AuthChangeKey function is described on page 9-420.

Use the AuthBindSpecificIdentity function (page 9-435) to update an identity
when you change a key.

Local Identity Management 9

A local identity provides transparent access to the PowerTalk Setup catalog: it gives the
user access to all catalogs and services in the PowerTalk Setup catalog without the user
having to log on to each one individually. Any AOCE Catalog Manager or
Authentication Manager function that requires an identity parameter can use a local
identity. See “Local Identities” on page 9-404 for a discussion of local identities.

The Authentication Manager provides functions that you can use to

■ get the local identity number (AuthGetLocalIdentity)

■ add an application to the local identity notification queue
(AuthAddToLocalIdentityQueue)

■ remove an application from the local identity notification queue
(AuthRemoveFromLocalIdentityQueue)

The Authentication Manager also provides functions that the PowerTalk Key Chain uses
to

■ set up the local identity (AuthSetupLocalIdentity)

■ change the local identity (AuthChangeLocalIdentity)

■ lock the local identify (AuthLockLocalIdentity)

■ unlock the local identity (AuthUnlockLocalIdentity)

■ remove the local identity (AuthRemoveLocalIdentity)

AuthGetLocalIdentity 9

Call the AuthGetLocalIdentity function to get the local identity.

pascal OSErr AuthGetLocalIdentity (AuthParamBlockPtr paramBlock,

Boolean async);

paramBlock
A pointer to a parameter block.

async A value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.
9-424 Authentication Manager Reference

C H A P T E R 9

Authentication Manager

9
A

uthentication M
anager
Parameter block

See page 9-415 for descriptions of the ioCompletion and ioResult fields.

Field descriptions

theLocalIdentity
The local identity.

DESCRIPTION

You can call the AuthGetLocalIdentity function to obtain the local identity. If the
local identity has not been set up, the AuthGetLocalIdentity function returns a
kOCEOCESetupRequired result code. If the local identity is locked, the
AuthGetLocalIdentity function returns a kOCELocalAuthenticationFail result
code.

If your application is not a background application, you can call the SDPPromptForID
function to prompt the user to unlock the local identity.

If your application runs only in the background, you can register with the
Authentication Manager using the AuthAddToLocalIdentityQueue function. Then
your application is notified when the local identity is created or unlocked.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The AuthGetLocalIdentity function is used in an example in the section
“Authentication Using ASDSP” on page 9-408.

The SDPPromptForID function is described in the chapter “Standard Catalog Package”
in this book.

The AuthAddToLocalIdentityQueue function is discussed next.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
← theLocalIdentity LocalIdentity The local identity

Trap macro Selector

_oceTBDispatch $0204

noErr 0 No error
kOCELocalAuthenticationFail –1561 Local identity locked
kOCESetupRequired –1633 Setup of local identity required
Authentication Manager Reference 9-425

C H A P T E R 9

Authentication Manager
AuthAddToLocalIdentityQueue 9

Call the AuthAddToLocalIdentityQueue function to add an application to the
Authentication Manager’s local identity notification queue.

pascal OSErr AuthAddToLocalIdentityQueue

(AuthParamBlockPtr paramBlock, Boolean async);

paramBlock
A pointer to a parameter block.

async A value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See page 9-415 for descriptions of the ioCompletion and ioResult fields.

Field descriptions

clientdata A value for your use. The Authentication Manager passes the value
in this field to your notification routine.

notifyProc A pointer to your notification routine. You must provide a
notification routine to be called by the notification queue.

notifyFlags A flag byte that specifies when you want your notification routine
to be called: when the local identity is about to be locked, when it is
unlocked, when the user changes the name in the PowerTalk Key
Chain, or for some combination of these events.

appName A pointer to the name of your application.

DESCRIPTION

You call the AuthAddToLocalIdentityQueue function to add your notification
routine to the Authentication Manager’s notification queue.

You set the notifyFlags field to specify when you want your notification routine
called. Possible values for this field are as follows:

enum {kNotifyLockBit, kNotifyUnlockBit, kNotifyNameChangeBit};

enum

{kNotifyLockMask = 1L << kNotifyLockBit,

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ clientData long For your use
→ notifyProc NotificationProc Notification function
→ notifyFlags AuthNotifications Notification flags
→ appName StringPtr Application name
9-426 Authentication Manager Reference

C H A P T E R 9

Authentication Manager

9
A

uthentication M
anager
kNotifyUnlockMask = 1L << kNotifyUnlockBit

kNotifyNameChangeMask= 1L << kNotifyNameChangeBit

};

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

For an example of the use of the AuthAddToLocalIdentityQueue function, see
Listing 9-1 on page 9-411.

The notification routine is described on page 9-465.

AuthRemoveFromLocalIdentityQueue 9

Call the AuthRemoveFromLocalIdentityQueue function to remove your notification
routine from the Authentication Manager’s notification queue.

pascal OSErr AuthRemoveFromLocalIdentityQueue

(AuthParamBlockPtr paramBlock, Boolean async);

paramBlock
A pointer to a parameter block.

async A value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See page 9-415 for descriptions of the ioCompletion and ioResult fields.

Field descriptions

notifyProc The notification routine you provided when you called the
AuthAddToLocalIdentityQueue function.

Trap macro Selector

_oceTBDispatch $0205

noErr 0 No error

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ notifyProc NotificationProc Notification function
Authentication Manager Reference 9-427

C H A P T E R 9

Authentication Manager
DESCRIPTION

You call the AuthRemoveFromLocalIdentityQueue function to remove your
notification routine from the Authentication Manager’s notification queue. The
Authentication Manager informs the routines in the notification queue of changes in the
state of the local identity access.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

For an example of the use of the AuthRemoveFromLocalIdentityQueue function,
see Listing 9-1 on page 9-411.

You use the AuthAddToLocalIdentityQueue function (page 9-426) to add a routine
to the notification queue.

The notification procedure is described on page 9-465.

AuthSetupLocalIdentity 9

The AuthSetupLocalIdentity function sets up the user name and password for the
local identity.

pascal OSErr AuthSetupLocalIdentity (AuthParamBlockPtr paramBlock,

Boolean async);

paramBlock
A pointer to a parameter block.

async A value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See page 9-415 for descriptions of the ioCompletion and ioResult fields.

Trap macro Selector

_oceTBDispatch $0206

noErr 0 No error

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ userName RStringPtr The user name
→ password RStringPtr The user password
9-428 Authentication Manager Reference

C H A P T E R 9

Authentication Manager

9
A

uthentication M
anager
Field descriptions

userName The name of the principal user of the local computer.
password The password to assign to the principal user of the local computer.

DESCRIPTION

You can use this function to set up the user name and password for the local identity.
Normally, however, the user sets up a local identity by specifying a name and password
in the PowerTalk Key Chain. You can call the SDPPromptForID function to prompt a
user for a password to unlock the local identity when necessary.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

You can use the AuthGetLocalIdentity function (page 9-424) to obtain a local
identity once it has been set up.

Use the SDPPromptForID function, which is described in the chapter “Standard
Catalog Package” in this book, to prompt the user for a name and password to unlock
the local identity. This function also returns the local identity.

AuthChangeLocalIdentity 9

The AuthChangeLocalIdentity function changes the password for the local identity.

pascal OSErr AuthChangeLocalIdentity

(AuthParamBlockPtr paramBlock,

 Boolean async);

paramBlock
A pointer to a parameter block.

async A value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Trap macro Selector

_oceTBDispatch $0216

noErr 0 No error
kOCELocalIdentitySetupExists –1562 Local identity setup exists, use

AuthChangeLocalIdentity
instead
Authentication Manager Reference 9-429

C H A P T E R 9

Authentication Manager
Parameter block

See page 9-415 for descriptions of the ioCompletion and ioResult fields.

Field descriptions

userName The name of the principal user of the local computer.
password The current password for the principal user of the local computer.
newPassword The new password you want to assign to the principal user of the

local computer.

DESCRIPTION

You can use this function to change the password for the local identity from within your
application. Normally, however, the user uses the PowerTalk Key Chain to change the
password for the local identity.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

You can use the AuthSetupLocalIdentity function (page 9-428) to set up a local
identity.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ userName RStringPtr The user name
→ password RStringPtr The user password
→ newPassword RStringPtr The new user password

Trap macro Selector

_oceTBDispatch $0217

noErr 0 No error
kOCELocalAuthenticationFail –1561 Local identity locked
kOCEOCESetupRequired –1633 Setup of local identity required
9-430 Authentication Manager Reference

C H A P T E R 9

Authentication Manager

9
A

uthentication M
anager
AuthLockLocalIdentity 9

The AuthLockLocalIdentity function locks the local identity.

pascal OSErr AuthLockLocalIdentity (AuthParamBlockPtr paramBlock,

Boolean async);

paramBlock
A pointer to a parameter block.

async A value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See page 9-415 for descriptions of the ioCompletion and ioResult fields.

Field descriptions

theLocalIdentity
The local identity.

appName The name of the application that denied locking, if the function fails
and returns the kOCEOperationDenied result code. Allocate a
pointer to a Str31 data type for this parameter.

DESCRIPTION

To lock the local identity, a user can choose the Lock Key Chain command from the
Special menu of the Finder or set the PowerTalk Setup control panel to lock the Key
Chain after some specified period of inactivity. You can use the
AuthLockLocalIdentity function to lock the local identity from within your
application.

When you call the AuthLockLocalIdentity function, the Authentication Manager
calls every routine in its notification queue to give it an opportunity to deny the lock
operation. If any application denies the operation, the AuthLockLocalIdentity
function returns the kOCEOperationDenied result code and the appName field points
to the name of the application that denied the locking operation.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ theLocalIdentity LocalIdentity The local identity
← appName StringPtr The name of the application

that denied locking (if any)
Authentication Manager Reference 9-431

C H A P T E R 9

Authentication Manager
ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The notification queue is described in “Local Identity Status Notification” on page 9-405.

You use the AuthAddToLocalIdentityQueue function (page 9-426) to add a routine
to the notification queue.

You can use the AuthUnlockLocalIdentity function (described next) to unlock a
local identity.

AuthUnlockLocalIdentity 9

Call the AuthUnlockLocalIdentity function to unlock the local identity.

pascal OSErr AuthUnlockLocalIdentity

(AuthParamBlockPtr paramBlock,

 Boolean async);

paramBlock
A pointer to a parameter block.

async A value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See page 9-415 for descriptions of the ioCompletion and ioResult fields.

Trap macro Selector

_oceTBDispatch $0215

noErr 0 No error
kOCEOperationDenied –1568 Local identity operation denied

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ theLocalIdentity LocalIdentity The local identity
→ userName RStringPtr The name of the user
→ password RStringPtr The user password
9-432 Authentication Manager Reference

C H A P T E R 9

Authentication Manager

9
A

uthentication M
anager
Field descriptions

theLocalIdentity
The local identity.

userName The name of the principal user of the local computer.
password The password for the principal user of the local computer.

DESCRIPTION

To unlock a local identity, the user can choose the Unlock Key Chain command from the
Finder’s Special menu. You can also call the SDPPromptForID function to prompt the
user for a password and unlock the local identity. Alternatively, you can use the
AuthUnlockLocalIdentity function to unlock the local identity from within your
application. If the local identity does not exist, this function creates one.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The AuthLockLocalIdentity function is described on page 9-431.

The AuthSetupLocalIdentity function is described on page 9-428.

The SDPPromptForID function is described in the chapter “Standard Catalog Package”
in this book.

AuthRemoveLocalIdentity 9

Call the AuthRemoveLocalIdentity function to remove the local identity.

pascal OSErr AuthRemoveLocalIdentity

(AuthParamBlockPtr paramBlock,

 Boolean async);

paramBlock
A pointer to a parameter block.

Trap macro Selector

_oceTBDispatch $0214

noErr 0 No error
kOCEOCESetupRequired –1633 Setup of local identity required
Authentication Manager Reference 9-433

C H A P T E R 9

Authentication Manager
async A value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See page 9-415 for descriptions of the ioCompletion and ioResult fields.

Field descriptions

userName The name of the principal user of the local computer
password The password for the principal user of the local computer

DESCRIPTION

Normally, a user cannot remove a local identity from a PowerTalk system without
replacing it with a new local identity or reinstalling the PowerTalk system software. The
user normally uses the Key Chain to change a local identity. You can use the
AuthRemoveLocalIdentity function to remove the local identity, effectively
rendering the Key Chain inoperable. The user then is prompted to set up a local identity
the next time he or she attempts to use the PowerTalk system software.

IMPORTANT

Because removing the local identity disrupts the use of the PowerTalk
system software on the user’s computer, warn users before allowing
them to remove a local identity. ▲

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

To lock a local identity so that the user must enter the password before using PowerTalk,
use the AuthLockLocalIdentity function (page 9-431).

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ userName RStringPtr The name of the user.
→ password RStringPtr The user password.

Trap macro Selector

_oceTBDispatch $0218

noErr 0 No error
kOCELocalAuthenticationFail –1561 Local identity locked
kOCEOCESetupRequired –1633 Setup of local identity required
9-434 Authentication Manager Reference

C H A P T E R 9

Authentication Manager

9
A

uthentication M
anager
Specific Identity Management 9

A specific identity is a shorthand representation for the name and key of an alternate
user. See “Specific Identities” on page 9-405 for a further discussion.

The Authentication Manager provides the following specific identity management
services:

■ binding a new specific identity number to a user’s record ID and key
(AuthBindSpecificIdentity)

■ unbinding a specific identity number from a user’s record ID and key
(AuthUnbindSpecificIdentity)

■ using a specific identity to get a user’s record ID
(AuthGetSpecificIdentityInfo)

AuthBindSpecificIdentity 9

Call the AuthBindSpecificIdentity function to bind an identity number to a
specified authentication client’s record ID and key.

pascal OSErr AuthBindSpecificIdentity

(AuthParamBlockPtr paramBlock,

 Boolean async);

paramBlock
A pointer to a parameter block.

async A value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See page 9-415 for descriptions of the ioCompletion and ioResult fields.

Field descriptions

userIdentity The specific identity.
userRecord A pointer to the record ID of the authentication client.
userKey A pointer to the user or service key for the client.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
← userIdentity AuthIdentity Binding identity
→ userRecord RecordIDPtr Entity’s record ID
→ userKey AuthKeyPtr Entity’s key
Authentication Manager Reference 9-435

C H A P T E R 9

Authentication Manager
DESCRIPTION

Call the AuthBindSpecificIdentity function to bind an identity to a record ID and
key you provide. The Authentication Manager contacts the catalog containing the record
identified by the userRecord field to verify the name and key. If the name is valid and
the key is correct, the AuthBindSpecificIdentity function returns an identity.

You can use the identity returned by this function as an input to any AOCE function that
requires an identity. The AOCE software uses the identity to check whether the
authentication client has sufficient access privileges to do the operation requested.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The AuthBindSpecificIdentity function is used in an example in the section
“Authentication Using ASDSP” on page 9-408.

You can use the AuthPasswordToKey function (page 9-417) to get a key from a
password.

The AuthUnbindSpecificIdentity function is described next.

Trap macro Selector

_oceTBDispatch $0200

noErr 0 No error
kOCENoKeyFound –1550 Client has no key
kOCEWrongIdentityOrKey –1557 Incorrect key for client
kOCEUnknownID –1567 Identity passed is not valid
kOCENotLocal –1610 Internal AOCE error
kOCETargetDirectoryInaccessible –1613 Catalog server not responding
kOCENoSuchDNode –1615 The dNode was not found
kOCEBadRecordID –1617 Name and type incorrect for

creation ID
kOCENoSuchRecord –1618 Record ID doesn’t exist
kOCEStreamCreationErr –1625 An error occurred in creating

the stream
9-436 Authentication Manager Reference

C H A P T E R 9

Authentication Manager

9
A

uthentication M
anager
AuthUnbindSpecificIdentity 9

The AuthUnbindSpecificIdentity function unbinds an identity from a user’s
name and key.

pascal OSErr AuthUnbindSpecificIdentity

(AuthParamBlockPtr paramBlock, Boolean async);

paramBlock
A pointer to a parameter block.

async A value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See page 9-415 for descriptions of the ioCompletion and ioResult fields.

Field descriptions

userIdentity The identity to be deleted.

DESCRIPTION

Call the AuthUnbindSpecificIdentity function to remove permanently an identity
you no longer need; for example, when your application quits.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The AuthBindSpecificIdentity function is described on page 9-435.

The AuthGetSpecificIdentityInfo function (described next) returns the record ID
associated with a specific identity.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ userIdentity AuthIdentity Binding identity

Trap macro Selector

_oceTBDispatch $0201

noErr 0 No error
kOCENotLocalIdentity –1565 You cannot unbind a local identity
kOCEUnknownID –1567 Identity passed is not valid
Authentication Manager Reference 9-437

C H A P T E R 9

Authentication Manager
AuthGetSpecificIdentityInfo 9

Call the AuthGetSpecificIdentityInfo function to get the record ID (but not the
user or service key) associated with the specified identity.

pascal OSErr AuthGetSpecificIdentityInfo

(AuthParamBlockPtr paramBlock,

 Boolean async);

paramBlock
A pointer to a parameter block.

async A value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See page 9-415 for descriptions of the ioCompletion and ioResult fields.

Field descriptions

userIdentity The identity whose record ID is desired.
userRecord A pointer to the record ID structure for the record, in which the

record ID is returned.

DESCRIPTION

Call the AuthGetSpecificIdentityInfo function to obtain the record ID associated
with a particular identity.

The userRecord field must contain a pointer to a recordID structure of maximum
size.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ userIdentity AuthIdentity Identity
↔ userRecord RecordIDPtr Entity’s record ID

Trap macro Selector

_oceTBDispatch $0203

noErr 0 No error
kOCENotLocalIdentity –1565 You cannot unbind a local identity
kOCEUnknownID –1567 Identity passed is not valid
9-438 Authentication Manager Reference

C H A P T E R 9

Authentication Manager

9
A

uthentication M
anager
SEE ALSO

The chapter “AOCE Utilities” in this book describes how to allocate space for a record ID.

The AuthBindSpecificIdentity function is described on page 9-435.

The AuthUnbindSpecificIdentity function is described on page 9-437.

Credentials Management 9

Credentials enable initiators and recipients to verify each other’s identities. See
“Credentials” on page 9-401 for more information. The Authentication Manager
provides functions to

■ get credentials from the server(AuthGetCredentials)

■ obtain a proxy with which to get credentials (AuthMakeProxy)

■ use a proxy to get credentials from the server (AuthTradeProxyForCredentials)

AuthGetCredentials 9

Call the AuthGetCredentials function to obtain credentials from the authentication
server.

pascal OSErr AuthGetCredentials (AuthParamBlockPtr paramBlock,

 Boolean async);

paramBlock
A pointer to a parameter block.

async A value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See page 9-415 for descriptions of the ioCompletion and ioResult fields.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ userIdentity AuthIdentity Initiator identity
→ recipient RecordIDPtr Record ID of recipient
↔ sessionKey AuthKeyPtr Session key
↔ expiry UTCTime Desired/actual times
↔ credentialsLength unsigned long Buffer size and credentials size
↔ credentials Ptr Credentials buffer
Authentication Manager Reference 9-439

C H A P T E R 9

Authentication Manager
Field descriptions

userIdentity The identity of the initiator.
recipient A pointer to the record ID of the recipient.
sessionKey A pointer to a buffer that you supply to the function. The function

puts the session key into this buffer.
expiry When you call the function, you use the expiry field to specify the

time at which you want the credentials to expire. When the function
completes, this field specifies the actual expiration time: your
desired expiration time or the current time plus 8 hours, whichever
is sooner.

credentialsLength
When you call the function, you use this field to specify the size of
the buffer pointed to by the credentials field. A buffer three
times the size of a packed record ID is usually sufficient for
credentials. Use the kPackedRecordIDMaxBytes constant
defined in the chapter “AOCE Utilities” in this book to determine
the size of a packed record ID. When the function completes, this
field indicates the actual amount of data written into the buffer.

credentials A pointer to the buffer you provide to hold the returned credentials.

DESCRIPTION

Call the AuthGetCredentials function to get credentials to establish an authenticated
connection with the named recipient. Any entity can request credentials for any other
entity.

Your application should call the AuthGetUTCTime function before calling the
AuthGetCredentials function because the expiration time you specify is based on
universal coordinated time (UTC). You add the desired number of seconds to the current
time returned by the AuthGetUTCTime function.

If the AuthGetCredentials function is successful, the buffer pointed to by the
credentials field contains encrypted credentials and the sessionKey field contains
the key to use during the challenge portion of the authentication process. The credentials
returned by the server to the initiator are encrypted in the key of the recipient.

If the buffer you provide is not large enough to hold the credentials, the function returns
the kOCEMoreData result code. You can increase the buffer size and call the function
again.

ASSEMBLY-LANGUAGE INFORMATION

Trap macro Selector

_oceTBDispatch $020B
9-440 Authentication Manager Reference

C H A P T E R 9

Authentication Manager

9
A

uthentication M
anager
RESULT CODES

SEE ALSO

The authentication process is described in “Steps in the Authentication Process”
beginning on page 9-401.

The AuthGetCredentials function is used in an example in the section
“Authentication Using ASDSP” on page 9-408.

The AuthGetUTCTime function is discussed on page 9-449.

The AuthDecryptCredentials function is discussed on page 9-455.

AuthMakeProxy 9

Call the AuthMakeProxy function to create a proxy.

pascal OSErr AuthMakeProxy (AuthParamBlockPtr paramBlock,

Boolean async);

paramBlock
A pointer to a parameter block.

async A value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

noErr 0 No error
kOCECredentialsExpired –1546 Desired expiration time has

passed
kOCERecipientKeyNotFound –1552 The recipient key was not

found
kOCEInitiatorKeyProblem –1558 No key, or initiator’s key

changed
kOCEUnknownID –1567 Identity passed is not valid
kOCENotLocal –1610 Internal AOCE error
kOCETargetDirectoryInaccessible –1613 Catalog server not responding
kOCENoSuchDNode –1615 The dNode was not found
kOCEBadRecordID –1617 Name and type incorrect for

creation ID
kOCEMoreData –1623 Buffer was too small to hold

all available data
kOCEStreamCreationErr –1625 An error occurred in creating

the stream
Authentication Manager Reference 9-441

C H A P T E R 9

Authentication Manager
Parameter block

See page 9-415 for descriptions of the ioCompletion and ioResult fields.

Field descriptions

userIdentity The identity of the user or service for which you are requesting the
proxy.

recipient A pointer to the record ID of the recipient.
firstValid The time that the proxy is to become valid.
expiry The last time at which you want the proxy to be valid
authDataLength

Reserved. Set this parameter to 0.
authData Reserved. Set this parameter to nil.
proxyLength The length of the buffer to which the proxy field points. A buffer

twice the size of a packed record ID is usually sufficient for a proxy.
Use the kPackedRecordIDMaxBytes constant defined in the
chapter “AOCE Utilities” in this book to determine the size of a
packed record ID. The function returns the actual length of the
proxy in this parameter.

proxy A pointer to the proxy buffer, in which the function returns the
proxy.

intermediary A pointer to the record ID of the intermediary that will use the
proxy to obtain credentials in your behalf.

DESCRIPTION

Call the AuthMakeProxy function to create a proxy. A proxy is granted to an
intermediary for use with a particular recipient during a specified time period only. The
AuthMakeProxy function creates a proxy and returns it to you. You can then pass it to
an intermediary to use on your behalf. The proxy is valid only until the expiration time
you specify in the expiry field. To obtain credentials, the intermediary must call the
AuthTradeProxyForCredentials function.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ userIdentity AuthIdentity Principal identity
→ recipient RecordIDPtr Recipient record ID
→ firstValid UTCTime Time proxy becomes valid
→ expiry UTCTime Time proxy expires
→ authDataLength unsigned long Must be 0
→ authData Ptr Must be nil
↔ proxyLength unsigned long Buffer size and proxy size
↔ proxy Ptr Proxy buffer
→ intermediary RecordIDPtr Intermediary record ID
9-442 Authentication Manager Reference

C H A P T E R 9

Authentication Manager

9
A

uthentication M
anager
If the function returns a kOCEMoreData result code, you can call the AuthMakeProxy
function again after increasing the buffer size.

SPECIAL CONSIDERATIONS

The Authentication Manager provides no mechanism for sending a proxy from an
initiator to an intermediary. You must devise your own mechanism and protocol for this
purpose.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The AuthMakeProxy function is used in an example in the section “Authentication
Using a Proxy” on page 9-410.

See “Proxies” on page 9-406 for a discussion of proxies and “Steps in the Authentication
Process” beginning on page 9-401 for a description of the authentication process.

The AuthTradeProxyForCredentials function is described next.

AuthTradeProxyForCredentials 9

Call the AuthTradeProxyForCredentials function to trade a proxy for credentials.

pascal OSErr AuthTradeProxyForCredentials

(AuthParamBlockPtr paramBlock, Boolean async);

paramBlock
A pointer to a parameter block.

async A value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Trap macro Selector

_oceTBDispatch $0212

noErr 0 No error
kOCEMoreData –1623 Buffer was too small to hold all available data
Authentication Manager Reference 9-443

C H A P T E R 9

Authentication Manager
Parameter block

See page 9-415 for descriptions of the ioCompletion and ioResult fields.

Field descriptions

userIdentity The identity of the intermediary.
recipient A pointer to the record ID of the recipient.
sessionKey A pointer to the session key buffer that you supply. The function

returns the session key in this buffer.
expiry The desired expiration time for the credentials. The function returns

the actual expiration time.
credentialsLength

As an input, the size of the buffer you are providing to hold the
returned credentials. Use the kPackedRecordIDMaxBytes
constant defined in the chapter “AOCE Utilities” in this book to
determine the size needed. On return, this field holds the actual size
of the credentials.

credentials A pointer to the buffer in which the function places the encrypted
credentials.

proxyLength The size of the proxy.

proxy A pointer to the buffer containing the proxy used to get the
credentials.

principal A pointer to the record ID of the user or service who created the
proxy.

DESCRIPTION

Calling the AuthTradeProxyForCredentials function is very similar to calling the
AuthGetCredentials function, except that the creator of the proxy first calls the
AuthMakeProxy function to obtain a proxy and gives the proxy to an intermediary;
then the intermediary calls the AuthTradeProxyForCredentials function for
credentials. In the principal field, you specify the entity who made the proxy.

The expiration time of the credentials depends on the maximum lifetime permitted by
the Authentication Manager, the period during which the proxy is valid, and the
expiration time you request for the credentials. For example, assume that the proxy has
an expiration time of 3:00 P.M. on a given day of a given month of a given year. Assume

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ userIdentity AuthIdentity Intermediary identity
→ recipient RecordIDPtr Recipient name
↔ sessionKey AuthKeyPtr Session key
↔ expiry UTCTime Credentials expiration times
↔ credentialsLength unsigned long Buffer size and credentials size
↔ credentials Ptr Credentials buffer
→ proxyLength unsigned long Actual proxy size
→ proxy Ptr Proxy buffer
→ principal RecordIDPtr Record ID of principal
9-444 Authentication Manager Reference

C H A P T E R 9

Authentication Manager

9
A

uthentication M
anager
all other times in this example are for the same day, month, and year as the proxy
expiration time. First, if it is 3:15 P.M. when the intermediary requests credentials, the
Authentication Manager refuses the request because the proxy has expired. If, however,
the intermediary requests credentials at 5:00 A.M., the credentials expire at 1:00 P.M.
even though you requested a 3:00 P.M. expiration, because the server enforces a
maximum lifetime for credentials of 8 hours. If you request credentials at any time
between 7:01 A.M. and 2:59 P.M., the credentials expire at 3:00 P.M., because credentials
must expire at or before the time specified by the proxy expiration time.

You can use the AuthTradeProxyForCredentials function to request credentials as
many times as you wish during the lifetime of the proxy.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

 The AuthTradeProxyForCredentials function is used in an example in the section
“Authentication Using a Proxy” on page 9-410.

Trap macro Selector

_oceTBDispatch $0213

noErr 0 No error
kOCEParamErr –50 No recipient, or invalid

recipient dNode
kOCEAccessRightsInsufficient –1542 Intermediary’s record ID does

not appear in the proxy
kOCEProxyImmature –1547 Proxy not yet valid
kOCEProxyExpired –1548 Proxy has expired
kOCEDisallowedRecipient –1549 Recipient record ID does not

appear in proxy
kOCERecipientKeyNotFound –1552 No key found
kOCEAgentKeyNotFound –1553 Intermediary’s key not found
kOCEInitiatorKeyProblem –1558 Can’t decipher instructions or

the principal’s key was not
found

kOCEUnknownID –1567 Identity passed is not valid
kOCENotLocal –1610 Internal AOCE error
kOCETargetDirectoryInaccessible –1613 Catalog server not responding
kOCENoSuchDNode –1615 The dNode was not found
kOCEBadRecordID –1617 Name and type incorrect for

creation ID of recipient or
principal

kOCEMoreData –1623 Buffer was too small to hold
all available data

kOCEStreamCreationErr –1625 An error occurred in creating
the stream
Authentication Manager Reference 9-445

C H A P T E R 9

Authentication Manager
See “Proxies” on page 9-406 for a discussion of proxies and “Steps in the Authentication
Process” beginning on page 9-401 for a description of the authentication process.

The AuthGetCredentials function is discussed on page 9-439.

The AuthMakeProxy function is discussed on page 9-441.

Creation ID Resolution 9

Creation IDs are unique identifiers for records. The are described in detail in the chapters
“AOCE Utilities” and “Catalog Manager” in this book. The AuthResolveCreationID
function returns the creation ID of a record with the name and type that you supply. If
there are multiple records with the same name and type, then it returns the creation IDs
of all of the records that match the name and type.

AuthResolveCreationID 9

Call the AuthResolveCreationID function to obtain all the dNode numbers and
creation IDs for all the records that have a given name and type.

pascal OSErr AuthResolveCreationID (AuthParamBlockPtr paramBlock,

Boolean async);

paramBlock
A pointer to a parameter block.

async A value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See page 9-415 for descriptions of the ioCompletion, ioResult, and identity fields.

Field descriptions

userRecord A pointer to the record ID of the entity whose dNode number and
creation ID are to be returned. You must specify the name and type
for the entity. The RLI must include the dNode number or the

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ identity AuthIdentity Identity; must be 0
→ userRecord RecordIDPtr A record ID
→ bufferLength unsigned long Buffer size
↔ buffer Ptr Data buffer
← totalMatches unsigned long Number of matches found
← actualMatches unsigned long Number of matches returned
9-446 Authentication Manager Reference

C H A P T E R 9

Authentication Manager

9
A

uthentication M
anager
pathname of the dNode in which you expect the user’s record to be
located. The cid field of the record ID must be set to NULL before
the function is called.

bufferLength The size of the buffer for holding dNode numbers and creation IDs.
buffer A pointer to the buffer to hold dNode numbers and creation IDs.
totalMatches Total number of matching names found in the server catalog.
actualMatches Number of matches returned in the buffer. This number is

determined by how many dNode numbers and creation IDs fit in
the buffer.

DESCRIPTION

The creation ID is a unique identifier for a given record. If you don’t know this identifier
but know the record ID, you can determine the creation ID by calling the
AuthResolveCreationID function. There may be several records with the same name
and type. It is the responsibility of your user application to prompt users to choose the
record desired from those provided by this function.

In most cases, you should search the Users and Groups folder, which has the dNode
number 3, for the record. This folder normally contains the User record or an alias to the
User record of every user with an account on the PowerShare server. If the Collaboration
toolbox finds a record with the name and type you specify, it returns the dNode number
and creation ID of that record. If it finds an alias to a record with the name and type you
specify, it resolves the alias and returns the dNode number and creation ID of the
original record.

You must set the creation ID of the record ID to NULL before calling the
AuthResolveCreationID function. You do this by calling the
OCESetCreationIDToNull function.

The server finds all records in the catalog whose name and type match those in the
userRecord field. Depending on the number of matches, the following results are
returned

■ Exactly one match: the dNode number and creation ID are put in the buffer.

■ More than one match if the buffer is large enough to hold all matches: The buffer
contains the dNode numbers and creation IDs of all records with matching names and
types. A kOCEAmbiguousMatches result code is returned.

■ More than one match if the buffer is not large enough to hold all the matches: the
totalMatches field contains the number of matches that were found in the server
catalog. The actualMatches field contains how many of the dNode numbers and
creation IDs fit in the buffer, and the buffer contains as many dNode numbers and
creation IDs as fit, packed one after the other. A kOCEMoreData result code is
returned.

■ No matches: a kOCENoSuchRecord result code is returned.
Authentication Manager Reference 9-447

C H A P T E R 9

Authentication Manager
When you have more than one match and the buffer is not large enough, you can call
this function again using an appropriately sized buffer. The dNode numbers and
creation IDs are loaded into the user buffer in an array the size of the actualMatches
field.

SPECIAL CONSIDERATIONS

This function does not check access controls. You must pass a 0 in the identity field.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The OCESetCreationIDToNull function is described in the chapter “AOCE Utilities”
in this book.

Time Service 9

In a distributed system of many computers, you need a common time for
communication. The Authentication Manager provides the universal coordinated time
(UTC), also known as Greenwich Mean Time. You can use UTC to specify issue and
expiration times for credentials and for other possible uses in your application. Call the
AuthGetUTCTime function to get the current UTC.

Trap macro Selector

_oceTBDispatch $0202

noErr 0 No error
kOCEParamErr –50 Invalid parameter
kOCEUnknownID –1567 Identity passed is not valid
kOCEAmbiguousMatches –1569 More than one match
kOCENotLocal –1610 Internal AOCE error
kOCETargetDirectoryInaccessible –1613 Catalog server not responding
kOCENoSuchDNode –1615 The dNode was not found
kOCENoSuchRecord –1618 No such record found with

creation ID
kOCEMoreData –1623 Buffer was too small to hold

all available data
kOCEStreamCreationErr –1625 An error occurred in creating

the stream
9-448 Authentication Manager Reference

C H A P T E R 9

Authentication Manager

9
A

uthentication M
anager
AuthGetUTCTime 9

The AuthGetUTCTime function returns the current universal coordinated time (UTC)
that is maintained by a catalog server.

pascal OSErr AuthGetUTCTime (AuthParamBlockPtr paramBlock,

Boolean async);

paramBlock
A pointer to a parameter block.

async A value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See page 9-415 for descriptions of the ioCompletion and ioResult fields.

Field descriptions

pRLI Indicates which catalog to consult to determine the UTC. Time
servers within a catalog communicate among themselves to
determine their UTC. Servers in a different catalog might have a
different value of UTC. If you pass a valid record location
information structure (RLI), you get that catalog’s version of UTC. If
you pass nil as the value of the pRLI field, the Authentication
Manager calculates the values of the theUTCTime and
theUTCOffset fields according to the clock in the user’s
Macintosh computer and the settings in the Map control panel.
Packed record location information structures are described in the
chapter “AOCE Utilities” in this book.

theUTCTime The function returns the current universal coordinated time (UTC)
expressed as the number of seconds since 12:00 midnight, 1 January,
1904.

theUTCOffset The function returns the difference between the user’s Macintosh
computer’s clock and UTC at Greenwich, England, expressed as the
number of seconds. A negative number indicates that the user’s
computer is west of Greenwich according to the setting in the Map
control panel.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ pRLI PackedRLIPtr Packed RLI of the node
← theUTCTime UTCTime UTC seconds east of Greenwich
← theUTCOffset UTCOffset Offset from UTC
Authentication Manager Reference 9-449

C H A P T E R 9

Authentication Manager
DESCRIPTION

Call the AuthGetUTCTime function to obtain the current UTC. When you provide a
valid RLI for a catalog, the function determines the UTC from the catalog server and
local time from the settings in the Map control panel. The function returns the current
UTC seconds since 1/1/1904 along with the offset from UTC in seconds of the local time,
based on the distance of the local computer from Greenwich, England. Other
Authentication Manager functions require input parameters based on UTC.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The AuthGetUTCTime function is used in an example in the section “Authentication
Using ASDSP” on page 9-408.

Non-ASDSP Authentication Utilities 9

After obtaining credentials using the AuthGetCredentials function or the
AuthTradeProxyForCredentials function, if you are not using the ASDSP transport
mechanism, you can call functions to help you complete the challenge phase of
authentication directly. This process for authenticating users is described in
“Authentication for Non-ASDSP Users” beginning on page 9-409.

The Authentication Manager provides functions to

■ make a challenge (AuthMakeChallenge)

■ generate a reply to the challenge and a counterchallenge (AuthMakeReply)

■ verify the reply and reply to the counterchallenge (AuthVerifyReply)

■ extract information from the credentials (AuthDecryptCredentials)

Trap macro Selector

_oceTBDispatch $021A

noErr 0 No error
kOCEUnknownID –1567 Identity passed is not valid
kOCENotLocal –1610 Internal AOCE error
kOCETargetDirectoryInaccessible –1613 Catalog server not responding
kOCENoSuchDNode –1615 The dNode was not found
kOCEStreamCreationErr –1625 An error occurred in creating

the stream
9-450 Authentication Manager Reference

C H A P T E R 9

Authentication Manager

9
A

uthentication M
anager
AuthMakeChallenge 9

Call the AuthMakeChallenge function to generate a challenge, encrypted in the session
key.

pascal OSErr AuthMakeChallenge (AuthParamBlockPtr paramBlock,

Boolean async);

paramBlock
A pointer to a parameter block.

async A value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See page 9-415 for descriptions of the ioCompletion and ioResult fields.

Field descriptions

key A pointer to the session key.
challenge A pointer to a buffer you provide in which to put the encrypted

challenge.
challengeBufferLength

The size of the challenge buffer. The buffer must be at least 8 bytes
in size.

challengeLength
The length of the encrypted challenge.

DESCRIPTION

An application that does not use ASDSP as the transport mechanism calls the
AuthMakeChallenge function when it begins the process of setting up a new
authenticated connection. Prior to calling this function, the application must obtain
credentials from the authentication server using the AuthGetCredentials function or
the AuthTradeProxyForCredentials function.

The AuthMakeChallenge function generates a token (a random number as described
in the section “Steps in the Authentication Process” beginning on page 9-401), and
encrypts it with the session key to create a challenge. You must then send the challenge
to the recipient. Only initiators call this function.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ key AuthKeyPtr Session key
↔ challenge Ptr Challenge buffer
→ challengeBufferLength unsigned long Challenge buffer size
← challengeLength unsigned long Challenge length
Authentication Manager Reference 9-451

C H A P T E R 9

Authentication Manager
ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

 The AuthMakeChallenge function is used in an example in the section
“Authentication for Non-ASDSP Users” on page 9-409.

The AuthGetCredentials function is described on page 9-439.

The AuthTradeProxyForCredentials function is described on page 9-443.

The recipient uses the AuthMakeReply function, described next, to reply to the
challenge.

AuthMakeReply 9

The AuthMakeReply function uses the token from an initial challenge to generate
another token to be used as a challenge reply and also makes a counterchallenge.

pascal OSErr AuthMakeReply (AuthParamBlockPtr paramBlock,

Boolean async);

paramBlock
A pointer to a parameter block.

async A value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See page 9-415 for descriptions of the ioCompletion and ioResult fields.

Trap macro Selector

_oceTBDispatch $020F

noErr 0 No error
kOCELengthError –1637 The supplied buffer was too small

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ key AuthKeyPtr Session key
→ challenge Ptr Challenge
↔ reply Ptr Reply buffer pointer
→ replyBufferLength unsigned long Reply buffer length
→ challengeLength unsigned long Challenge length
← replyLength unsigned long Length of reply
9-452 Authentication Manager Reference

C H A P T E R 9

Authentication Manager

9
A

uthentication M
anager
Field descriptions

key The session key.
challenge The challenge that was received from the initiator.
reply A pointer to the buffer you supply into which the function puts the

reply and the counterchallenge.
replyBufferLength

The length of the challenge reply buffer.
challengeLength

The length of the challenge.
replyLength The length of the reply.

DESCRIPTION

The AuthMakeReply function decrypts a challenge created by the
AuthMakeChallenge function, increments by 1 the number contained in the challenge,
and then encrypts that new number in the session key. The result is the challenge reply. If
you are a recipient, you call the AuthMakeReply function after you use the
AuthDecryptCredentials function to decrypt the credentials—which are encrypted
in your client key—to obtain the session key.

The AuthMakeReply function places in your buffer the reply to the challenge plus a
counterchallenge. After you send the reply and counterchallenge to the initiator, the
initiator calls the AuthVerifyReply function to verify the reply, thus continuing the
challenge phase for authenticating a connection. The AuthMakeReply function is called
only by recipients.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The AuthMakeReply function is used in an example in the section “Authentication for
Non-ASDSP Users” on page 9-409.

Use the AuthDecryptCredentials function (page 9-455) to extract the session key
from the encrypted credentials.

The AuthMakeChallenge function is described on page 9-451. The AuthVerifyReply
function is discussed next.

Trap macro Selector

_oceTBDispatch $0210

noErr 0 No error
kOCELengthError –1637 The supplied buffer was too small
Authentication Manager Reference 9-453

C H A P T E R 9

Authentication Manager
AuthVerifyReply 9

The AuthVerifyReply function verifies a challenge reply and makes a reply to the
counterchallenge.

pascal OSErr AuthVerifyReply (AuthParamBlockPtr paramBlock,

Boolean async);

paramBlock
A pointer to a parameter block.

async A value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See page 9-415 for descriptions of the ioCompletion and ioResult fields.

Field descriptions

key A pointer to the session key.
challenge A pointer to the challenge you sent last.
reply A pointer to a buffer containing the reply returned by the other end

of the connection.
challengeLength

The length of the challenge.
replyLength The length of the reply.

DESCRIPTION

Call the AuthVerifyReply function to verify a challenge reply and to make a reply to
the counterchallenge during the challenge phase of setting up a secure connection. Both
the initiator and the recipient call this function to verify the challenge replies they receive.

This function returns the result code noErr if the reply, after decryption, equals the
challenge sent plus 1. A value of kOCEAuthenticationTrouble is returned by the
AuthVerifyReply function if the reply cannot be verified. In that case, authentication
has failed, and you should either terminate communication with the other party or
continue communication with the understanding that the other party is not an
authenticated entity.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ key AuthKeyPtr Session key
→ challenge Ptr Challenge
↔ reply Ptr Reply buffer
→ challengeLength unsigned long Length of challenge
↔ replyLength unsigned long Length of reply
9-454 Authentication Manager Reference

C H A P T E R 9

Authentication Manager

9
A

uthentication M
anager
After calling this function, the initiator should send the recipient the contents of the
buffer pointed to by the reply field.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The AuthVerifyReply function is used in an example in the section “Authentication
for Non-ASDSP Users” on page 9-409.

The AuthMakeReply function is described on page 9-452.

AuthDecryptCredentials 9

The AuthDecryptCredentials function decrypts credentials, extracting the session
key, a pointer to the initiator’s record ID, and the issue and expiration times for the
credentials. Additionally, if an intermediary used a proxy to generate the credentials, the
function returns a pointer to the record ID for the intermediary.

pascal OSErr AuthDecryptCredentials (AuthParamBlockPtr paramBlock,

Boolean async);

paramBlock
A pointer to a parameter block.

async A value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Trap macro Selector

_oceTBDispatch $0211

noErr 0 No error
kOCEAuthenticationTrouble –1571 Reply incorrect for the challenge sent
Authentication Manager Reference 9-455

C H A P T E R 9

Authentication Manager
Parameter block

See page 9-415 for descriptions of the ioCompletion and ioResult fields.

Field descriptions

userIdentity The identity of the recipient wanting to decrypt credentials. The
Authentication Manager gets your client key from your user record.

initiatorRecord
The record ID of the entity initiating the challenge process. If you
pass a local identity in the userIdentity field, you must pass in
the initiatorRecord field a record ID containing a record
location information structure (RLI struct) that specifies the catalog
of the recipient. The function returns the record ID of the initiator in
this field.

sessionKey The session key.
expiry The expiration time for the credentials.
issueTime The credentials issue time.
credentialsLength

The size of the credentials.
credentials A pointer to the buffer holding the credentials to be decrypted.
hasIntermediary

A Boolean value indicating whether the credentials were sent by an
intermediary. If true, these credentials were obtained via a proxy
by calling the AuthTradeProxyForCredentials function.

intermediary A pointer to the record ID of an intermediary, if any. You must
allocate the record ID structure when you call the function. If you
specify nil for this pointer, the function does not return the
intermediary’s record ID.

DESCRIPTION

When you are not using ASDSP as the transport mechanism, a recipient can use the
AuthDecryptCredentials function to decrypt credentials received during a
challenge. ASDSP decrypts credentials for its users, so you do not need to call the
AuthDecryptCredentials function if you are using ASDSP.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ userIdentity AuthIdentity Recipient’s identity
↔ initiatorRecord RecordIDPtr Initiator’s record ID
← sessionKey AuthKeyPtr Session key
← expiry UTCTime Credentials expiry time
← issueTime UTCTime Credentials issue time
→ credentialsLength unsigned long Actual credentials size
→ credentials Ptr Credentials to be decrypted
← hasIntermediary Boolean Intermediary found flag
↔ intermediary RecordIDPtr Intermediary who called
9-456 Authentication Manager Reference

C H A P T E R 9

Authentication Manager

9
A

uthentication M
anager
Because the credentials are encrypted in the client key of the intended recipient, the
function fails (with the result code kOCEUnsupportedCredentialsVersion) if you
were not the intended recipient.

The sessionKey field is also given to the user or service requesting the decrypted
credentials so that communicating users or services can share a key temporarily. You use
this information to make encrypted challenge and challenge reply messages to complete
the authentication process.

It is up to the user or service to refuse service if the credentials are premature or have
expired.

If the function completes successfully, the initiatorRecord, sessionKey, expiry,
issueTime, and intermediary fields contain plain text information extracted from
the credentials.

SPECIAL CONSIDERATIONS

The recipient and initiator must be using the same PowerShare catalog for this function
to succeed.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

 The AuthDecryptCredentials function is used in an example in the section
“Authentication for Non-ASDSP Users” on page 9-409.

The AuthGetCredentials function is discussed on page 9-439.

The AuthTradeProxyForCredentials function is described on page 9-443.

PowerTalk Setup Catalog Management 9

The PowerTalk Setup catalog is a special personal catalog that contains information
about the catalogs and electronic mail systems that are available to the principal user of
the computer (see “The PowerTalk Setup Catalog” on page 9-405). Only CSAM and
personal-MSAM template developers need to use the functions described in this section.
If you are writing an application, you do not need to use these functions. See the chapter

Trap macro Selector

_oceTBDispatch $020C

noErr 0 No error
kOCEUnsupportedCredentialsVersion –1543 Problem reading the

credentials
Authentication Manager Reference 9-457

C H A P T E R 9

Authentication Manager
“Service Access Module Setup” in Inside Macintosh: Service Access Modules for a complete
description of setup templates and the PowerTalk Setup catalog.

The Authentication Manager provides functions associated with the PowerTalk Setup
catalog to

■ get the record ID and native name for a catalog in the PowerTalk Setup catalog
(OCESetupGetDirectoryInfo)

■ install catalogs and their passwords in the PowerTalk Setup catalog
(OCESetupAddDirectoryInfo)

■ change the password used to access a catalog in the PowerTalk Setup catalog
(OCESetupChangeDirectoryInfo)

■ remove a catalog from the PowerTalk Setup catalog
(OCESetupRemoveDirectoryInfo)

OCESetupGetDirectoryInfo 9

Call the OCESetupGetDirectoryInfo function to get the record ID and native name
of a specified catalog.

pascal OSErr OCESetupGetDirectoryInfo

(AuthParamBlockPtr paramBlock, Boolean async);

paramBlock
A pointer to a parameter block.

async A value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See page 9-415 for descriptions of the ioCompletion and ioResult fields.

Field descriptions

directoryName A pointer to the catalog name.
discriminator A value that differentiates two catalogs with the same name. It is

part of the RLI structure.
recordID A pointer to a record ID structure into which the function places the

record ID of the catalog.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ directoryName DirectoryNamePtr Catalog name
→ discriminator DirDiscriminator Catalog discriminator
↔ recordID RecordIDPtr Catalog record ID
↔ nativeName RStringPtr User’s name
↔ password RStringPtr Password
9-458 Authentication Manager Reference

C H A P T E R 9

Authentication Manager

9
A

uthentication M
anager
nativeName A pointer to an RString structure into which the function places
the native name. Allocate a buffer large enough to hold an
RString64 structure to hold this name.

password For non-PowerShare catalogs, a pointer to an RString structure
into which the function places the user or service password.
Allocate a buffer large enough to hold an RString64 structure to
hold this password. This field is undefined for PowerShare catalogs.

DESCRIPTION

Call the OCESetupGetDirectoryInfo function to obtain the native name and record
ID for a particular catalog installed in the PowerTalk Setup catalog. You specify the
catalog name and discriminator. The native name is generally the user’s name or account
name in the external catalog, if it is different from the name of the user’s User record.
The CSAM or MSAM developer specifies this native name when installing the SAM in
the Setup catalog.

The Collaboration toolbox returns the password only for non-PowerShare catalogs. An
MSAM or CSAM can use this function to obtain from the Setup catalog the password
required by the external system the SAM supports.

You must provide the buffers for the record ID, native name, and password that are
returned.

SPECIAL CONSIDERATIONS

The local ID must be unlocked before you call this function.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

See “The PowerTalk Setup Catalog” on page 9-405 for a description of the PowerTalk
Setup catalog. See the chapter “Service Access Module Setup” in Inside Macintosh: Service
Access Modules for a complete description of setup templates.

Record IDs and RLI structures are described in the chapter “AOCE Utilities” in this book.

The chapter “AOCE Utilities” in this book shows sample code that allocates space for a
record ID.

Trap macro Selector

_oceTBDispatch $020E

noErr 0 No error
kOCELocalAuthenticationFail –1561 Local identity locked
kOCEDirectoryIdentitySetupDoesNotExist –1564 Specific catalog has

not been set up
Authentication Manager Reference 9-459

C H A P T E R 9

Authentication Manager
OCESetupAddDirectoryInfo 9

Call the OCESetupAddDirectoryInfo function to add a catalog and its associated
password to the PowerTalk Setup catalog.

pascal OSErr OCESetupAddDirectoryInfo

(AuthParamBlockPtr paramBlock, Boolean async);

paramBlock
A pointer to a parameter block.

async A value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See page 9-415 for descriptions of the ioCompletion and ioResult fields.

Field descriptions

directoryRecordCID
The creation ID of the Combined record or Catalog record in the
Setup catalog. You can use the kDETcmdGetDSSpec template
callback function to determine the creation ID of the Combined
record or Catalog record.

recordID A pointer to the record ID specifying the user for the catalog.
password A pointer to the password associated with the record ID in the

catalog.

DESCRIPTION

Only a setup template for a service access module (SAM) calls the
OCESetupAddDirectoryInfo function. Before calling the
OCESetupAddDirectoryInfo function, be sure the local identity is unlocked.

The RLI data structure within the user’s record ID must contain the catalog name to be
added to the Combined record or Catalog record.

The AOCE software encrypts the password before putting it in the PowerTalk Setup
catalog.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ directoryRecordCID CreationID Creation ID of catalog record
→ recordID RecordIDPtr Record ID for catalog
→ password RStringPtr Password
9-460 Authentication Manager Reference

C H A P T E R 9

Authentication Manager

9
A

uthentication M
anager
ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Creation IDs and the RLI structure are discussed in the chapter “AOCE Utilities” in this
book.

The kDETcmdGetDSSpec template callback function is described in the chapter “AOCE
Templates” in this book.

Setup templates and the procedure for adding a SAM to the Setup catalog are described
in the chapter “Service Access Module Setup” in Inside Macintosh: Service Access Modules.

OCESetupChangeDirectoryInfo 9

Call the OCESetupChangeDirectoryInfo function to change the record ID and
password for an existing catalog in the PowerTalk Setup catalog. The Authentication
Manager verifies the current catalog password before changing it to the new password.

pascal OSErr OCESetupChangeDirectoryInfo

(AuthParamBlockPtr paramBlock, Boolean async);

paramBlock
A pointer to a parameter block.

async A value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

Trap macro Selector

_oceTBDispatch $0219

noErr 0 No error
kOCELocalAuthenticationFail –1561 Local identity locked
kOCEDirectoryIdentitySetupExists –1563 Identity has already been set

up
kOCEDirectoryNotFoundErr –1630 Catalog was not found in the

list

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ directoryRecordCID CreationID Catalog creation ID
→ recordID RecordIDPtr User’s record ID
→ password RStringPtr Password
→ newPassword RStringPtr New password
Authentication Manager Reference 9-461

C H A P T E R 9

Authentication Manager
See page 9-415 for descriptions of the ioCompletion and ioResult fields.

Field descriptions

directoryRecordCID
The creation ID of the Combined record or Catalog record in the
Setup catalog. You can use the kDETcmdGetDSSpec template
callback function to determine the creation ID of the Combined
record or Catalog record.

recordID A pointer to the new record ID for the user. If you don’t want to
change the record ID, specify the old record ID.

password A pointer to the current password associated with the record ID.
newPassword A pointer to the new password to be associated with the record ID.

If you don’t want to change the password, repeat the old password
in this field.

DESCRIPTION

Only a setup template for a SAM calls this function. Before calling the
OCESetupChangeDirectoryInfo function, be sure the local identity is unlocked.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Creation IDs and record IDs are discussed in the chapter “AOCE Utilities” in this book.

The kDETcmdGetDSSpec template callback function is described in the chapter “AOCE
Templates” in this book.

OCESetupRemoveDirectoryInfo 9

Call the OCESetupRemoveDirectoryInfo function to remove a catalog from the
PowerTalk Setup catalog.

pascal OSErr OCESetupRemoveDirectoryInfo

(AuthParamBlockPtr paramBlock, Boolean async);

Trap macro Selector

_oceTBDispatch $021B

noErr 0 No error
kOCELocalAuthenticationFail –1561 Local identity locked
kOCEDirectoryNotFoundErr –1630 Catalog was not found in the list
9-462 Authentication Manager Reference

C H A P T E R 9

Authentication Manager

9
A

uthentication M
anager
paramBlock
A pointer to a parameter block.

async A value that specifies whether the function is to be executed
asynchronously. Set this parameter to true if you want the function to be
executed asynchronously.

Parameter block

See page 9-415 for descriptions of the ioCompletion and ioResult fields.

Field descriptions

directoryRecordCID
The creation ID for the Catalog record or Combined record
associated with the catalog to be removed from the PowerTalk
Setup catalog. You can use the kDETcmdGetDSSpec template
callback function to determine the creation ID of the Combined
record or Catalog record.

DESCRIPTION

Only a setup template for a SAM can call the OCESetupRemoveDirectoryInfo
function. This function removes from the Catalog or Combined record in the PowerTalk
Setup catalog the attributes that were added by the OCESetupAddDirectoryInfo
function.

Before calling the OCESetupRemoveDirectoryInfo function, be sure the local
identity is unlocked.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The kDETcmdGetDSSpec template callback function is described in the chapter “AOCE
Templates” in this book.

Use the OCESetupAddDirectoryInfo function (page 9-460) to add a catalog and its
associated password to the PowerTalk Setup catalog.

→ ioCompletion ProcPtr Your completion routine
← ioResult OSErr Result code
→ directoryRecordCID CreationID Catalog creation ID

Trap macro Selector

_oceTBDispatch $020D

noErr 0 No error
kOCENoSuchRecord –1618 No such record
Authentication Manager Reference 9-463

C H A P T E R 9

Authentication Manager
Use the OCESetupChangeDirectoryInfo function (page 9-461) to change the record
ID and password for an existing catalog in the PowerTalk Setup catalog.

Application-Defined Functions 9

This section describes the completion routine required for asynchronous use of
authentication functions and the notification routine that you provide to Authentication
Manager functions that use a notification queue.

MyCompletion 9

An Authentication Manager completion routine has the following syntax:

void MyCompletion (Ptr paramBlk);

paramBlk A pointer to the parameter block that you provided when you called the
Authentication Manager function.

DESCRIPTION

When you execute an Authentication Manager function asynchronously (by setting its
async parameter to true) you can specify a completion routine by passing the routine’s
address in the ioCompletion field of the parameter block. A function called
asynchronously returns control to your application with the result code noErr as soon
as the function is placed in the execution queue. This result code does not indicate that
the function has successfully completed but indicates only that the function was
successfully placed in the queue. To determine when the function is actually completed,
you can inspect the ioResult field of the parameter block. This field is set to 1 when the
function is called and set to the actual result code when the function is completed. If you
specify a completion routine, it is executed after the result code is placed in the
ioResult field.

SPECIAL CONSIDERATIONS

Because a completion routine may be executed at interrupt time, it should not allocate,
move, or purge memory (either directly or indirectly) and should not depend on the
validity of handles to unlocked blocks.

When the Authentication Manager calls your completion routine, it sets the A5 register
to the value it contained when you called the function that set up the completion routine.
9-464 Authentication Manager Reference

C H A P T E R 9

Authentication Manager

9
A

uthentication M
anager
ASSEMBLY-LANGUAGE INFORMATION

When your completion routine is called, register A0 contains a pointer to the parameter
block of the function called, and register D0 contains the result code. The value in
register D0 is always identical to the value in the ioResult field of the parameter block.

A completion routine must preserve all registers other than A0, A1, and D0–D2.

MyNotificationProc 9

The MyNotificationProc function is a notification routine you must provide when
you use the notification queue.

pascal Boolean MyNotificationProc (long clientData,

AuthLocalIdentityOp callValue,

AuthLocalIdentityLockAction actionValue,

LocalIdentity identity);

clientData
The value that you provided in the clientData field of the parameter
block that you passed to the AuthAddToLocalIdentityQueue
function. This field provides a way for you to pass a parameter to your
notification routine.

callValue When the Authentication Manager calls your notification routine, it sets
this parameter to kAuthLockLocalIdentityOp to indicate a lock
operation, kAuthUnlockLocalIdentityOp to indicate an unlock
operation, or to kAuthLocalIdentityNameChangeOp to indicate a
name change. In the case of a lock operation, you must also check the
value of the actionValue parameter.

actionValue
When the Authentication Manager calls your notification routine with the
kAuthLockLocalIdentityOp value in the callValue parameter, it
sets the actionValue parameter to either kAuthLockPending,
indicating a lock is pending, or to kAuthLockWillBeDone when a lock
is about to be done.

identity The local identity.

DESCRIPTION

The AOCE toolbox calls the notification procedure you provide each time the local
identity access to a user’s computer is locked or unlocked, or when the user changes in
the name in the Key Chain, so that the applications in the notification queue can be
informed of changes in the access to catalogs listed in the PowerTalk Setup catalog.

Applications registered in the notification queue are notified when a user locks his or her
local identity because he or she is leaving a computer unattended, and again when the
user returns and provides his or her password to the system.
Authentication Manager Reference 9-465

C H A P T E R 9

Authentication Manager
When it plans to lock local identity access, the Authentication Manager notifies all
applications installed in the notification queue. To do so, the Authentication Manager
passes the value kAuthLockPending in the actionValue parameter. Your notification
procedure can return true to deny permission to lock the local identity. If none of the
applications in the queue refuse the lock operation, the Collaboration toolbox passes the
value kAuthLockWillBeDone to notify the applications that the lock is imminent.

You should deny locking only if you are performing some operation that would be
seriously disrupted if the lock function succeeded.

The Authentication Manager handles the buffers associated with pointers that it passes
to a notification procedure. You must copy the data in these buffers if you want to refer
to it after your notification procedure completes execution.

SPECIAL CONSIDERATIONS

This routine should not allocate, move, or purge memory (either directly or indirectly).
Like completion routines, your notification procedure should not call the
WaitNextEvent, EventAvail, OSEventAvail, or SystemTask routines or any
routine that might call those functions.

SEE ALSO

For an example of the use of the MyNotificationProc function, see Listing 9-1 on
page 9-411.

See “Locking and Unlocking Local Identities” on page 9-404 for more information about
locking and unlocking users’ computers.

See “The PowerTalk Setup Catalog” on page 9-405 for more information about the
PowerTalk Setup catalog.

The AuthAddToLocalIdentityQueue function is discussed on page 9-426.

The AuthRemoveFromLocalIdentityQueue function is discussed on page 9-427.
9-466 Authentication Manager Reference

C H A P T E R 9

Authentication Manager

9
A

uthentication M
anager
Summary of the Authentication Manager 9

C Summary 9

Constants and Data Types 9

enum {

/* values for key sizes */

kRC4KeySizeInBytes = 8, /* size of an RC4 key */

kRefNumUnknown = 0 /* dsRefNum specifier */

};

enum {

/* values of AuthLocalIdentityOp for notification routine */

kAuthLockLocalIdentityOp = 1,

kAuthUnlockLocalIdentityOp = 2,

kAuthLocalIdentityNameChangeOp = 3

};

enum {

/* values of AuthLocalIdentityLockAction for notification routine */

kAuthLockPending = 1,

kAuthLockWillBeDone = 2

};

/* values of notifyFlags field of AuthAddToLocalIdentityQueue function*/

enum {kNotifyLockBit, kNotifyUnlockBit, kNotifyNameChangeBit};

enum {

kNotifyLockMask = 1L << kNotifyLockBit,

kNotifyUnlockMask = 1L << kNotifyUnlockBit

kNotifyNameChangeMask = 1L << kNotifyNameChangeBit

};
Summary of the Authentication Manager 9-467

C H A P T E R 9

Authentication Manager
Identity Declarations

typedef unsigned long AuthIdentity; /* identity */

typedef AuthIdentity LocalIdentity; /* local identity */

typedef unsigned long AuthLocalIdentityOp;

typedef unsigned long AuthLocalIdentityLockAction;

typedef unsigned long AuthNotifications;

Key Structures

struct DESKey { /* A DES key is 8 bytes of data */

unsigned long a;

unsigned long b;

};

typedef struct DESKey DESKey;

typedef Byte RC4Key[kRC4KeySizeInBytes];

typedef unsigned long AuthKeyType;

struct AuthKey { /* key type followed by its data */

AuthKeyType keyType;

union {

DESKey des;

RC4Key rc4;

}u;

};

typedef struct Authkey AuthKey;

typedef AuthKey *AuthKeyPtr;

Parameter Block Header

#define AuthDirParamHeader

Ptr qLink; /* reserved */

long reserved1; /* reserved */

long reserved2; /* reserved */

ProcPtr ioCompletion; /* your completion function */

OSErr ioResult; /* result code */

unsigned long saveA5; /* reserved */

short reqCode; /* reserved */

long reserved[2]; /* reserved */

AddrBlock serverHint; /* PowerShare server’s AppleTalk address */

short dsRefNum; /* reserved */

unsigned long callID; /* reserved */

AuthIdentity identity; /* initiator’s authentication identity */

long gReserved1; /* reserved */
9-468 Summary of the Authentication Manager

C H A P T E R 9

Authentication Manager

9
A

uthentication M
anager
long gReserved2; /* reserved */

long gReserved3; /* reserved */

long clientData; /* you define this field */

Parameter Blocks

struct AuthPasswordToKeyPB {

AuthDirParamHeader

RecordIDPtr userRecord; /* User record */

AuthKeyPtr key;

RStringPtr password; /* pointer to the new password string */

};

typedef struct AuthPasswordToKeyPB AuthPasswordToKeyPB;

struct AuthAddKeyPB {

AuthDirParamHeader

RecordIDPtr userRecord; /* User record */

AuthKeyPtr userKey; /* AOCE key for the user */

RStringPtr password; /* pointer to password string */

};

typedef struct AuthAddKeyPB AuthAddKeyPB;

struct AuthChangeKeyPB {

AuthDirParamHeader

RecordIDPtr userRecord; /* User record */

AuthKeyPtr userKey; /* new AOCE key for the user */

RStringPtr password; /* pointer to the new password string */

};

typedef struct AuthChangeKeyPB AuthChangeKeyPB;

struct AuthDeleteKeyPB {

AuthDirParamHeader

RecordIDPtr userRecord; /* User record */

};

typedef struct AuthDeleteKeyPB AuthDeleteKeyPB;

struct AuthGetLocalIdentityPB {

AuthDirParamHeader

LocalIdentity theLocalIdentity; /* local identity */

};

typedef struct AuthGetLocalIdentityPB AuthGetLocalIdentityPB;

struct AuthAddToLocalIdentityQueuePB {

AuthDirParamHeader

NotificationProc notifyProc; /* notification procedure */
Summary of the Authentication Manager 9-469

C H A P T E R 9

Authentication Manager
AuthNotifications notifyFlags; /* notifyFlags */

StringPtr appName; /* name of application to be

 returned in Delete/Stop */

};

typedef struct AuthAddToLocalIdentityQueuePB AuthAddToLocalIdentityQueuePB;

struct AuthRemoveFromLocalIdentityQueuePB {

AuthDirParamHeader

NotificationProc notifyProc; /* notification procedure */

};

typedef struct AuthRemoveFromLocalIdentityQueuePB

AuthRemoveFromLocalIdentityQueuePB;

struct AuthSetupLocalIdentityPB {

AuthDirParamHeader

long aReserved;

RStringPtr userName; /* user name */

RStringPtr password; /* user password */

};

typedef struct AuthSetupLocalIdentityPB AuthSetupLocalIdentityPB;

struct AuthChangeLocalIdentityPB {

AuthDirParamHeader

long aReserved;

RStringPtr userName; /* user name */

RStringPtr password; /* current password */

RStringPtr newPassword; /* new password */

};

typedef struct AuthChangeLocalIdentityPB AuthChangeLocalIdentityPB;

struct AuthLockLocalIdentityPB {

AuthDirParamHeader

LocalIdentity theLocalIdentity; /* local identity */

StringPtr name; /* name of the app that

 denied delete */

};

typedef struct AuthLockLocalIdentityPB AuthLockLocalIdentityPB;

struct AuthUnlockLocalIdentityPB {

AuthDirParamHeader

LocalIdentity theLocalIdentity; /* local identity */

RStringPtr userName; /* user name */
9-470 Summary of the Authentication Manager

C H A P T E R 9

Authentication Manager

9
A

uthentication M
anager
RStringPtr password; /* user password */

};

typedef struct AuthUnlockLocalIdentityPB AuthUnlockLocalIdentityPB;

struct AuthRemoveLocalIdentityPB {

AuthDirParamHeader

long aReserved;

RStringPtr userName; /* user name */

RStringPtr password; /* current password */

};

typedef struct AuthRemoveLocalIdentityPB AuthRemoveLocalIdentityPB;

struct AuthBindSpecificIdentityPB {

AuthDirParamHeader

AuthIdentity userIdentity; /* binding identity */

RecordIDPtr userRecord; /* User record */

AuthKeyPtr userKey; /* AOCE key for the user */

};

typedef struct AuthBindSpecificIdentityPB AuthBindSpecificIdentityPB;

struct AuthUnbindSpecificIdentityPB {

AuthDirParamHeader

AuthIdentity userIdentity; /* identity to be deleted */

};

typedef struct AuthUnbindSpecificIdentityPB AuthUnbindSpecificIdentityPB;

struct AuthGetSpecificIdentityInfoPB {

AuthDirParamHeader

AuthIdentity userIdentity; /* identity of initiator */

RecordIDPtr userRecord; /* User record */

};

typedef struct AuthGetSpecificIdentityInfoPB AuthGetSpecificIdentityInfoPB;

struct AuthGetCredentialsPB {

AuthDirParamHeader

AuthIdentity userIdentity; /* identity of initiator */

RecordIDPtr recipient; /* AOCE name of recipient */

AuthKeyPtr sessionKey; /* session key */

UTCTime expiry; /* desired/actual expiration */

unsigned long credentialsLength;/* max/actual credentials size */

Ptr credentials; /* buffer where credentials

 are returned */

};

typedef struct AuthGetCredentialsPB AuthGetCredentialsPB;
Summary of the Authentication Manager 9-471

C H A P T E R 9

Authentication Manager
struct AuthMakeProxyPB {

AuthDirParamHeader

AuthIdentity userIdentity; /* identity of principal */

RecordIDPtr recipient; /* AOCE name of recipient */

UTCTime firstValid; /* time at which proxy

 becomes valid */

UTCTime expiry; /* time at which proxy expires */

unsigned long authDataLength;/* size of authorization data */

Ptr authData; /* pointer to authorization data */

unsigned long proxyLength; /* max/actual proxy size */

Ptr proxy; /* buffer where proxy is returned */

RecordIDPtr intermediary; /* record ID of intermediary */

};

typedef struct AuthMakeProxyPB AuthMakeProxyPB;

struct AuthTradeProxyForCredentialsPB {

AuthDirParamHeader

AuthIdentity userIdentity; /* identity of intermediary */

RecordIDPtr recipient; /* AOCE name of recipient */

AuthKeyPtr sessionKey; /* session key */

UTCTime expiry; /* desired/actual expiration */

unsigned long credentialsLength;/* max/actual credentials size */

Ptr credentials; /* buffer where credentials

 are returned */

unsigned long proxyLength; /* actual proxy size */

Ptr proxy; /* buffer containing proxy */

RecordIDPtr principal; /* record ID of principal */

};

typedef struct AuthTradeProxyForCredentialsPB AuthTradeProxyForCredentialsPB;

struct AuthResolveCreationIDPB {

AuthDirParamHeader

RecordIDPtr userRecord; /* User record */

unsigned long bufferLength; /* buffer Size */

Ptr buffer; /* buffer to hold creation IDs */

unsigned long totalMatches; /* total number of matching

 names found */

unsigned long actualMatches; /* number of matches returned in

 the buffer */

};

typedef struct AuthResolveCreationIDPB AuthResolveCreationIDPB;
9-472 Summary of the Authentication Manager

C H A P T E R 9

Authentication Manager

9
A

uthentication M
anager
struct AuthGetUTCTimePB {

AuthDirParamHeader

PackedRLIPtr pRLI; /* packed RLI of the dNode */

UTCTime theUTCTime; /* current UTC(GMT) time in seconds

 since 1/1/1904 */

UTCOffset theUTCOffset; /* offset from UTC(GMT) seconds

 east of Greenwich */

};

typedef struct AuthGetUTCTimePB AuthGetUTCTimePB;

struct AuthMakeChallengePB {

AuthDirParamHeader

AuthKeyPtr key; /* unencrypted session key */

Ptr challenge; /* encrypted challenge */

unsigned long challengeBufferLength; /* length of challenge buffer */

unsigned long challengeLength; /* length of encrypted

 challenge */

};

typedef struct AuthMakeChallengePB AuthMakeChallengePB;

struct AuthMakeReplyPB {

AuthDirParamHeader

AuthKeyPtr key; /* unencrypted session key */

Ptr challenge; /* encrypted challenge */

Ptr reply; /* encrypted reply */

unsigned long replyBufferLength; /* length of challenge buffer */

unsigned long challengeLength; /* length of encrypted

 challenge */

unsigned long replyLength; /* length of encrypted reply */

};

typedef struct AuthMakeReplyPB AuthMakeReplyPB;

struct AuthVerifyReplyPB {

AuthDirParamHeader

AuthKeyPtr key; /* unencrypted session key */

Ptr challenge; /* encrypted challenge */

Ptr reply; /* encrypted reply */

unsigned long challengeLength; /* length of encrypted

 challenge */

unsigned long replyLength; /* length of encrypted reply */

};

typedef struct AuthVerifyReplyPB AuthVerifyReplyPB;
Summary of the Authentication Manager 9-473

C H A P T E R 9

Authentication Manager
struct AuthDecryptCredentialsPB {

AuthDirParamHeader

AuthIdentity userIdentity; /* user's identity */

RecordIDPtr initiatorRecord; /* AOCE name of the initiator */

AuthKeyPtr sessionKey; /* session key */

UTCTime expiry; /* credentials expiration time */

unsigned long credentialsLength;/* actual credentials size */

Ptr credentials; /* credentials to be decrypted */

UTCTime issueTime; /* credentials expiration time */

Boolean hasIntermediary; /* if true, an intermediary record

 was found in credentials */

RecordIDPtr intermediary; /* record ID of the intermediary */

};

typedef struct AuthDecryptCredentialsPB AuthDecryptCredentialsPB;

struct OCESetupGetDirectoryInfoPB {

AuthDirParamHeader

DirectoryNamePtr directoryName; /* catalog name */

DirDiscriminator discriminator; /* discriminator for the catalog */

RecordIDPtr recordID; /* record ID for the catalog */

RStringPtr nativeName; /* user name in the catalog world */

RStringPtr password; /* password in the catalog world */

};

typedef struct OCESetupGetDirectoryInfoPB OCESetupGetDirectoryInfoPB;

struct OCESetupAddDirectoryInfoPB {

AuthDirParamHeader

CreationID directoryRecordCID; /* creation ID for the catalog */

RecordIDPtr recordID; /* record ID for the identity */

RStringPtr password; /* password in the catalog world */

};

typedef struct OCESetupAddDirectoryInfoPB OCESetupAddDirectoryInfoPB;

struct OCESetupChangeDirectoryInfoPB {

AuthDirParamHeader

CreationID directoryRecordCID; /* creation ID for the catalog */

RecordIDPtr recordID; /* record ID for the identity */

RStringPtr password; /* password in the catalog world */

RStringPtr newPassword; /* new password in the catalog */

};

typedef struct OCESetupChangeDirectoryInfoPB OCESetupChangeDirectoryInfoPB;
9-474 Summary of the Authentication Manager

C H A P T E R 9

Authentication Manager

9
A

uthentication M
anager
struct OCESetupRemoveDirectoryInfoPB {

AuthDirParamHeader

CreationID directoryRecordCID; /* creation ID for the catalog */

};

typedef struct OCESetupRemoveDirectoryInfoPB OCESetupRemoveDirectoryInfoPB;

Parameter Block Union Structure

union AuthParamBlock {

struct {AuthDirParamHeader}header;

AuthBindSpecificIdentityPB bindIdentityPB;

AuthUnbindSpecificIdentityPB unbindIdentityPB;

AuthResolveCreationIDPB resolveCreationIDPB;

AuthGetSpecificIdentityInfoPB getIdentityInfoPB;

AuthAddKeyPB addKeyPB;

AuthChangeKeyPB changeKeyPB;

AuthDeleteKeyPB deleteKeyPB;

AuthPasswordToKeyPB passwordToKeyPB;

AuthGetCredentialsPB getCredentialsPB;

AuthDecryptCredentialsPB decryptCredentialsPB;

AuthMakeChallengePB makeChallengePB;

AuthMakeReplyPB makeReplyPB;

AuthVerifyReplyPB verifyReplyPB;

AuthGetUTCTimePB getUTCTimePB;

AuthMakeProxyPB makeProxyPB;

AuthTradeProxyForCredentialsPB tradeProxyForCredentialsPB;

AuthGetLocalIdentityPB getLocalIdentityPB;

AuthUnlockLocalIdentityPB unLockLocalIdentityPB;

AuthLockLocalIdentityPB lockLocalIdentityPB;

AuthAddToLocalIdentityQueuePB localIdentityQInstallPB;

AuthRemoveFromLocalIdentityQueuePB localIdentityQRemovePB;

AuthSetupLocalIdentityPB setupLocalIdentityPB;

AuthChangeLocalIdentityPB changeLocalIdentityPB;

AuthRemoveLocalIdentityPB removeLocalIdentityPB;

OCESetupAddDirectoryInfoPB setupDirectoryIdentityPB;

OCESetupChangeDirectoryInfoPB changeDirectoryIdentityPB;

OCESetupRemoveDirectoryInfoPB removeDirectoryIdentityPB;

OCESetupGetDirectoryInfoPB getDirectoryIdentityInfoPB;

};

typedef union AuthParamBlock AuthParamBlock;

typedef AuthParamBlock *AuthParamBlockPtr;
Summary of the Authentication Manager 9-475

C H A P T E R 9

Authentication Manager
Authentication Manager Functions 9

Key Management

pascal OSErr AuthPasswordToKey
(AuthParamBlockPtr paramBlock,
Boolean async);

pascal OSErr AuthAddKey (AuthParamBlockPtr paramBlock,
Boolean async);

pascal OSErr AuthChangeKey (AuthParamBlockPtr paramBlock,
Boolean async);

pascal OSErr AuthDeleteKey (AuthParamBlockPtr paramBlock,
Boolean async);

Local Identity Management

pascal OSErr AuthGetLocalIdentity
(AuthParamBlockPtr paramBlock,
Boolean async);

pascal OSErr AuthAddToLocalIdentityQueue
(AuthParamBlockPtr paramBlock,
Boolean async);

pascal OSErr AuthRemoveFromLocalIdentityQueue
(AuthParamBlockPtr paramBlock,
Boolean async);

pascal OSErr AuthSetupLocalIdentity
(AuthParamBlockPtr paramBlock,
Boolean async);

pascal OSErr AuthChangeLocalIdentity
(AuthParamBlockPtr paramBlock,
Boolean async);

pascal OSErr AuthLockLocalIdentity
(AuthParamBlockPtr paramBlock,
Boolean async);

pascal OSErr AuthUnlockLocalIdentity
(AuthParamBlockPtr paramBlock,
Boolean async);

pascal OSErr AuthRemoveLocalIdentity
(AuthParamBlockPtr paramBlock,
Boolean async);
9-476 Summary of the Authentication Manager

C H A P T E R 9

Authentication Manager

9
A

uthentication M
anager
Specific Identity Management

pascal OSErr AuthBindSpecificIdentity
(AuthParamBlockPtr paramBlock,
Boolean async);

pascal OSErr AuthUnbindSpecificIdentity
(AuthParamBlockPtr paramBlock,
Boolean async);

pascal OSErr AuthGetSpecificIdentityInfo
(AuthParamBlockPtr paramBlock,
Boolean async);

Credentials Management

pascal OSErr AuthGetCredentials
(AuthParamBlockPtr paramBlock,
Boolean async);

pascal OSErr AuthMakeProxy (AuthParamBlockPtr paramBlock, Boolean async);

pascal OSErr AuthTradeProxyForCredentials
(AuthParamBlockPtr paramBlock,
Boolean async);

Creation ID Resolution Management

pascal OSErr AuthResolveCreationID
(AuthParamBlockPtr paramBlock,
Boolean async);

Time Service

pascal OSErr AuthGetUTCTime (AuthParamBlockPtr paramBlock, Boolean async);

Non-ASDSP Authentication Utilities

pascal OSErr AuthMakeChallenge
(AuthParamBlockPtr paramBlock,
Boolean async);

pascal OSErr AuthMakeReply (AuthParamBlockPtr paramBlock, Boolean async);

pascal OSErr AuthVerifyReply
(AuthParamBlockPtr paramBlock, Boolean async);

pascal OSErr AuthDecryptCredentials
(AuthParamBlockPtr paramBlock,
Boolean async);
Summary of the Authentication Manager 9-477

C H A P T E R 9

Authentication Manager
AOCE Setup Catalog Management

pascal OSErr OCESetupGetDirectoryInfo
(AuthParamBlockPtr paramBlock,
Boolean async);

pascal OSErr OCESetupAddDirectoryInfo
(AuthParamBlockPtr paramBlock,
Boolean async);

pascal OSErr OCESetupChangeDirectoryInfo
(AuthParamBlockPtr paramBlock,
Boolean async);

pascal OSErr OCESetupRemoveDirectoryInfo
(AuthParamBlockPtr paramBlock,
Boolean async);

Application-Defined Functions 9

void MyCompletion (Ptr paramBlk);

pascal Boolean MyNotificationProc
(long clientData,
AuthLocalIdentityOp callValue,
AuthLocalIdentityLockAction actionValue,
LocalIdentity identity);

Pascal Summary 9

Constants 9

CONST {values for key sizes}

kRC4KeySizeInBytes = 8; {size of an RC4 key}

kRefNumUnknown = 0; {dsRefNum specifier}

{values of AuthLocalIdentityOp}

kAuthLockLocalIdentityOp = 1;

kAuthUnlockLocalIdentityOp = 2;

kAuthLocalIdentityNameChangeOp = 3;

{values of AuthLocalIdentityLockAction}

kAuthLockPending = 1;

kAuthLockWillBeDone = 2;
9-478 Summary of the Authentication Manager

C H A P T E R 9

Authentication Manager

9
A

uthentication M
anager
{values of AuthNotifications}

kNotifyLockBit = 0;

kNotifyUnlockBit = 1;

kNotifyNameChangeBit = 2;

kNotifyLockMask = $00000001; {1<<kNotifyLockBit}

kNotifyUnlockMask = $00000002; {1<<kNotifyUnlockBit}

kNotifyNameChangeMask = $00000004; {1<<kNotifyNameChangeBit}

Data Types 9

AuthIdentity = LongInt; {unique identifier for an identity}

LocalIdentity = AuthIdentity; {umbrella local identity}

AuthLocalIdentityOp = LongInt;

AuthLocalIdentityLockAction = LongInt;

AuthNotifications = LongInt;

Key Structures

TYPE

DESKey =

RECORD { a DES key is 8 bytes of data }

a: LongInt;

b: LongInt;

END;

RC4Key = PACKED ARRAY[1..kRC4KeySizeInBytes] OF Byte;

AuthKeyType = LongInt;

AuthKey =

RECORD { key type followed by its data }

keyType: AuthKeyType;

CASE INTEGER OF

1: (des: DESKey);

2: (rc4: RC4Key);

END;

AuthKeyPtr = ^AuthKey;

Parameter Block Header

AuthDirParamHeader = RECORD

qLink: Ptr;

reserved1: LongInt;
Summary of the Authentication Manager 9-479

C H A P T E R 9

Authentication Manager
reserved2: LongInt;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LongInt;

reqCode: Integer;

reserved: ARRAY[1..2] OF LongInt;

serverHint: AddrBlock;

dsRefNum: Integer;

callID: LongInt;

identity: AuthIdentity;

gReserved1: LongInt;

gReserved2: LongInt;

gReserved3: LongInt;

clientData: LongInt;

END;

Parameter Blocks

AuthPasswordToKeyPB = RECORD

qLink: Ptr;

reserved1: LongInt;

reserved2: LongInt;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LongInt;

reqCode: Integer;

reserved: ARRAY[1..2] OF LongInt;

serverHint: AddrBlock;

dsRefNum: Integer;

callID: LongInt;

identity: AuthIdentity;

gReserved1: LongInt;

gReserved2: LongInt;

gReserved3: LongInt;

clientData: LongInt;

userRecord: RecordIDPtr; {User record}

key: AuthKeyPtr;

password: RStringPtr; {pointer to the new password string}

END;

AuthAddKeyPB = RECORD

qLink: Ptr;

reserved1: LongInt;

reserved2: LongInt;
9-480 Summary of the Authentication Manager

C H A P T E R 9

Authentication Manager

9
A

uthentication M
anager
ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LongInt;

reqCode: Integer;

reserved: ARRAY[1..2] OF LongInt;

serverHint: AddrBlock;

dsRefNum: Integer;

callID: LongInt;

identity: AuthIdentity;

gReserved1: LongInt;

gReserved2: LongInt;

gReserved3: LongInt;

clientData: LongInt;

userRecord: RecordIDPtr; {User record}

userKey: AuthKeyPtr; {AOCE key for the user}

password: RStringPtr; {pointer to password string}

END;

AuthChangeKeyPB = RECORD

qLink: Ptr;

reserved1: LongInt;

reserved2: LongInt;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LongInt;

reqCode: Integer;

reserved: ARRAY[1..2] OF LongInt;

serverHint: AddrBlock;

dsRefNum: Integer;

callID: LongInt;

identity: AuthIdentity;

gReserved1: LongInt;

gReserved2: LongInt;

gReserved3: LongInt;

clientData: LongInt;

userRecord: RecordIDPtr; {User record}

userKey: AuthKeyPtr; {new AOCE key for the user}

password: RStringPtr; {pointer to the new password string}

END;

AuthDeleteKeyPB = RECORD

qLink: Ptr;

reserved1: LongInt;

reserved2: LongInt;
Summary of the Authentication Manager 9-481

C H A P T E R 9

Authentication Manager
ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LongInt;

reqCode: Integer;

reserved: ARRAY[1..2] OF LongInt;

serverHint: AddrBlock;

dsRefNum: Integer;

callID: LongInt;

identity: AuthIdentity;

gReserved1: LongInt;

gReserved2: LongInt;

gReserved3: LongInt;

clientData: LongInt;

userRecord: RecordIDPtr; {User record}

END;

AuthGetLocalIdentityPB = RECORD

qLink: Ptr;

reserved1: LongInt;

reserved2: LongInt;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LongInt;

reqCode: Integer;

reserved: ARRAY[1..2] OF LongInt;

serverHint: AddrBlock;

dsRefNum: Integer;

callID: LongInt;

identity: AuthIdentity;

gReserved1: LongInt;

gReserved2: LongInt;

gReserved3: LongInt;

clientData: LongInt;

theLocalIdentity: LocalIdentity; {local identity}

END;

AuthAddToLocalIdentityQueuePB = RECORD

qLink: Ptr;

reserved1: LongInt;

reserved2: LongInt;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LongInt;

reqCode: Integer;
9-482 Summary of the Authentication Manager

C H A P T E R 9

Authentication Manager

9
A

uthentication M
anager
reserved: ARRAY[1..2] OF LongInt;

serverHint: AddrBlock;

dsRefNum: Integer;

callID: LongInt;

identity: AuthIdentity;

gReserved1: LongInt;

gReserved2: LongInt;

gReserved3: LongInt;

clientData: LongInt;

notifyProc: NotificationProc; {notification procedure}

notifyFlags: AuthNotifications; {notification flags}

appName: StringPtr; {name of application to be

 returned in Delete/Stop}

END;

AuthRemoveFromLocalIdentityQueuePB = RECORD

qLink: Ptr;

reserved1: LongInt;

reserved2: LongInt;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LongInt;

reqCode: Integer;

reserved: ARRAY[1..2] OF LongInt;

serverHint: AddrBlock;

dsRefNum: Integer;

callID: LongInt;

identity: AuthIdentity;

gReserved1: LongInt;

gReserved2: LongInt;

gReserved3: LongInt;

clientData: LongInt;

notifyProc: NotificationProc; {notification procedure}

END;

AuthSetupLocalIdentityPB = RECORD

qLink: Ptr;

reserved1: LongInt;

reserved2: LongInt;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LongInt;

reqCode: Integer;

reserved: ARRAY[1..2] OF LongInt;
Summary of the Authentication Manager 9-483

C H A P T E R 9

Authentication Manager
serverHint: AddrBlock;

dsRefNum: Integer;

callID: LongInt;

identity: AuthIdentity;

gReserved1: LongInt;

gReserved2: LongInt;

gReserved3: LongInt;

clientData: LongInt;

aReserved: LongInt;

userName: RStringPtr; {user name}

password: RStringPtr; {user password}

END;

AuthChangeLocalIdentityPB = RECORD

qLink: Ptr;

reserved1: LongInt;

reserved2: LongInt;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LongInt;

reqCode: Integer;

reserved: ARRAY[1..2] OF LongInt;

serverHint: AddrBlock;

dsRefNum: Integer;

callID: LongInt;

identity: AuthIdentity;

gReserved1: LongInt;

gReserved2: LongInt;

gReserved3: LongInt;

clientData: LongInt;

aReserved: LongInt;

userName: RStringPtr; {user name}

password: RStringPtr; {current password}

newPassword: RStringPtr; {new password}

END;

AuthLockLocalIdentityPB = RECORD

qLink: Ptr;

reserved1: LongInt;

reserved2: LongInt;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LongInt;

reqCode: Integer;
9-484 Summary of the Authentication Manager

C H A P T E R 9

Authentication Manager

9
A

uthentication M
anager
reserved: ARRAY[1..2] OF LongInt;

serverHint: AddrBlock;

dsRefNum: Integer;

callID: LongInt;

identity: AuthIdentity;

gReserved1: LongInt;

gReserved2: LongInt;

gReserved3: LongInt;

clientData: LongInt;

theLocalIdentity: LocalIdentity; {local identity}

name: StringPtr; {name of the app that denied delete}

END;

AuthUnlockLocalIdentityPB = RECORD

qLink: Ptr;

reserved1: LongInt;

reserved2: LongInt;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LongInt;

reqCode: Integer;

reserved: ARRAY[1..2] OF LongInt;

serverHint: AddrBlock;

dsRefNum: Integer;

callID: LongInt;

identity: AuthIdentity;

gReserved1: LongInt;

gReserved2: LongInt;

gReserved3: LongInt;

clientData: LongInt;

theLocalIdentity: LocalIdentity; {local identity}

userName: RStringPtr; {user name}

password: RStringPtr; {user password}

END;

AuthRemoveLocalIdentityPB = RECORD

qLink: Ptr;

reserved1: LongInt;

reserved2: LongInt;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LongInt;

reqCode: Integer;

reserved: ARRAY[1..2] OF LongInt;
Summary of the Authentication Manager 9-485

C H A P T E R 9

Authentication Manager
serverHint: AddrBlock;

dsRefNum: Integer;

callID: LongInt;

identity: AuthIdentity;

gReserved1: LongInt;

gReserved2: Longint;

gReserved3: LongInt;

clientData: LongInt;

aReserved: LongInt;

userName: RStringPtr; {user name}

password: RStringPtr; {current password}

END;

AuthBindSpecificIdentityPB = RECORD

qLink: Ptr;

reserved1: LongInt;

reserved2: LongInt;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LongInt;

reqCode: Integer;

reserved: ARRAY[1..2] OF LongInt;

serverHint: AddrBlock;

dsRefNum: Integer;

callID: LongInt;

identity: AuthIdentity;

gReserved1: LongInt;

gReserved2: LongInt;

gReserved3: LongInt;

clientData: LongInt;

userIdentity: AuthIdentity; {binding identity}

userRecord: RecordIDPtr; {User record}

userKey: AuthKeyPtr; {AOCE key for the user}

END;

AuthUnbindSpecificIdentityPB = RECORD

qLink: Ptr;

reserved1: LongInt;

reserved2: LongInt;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LongInt;

reqCode: Integer;

reserved: ARRAY[1..2] OF LongInt;
9-486 Summary of the Authentication Manager

C H A P T E R 9

Authentication Manager

9
A

uthentication M
anager
serverHint: AddrBlock;

dsRefNum: Integer;

callID: LongInt;

identity: AuthIdentity;

gReserved1: LongInt;

gReserved2: LongInt;

gReserved3: LongInt;

clientData: LongInt;

userIdentity: AuthIdentity; {identity to be deleted}

END;

AuthGetSpecificIdentityInfoPB = RECORD

qLink: Ptr;

reserved1: LongInt;

reserved2: LongInt;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LongInt;

reqCode: Integer;

reserved: ARRAY[1..2] OF LongInt;

serverHint: AddrBlock;

dsRefNum: Integer;

callID: LongInt;

identity: AuthIdentity;

gReserved1: LongInt;

gReserved2: LongInt;

gReserved3: LongInt;

clientData: LongInt;

userIdentity: AuthIdentity; {identity of initiator}

userRecord: RecordIDPtr; {User record}

END;

AuthGetCredentialsPB = RECORD

qLink: Ptr;

reserved1: LongInt;

reserved2: LongInt;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LongInt;

reqCode: Integer;

reserved: ARRAY[1..2] OF LongInt;

serverHint: AddrBlock;

dsRefNum: Integer;

callID: LongInt;
Summary of the Authentication Manager 9-487

C H A P T E R 9

Authentication Manager
identity: AuthIdentity;

gReserved1: LongInt;

gReserved2: LongInt;

gReserved3: LongInt;

clientData: LongInt;

userIdentity: AuthIdentity; {identity of initiator}

recipient: RecordIDPtr; {AOCE name of recipient}

sessionKey: AuthKeyPtr; {session key}

expiry: UTCTime; {desired/actual expiration}

credentialsLength: LongInt; {max/actual credentials size}

credentials: Ptr; {credentials buffer}

END;

AuthMakeProxyPB = RECORD

qLink: Ptr;

reserved1: LongInt;

reserved2: LongInt;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LongInt;

reqCode: Integer;

reserved: ARRAY[1..2] OF LongInt;

serverHint: AddrBlock;

dsRefNum: Integer;

callID: LongInt;

identity: AuthIdentity;

gReserved1: LongInt;

gReserved2: LongInt;

gReserved3: LongInt;

clientData: LongInt;

userIdentity: AuthIdentity; {identity of principal}

recipient: RecordIDPtr; {AOCE name of recipient}

firstValid: UTCTime; {time at which proxy becomes valid}

expiry: UTCTime; {time at which proxy expires}

authDataLength: LongInt; {size of authorization data}

authData: Ptr; {pointer to authorization data}

proxyLength: LongInt; {max/actual proxy size}

proxy: Ptr; {proxy buffer}

intermediary: RecordIDPtr; {record ID of intermediary}

END;

AuthTradeProxyForCredentialsPB = RECORD

qLink: Ptr;

reserved1: LongInt;
9-488 Summary of the Authentication Manager

C H A P T E R 9

Authentication Manager

9
A

uthentication M
anager
reserved2: LongInt;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LongInt;

reqCode: Integer;

reserved: ARRAY[1..2] OF LongInt;

serverHint: AddrBlock;

dsRefNum: Integer;

callID: LongInt;

identity: AuthIdentity;

gReserved1: LongInt;

gReserved2: LongInt;

gReserved3: LongInt;

clientData: LongInt;

userIdentity: AuthIdentity; {identity of intermediary}

recipient: RecordIDPtr; {AOCE name of recipient}

sessionKey: AuthKeyPtr; {session key}

expiry: UTCTime; {desired/actual expiration}

credentialsLength: LongInt; {max/actual credentials size}

credentials: Ptr; {credentials buffer}

proxyLength: LongInt; {actual proxy size}

proxy: Ptr; {buffer containing proxy}

principal: RecordIDPtr; {record ID of principal}

END;

AuthResolveCreationIDPB = RECORD

qLink: Ptr;

reserved1: LongInt;

reserved2: LongInt;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LongInt;

reqCode: Integer;

reserved: ARRAY[1..2] OF LongInt;

serverHint: AddrBlock;

dsRefNum: Integer;

callID: LongInt;

identity: AuthIdentity;

gReserved1: LongInt;

gReserved2: LongInt;

gReserved3: LongInt;

clientData: LongInt;

userRecord: RecordIDPtr;{User record}

bufferLength: LongInt; {buffer size}
Summary of the Authentication Manager 9-489

C H A P T E R 9

Authentication Manager
buffer: Ptr; {buffer to hold creation IDs}

totalMatches: LongInt; {total number of matching names found}

actualMatches: LongInt; {number of matches returned in the buffer}

END;

AuthGetUTCTimePB = RECORD

qLink: Ptr;

reserved1: LongInt;

reserved2: LongInt;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LongInt;

reqCode: Integer;

reserved: ARRAY[1..2] OF LongInt;

serverHint: AddrBlock;

dsRefNum: Integer;

callID: LongInt;

identity: AuthIdentity;

gReserved1: LongInt;

gReserved2: LongInt;

gReserved3: LongInt;

clientData: LongInt;

pRLI: PackedRLIPtr; {packed RLI of the dNode}

theUTCTime: UTCTime; {current UTC(GMT) time in seconds

 since 1/1/1904}

theUTCOffset: UTCOffset; {offset from UTC(GMT) seconds east

 of Greenwich}

END;

AuthMakeChallengePB = RECORD

qLink: Ptr;

reserved1: LongInt;

reserved2: LongInt;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LongInt;

reqCode: Integer;

reserved: ARRAY[1..2] OF LongInt;

serverHint: AddrBlock;

dsRefNum: Integer;

callID: LongInt;

identity: AuthIdentity;

gReserved1: LongInt;

gReserved2: LongInt;
9-490 Summary of the Authentication Manager

C H A P T E R 9

Authentication Manager

9
A

uthentication M
anager
gReserved3: LongInt;

clientData: LongInt;

key: AuthKeyPtr; {unencrypted session key}

challenge: Ptr; {encrypted challenge}

challengeBufferLength: LongInt; {length of challenge buffer}

challengeLength: LongInt; {length of encrypted challenge}

END;

AuthMakeReplyPB = RECORD

qLink: Ptr;

reserved1: LongInt;

reserved2: LongInt;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LongInt;

reqCode: Integer;

reserved: ARRAY[1..2] OF LongInt;

serverHint: AddrBlock;

dsRefNum: Integer;

callID: LongInt;

identity: AuthIdentity;

gReserved1: LongInt;

gReserved2: LongInt;

gReserved3: LongInt;

clientData: LongInt;

key: AuthKeyPtr; {unencrypted session key}

challenge: Ptr; {encrypted challenge}

reply: Ptr; {encrypted reply}

replyBufferLength: LongInt; {length of challenge buffer}

challengeLength: LongInt; {length of encrypted challenge}

replyLength: LongInt; {length of encrypted reply}

END;

AuthVerifyReplyPB = RECORD

qLink: Ptr;

reserved1: LongInt;

reserved2: LongInt;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LongInt;

reqCode: Integer;

reserved: ARRAY[1..2] OF LongInt;

serverHint: AddrBlock;

dsRefNum: Integer;
Summary of the Authentication Manager 9-491

C H A P T E R 9

Authentication Manager
callID: LongInt;

identity: AuthIdentity;

gReserved1: LongInt;

gReserved2: LongInt;

gReserved3: LongInt;

clientData: LongInt;

key: AuthKeyPtr; {unencrypted session key}

challenge: Ptr; {encrypted challenge}

reply: Ptr; {encrypted reply}

challengeLength: LongInt; {length of encrypted challenge}

replyLength: LongInt; {length of encrypted reply}

END;

AuthDecryptCredentialsPB = RECORD

qLink: Ptr;

reserved1: LongInt;

reserved2: LongInt;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LongInt;

reqCode: Integer;

reserved: ARRAY[1..2] OF LongInt;

serverHint: AddrBlock;

dsRefNum: Integer;

callID: LongInt;

identity: AuthIdentity;

gReserved1: LongInt;

gReserved2: LongInt;

gReserved3: LongInt;

clientData: LongInt;

userIdentity: AuthIdentity; {user's identity}

initiatorRecord: RecordIDPtr; {AOCE name of the initiator}

sessionKey: AuthKeyPtr; {session key}

expiry: UTCTime; {credentials expiration time}

credentialsLength: LongInt; {actual credentials size}

credentials: Ptr; {credentials to be decrypted}

issueTime: UTCTime; {credentials expiration time}

hasIntermediary: Boolean; {if true, an intermediary record

 was found in credentials}

intermediary: RecordIDPtr; {record ID of the intermediary}

END;
9-492 Summary of the Authentication Manager

C H A P T E R 9

Authentication Manager

9
A

uthentication M
anager
OCESetupGetDirectoryInfoPB = RECORD

qLink: Ptr;

reserved1: LongInt;

reserved2: LongInt;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LongInt;

reqCode: Integer;

reserved: ARRAY[1..2] OF LongInt;

serverHint: AddrBlock;

dsRefNum: Integer;

callID: LongInt;

identity: AuthIdentity;

gReserved1: LongInt;

gReserved2: LongInt;

gReserved3: LongInt;

clientData: LongInt;

directoryName: DirectoryNamePtr; {catalog name}

discriminator: DirDiscriminator; {discriminator for the catalog}

recordID: RecordIDPtr; {record ID for the catalog}

nativeName: RStringPtr; {user name in the catalog world}

password: RStringPtr; {password in the catalog world}

END;

OCESetupAddDirectoryInfoPB = RECORD

qLink: Ptr;

reserved1: LongInt;

reserved2: LongInt;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LongInt;

reqCode: Integer;

reserved: ARRAY[1..2] OF LongInt;

serverHint: AddrBlock;

dsRefNum: Integer;

callID: LongInt;

identity: AuthIdentity;

gReserved1: LongInt;

gReserved2: LongInt;

gReserved3: LongInt;

clientData: LongInt;

directoryRecordCID: CreationID; {creation ID for the catalog}
Summary of the Authentication Manager 9-493

C H A P T E R 9

Authentication Manager
recordID: RecordIDPtr; {record ID for the identity}

password: RStringPtr; {password in the catalog world}

END;

OCESetupChangeDirectoryInfoPB = RECORD

qLink: Ptr;

reserved1: LongInt;

reserved2: LongInt;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LongInt;

reqCode: Integer;

reserved: ARRAY[1..2] OF LongInt;

serverHint: AddrBlock;

dsRefNum: Integer;

callID: LongInt;

identity: AuthIdentity;

gReserved1: LongInt;

gReserved2: LongInt;

gReserved3: LongInt;

clientData: LongInt;

directoryRecordCID: CreationID; {creation ID for the catalog}

recordID: RecordIDPtr; {record ID for the identity}

password: RStringPtr; {password in the catalog world}

newPassword: RStringPtr; {new password in the catalog}

END;

OCESetupRemoveDirectoryInfoPB = RECORD

qLink: Ptr;

reserved1: LongInt;

reserved2: LongInt;

ioCompletion: ProcPtr;

ioResult: OSErr;

saveA5: LongInt;

reqCode: Integer;

reserved: ARRAY[1..2] OF LongInt;

serverHint: AddrBlock;

dsRefNum: Integer;

callID: LongInt;

identity: AuthIdentity;

gReserved1: LongInt;

gReserved2: LongInt;

gReserved3: LongInt;
9-494 Summary of the Authentication Manager

C H A P T E R 9

Authentication Manager

9
A

uthentication M
anager
clientData: LongInt;

directoryRecordCID: CreationID; {creation ID for the catalog}

END;

Parameter Block Case Statement

AuthParamBlock = RECORD

CASE INTEGER OF

1: (header: AuthDirParamHeader);

2: (bindIdentityPB: AuthBindSpecificIdentityPB);

3: (unbindIdentityPB: AuthUnbindSpecificIdentityPB);

4: (resolveCreationIDPB: AuthResolveCreationIDPB);

5: (getIdentityInfoPB: AuthGetSpecificIdentityInfoPB);

6: (addKeyPB: AuthAddKeyPB);

7: (changeKeyPB: AuthChangeKeyPB);

8: (deleteKeyPB: AuthDeleteKeyPB);

9: (passwordToKeyPB: AuthPasswordToKeyPB);

10:(getCredentialsPB: AuthGetCredentialsPB);

11:(decryptCredentialsPB: AuthDecryptCredentialsPB);

12:(makeChallengePB: AuthMakeChallengePB);

13:(makeReplyPB: AuthMakeReplyPB);

14:(verifyReplyPB: AuthVerifyReplyPB);

15:(getUTCTimePB: AuthGetUTCTimePB);

16:(makeProxyPB: AuthMakeProxyPB);

17:(tradeProxyForCredentialsPB: AuthTradeProxyForCredentialsPB);

18:(getLocalIdentityPB: AuthGetLocalIdentityPB);

19:(unLockLocalIdentityPB: AuthUnlockLocalIdentityPB);

20:(lockLocalIdentityPB: AuthLockLocalIdentityPB);

21:(localIdentityQInstallPB: AuthAddToLocalIdentityQueuePB);

22:(localIdentityQRemovePB: AuthRemoveFromLocalIdentityQueuePB);

23:(setupLocalIdentityPB: AuthSetupLocalIdentityPB);

24:(changeLocalIdentityPB: AuthChangeLocalIdentityPB);

25:(removeLocalIdentityPB: AuthRemoveLocalIdentityPB);

26:(setupDirectoryIdentityPB: OCESetupAddDirectoryInfoPB);

27:(changeDirectoryIdentityPB: OCESetupChangeDirectoryInfoPB);

28:(removeDirectoryIdentityPB: OCESetupRemoveDirectoryInfoPB);

29:(getDirectoryIdentityInfoPB: OCESetupGetDirectoryInfoPB);

END;

AuthParamBlockPtr = ^AuthParamBlock;
Summary of the Authentication Manager 9-495

C H A P T E R 9

Authentication Manager
Authentication Manager Functions 9

Key Management

FUNCTION AuthPasswordToKey (paramBlock: AuthParamBlockPtr;
async: Boolean): OSErr;

FUNCTION AuthAddKey (paramBlock: AuthParamBlockPtr;
async: Boolean): OSErr;

FUNCTION AuthChangeKey (paramBlock: AuthParamBlockPtr;
async: Boolean): OSErr;

FUNCTION AuthDeleteKey (paramBlock: AuthParamBlockPtr;
async: Boolean): OSErr;

Local Identity Management

FUNCTION AuthGetLocalIdentity
(paramBlock: AuthParamBlockPtr;
async: Boolean): OSErr;

FUNCTION AuthAddToLocalIdentityQueue
(paramBlock: AuthParamBlockPtr;
async: Boolean): OSErr;

FUNCTION AuthRemoveFromLocalIdentityQueue
(paramBlock: AuthParamBlockPtr;
async: Boolean): OSErr;

FUNCTION AuthSetupLocalIdentity
(paramBlock: AuthParamBlockPtr;
async: Boolean): OSErr;

FUNCTION AuthChangeLocalIdentity
(paramBlock: AuthParamBlockPtr;
async: Boolean): OSErr;

FUNCTION AuthLockLocalIdentity
(paramBlock: AuthParamBlockPtr;
async: Boolean): OSErr;

FUNCTION AuthUnlockLocalIdentity
(paramBlock: AuthParamBlockPtr;
async: Boolean): OSErr;

FUNCTION AuthRemoveLocalIdentity
(paramBlock: AuthParamBlockPtr;
async: Boolean): OSErr;
9-496 Summary of the Authentication Manager

C H A P T E R 9

Authentication Manager

9
A

uthentication M
anager
Specific Identity Management

FUNCTION AuthBindSpecificIdentity
(paramBlock: AuthParamBlockPtr;
async: Boolean): OSErr;

FUNCTION AuthUnbindSpecificIdentity
(paramBlock: AuthParamBlockPtr;
async: Boolean): OSErr;

FUNCTION AuthGetSpecificIdentityInfo
(paramBlock: AuthParamBlockPtr;
async: Boolean): OSErr;

Credentials Management

FUNCTION AuthGetCredentials (paramBlock: AuthParamBlockPtr;
 async: Boolean): OSErr;

FUNCTION AuthMakeProxy (paramBlock: AuthParamBlockPtr;
 async: Boolean): OSErr;

FUNCTION AuthTradeProxyForCredentials
(paramBlock: AuthParamBlockPtr;
async: Boolean): OSErr;

Creation ID Resolution Management

FUNCTION AuthResolveCreationID
(paramBlock: AuthParamBlockPtr;
async: Boolean): OSErr;

Time Service

UNCTION AuthGetUTCTime (paramBlock: AuthParamBlockPtr;
async: Boolean): OSErr;

Non-ASDSP Authentication Utilities

FUNCTION AuthMakeChallenge (paramBlock: AuthParamBlockPtr;
async: Boolean): OSErr;

FUNCTION AuthMakeReply (paramBlock: AuthParamBlockPtr;
async: Boolean): OSErr;

FUNCTION AuthVerifyReply (paramBlock: AuthParamBlockPtr;
async: Boolean): OSErr;

FUNCTION AuthDecryptCredentials
(paramBlock: AuthParamBlockPtr;
async: Boolean): OSErr;
Summary of the Authentication Manager 9-497

C H A P T E R 9

Authentication Manager
AOCE Setup Catalog Management

FUNCTION OCESetupGetDirectoryInfo
(paramBlock: AuthParamBlockPtr;
async: Boolean): OSErr;

FUNCTION OCESetupAddDirectoryInfo
(paramBlock: AuthParamBlockPtr;
async: Boolean): OSErr;

FUNCTION OCESetupChangeDirectoryInfo
(paramBlock: AuthParamBlockPtr;
async: Boolean): OSErr;

FUNCTION OCESetupRemoveDirectoryInfo
(paramBlock: AuthParamBlockPtr;
async: Boolean): OSErr;

Application-Defined Routines 9

PROCEDURE MyCompletion (paramBlock: AuthParamBlockPtr);

FUNCTION NotificationProc (clientData: LongInt;
callValue: AuthLocalIdentityOp;
actionValue: AuthLocalIdentityLockAction;
identity: LocalIdentity): Boolean;

Assembly-Language Summary 9

Trap Macros 9

Trap Macro Requiring Routine Selectors

_oceTBDispatch

Selector Routine

$0200 AuthBindSpecificIdentity

$0201 AuthUnbindSpecificIdentity

$0202 AuthResolveCreationID

$0203 AuthGetSpecificIdentityInfo

$0204 AuthGetLocalIdentity

$0205 AuthAddToLocalIdentityQueue

$0206 AuthRemoveFromLocalIdentityQueue

$0207 AuthAddKey

$0208 AuthChangeKey
9-498 Summary of the Authentication Manager

C H A P T E R 9

Authentication Manager

9
A

uthentication M
anager
Result Codes 9
Result codes in the range of –1540 to –1609 are reserved for the Authentication Manager.
Routines may also return result codes from other AOCE managers and standard
Macintosh result codes such as noErr 0 (No error) and fnfErr –43 (File not found).

$0209 AuthDeleteKey

$020A AuthPasswordToKey

$020B AuthGetCredentials

$020C AuthDecryptCredentials

$020D OCESetupRemoveDirectoryInfo

$020E OCESetupGetDirectoryInfo

$020F AuthMakeChallenge

$0210 AuthMakeReply

$0211 AuthVerifyReply

$0212 AuthMakeProxy

$0213 AuthTradeProxyForCredentials

$0214 AuthUnlockLocalIdentity

$0215 AuthLockLocalIdentity

$0216 AuthSetupLocalIdentity

$0217 AuthChangeLocalIdentity

$0218 AuthRemoveLocalIdentity

$0219 OCESetupAddDirectoryInfo

$021A AuthGetUTCTime

$021B OCESetupChangeDirectoryInfo

noErr 0 No error
kOCEParamErr –50 Parameter error
kOCEReadAccessDenied –1540 Read access denied
kOCEWriteAccessDenied –1541 Write access denied
kOCEAccessRightsInsufficient –1542 Stream needs to be authenticated,

or not authorized, or someone other
than agent trying to TPFC, or
problem in server-to-server
authentication

kOCEUnsupportedCredentialsVersion –1543 Can’t read this version of the
credentials

kOCECredentialsProblem –1544 Couldn’t decrypt credentials

Selector Routine
Summary of the Authentication Manager 9-499

C H A P T E R 9

Authentication Manager
kOCECredentialsImmature –1545 Credentials not yet valid
kOCECredentialsExpired –1546 Current time is later than

credentials expiration time
kOCEProxyImmature –1547 Proxy not yet valid
kOCEProxyExpired –1548 Current time is later than proxy

expiration time
kOCEDisallowedRecipient –1549 Recipient record ID does not appear

in proxy
kOCENoKeyFound –1550 No key was found
kOCEPrincipalKeyNotFound –1551 Couldn’t decode proxy because

principal has no key
kOCERecipientKeyNotFound –1552 The recipient key was not found
kOCEAgentKeyNotFound –1553 Intermediary’s key not found
kOCEKeyAlreadyRegistered –1554 A key already exists
kOCEMalFormedKey –1555 Key not derived properly from

password
kOCEUndesirableKey –1556 Password too short or resulting key

is undesirable
kOCEWrongIdentityOrKey –1557 Incorrect key for client
kOCEInitiatorKeyProblem –1558 No key, or initiator’s key changed
kOCEBadEncryptionMethod –1559 The specified encryption method is

not supported
kOCELocalIdentityDoesNotExist –1560 Local identity has not been set up
kOCELocalAuthenticationFail –1561 Local identity locked
kOCELocalIdentitySetupExists –1562 Local identity setup exists, use

AuthChangeLocalIdentity
instead

kOCEDirectoryIdentitySetupExists –1563 Catalog has already been set up
kOCEDirectoryIdentitySetupDoesNotExist –1564 Catalog has not been set up
kOCENotLocalIdentity –1565 You cannot unbind a local identity
kOCENoMoreIDs –1566 Identity table is full
kOCEUnknownID –1567 Identity passed is not valid
kOCEOperationDenied –1568 Local identity operation denied
kOCEAmbiguousMatches –1569 Ambiguous matches found in

resolving CIDs
kOCENoASDSPWorkSpace –1570 No ASDSP workspace passed
kOCEAuthenticationTrouble –1571 Reply incorrect for the challenge

sent
kOCENotLocal –1610 Internal AOCE error
kOCETargetDirectoryInaccessible –1613 Catalog server not responding
kOCENoSuchDNode –1615 The dNode was not found
kOCEBadRecordID –1617 Name and type incorrect for

creation ID
kOCENoSuchRecord –1618 No such record
kOCEMoreData –1623 Buffer was too small to hold all

available data
kOCEStreamCreationErr –1625 An error occurred in creating the

stream
kOCEDirectoryNotFoundErr –1630 Catalog was not found in the list
kOCEOCESetupRequired –1633 Setup of local identity required
kOCELengthError –1637 The supplied buffer was too small
9-500 Summary of the Authentication Manager

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to the Apple Open Collaboration Environment TOC
	 Introduction to the Apple Open Collaboration Environment
	 AOCE Utilities TOC
	 AOCE Utilities
	 Standard Mail Package TOC
	 Standard Mail Package
	 Standard Catalog Package TOC
	 Standard Catalog Package
	 AOCE Templates TOC
	 AOCE Templates, Part 1 (Introduction, Writing & Reference)
	 AOCE Templates, Part 2 (Code Resources Reference)
	 Digital Signature Manager TOC
	 Digital Signature Manager
	 Interprogram Messaging Manager TOC
	 Interprogram Messaging Manager
	 Catalog Manager TOC
	 Catalog Manager, Part 1 (Introduction, About, and Using)
	 Catalog Manager, Part 2 (Reference)
	 Catalog Manager, Part 3 (Summary)
	 Authentication Manager TOC
	Authentication Manager
	Introduction to Authentication
	Keys
	Credentials
	Steps in the Authentication Process
	Identities
	Local Identities
	Specific Identities
	Guest Access

	The PowerTalk Setup Catalog
	Proxies

	About the Authentication Manager
	Using the Authentication Manager
	Determining Whether the Collaboration Toolbox Is A...
	Determining the Version of the Authentication Mana...
	Authentication Using ASDSP
	Authentication for Non-ASDSP Users
	The Initiator’s Authentication Process
	The Recipient’s Authentication Process

	Authentication Using a Proxy
	Using the Notification Queue

	Authentication Manager Reference
	Data Structures
	Parameter Block Header
	The Key Structures

	Authentication Manager Functions
	Assembly-Language Interface
	Key Management
	Local Identity Management
	Specific Identity Management
	Credentials Management
	Creation ID Resolution
	Time Service
	Non-ASDSP Authentication Utilities
	PowerTalk Setup Catalog Management

	Application-Defined Functions

	Summary of the Authentication Manager
	C Summary
	Constants and Data Types
	Authentication Manager Functions
	Application-Defined Functions

	Pascal Summary
	Constants
	Data Types
	Authentication Manager Functions
	Application-Defined Routines

	Assembly-Language Summary
	Trap Macros

	Result Codes

	 Appendix A (PowerTalk Built-in Templates)
	 Glossary
	 Index
	 Colophon

