
Giving Users
Help With
Apple Guide

Programming for
Flexibility:
The Open Scripting
Architecture

Exploiting Graphics
Speed on the
Power Macintosh

Enhancing PowerPC
Native Speed

Displaying
Hierarchical Lists

The Right Way to
Implement
Preferences Files

Issue 18 June 1994

QuickTime Movie Playback • QuickDraw GX Debugging Version • Dogcow History, Part 2

d e v e l o p
T h e A p p l e T e c h n i c a l J o u r n a l

$10.00

E D I T O R I A L S T A F F

Editor-in-Cheek Caroline Rose

Managing Editor Cynthia Jasper

Technical Buckstopper Dave Johnson

Our Boss Greg Joswiak

His Boss Dennis Matthews

Review Board Pete (“Luke”) Alexander, Dave
Radcliffe, Jim Reekes, Bryan K. (“Beaker”)
Ressler, Larry Rosenstein, Andy Shebanow,
Gregg Williams

Contributing Editors Lorraine Anderson,
Toni Haskell, Judy Helfand, Joe Williams

Indexer Marc Savage

A R T & P R O D U C T I O N

Production/Art Director Diane Wilcox

Technical Illustration John Ryan

Formatting Forbes Mill Press

Film Services Aptos Post, Inc.

Prepress Production PrePress Assembly

Printing Wolfer Printing Company, Inc.

Photography Sharon Beals, Cynthia Jasper,
Matt Melmon, Diane Wilcox

Cover Illustration Hal Rucker and
Corinne Okada of Rucker Huggins Design

ISSN #1047-0735. © 1994 Apple Computer,
Inc. All rights reserved. Apple, the Apple logo,
APDA, AppleLink, the dogcow logo,
HyperCard, HyperTalk, LaserWriter, Lisa,
LocalTalk, Mac, MacApp, Macintosh,
Macintosh Quadra, MacTCP, Moof, MPW,
and Newton are trademarks of Apple Computer,
Inc., registered in the U.S. and other countries.
AOCE, AppleScript, Balloon Help, develop,
Finder, MacinTalk, Macintosh Duo,
NewtonMail, Power Macintosh, PowerTalk,
QuickDraw, QuickTime, and Sound Manager
are trademarks of Apple Computer, Inc. Adobe is
a trademark of Adobe Systems Incorporated,
which may be registered in certain jurisdictions.
PowerPC is a trademark of International
Business Machines Corporation, used under
license therefrom. NuBus is a trademark of
Texas Instruments. All other trademarks are the
property of their respective owners.

T H I N G S T O K N O W

develop, The Apple Technical
Journal, a quarterly publication of
Apple Computer’s Developer Press
group, is published in March, June,
September, and December. develop
articles and code have been reviewed
for robustness by Apple engineers.

This issue’s CD. Subscription issues
of develop are accompanied by the
develop Bookmark CD. The Bookmark
CD contains a subset of the materials
on the monthly Developer CD Series,
which is available from APDA.
Included on the CD are this issue and
all back issues of develop along with the
code that the articles describe. The
develop code is updated when necessary,
so always use the most recent CD.
The CD also contains Technical
Notes, sample code, and other useful
documentation and tools (these
contents are subject to change).
Software and documentation referred
to as being on this issue’s CD is located
on either the Bookmark CD or the
Reference Library or Tool Chest
edition of the Developer CD Series.

The develop issues and code are also
available on AppleLink and via
anonymous ftp at ftp.apple.com.

Macintosh Technical Notes.
Where references to Macintosh
Technical Notes in develop are followed
by something in parentheses like
“(Memory 13),” this indicates the
category and number of the Note on
this issue’s CD.

E-mail addresses. Most e-mail
addresses mentioned in develop are
AppleLink addresses; to convert one of
these to an Internet address, append
“@applelink.apple.com” to it. For
example, DEVELOP on AppleLink
becomes develop@applelink.apple.com
on the Internet. To convert a
NewtonMail address to an Internet
address, append “@online.apple.com”
to it.

C O N T A C T I N G U S

Feedback. Send editorial suggestions
or comments to Caroline Rose at
AppleLink CROSE, Internet
crose@applelink.apple.com, or fax
(408)253-8521. Send technical
questions about develop to Dave
Johnson at AppleLink JOHNSON.DK,
Internet dkj@apple.com, CompuServe
75300,715, or fax (408)253-8521. Or
write to Caroline or Dave at Apple
Computer, Inc., 20525 Mariani Avenue,
M/S 303-4DP, Cupertino, CA 95014.

Article submissions. Ask for our
Author’s Guidelines and a submission
form at AppleLink DEVELOP,
Internet develop@applelink.apple.com,
or fax (408)253-8521. Or write to
Caroline Rose at the above address.

Subscriptions. Subscribe to develop
through APDA (see below) or use the
subscription card in this issue. For
subscription changes or queries, call
1-800-877-5548 in the U.S. or
(815)734-1116 outside the U.S., or
write to AppleLink DEV.SUBS,
Internet dev.subs@applelink.apple.com,
or develop, P.O. Box 531, Mount Morris,
IL 61054-7858.

Back issues. Printed back issues are
available for $13 each in the U.S. or
$20 outside the U.S. To order, call
1-800-877-5548 in the U.S. or
(815)734-1116 outside the U.S., or
write to AppleLink DEV.SUBS,
Internet dev.subs@applelink.apple.com,
or develop, P.O. Box 531, Mount Morris,
IL 61054-7858.

APDA. To order products from APDA
or receive a catalog, call 1-800-282-
2732 in the U.S., 1-800-637-0029 in
Canada, (716)871-6555 internationally,
or (716)871-6511 for fax. Order
electronically at AppleLink APDA,
Internet apda@applelink.apple.com,
CompuServe 76666,2405, or America
Online APDAorder. Or write APDA,
Apple Computer, Inc., P.O. Box 319,
Buffalo, NY 14207-0319.Printed on recycled paper

d e v e l o p

A R T I C L E S

6 Giving Users Help With Apple Guide by John Powers
Learn how to integrate this powerful new help system into your application, to provide users with context-
sensitive help and interactively guide them through common tasks.

26 Programming for Flexibility: The Open Scripting Architecture by Paul G. Smith
All about the ability to attach and run scripts as a way of customizing applications.

43 Exploiting Graphics Speed on the Power Macintosh by Konstantin Othmer, Shannon
Holland, and Brian Cox
A strategy for ensuring that users benefit from the improved performance of QuickDraw on the PowerPC
platform.

58 Displaying Hierarchical Lists by Martin Minow
Here’s how to provide a user-controlled display mechanism for hierarchical data, much like the triangular
buttons used for displaying files and folders in the Finder.

81 The Right Way to Implement Preferences Files by Gary Woodcock
Some thoughts on what makes a well implemented preferences file, and a library to help.

C O L U M N S

22 Somewhere in QuickTime
Basic Movie Playback Support
by Peter Hoddie
Some common problems to avoid, with special
attention to compatibility with future releases.

41 Graphical Truffles
The Debugging Version of QuickDraw GX
by Pete (“Luke”) Alexander
How to take advantage of the debugging
version during development, along with news
about a few changes.

55 Balance of Power
Enhancing PowerPC Native Speed
by Dave Evans
Coding tips for getting the most speed out of
the PowerPC processor.

79 View From the Ledge
by Tao Jones
Possibly the last installment of this office
survival guide for the socially and politically
inept.

92 Macintosh Q & A
Apple’s Developer Support Center answers
questions about Macintosh product
development.

103 Newton Q & A: Ask the Llama
Answers to Newton-related development
questions; you can send in your own.

108 KON and BAL’s Puzzle Page
Monitor Madness
by Konstantin Othmer and Bruce Leak
Another brain teaser that’s nearly impossible to
solve.

114 History of the Dogcow, Part 2
by Mark (“The Red”) Harlan
The rest of the story: distribution and
paraphernalia.

2 Editor’s Note
3 Letters

116 Index

Issue 18 June 1994

CONTENTS 1

2

CAROLINE ROSE

EDITOR’S NOTE
d e v e l o p Issue 18 June 1994
One thing about magazine publishing: the wheel keeps turning no matter what.
There can be no slips because of problems that crop up or any extra work that needs
to be done; the “to press” date is set way in advance. So for this issue, having to deal
with redesigning our layout and having our technical editor out on jury duty for
months, I’ve been going crazy. The smiling face you see in this photo is not what I’ve
looked like for most of the last three months!

But enough about me. Let’s talk about the redesign. As you’ve no doubt already
noticed, we’ve changed develop’s cover to make it look more like those you’ll find on
newsstands. We’ve added an eye-catching strip across the top and moved the article
titles from the right side of the cover to the left, where they would peek out if the
issues were stacked from left to right (imagine offset overlapping windows).

We’ve changed the layout in the inside to fit a bit more on each page. Issues of develop
will be slimmer than before, but you’ll still be getting the same amount of content.
We couldn’t resist tweaking a few other things while we were at it. Specifically,
“listing boxes” now help keep code together in one tidy place. But we still put code
close to where it’s discussed, and we still place code in the body of the article if that
makes more sense.

Another change in this issue is a direct result of the aforementioned jury duty: Dave
Johnson’s popular Veteran Neophyte column is missing. But don’t worry; it will
return once justice has been served. Meanwhile we do have two new columns:
Balance of Power, with PowerPC™-related tidbits from Dave Evans, and Newton
Q & A, which lets you interrogate a llama and receive a T-shirt if he uses your
question.

As always, we’d like your feedback. There will be more changes to come, and we
really want to know what works for you and what doesn’t. So please, don’t just gripe
(or sing our praises) among yourselves; drop us a line and give us your $.02! All
information about who to contact for what is now located in one handy place, on the
inside front cover (along with other irresistible tweaks).

By letting us know how we can improve, you help us win awards like the one that we
learned of while working on this issue: an Award of Distinction, and Best of Category
(Monthly or Quarterly Magazines), in the Society for Technical Communication’s
1993 Northern California Technical Publications Competition. So thanks, and please
keep it coming!

Caroline Rose

Editor
CAROLINE ROSE (AppleLink CROSE) was part
of a huge East-to-West Coast migration that took
place one heady summer many years ago. She
stumbled upon a technical writing job and took
to it and to California like a programmer to
Mountain Dew. She’s been a programmer herself
(at Tymshare) and even a manager (at NeXT), but

marks her favorite work years as those spent
writing and editing at Apple — first Inside
Macintosh and later develop. To keep herself
sane outside of work, Caroline has little do with
computers and has been known to stop making
sense. She does, however, keep her wits honed
for Scrabble.•

LETTERS
NUMBER FORMATS FOLLOWUP
Regarding the article “International
Number Formatting” in develop Issue
16: I’ve written a free ResEdit editor
(“FMAT Editor”) that enables you to
easily create Script Manager canonical
formats and store them as resources. I
hope you’ll find it useful.

— Michael Hecht

The author of the article looked at your
editor, and he thought it was so useful that
he submitted it to the CD. Thanks!

— Caroline Rose

NEW FLOATING WDEF ON CD
I’m the author of a freeware floating
window WDEF known as the Infinity
Windoid. It was one of the first such
WDEFs to implement the System 7–
style coloring of windows, tinge colors
and all. It includes support for a title bar
down the left side of a window, System
6’s coloring of windows, multiple
monitors via DeviceLoop, and checking
the available colors in 8-bit mode to
determine whether the title bar should
be color.

I recently finished up version 2.5.1 of the
WDEF, which adds the ability to have a
grow box, a title string in the title bar,
and a slightly different style of title bar.

Please consider including this WDEF
with source code on your CD. An
appropriate place for it would be with
Dean Yu’s floating windows code (Issue
15). Dean has stated that his WDEF is
not highly robust, and providing my
WDEF with the source would make a
lot of sense. This would also help me
meet my goal of making it available to
DON’T FORGET TO WRITE!
We welcome timely letters to the editors,
especially from readers reacting to articles that
we publish in develop. Letters should be
addressed to Caroline Rose (or, if technical
develop-related questions, to Dave Johnson) at
Apple Computer, Inc., 20525 Mariani Avenue,
as many Macintosh developers as
possible.

— Troy Gaul

Thanks for bringing your WDEF to our
attention. We’ve included it with Issue 15’s
floating windows code on this issue’s CD.
Dean has also tweaked the code again since
his last updates. Check it out!

— Caroline Rose

GREAT MAG, BUT LOSE LEDGE
My vote for your View From the Ledge
column is: lose it! Dilbert (the comic
strip by Scott Adams) does a much
better job at commenting on the
political and social structures of
corporate America.

Thanks for the fine publication. develop
is the only periodical that doesn’t end
up in the trash after I read it. Keep up
the good work.

— Dave Lamkins

The editor thanks you for your kind words
about develop. As the author of View
From the Ledge, I’ve been volunteered to
address your remarks about that column.

Scott Adams is unquestionably a genius. He
has a certain wit and control of the English
language that hasn’t really been equaled
since Shakespeare, and an artistic flair that
I’m certain makes all Florentines weep.
There’s simply no way I can compete with
this caliber of raw talent.

No doubt Mr. Adams gets invitations to
dine with the President. I’ve never met any
of the Presidents of Apple, let alone of the
United States — although John Sculley did
pull up next to me at a stoplight a few years
LETTERS 3

M/S 303-4DP, Cupertino, CA 95014
(AppleLink CROSE or JOHNSON.DK). All letters
should include your name and company name as
well as your address and phone number. Letters
may be excerpted or edited for clarity (or to
make them say what we wish they did).•

d e v e l o p Issue 18 June 19944

Do you yea

YOUR NAME H

YOUR PHOTO H
ago, and I used to have a Jean-Louis Gassée
mask hanging in my cubicle.

Mr. Adams has the advantage of dealing
with a world where the characters are two-
dimensional, all of their worst traits are
brought to the forefront, and the situations
these characters get caught up in border on
the absurd. None of those things can be said
about the real office environment.

Having said all that, we’re putting View
From the Ledge on ice after this issue, and
the thaw comes only if there’s a chinook in
the form of a strong reader response.

— Tao Jones

MISSING CD? A ROYAL PAIN
First, I’d like to say that I think develop is
excellent. I await each issue with
frenzied anticipation and find each one
absorbing, informative, well written,
and funny.

I’d also like to comment on the
Bookmark CD. I can’t, however,
Yearn no more: write for dev
who might be interested in s
you’d like to spotlight and d
developers of Apple product

If you’re a lot better at writi
worry. An editor will work w
you’ll be proud to show you

So don’t just sit on those gre
published in develop!

For Author’s Guidelines, edi
our incentive program, send
AppleLink, develop@appleli
Caroline Rose, Apple Comp
M/S 303-4DP, Cupertino, C

rn for the adulation of

ERE

ERE
because we don’t get it. I keep reading
articles referring to “this issue's CD”
and it’s infuriating! We get our regular
monthly Developer CD with Apple
Directions but no develop CD. Is this
because we’re in England? Don’t you
like us any more? It’s the royal family’s
fault, isn’t it? They’ve made us look
stupid. They’re nothing to do with us,
honest. We’d just like our CD.

—Richard Gibson

Some international developers receive
develop without the Bookmark CD as part
of a mailing that includes the Developer
CD and Apple Directions. Anyone who gets
the Developer CD doesn’t need the
Bookmark CD (see “This issue’s CD” on
the inside front cover).

We still like our British readers, so from
our standpoint you should have no gripe
with the royal family.

Thanks for writing!

—Caroline Rose
elop. We’re always looking for people
ubmitting an article or a column. If
istribute your code to thousands of
s, here’s your opportunity.

ng code than writing articles, don’t
ith you. The result will be something

r colleagues (and your Mom).

at ideas; feel the thrill of seeing them

torial schedule, and information on
 a message to DEVELOP on
nk.apple.com on the Internet, or
uter, Inc., 20525 Mariani Avenue,
A 95014.

 your colleagues?

Are there issues of develop that have passed you by? If you’d like to complete your develop collection,
full-color, bound copies are available. (Back issues are also on the develop Bookmark CD and the

Reference Library edition of the Developer CD Series.)

To order printed back issues, send $13 per issue in the U.S. (or $20 outside the U.S.) to develop Back Issues,
P.O. Box 531, Mount Morris, IL 61054-7858. Or call 1-800-877-5548 in the U.S. or (815)734-1116 elsewhere.
Supplies are limited. Please allow 4 to 6 weeks for delivery.

The (w)hole collection

Issue 1 Color; Palette Manager; Offscreen Worlds;
PostScript; System 7 Compatibility; Debugging
Declaration ROMs; Apple II Development Dynamo

Issue 2 C++ Objects; Object Pascal; Memory Manager;
MacApp; How to Design an Object-Based Application;
C++ Style Guide; The GS/OS Cache

Issue 3 ISO 9660 and High Sierra; A Mixed-Partition
CD; Accessing CD Audio Tracks; Comm Toolbox;
Macintosh Display Card 8•24 GC; PrGeneral

Issue 4 Device Driver in C++; Polymorphism in C++;
A/ROSE; PostScript; Apple IIGS Printer Driver

Issue 5 (Volume 2, Issue 1) Asynchronous Background
Networking; Scanning From ProDOS; Palette Manager
Animation; Macintosh Common Lisp

Issue 6 Threads; CopyBits; MacTCP Cookbook:
Constructing Network-Aware Applications

Issue 7 QuickTime 1.0; TrueType; Threads and Futures;
C++ Objects in a World of Exceptions

Issue 8 Curves in QuickDraw; Validating Date and
Time Entry in MacApp; Debugging; Hybrid Applications
for A/UX

Issue 9 Color on 1-Bit Devices; The TextBox You’ve
Always Wanted; Making Your Macintosh Sound Like an
Echo Box; Simple Text Windows via the Terminal
Manager; Tracks: A New Tool for Debugging Drivers

Issue 10 Apple Event Objects; PostScript Enhancements
for the LaserWriter Font Utility; Drawing in GWorlds;
The Optimal Palette

Issue 11 Asynchronous Sound; Multibuffering Sounds;
Exceptions; NetWork: Distributed Computing

Issue 12 Writing and Debugging Components; Time
Bases: The Heartbeat of QuickTime; Apple Event
Coding Through Objects; Globals in Standalone Code

Issue 13 Asynchronous Routines; QuickTime and
Component-Based Managers; Macintosh Debugging
Revisited; Adventures in Color Printing; DeviceLoop

Issue 14 Writing Localizable Applications; 3-D Rotation
Using a 2-D Input Device; Video Digitizing Under
QuickTime; Making Better QuickTime Movies

Issue 15 Getting Started With QuickDraw GX;
QuickDraw GX Printing Extensions; QuickDraw GX for
PostScript Programmers; Component Registration;
Floating Windows; Working in the Third Dimension

Issue 16 Making the Leap to PowerPC; PowerTalk;
Drag and Drop From the Finder; Color Matching Made
Easy With QuickDraw GX; International Number
Formatting

Issue 17 Using Proto Templates on the Newton;
Standalone Code on PowerPC; Debugging on PowerPC;
Concurrent Programming With the Thread Manager;
Window Zooming

6

Giving Users Help With Apple Guide
JOHN POWERS

d e v e l o p Issue 18 June 1994
A positive user experience means getting the task done with a
minimum of hassle. But as applications engage in the features race,
their complexity increases as well, leading to increased user frustration.
One solution is to add a powerful help system that can guide the user
through a task. The new Apple Guide system makes this chore easier
than you might think.

Someone has decided that your application needs help. Maybe it’s a little heavy on
the features, and Marketing is afraid that the user will be overwhelmed. Perhaps your
user studies have shown that users can really benefit from some coaching when
learning your interface. Or the finance experts have figured out that you can save a
lot of money on printing and user support costs by putting help on the screen rather
than in printed manuals. And yesterday the CEO declared that your product must
win a gold medal in customer satisfaction.

It can be done.

This article tells you how to add Apple Guide, a new kind of help system, to your
application with a pain and suffering level that you can control, ranging from almost
nothing to only a tingle.

The article doesn’t tell you what help your application should provide; that’s up to
your software designer, technical writer, instructional designer, interface designer,
and whoever else likes to stir the design pot. Once you’ve decided what help you
want and the technical writer has written it using the Apple Guide authoring tool,
you integrate it. That’s where this article — and this issue’s CD, which contains a
sample program with Apple Guide integrated — comes in.

WHAT IS APPLE GUIDE?
Apple Guide is a new kind of help system that acts as an interactive, task-oriented
guide and will be available to all applications systemwide as of System 7.5. Apple Guide
is based on more than two years of research on people’s need for help while using
their computers. Several key findings of this research underlie the Apple Guide design:
JOHN POWERS (AppleLink JOHNPOWERS),
MWM, Apple employee, seeks intense
relationship with software. Enjoys object-oriented
design, craftsmanship, classical music, long
walks, quiet moments, laser discs with popcorn,
travel, engaging novels, and kinky polymorphism.
Software must be willing to share time with
extended family. Documentation a must.•

The Apple Guide Developer’s Kit will soon
be available from APDA (if it isn’t already). It
contains everything you need to author databases
and integrate Apple Guide. Included in this kit is
an authoring tool that compiles help content
written with a standard word processor into an
Apple Guide database file. The kit also contains
sample help content files and documentation.•

• Users are task-oriented.

• Users seek help when they’re frustrated doing a task.

• Help should be an interactive guide to accomplishing a task, not a
static document.

The paradigm is simple:

1. The user has a task to accomplish.

2. The user becomes frustrated when an obstacle prevents
completion of the task.

3. The user asks for help.

Traditional help requires users to go to a printed or on-screen document to identify
the problem in the context of the documentation. This in itself can become a
frustration. Users would rather have someone (or something) guide them through the
obstacle. That’s what Apple Guide does: it acts as an interactive, task-oriented guide.

When users ask for help, the first thing they see is the access window, which provides
three ways of selecting the help topic. Once the user selects the help topic, the access
window is replaced by the presentation window, which presents the help topic as a
series of panels containing text, graphics, QuickTime movies, and controls. (Note
that in an application in which Apple Guide has been fully integrated, the help topic
can be preselected for the user based on context — more on this later.) To experience
Apple Guide for yourself, try out the application called MoGuide on this issue’s CD.

Apple Guide is implemented as a system extension (see “What Systemwide Help
Means” for some ramifications of this) that uses a guide database file to drive its
interaction with the user, as depicted in Figure 1. The database file, written using the
Apple Guide authoring tool, contains multimedia help content and instructions on
how to interact with the user. The delivery engine is in the system extension, which

Application
portion (400K)

Stay-resident
portion (20K)

Guide
database

Apple Guide
system

extension

Access window

Presentation window

Access window

Presentation window

Figure 1. How Apple Guide works
GIVING USERS HELP WITH APPLE GUIDE 7

d8
WHAT SYSTEMWIDE HELP MEANS
Because it’s implemented as a system extension, Apple
Guide is available to all applications systemwide. It’s
designed to help users within and across application
boundaries. Apple Guide can guide a user through
multiple applications including, but not limited to, the
application that invoked it.

Apple Guide’s systemwide nature has ramifications for
everything you do with it. While it enables delivering an
unprecedented level of help to users, it also presents
certain programming challenges. Consider the following
characteristics of systemwide help and what they mean to
you as a developer.

Help works across multiple applications. Your
application’s guide database can guide a user through
multiple applications, not just your own. You can provide
help for tasks that involve system-level operations and the
use of other applications.

One ramification of this is that if the user switches from
your application to another one after starting up Apple
Guide and without quitting your application or Apple
Guide, Apple Guide will still be present and showing
your guide database. This may be desirable, depending
on what help you’re providing. If not, the user can quit
Apple Guide from the help window. Don’t force Apple
 e v e l o p Issue 18 June 1994
Guide to quit when your application goes to the
background.

Help is always available to the user. Your
application can always invoke Apple Guide, even if it’s
in use by another application. That application’s guide
database will be closed and yours will be opened and
shown instead.

This works the other way around as well — if the user
invokes Apple Guide from the Help menu within another
application while yours is open in the background, your
guide database will be closed and the other application’s
will be opened and shown instead. Moreover, the other
application can still make Apple Guide quit even if you
closed its guide database to show your own.

The bottom line for you is that you can’t assume that your
guide database is always open, even if the user invoked it
from within your application. A call for dealing with this is
described later, under “Is Your Guide Database Open?”

The user is always in control. Users can quit Apple
Guide at any time, even if they’ve switched from the
application that started it up. Once again, this means that
you can’t assume your guide database is always open,
even if the user invoked it from within your application.
contains two components: a stay-resident portion and a launch-as-needed application
portion. With a RAM footprint of less than 20K, the stay-resident portion installs
patches at startup time, manages the Help menu (the one labeled with a question
mark in a balloon), and starts up Apple Guide from the Help menu. The application
portion is loaded and run when help is being delivered; with a RAM footprint of 400K,
it’s launched as a faceless background application in its own heap. The Apple Guide
system extension and several guide databases will be provided as part of System 7.5.

TO INTEGRATE OR NOT TO INTEGRATE?
You can put Apple Guide to work for you whether or not you decide to integrate it
into your application. However, as in life, the level of pain you choose determines the
amount of gain.

The easiest way to add Apple Guide to an application is to place an Apple Guide
database file in the same folder as the application. No coding changes are necessary;
the integration is automatic. The Apple Guide extension adds the database to the
application’s Help menu and launches the database when the user chooses it.

Here’s what Apple Guide delivers without any changes to your application:

• help initiated from the Help menu

• interactive delivery of multimedia help content

• the ability to mark static interface objects, or dynamic interface
objects identified using the Object Support Library (OSL), to
draw the user’s attention to them

• elementary to intermediate context sensitivity

This is a lot of help in itself. But if you want more control over Apple Guide, you’ll
need to make code changes in your application. Here’s what those changes can add:

• information about where the user is in the help system

• more direct control over what help the user receives and
responsiveness to the user’s context

• help initiated from any control — including buttons, lists, and
special keys — and from application menus

• guide databases with your own creator, type, and document icons

• the ability to use databases located in a folder separate from the
application

If you want the gain and you’re ready for the (slight) pain, read on.

To communicate with Apple Guide from your application, you use standard, trap-
based function calls. The function calls enable your application to get information
about Apple Guide, start up Apple Guide, respond to Apple Guide, modify help
content, and quit Apple Guide. I’ll explain how to do each of these in the sections
that follow. You might want to examine the source code for the sample program
MoGuide on this issue’s CD to see the function calls used in context. Then you can
try integrating Apple Guide into your own application.

GETTING INFORMATION ABOUT APPLE GUIDE
Your application can find out a number of different things about Apple Guide:
whether it’s installed, what its status is, whether an Apple Guide database is available,
the number and characteristics of guide databases available, and whether your own
guide database is open.

IS APPLE GUIDE INSTALLED?
Before you do anything with the Apple Guide extension, you need to determine
whether it’s installed. The following code shows how:

long result=0;
OSErr err = Gestalt(gestaltHelpMgrAttr, &result);
if (err==noErr && (result & (1 << gestaltAppleGuidePresent)))

; // Apple Guide is available.
else

; // Apple Guide is not available.

WHAT’S THE STATUS OF APPLE GUIDE?
Once you’ve determined that Apple Guide is installed, you can get more information
about its state — for example, is it active (displaying a help window)? If it is, which
help window is being displayed? The latter information can be saved and used to
restart users at the point where they left the help system.

The AGGetStatus function returns whether Apple Guide is active (kAGIsActive),
sleeping (kAGIsSleeping), or not running (kAGIsNotRunning). In the active state,
GIVING USERS HELP WITH APPLE GUIDE 9

d e v e l o p Issue 18 June 199410
help is being provided (a guide database is open). In the sleeping state, the Apple
Guide background application is loaded and running, but no help is being provided
(no guide database is open). In the not-running state, the application portion of Apple
Guide isn’t loaded or running.

If Apple Guide is active, you can further determine whether the access window or the
presentation window is showing. For example:

if (AGGetActiveWindowKind()==kAGAccessWindow)
; // Apple Guide access window is showing.

else if (AGGetActiveWindowKind()==kAGPresentationWindow)
; // Apple Guide presentation (topic) window is showing.

else
; // No window is showing; Apple Guide is sleeping or not running.

Be sure you’ve determined that Apple Guide is installed before invoking
AGGetStatus or any other Apple Guide function. Otherwise, if Apple Guide isn’t
present, you’ll get an unimplemented trap error.

IS AN APPLE GUIDE DATABASE AVAILABLE?
You can find out whether an Apple Guide database is available to the current
(frontmost) application, and furthermore, whether a specific type of guide database is
available. (There are two file types and five database types, classified according to the
type of help information they contain; see “About Apple Guide Database Files” for a
rundown of the types.)

The AGGetAvailableDBTypes function returns bits set to correspond to the various
types of guide databases available to (in the same folder as) the frontmost application.

enum AGDBTypeBit // To test against AGGetAvailableDBTypes
{

kAGDBTypeBitAny = 0x00000001,
kAGDBTypeBitHelp = 0x00000002,
kAGDBTypeBitTutorial = 0x00000004,
kAGDBTypeBitShortcuts = 0x00000008,
kAGDBTypeBitAbout = 0x00000010,
kAGDBTypeBitOther = 0x00000080

};

The kAGDBTypeBitAny bit will be true if the application has any Apple Guide
database file available. Thus, the following statement will test whether any guide
database is available:

if (AGGetAvailableDBTypes() & kAGDBTypeBitAny)
; // Some kind of database is available

You can simlarly use the other constants to test the availability of specific types of
Apple Guide databases.

HOW MANY AND WHICH GUIDE DATABASES ARE AVAILABLE?
The tests described in the preceding section apply only to guide database files or their
aliases in the same folder as the application. You can also find files outside the
application’s folder, by using the AGFile library that’s included on this issue’s CD.
This library doesn’t use or require the Apple Guide system extension and offers
access to information about Apple Guide database files.

ABOUT APPLE GUIDE DATABASE FILES
Apple Guide database files provide the content of the
help that your application gives users. These files can be
of the following two types:

• kAGFileMain: Main or normal type of Apple Guide
database file

• kAGFileMixin: Mix-in database file, which modifies a
main database file with updates and additions at run
time

Files of both types have a creator of kAGCreator, which
is 'reno', and are further subdivided by database type
according to the type of help information they contain.
The database type is stored as part of the database
content and determines where the file is represented in the
Help menu, as indicated in Figure 2.

Apple Guide supports multiple guide database files but
only one of each type, except for kAGFileDBTypeOther.
You can have multiple kAGFileDBTypeOther files; they’re
added at the end of the Help menu, ordered by filename.

All Apple Guide database files located in the same
folder as your application will be represented in the Help
menu. (Note that aliases will work as well as database
files themselves, but that folders nested within your
application’s folder will not be searched.)
If you don’t want a guide database represented in the
Help menu, you should separate the guide database from
the application. In this case, you must provide a
mechanism in your application to start up Apple Guide
with that database, since the user can’t do it from the
Help menu. The section “Starting Up Apple Guide” tells
all about this.

Databases can also have your creator and type, allowing
you to use your own document icons. Databases
identified this way won’t show up on the Help menu and
must be opened from your application.

Figure 2. Menu items identified by database type

kAGFileDBTypeAbout

kAGFileDBTypeHelp
kAGFileDBTypeShortcuts

kAGFileDBTypeTutorial

kAGFileDBTypeOther
With the AGFile library, you can count and find guide databases of specific file and
database types. Once you’ve found a database, you can get information about it. For
example, the following code counts the number of main guide database files (those
that aren’t mix-in files) of type kAGFileDBTypeHelp in a specified volume and
directory:

AGFileCountType guideFileCount;
AGFileDBType databaseType=kAGFileDBTypeHelp;
Boolean wantMixin=false;

guideFileCount = AGFileGetDBCount(vRefNum, dirID, databaseType, wantMixin);

You can get the FSSpec for a particular type of Apple Guide database file in a
specified volume and directory as follows:

AGFileCountType guideFileCount;
AGFileDBType databaseType=kAGFileDBTypeOther;
Boolean wantMixin=false;
short dbIndex=1;
FSSpec dbSpec;

err = AGFileGetIndDB(vRefNum, dirID, databaseType, wantMixin, dbIndex,
&dbSpec);
GIVING USERS HELP WITH APPLE GUIDE 11

d e v e l o p Issue 18 June 199412
The AGFileGetIndDB call will return noErr and the FSSpec for the database file if
it’s present. Increment dbIndex to find additional guide databases of the same type.

Listing 1 shows how to accumulate a list of FSSpecs for all the guide databases in a
specified volume and directory.

Once you have the FSSpec for a database file, you can ask for more information. For
example, the following code can be used to get the version and menu item name for a
database:

AGFileMajorRevType majorRev;
AGFileMinorRevType minorRev;
Str255 menuName;

AGFileGetDBVersion(&fileSpec, &majorRev, &minorRev);
AGFileGetDBMenuName(&fileSpec, menuName);

IS YOUR GUIDE DATABASE OPEN?
As mentioned earlier in “What Systemwide Help Means,” you can’t assume your
guide database is always open, even if the user invoked it from within your
application. To cope with this fact of life, your application should call the
AGIsDatabaseOpen function when it’s switched from background to foreground,
passing in the database’s reference number, to see if its guide database is still open.

if (AGIsDatabaseOpen(myAGRefNum))
; // The database with myAGRefNum is open.

else
; // The database with myAGRefNum isn't open; someone else closed it.

Listing 1. Accumulating FSSpecs for guide databases

AGFileCountType guideFileCount;
AGFileDBType databaseType=kAGFileDBTypeAny;
Boolean wantMixin=false;
FSSpec dbSpec;
Handle hFileList;

// See how many guide files are available.
guideFileCount = AGFileGetDBCount(vRefNum, dirID, databaseType,

wantMixin);
if (guideFileCount>0) {

// Create a new list of file FSSpecs.
hFileList = NewHandle(guideFileCount * sizeof(FSSpec));
if (hFileList!=nil) {

// Get each file and add to list.
for (short i=1; i<=guideFileCount; i++) {

if (AGFileGetIndDB(vRefNum, dirID, databaseType,
wantMixin, i, &dbSpec)==noErr) {

((FSSpec*)(*hFileList))[i-1] = dbSpec;
} // if (...

} // for (short...
} // if (hFileList...

} // if (guideFileCount...

If AGIsDatabaseOpen is true, you can also assume that Apple Guide is active. If
AGIsDatabaseOpen is false and you haven’t explicitly closed your database, another
application or the user has closed it.

STARTING UP APPLE GUIDE
You can start up Apple Guide with either the first available guide database or one you
specify. You can also control the initial view the user sees, choosing from seven
different options. In this initial view you can present the user with a list of topics
related to the context, or you can skip the initial view and instead take the user
directly to a help topic.

DEFAULT STARTUP
The default startup, the quickest and easiest way to start up Apple Guide, opens the
first available guide database. The database must be in the same folder as your
application (the Finder is an exception — its guide databases are in the Extensions
folder). The mechanism is similar to what happens when the user selects an item
from the Help menu.

The default startup is accomplished by calling the AGOpen function with the
kAGDefault flag:

err = AGOpen(kAGDefault, 0, nil, &myAGRefNum);

A reference for the database that was opened is returned in myAGRefNum. You must
use this reference when you close the database.

Apple Guide starts up with the frontmost application’s guide database and the startup
conditions specified in the database. If more than one Apple Guide database is
available for the application, the first database of type kAGFileDBTypeHelp is used.
If no database is present, the error code kAGErrDatabaseNotAvailable is returned
and Apple Guide doesn’t start up.

DATABASE OTHER THAN THE DEFAULT
An application can also open a specific guide database when it starts up Apple Guide,
by specifying the FSSpec for the database in the AGOpen call:

err = AGOpen(&myGuideDatabaseFSSpec, 0, nil, &myAGRefNum);

See the earlier section “How Many and Which Guide Databases Are Available?” for a
suggested way to get a database FSSpec.

VIEW OTHER THAN THE DEFAULT
Apple Guide offers seven startup view options. This is normally controlled by the
guide database; however, these defaults can be overridden with a startup function
parameter. For example:

err = AGOpenWithView(&myGuideDatabaseFSSpec, 0, nil, kAGViewIndex,
&myAGRefNum);

Six of the possible startup views are listed below. These views, which are access
windows, are shown in Figure 3. Startup view number 7 is the topic or presentation
window view, which is started with a different function call (described below in
“Going Directly to a Topic”).
GIVING USERS HELP WITH APPLE GUIDE 13

d e v e l o p14
enum
{

kAGViewFullHowdy = 1, // Full-window howdy
kAGViewTopicAreas = 2, // Full-window topic areas
kAGViewIndex = 3, // Full-window index terms
kAGViewLookFor = 4, // Full-window look-for (search)
kAGViewSingleHowdy = 5, // Single-list howdy
kAGViewSingleTopics = 6 // Single-list topics

};

Since almost all guide databases contain multiple topic areas, they usually start up
with the kAGViewFullHowdy view. If you specify a kAGViewSingleHowdy or

View 5: Single-list howdy View 6: Single-list topics

View 1: Full-window howdy View 2: Full-window topic areas

View 3: Full-window index terms View 4: Full-window look-for

Figure 3. Six startup view options
Issue 18 June 1994

kAGViewSingleTopics view for these kinds of guide databases, only the topics for the
first topic area will be shown.

PRIMING A SEARCH
An application can start up Apple Guide (or restart it if it’s already running) in the
look-for view with a list of context-sensitive topics that match a search string (a
Str255). To initiate a context-sensitive search, use the AGOpenWithSearch function
and include a look-for search string as follows:

err = AGOpenWithSearch(&myGuideDatabaseFSSpec, 0, nil, mySearchString,
&myAGRefNum);

GOING DIRECTLY TO A TOPIC
Sometimes you may want to initiate help when the user clicks a Help button in a
dialog or Option-clicks an interface object. In these cases, you have a good idea of the
context and can bypass the Apple Guide access window, going directly to the
presentation window with the selected help topic. Here’s how:

err = AGOpenWithTopic(&myGuideDatabaseFSSpec, 0, nil, myTopicId,
&myAGRefNum);

The presentation window will appear with the first panel of the topic.

The Apple Guide authoring tool usually handles topics by name and quietly assigns a
topic ID number when the database is compiled. However, you can override this
automatic assignment by specifying your own topic ID. See the authoring tool
documentation for information on how to assign your own topic ID numbers.

RESPONDING TO APPLE GUIDE
The author of an Apple Guide database file can initiate a number of different kinds of
events to which your application may need to respond. These include attaching Apple
events to controls in help topics, drawing coach marks on dynamic interface objects,
sending Apple events when certain panels appear, and using context checks to
determine whether a presentation panel should be shown or skipped.

RECEIVING THE AUTHOR’S EVENTS
A help author can attach an Apple event to any control in an Apple Guide
presentation window. The controls can be Macintosh buttons, checkboxes, radio
buttons, or Apple Guide buttons (the last two types of controls are illustrated in
Figure 4). The author’s action specification for these controls will contain

• the target for the action (usually an application signature)

• the Apple event class

• the Apple event ID

• the optional key

• optional data for the optional key

The action might be directed to Apple Guide — for instance, to start up another
presentation window, to return to the access window, or to go to another panel in the
same topic. The action can also be directed to your application; in that case, the
target is your application signature, and the Apple event class and event ID are ones
for which you’ve installed a handler. The content of the optional key/data field can be
anything; how it’s used is up to the application developer. Apple Guide extracts the
GIVING USERS HELP WITH APPLE GUIDE 15

d e v e l o p Issue 18 June 199416
optional data field, calculates its size in bytes, calls AEPutParamPtr with a descriptor
type of typeChar, and sends the Apple event.

To receive the action, install an Apple event handler for the class and event ID. Your
handler can get the optional data parameter using your key.

There is no reply to this event. If you want to reply, see the section “Responding to
Context Checks.”

PROVIDING OBJECT LOCATION FOR COACH MARKS
Coach marks are circles, X’s, underlines, and arrows that can be drawn on interface
objects to direct the user’s attention to them, as illustrated in Figure 5. Using such
marks has been shown in tests to be much more effective than putting drawings of the
objects into the help content (users tend to click on the drawing, not the real thing).
The Apple Guide authoring tool provides a fairly complete set of instructions to
mark many common interface objects, such as the following:

• menu titles and items

• windows and any coordinates relative to a window

• window elements such as close boxes, size boxes, titles, and scroll
bars

• items that have a help balloon “hot rectangle”

• dialog items

These are all relatively static elements with locations that can be found by Apple
Guide’s marking facility. Some interface objects, on the other hand, are dynamically
located at locations known only to the application. If you’ve identified a dynamic
interface object using the Object Support Library (OSL), you can use Apple Guide’s
built-in OSL coach-marking facility to locate and mark the object. See the
documentation for the Apple Guide authoring tool for details.

If you want to mark dynamic interface objects and you’re not using the OSL, Apple
Guide provides another method for you to use. In this method a handler installed by
Apple Guide calls your application asking for the rectangle of a named object. To use

Radio button

Apple Guide buttons

Figure 4. Controls in a presentation window

this method, your application must install a coach handler that takes the object name
and replies with the object rectangle in global coordinates.

Here’s an example. First, you install the coach handler:

AGCoachRefNum myAGCoachRefNum;
OSErr err = AGInstallCoachHandler(MyCoachReplyProc, myRefCon,

&myAGCoachRefNum);

The prototype for a CoachReplyProc is as follows:

typedef pascal OSErr (*CoachReplyProcPtr) (Rect* pRect, Ptr name, long refCon);

Apple Guide will invoke your CoachReplyProc with the name (a null-terminated C-
string) and myRefCon from the AGInstallCoachHandler call. Set the value of pRect
to the object rectangle in global coordinates. The following is an example of a
CoachReplyProc. Apple Guide will draw the coach mark around, under, or through
the rectangle provided in the reply.

pascal OSErr MyCoachReplyProc(Rect* pRect, Ptr name, long refCon)
{

// Look up the name and return the rect in global coordinates.
OSErr err = MyRectForName(pRect, name);
return err;

}

Coach handlers persist across the opening and closing of guide databases. However,
you must remove the coach handler when your application quits. Use the
AGCoachRefNum that was returned to you in the AGInstallCoachHandler call.

OSErr err = AGRemoveCoachHandler(&myAGCoachRefNum);

RESPONDING TO THE USER’S HELP FOCUS
You can get Apple Guide to notify your application whenever a particular panel is
being displayed (in other words, whenever it’s the user’s help focus) by taking
advantage of Apple Guide’s authorable actions. To do this, use the authoring tool to

Figure 5. Coach marks
GIVING USERS HELP WITH APPLE GUIDE 17

d e v e l o p Issue 18 June 199418
attach an Apple event of your choosing to an “On Panel Show” or “On Panel Hide”
action. When the panel is shown or goes away, the Apple event is sent to your
application, which can then respond appropriately. For example, it might be useful to
attach an Apple event to an “On Panel Show” action for the last panel in a series of
instructions, to signal that the user has reached the end. See the authoring tool
documentation for information on how to attach an Apple event to a panel action.

RESPONDING TO CONTEXT CHECKS
Apple Guide can use context checks to get information about the user’s environment
and, based on that, to decide which panels to show in a presentation window. This
enables the Apple Guide author to tailor the help to the user’s current context. It
gives an individualized feel to the instruction and avoids requiring the user to
navigate through irrelevant information, things that users appreciate a lot. When you
integrate Apple Guide, the user’s context will usually be your application. The help
author will want to use information from your application to determine what help the
user needs. You’ll need to respond to these context checks by installing an Apple
event handler, processing the context check, and returning true or false.

Here’s how it works: An author attaches conditions to selected panels. These
conditions can be based on context checks or on user controls in other panels. While
the user is reading the content of a presentation window, Apple Guide looks ahead to
see which panel to show next. It evaluates the conditions, including context checks,
attached to each panel. When Apple Guide evaluates a context check, it invokes the
Apple event handler for the context check. The results of the evaluation based on the
context check determine whether the panel should be shown or skipped.

Context checks are usually encapsulated as Apple Guide “external modules” and
attached to a database. An external module is a code resource that executes in response
to the query from Apple Guide. Creating and using external modules is outside the
scope of this article, but see the TContext::ReplyToContext function in the sample
code for an example of how to handle context checks from within your application.

Apple Guide handles context-check queries similarly to coach-mark queries. You
install a context-check handler and Apple Guide calls it. First, the installation of the
handler:

AGContextRefNum myAGContextRefNum;
OSErr err = AGInstallContextHandler(MyContextReplyProc, eventID, myRefCon,

&myAGContextRefNum);

The prototype for a ContextReplyProc is as follows:

typedef pascal OSErr (*ContextReplyProcPtr)(Ptr pInputData,
Size inputDataSize, AEEventID eventId,
Ptr *ppOutputData, Size *pOutputDataSize,
long refCon);

When Apple Guide needs to do a context check, it invokes your callback with the
context-check inputData and eventId. It also passes the refCon that you provided in
the AGInstallContextHandler call. The ContextReplyProc should use NewPtr to
create a storage area for a short, set *ppOutputData to the value of the pointer, and
set *pOutputDataSize to sizeof(short). Always return a pointer to a short. Apple
Guide will dispose of the pointer.

You’re probably wondering why we didn’t pass a Boolean instead of *ppOutputData
and *pOutputDataSize. The reason is that the context reply is a special case of a more

general reply mechanism, which I’m not going to go into here. Just take my word for
it — it has to be this way.

Context handlers persist across the opening and closing of help databases. However,
you must remove the context handler when your application quits. Use the
AGContextRefNum that was returned to you in the AGInstallContextHandler call.

OSErr err = AGRemoveContextHandler(&myAGContextRefNum);

If you just want to field Apple events that don’t require a reply, see the earlier section
“Receiving the Author’s Events.”

MODIFYING HELP CONTENT
So far, we’ve talked only about main guide database files, the standalone files that
support all or part of an application. You can modify the content of a main guide
database by mixing in a mix-in guide database.

When a field upgrade involves new features and you don’t want to release a revised
guide database, you can use Apple Guide’s mix-in files to add help content to the
main guide database file. The mix-in files don’t appear in the Help menu. When
Apple Guide starts up, each mix-in file is merged with a main guide database file of
the corresponding DBType. Multiple mix-in files can be mixed in.

The process is automatic, but the guide database author can control it by using
Gestalt selectors. Each guide database file contains three Gestalt selectors. The
selectors must evaluate to true in order for a main database to appear in the Help
menu or a mix-in database to be mixed in. The Gestalt selectors in a given file are
combined using Boolean OR logic. Empty Gestalt selectors are ignored. If all Gestalt
selectors are empty, the file is unconditionally accepted.

There’s a really cool way for the programmer to handle this. If the first Gestalt
selector is the literal 'QLfy', Apple Guide will call a code resource of type 'QLfy' in
the database file. If the code resource returns true, the database file will be mixed in;
if it returns false, it won’t be. The prototype for the code resource is as follows:

short(*QualifyFuncType)(void);

The AGFile library described earlier provides accessor functions that you can use to
get the selectors and their values from any database. Only the authoring tool can
change the selectors, however.

QUITTING APPLE GUIDE
When you’ve finished using a guide database, use the AGClose function with a
pointer to the AGRefNum for the database.

err = AGClose(&myAGRefNum);

This will close the database and leave Apple Guide running in the background. When
you’ve finished with Apple Guide, use the AGQuit function.

err = AGQuit();

This will make Apple Guide quit. If you attempt to call AGQuit without first closing
the database, you’ll get a kAGErrDatabaseOpen error.
GIVING USERS HELP WITH APPLE GUIDE 19

d e v e l o p Issue 18 June 199420
If you start Apple Guide from your application, you should make it quit. Otherwise,
the Apple Guide background application and help window will hang around without
your application and consume system resources. This persistence is a result of the fact
that Apple Guide is available systemwide. Even if the user quits Apple Guide by
clicking the Cancel button or the close box, you must still balance every AGOpen
function with an AGClose.

STEPS TOWARD INTEGRATION
Now you know what’s involved in integrating Apple Guide into your application. If
you’re starting with a new product, you can build the use of Apple Guide into its
design from the beginning; this can provide you with a competitive edge. If you’re
revising an existing product, you can add Apple Guide as a key feature. In either case,
the instructional designer or technical writer should work closely with the software
engineers to include an interactive task-oriented guide as an integral part of the
design. Here’s a suggested plan for doing that:

1. The instructional designer prepares a specification for how the
application, Apple Guide, and the paper documentation will work
together. The specification should include a description of the
information that the guide database needs from the application
and vice versa — for example, how help is started, Apple events,
context checks, and coach-mark locations.

2. The software engineers use the instructional designer’s
specification to add the necessary Apple Guide features to the
application.

3. The instructional designer authors the database.

4. The use of the guide database is included in the application’s test
suite.

PUTTING IT ALL TOGETHER
It’s up to you and your database author to assemble Apple Guide’s features into useful
and coherent help for your user. This section gives some suggestions for making
Apple Guide as helpful as it can be.

MULTIPLE DATABASE FILES
You should provide different guide database files for different needs. Apple Guide
database possibilities include the following:

• an Apple Guide “agent” that guides the user through a task

• a tutorial to provide basic instruction

• command reference

• application shortcuts

• databases that match the user’s level of experience

• a “here’s what’s new in this release” database instead of a read-me
file (Marketing will love it!)

HELP EVERYWHERE YOU NEED IT
Your user should have access to help under all conditions. Here are some possibilities:

• from the Help menu

• from a help button in your tool palette

• from a help button in your modeless alerts and dialogs

• from a help hot key, enabling the user to click an object and bring
up a relevant help topic

CONTEXT SENSITIVITY
You, too, can use the buzzword “context sensitive.” Use the Apple Guide features to
provide “smart” help — help that’s tailored to the user’s current context:

• Start up Apple Guide in the look-for view with a list of context-
sensitive topics.

• Bypass the access window and go directly to the presentation
window when the user initiates help from a control.

• Respond to the guide database author’s context checks.

• Selectively mix in database content.

INTERACTIVITY
The built-in features of Apple Guide provide a high degree of interactivity. You can
provide even more with integration:

• Identify dynamic interface objects with coach marks.

• Have Apple Guide notify you when the user is at a particular help
panel (the help focus) so that your application can respond
appropriately.

• Have your help database author add user controls that send Apple
events to your application. Use them to allow the user to interact
with you.

NEXT STOP, GOLDEN MASTER
This article has covered the basics of how your application can integrate Apple
Guide. There’s more in the complete API, but you have enough here to get started.
With or without integration, the help system is there to serve your user. It shouldn’t
be compensation for bad interface design, nor should you add it just to save money
on manuals or user support. Help is there to make your user more productive with
your product, leading to a positive user experience, lots of recommendations, and
sales, sales, sales.

It can be done.
GIVING USERS HELP WITH APPLE GUIDE 21

Thanks to our technical reviewers Peter
Commons, Winston Hendrickson, Josh Jacobs,
Dave Lucky, Dave Lyons, and Eric Soldan.•

22
Adding basic QuickTime movie playback support to
most applications is simple, often just one day’s work.
Developers who want to do this turn first to Inside
Macintosh: QuickTime, where it says to use a movie
controller component. In Inside Macintosh: QuickTime
Components, you find some elementary movie controller
code samples, followed by a large reference section.
This is usually enough to get started, but there are a
few common problems. This column addresses some of
them, with special attention to compatibility with
future QuickTime releases. It assumes you’re familiar
with basic QuickTime and movie controller concepts.

OPENMOVIEFILE
All QuickTime movie files contain a movie resource,
usually stored in the file’s resource fork, and the actual
movie data, stored in the file’s data fork. To support
cross-platform QuickTime movies, QuickTime’s Movie
Toolbox also allows the movie resource to be stored in
the data fork along with the movie’s data. (To learn
how this is done, see John Wang’s Somewhere in
QuickTime column in develop Issue 17.) The usual
sequence of calls to load a QuickTime movie from a
file is: OpenMovieFile, NewMovieFromFile,
CloseMovieFile.

In the common case of the movie resource stored in
the resource fork, OpenMovieFile returns a file
reference to the resource fork of the movie file,
NewMovieFromFile loads the movie resource from
that resource fork and creates a QuickTime movie, and
CloseMovieFile closes the resource fork.

But if the movie was created on a computer running
Microsoft Windows and QuickTime for Windows
(using Adobe™ Premiere, for example), the file won’t

SOMEWHERE IN
QUICKTIME

Basic Movie
Playback Support

PETER HODDIE
d e v e l o p Issue 18 June 1994

PETER HODDIE writes code to introduce hard-to-find bugs into
QuickTime. In his spare time he writes code to introduce even
harder-to-find bugs into QuickTime.•
have a resource fork. Still, you can use the exact same
sequence of calls. When OpenMovieFile is called, the
file reference returned refers to the data fork;
NewMovieFromFile loads the movie from the data
fork, and CloseMovieFile closes the data fork.

Some developers don’t use OpenMovieFile; they use
FSpOpenResFile instead. While this works fine with
movies made specifically for the Macintosh, it fails
miserably otherwise. There’s a sample movie with no
resource fork, QuickBuck, on this issue’s CD, so you
can test this situation with your applications.

If you need to know whether OpenMovieFile opened
the resource fork or the data fork, you can examine the
file reference it returns, as follows:

pascal Boolean IsDataFork(short fileReference)
{

FCBPBRec anFCB;
Str63 fName;

anFCB.ioVRefNum = 0;
anFCB.ioRefNum = fileReference;
anFCB.ioFCBIndx = 0;
fName[0] = 0;
anFCB.ioNamePtr = (StringPtr)fName;

if (PBGetFCBInfoSync(&anFCB) != noErr)
return false;

return (anFCB.ioFCBFlags & 0x0200) == 0;
}

NEWMOVIECONTROLLER
When you need a user interface for playing a movie,
you should use NewMovieController to create a movie
controller appropriate for use with that movie.

A common mistake is to instead use the Component
Manager routine FindNextComponent or
OpenDefaultComponent to locate a movie controller.
This finds the first movie controller in the system’s list
of registered components. QuickTime has always
contained only one movie controller, so this worked
fine. However, future versions of QuickTime will
almost certainly include other movie controllers, so the
first one isn’t necessarily the most appropriate one.

To help track down those offending applications that
don’t use NewMovieController, there’s a system

extension on this issue’s CD which contains a different
movie controller. You’ll also find a movie, Other
Controller Movie, that should invoke the sample movie
controller. If any other movie invokes the sample movie
controller, or if Other Controller Movie invokes the
standard movie controller, the application you’re
testing isn’t using NewMovieController. This will
cause undesirable results in the not-so-distant future.

UPDATE EVENTS
If you use a movie controller in the recommended way
(that is, you allow all events to be filtered through
MCIsPlayerEvent), it updates all areas of the window
covered by the movie and the movie’s controls. Usually
that’s all a window contains, so all update events are
completely handled by the movie controller. This
works so well that some developers actually forget to
support update events at all.

Unfortunately, it’s not always so simple. QuickTime
movies aren’t always rectangular. If the movie is round
and the window is rectangular (as in Figure 1), there
are areas in the window that are not covered by the
movie or the movie controls. Any update events in
these areas are the responsibility of the application.

Figure 1. A nonrectangular movie

For applications using MCIsPlayerEvent, handling
update events is easy:

BeginUpdate(theWindow);
EraseRect(&theWindow->portRect);
EndUpdate(theWindow);

This sample code erases all areas of the window besides
the movie and its controls. Normally, erasing the
portRect of the window would erase the entire window,
but MCIsPlayerEvent sets the update region to just the
areas it didn’t already handle.
If you don’t handle update events, things are even
worse than you might think. The window won’t be
updated correctly, but more important, the operating
system will keep generating new update events. Update
events have a higher priority than idle events, so the
system will never generate idle events — the movie will
receive no time to play.

A sample round movie is provided on this issue’s CD so
that you can test your handling of update events.

KEYSTROKES
The standard movie controller provides for extensive
keyboard control from the user but ignores keystrokes
by default. They can be enabled with a single line of
code:

MCDoAction(mc, mcActionSetKeysEnabled,
(void *)true);

You might want to enable keystrokes only under
certain circumstances. For example, a word processor
might allow the movie controller to receive keystrokes
only when a movie is selected. You can use the
mcActionSetKeysEnabled action to enable and disable
keystrokes as necessary.

MOUSE CLICKS
All applications that use the standard movie controller
pass mouse clicks on to the controller. But not all
applications pass mouse clicks made on the movie itself.
Failure to pass such clicks will cause problems with any
future movie controllers that allow the user to interact
directly with the contents of the movie. For example, a
movie controller might allow the user to pan around
the image by dragging on the movie; if mouse clicks
aren’t passed through, using either MCClick or
MCIsPlayerEvent, this feature won’t work.

MOVIE CONTROLLER HELP
The standard Apple movie controller is simple enough
for most people to understand immediately, but it
supports help balloons anyway (future movie
controllers might be less obvious). If Balloon Help is
turned on, the standard movie controller automatically
displays help for its various controls, as well as for the
QuickTime movie itself. You don’t have to do anything
at all for this to work.

A problem can arise if your application puts up its own
help balloons. Since QuickTime movies are often
embedded in a larger document, the help balloons may
conflict. The result is that the movie controller’s help
balloon alternates with the application’s help balloon.
SOMEWHERE IN QUICKTIME: BASIC MOVIE PLAYBACK SUPPORT 23

24
(Use Balloon Help with the Scrapbook desk accessory
included with QuickTime to see what this looks like.)

The preferred solution is to stop the application from
displaying a help balloon when the cursor is over a
QuickTime movie or movie control. It’s easy to tell
whether a given point in a window intersects the movie:

Boolean PointInMovieController(MovieController
mc, WindowPtr w, Point where)

{
RgnHandle rgn;
Boolean result = false;

rgn = MCGetWindowRgn(mc, w);
if (rgn != nil) {

result = PtInRgn(where, rgn);
DisposeRgn(rgn);

}
return result;

}

A second solution is to stop the movie controller from
displaying its help balloons — necessary if you want to
display your own help for QuickTime movies. To do
this, install an action filter on the movie controller.
Every action that occurs in the movie controller (play,
step, update, key down, and so on) is passed through a
single filter function. Through this filter, an application
can gain access to all activity that occurs in the movie
controller.

The MegaMovies application on this issue’s CD
provides a window that displays events that pass
through the action filter. The action of interest is
mcActionShowBalloon. When this action is sent,
QuickTime is about to put up a new help balloon. One
of the parameters passed to the action filter is a pointer
to a Boolean. The filter can set this Boolean to false to
tell the movie controller not to show a balloon. The
following code fragments show how to install a simple
action filter to prevent the movie controller from
displaying help balloons.

pascal Boolean noBalloonsActionFilter
(MovieController mc, short action,
void *params, long refCon)

{
if (action == mcActionShowBalloon)

*(Boolean *)params = false;
return false;

}

. . .
MCSetActionFilterWithRefCon(mc,

&noBalloonsActionFilter, 0);
d e v e l o p Issue 18 June 1994
CURSOR SHAPE
Many applications change the shape of the cursor
depending on what it’s currently over. The standard
movie controller never changes the cursor, but other
movie controllers might want to. Unfortunately, many
applications need to control the cursor themselves —
when a movie controller changes the cursor, these
applications change it back immediately.

A simple solution is for applications to change the
cursor only when it’s first placed over a movie. (To
determine whether a point is over the movie, use
PointInMovieController.) After that, let the movie
controller control the cursor until it exits the area
over the movie. To give the movie controller the
opportunity to change the cursor’s shape, you must call
either MCIsPlayerEvent or MCIdle frequently while
the cursor is over the movie, even if the movie is
stopped. The sample movie controller on this issue’s
CD changes the cursor when it’s over the movie,
providing an easy way to debug such a scheme.

WINDOW ALIGNMENT
A simple way to improve a QuickTime movie’s
playback performance is to ensure that the movie is at a
good location on the screen. The exact definition of a
“good location” varies, based on the screen depth and
the processor. A typical good location is one where the
first pixel of each scan line begins on a long-word
boundary. This allows the decompressors to write data
in the most efficient way. On slower machines, proper
placement can provide the necessary performance
improvement to deliver smooth playback.

Fortunately, applications don’t have to understand the
details of how to find a good location. QuickTime’s
Image Compression Manager provides routines to
position a window at these locations. When you create
a window, you can use AlignWindow to move it to a
good location before making it visible. If a window is to
be moved, AlignScreenRect will modify the chosen
location to make it a good location. When the user
drags a window, call DragAlignedWindow instead of
DragWindow to place the window in a good location.
Examples of these calls are shown below.

WindowPtr w;
Movie m;
Rect r;

// Code to create a properly aligned window.
w = GetNewCWindow(128, nil, (WindowPtr)-1);
m = getMovie();
GetMovieBox(m, &r);
AlignWindow(w, false, &r, nil);

// Code to drag a window with a movie in it and
// keep the window aligned properly.
GetMovieBox(m, &r);
DragAlignedWindow(w, theEvent.where, nil, &r, nil);

These alignment routines were added in QuickTime
1.5, so make sure that QuickTime 1.5 or later is
installed before you call them.

MOVIE CONTROLLER EDITING
The standard movie controller supports the editing
commands Undo, Cut, Copy, Paste, and Clear, but this
functionality is turned off by default. To turn it on, call
MCEnableEditing as follows:

MCEnableEditing(mc, true);

You can then use movie controller routines to
implement editing:

Movie m = nil;

switch (editMenuSelection) {
case menuUndo: MCUndo(mc);

break;
case menuCut: m = MCCut(mc);

break;
case menuCopy: m = MCCopy(mc);

break;
case menuPaste: MCPaste(mc, nil);

break;
case menuClear: MCClear(mc);

break;
}
if (m != nil) {

PutMovieOnScrap(m, 0);
DisposeMovie(m);
}

Now you have to enable and disable the various menu
items. You could call MCGetControllerInfo, which
returns a long word of flags indicating, among other
things, which Edit menu items should be enabled.
Thanks to Jim Batson, Ken Doyle, and John Wang for reviewing
this column.•
With QuickTime 1.5, there’s an easier way: call
MCSetUpEditMenu, and the movie controller will
enable and disable the items in the Edit menu for you.

MCSetUpEditMenu(mc, theEvent.modifiers,
editMenuHandle);

This routine will even change the menu contents if
appropriate. For example, Undo becomes Undo Paste
if the last movie controller action was Paste; after Undo
Paste is chosen, it becomes Redo Paste. What’s more, if
the user holds down modifier keys when pulling down a
menu, other commands change as well. For example,
holding down the Option key changes Paste to Add and
Clear to Trim. (See Figure 2.)

Figure 2. Standard and modified Edit menus

MCSetUpEditMenu assumes the Edit menu is
arranged in the standard way. If yours is nonstandard,
you’ll need to use MCGetMenuString to obtain the
appropriate text for each standard Edit command, and
then enable and disable the menu items according to
the information from MCGetControllerInfo.

JUST DO IT
It’s so easy to add movie playback support that it’s often
well worth the effort. As long as you keep these few
simple things in mind, you shouldn’t have any
problems, even with future versions of QuickTime.

Standard Modified
SOMEWHERE IN QUICKTIME: BASIC MOVIE PLAYBACK SUPPORT 25

26
Programming for Flexibility:
The Open Scripting Architecture
PAUL G. SMITH

d e v e l o p Issue 18 June 1994
Users — and developers — waited a long time for the Macintosh
Operating System to support the ability to attach and run scripts as a
way of customizing applications. The Open Scripting Architecture
(OSA) that’s part of AppleScript finally provides the necessary services.
Now you can realize massive gains in flexibility by using embedded
scripts and can pass similar gains along to the user by making your
application OSA savvy.

Thanks to Apple’s Open Scripting Architecture (OSA), an application can now be as
flexible as a set of Lego building blocks. Defining the program’s high-level behavior
using scripts instead of traditional program code makes possible an unprecedented
amount of flexibility, a cause for celebration particularly among in-house developers
and developers of custom software. Want to make a change in the way your software
works? It’s simple to modify the scripts that define the behavior of the objects
involved. Want to make a customized solution, using the program’s components as
building blocks? Easy: just write some new scripts. Want to construct an OpenDoc
part from your program? You’re already partway there.

Varying degrees of OSA support are open to your application. The OSA gives you
the ability to do the following:

• execute scripts previously created with the AppleScript Script
Editor

• store compiled scripts and other script values in your program and
data files

• directly compile and execute scripts

• decompile existing scripts, for editing

• use embedded scripts to automate your program’s handling of
Apple events

• enable users to customize and extend your program’s capabilities
by attaching scripts to objects in the application’s domain
PAUL G. SMITH (AppleLink SMITH.PG) is a
developer and consultant specializing in intelligent
agent software, computer-based communications,
and object-oriented programming techniques,
currently in his eleventh year of developing for the
Macintosh. He divides his time between the
offices of Full Moon Software Inc. near Cupertino,
California, and his native England, where he runs

a small European consultancy called commstalk
hq and lives with his wife, Steph, and his cat,
Mack. Steph leads a more glamorous life than
Paul, having been a dancer in big productions in
the London West End and now making glorious
hats as a fashion milliner; Mack leads an easier
life than Paul and takes a lot more naps.•

Further, the OSA makes it possible for all customizable applications to present a
common set of scripting languages and dialects for users to choose from.

This article orients you to the OSA by outlining an OSA-savvy programming
structure and then describing techniques you can use to import scripts from the
Script Editor, run a script in your application, attach scripts to objects, compile and
decompile scripts, route Apple events to scripts, and handle user-interface events.
The programming structure and these techniques are demonstrated in the source
code for the sample program SimpliFace on this issue’s CD. The AppleScript
Software Development Toolkit, available from APDA, contains the essential tools for
OSA development.

STRUCTURING THE OSA-SAVVY PROGRAM
You need to do some preliminary setup work in your application before you can take
full advantage of the services offered by the OSA and make use of scripts. Depending
on how your application is already structured, this can mean anything from a slight
restructuring to a complete rewrite from the ground up. I’ll describe the basic
requirements for an OSA-savvy program here and then show you the structure of
SimpliFace so that you can see how one looks.

THE BASIC REQUIREMENTS
The first requirement for an OSA-savvy program is that it comply with the Apple
event object model. As you probably know, this model sets out a standard way of
structuring a program so that it can be controlled from other programs and so that
it’s scriptable using standard terminology familiar to the user. This model is solution
oriented (that’s the crucial part) because it concentrates on what users do with the
application, not on how they and the application do it. The articles “Apple Event
Objects and You” in develop Issue 10 and “Better Apple Event Coding Through
Objects” in develop Issue 12 provide useful information about the Apple event object
model and how to support it in your application. The Apple Event Registry is the
essential reference for standard Apple event classes and commands.

The second requirement (which isn’t completely separable from the first) is that the
application be fully factored — that is, that it separate the interface from the
operations. In a factored program, the actions that result when users choose menu
items, click buttons, and so on, generate a sequence of Apple events. When a user-
initiated action is dispatched as an Apple event, or when an external program or script
sends an Apple event, the program resolves which object the Apple event relates to. It
then passes the Apple event to the appropriate handler for that object; this program
code is responsible for the object’s behavior.

When your application complies with the Apple event object model and is fully
factored, and when it publishes its scripting terminology, it’s possible to make it
attachable — that is, to make it handle and store the data involved in the process of
embedding or attaching a script. (I say “embedding a script” when I mean building
one in at the program development stage, whereas I refer to “attaching a script” when
I mean it’s added or modified by the user.) And once your program enables scripts to
be attached to objects such as windows, documents, and the application object itself,
these scripts can customize the program’s handling of object-model Apple events.

Scripts attached to program objects can affect the behavior of the program and its
objects in two cases. In the first case, scripts attached to objects can modify the
behavior of those objects when Apple events are resolved and handled. In the second
case, scripts attached to user-interface objects like menus and buttons can define the
sequence of Apple events that result from user-initiated actions. Both of these
PROGRAMMING FOR FLEXIBILITY: THE OPEN SCRIPTING ARCHITECTURE 27

d e v e l o p Issue 18 June 199428
mechanisms may have a place in your application. Fortunately, your application’s
structure doesn’t have to change much to allow scripts to customize behavior.

An attachable program can give a compiled script first crack at handling an incoming
Apple event instead of passing the event first to the handler (the program code that
defines the object’s behavior). If the script handles the Apple event, the program code
doesn’t get called; if the script continues the Apple event (that is, passes the message
to the script’s parent object) or if it doesn’t handle it, the program code gets called as
usual, as illustrated in Figure 1. If necessary, the script can modify or add to the
original parameters for the Apple event before passing it on to the program code.

For more on handling Apple events, see the description of command handlers
on page 241 of the AppleScript Language Guide.•

Thus, attaching scripts to objects can make the operation of your program a great
deal more flexible. But you can go even further: instead of generating Apple events by
making long-winded calls to the Apple Event Manager in response to user-initiated
actions, you can attach scripts to user-interface objects. Selection of one of these
objects then results in a script being called; the result of executing the script is that
the appropriate Apple events are sent, as illustrated in Figure 2. In the first case, the
primary reason the program makes the Apple event calls is so that the action is
recordable; in the second case, the script makes the Apple event calls anyway, so that
no extra work is required to make the action recordable, and thus the recordability
comes for free. The overhead involved in this is minimal (and it may even reduce the
bulk of program code); the increased flexibility is massive. It’s not even necessary to
make these embedded scripts user changeable — that’s entirely up to you.

A SAMPLE PROGRAM: SIMPLIFACE
The sample program SimpliFace on this issue’s CD demonstrates the principles just
outlined. SimpliFace is a basic scriptable and attachable user-interface builder written
in MPW C++. SimpliFace constructs scripted windows that can contain text labels
(though not editable text) and buttons. It demonstrates many of the features of the
OSA APIs, uses a lightweight C++ framework for Apple event object model
compliance, suggests a novel approach to a fully factored application, and allows

In a program that‘s not attachable

In an attachable program

Redispatched Apple eventIncoming Apple event

Program code
that defines
behavior

Program code
that defines
behavior

If script continues or
doesn’t handle the event

Script

Incoming Apple event

Figure 1. Routing an Apple event

scripts to be attached to all application objects. SimpliFace has little preprogrammed
behavior; virtually everything is defined through scripts supplied by the user.

SimpliFace is built around a rough-and-ready C++ framework, inspired by the one
used in the Apple Shared Library Manager’s sample applications. I like to use
lightweight C++ classes that don’t depend on one another too much (thus aiding their
reuse), so the program structure isn’t as tightly integrated as that of, say, a MacApp
program. In the spirit of other Apple sample applications, most of the error handling
has been left for later.

Figure 3 illustrates the object containment hierarchy for SimpliFace at run time.
There is one application object, which can contain zero or more window objects.
Each window object can contain button objects and/or text label objects.

Figure 4 shows the SimpliFace class hierarchy. All application-domain scriptable
objects derive from a TScriptableObject class (see the source file ScriptableObjects.h)
that has an attached script and is able to assist with object resolution and Apple event
handling. A TObjModelToken class (see ObjModelTokens.h) is defined to manage
token resolution and Apple event dispatching; the interaction of these is managed
from a set of static functions in the file ObjModelEvents.cp.

With no script attached to user-interface object

With script attached to user-interface object

Program
routine that
implements
the action

Program code
that defines
behavior

User-initiated action Program code
that defines
behavior

Script that
 implements
 the action Apple event

Apple event
User-initiated action

Figure 2. Generating Apple events

Application (settable property: script)

Window (settable properties: script, name, bounds, etc.)

Button (settable properties: script, name, kind, bounds)

Text label (settable properties: script, name, contents, bounds)

Figure 3. SimpliFace’s object containment hierarchy
PROGRAMMING FOR FLEXIBILITY: THE OPEN SCRIPTING ARCHITECTURE 29

d e v e l o p Issue 18 June 199430
The application’s behavior is defined in the files Application.cp and SimpliFace.cp
(the latter contains the main program function). Outside the program’s object
containment hierarchy, a separate script administrator class, TScriptAdministrator, is
defined. This class is responsible for fetching the script attached to objects and
preparing it for execution, and serves to encapsulate the script-handling code. It’s
implemented in the file ScriptableObjects.cp.

The window, button, and text label objects are created by sending SimpliFace
appropriate Apple events. When it receives an Apple event, SimpliFace resolves the
object that the event is aimed at (the direct parameter of the event specifies the target
object). SimpliFace then dispatches the Apple event (unless it’s an Open Application,
Get Data, or Set Data event) to the script of the target object. The work for this is
handled in the file ObjModelEvents.cp. We’ll look in greater detail at how SimpliFace
handles an incoming Apple event in the section “Routing Apple Events to Scripts.”

Two sample scripts written in the AppleScript language are supplied to demonstrate
SimpliFace; you can run these using the Script Editor. One is the startup script that’s
run whenever SimpliFace is launched, and the other (called Test Simple Window)
creates a window that contains two buttons and a text label. Here’s the latter script:

make new window ¬
with properties {name:"Tests", bounds:{60, 60, 350, 300}}

set the script of window "Tests" to winScript
open window "Tests"

make new button ¬
with properties {name:"Quit", kind:standard, bounds:{10, 50, 80, 70}} ¬
at end of window "Tests"

make new button ¬
with properties {name:"Hello", kind:standard, bounds:{10, 10, 80, 30}} ¬
at end of window "Tests"

make new text label ¬
with properties {name:"Data entry", contents:"I'm a text label!", ¬
bounds:{90, 80, 280, 130}} ¬
at end of window "Tests"

Open the SimpliFace Dictionary, using the Script Editor, to see more details of the
scripting interface.

TSimpliFace

TButtonObj

TLabelObj

TInterfaceObj

TApplication

TScriptableObject

TObjModelToken

TWindowObj

TScriptAdministrator

Figure 4. SimpliFace’s class hierarchy

SimpliFace doesn’t store window properties or object scripts on disk, so every time
you launch it you need to set up the application script, and you must recreate all
windows and window objects. This is facilitated by the automatic loading and
execution of the startup script (called SimpliFace Startup) whenever SimpliFace is
launched. To prevent this script from running, hold down the Control and Command
keys while SimpliFace starts up. The mechanism used to run this script is described
under “Running Scripts” later in this article.

TECHNIQUES FOR OSA-SAVVY PROGRAMS
Now that you have a general idea of how to structure an OSA-savvy program, we’ll
consider the specific techniques your program can use to take advantage of the OSA’s
services and enjoy the flexibility offered by using scripts. This section describes how
to import scripts from the Script Editor, run scripts from within the application,
attach scripts to objects, compile and decompile scripts, route Apple events to scripts,
and handle user-interface objects. You won’t necessarily need to implement all of
these techniques in your program, but you should be aware of them so that you can
decide how you want to implement scripting.

IMPORTING SCRIPTS FROM THE SCRIPT EDITOR
Unless you have a specialized requirement and want to write your own script editor,
you’ll get the best mileage by creating and compiling scripts with Apple’s Script
Editor and then importing these scripts into your application. You have some choices
about how to approach importing scripts into your application:

• You can keep the scripts in Script Editor files and load them only
when needed. This is the approach SimpliFace takes with its
startup script: it looks in the same folder as the application for the
file called SimpliFace Startup and loads and executes the script
from that file.

• Extending this approach, your program can maintain a folder of
script files and look there for named files. For the user, adding a
new script file is as easy as dragging it to the folder in the Finder.

• Alternatively, your program can offer an import function that
allows the user to select a script file from which a compiled script
is to be imported. Your program can then store the compiled script
object in any way it wishes, using its own data storage mechanisms.

To help debug the Apple event handlers in SimpliFace, I implemented a simple debug
transcript tool. A small amount of code (borrowed from MacApp) is used to intercept
the MPW <stdio> library. The information thus captured is packaged and sent via a
private Apple event to the Debug Transcript program, which you’ll find along with the
rest of SimpliFace on the CD.

The debugging mechanism is managed in the SimpliFace module DebugTrace. If you
open the Debug Transcript program before you run SimpliFace, a lot of information
about Apple events received and processed will appear in the transcript window.
Apple events are decoded in the Apple event prehandler using the AEPrint routine,
part of Jens Alfke’s AEGizmos library. You can add to the information displayed
simply by adding extra printf statements to the program code.

DEBUGGING SIMPLIFACE
PROGRAMMING FOR FLEXIBILITY: THE OPEN SCRIPTING ARCHITECTURE 31

d e v e l o p Issue 18 June 199432
Before we examine the technique you should use to import scripts, we need to quickly
review how the Script Editor and the OSA store scripts. AppleScript can compile
scripts in two forms: as contexts, which can contain handlers (for Apple events and
user-defined subroutines) and properties, and as ordinary compiled scripts, which can
only be executed. The Script Editor always compiles and saves scripts as script
contexts. To the OSA, compiled scripts are values and can be stored in variables and
manipulated just like numbers, text, lists, or records. When a program passes a script
value to the OSA, or when the OSA passes a script value to a program, it’s referred to
through a special magic cookie called an OSAID. OSAIDs are 32-bit-long integers,
and the OSA uses an internal mechanism to map these onto the data they refer to.

The OSA provides a pair of routines that you can use to convert OSAIDs to and from
data handles you can save. OSAStore converts an OSAID into an AEDesc (Apple
event descriptor), of which the data handle portion can be saved. OSALoad does the
opposite, unpacking the contents of the data handle portion of an AEDesc (previously
saved using OSAStore) to create a new OSAID. A compiled script context that’s been
saved using the OSAStore command is contained in resource number 128 of type
'scpt' (kOSAScriptResourceType, the same constant as typeOSAGenericStorage), one
of the four resources of a Script Editor compiled script file.

The AEDesc is the basic Apple event data structure, described in Inside
Macintosh: Interapplication Communication, Chapter 3, and the earlier Inside
Macintosh Volume VI, Chapter 6.•

SimpliFace’s LoadScriptFromFile routine, shown in Listing 1, imports a compiled
script from a Script Editor file; you can use it as a model regardless of which of the
three approaches outlined above you choose to take. The key tasks undertaken by this
routine (apart from locating and opening the resource fork of the script file) are
loading the resource handle, putting a reference to it into an AEDesc of type 'scpt'
(typeOSAGenericStorage), and calling OSALoad to generate an OSAID that refers
to the compiled script.

Listing 1. TScriptAdministrator::LoadScriptFromFile

OSAError TScriptAdministrator::LoadScriptFromFile(FSSpec *fileSpec,
OSAID *theScriptID)

{
short fileRef = FSpOpenResFile(fileSpec, fsRdPerm);
OSAError err = ResError();

if (err == noErr) {
Handle h = Get1Resource(kOSAScriptResourceType, 128);
if (h != nil) {

AEDesc scriptData;
scriptData.descriptorType = typeOSAGenericStorage;
scriptData.dataHandle = h;
err = OSALoad(gScriptingComponent, &scriptData,

kOSAModeNull, theScriptID);
ReleaseResource(scriptData.dataHandle);

}
CloseResFile(fileRef);

}
return err;

}

RUNNING SCRIPTS
Now that you’ve loaded the script, it can be executed. So how do you run a script in
your application? It’s easy — all you do is pass the compiled script (which can be a
script context or a simple compiled script) to the OSA routine OSAExecute. To show
how it’s done, here’s some code from SimpliFace that executes the startup script:

FSSpec theFileSpec;
OSAID startupScript = kOSANullScript;

// ... Set up theFileSpec here....
err = LoadScriptFromFile(&theFileSpec, &startupScript);
if (err == noErr && startupScript != kOSANullScript) {

OSAID resultID = kOSANullScript;
err = OSAExecute(gScriptingComponent, startupScript,

kOSANullScript, kOSAModeNull, &resultID);
// ... More code goes here....

}

The first parameter to the OSAExecute routine and all other OSA routines is the
scripting component instance. To make any OSA calls, you need to have opened a
connection to a scripting component (in this case, AppleScript) by means of the
OpenDefaultComponent call. This returns a component instance that you can save
(in this case, as gScriptingComponent) and pass to future OSA calls.

The second and third parameters to OSAExecute are both OSAIDs referring to
compiled scripts. The second parameter refers to the script to be executed and the
third parameter refers to the script context in which global variables will be bound
(if the script to be executed is a normal compiled script). Script contexts in the
AppleScript OSA component are equivalent to script objects in the AppleScript
language. Whenever a script object is compiled that contains commands in the body
(not inside a handler), these commands are collected into a default run handler (the
handler that’s executed when the script object is sent the run message). The Script
Editor uses this same method to execute scripts. The run handler executes using the
context to access and store properties and global variables.

In the above fragment, we supply kOSANullScript for the third parameter because
the script we’ve loaded from the Script Editor file is a script context. If a script
context with a run handler is given as the second parameter to OSAExecute, the run
handler is extracted from the context and used as the compiled script. In this case, the
third parameter passed to OSAExecute is ignored.

The above code from SimpliFace executes a predefined compiled script that sets up
the initial state of the program. You can use the same technique to attach scripts
directly to menu functions or to buttons in dialog boxes and data entry forms, but I
don’t recommend that because you can gain more flexibility by generating Apple
events from user actions and then letting scripts handle the events. You can also use
this technique to extend your application so that scripts are triggered when
interesting events occur. For instance, if you were writing a storage management
utility you could let the user declare timers that triggered scripts at predefined
intervals or at specified times of the day or week to perform backups and disk
reorganizations.

ATTACHING SCRIPTS TO OBJECTS
Attaching a script to an application-domain object can be a simple matter of
extending the definition of the object to include a script property. The Apple Event
PROGRAMMING FOR FLEXIBILITY: THE OPEN SCRIPTING ARCHITECTURE 33

d e v e l o p Issue 18 June 199434
Registry defines a class, property, and Apple event data type for script properties. The
constants for all these have the same value: 'scpt' (typeOSAGenericStorage).

SimpliFace demonstrates how a script property can be attached to an object. As noted
earlier, all application-domain objects in SimpliFace that have an object-model
counterpart are derived from the class TScriptableObject. The definition of this class
includes a field of type OSAID called fAttachedScript, referring to the object’s
attached script. Listing 2 shows the source code of the SetProperty function from the
class TScriptableObject.

You or the user can write an AppleScript script that sets the script property of an
object. Here’s an example that sets the script property of a window object:

tell application "SimpliFace"
script myWindowScript

on close
global numTimesClosed
set numTimesClosed to numTimesClosed + 1
continue close

end close
end script

set the script of window "MyWindow" to myWindowScript
end tell

Listing 2. TScriptableObject::SetProperty

OSErr TScriptableObject::SetProperty(DescType propertyID,
const AEDesc *theData)

{
OSAError err = errAEEventNotHandled;

// Used switch statement instead of if statement to allow for
// future expansion.
switch (propertyID) {
case pScript:

OSAID theValueID = kOSANullScript;
if (theData->descriptorType == typeChar

|| theData->descriptorType == typeIntlText)
err = OSACompile(gScriptingComponent, theData,

kOSAModeCompileIntoContext, &theValueID);
else // If it's not text, we assume the script is compiled.

err = OSALoad(gScriptingComponent, theData,
kOSAModeNull, &theValueID);

if (err == noErr) {
if (fAttachedScript != kOSANullScript)

OSADispose(fAttachedScript);
fAttachedScript = theValueID;

}
break;

}
return (OSErr)err;

}

If your application is constructed so that parts of the runtime behavior are defined
using attached scripts, it becomes feasible to write other scripts that update the
application to its latest version. These scripts could even update applications across a
network. What a boon this would be to MIS departments!

COMPILING AND EXECUTING SCRIPTS
In some circumstances, your program will need to compile a script itself instead of
importing a compiled script from the Script Editor. For instance, the Do Script
Apple event lets the scripter supply the script source code as the event’s direct
parameter. To handle this Apple event, your program needs to compile the source
code before it can be executed. You might also want the user to be able to set the
script property of an object by supplying the source code instead of a compiled script.

The OSA provides a routine called OSACompile that compiles script source code
and returns an OSAID. The SimpliFace function TScriptableObject::SetProperty,
shown in Listing 2, uses OSACompile.

SimpliFace uses a different routine, OSACompileExecute, to implement the Do Script
Apple event. This is a convenience routine that compiles some script source code and
immediately executes it. Listing 3 shows DoScript, the SimpliFace function that
handles the Do Script Apple event. In this function, the AEDesc scriptDesc contains
the script to be executed. The data type is checked to see if it contains source code; if
so, the script is compiled and executed using OSACompileExecute. If a script value
result is returned by the OSA, it’s coerced to an AEDesc and returned in resultDesc.

Eagle-eyed students of the Apple Event Registry will notice that the DoScript
function doesn’t implement the other standard form of the Do Script Apple event,
which allows the script to be specified by reference to a script file on disk. As
discussed earlier in the section “Importing Scripts from the Script Editor,” the source
code for SimpliFace includes a mechanism to read a script from a script file, so I’ll
leave it to you to modify TScriptAdministrator::DoScript.

Listing 3. TScriptAdministrator::DoScript

OSAError TScriptAdministrator::DoScript(AEDesc *scriptDesc,
AEDesc *resultDesc)

{
OSAError err = errAEEventNotHandled;

if (scriptDesc != nil && (scriptDesc->descriptorType == typeChar
|| scriptDesc->descriptorType == typeIntlText)) {

OSAID resultID = kOSANullScript;
err = OSACompileExecute(gScriptingComponent, scriptDesc,

kOSANullScript, kOSAModeAlwaysInteract, &resultID);
if (err != noErr)

DumpOSAerrorInfo(gScriptingComponent, err);
else if (resultID != kOSANullScript)

err = OSACoerceToDesc(gScriptingComponent, resultID,
typeWildCard, kOSAModeNull, resultDesc);

OSADispose(gScriptingComponent, resultID);
}
return err;

}

PROGRAMMING FOR FLEXIBILITY: THE OPEN SCRIPTING ARCHITECTURE 35

d e v e l o p Issue 18 June 199436
DECOMPILING SCRIPTS
The counterpart of the Set Data Apple event is the Get Data Apple event. An
attachable application should allow scripts to get, as well as set, the script property of
objects. By default, the script property should be returned as a compiled script, but
the definition of the Get Data Apple event permits the caller to request a property as
a different data type. If this data type is text, and if the script property of an object is
being requested, your program will need to decompile the script.

The function OSAGetSource is used to extract the source code from a compiled
script. SimpliFace demonstrates the use of OSAGetSource in the GetProperty
function from the class TScriptableObject (see Listing 4). The SimpliFace Get Data
handler extracts the desired data type from the Apple event and passes it to the
GetProperty function in the parameter wantType; if the caller doesn’t specify a data
type, typeWildCard is used to signify the default type for the property. If the object
has an attached script, GetProperty checks to see what data type is requested by the
caller. If the data type is text, the script is decompiled and the source code is returned.
Otherwise, the compiled script is returned as the result using the OSAStore function
(the converse of OSALoad, discussed earlier).

ROUTING APPLE EVENTS TO SCRIPTS
As noted earlier in this article, the way to customize your application’s handling of an
object-model Apple event is to pass the event to an attached script first, passing it to
the program’s normal handler for that event only if the script fails to handle or

Listing 4. TScriptableObject::GetProperty

OSErr TScriptableObject::GetProperty(DescType propertyID,
DescType wantType, AEDesc *result)

{
OSErr err = errAEEventNotHandled;

switch (propertyID) // Used to allow for future expansion
{
case pScript:

if (fAttachedScript != kOSANullScript) {
printf("::GetProperty(): get script as type '%.4s'\n",

(char*)&wantType);
if (wantType == typeChar || wantType == typeIntlText) {

// If caller wants text, we need to decompile the script.
err = (OSErr)OSAGetSource(gScriptingComponent,

fAttachedScript, wantType, result);
}
else {

if (wantType == typeWildCard)
wantType = typeOSAGenericStorage;

err = (OSErr)OSAStore(gScriptingComponent, fAttachedScript,
wantType, kOSAModeNull, result);

}
}
break;

}
return err;

}

continues the event. Note that this can be done only if the attached script was
compiled as a script context; simple compiled scripts can’t be used this way. The OSA
provides two functions for passing Apple event handling to script contexts:
OSAExecuteEvent returns the result of executing the script as an OSAID that you
must coerce back to an AEDesc to supply to the reply event, and OSADoEvent
automatically puts the result into the reply event.

OSADoEvent had a problem in version 1.0 of AppleScript: it never disposed of
the temporary OSAID it used to hold the result of executing the script. This could cause
the AppleScript 1.0 component to fail. The recommended workaround was to use
OSAExecuteEvent. This problem was fixed in AppleScript 1.1.•

The AppleScript language permits a message to be “continued” — that is, passed to
the parent of the script object that’s currently handling the message. The AppleScript
Continue statement is similar to the Pass statement in HyperTalk. The OSA allows
your program to get in on the act when a message is continued, by specifying a
resume/dispatch procedure (so called because it lets your program resume handling
of a continued event or dispatch an event that isn’t handled in the script). To do this,
you use the OSASetResumeDispatchProc call. The resume/dispatch procedure takes
the same parameters as an Apple event handler and might be your application’s
default handler for the Apple event in question. It will be called by the OSA during a
call to OSAExecuteEvent or OSADoEvent if the script continues the Apple event.

The OSA also allows you to specify another kind of resume/dispatch handling: if
instead of specifying an actual Apple event handler for the resume/dispatch procedure
you pass the special constant kOSAUseStandardDispatch or kOSADontUsePhac, and
if the script continues the handling of an Apple event, it will be dispatched directly to
the default Apple event handler for that event, ignoring any special prehandling. To
make full use of this facility, you need to implement an Apple event prehandler
procedure in your program as well.

The prehandler gets first crack at any incoming Apple event; it’s called for all Apple
events that are dispatched to the application, except those that have been
redispatched by the OSA (assuming you set up resume/dispatch handling as just
described). A prehandler procedure is installed by calling the Apple Event Manager
function AEInstallSpecialHandler.

To illustrate how Apple events are routed to scripts, let’s look in detail at how
SimpliFace handles an incoming Apple event.

1. The Apple Event Manager routine AEProcessAppleEvent passes
the event to the program’s Apple event prehandler procedure.

2. The prehandler procedure tries to resolve the application-domain
object that should handle the Apple event, by resolving the event’s
direct parameter.

3. If an application-domain object is successfully resolved and if it has
a script attached, the resume/dispatch mechanism is set up and the
Apple event is passed to the script by a call to OSADoEvent. If the
script handles the Apple event successfully, we’re done with it.

4. If the script doesn’t handle the Apple event, the OSA returns the
error errAEEventNotHandled, which the prehandler returns as its
result. The Apple Event Manager then redispatches the Apple
event to the appropriate installed handler.

5. If the script continues the Apple event, it’s redispatched by the
OSA directly to the installed handler for that Apple event.
PROGRAMMING FOR FLEXIBILITY: THE OPEN SCRIPTING ARCHITECTURE 37

d e v e l o p Issue 18 June 199438
6. If there is no script to handle the event (maybe the application-
domain object doesn’t have an attached script) or the attached
script handles but continues the Apple event, the handler you
previously installed for the Apple event receives the event and tries
to resolve the application-domain object that should handle it.

7. If an application-domain object is successfully resolved, it’s asked
to handle the Apple event, implementing the object’s standard
behavior.

The prehandler routine from SimpliFace is shown in Listing 5. The routine starts by
extracting the Apple event class and ID from the event record. It then checks to see if
the attached-script behavior should be ignored: SimpliFace doesn’t pass the Open
Application, Get Data, and Set Data Apple events to attached scripts. The routine
then tries to resolve the direct object of the Apple event, creating a token object. If no
token is resolved, a token that refers to the application object is created. A global
script administrator object is then asked to locate and return the attached script;
unless there was no attached script, the Apple event is passed to the script by calling
the SimpliFace routine ExecuteEventInContext, which in turn calls OSADoEvent. If
the script fails to handle the Apple event, or if an error occurs, the error is returned
via the Apple Event Manager.

HANDLING USER-INTERFACE EVENTS
User-interface events, such as mouse clicks, keystrokes, and menu selections, are
handled in a special way in SimpliFace. This allows SimpliFace to delegate the
behavior of these user-interface objects to their attached scripts. User-initiated mouse
and keyboard actions are intercepted by a routine in SimpliFace.cp called
TSimpliFace::HandleEvent. This routine, in conjunction with a group of support
routines, packages and dispatches the user-initiated event as a system event. This
special kind of Apple event is dispatched to the script of the object the user clicked in,
if there is one, or the current window if not. If there’s a mouse click in a text field or
button, the script for the field or button (if there is one) gets the event.

If any runtime error occurs in a script while an event is being handled, or if the
message is continued out of the last handler that caught it, or if an event isn’t handled
at all, the normal behavior for that event takes place in the program code. For
instance, when a SimpliFace window is closed (either by a script’s sending a Close
event or by the user’s clicking in the window’s close box), a Close event is dispatched
to the window’s script (if it has one). If this script handles the event and returns
without error, the Close event goes no further and the window stays open. If the
script fails to handle the event or continues the Close event, the window is closed by
the default Apple event handler in the C++ program code.

FURTHER OSA SUPPORT
Now that you have a grasp of the basic requirements of an OSA-savvy program and
know the techniques to import scripts from the Script Editor, run those scripts,
attach scripts to objects, compile and decompile scripts, route Apple events to scripts,
and handle user-interface events, you may want to go even further with your support
of the OSA. There are two issues in particular that you may want to address: how to
handle global variables so that variables can be shared between scripts, and how to
allow scripts to share libraries of subroutine handlers so that the application object’s
attached script behaves something like HyperCard’s stack script.

I’ve completed another version of SimpliFace that implements these features, and it
may be the subject of a future article in develop — if you clamor loudly enough for it.

Listing 5. StdAEvtPreHandler

static pascal OSErr StdAEvtPreHandler(AppleEvent *theEvent, AppleEvent *theReply, long theRefCon)
{

OSAError err = errAEEventNotHandled;
AEEventClass theEvtClass;
AEEventID theEvtID;
DescType theType;
Size theSize;
AEDesc directParam, theTokenDesc;
OSAID theScriptID = kOSANullScript;
objModelTokenPtr theToken = nil;
Boolean madeAppToken = false;

theTokenDesc.descriptorType = typeNull;
theTokenDesc.dataHandle = nil;
// Extract the class and ID of the event from the Apple event.
AEGetAttributePtr(theEvent, keyEventClassAttr, typeType, &theType, (Ptr) &theEvtClass,

sizeof(theEvtClass), &theSize);
AEGetAttributePtr(theEvent, keyEventIDAttr, typeType, &theType, (Ptr) &theEvtID,

sizeof(theEvtID), &theSize);
if ((theEvtClass == kCoreEventClass && theEvtID != kAEOpenApplication)

|| (theEvtClass == kAECoreSuite && theEvtID != kAESetData && theEvtID != kAEGetData)
|| (theEvtClass == kSignature && theEvtID == kAESystemEvent)
|| (theEvtClass == kASAppleScriptSuite && theEvtID == kASSubroutineEvent)) {

// Above test skips the events we don't want to be scriptable.
err = AEGetParamDesc(theEvent, keyDirectObject, typeWildCard, &directParam);
if (err == noErr) {

err = AEResolve(&directParam, kAEIDoMinimum, &theTokenDesc);
AEDisposeDesc(&directParam);
if (err == noErr)

theToken = ObjModelTokenFromDesc(&theTokenDesc);
}
if (err != noErr || theToken == nil) {

err = MakeAppToken((TObjModelToken**)&theToken);
madeAppToken = (err == noErr);

}
if (theToken != nil)

theScriptID = gScriptAdministrator->GetAttachedScript(theToken->GetTokenObj());
if (theScriptID != kOSANullScript) // Pass to script.

err = ExecuteEventInContext(theEvent, theReply, theRefCon, theScriptID,
kOSAUseStandardDispatch, kOSADontUsePhac);

else
err = errAEEventNotHandled;

if (theToken != nil)
gScriptAdministrator->ReleaseAttachedScript(theToken->GetTokenObj());

AEDisposeToken(&theTokenDesc);
if (madeAppToken == true) // Will be executed only

delete theToken; // if token was made locally.
}
return (OSErr)err;

}

PROGRAMMING FOR FLEXIBILITY: THE OPEN SCRIPTING ARCHITECTURE 39

d e v e l o p Issue 18 June 199440

9 Ways to Impro

DEVELOPER

UNIVERSITY

DU
Meanwhile, I’ve left as an exercise for you a couple of other enhancements to
SimpliFace: implementing editable text fields and making all window and button
kinds and object properties work. Roll up your sleeves and have a go at it.

RECOMMENDED READING
• “Apple Event Objects and You” by Richard Clark, develop Issue 10.

• “Better Apple Event Coding Through Objects” by Eric M. Berdahl, develop
Issue 12.

• Inside Macintosh: Interapplication Communication (Addison-Wesley, 1993),
Chapters 3–10, or Inside Macintosh Volume VI (Addison-Wesley, 1991),
Chapter 6.

• Apple Event Registry: Standard Suites, available on this issue’s CD or in print
from APDA.

• The AppleScript Suite, available on this issue’s CD or in the AppleScript Software
Development Toolkit from APDA.

• AppleScript Language Guide (Addison-Wesley, 1993). Also in the AppleScript
Software Development Toolkit.
Thanks to our technical reviewers Jens Alfke,
Warren Harris, Ron Karr, and Jeroen Schalk.•

ve Your Mind In Your Spare Time

Self-Paced Courses from Apple Developer University bring you a full range of technical
training in your own home, at your own pace.

• Macintosh Programming Fundamentals

• Intermediate Macintosh Application Programming

• Programmer’s Introduction to RISC and PowerPC

• PowerTalk Templates

• Object-Oriented Fundamentals

• AppleTalk for Programmers

• Apple Events/AppleScript Programming Tutorial

• Programming with MPW

• QuickTime Programming Tutorial

To order the self-paced classes, contact APDA at 1-800-282-2732; for Developer
University class schedules contact the Registrar at (408) 974-4897.

By now, many of you have installed one of the beta
versions of QuickDraw GX onto your Macintosh —
and possibly by the time you read this, QuickDraw GX
Software Developer’s Kit version 1.0 will be available
from APDA. Maybe you’ve played with the various
sample applications and are now ready to work on your
first QuickDraw GX application. Perhaps you’ve even
read my article in develop Issue 15, “Getting Started
With QuickDraw GX.” In this column, I’ll talk about
something I referred to briefly in that article: the two
versions of QuickDraw GX’s combined graphics and
layout portions, and how to take advantage of the
debugging version during the development of your
QuickDraw GX–based application. Along the way I’ll
update you on a few changes since I wrote the article.

THE EXTENSIONS OF QUICKDRAW GX
The QuickDraw GX system extension comes in two
flavors: a nondebugging and a debugging version.
When you run the QuickDraw GX installer script, the
nondebugging version is installed, including the
complete QuickDraw GX system. The nondebugging
version is lean and mean, so it’s significantly faster than
the debugging version; it performs quite a bit less error
checking than the debugging version.

The debugging version of the extension provides
extensive error checking and other debugging
amenities. When developing a QuickDraw GX
application, you should use this version to shake out

GRAPHICAL
TRUFFLES

The Debugging
Version of
QuickDraw GX

PETE (“LUKE”) ALEXANDER
PETE (“LUKE”) ALEXANDER has been providing developer
support for QuickDraw GX ever since it was way up in the air.
He’s happy it’s making its final approach, and he’s hoping it lands
smack dab in the middle of your software. As a glider pilot, Luke
knows how important control is — and with QuickDraw GX, you’ll
be able to maneuver your software into spaces you never thought
possible. Since QuickDraw GX can help you do lots of great
graphics stunts that you used to have to ask him about, Luke is
about to soar off into the wild blue yonder and do some stunts of
the bugs. The debugging extension is in the DEBUG
Init folder and is named “GXGraphics (debug)” in
version 1.0 (it used to be named aSecretGraphics.debug);
just drag it into your System Folder and reboot. As
your system starts up you’ll see the debugging
extension’s icon displayed before the QuickDraw GX
icon.

An explanation of what’s really going on here may help
clarify things (and it has changed): There are actually
three extensions within the QuickDraw GX extension
— one for graphics and layout, one for printing, and
one for the Finder printing extension. The QuickDraw
GX extension knows, if “GXGraphics (debug)” has
already loaded, to use that extension instead of the
nondebugging version of the graphics and layout
extension. (Note that since the debugging extension
must load before the nondebugging version, you should
not change the debugging extension’s name.)

THE ADVANTAGES OF THE DEBUGGING VERSION
DURING DEVELOPMENT
Let’s look at some differences between the two
extensions, and specifically how to take advantage of
the debugging version during the development of your
QuickDraw GX application.

Notices, warnings, and errors. With the debugging
version of the extension, you can get three types of
information about drawing problems: notices,
warnings, and errors. For a complete list of these, look
at the graphics errors.h interface file. The many
notices, warnings, and errors defined between #ifdef
debugging and #endif in that file are available only
with the debugging version. You’ll need to #define
debugging in your application to take advantage of
them. (Make sure debugging is not defined when you
build your final version.)

With the nondebugging version, notices aren’t
available at all, and the list of errors and warnings you
need to respond to in your application consists only of
those relatively few that lie outside #ifdef debugging
and #endif in the graphics errors.h file. Your
application must be set up to handle these errors and
GRAPHICAL TRUFFLES: THE DEBUGGING VERSION OF QUICKDRAW GX 41

his own. Soon he’ll be ready for the preflight check that will launch
his sabbatical faster than QuickDraw GX handles two-byte text.
For many weeks he’ll be thinking about nothing but white sand
beaches, white puffy clouds, and white-capped mountains. He’ll
lie on his back and watch the sway of the trees until they stop
reminding him of the swashes of L’s. So if you see him somewhere
in Montana, Utah, Nevada, California, or Idaho, be sure to say
hello — but try not to use any words that have a G and an X in
them.•

42
warnings, which in general indicate that the
QuickDraw GX system could not honor your
application’s request. For example:

shape_is_nil
size_of_path_exceeds_implementation_limit
picture_index_out_of_range

The debugging version checks for errors that you’re
likely to run into while developing your application,
such as passing a negative pen size to GXSetShapePen
or a curve to GXGetGlyphMetrics. The nondebugging
version doesn’t check for these types of errors; it
assumes you’ve already shaken them out of the code.

Validation routines. The GXSetValidation and
GXValidateShape routines are available only in the
debugging version. These routines allow your
application to tell whether it’s passing valid parameters
into a QuickDraw GX function, to validate the
contents of all QuickDraw GX objects (such as a shape,
style, and ink) before their use, and to validate the
QuickDraw GX memory your application is using.

Speed optimizations. The nondebugging version has
optimizations for speed built in — not only fewer error
checks but also inline functions. The debugging version
doesn’t optimize for speed. This shouldn’t have any
impact on your application development except that
there’s not a one-to-one correspondence between stack
crawls using the debugging and nondebugging
versions. A performance analysis of your QuickDraw
GX application should only be done without the
“GXGraphics (debug)” file in your Extensions folder.

GraphicsBug. The GraphicsBug debugging tool
allows you to explore the contents of any QuickDraw
GX object to make sure it contains the correct
information. Another change from before is that
GraphicsBug is available in both the debugging and
nondebugging versions. This ability to spy on an
object’s contents is important to your application
development because otherwise you could only access
information in objects by making API calls, which
would be very tedious during debugging.

There’s a slight advantage when using GraphicsBug
with the debugging version: heaps are listed by name
rather than by hex address in the Heaps menu.
d e v e l o p Issue 18 June 1994

Thanks to Hugo Ayala, Cary Clark, and Herb Derby for
reviewing this column.•
Memory. The debugging version’s memory blocks in
the QuickDraw GX heap are a bit bigger to help detect
errors when your application writes over the end of a
block: all the blocks end with the same signature, 'grfx'.

Special MacsBug messages. The debugging version
generates MacsBug messages that are intended solely
for the consumption of the Apple engineers in unusual
circumstances. (One of my favorites is “Curious if this
ever happens.”) If we did our jobs right, you should
never see one of these messages. In case you do,
however, we’re really interested in hearing what caused
you to receive it; please let us know at AppleLink
APPLE.BUGS.

CLEANING UP
You should design your application to take advantage of
the extensive capabilities of the debugging extension,
but turn those capabilities off when you create your
final shipping application, to improve its performance.
For example, calling GXValidateShape with the
nondebugging extension installed will only result in a
jump and return (that is, it will be a no-op). This is a
wonderful method for testing the QuickDraw GX
dispatcher, but it doesn’t help the performance of your
application.

In the final compile of your shipping application, you’ll
most likely want to remove all calls to validation
routines, posting of notices, and extra warnings and
errors available only in the debugging version. One
approach would be to have various compilation flags
associated with pairs of #ifdef and #endif to turn these
features on and off.

For more information, see my article in Issue 15 if you
haven’t already — or just dig into the QuickDraw GX
documentation. Enjoy your journey into the
QuickDraw GX world!

RELATED READING
• “Getting Started With QuickDraw GX” by Pete

(“Luke”) Alexander, develop Issue 15.

• “Print Hints: Looking Ahead to QuickDraw GX” by
Pete (“Luke”) Alexander, develop Issue 13.

Exploiting Graphics Speed on the
Power Macintosh
KONSTANTIN OTHMER,
SHANNON HOLLAND,
AND BRIAN COX
The new QuickDraw on the PowerPC platform substantially improves
graphics performance. A study comparing the performance of
QuickDraw and custom blitters on the Power Macintosh and 680x0-
based machines provides information you can use to ensure that the user
benefits from those improvements. Further analysis, detailing where
CopyBits spends its time, leads to an implementation strategy for
applications that demand the fastest possible graphics.

Understanding the motivation for and consequences of the changes to QuickDraw on
the Power Macintosh can help you write faster applications. This article presents
studies that show QuickDraw as one of the most speed-critical parts of the Macintosh
Operating System together with studies that break down how applications spend
CPU time. Knowing how much time applications actually spend in various system
routines will help you develop a strategy for writing applications that perform well on
both the Power Macintosh and 680x0-based machines.

In porting QuickDraw to the PowerPC™ platform, Apple took advantage of the
opportunity to make some changes. We’ll detail these changes and their
consequences for writing code. With that foundation, we’ll move on to an in-depth
discussion comparing the QuickDraw CopyBits routine with custom blitters. The
goal is to write applications using routines that result in the fastest possible graphics
performance on both platforms — PowerPC and 680x0 — as well as on machines
equipped with graphics accelerators such as the new Apple Macintosh Display Card
24 AC. Sample code on this issue’s CD demonstrates a method of timing blitter
routines so that your application can use the fastest routine at run time.

HOW SPEED-CRITICAL IS QUICKDRAW?
Most of the Macintosh Operating System is written in 680x0 assembly language. In
order to reach time-to-market goals for the Power Macintosh, Apple had to focus
porting efforts on the most speed-critical parts of the system, so a study was
conducted to profile system usage of several common applications. System usage
EXPLOITING GRAPHICS SPEED ON THE POWER MACINTOSH 43

KONSTANTIN OTHMER, SHANNON
HOLLAND, AND BRIAN COX, who are
always ready to explore new avenues in software
development for the QuickDraw team, have
finally hit the nail on the head. Their secret is
high-tech equipment and proper delegation of
work. Alternating between periods of sleep and
contemplation, they use telepathic communication
to transmit source code to each new team

member, who can then look forward to many
days of compile cycles on a trusty Macintosh Plus
(providing our authors with even more time for
sleep and contemplation). The team is on the
lookout for new labor-saving devices. Donations
are welcome — comfortable couches to make
room for future expansion would be particularly
appreciated.•

d 44
depended largely on the operations performed in particular applications, but many
applications showed similar patterns.

Figure 1 is based on a subset of the study. It turns out that most applications spend
from 50% to 95% of their time in system code, with many spending more than 80%.
Figure 2 shows the percentage of total CPU time spent in the most frequently called
system routines for typical applications and for a pointer-based application (one that
avoids using handles).

The data made it clear that QuickDraw was one of the most critical components of
Apple’s porting efforts. This article discusses QuickDraw version 1.3.5, which was
developed to run on the PowerPC platform. The new QuickDraw is based on
QuickDraw version 1.3.0, the most recent version of QuickDraw running on the
Macintosh Quadra, but with some changes (see the section “What’s Different With
Version 1.3.5?”). The new version, written in C, was compiled for the Power
Macintosh as QuickDraw version 1.3.5 and shipped with the new machines. The new
QuickDraw C code can also be compiled for 680x0-based machines and will be
available in future software releases.

The graphics speed comparisons made in this article compare the following:

• QuickDraw version 1.3.0 or other 680x0 code running on a 680x0-
based Macintosh (usually a Macintosh Quadra)

Cricket Draw 1.1.1

MacWrite ll

MacDraw ll

Word 4.0

PageMaker 4.0

Super 3D

Excel 2.2

0 20 40 60 80 100

% in application
% in Macintosh OS

% of Total CPU Time

Figure 1. CPU time breakdown: application versus system

DrawText
DrawPicture

SetHandleSize
FrameRect

LineTo
EraseRect
CopyBits

Line
SCSIDispatch

DrawString
NewHandle

0 15
% of Total CPU Time

5 10

Typical applications (Cricket Draw 1.1.1, MacWrite II,
MacDraw II, Word 4.0, PageMaker 4.0, Excel 2.2)

NewPtr
LineTo

PaintRect
SetHandleSize

EraseRect
GetFontInfo

RGBBackColor
DrawString

NewHandle
SCSIDispatch

FillRgn

0 40
% of Total CPU Time

Pointer-based application (Super 3D)

5 10 15 20 25 30 35

Figure 2. System routine usage
e v e l o p Issue 18 June 1994

• QuickDraw version 1.3.0 or other 680x0 code running through
the emulator on a Power Macintosh

• QuickDraw version 1.3.5 or other PowerPC code running on a
Power Macintosh

TAKING ADVANTAGE OF THE SPEED
Figure 3 compares times of various QuickDraw routines for version 1.3.0 running on
a Macintosh Quadra and version 1.3.5 running on a Power Macintosh — there’s no
question that the new QuickDraw routines run faster. However, published surveys
comparing the speed of 680x0-based machines to the Power Macintosh haven’t
always shown the dramatic results indicated by Figure 3. This is partly because some
operations offer greater increased speed than others, so depending on which
operations an application uses heavily, overall speed varies. A second important factor
is that the applications surveyed are often emulated applications.

Emulated applications are those written for 680x0-based machines that run through
the emulator on the Power Macintosh (see “Making the Leap to PowerPC,” develop
Issue 16). These applications don’t benefit fully from the PowerPC platform, because
an application that spends 80% of its time in system code on 680x0-based machines,
when emulated on a Power Macintosh, spends substantially more time in the
application. In general, completely emulated application code runs at about half the
speed of a Macintosh Quadra 700. Those same applications, when recompiled as
PowerPC code, usually run four or five times faster than on a Macintosh Quadra;
code that makes extensive use of floating point may be 20 times or more faster.
However, emulated graphics-intensive code, assuming it uses QuickDraw, is
substantially faster on a Power Macintosh than on a 680x0-based Macintosh because
of the increased speed of QuickDraw 1.3.5.

Line (vertical)

Line (horizontal)

Line (slanted)

DrawText (bitmap)

DrawText (outline)

FrameRect

EraseRect

CopyBits 1-bit src (large)

CopyBits 8-bit src (small)

CopyBits 8-bit src (large)

PaintPoly

DrawPicture

 0 103,000

Macintosh Quadra 700 (version 1.3.0)
Power Macintosh (version 1.3.5)

40,00025,00015,0005,000 10,000

Note: Times are to an 8-bit screen.

Microseconds

Figure 3. Comparing QuickDraw version 1.3.0 to version 1.3.5
EXPLOITING GRAPHICS SPEED ON THE POWER MACINTOSH 45

d e v e l o p Issue 18 June 199446
Clearly, to take full advantage of QuickDraw version 1.3.5, you need to write your
applications for the Power Macintosh in PowerPC code. Beyond that general
strategy, developing awesome applications for the PowerPC platform means figuring
out how to harness all that CPU power — how to take advantage of the speed. For
example, the high speed of QuickDraw version 1.3.5 allows you to do high-quality
animations. Figure 3 shows that you can now do twice as many (or more) CopyBits
operations per second, which means that animations such as zooming, scrolling, and
window dragging (leave this one to Apple) can be done in real time without being
chunky or annoying. Text drawing is also much faster, so interactive word wrapping
while positioning objects in text is easy to do and looks better than it would on a
680x0-based Macintosh. Overall, it’s an open field for developers.

Tips for increasing the speed of PowerPC code are given in this issue’s Balance
of Power column.•

Although this article focuses on QuickDraw, of course there are other, nongraphical,
ways of harnessing the power of the PowerPC processor. Floating point–intensive
applications benefit tremendously from the speed of the new processor.

The Graphing Calculator desk accessory that ships with the Power Macintosh
is an excellent example of harnessing CPU power for both the user interface and
computation-bound part of an application. As a floating point–intensive application,
Graphing Calculator benefits from the speed of the PowerPC processor. The user
interface has a number of nice touches, such as live scrolling, live zooming, and
interactive formula and graph manipulation.•

WHAT’S DIFFERENT WITH VERSION 1.3.5?
In the porting of QuickDraw to the PowerPC platform, many algorithms were
rethought and reimplemented. The result is slightly different (and we hope better!)
behavior. This section outlines some changes to keep in mind when you’re writing
code.

QDERROR
QuickDraw version 1.3.0 didn’t do a very good job of setting and clearing QDError.
In version 1.3.5, every call sets QDError (which can cause problems for applications
that assume QDError will be preserved across most simple calls, like SetRect). In
some cases, version 1.3.0 jumps to SysError if there isn’t enough memory; version
1.3.5 returns an error in QDError instead. This is usually an improvement, but it can
lead to strange behavior for applications that depend on SysError being invoked. For
example, some applications might put up a dialog asking the user to increase the
application partition size if QuickDraw invokes SysError. Since QuickDraw version
1.3.5 doesn’t invoke SysError (returning a QDError instead), the application code
that puts up the dialog isn’t triggered, so the user doesn’t know to increase the
memory and the application might fail by not drawing anything. In choosing to
always set QDError, Apple chose the lesser of two evils.

MATCHING COLOR TABLES
QuickDraw version 1.3.0 uses the color table of the pixMap for the current GDevice,
not the color table of the destination pixMap, to map colors to the destination
pixMap. QuickDraw version 1.3.5 sets up a surrogate GDevice to make sure that the
the destination pixMap’s and the GDevice’s color tables always match. This may
cause problems for applications that relied on undefined behavior when the color
tables didn’t match or for applications that were getting the right results by luck
under QuickDraw version 1.3.0. Again, Apple chose the lesser of two evils, and added

the surrogate device (known as the skank device). When QuickDraw is forced to set
up the skank device, the application pays a slight performance penalty. Also, if you do
operations such as index-to-color when your color tables don’t match, and then later
use that color in a drawing, you won’t necessarily draw with the index you expect.
The easiest cure: use GWorlds!

For more information on QDError, GDevices, pixMaps, and color tables, see
Inside Macintosh: Imaging With QuickDraw or Inside Macintosh Volume V.•

TRANSFER MODES
There’s no way to pass the transfer space (the bit depth at which transfer occurs)
when doing transfer modes in QuickDraw. (QuickDraw GX remedies this
shortcoming.) So if you’re using an arithmetic mode from 8-bit to 16-bit, there are no
guarantees whether the transfer will occur at 5 bits per component (16-bit), 8 bits per
component (32-bit), or 16 bits per component (as in the 8-bit color table). It turns
out that most arithmetic modes in QuickDraw version 1.3.0 perform the transfer
operation at a resolution of 16 bits per color, while version 1.3.5 does most operations
at a resolution of 8 bits per color. This sometimes causes slight cosmetic differences.

DITHERING
The dithering algorithm in QuickDraw version 1.3.5 is slightly different. This makes
it a nightmare to programmatically determine whether version 1.3.5 is generating the
same results as version 1.3.0, but visually the results are nearly identical.

STRETCHING AND SHRINKING IMAGES
The way CopyBits stretches and shrinks images for nonintegral ratios has been
improved in QuickDraw version 1.3.5 (integral ratios still produce the same results).
The advantage of this new algorithm is that it’s symmetrical: if you stretch an image
and then shrink it back to the original size, the same pixels that were replicated in the
stretch are combined in the shrink.

The disadvantage of the new algorithm is that some applications stretch or shrink
without knowing it (the classic off-by-one error, resulting in a destination rectangle
that’s smaller or larger than the source rectangle by one pixel). Such applications may
now drop (or replicate) a different scan line. This can cause slight cosmetic blemishes
in some applications.

UNEXPECTED REGISTER CONTENTS
Because QuickDraw version 1.3.5 runs PowerPC code, all emulated 680x0 registers
are preserved across calls. Thus, applications that expect the contents of volatile
registers (A0, A1, D0, D1, D2) to contain specific values on exit from a QuickDraw
call will break. (Conversely, don’t rely on 680x0 registers being preserved, either!)
There’s one exception: for compatibility with some existing applications, CopyBits
always sets D0 to 0.

PATCHING
Patching any QuickDraw version 1.3.5 routine with 680x0 code degrades
performance because of mode-switch overhead time. A mode switch occurs when a
680x0 caller is calling PowerPC code, or vice versa. 680x0 patches on ShieldCursor
are particularly expensive because ShieldCursor is called by nearly every QuickDraw
drawing routine.

For more information on the Mixed Mode Manager and mode switching, see
“Making the Leap to PowerPC” in develop Issue 16.•
EXPLOITING GRAPHICS SPEED ON THE POWER MACINTOSH 47

d e v e48
DISABLED ACCELERATOR CARDS
QuickDraw version 1.3.0 makes calls through many low-level (undocumented)
vectors. Version 1.3.5 doesn’t use these trap vectors, which disables most accelerator
cards. Of course, the frame buffer on these cards continues to work.

THE COPYBITS/CUSTOM BLITTER RACE
A favorite developer sport is complaining about how slow CopyBits is and writing
custom blit loops to replace it. A favorite sport among QuickDraw engineers is
working all night trying to speed up some part of CopyBits. This competition is
healthy so long as speed-critical applications call the faster code.

“Blitter” informally refers to any routine that moves memory, usually visual
information to the screen or an off-screen buffer; the operation is called a “blit.”
These terms derive from the PDP-10 block transfer instruction, BLT.•

Through the years, Apple engineers have yearned for a way to get a substantial lead
in the race with the speed-hungry special-case developer. The answer lies in the
Power Macintosh: raw 680x0 code runs substantially slower through the emulator,
while QuickDraw version 1.3.5 CopyBits takes advantage of the lightning-fast RISC
processor.

Figure 4 compares various ways of moving the memory used by an 8-bit, 32-by-32
pixMap and an 8-bit, 400-by-400 pixMap to the screen. BlockMove gives a baseline:
the typical amount of time needed to move that much raw memory. The 680x0 blitter
is a custom blitter written for 680x0-based machines and emulated on the Power
Macintosh. The PowerPC blitter is a custom blitter written for the Power Macintosh
(it can’t be run on a 680x0 machine).

As you can see, the custom PowerPC blitters beat QuickDraw’s CopyBits for the
small image hands down for both 680x0-based machines and the Power Macintosh.
(With the small image the constant overhead of CopyBits has a big impact on the
overall time.) However, the 680x0 blitter is much slower than CopyBits on a Power
Macintosh. This is due to the overhead of emulation.

The interesting case is the custom PowerPC blitter versus CopyBits for the large
image on the Power Macintosh. Here CopyBits wins. This is due to optimizations
that CopyBits has for large images that the PowerPC blitter doesn’t have. In this case,

500

400

300

200

100

0
CopyBitsBlockMove PowerPC

blitter
680x0
blitter

30,000

20,000

10,000

0
CopyBitsBlockMove PowerPC

blitter
680x0
blitter

8-bit, 32-by-32 pixMap 8-bit, 400-by-400 pixMap

680x0-based Macintosh
Power Macintosh

680x0-based Macintosh
Power Macintosh

Microseconds Microseconds

Figure 4. CopyBits versus custom blitters
 l o p Issue 18 June 1994

CopyBits is also faster than BlockMove, because of optimizations in CopyBits for the
PowerPC processor’s frame buffer (which has a 64-bit data path). BlockMove is
optimized for copying to main memory, so it’s slower when copying to the frame
buffer. (This is why the PowerPC blitter is faster than BlockMove for the small
image.) If you compare BlockMove and CopyBits using an off-screen pixMap as the
destination, you discover that BlockMove is faster.

For maximum performance of emulated applications, the emulator treats
BlockMove as a special case.•

The design of a frame buffer can have a great impact on overall blit speed. These
times were measured on the on-board video for the Macintosh Quadra and a fast
processor-direct slot video card for the Power Macintosh. If you install a NuBus™
frame buffer on both machines and do a similar comparison, you find that the
difference in times is less. That’s because NuBus is the bottleneck for the copy
operation. The situation changes radically, however, if the NuBus card is accelerated.
Then only calls to CopyBits get the acceleration; custom blit loops are still
bottlenecked by NuBus transfer rates.

Most of the comparisons in this section compare raw memory-moving power.
While QuickDraw is efficient at stretching bits, it’s very inefficient at large indexed
shrinks. The problem is that CopyBits looks at every pixel and preserves the highest
index value. (This was done so that when icons are shrunk, they don’t inadvertently go
to solid white.) For a shrink by a factor of four, this means that CopyBits is looking at
16 times too much data.•

REDUCING QUICKDRAW OVERHEAD
There are two aspects to any given QuickDraw operation: setup and actual drawing.
Much of the time saved when an application uses a custom blit loop instead of
CopyBits is a consequence of avoiding the overhead of QuickDraw’s setup. While
QuickDraw has extremely efficient blit routines, its downfall is that it has no idea
how it’s going to be called from one time to the next, so it has to do all the setup
every time it’s called. (See “Drawing in GWorlds for Speed and Versatility” in develop
Issue 10 for a discussion of QuickDraw’s setup.)

An application knows exactly how many of what it’s drawing to where, so it can do
the setup for many operations once at the beginning, use custom blitters to do the
drawing, and then restore everything to its previous condition at the end, thus
eliminating much of the setup time. This is where you get the biggest gains when
writing your own blitters. On large operations, the overhead is relatively small, so you
don’t gain much with custom routines. Small operations are often dominated by setup
time, so a custom routine can improve performance significantly.

Figure 5 compares setup time to total time for two CopyBits operations. Both are a
copy of a 32-by-32, 8-bit, off-screen pixMap to the screen (no stretching or
shrinking, long aligned). The difference is that in the first CopyBits call, the color
tables match and in the second call they don’t match (the first case is faster because
there’s no need to invoke a pixel translation loop). Figure 6 shows the same two tests
as Figure 5, but this time the pixMaps being copied are 400-by-400. If you look
carefully, you can see that the setup time remained almost the same, but the
proportion between setup time and total time has changed drastically.

In general, the setup time on the Power Macintosh is minimal, since the setup is
computation-intensive and doesn’t depend on memory access. Remember that setup
time is constant — it remains the same no matter how much data is being copied.
EXPLOITING GRAPHICS SPEED ON THE POWER MACINTOSH 49

d e v e l o p Issue 18 June 199450
Therefore, the relative efficiency of CopyBits depends on the amount of data being
copied.

The systems compared in Figures 5 and 6 are a Power Macintosh 8100/80 running
QuickDraw version 1.3.5 and a Macintosh Quadra 700 running QuickDraw version
1.3.0. These comparisons show that QuickDraw blit times can vary greatly across
different machines and different versions of QuickDraw.

QuickDraw GX uses caches extensively to keep intermediate results. This allows
part of the overhead to be short-circuited when a similar operation is performed
multiple times.•

Accelerator vendors use a number of different strategies for boosting QuickDraw’s
performance. The Macintosh 8•24 GC card attempted to accelerate entire operations,
while most third-party accelerators just concentrate on the blits. These cards often
use custom chips to substantially increase the speed of writing to memory; you’re still
forced to pay for the setup time, but the blit time decreases substantially.

The upshot of this is that you’re only guaranteed the best results if you profile the
candidates and pick a winner at run time. This is the topic of the following section.

900
800
700
600
500
400
300
200
100

0
Macintosh

Quadra 700
Power

Macintosh

Same color tables

Microseconds

Setup time
Total time

7000

6000

5000

4000

3000

2000

1000

0
Power

Macintosh

Different color tables

Microseconds

Macintosh
Quadra 700

Figure 5. CopyBits setup time to total time for a small copy

20,000

10,000

0
Power

Macintosh

Same color tables

Microseconds

Macintosh
Quadra 700

Setup time
Total time

70,000

60,000

50,000

40,000

30,000

20,000

10,000

0
Power

Macintosh

Different color tables

Microseconds

Macintosh
Quadra 700

Figure 6. CopyBits setup time to total time for a large copy

STRATEGY FOR SPEED-CRITICAL APPLICATIONS
For applications in which speed is critical, you want to run as fast as possible on every
machine. The easiest way to do this is to time the system code and any custom code
and use the faster version, perhaps even on a call by call basis. By comparing the
speed of a custom implementation with the Toolbox implementation and picking the
faster one at application initialization time, applications can automatically take
advantage of hardware accelerators when they exist, or highly specialized custom blit
loops when required. Of course, you would use this strategy only when speed is
extremely important. While developing your application, you should always try to use
system calls when they’re available before reinventing (a sometimes square) wheel.

Listing 1 shows two routines, TimeBlitProc and BestBlitter, that compare CopyBits
with a custom blitter and return the address of the faster routine. (The code is also on
this issue’s CD.) Writing the custom blitter is left as an exercise for the reader.

BestBlitter takes a pointer to a BlitProc, a PixMapHandle, and a source and
destination rectangle and returns the address of the faster routine — the custom
BlitProc or CopyBits. It assumes that the destination rectangle is for the current
graphics port and current GDevice. For the sake of simplicity, the mode is assumed
to be srcCopy and there’s no mask region.

BestBlitter gets the address of CopyBits (factoring out trap dispatch overhead if
running on a 680x0-based Macintosh, as you might want to do in your speed-critical
loops) and calls TimeBlitProc to get the time taken by each of the calls. If the

Listing 1. Timing routines

#include <Timer.h>
#include <FixMath.h>
#include <Traps.h>
#if powerc

extern QDGlobals qd;
#endif

// Decide how many microseconds represent a "meaningful" difference.
#define kMeaningfulDiff 0
#define ABS(x) ((x < 0)? (-x) : (x))

unsigned long TimeBlitProc(BlitProcPtr theBlitProc, BitMapPtr srcBits,
BitMapPtr dstBits, Rect *srcRect, Rect *dstRect, short mode,
RgnHandle mask)

{
UnsignedWide startMicroSec, endMicroSec;

Microseconds(&startMicroSec);
(*theBlitProc)(srcBits, dstBits, srcRect, dstRect, mode, mask);
Microseconds(&endMicroSec);
// WideSubtract isn't defined for 680x0-based machines; however, a
// version is included on the CD.
WideSubtract((wide *) &endMicroSec, (wide *) &startMicroSec);
return endMicroSec.lo;

}

(continued on next page)
EXPLOITING GRAPHICS SPEED ON THE POWER MACINTOSH 51

d e v e l o p Issue 18 June 199452
difference is enough to be meaningful (more than a few microseconds) and favors the
new BlitProc, BestBlitter returns a pointer to the BlitProc; otherwise, it returns a
pointer to CopyBits.

The actual timing is done by TimeBlitProc, which assumes that the current graphics
port and GDevice are set up and ready for copying. TimeBlitProc takes a pointer to
the BlitProc to be timed and a list of arguments expected by CopyBits.

We’ve made the assumption that the caller has flushed or loaded the caches
appropriately for the test. In comparing the routines, it would be unfair to one

BlitProcPtr BestBlitter(BlitProcPtr customBlitProc,
PixMapHandle srcPixHandle, Rect *srcRect, Rect *dstRect)

{
unsigned long customBitsTime, copyBitsTime;
long leDifference;
PixMapHandle portPixMap;
BlitProcPtr copyBitsPtr;
Str255 numStr;

// To factor out the trap overhead, get the trap address for CopyBits.
// PowerPC can get the address of the shared library routine directly.
// By getting the address of the library routine like this, we don't
// need to worry about calling CopyBits through CallUniversalProc.

#if powerc
copyBitsPtr = (BlitProcPtr) &CopyBits;

#else
copyBitsPtr = (BlitProcPtr) GetToolTrapAddress(_CopyBits);

#endif

portPixMap = ((CGrafPtr) qd.thePort)->portPixMap;

// Normally, it's not necessary to lock a pixMap or its pixels before
// calling CopyBits. But in this case, we're calling TimeBlitProc,
// which could hit the Segment Loader and cause memory to move. So we
// lock the pixMap handles before dereferencing them here.
HLock((Handle) portPixMap);
LockPixels(portPixMap);
copyBitsTime = TimeBlitProc(copyBitsPtr,

(BitMapPtr) *srcPixHandle, (BitMapPtr) *portPixMap, srcRect,
dstRect, srcCopy, nil);

customBitsTime = TimeBlitProc(customBlitProc,
(BitMapPtr) *srcPixHandle, (BitMapPtr) *portPixMap, srcRect,
dstRect, srcCopy, nil);

UnlockPixels(portPixMap);
HUnlock((Handle) portPixMap);
leDifference = (long)(customBitsTime - copyBitsTime);
if (ABS(leDifference) > kMeaningfulDiff && leDifference < 0)

return customBlitProc;
else

return copyBitsPtr;
}

Listing 1. Timing routines (continued)

routine if it had to spend time loading the data into the cache and the other routine
didn’t! FlushInstructionCache and FlushDataCache are no longer available for
applications written in PowerPC code, so it’s up to the caller to decide whether to test
these BlitProcs cached or uncached. (See “Here’s the Cache” for a discussion of
caching on the Power Macintosh.) In any case, TimeBlitProc assumes that the caches
are already in the proper state.

Since caching is such a hardware-specific operation and can have both very obvious
and subtle effects on the execution of your code, it’s hard to predict how different
cache architectures will affect your performance. In general, if you try to optimize for
smaller caches, you’ll achieve better overall performance across a range of platforms.
To be completely fair, TimeBlitProc should also disable interrupts. If file sharing
comes in to work on a background copy in the middle of the timing, that blit loop
will appear to be really slow compared to the uninterrupted time.
The traps FlushInstructionCache and FlushDataCache
were originally created to give direct control over the
instruction and data caches on 68040-based Macintosh
Quadra models. These two traps are very closely tied to
the 68040 processor, both conceptually and in their
implementation. The PowerPC 601 chip has a unified
cache — a single 32K cache for both data and
instructions. Rather than trying to contort the definition of
the two existing traps to make sense on the PowerPC
processor, Apple engineers asked why you need to flush
caches in the first place. The new cache-management
strategies are intended to be better abstracted, less
dependent on a specific processor, and definitely forward
compatible.

Following are the four main reasons you might want to
flush the caches and how they’ve been (or need to be)
addressed on the Power Macintosh.

Generate code dynamically.
Normally, to execute some data as instructions, you need
to flush the caches. On the Power Macintosh, you call the
new system routine MakeDataExecutable, passing the
base address and the length of the data to be executed.
(This routine doesn’t exist — even in an undocumented
form — on the 680x0-based machines, so to flush
instructions in the data cache, you need to call
FlushInstructionCache and FlushDataCache.)

Ensure that the data shared by other hardware
is actually written.
For example, memory that’s shared by a coprocessor
has to be accessible when the other processor needs to
read it. To address this problem, the PowerPC-family
architecture includes a type of “bus snooping.” Whenever
someone wants to read an address that’s represented in
the cache, the cache is flushed automatically before the

HERE’S THE CACHE
data is returned. This way, you don’t need to anticipate
all the different ways the cache can get out of sync.

Ensure that data gets written to memory in the
correct order.
For example, if you’re writing to the screen, make sure the
title bar gets written before the contents. A caching
mechanism could screw up this ordering, so to ensure the
proper ordering, the data cache must be flushed between
writes. Screen memory is marked as write-through, which
sends the data to the cache and on through to the screen
memory. Writes for write-through memory are as slow as
for uncached memory. The benefit is that reads from write-
through memory can still take advantage of the cache.
This feature is present on the 68040 Macintosh and
remains unchanged on the Power Macintosh.

Ensure that timing data you get when you
compare two similar routines hasn’t been
distorted by the caching mechanism.
Unfortunately, you’re out of luck here. There’s no officially
sanctioned method for doing this. But there are some
techniques you can use to get around the caching.

If you anticipate that your procedure will usually have its
data cached when it’s called, compare the routines for the
cached condition. Simply call the routines twice and time
only the second call.

To compare the routines for the noncached case, you can
“flush” the cache by reading every byte in a 32K buffer.
Not only is this ugly, but it’s not even guaranteed to work
with future machines (such as the PowerPC 603, which
goes back to using separate data and instruction caches).
And even on the 601 chip, this would flush only the on-
chip cache; it wouldn’t necessarily flush the much larger,
but slightly slower, external cache.
EXPLOITING GRAPHICS SPEED ON THE POWER MACINTOSH 53

d e v e l o p Issue 18 June 199454

Apple Developer Gr

®

TimeBlitProc calls a new trap, Microseconds, that takes a pointer to an
UnsignedWide (two longs) and fills it with the number of microseconds that have
elapsed since the system was booted. It calls Microseconds before and after the call to
the BlitProc that was passed in, calls WideSubtract to get the delta, and returns the
low-order 32 bits of the subtraction. This assumes that the elapsed time will fit into
an unsigned long, or that the BlitProc will take less than 71 minutes to complete!

OFF AND RUNNING
The Power Macintosh provides a new range of computing power for the next
generation of the Macintosh line. The challenge for Apple is converting from a
largely 680x0 assembly code base to PowerPC-code system services and substantially
improving the user experience in the process. The challenge for application
developers is inventing new uses for all the power provided by RISC, and designing
creative user interface elements that take advantage of the horsepower.

Use the studies presented here as a guide to writing graphics-intensive applications
that shine on both platforms. By using techniques such as runtime determination of
the most efficient routines, you can guarantee that your application will get the most
out of the system today and in the future.
Thanks to our technical reviewers Lew Cirne,
Jean-Charles Mourey, Guillermo Ortiz, and Andy
Stadler; to Kate Cremer for generating the graphs;

and to Tom Adams, Becky Hammaker, Marianne
Hsiung, Mac MacDougall, and David Searles for
conducting the application evaluations.•

We’re looking for developers to join us in creating the
next generation of innovative computing products
and services.

With a market of more than 13 million customers worldwide, Apple
continues to outpace the industry in unit growth. As Macintosh application
units continue to grow, Apple offers developers the best platform for
sustained growth.

At Apple, we know that our success depends on providing our developers
with the programs and resources needed to create great products and
services. Join our community of developers and receive answers to
technical questions; stay informed of special Apple events; and
communicate with Apple, fellow developers, and customers.

For more information on the support and services offered through Apple’s
developer programs contact:

Apple Computer, Inc.
Developer Support Center
20525 Mariani Avenue, M/S 303-2T
Cupertino, CA 95014
(408) 974-4897

oup

When you convert your applications to native
PowerPC code, they run lightning fast. To get the most
out of RISC processors, however, you need to pay close
attention to your code structure and execution. Fast
code is no longer measured solely by an instruction
timing table. The PowerPC 601 processor includes
pipelining, multi-issue and speculative execution,
branch prediction, and a set associative cache. All these
things make it hard to know what code will run fastest
on a Power Macintosh.

Writing tight code for the PowerPC processor isn’t
hard, especially with a good optimizing compiler to
help you. In this column I’ll pass on some of what I’ve
learned about tuning PowerPC code. There are
gotchas and coding habits to avoid, and there are
techniques for squeezing the most from your speed-
critical native code. For a good introduction to RISC
pipelining and related concepts that appear in this
column, see “Making the Leap to PowerPC” in Issue 16.

MEASURING YOUR SPEED
The power of RISC lies in the ability to execute one or
more instructions every machine clock cycle, but RISC
processors can do this only in the best of circumstances.
At their worst they’re as slow as CISC processors. The
following loop, for example, averages only one
calculation every 2.8 cycles:

float a[], b[], c[], d, e;
for (i=0; i < gArraySize; i++) {

e = b[i] + c[i] / d;
a[i] = MySubroutine(b[i], e);

}

BALANCE OF
POWER

Enhancing
PowerPC
Native Speed

DAVE EVANS
DAVE EVANS may be able to tune PowerPC code for Apple, but
for the last year he’s been repeatedly thwarted when tuning his
1978 Harley-Davidson XLCH motorcycle. Fixing engine stalls, poor
timing, and rough starts proved difficult, but he was recently
rewarded with the guttural purr of a well-tuned Harley.•
By restructuring the code and using other techniques
from this column, you can make significant
improvements. This next loop generates the same
result, yet averages one calculation every 1.9 cycles —
about 50% faster.

reciprocalD = 1 / d;
for (i=0; i < gArraySize; i+=2) {

float result, localB, localC, localE;
float result2, localB2, localC2, localE2;

localB = b[i];
localC = c[i];
localB2 = b[i+1];
localC2 = c[i+1];

localE = localB + (localC * reciprocalD);
localE2 = localB2 + (localC2 * reciprocalD);
InlineSubroutine(&result, localB, localE);
InlineSubroutine(&result2, localB2, localE2);

a[i] = result;
a[i+1] = result2;

}

The rest of this column explains the techniques I just
used for that speed gain. They include expanding loops,
scoping local variables, using inline routines, and using
faster math operations.

UNDERSTANDING YOUR COMPILER
Your compiler is your best friend, and you should try
your hardest to understand its point of view. You
should understand how it looks at your code and what
assumptions and optimizations it’s allowed to make.
The more you empathize with your compiler, the more
you’ll recognize opportunities for optimization.

An optimizing compiler reorders instructions to
improve speed. Executing your code line by line usually
isn’t optimal, because the processor stalls to wait for
dependent instructions. The compiler tries to move
instructions that are independent into the stall points.
For example, consider this code:

first = input * numerator;
second = first / denominator;
output = second + adjustment;
BALANCE OF POWER: ENHANCING POWERPC NATIVE SPEED 55

Code examples were compiled with the PPCC compiler using
the speed optimization option, and then run on a Power Macintosh
6100/66 for profiling. A PowerPC 601 microsecond timing library
is provided on this issue’s CD.•

56
Each line depends on the previous line’s result, and the
compiler will be hard pressed to keep the pipeline full
of useful work. This simple example could cause 46
stalled cycles on the PowerPC 601, so the compiler will
look at other nearby code for independent instructions
to move into the stall points.

EXPANDING YOUR LOOPS
Loops are often your most speed-critical code, and you
can improve their performance in several ways. Loop
expanding is one of the simplest methods. The idea is
to perform more than one independent operation in a
loop, so that the compiler can reorder more work in
the pipeline and thus prevent the processor from
stalling.

For example, in this loop there’s too little work to keep
the processor busy:

float a[], b[], c[], d;
for (i=0; i < multipleOfThree; i++) {

a[i] = b[i] + c[i] * d;
}

If we know the data always occurs in certain sized
increments, we can do more steps in each iteration, as
in the following:

for (i=0; i < multipleOfThree; i+=3) {
a[i] = b[i] + c[i] * d;
a[i+1] = b[i+1] + c[i+1] * d;
a[i+2] = b[i+2] + c[i+2] * d;

}

On a CISC processor the second loop wouldn’t be
much faster, but on the PowerPC processor the second
loop is twice as fast as the first. This is because the
compiler can schedule independent instructions to keep
the pipeline constantly moving. (If the data doesn’t
occur in nice increments, you can still expand the loop;
just add a small loop at the end to handle the extra
iterations.)

Be careful not to expand a loop too much, though. Very
large loops won’t fit in the cache, causing cache misses
for each iteration. In addition, the larger a loop gets,
the less work can be done entirely in registers. Expand
too much and the compiler will have to use memory to
store intermediate results, outweighing your marginal
gains. Besides, you get the biggest gains from the first
few expansions.

SCOPING YOUR VARIABLES
If you’re new to RISC, you’ll be impressed by the
number of registers available on the PowerPC chip —
d e v e l o p Issue 18 June 1994
32 general registers and 32 floating-point registers. By
having so many, the processor can often avoid slow
memory operations. Your compiler will take advantage
of this when it can, but you can help it by carefully
scoping your variables and using lots of local variables.

The “scope” of a variable is the area of code in which it
is valid. Your compiler examines the scope of each
variable when it schedules registers, and your code can
provide valuable information about the usage of each
variable. Here’s an example:

for (i=0; i < gArraySize; i++) {
a[i] = MyFirstRoutine(b[i], c[i]);
b[i] = MySecondRoutine(a[i], c[i]);

}

In this loop, the global variable gArraySize is scoped
for the whole program. Because we call a subroutine in
the loop, the compiler can’t tell if gArraySize will
change during each iteration. Since the subroutine
might modify gArraySize, the compiler has to be
conservative. It will reload gArraySize from memory on
every iteration, and it won’t optimize the loop any
further. This is wastefully slow.

On the other hand, if we use a local variable, we tell the
compiler that gArraySize and c[i] won’t be modified
and that it’s all right to just keep them handy in
registers. In addition, we can store data as temporary
variables scoped only within the loop. This tells the
compiler how we intend to use the data, so that the
compiler can use free registers and discard them after
the loop. Here’s what this would look like:

arraySize = gArraySize;
for (i=0; i < arraySize; i++) {

float localC;
localC = c[i];
a[i] = MyFirstRoutine(b[i], localC);
b[i] = MySecondRoutine(a[i], localC);

}

These minor changes give the compiler more
information about the data, in this instance accelerating
the resulting code by 25%.

STYLING YOUR CODE
Be wary of code that looks complicated. If each line of
source code contains complicated dereferences and
typecasting, chances are the object code has wasteful
memory instructions and inefficient register usage. A
great compiler might optimize well anyway, but don’t
count on it. Judicious use of temporary variables (as
mentioned above) will help the compiler understand

Thanks to Nick Kledzik, Andy Nicholas, and Dave Radcliffe for
reviewing this column.•

Power up with
PowerPC

Apple Developer University has just
what you need to jump start your PowerPC

development efforts.

• Programmer’s Introduction to RISC and
PowerPC self-paced training

• PowerPC BootCamp

For more information, contact the Developer
University Registrar at (408) 974-4897.

DEVELOPER

UNIVERSITY

DU
exactly what you’re doing — plus your code will be
easier to read.

Excessive memory dereferencing is a problem
exacerbated by the heavy use of handles on the
Macintosh. Code often contains double memory
dereferences, which is important when memory can
move. But when you can guarantee that memory won’t
move, use a local pointer, so that you only dereference
a handle once. This saves load instructions and allows
further optimizations.

Casting data types is usually a free operation — you’re
just telling the compiler that you know you’re copying
seemingly incompatible data. But it’s not free if the data
types have different bit sizes, which adds conversion
instructions. Again, avoid this by using local variables
for the commonly casted data.

I’ve heard many times that branches are “free” on the
PowerPC processor. It’s true that often the pipeline can
keep moving even though a branch is encountered,
because the branch execution unit will try to resolve
branches very early in the pipeline or will predict the
direction of the branch. Still, the more subroutines you
have, the less your compiler will be able to reorder and
intelligently schedule instructions. Keep speed-critical
code together, so that more of it can be pipelined and
the compiler can schedule your registers better. Use
inline routines for short operations, as I did in the
improved version of the first example loop in this
column.

KNOWING YOUR PROCESSOR
As with all processors, the PowerPC chip has
performance tradeoffs you should know about. Some
are processor model specific. For example, the
PowerPC 601 has 32K of cache, while the 603 has 16K
split evenly into an instruction cache and a data cache.
But in general you should know about floating-point
performance and the virtues of memory alignment.

Floating-point multiplication is wicked fast — up to
nine times the speed of integer multiplication. Use
floating-point multiplication if you can. Floating-point
division takes 17 times as long, so when possible
multiply by a reciprocal instead of dividing.

Memory accesses go fastest if addressed on 64-bit
memory boundaries. Accesses to unaligned data stall
while the processor loads different words and then
shifts and splices them. For example, be sure to align
floating-point data to 64-bit boundaries, or you’ll stall
for four cycles while the processor loads 32-bit halves
with two 64-bit accesses.
MAKING THE DIFFERENCE
Native PowerPC code runs really fast, so in many cases
you don’t need to worry about tweaking its
performance at all. For your speed-critical code,
though, these tips I’ve given you can make the
difference between “too slow” and “fast enough.”

RECOMMENDED READING
• High-Performance Computing by Kevin Dowd

(O’Reilly & Associates, Inc., 1993).

• High-Performance Computer Architecture by
Harold S. Stone (Addison-Wesley, 1993).

• PowerPC 601 RISC Microprocessor User’s
Manual (Motorola, 1993).
BALANCE OF POWER: ENHANCING POWERPC NATIVE SPEED 57

58
Displaying Hierarchical Lists
MARTIN MINOW

d e v e l o p Issue 18 June 1994
Much of the data you manage on a Macintosh has a hierarchical
nature. This article shows how your application can provide a clear,
coherent data organization with a user-controlled display by using
classic linked lists, storing the list data in handles, and displaying it
with the List Manager. A triangular button mechanism, similar to
that used in the Finder to open and close folders in list views, lets the
user decide how much data to view on the screen.

If your application makes its hierarchical data accessible but not overwhelming, it will
have an advantage over applications that provide only two alternatives — “throw it all
on the screen” or “hide everything.” You can find many examples of flexible
organization: The Finder presents file and folder information in a variety of display
formats revealing more or less information according to the user’s own desires.
Document-based applications such as NewsWatcher provide a hierarchy of text
information. The JMP statistical application provides buttons that reveal more
detailed information about an analysis. Programming languages such as Frontier
allow the programmer to display as much of a module’s code as is needed.

This article shows how to do the following:

• store hierarchical data in a linked list along with the information
needed to display it properly

• extend the List Manager by storing a button object in a List
Manager cell that controls how the data hierarchy is displayed

• build the data hierarchy and display it

• let the user manipulate the buttons to view more or less of the data

The accompanying code on this issue’s CD includes a sample library that stores data,
displays it, and manages the buttons, and a simple application that uses the library.
The techniques described in the article are appropriate for displaying and organizing
moderate amounts of data; they’re less useful for static data or large amounts of data
and are inefficient with small amounts of data.
MARTIN MINOW (AppleLink MINOW, Internet
minow@apple.com) is an aged, wrinkled hacker
who, having determined that it’s far too late to
whine about his receding hairline, instead takes
perverse delight in informing his young
colleagues at excessive length how much better
programming was when you had to punch out

your programs, one machine word after another,
on oily paper tape, back in the good old days
when hex digits were KSNJFL, words were 40
bits long, and a supercomputer had 1024 of
them. In real life, he works at Apple’s Developer
Support Center, drinks beer, and runs
marathons.•

Figure 1 shows a Finder-like window that was created with this library; the files
displayed are from the sample library. I’ve called the library TwistDown to emphasize
how the display acts when you click the buttons. The Finder development team calls
the buttons triangular buttons.

STORING DATA IN A LINKED LIST
There isn’t much in this article on linked lists or handles; I assume you struggled with
“classical” list processing when you learned to program and have done enough
programming on the Macintosh to understand how handle-based storage operates.
Keep in mind that two kinds of lists are discussed here: linked lists and Macintosh
List Manager display lists. To keep confusion to a minimum, element refers to a
component of a linked list and cell refers to a component of a List Manager list. Note
also that linked lists contain the data, while the List Manager list only controls the
appearance of that data. A good understanding of the List Manager is needed to
follow the code examples later in the article. (For details on the List Manager, see
Inside Macintosh: More Macintosh Toolbox, or Inside Macintosh Volume IV.)

In the context of this article, a list element is a chunk of data, a few flags, and two
linkages. This section discusses the linkages, which connect list elements into
sequences and hierarchies, and the creation and disposal of list elements. The flags,
which simplify formatting the data, are discussed later in the section “Controlling
Data Appearance.”

Figure 2 illustrates the linkages that connect list elements. The important thing to
remember about the hierarchical linked lists we’re using is that any element may have
a successor — the sibling element that follows it — and a descendant — a child element
that begins a lower level of the hierarchy. For example, a document outline has a

Figure 1. Window created with TwistDown library
DISPLAYING HIERARCHICAL LISTS 59

d e v e l o p Issue 18 June 199460
sequence of chapters (siblings) and each chapter has, as its descendants, a sequence of
sections.

In the sample code, each list element is stored in a handle. This allows the Memory
Manager to reorganize memory to store data efficiently. However, don’t forget that
the application program is responsible for disposing of data that’s no longer needed.

Two library functions manage the list elements: MakeTwistDownElement creates an
element and connects it to the list hierarchy and DisposeTwistDownElement deletes
an element along with its descendants and successors.

CREATING A LIST ELEMENT
Listing 1 shows the definition of our element structure, TwistDownRecord. Each
field of this structure will be explained as it’s encountered in the sample code.

MakeTwistDownElement (Listing 2) is called with the data to store in the element
and a handle to its predecessor. The predecessor is either NULL or the previous
(elder) sibling element. For example, when creating element 3 in the list shown in
Figure 2, the previous element is element 1.

TwistDownRecord is a variable-length structure and NewHandle creates an instance
that’s large enough to hold the caller’s data record. The structure definition, however,
contains one bit of trickery that’s required by the ANSI C standard — it must specify
at least one byte for the data[] placeholder. This is why the parameter to NewHandle
adjusts the handle size to eliminate the extra byte.

Descendant Successor Flags Data

Element 1 Element 3 (sibling element)

Element 2 (child element)

Figure 2. List element organization

Listing 1. TwistDownRecord

struct TwistDownRecord {
struct TwistDownRecord **nextElement; /* -> successor element */
struct TwistDownRecord **subElement; /* -> descendant element */
short indentLevel; /* Indentation depth */
unsigned short flag; /* Control flags */
unsigned short dataLength; /* Actual data length */
unsigned char data[1]; /* Data to display */

};
typedef struct TwistDownRecord TwistDownRecord,

*TwistDownPtr, **TwistDownHandle;

DISPOSING OF A LIST ELEMENT
The DisposeTwistDownHandle function disposes of a list element and then disposes
of its descendant and successor lists. To dispose of an entire list, call this function
with the first list element.

A simplified version of DisposeTwistDownHandle is shown in Listing 3. The library
implementation allows the application developer to specify a function that’s called
when disposing of each element in the list. This is needed if an application has to
store complex structures — themselves containing Ptr or Handle references — in a
TwistDownHandle.

Listing 2. MakeTwistDownElement

OSErr MakeTwistDownElement(TwistDownHandle previousElement,
short indentLevel,
unsigned short dataLength,
Ptr dataPtr,
TwistDownHandle *result)

{
TwistDownHandle twistDownHandle;

twistDownHandle = (TwistDownHandle) NewHandle(sizeof(TwistDownRecord)
- sizeof(unsigned char) + dataLength);

*result = twistDownHandle;
if (twistDownHandle != NULL) {

if (previousElement != NULL)
(**previousElement).nextElement = twistDownHandle;

(**twistDownHandle).nextElement = NULL;
(**twistDownHandle).subElement = NULL;
(**twistDownHandle).indentLevel = indentLevel;
(**twistDownHandle).flag = 0;
(**twistDownHandle).dataLength = dataLength;
if (dataPtr != NULL)

BlockMove(dataPtr, (**twistDownHandle).data, dataLength);
}
return (MemError());

}

Listing 3. DisposeTwistDownHandle

void DisposeTwistDownHandle(TwistDownHandle twistDownHandle)
{

TwistDownHandle nextElement, subElement;

while (twistDownHandle != NULL) {
nextElement = (**twistDownHandle).nextElement;
subElement = (**twistDownHandle).subElement;
DisposeHandle((Handle) twistDownHandle);
if (subElement != NULL)

DisposeTwistDownHandle(subElement);
twistDownHandle = nextElement;

}
}

DISPLAYING HIERARCHICAL LISTS 61

d e v e l o p Issue 18 June 199462
Note that DisposeTwistDownHandle is a recursive function; it calls itself to dispose
of the descendants of a hierarchy. If it’s called with the list shown in Figure 2, it
disposes of elements in the order 1, 2, and 3.

Using recursion simplifies the list-management algorithms in the TwistDown function
library. However, it’s not without its pitfalls in the real world. Each time a function such
as DisposeTwistDownHandle encounters a subelement list, it calls itself to dispose of
that list, and each of these calls uses stack space. While this isn’t usually a problem
for applications, you should avoid recursive algorithms in device drivers or other
nonapplication code segments because they must work within the constraints of some
other application’s stack.•

CONTROLLING DATA APPEARANCE
Once the data is organized as a hierarchical list, the application could simply display
the whole list by just storing handles to the list elements in List Manager cells.
However, if your application lets the user control how much of the data is displayed,
there must be a way for the user to browse through the data and to specify which
elements are visible and which are hidden.

A familiar mechanism for doing this exists in the Finder, where small buttons indicate
which cells have subhierarchies and whether the subhierarchy is visible. These
triangular buttons have two stable states: for closed (invisible) hierarchies and
for open (visible) hierarchies. There are also three transient states: an intermediate
button, , is displayed briefly when the user clicks a triangular button to change
between the open and closed states; and the closed and open buttons are drawn filled
when a mouse-down event is located on the button.

To manage these buttons and the display of visible data, each list element needs a few
flags and an indentation variable. These are stored in the TwistDownRecord
structure.

The indentation variable — indentLevel — specifies the hierarchical depth of an
element and is used to display sublists so that the data for an element appears under
its parent, but indented to show its place in the hierarchy.

The bits in the flag field are used to record the record’s state and to communicate
between the application and the List Manager’s list definition function (LDEF):

/* These are the values that can appear in the flag word. */
#define kHasTwistDown 0x0001 /* This element has a sublist */
#define kShowSublist 0x0002 /* Display the sublist content */
#define kOldShowSublist 0x0004 /* Saved kShowSublist state */
#define kSelectedElement 0x0008 /* Copy "selected" from list */
#define kDrawButtonFilled 0x0010 /* Signal "mouseDown" in button */
#define kOnlyRedrawButton 0x0020 /* Signal "tracking mouse" */
#define kDrawIntermediate 0x0040 /* Draw the animation polygon */
#define kEraseButtonArea 0x0080 /* Need complete button redraw */

The flag field is defined as an unsigned short with explicitly defined bits rather
than as a bitfield, which would have made the program slightly easier to read.
However, the ANSI C standard doesn’t specify how the bits in a bitfield are arranged,
and different compilers are free to choose their own organization of the bits. This
means that if you write parts of your code using several compilers, or distribute
modules in object form for others to use, you may cause a debugging nightmare. This
is especially true if you use bitfields to construct data records that are sent in network

messages between different systems. The flag bits could have been defined as an
enum, but this can also cause portability problems. Using explicit bit definitions will
also make it easier to convert your code to run on the Power Macintosh.•

The first four flag bits have the following meanings:

• kHasTwistDown is set if the element should have a triangular
button when it’s drawn. While you might assume that the
existence of a non-null subElement pointer would be sufficient,
the Finder illustrates a better design: it displays triangular buttons
for all folders, even if there are no files in a folder. This
immediately tells the user that the line on the display represents a
folder, rather than a file.

• kShowSublist is set if the sublist should be displayed. This is
normally controlled by the user clicking a triangular button, which
changes the kShowSublist state.

• kOldShowSublist is used to save the old kShowSublist setting in
case you need to temporarily change the display hierarchy. This
lets you undo a display state change or provide a Show All
Hierarchies command. It’s not used in the sample code.

• kSelectedElement records the selection state of the list cell. It’s
needed to properly retain the selection status of visible cells.

The other flag bits are needed to handle mouse events. They’re set by the mouse-
down event handler and the LDEF references them to control its actions:

• kDrawButtonFilled is set when the user presses a button (the
cursor is over a triangular button while the user has the mouse
buttton held down). It causes the LDEF to fill the triangular
button to indicate that the user is pressing it.

• kOnlyRedrawButton is set to constrain the LDEF so that the
entire display line doesn’t blink when the user presses a button.
As the user moves the cursor in and out of the button, the drawing
procedure must redraw the button to show whether the user is
pressing the button. However, there’s no need to redraw the
actual data contents. This flag tells the LDEF to redraw only
the button.

• kDrawIntermediate is set when the user releases the mouse button
within the button area: the button state changes from closed () to
open () or vice versa. To indicate this change, the LDEF draws
the button in an intermediate state (), delays for an instant, and
then draws the button in its new, stable state.

• kEraseButtonArea is set to erase the button area before it’s drawn.
If not set, the button is redrawn in its new form, but not erased;
this eliminates unnecessary button flicker.

The TwistDown library uses the following four macros internally to access the flag
word:

#define SetTDFlag(tdHandle, mask) ((**tdHandle).flag |= (mask))
#define ClearTDFlag(tdHandle, mask) ((**tdHandle).flag &= ~(mask))
#define InvertTDFlag(tdHandle, mask) ((**tdHandle).flag ^= (mask))
#define TestTDFlag(tdHandle, mask) (((**tdHandle).flag & (mask)) != 0)
DISPLAYING HIERARCHICAL LISTS 63

d e v e l o p Issue 18 June 199464
CREATING THE LIST RECORD
When you first look at the List Manager, it may appear to be the solution to all your
display needs. Unfortunately, it has a number of characteristics that restrict its
usefulness. It’s designed to store limited amounts of data, and performance slows
appreciably as you increase the number of cells or the amount of data stored in the
cells. Also, if your list cells are not all the same size or your application needs fine
control over scrolling, you’ll probably find life simpler if you create your own
function library. For example, both MacApp and the THINK Class Library offer
flexible libraries for displaying and managing structured data. However, the List
Manager serves well for straightforward lists of a small number of items — and with
the addition of the triangular buttons it becomes a very useful tool.

The TwistDown subroutine library creates a one-column list with a vertical scroll bar.
The code has only two unusual features:

• NewTwistDownList stores a small amount of private information
in a handle that’s stored in the userHandle field of the list record.
This includes a pointer to a user-defined drawing function, the
display font and font size, and a flag that signals whether clicking
on cell data should highlight the cell contents.

• It establishes a private LDEF that manages the visual display.
Normally, the LDEF is stored in a resource. In the sample code,
however, it’s linked into the application and a stub resource is
created for the benefit of the List Manager. This stub, a three-
instruction procedure that the List Manager calls, jumps to the
twist-down LDEF. This is not necessary for this library — it could
have been separately compiled — but is useful for debugging and
for LDEF procedures that need to access application globals.

When you recompile this program to run on a Power Macintosh as a “native”
application (rather than in 680x0-compatibility mode), you’ll have to redo this
sequence slightly. The time to worry about conversion is now, before your customers
are tapping you on the shoulder asking, “Not today? How about next Tuesday?”
There’s more on converting for Power Macintosh at the end of this article.•

Note that there are two separate drawing procedures: the twist-down LDEF manages
the buttons and drawing for simple text displays, while the application program can
specify its own drawing function to draw more complex data.

THE TWISTDOWNPRIVATERECORD
The twist-down LDEF requires a small amount of global information to properly
process the list. This is stored in a handle-based structure defined as shown in Listing 4.

Two Boolean variables in this record haven’t been described: canHiliteSelection and
isLeftJustify. The canHiliteSelection field controls whether the LDEF highlights
selected cells. The isLeftJustify flag is set for left-to-right languages (such as English)
and cleared for languages such as Arabic and Hebrew. This flag isn’t used in the code
shown in this article, but the TwistDown library on the CD shows how an application
might handle a right-to-left language.

CREATING TRIANGULAR BUTTON POLYGONS
The triangular buttons are defined as QuickDraw polygons, rather than as bitmaps,
with the advantage that the function is independent of the list cell size and script
direction. This is useful for localization or for programs used by people who are
visually impaired or have diminished motor skills: the program will display larger

buttons if the application or user chooses a large font. It also lets the program draw
the closed and intermediate buttons pointing in the proper direction for right-to-left
script systems such as Arabic and Hebrew. Figure 3 illustrates an expanded view of
the triangular buttons. As an example, the code in Listing 5 shows how you would
create the polygons for a left-to-right script. See the sample on the CD for more
general code, which accounts for the writing direction of the script.

PUTTING DATA INTO THE LIST
After creating the List Manager list, the application builds its hierarchical structure
(the linked list). List elements are created by the MakeTwistDownElement function.
As described earlier in “Creating a List Element,” MakeTwistDownElement obtains
the necessary (handle) storage, initializes all flags, and stores the application data in
the list element. It also links the new element to the previous (elder sibling) element
in the list.

Normally, a twist-down list is built by a recursive function such as the one shown in
Listing 6, MyBuildHierarchy. MyBuildHierarchy calls a function named MyGetInfo
that stores a small amount of data into a structure called MyInfoRecord. Neither of
these is defined here: they’re application specific.

CREATING THE VISIBLE DISPLAY
After you’ve built the data hierarchy, the next step is to determine which elements are
visible initially and build the visible list. The CreateVisibleList function constructs a
new visible display given the head of a hierarchical list and a List Manager handle. It

Listing 4. TwistDownPrivateRecord

struct TwistDownPrivateRecord {
TwistDownDrawProc drawProc; /* User-defined drawing function */
PolyHandle openTriangle; /* The expanded button */
PolyHandle closedTriangle; /* The closed button */
PolyHandle intermediateTriangle; /* Animation */
short tabIndent; /* Child indentation */
short fontSize; /* For TextSize */
short fontNumber; /* For TextFont */
Boolean canHiliteSelection; /* Highlight cell OK? */
Boolean isLeftJustify; /* GetSystJust value */
short triangleWidth; /* Button width */

};
typedef struct TwistDownPrivateRecord TwistDownPrivateRecord,

*TwistDownPrivatePtr, **TwistDownPrivateHandle;

as
ce

nt

Figure 3. The triangular buttons
DISPLAYING HIERARCHICAL LISTS 65

d e v e l o p Issue 18 June 199466
Listing 5. Creating triangular button polygons

GetFontInfo(&info);
buttonSize = info.ascent; /* The button height */
buttonSize &= ~1; /* Round down to an even number */
halfSize = buttonSize / 2; /* For 45-degree triangles */
intermediateSize = (buttonSize * 3) / 4;
(**privateHdl).openTriangle = OpenPoly();

MoveTo(0, halfSize);
LineTo(buttonSize, halfSize);
LineTo(halfSize, buttonSize);
LineTo(0, halfSize);

ClosePoly();
(**privateHdl).closedTriangle = OpenPoly();

MoveTo(halfSize, 0);
LineTo(buttonSize, halfSize);
LineTo(halfSize, buttonSize);
LineTo(halfSize, 0);

ClosePoly();
(**privateHdl).intermediateTriangle = OpenPoly();

MoveTo(intermediateSize, 0);
LineTo(intermediateSize, intermediateSize);
LineTo(0, intermediateSize);
LineTo(intermediateSize, 0);

ClosePoly();

3

1

2

3

1

2

3 1

2

Listing 6. Building a twist-down list

TwistDownHandle MyBuildHierarchy(ListHandle theList, short indentLevel)
{

OSErr status;
TwistDownHandle previousElement, thisElement, firstElement;
MyInfoRecord myInfoRecord;
Boolean isHierarchy;
EventRecord currentEvent;

firstElement = NULL;
previousElement = NULL;
/*** Other initialization here */
do {

/*** Call EventAvail here to give time to background tasks. */
EventAvail(everyEvent, ¤tEvent);
status = MyGetInfo(&myInfoRecord, &isHierarchy);
if (status == noErr)

status = MakeTwistDownElement(previousElement, indentLevel,
sizeof(MyInfoRecord), (Ptr) &myInfoRecord, &thisElement);

if (status == noErr) {
/*** Remember the first element in this sibling sequence; */
/*** it's needed by our caller. */
if (firstElement == NULL)

firstElement = thisElement;

(continued on next page)

stores the head in the first cell (cell [0, 0]) and calls BuildVisibleList to store the
visible elements in the subsequent cells.

BuildVisibleList is called in two situations: when the application first constructs the
list and when the user changes the visual hierarchy by clicking a triangular button. It
calls CountVisibleElements to determine the number of cells needed, adjusts the size
of the list to the desired number, and calls a recursive function, SetElementsInList, to
do the actual storage. SetElementsInList needs what is essentially a global counter to
know which cell will receive the current list element.

BuildVisibleList associates list cells with elements in the hierarchical list as follows:

1. It copies the current selection status of each list cell from the List
Manager cell to the associated TwistDownHandle element.

2. It counts the number of elements that will be displayed and adds
or removes rows from the List Manager list as needed.

3. Finally, it stores references to the visible elements in the list cells,
updating the selection status as needed.

The utility functions used in adding and removing elements from the List Manager
list aren’t shown here but may be examined in the sample library. BuildVisibleList
uses several local, recursive functions to process the hierarchical list that all have a
similar overall structure. For example, CountVisibleElements (Listing 7) computes
the number of list elements that should be displayed.

HANDLING MOUSE EVENTS
Now that we have a visible list, we’re ready to let the user manipulate the hierarchy
by clicking the triangular buttons. When the user presses the mouse button, the
application decides whether the cursor is in one of its windows and whether this
window might just happen to have a twist-down list. If so, the application calls
DoTwistDownClick with the list handle, a pointer to an event record, and a pointer
to a Cell structure that identifies the selected cell on exit. DoTwistDownClick returns
one of five action states, as shown in Table 1.

/*** If this data begins a hierarchy, descend by calling this */
/*** function recursively. Store the first element of the new */
/*** sublist in the subElement pointer. (flag & kHasTwistDown) */
/*** will be TRUE even if the child list is empty. */
if (isHierarchy) {

SetTDFlag(thisElement, kHasTwistDown);
(**thisElement).subElement =

MyBuildHierarchy(theList, indentLevel + 1);
}
/*** Set sibling linkage for next element. */
previousElement = thisElement;

}
} while (status == noErr);
return (firstElement);

}

Listing 6. Building a twist-down list (continued)
DISPLAYING HIERARCHICAL LISTS 67

d e v e l o p Issue 18 June 199468
The techniques described here for handling mouse events can be used to create
lists whose cells contain other kinds of active elements, such as buttons or checkboxes.•

DoTwistDownClick, together with the subroutines it calls, hides a fairly complex
process consisting of the following steps; these steps are described further in the
following sections and illustrated in the simplified version of DoTwistClick shown in
Listing 8.

1. Check that the mouse-down event is in the list area.

2. Check that the user pressed a triangular button.

3. Track the mouse while it’s held down.

4. Take appropriate action when the mouse button is released.

Did the user press in the list rectangle?
Get the mouse location in local coordinates and the window rectangle that contains
the list and its scroll bar. If the mouse location is not in the list, just return.

Listing 7. CountVisibleElements

short CountVisibleElements(TwistDownHandle twistDownHandle)
{

short result;

result = 0;
while (twistDownHandle != NULL) {

++result;
if (TestTDFlag(twistDownHandle, kShowSublist))

result += CountVisibleElements((**twistDownHandle).subElement);
}
return (result);

}

Table 1
DoTwistDownClick action states

Action State Meaning
kTwistDownNotInList The mouse-down event was not in the list area. Your application

should handle this event.

kTwistDownNoClick The user pressed the mouse button in a triangular button but
released it outside the button. Your application should ignore
this click.

kTwistDownButtonClick The mouse click was in the triangular button. DoTwistDownClick
has handled this, but your application may need to do further
processing.

kTwistDownClick The user clicked, once, on list data. Your application may need
to do further processing.

kTwistDownDoubleClick The user double-clicked on list data. Your application may need
to do further processing.

Did the user press a triangular button?
The user pressed in the list area; is it in a button? The code sample on the CD has a
test for left or right alignment (so that you can use the function with Arabic or
Hebrew script systems) but that test is ignored here. The central algorithm
determines the rectangle that encloses all the cell buttons. If the cursor is in that area,
it then checks whether there is a cell under the cursor and, if so, whether this cell
actually displays a button.

Track the mouse while it’s in the button area.
If we get past all that, we know that the user pressed a triangular button. The
click-handler sets and clears flag bits that the LDEF references when redrawing
the list cell. The LDEF starts by drawing the button in its active (filled) state. Note
that each call to LDraw redraws the list cell — but, as pointed out earlier, the
kOnlyRedrawButton flag prevents the entire display line from blinking.

The sequence beginning with “if (StillDown())” in the code shows how you can track
your own visual elements, such as icons, as if they were normal buttons. You can also
use this technique to add checkboxes or other button-like objects to list cells.

The user released the mouse button.
When the user releases the mouse button in the triangular button area, the
application changes the button state (for example, from to). This is a two-step
process that briefly flashes an intermediate button () to give the user the illusion of
change. While your application would certainly work without this subtle touch, it
wouldn’t look as good. Call the ExpandOrCollapseTwistDownList function after
flashing the intermediate button to redraw the button in its new state. Note that
kEraseButtonArea is set so that the intermediate button is drawn properly.

Listing 8. DoTwistDownClick

TwistDownClickState DoTwistDownClick(ListHandle theList,
const EventRecord *eventRecordPtr,
Cell *selectedListCell)

{
Cell theCell; /* Current list cell */
Rect hitRect; /* The button area in this cell */
Boolean inHitRect; /* Cursor is in the button area */
Boolean newInHitRect; /* Cursor moved into the button */
short cellHeight; /* Height of a list cell */
short visibleTop; /* Top pixel in the list area */
TwistDownHandle twistDownHandle; /* Current twist-down element */
TwistDownPrivateHandle privateHandle; /* Private data */
Point mousePt; /* Where the mouse is located */
TwistDownClickState result; /* Function result */
long finalTicks; /* For the Delay function */

/*** 1. Did the user press in the list rectangle? */
mousePt = eventRecordPtr->where;
GlobalToLocal(&mousePt); /* Mouse in local coordinates */
hitRect = (**theList).rView; /* Here's the list area */
hitRect.right += kScrollBarWidth; /* Include the scroll bar, too */

(continued on next page)
DISPLAYING HIERARCHICAL LISTS 69

d e v e l o p Issue 18 June 199470
if (PtInRect(mousePt, &hitRect) == FALSE) {
result = kTwistDownNotInList;
return (result);

}

/*** 2. Did the user press a triangular button? */
privateHdl = (TwistDownPrivateHandle) (**theList).userHandle;
hitRect.right = (**theList).rView.left + (**theList).indent.h

+ (**privateHdl).triangleWidth;
inHitRect = FALSE;
if (PtInRect(mousePt, &hitRect)) {

/*** The mouse is in the button area; is there a cell? */
cellHeight = (**theList).cellSize.v;
theCell.h = 0;
theCell.v = ((mousePt.v - (**theList).rView.top) / cellHeight

+ (**theList).visible.top;
/*** This is a list cell that should have data. Get the twist- */
/*** down element handle. If there's no data, or no hierarchy, */
/*** the click will be ignored. */
twistDownHandle = GetTwistDownElementHandle(theList, theCell);
if ((twistDownHandle != NULL)
&& TestTDFlag(twistDownHandle, kHasTwistDown))
inHitRect = TRUE;

}
if (inHitRect == FALSE) {

/*** There's no button here, or the user didn't click it. Just */
/*** call the normal list click-handler and return its value. */
/*** This is needed to handle scroll bars correctly. */
if (LClick(mousePt, eventRecordPtr->modifiers, theList))

return (kTwistDownDoubleClick);
else {

return (kTwistDownClick);
}

}

/*** 3. Track the mouse while it's in the button area. */
SetTDFlag(twistDownHandle, kDrawButtonFilled | kOnlyRedrawButton);
LDraw(theCell, theList);
/*** Set hitRect to the triangular button dimensions. */
hitRect.top = (theCell.v - (**theList).visible.top) * cellHeight

+ (**theList).rView.top;
hitRect.bottom = hitRect.top + cellHeight;
/*** Track the mouse while it's still down: if it moves into the */
/*** rectangle, redraw it filled; if it moves out, redraw it */
/*** unfilled. */
if (StillDown()) {

while (WaitMouseUp()) {
GetMouse(&mousePt);
newInHitRect = PtInRect(mousePt, &hitRect);

Listing 8. DoTwistDownClick (continued)

(continued on next page)

EXPAND OR COLLAPSE THE HIERARCHY
ExpandOrCollapseTwistDownList (Listing 9) is normally called directly by
DoTwistDownClick, as shown in the preceding section. It can also be called directly
by the application. When called, it inverts the “expansion” state of the designated list
cell, redraws the triangular button, and calls BuildVisibleList (described earlier in
“Creating the Visible Display”) to revise the visible hierarchy. Note that
BuildVisibleList will modify the display starting with the current cell: the cells above
will not change and thus need not be modified or redrawn.

DRAWING THE LIST CELL
When the contents of a list cell change or the display requires updating, the List
Manager calls the TwistDownLDEF function. This function draws the button in its
current state and either draws the list cell (for simple text cells) or calls a user-defined
drawing function to draw more complex cells. The code is generally straightforward
(again, ignoring right or left considerations). Basically, it examines the state of the
kOnlyRedrawButton flag and proceeds as follows:

if (newInHitRect != inHitRect) {
/*** The cursor moved into or out of the triangle. */
InvertTDFlag(twistDownHandle, kDrawButtonFilled);
LDraw(theCell, theList);
inHitRect = newInHitRect;

}
}

}

/*** 4. The user released the mouse button. */
if (inHitRect == FALSE) {

/*** The user canceled the operation by releasing the mouse */
/*** outside the triangular button area. drawButtonFilled will */
/*** normally be clear. It can be set, however, if the user */
/*** clicks so briefly that the StillDown() test above is */
/*** FALSE. */
if (TestTDFlag(twistDownHandle, kDrawButtonFilled)) {

ClearTDFlag(twistDownHandle), kDrawButtonFilled);
LDraw(theCell, theList);

}
ClearTDFlag(twistDownHandle), kOnlyRedrawButton);
return (kTwistDownNoClick);

}
SetTDFlag(twistDownHandle, (kDrawIntermediate | kEraseButtonArea));
LDraw(theCell, theList);
Delay(kAnimationDelay, &finalTicks);
ClearTDFlag(twistDownHandle,

(kDrawIntermediate | kDrawButtonFilled | kEraseButtonArea));
ExpandOrCollapseTwistDownList(theList, theCell);
*selectedListCell = theCell;
ClearTDFlag(twistDownHandle, kOnlyRedrawButton);
return (kTwistDownButtonClick);

}

Listing 8. DoTwistDownClick (continued)
DISPLAYING HIERARCHICAL LISTS 71

d e v e l o p Issue 18 June 199472
• If the flag is set, “shrink” the display rectangle so that only the
button is redrawn. Choose the correct triangular polygon and
draw it in its proper state.

• If the flag is clear, draw the cell data and the triangular polygon.

Let’s look more closely at the TwistDownLDEF drawing code (Listing 10):

1. First we determine what to draw. To begin drawing the list, we
first need the cell content. This is the handle that contains the list
element. We also check that userHandle has been set up correctly.
Note that we don’t use the List Manager’s LFind function because
the data might not be aligned in the list cell storage. (Actually, the
data is aligned, because only handles are stored in the cells, but it
doesn’t hurt to be suspicious.) If the handle contains a list element,
the values of the flags determine what to draw.

2. Next, we call DrawTriangle to draw the triangular button. The
value of theFlag determines the button state and its location.

3. Finally, after checking to be sure kOnlyRedrawButton is not set
and that we have the data, TwistDownLDEF redraws the cell data
with the proper indentations. Here’s where the code allows you to
specify a user-defined drawing function.

Listing 9. ExpandOrCollapseTwistDownList

twistDownHandle = GetTwistDownElementHandle(theList, theCell);
if ((twistDownHandle != NULL)
&& TestTDFlag(twistDownHandle, kHasTwistDown)) {
InvertTDFlag(twistDownHandle, kShowSublist);
/*** Redraw the triangular button in its new state. */
ClearTDFlag(twistDownHandle, kDrawButtonFilled);
SetTDFlag(twistDownHandle, (kOnlyRedrawButton | kEraseButtonArea));
LDraw(theCell, theList);
ClearTDFlag(twistDownHandle, (kOnlyRedrawButton | kEraseButtonArea));
/*** If some other part of the list will change, rebuild the List */
/*** Manager cells and redraw the list. */
if ((**twistDownHandle).subElement != NULL)

BuildVisibleList(theList, theCell.v);
}

Listing 10. TwistDownLDEF drawing code

pascal void TwistDownLDEF(
short listMessage,
Boolean listSelect,
Rect *listRect,
Cell listCell, /* Unused */
short listDataOffset, /* Unused */
short listDataLen,
ListHandle theList

)

(continued on next page)

{
short indent; /* Cell data indentation */
TwistDownHandle twistDownHandle; /* The cell data */
TwistDownPtr twistDownPtr; /* Cell data (locked handle) */
short cellSize; /* sizeof(TwistDownHandle) */
PolyHandle polyHandle; /* Button polygon */
Point polyPoint; /* Where to draw the button */
Rect viewRect; /* Actual cell drawing area */
signed char elementLockState; /* twistDownHandle lock state */

#define TestFlag(flagBit) ((theFlag & (flagBit)) != 0)

. . . /*** Other LDEF processing isn't shown. */

/*** 1. Determine what to draw. */
cellSize = sizeof twistDownHandle;
LGetCell(&twistDownHandle, &cellSize, listCell, theList);
if ((cellSize == sizeof twistDownHandle) && twistDownHandle != NULL) {

/*** There is a list element. (This if statement extends all */
/*** the way to the end of the sequence.) Lock the element in */
/*** memory and look at the flag values. Set viewRect to the */
/*** part of the List Manager cell that will be drawn. */
elementLockState = HGetState((Handle) twistDownHandle);
HLock((Handle) twistDownHandle);
twistDownPtr = (*twistDownHandle);
privateHdl = (TwistDownPrivateHandle) (**theList).userHandle;
viewRect = *listRect;
theFlag = (*twistDownPtr).flag;
if (TestFlag(kOnlyRedrawButton)) {

/*** Shrink the display area when only the button is redrawn.*/
viewRect.right = viewRect.left + (**theList).indent.h

+ (**privateHdl).triangleWidth;
}
if (TestFlag(kOnlyRedrawButton) == FALSE
|| TestFlag(kEraseButtonArea))
EraseRect(&viewRect);

/*** 2. Draw the triangular button. */
if (TestFlag(kHasTwistDown)) {

polyPoint.v = listRect->top + 1;
polyPoint.h = listRect->left + (**theList).indent.h

+ kTriangleOutsideGap;
if (TestFlag(kDrawIntermediate))

polyHandle = (**privateHdl).intermediateTriangle;
else if (TestFlag(kShowSublist))

polyHandle = (**privateHdl).openTriangle;
else

polyHandle = (**privateHdl).closedTriangle;
DrawTriangle(polyHandle, polyPoint, theFlag & kDrawButtonFilled);

}

(continued on next page)

Listing 10. TwistDownLDEF drawing code (continued)
DISPLAYING HIERARCHICAL LISTS 73

d e v e l o p Issue 18 June 199474
THE DRAWTRIANGLE FUNCTION
If you look closely at the triangular buttons on a color or grayscale display, you’ll
notice that the button is filled with a grayish background color. (The Finder uses the
color the user assigned to the file, while we use a light gray color.) The DrawTriangle
function called by TwistDownLDEF takes three parameters: the polygon, where it’s
to be drawn, and a Boolean that specifies whether the user is currently pressing the
triangular button. DrawTriangle uses the DeviceLoop procedure, DrawThisTriangle,
which calls the actual drawing function for each type of device so that drawing can be
optimized for different screen depths. (See Listing 11.)

The DeviceLoop procedure is described in “DeviceLoop Meets the Interface
Designer,” develop Issue 13, and in Inside Macintosh Volume VI.•

THE SAMPLE PROGRAM
The sample program illustrates how you can use twist-down lists to display a
directory of all files on a volume. It’s a very simple program and you would be well
advised not to use it on a huge disk with many folders and files, because there’s no
protection against storage overflow.

The sample program compiles and runs in five environments: THINK C 6.0,
Metrowerks DR1, and MPW 3.2 for the 680x0-based Macintosh; and, for the Power

/*** 3. Draw the cell data. */
if (TestFlag(kOnlyRedrawButton) == FALSE
&& (*twistDownPtr).dataLength > 0) {
/*** Indent the text to show the depth of the hierarchy. Then */
/*** build a display rectangle for the cell text and set the */
/*** pen to the leftmost position of the text. */
indent = (**theList).indent.h + (**privateHdl).triangleWidth

+ ((**privateHdl).tabIndent * (*twistDownPtr).indentLevel);
viewRect = *listRect;
viewRect.left += indent;
TextFont((**privateHdl).fontNumber);
TextSize((**privateHdl).fontSize);
/*** If the user didn't provide a drawing procedure, draw a */
/*** text string. Otherwise, call the user's procedure. */
if ((**privateHdl).drawProc == NULL) {

MoveTo(viewRect.left, viewRect.top + (**theList).indent.v);
DrawText((*twistDownPtr).data, 0, (*twistDownPtr).dataLength);

}
else {

(*(**privateHdl).drawProc)(/* Call user's drawing function */
theList, /* The list handle */
(const Ptr) (*twistDownPtr).data, /* Data to draw */
(*twistDownPtr).dataLength, /* Size of the data */
&viewRect); /* Where to draw it */

}
} /* If we're drawing cell data */
HSetState((Handle) twistDownHandle, elementLockState);

} /* If we have cell data */
}

Listing 10. TwistDownLDEF drawing code (continued)

Listing 11. DrawTriangle and DrawThisTriangle

typedef struct TriangleInfo { /* Passed to DrawThisTriangle */
PolyHandle polyHandle; /* The polygon to draw */
Point polyPoint; /* Where to draw it */

} TriangleInfo, *TriangleInfoPtr;

static void DrawTriangle(PolyHandle polyHandle,
Point polyPoint,
Boolean isSelected

)
{

TriangleInfo triangleInfo;
RgnHandle drawingRgn;
long savedA5;

/*** Refresh A5 so that we can use the current QuickDraw globals. */
savedA5 = SetCurrentA5();
triangleInfo.polyHandle = polyHandle; /* Save our drawing */
triangleInfo.polyPoint = polyPoint; /* parameters. */
/*** Position the polygon properly on the display. */
OffsetPoly(polyHandle, polyPoint.h, polyPoint.v);
if (isSelected)

FillPoly(polyHandle, &qd.black);
else {

/*** Get drawing region and call DeviceLoop to do the work. */
drawingRgn = NewRgn();
OpenRgn();
FramePoly(polyHandle);
CloseRgn(drawingRgn);
DeviceLoop(

drawingRgn, /* Region to draw into */
(DeviceLoopDrawingProcPtr) DrawThisTriangle,
(long) &triangleInfo, /* Drawing parameters */
0 /* DeviceLoop flags (ignored) */

);
DisposeRgn(drawingRgn);

}
/*** Frame the button in black and move the polygon back to its */
/*** default [0,0] position. */
FramePoly(polyHandle);
OffsetPoly(polyHandle, -polyPoint.h, -polyPoint.v);
SetA5(savedA5);

}

static pascal void DrawThisTriangle(/* Called by DeviceLoop */
short depth, /* Screen pixel depth */
short deviceFlags, /* Device info (ignored) */
GDHandle targetDevice, /* The display (ignored) */
TriangleInfoPtr triangleInfoPtr /* The data to be drawn */

)

(continued on next page)
DISPLAYING HIERARCHICAL LISTS 75

d e v e l o p Issue 18 June 199476
Macintosh, Metrowerks DR1 and the MPW provided in the Macintosh on RISC
Software Developer’s Kit. Converting the code for Power Macintosh took about one
day (it was my lab exercise when I took the Apple Developer University “PowerPC
BootCamp” course). To learn more about what I did to accomplish this conversion,
see “Converting for Power Macintosh.”

When you start up the sample program, it begins enumerating the disk; you can click
to stop it at any time. The hierarchical list is built using the algorithm illustrated by
the MyBuildHierarchy function, described in the section “Putting Data Into the List.”

TWISTED LISTERS
So, what’s this method of displaying data good for? If you have data that’s
hierarchical, coherent, line-oriented, and not too large, you’ll find that the twist-
down list functions are both useful and easy to incorporate into your applications.

• Hierarchical. If the data doesn’t separate into a strict hierarchy, the
presence of triangular buttons will only confuse your users: they’re
expecting your application to operate like the Finder. Also, if the
hierarchy is very limited (a single topic with a block of text), you’ll
probably find some other solution easier to use.

Listing 11. DrawTriangle and DrawThisTriangle (continued)

{
RGBColor foreColor;
RGBColor saveForeColor;
RGBColor backColor;
short i;
Rect polyRect;

polyRect = (**(*triangleInfoPtr).polyHandle).polyBBox;
LocalToGlobal(& ((Point *) &polyRect)[0]);
LocalToGlobal(& ((Point *) &polyRect)[1]);
if (depth > 1) {

/*** Drawing in color or grays: fill the triangle with a very */
/*** light gray. */
GetForeColor(&foreColor);
saveForeColor = foreColor;
GetBackColor(&backColor);
/*** This loop sets foreColor to a very light gray. */
for (i = 0; i < 8; i++) {

if (GetGray(GetGDevice(), &backColor, &foreColor) == FALSE)
break;

}
RGBForeColor(&foreColor);
FillPoly((*triangleInfoPtr).polyHandle, &qd.black);
RGBForeColor(&saveForeColor);

}
else {

/*** Monochrome: erase the interior of the polygon. */
ErasePoly((*triangleInfoPtr).polyHandle);

}
}

CONVERTING FOR POWER MACINTOSH
Here’s a simplified checklist of the kinds of things you’ll
need to do to convert code for the Power Macintosh,
based on what I did to convert my program (see the
sample code on the CD, especially TwistDownList.c). I
borrowed heavily from the document “Moving Your
Source to PowerPC” on the Macintosh on RISC Software
Developer’s Kit CD.

• Convert to standard C using the most restrictive
environment so that the application runs correctly in
THINK C and MPW with no compiler or linker errors
or warnings. In THINK C, for example, you would
enable the Check Pointer Types and Require Prototypes
options and remove the MacHeaders option. In all
cases, you should add prototypes and explicit function
return types and fix potential trigraph problems.

• Replace all instances of int and unsigned by explicit
short and long declarations. Be very careful about
structure definitions that are shared among code
modules (or written to files or resources), as the Power
Macintosh aligns structures differently from the 680x0-
based Macintosh: you may need to add #pragma
statements to override the compiler.

• Create a makefile for the MPW development system.
Try to build “fat binaries” that will run native on both
the 680x0-based Macintosh and Power Macintosh.

• If at all possible, convert to the universal interfaces
provided in the Software Developer’s Kit (and on this
issue’s CD). In particular, ProcPtr references must be
converted to UniversalProcPtr. Also, all low-memory
references must be replaced by the access functions
provided as part of the universal interfaces.

• Isolate system and compiler dependencies by using
#ifdef statements. For MPW-based compilers, add
-d MPW=1 to your makefiles. This lets you add
compiler- and system-dependent #pragmas and code
sequences without encountering compiler warnings.

#ifdef THINK_C /* THINK C */
#ifdef __powerc /* Power Macintosh */
#ifdef MPW /* MPW: see above */
#ifdef applec /* Apple compilers */

• Remove or isolate all assembly language and inline
statements. You can probably eliminate all assembly
language from your Power Macintosh applications.

• Power Macintosh will not support a number of obsolete
system traps; when you convert your program, you
may need to rewrite small sections of your code. Of
course, you should check new code on both the
680x0-based Macintosh and Power Macintosh.

• Applications must explicitly allocate space for the
QuickDraw globals. Add the following to your
application’s main program file:

#ifdef __powerc
QDGlobalsqd;
#endif

• Avoid storing application-specific data in your
application’s data fork: the Power Macintosh stores its
code there. (You can reserve a fixed amount of space
at the beginning of the data fork, if necessary.)

• Add a 'cfrg' (code fragment) resource to your
application’s resource fork. This tells the Process
Manager that you’ve built a Power Macintosh native
application.

#ifdef __powerc
#include "CodeFragmentTypes.r"
resource 'cfrg' (0) {

{
kPowerPC,
kFullLib,
kNoVersionNum, kNoVersionNum,
0, 0,
kIsApp, kOnDiskFlat,
kZeroOffset, kWholeFork,
"MyFirstPowerPCApp"

}
};
#endif

• Make good use of the compatibility built into the
Power Macintosh: your application should run native
on Power Macintosh and still run correctly on a 680x0-
based machine. The user shouldn’t notice any
difference.

• In most cases, native Power Macintosh applications
will be about the same size as their 680x0
counterparts. Of course, if you use the compatible “fat
binary” capability, the application file size will
increase.

The above list isn’t complete by any means, but, together
with the sample code, it should get you started. Also,
there are several Developer University courses available
to help bring you up to speed quickly.
DISPLAYING HIERARCHICAL LISTS 77

d e v e l o p Issue 18 June 199478
• Coherent. Your users expect consistency between the parent “title”
and child “content” data. Try another technique if clicking a
triangular button does something other than reveal a lower-level
hierarchy. For example, the JMP statistical package uses standard
Macintosh buttons to expand a hierarchy. Clicking a button may
reveal a table of data or a graphical element. (JMP hierarchies are
also quite shallow.)

• Line-oriented. Again, the user is expecting Finder-like behavior. If
the data is not line-oriented, you’ll discover that coaxing the List
Manager to deal with your data isn’t worth the considerable effort
it takes. In particular, avoid varying the height of each line as this
makes the triangular buttons look weird (some small, some large)
unless you normalize their size.

• Not too large. This is a restriction of the List Manager. Because of
the way it stores data, there’s an absolute limit of 32,767 cells in a
list, but it becomes very slow and clumsy with more than a few
hundred cells.

I wrote the TwistDown library because I wanted to display an AOCE catalog
specification that can contain many internal components of varying size and
complexity. It offered a friendly interface into a structure that is convoluted, warped,
and — indeed — twisted.

REFERENCES
• “Standalone Code on PowerPC” by Tim Nichols, develop Issue 17.

• “Making the Leap to PowerPC” by Dave Radcliffe, develop Issue 16.

• Inside Macintosh: More Macintosh Toolbox (Addison-Wesley, 1993), Chapter 4,
“List Manager,” or Inside Macintosh Volume IV (Addison-Wesley, 1986), Chapter
30, “The List Manager Package.”

• “DeviceLoop Meets the Interface Designer” by John Powers, develop Issue 13.
DeviceLoop is also described in Inside Macintosh Volume VI (Addison-Wesley,
1991) on page 21-23.
ACKNOWLEDGMENTS
The TwistDown library is generally based on code
from the NewsWatcher application by Steve
Falkenburg. Steve’s code is based on code
written by John Norstad, author of Disinfectant.•

Thanks to our technical reviewers Jon Callas,
Godfrey DiGiorgi, Steve Falkenburg, Dave
Radcliffe, and Dean Yu. And thanks to Richard
Clark for the PowerPC BootCamp course.•

Dear Tao,

Someone at work is stealing all my pens. I know it doesn’t
sound like a big deal, but it’s getting to the point where I’m
going through dozens a week. Even more frustrating is that
I’m certain it’s happening during normal business hours, not
at night.

I just know the Internal Revenue Service isn’t going to
believe a huge deduction for office supplies at the end of the
year. What can I do?

Pound Wise But Pen Foolish

Dear Pound,

You are in one of those unique positions where you can
not only solve the mystery of the missing pens, but also
spruce your office up a bit.

The first thing you need to do is cover your walls with
blacklight posters. As a minimum you should get a
tiger, a Jimi Hendrix, and a flaming dirigible. What’s
really great is that although interior design has taken
huge leaps forward since the 60s, blacklight art has
remained remarkably the same. Any investment you
make now is sure to be preserved for years.

Once you’ve got the posters, you naturally must have a
blacklight to properly show them off. I would
recommend the most powerful one you can get, but
you should stay away from the strobes — although rare,
there are some people who experience seizures from
strobe light.

View From
the Ledge

TAO JONES
TAO JONES paid his way through college by volunteering as a
subject for psychology experiments. He became obsessed with
trying to figure out what the experiments he was participating in
were trying to determine and then defeating them. One day he
was told to go to the testing room down the hall and on the right.
At this point the trap is set. Now all you need to do is
dust your pens with ultraviolet powder (available from
any burglar alarm shop). Make sure that you leave the
light off for the first day or two. Then turn it back on
and watch the people who come back and forth from
your office. The one with the glowing yellow hands is
your best suspect.

Note that if you’re going to spend much time working
under these lamps, you should get yourself a pair of
UV goggles. It’s not a bad idea to have a pair anyway;
they make a great fashion accessory to spice up any
wardrobe.

If things ever get a bit dull around the office, you can
always set up your own security desk. Imagine the thrill
you’ll get saying things like “Excuse me, miss, you’ll
need to be stamped in order to reenter the building.”
Putting up a sign that reads “No bottles, cans, knives,
or tape recorders” will just add to the ambiance.

Dear Tao,

Lately I’ve been pondering a real big question that I’m not
making any headway with: what, exactly, is it that people
are trying to accomplish? Sure, all these software companies
are trying to change the world, make profits, and all of that,
but why?

Puzzled

Dear Puzzled,

You’re asking the question that has plagued people
from time immemorial. It’s been phrased lots of
different ways, usually by big people thinking big
thoughts and wearing strange clothes, but the crux is
always the same: just what is the deal?

Different religions and philosophies will give you
different answers. Buddhists will tell you about
enlightenment, Christians will expound on heaven,
existentialists will ask “Why do you even care?” and a
ten-year-old kid will point to a candy store.
Unfortunately, all of these solutions look too far
forward into the future, are too imbued with concepts
of the human spirit, and still are not answering the
basic question as it concerns computing.
VIEW FROM THE LEDGE 79

He went down the hall and entered a room that was completely
dark. Figuring it was an experiment in sensory deprivation, he
went in and sat down. Two days later, he emerged, nearly dead
from dehydration. It was then that he discovered he’d gone down
the hall and turned left only to end up in the janitor’s closet.•

80
I know the answer, but as part of the fraternity of
philosophers, advice columnists, and magicians, I’m not
supposed to release our secrets. However, I’ve never
been comfortable with being a part of the “in” crowd,
so I’ll tell you the answer: it’s Pac-Man.

From Day 1 people have wanted to be entertained, but
for millennia this need was never truly fulfilled. Then
in the 1980s Pac-Man came along and there was a brief
period of bliss. Money could actually buy happiness —
assuming you had at least a quarter and a Pac-Man
machine nearby.

Of course, a person can take only so much of any given
kind of happiness, especially one that goes “wokka,
wokka, wokka, GOINK!” People became burned out,
and the search has been on ever since. That’s right: this
$200 billion-a-year industry, and all those government
think tanks, are actually doing nothing more than
searching for the next Pac-Man. Most experts agree
that the next big breakthrough will be in a driving
game of some type, which explains why you’ve been
hearing so much about the digital highway lately.

Dear Tao,

Believe it or not, I actually like wearing a suit to the office.
I’ve tried the standard jeans and T-shirt outfit, but I just
don’t feel comfortable in them. My problem is that when I do
dress up, my colleagues continually criticize me for it. What
can I do?

Pinstriped in Pennsylvania

Dear Pinstriped,

Unfortunately, you’re in a very difficult situation that
probably isn’t “curable.” The ailment was discovered in
the 1950s and is most commonly referred to today as
the “Liberace Syndrome.” The studies of the human
d e v e l o p Issue 18 June 1994

Tao Index: A person’s belief in the truth of a particular argument
is inversely proportional to their emotional fury in delivering it.•
genome seem to indicate that there’s some sort of
defect in the appearance gene that will make affected
individuals want to start dressing flashier and flashier.
It’s not clear what causes it, although chronic exposure
to jewelry, candelabra, or Las Vegas clearly will make
the condition worse. You’ll also find that your
condition will become more severe with age.

The disease starts very mild. At first you’ll shun
sneakers. Then you’ll start thinking that cotton has too
rough of a feel. As things progress to the final and most
outrageous stages, you’ll find yourself wanting to wear
sequined capes and feather boas. Thousands of people
have been afflicted by the Liberace Syndrome: Little
Richard, Elvis Presley, Elton John, Madonna, James
Brown, and Rip Taylor, to name a few.

So it’s bad news and good news about your affliction.
The good news is that it’s possible to live a full,
relatively happy life. The bad news is that you’ll never
be able to do so in the computer industry. My
recommendation is to start singing every morning in
the shower, find an agent, and figure out which colors
best match your hair and complexion.

RECOMMENDED READING AND
LISTENING
• The Official Scrabble Players Dictionary by

Selchow & Righter. Great words from aa to
zyzzyva.

• Pop Art Book of 30 Postcards by Magna Books.
High time to send your friend a Lichtenstein.

• School’s Out by Alice Cooper (Warner Bros.
Records). Try to find a used copy of the LP, which
includes paper panties that were banned as a
“fire hazard.”
You can determine the future of Tao Jones. Simply put, this
may be Tao’s last column. If he receives no more questions, we will
put him in a job better suited to his skills: repairing Lisas and Apple
IIIs. Will Tao be saved? Only if enough of you AppleLink DEVELOP
with a question on office survival.•

The Right Way to Implement
Preferences Files
GARY WOODCOCK
Many Macintosh applications use preferences files to keep track of
user preferences. This article describes the characteristics of a well
implemented preferences file and introduces a library that manages
this work for you.

Preferences files have become a standard feature of most Macintosh applications.
With these files being so commonplace, it’s timely to investigate how to implement
them properly. We’ll first take a look at what constitutes a well implemented
preferences file; then we’ll inspect a library API that provides a simple means of
creating and interacting with preferences files. On this issue’s CD you’ll find source
code for a standard preferences library and a test application that illustrates how to
use the library. This library is written with version 6.0.1 of Symantec’s THINK C for
Macintosh using the universal interface files (which can also be found on the CD).

Before we begin, let’s take a look at when and when not to create a preferences file.
A preferences file needs to be created only when the user has altered the default
configuration of the application. Upon being launched for the first time, many
applications automatically search for a preferences file and, if it isn’t found,
immediately create one. But why? Has the user changed anything? Nope. The user
probably hasn’t even had an opportunity to pull down an application menu at this
point. So why do we need to create a preferences file? We don’t, and we shouldn’t.

But given those situations in which your application should create a preferences file,
read on to learn how to do it the right way.

WHAT MAKES A WELL IMPLEMENTED PREFERENCES FILE
The two Finder info windows shown in Figure 1 illustrate a poorly implemented and
a well implemented preferences file. We can categorize the visible differences in
Figure 1 by file type, document kind, Finder icon, and version information, as
explained in the following sections. Note that the concepts presented here apply to
implementing any kind of document file, not just preferences files.

FILE TYPE
Like any other file created by your application, your preferences file should have a
unique file type, which is specified in a file reference ('FREF') resource in the
THE RIGHT WAY TO IMPLEMENT PREFERENCES FILES 81

GARY WOODCOCK, formerly of Apple but
now at 3DO, is currently assimilating experiences
accrued during his annual pilgrimage to the South
by Southwest Music Conference in Austin, Texas.
For those readers who find stimulation in
spending four days and nights attending live

performances by a diverse assortment of
interesting, boisterous, and relatively unknown
bands playing in a variety of beer-drenched pubs,
in the company of equally interesting, boisterous,
and beer-drenched people, a better venue Gary
cannot recommend.•

d e v e l o p Issue 18 Ju82
application. The file type of the preferences file should be associated with the
application signature so that the Finder can display which application created the file
when its info window is shown. This association is made in your application’s bundle
('BNDL') resource, which includes the application signature, the file reference
resources, and the application and document file icons. The info window for the
poorly implemented preferences file shown in Figure 1 doesn’t display any
information about which application created the file because the file type isn’t
associated with an application signature.

Incidentally, you should not use 'pref' as the file type for your preferences file; this file
type is reserved for the Finder Preferences file (as you’d find out if you tried to
register this file type with Apple’s Developer Support Center — you were going to do
that for the file type of your preferences file, right?). If you were to give your
preferences file this file type, you’d notice that when the user turns on Balloon Help,
the Balloon Help for your preferences file is actually the Balloon Help for the Finder
Preferences file. I’ll go out on a limb here and assume that we can all agree this is
confusing for users, and should therefore be avoided.

DOCUMENT KIND
A file’s Finder info window also indicates the kind of document the file is. In many
cases, this field reads either “document” or something like “MegaWhizzyApp
document.” But with the introduction of the Translation Manager (first made
available with Macintosh Easy Open), a new resource type has been defined that your
application can use to more accurately describe its files, including its preferences file.
This resource is called the 'kind' resource, and its Rez definition is as follows:

type 'kind' {
literal longint; /* App signature */
integer; /* Region code of kind string localizations */
integer = 0;
integer = $$CountOf(kindArray); /* Array size */

Figure 1. Info windows for example preferences files

Poorly implemented preferences file Well implemented preferences file
ne 1994

wide array kindArray {
literal longint; /* File type */
pstring; /* Custom kind strings */
align word;

};
};

An example 'kind' resource might look like this:

resource 'kind' (128) {
'TSTR',
0,
{

'TEXT', "MegaWhizzyApp text document"
}

};

In this example, assuming the Translation Manager is present, a file with creator
'TSTR' and file type 'TEXT' will display the string “MegaWhizzyApp text
document” in the document kind field of its info window.

FINDER ICON
As suggested in Macintosh Human Interface Guidelines, the best icon for preferences
files is either the standard preferences file icon or an icon that incorporates some
elements of the standard preferences file icon (see Figure 2). It’s not taboo to use a
unique preferences file icon, but this may make it difficult for users to recognize the
file as a preferences file.

As noted above, you provide a Finder icon for your preferences file the same way that
you provide Finder icons for your other document files — through a bundle resource
in your application.

VERSION INFORMATION
A file’s 'vers' (version) resources determine what version information is displayed in
the Finder info window. There are normally two 'vers' resources for a file — 'vers'
IDs 1 and 2 — and each contains the following:

• A numeric code representing the version. This code consists of a
major revision number, a minor revision number, an optional bug
fix revision number, a stage code (development, alpha, beta, or
final), and a revision level (for non-final stages).

• A region code, which indicates the localized version of system
software appropriate for use with the file.

• A short version string identifying the version number.

• A long version string consisting of the file version number and
company copyright in 'vers' ID 1, and the product version number
and name in 'vers' ID 2.

Standard Icon Movie Recorder ResEdit

Figure 2. Example preferences file icons
THE RIGHT WAY TO IMPLEMENT PREFERENCES FILES 83

d e v e l o p Issue 18 June 199484
For more information about these resources and how they affect what’s displayed in
the Finder info window, see pages 7-31 to 7-32 of Inside Macintosh: Macintosh Toolbox
Essentials. For the structs corresponding to the 'vers' resource, check out the Files.h
header file.

Providing version information in your preferences files does more than just make the
Finder info window look pretty. You can use this information to identify the format of
the data contained in a preferences file. This is useful in determining how to translate
preferences data created by an older version of an application into the preferences
format for the current version of the application.

CAN USERS OPEN PREFERENCES FILES?
Users have a penchant for running rampant through their hard disks, looking for
interesting files to open, particularly if the files weren’t explicitly created by them.
Files kept in the System Folder are no exception to this experimentation, so it should
come as no surprise to you that your application should be prepared to correctly
handle the case where its preferences file has been double-clicked.

There are several interesting possible behaviors that a preferences file might exhibit
under these circumstances. One alternative is that the application the preferences file
belongs to could launch, configuring itself with the data contained in the file. A
variation of this behavior would be to display the application’s preferences dialog after
launching, if such a dialog were supported. A third behavior is that when a user
double-clicks a preferences file, its application isn’t launched, but instead a dialog is
displayed describing what the file is, where it belongs, and why it can’t be opened.

Today, the only preferences file behavior approved and documented by Apple is the
last one. The Human Interface Design Center of Apple’s system software group has
this to say about preferences files:

• Preferences files should not be treated as if they were documents
created by the user. Launching an application and optionally
opening a preferences dialog support the misconception that they
are like documents.

• Not all applications have preferences dialogs. Launching an
application that doesn’t have a preferences dialog when its
preferences file is double-clicked is confusing, because there’s
nothing specific to show the user that represents the information
stored in the file.

• The current thinking is that a user doesn’t open the System
Folder, see a preferences file for MacWrite (for example), and
wonder what the preferences for MacWrite are set to; he’s more
likely to see the file and wonder what it’s used for. In this case, an
informative dialog that’s displayed when the user attempts to open
the preferences file better satisfies the user’s intent.

• Ideally, users shouldn’t really even have to know about preferences
files (and therefore shouldn’t be able to double-click them), but
they’re an unavoidable artifact of the current system.

It should be pointed out that launching an application by double-clicking a file
containing configuration data is not necessarily a bad thing — it just shouldn’t be
done with a preferences file. Your application could use an application-specific
configuration file to allow users to store and set up custom configurations. By
creating a specific file type for this information, you make it explicit to users that the

behavior of this file type is different from that of preferences files, and that it is
unique to your application.

Now let’s take a closer look at how to implement the recommended preferences file
behavior.

SUPPRESSING LAUNCH UPON DOUBLE-CLICK
As we learned in the previous section, a preferences file isn’t intended to be a
document that users can open and directly interact with in the application that
created it. So how can you keep users from launching your application when they
double-click your preferences file?

Let’s take a brief look at how the System 7 Finder handles opening document files.
Normally, when a user tries to open a document file, the Finder searches for an
application that has a signature matching the file creator. If the search is successful,
the Finder launches the application and (if the application supports the required
Apple event suite) sends an Open Documents Apple event to the application, with the
document file as a parameter. If the search for the application that created the file
isn’t successful, an alert similar to the one shown in Figure 3 is displayed.

Our problem is that we don’t want the Finder to launch our application when a user
attempts to open its preferences file. One way to solve this (as suggested on pages
7-29 to 7-30 of Inside Macintosh: Macintosh Toolbox Essentials) is to register a “dummy”
application signature that’s different from the real signature of your application, and
then set this signature as the preferences file creator.

Normally, an application has only a single signature resource and a single bundle
resource. By creating a second bundle resource with a dummy application signature
and associating our preferences file with that signature, we fool the Finder into
looking for a nonexistent application for our preferences file, thus preventing the
Finder from launching our application when the preferences file is double-clicked.
Figure 4 shows examples of a normal application bundle resource and a dummy
bundle resource for the application’s preferences file.

Remember to register both creators — the real one and the dummy one —
with the Developer Support Center (AppleLink DEVSUPPORT, or Apple Computer, Inc.,
Creator/File Type Registration, 20525 Mariani Avenue, M/S 303-2T, Cupertino, CA
95014).

If you use this technique, you should also supply an application-missing message
string resource — an 'STR ' resource with an ID of -16397 — in the preferences file.
When the user tries to open a file and the application can’t be found, the Finder looks
for this resource in the file. That string is displayed in the alert that comes up when

Figure 3. Application-unavailable alert
THE RIGHT WAY TO IMPLEMENT PREFERENCES FILES 85

86
the user tries to open the file and — due to the dummy bundle resource — fails (see
Figure 5).

Now for the catch: There are two ways this mechanism can be circumvented. First, it
can be overridden if Macintosh Easy Open is running. Macintosh Easy Open uses the
Translation Manager to open a file with an alternate application if the application that
created the file isn’t available. It determines the file type of the file that the user is
trying to open and then looks for applications that support that file type by checking
their bundle resources. If no applications can be found that support the file type, an
alert notifying the user is displayed (see Figure 6). However, if any alternate
applications are found, an alert allowing the user to open the file with one of them is
displayed (see Figure 7). When Macintosh Easy Open is installed, one of these two
alerts will always be displayed in place of the normal application-unavailable alert.

Because our application has a dummy bundle resource that refers to the file type of
our preferences file, Macintosh Easy Open will always find the application that
created the preferences file as an alternate application. Fortunately, the Translation
Manager provides a mechanism to help us hide our preferences file — the 'open'
resource. In the 'open' resource, an application can specify to the Translation
Manager exactly what file types it can actually open, regardless of what may be
specified in any bundle resources. By creating an 'open' resource that doesn’t contain
our preferences file type, we can prevent Macintosh Easy Open from trying to open
the file.

Figure 5. Can’t open preferences file alert

Figure 4. Bundle resources

Application bundle resource Dummy bundle resource for preferences files
d e v e l o p Issue 18 June 1994

The Rez definition for the 'open' resource is given below.

type 'open' {
literal longint; /* App signature */
integer = 0;
integer = $$CountOf(typeArray); /* Array size */
wide array typeArray { /* File types that app can open */

literal longint; /* File type */
};

};

An example 'open' resource might look like this:

resource 'open' (128) {
'TSTR',
{

'TEXT'
}

};

Figure 6. Modified application-unavailable alert

Figure 7. Translation choices alert
THE RIGHT WAY TO IMPLEMENT PREFERENCES FILES 87

d e v e l o p Issue 18 June 199488
In this example, we’ve declared that the application with creator 'TSTR' can only
open files of type 'TEXT' — the Translation Manager will not attempt to use this
application to open any other type of file.

Our mechanism is also circumvented if the file type of the preferences file is 'PICT'
or 'TEXT' and TeachText is installed. In this case, the Finder displays an alert asking
whether the user wants to open the document in TeachText, even if you supplied an
application-missing message string resource in the file and provided the appropriate
dummy bundle and 'open' resource in your application. This is a pretty good reason
for not using 'PICT' or 'TEXT' as the file type for your preferences file.

WHAT GOES IN A PREFERENCES FILE
If you find the size of your preferences file breaking the megabyte (or even the 100K)
barrier, you’re probably keeping information in the file that really doesn’t belong
there. What follows are a few thoughts on what to put in your preferences files.

Keep your preferences as resources.
As we all know, you can put program data into either the data fork or the resource
fork of a Macintosh HFS file. The popular response to the question “What is a
resource?” is “Everything!”, and this is still reasonable advice. It’s fairly easy to design
C structs that mirror the structures of your preferences data, and you can even design
'TMPL' resources that will let you look at your raw preferences data in a structured
way by opening your preferences file with ResEdit. Plus, you’ve got the Resource
Manager to do all the work of finding and loading the preferences data into memory
for you. What more could you ask?

Keep only global user preferences in your preferences file.
Bear in mind that some user preferences are global (application or environment
related) and some are local (document related) — don’t confuse the two. For example,
keeping track of the size and position of every document window that’s ever been
opened by your application in its preferences file isn’t a good idea (this information
should be kept with the document file corresponding to the document window), but
keeping a user-specified default window size and position in its preferences file is a
good idea.

Avoid keeping machine-specific information in your preferences file.
It’s rare that you really need to keep information such as the system software version
or the Macintosh model that your software is running on in your preferences file.
Your application generally should examine its environment at launch, and take
appropriate measures at that time to avoid using features that aren’t supported in the
current environment.

Be careful of storing dynamic information in your preferences file.
A good example of something not to store in your preferences file is a volume
reference number. To quote Inside Macintosh: Files, “A volume reference number is
valid only until the volume is unmounted — if a single volume is mounted and then
unmounted, the File Manager may assign it a different volume reference number
when it is next mounted.” In this example, a better solution is to store an alias to the
volume of interest in the preferences file.

Use discretion in deciding what preferences to keep.
To a large degree, this means limiting user options to those that actually improve the
overall user experience. The only proven way to find out what those options are is to
conduct user testing on a variety of interface prototypes. It may turn out that while
you thought keeping track of the last known number of documents open during the

user’s last session with your application was important, it actually adds little or
nothing when translated into the user’s experience.

Don’t keep static program data in your preferences file.
A file that just contains a lot of canned program data (such as tax forms) is not a
preferences file — it’s simply a program data file, and it should normally reside in the
same folder as the application. That way, the user doesn’t disable the application if
she throws away what she thinks is simply the application’s preferences file (users
often do this to cause an application to reset back to its “factory” defaults, which,
when you think about it, is a pretty nasty way to make users reset a program).

THE STANDARD PREFERENCES LIBRARY
We’ll now take a look at the standard preferences library, a library for creating and
interacting with preferences files that follows all the rules we’ve set in the preceding
sections. The library API consists of 11 calls, described in detail below.

CREATING AND MANIPULATING A PREFERENCES FILE
In the routines described here, you’ll notice that a preferences file is primarily
identified not by its name, but by its creator and file type. This is done to allow you
to localize the name of your preferences file easily, without requiring any code or
resource changes. Also, should a user inadvertently rename your preferences file,
your application can still find it. Because preferences files are identified in this
manner, it’s important to remember to give each preferences file that your application
uses a unique creator/file type combination. The search sequence for a preferences
file is as follows:

1. If there’s a Preferences folder in the System Folder, search it and
any folders within it (including nested ones).

2. If there’s no Preferences folder, or if no preferences file is found in
the Preferences folder, search the files (not the folders) in the
System Folder.

pascal OSErr NewPreferencesFile (OSType creator, OSType fileType,
ConstStr31Param fileName, ConstStr31Param folderName,
ConstStr31Param ownerName);

NewPreferencesFile creates a preferences file with the specified creator, file type, and
filename in the System Folder (prior to System 7) or in the Preferences folder (in
System 7 or later). In the folderName argument, you can specify a custom
preferences folder in which to put a collection of preferences files; pass nil for this
argument if you don’t want to use a custom preferences folder. If a folder name is
provided and the folder doesn’t exist, NewPreferencesFile creates it. Another option
is to provide, in the ownerName argument, the name of the program (application,
extension, or whatever) that’s creating the preferences file; if this argument is
supplied, a custom application-missing message string resource is created for the
preferences file.

pascal OSErr OpenPreferencesFile (OSType creator, OSType fileType,
short *refNum);

OpenPreferencesFile opens the preferences file having the specified creator and file
type. You must have created the file with NewPreferencesFile before making this call.
The preferences file reference is returned in the refNum argument; you’ll use this to
identify which preferences file you’re operating on when making other calls in the
standard preferences library.
THE RIGHT WAY TO IMPLEMENT PREFERENCES FILES 89

d e v e l o p Issue 18 June 199490
pascal OSErr ClosePreferencesFile (short refNum);

ClosePreferencesFile closes the preferences file having the specified file reference.
That’s it.

pascal OSErr DeletePreferencesFile (OSType creator, OSType fileType);

DeletePreferencesFile deletes the preferences file having the specified creator and file
type. Be sure the specified preferences file is closed before making this call.

pascal OSErr DeletePreferencesFolder (ConstStr31Param folderName);

DeletePreferencesFolder deletes the custom preferences folder specified by
folderName, along with any contents. Be sure there are no open preferences files in
the specified folder before making this call.

pascal OSErr PreferencesFileExists (OSType creator, OSType fileType);

PreferencesFileExists simply checks to see if a preferences file having the specified
creator and file type already exists. You can use this call to determine whether you
need to create a new preferences file.

ACCESSING INFORMATION IN A PREFERENCES FILE
These routines get or set the indicated resource information in the preferences file
specified by the refNum parameter.

pascal OSErr GetPreferencesFileVersion (short refNum, short versID,
NumVersion *numVersion, short *regionCode, ConstStr255Param
shortVersionStr, ConstStr255Param longVersionStr);

GetPreferencesFileVersion returns the contents of the specified 'vers' resource of the
preferences file. Only 'vers' ID 1 or 2 is allowed.

For those of you wondering why GetPreferencesFileVersion doesn’t simply pass
a pointer to a VersRec (defined in Files.h) instead of passing each of the separate
fields of a VersRec, it’s because the short version string and the long version string are
packed in a VersRec (it’s possible that the shortVersion field of the VersRec will actually
contain part of the long version string). GetPreferencesFileVersion takes care of
unpacking the strings properly, and SetPreferencesFileVersion takes care of packing
them properly.

pascal OSErr SetPreferencesFileVersion (short refNum, short versID,
NumVersion *numVersion, short regionCode, ConstStr255Param
shortVersionStr, ConstStr255Param longVersionStr);

SetPreferencesFileVersion allows you to set the contents of the specified 'vers'
resource of the preferences file. Only 'vers' ID 1 or 2 is allowed.

pascal OSErr ReadPreference (short refNum, ResType resourceType, short
*resourceID, Handle *preference);

ReadPreference reads from the preferences file the resource specified by the
resourceType and resourceID arguments, and returns it in the preference argument.
If you pass nil as the address of the resourceID argument or 0 as its value,
ReadPreference finds the first resource with the specified type in the preferences file.
If you pass 0 as the value of resourceID, ReadPreference returns the resource ID
corresponding to the preference resource it found.

pascal OSErr WritePreference (short refNum, ResType resourceType, short
*resourceID, Handle preference);

WritePreference writes the resource specified by the resourceType and resourceID
arguments to the preferences file. If you pass nil as the address of the resourceID
argument or 0 as its value, WritePreference assigns the preference resource a
resource ID and returns it in the resourceID argument (if its address isn’t nil). If a
resource with the same resource type and ID already exists in the preferences file, the
existing resource is replaced with the new one. WritePreference checks that there will
be a minimum amount (the exact amount varies as a function of the volume’s
allocation block size) of disk space remaining on the volume containing the blessed
System Folder before actually updating the preferences file; if there isn’t enough disk
space, the preferences file is unmodified and an error is returned. Note that it’s the
caller’s responsibility to release the memory occupied by the preference argument;
WritePreference does not dispose of this memory automatically.

pascal OSErr DeletePreference (short refNum, ResType resourceType, short
resourceID);

DeletePreference deletes the resource specified by the resourceType and resourceID
arguments from the preferences file. If you pass 0 as the value of resourceID,
DeletePreference deletes the first resource with the specified type in the preferences
file.

PLEASE PROVIDE PREFERRED PREFERENCES FILES
(SAY THAT THREE TIMES FAST!)
In this article, we’ve explored what constitutes good design for preferences files, and
we’ve examined a library that helps with implementing preferences files. Armed with
this knowledge and the standard preferences library, you too can add preferences files
to your application the preferred way!

REFERENCES
• Inside Macintosh: Macintosh Toolbox Essentials (Addison-Wesley, 1992), Chapter

7, “Finder Interface,” or Inside Macintosh Volume VI (Addison-Wesley, 1991),
Chapter 9, “The Finder Interface.”

• Inside Macintosh: More Macintosh Toolbox (Addison-Wesley, 1993), Chapter 7,
“Translation Manager.”

• Inside Macintosh: Overview (Addison-Wesley, 1992), Chapter 3, “Resources,”
pages 60 to 67.

• Macintosh Human Interface Guidelines (Addison-Wesley, 1992), Chapter 3,
“Human Interface Design and the Development Process,” pages 37 and 38, and
Chapter 8, “Icons,” page 250.
THE RIGHT WAY TO IMPLEMENT PREFERENCES FILES 91

Thanks to our technical reviewers Nick Kledzik,
Jim Luther, and John Mitchell. Special thanks to
Jim Luther for his excellent file system utilities

(collect ’em all — they’re on this issue’s CD) and
to Elizabeth Moller for her assistance on human
interface issues.•

9

Macintosh
Q & A
d e v e l o p Issue 18 June 19942
Q I’m having trouble figuring out how to convert some assembly trap patches for selector-
based traps into PowerPC native code. Do you have any suggestions for a clean way of
doing this, ideally so that it works on both 680x0-based machines and the Power
Macintosh?

A Currently there’s no way to patch a selector-based trap with a native or fat
patch. (A list of selector-based traps can be found in the back of Inside Macintosh
X-Ref.) The problem arises from the fact that each routine associated with a
single dispatch-based trap can have a different parameter list (that is, a different
number of parameters and different sizes for each parameter). Basically there’s
no way for mixed mode to handle the variable stack frame sizes associated with
selector-based traps. This is the same thing that makes head/tail patching them
so much of a pain in C.

We’re in the process of trying to determine whether developers have a pressing
need to patch selector-based traps with native code. For now, keep all such
patches in 680x0 code. If a patch to a particular routine is itself very time-
intensive (which is rarely the case), the 680x0 patch can call through to a native
implementation.

Q I’m writing a QuickDraw GX print driver for a plotter and need to send initialization
and termination strings to the plotter. How can I determine from my driver if I’m
printing the very first or last page, regardless of the number of copies? I’d like to have
this information in GXStartSendPage and GXFinishSendPage, respectively, so that I
can send my strings then.

A We recommend that you do any pre-first-page setup in GXOpenConnection
(after forwarding) and any post-last-page teardown in GXCloseConnection
(before forwarding). (Although the documentation is a bit ambiguous on this
point, you can send information with GXBufferData and GXWriteData from
GXCloseConnection, before forwarding.) If there’s some reason that this won’t
work for you, and you really need the information in GXStartSendPage and
GXFinishSendPage, you’ll have to use global data.

In some override before GXStartSendPage (perhaps GXImageDocument),
initialize a global page counter to 0. In your GXStartSendPage override, check
this flag, and then bump it after forwarding. If your check finds that the flag is
0, no pages of the document have been sent yet.

To determine when the last page has printed, you’ll also need to use global
data. Somewhere (again, GXImageDocument is fine) call GXCountPages, get
the number of copies from the job’s 'copy' collection item, and multiply. In
your GXFinishSendPage override, compare the value you bumped in
GXStartSendPage to this multiplied value. When they’re equal, you’re just
finishing the last page.

Q How do client and server desktop printers (shared printers) synchronize in QuickDraw
GX? Specifically, what we’re trying to find out is (for a server desktop printer on one
machine, and a matching client on another):

• If a user on the client machine sets a papertype in an input tray, is it reflected on the
server in the Input Trays dialog? If not, what’s the correct behavior for the client
and the server machines (for example, should the client Input Trays dialog be read-
only)?

• Generally, what resources and data are transmitted between the host and the client,
and when? Is there a mechanism for controlling which resources will be sent or kept
local (preferably on a resource-by-resource basis)?

A Resources are transmitted to desktop printers in only one direction — server to
clients. Also, only resources with IDs greater than 0 are moved to the clients.
Therefore, it’s appropriate to make the Input Trays dialog on clients read-only.
Even though Apple’s drivers don’t do this, it’s the more correct approach. You
can find out whether you’re on a server or a client by checking the desktop
printer’s 'comm' resource; if its type identifier is 'ptsr', you’re on the client;
otherwise, you’re on the server.

If you need to have data sent from the client to the server, you should fetch the
resources at GXImageJob time (before forwarding) and then roll them into a
job collection item. In the appropriate communication message, look for the
collection item and use that data. Since GXImageJob is always called (shared
printers or not), and it’s called on the client if you’re working with shared
printers, this method should always work.

Q If I want to add additional properties to the paper stock (such as paper color), and I call
AddCollectionItem(GXGetPaperTypeCollection(paper), . . .), will that new collection be
stored in the desktop printer’s configuration file, or is that something I must manage? I
seem to be losing my collection between invocations of the Trays dialog.

A The papertype collection items you add won’t be flattened to disk and stored in
the desktop printer via your Trays dialog. There’s no way to make collection
item changes and have them saved with the disk-based papertype, wherever it
may be stored. You need to manually save the information in your desktop
printer (or some other place) as resources, and then match that up with the
papertypes when you want to use them. You should match up the papertypes
and the resources based on the names of the papertypes.

You can still take advantage of the papertype collection to hold your paper color
information, as long as you also have the information stored on disk. The
papertype collection will be around as long as the papertype’s job is around. For
example, if you load the color info from the desktop printer and put it in a
papertype collection item at despoolpage time, it stays there throughout the
entire print cycle, and wherever the job goes, it goes.

Q I’m having a problem resizing text elements in our QuickTime application. I’m trying
to modify the element’s size by calling SetTrackDimensions, and it seems to do what I
want for all element types except text. For text tracks, the element’s bounding box is
resized correctly, but the text characters are scrunched into the upper left corner of that
rectangle, still at their original size. In other words, SetTrackDimensions seems to scale
the track bounds, but not the text characters themselves. Any idea what’s going on?

A This is a bug. As you determined, SetTrackDimensions is only changing the size
of the track box, not setting the correct scaling factor or internal flags. To work
around this problem, use GetTrackMatrix to retrieve the current matrix, then
ScaleMatrix to change it, and finally SetTrackMatrix to make it take effect.

Q Do you know why “OCE Mail Enclosures” appears as a volume when I index through
all volumes using PBHGetVInfo? Is there any way to filter out this “volume”?
MACINTOSH Q & A 93

d e v e l o p Issue 18 June 199494
A The reason “OCE Mail Enclosures” shows up is that it’s the volume for an
external file system (XFS) that AOCE installs in order to support access of letter
enclosures via FSSpecs from the mailer and other parts of the AOCE system.
This enables the direct access that the mailer provides in the enclosure fields of
letters, allowing users to manipulate enclosures like any other file in the Finder,
copying and even launching them directly from the enclosure pane.

To filter out the “OCE Mail Enclosures” volume, you should check the Finder
flags of the root directory in each volume to determine whether that volume
should be visible to the user. The Finder flags for directories are located in the
ioDrUsrWds field in the dirInfo variant of the CInfoPBRec structure. If the
fInvisible bit is set, you should not display that volume to the user. Here’s a
snippet:

void main(void)
{

HVolumeParam pBlock;
CInfoPBRec cBlock;
Str255 volName, fName;
OSErr err;

pBlock.ioNamePtr = volName;
err = noErr;
for (pBlock.ioVolIndex=1; err==noErr; pBlock.ioVolIndex++) {

err = PBHGetVInfo((HParmBlkPtr)&pBlock, false);
if (err==noErr) {

cBlock.dirInfo.ioNamePtr = fName;
cBlock.dirInfo.ioVRefNum = pBlock.ioVRefNum;
// Query the directory info ioDrDirID.
cBlock.dirInfo.ioFDirIndex = -1;
// This is the root directory.
cBlock.dirInfo.ioDrDirID = 2;
err = PBGetCatInfo(&cBlock, false);
if (err==noErr) {

if ((cBlock.dirInfo.ioDrUsrWds.frFlags &
fInvisible)!=0)

// It's invisible.
. . .

}
}

}
}

Q I have a dialog with two editText fields. When I populate the two fields with text,
whichever field I populate first is displayed two pixels too high within its item. The
second field is fine, and it has the “focus” of the dialog. When I click in the first field,
any new text is added at the correct height, but unfortunately that’s two pixels below
where the previous text was drawn. The fields are both 10-point plain Geneva, and the
editText boxes are 16 pixels high. Any ideas?

A The Dialog Manager has a bug that causes problems when you use an alternate
font or size for the editText items. The problem is how it draws the text initially
in the dialog: the text for the currently active item is drawn by manipulating the
dialog’s TextEdit record, and the text for all other items is drawn by calling

TextBox. The solution is to call SelIText just before you call SetIText each time
you populate a field with text.

Q How can I convert an RGB color into an index to a palette created by my application?
Color2Index converts the RGB color to an index to the current device’s color table, but
that’s not what I want.

A There’s no single call that will give you a palette match to an RGB color. You’ll
have to do this: call Color2Index to get the closest match to your RGB request;
call Index2Color to get the device’s indexed color from your match; search the
palette yourself to find the color match (according to RGB value); and call
Color2Index to verify that you have the color you’re looking for.

Alternatively, you can create an off-screen GWorld, call Palette2CTab to
convert your palette to a color table, and call UpdateGWorld to insert your new
color table in your off-screen GWorld. Then, to find the index of an RGB
color, make your GWorld the active device and call Color2Index.

Q I’ve tried in vain to find a way to print white text on a black background. Is there a
way to do this, and if so, how?

A The trick is to use the srcBic pen mode:

FillRect(theRect, black);
PenMode(srcBic);
DrawString(myString);

Q In our application, the user can select an area of an image and drag it around. I want to
show this visually by inverting the region under the current mouse coordinate as the
user moves the mouse around. Inverting the region is nice because I can invert it again
to get the unselected pixels back. It’s not nice, however, in that a 50% gray color looks
the same when it’s inverted. To fix this problem, I tried using PaintRgn with an
RGBForeColor of r,g,b = 0x8000 and a transfer mode of addOver. This works great on
24-bit screens, but it seems that on 256-color screens, applying this operation twice
doesn’t quite return to the original color. Am I going to have to use a custom color
search procedure?

A You get the results you want on direct devices but not on indexed ones, and
unless you’re extremely lucky with your color table, this is how it will always
work. The problem is that the mode calculations are done with the actual RGB
values used (the ones available in the color table), not the ones you request. On
indexed devices there’s almost always a difference between the two, so unless
your color table happens to have the exact color you request, there will be
“errors.” This never happens on direct devices because all colors are available —
the operations work on direct RGB values and are never mapped through color
tables.

The solution is either to set up your color tables or palettes to make sure you
get the results you want each time, or to install a custom color search procedure
if that’s what you’d prefer.

Q After we call CMOpen and a connection is established, a dialog is displayed and
eventually goes away. Unfortunately, the C++ object framework we use is bombing
MACINTOSH Q & A 95

d e v e l o p Issue 18 June 199496
because it’s getting a deactivate event for that window, which belongs to the
Communications Toolbox. We wrote a kludge that sets a flag after the call to CMOpen
is finished and eats the deactivate event if the flag is set. Is there a better way for us to
tell whether to let the class library handle the event or to handle it ourselves?

A A window or dialog created by a connection tool has the connection record
handle stored in the refCon field. The sequence, then, is to check the event
record to find out if the event is tied to operations in a window and, if so, check
the window’s refCon against your connection handles. If there’s a match, call
CMEvent for that event; otherwise pass it on to the framework. You’ll probably
need to write a handler for your class library to do this properly, overriding the
default window-handling routines for this special case.

Q When our application opens a Communications Toolbox tool, we issue a CMOpen with
the asynchronous flag true and go into a loop, calling CMIdle and then CMStatus until
we see the cmStatusOpening flag go down or the cmStatusOpen flag come up. When we
use the Express Modem Tool (on a Macintosh Duo 230), those flags never change.
Should we be doing something different or is there a problem with that tool?

A The Express Modem Tool uses a background process (coupled tightly with the
hardware implementation) to actually move data. Unless your application yields
processor time through the WaitNextEvent cycle, the background process is
stuck when you call the tool asynchronously. (The synchronous call has been
massaged to give the process time, of course.)

What you’re doing, essentially, is making the asynchronous call synchronous by
trapping your application in this kind of loop. The proper thing to do would be
either to use the call synchronously or to continue to use it asynchronously but
exit back to the main event loop and look for the flags from there. When the
appropriate flag is set, you can then dispatch off to a handler routine. Even
better, use a completion routine to notify the application that the CMOpen has
completed and obtain the function result from the ConnHandle errors field.

Q I’ve implemented a variant of the CMChoose dialog based on the Choose.p sample code
in Inside the Macintosh Communications Toolbox, page 323. The problem I have is that
all the fields of the dialog appear in 12-point Chicago rather than the 9-point Geneva
that tool dialogs usually use, so the dialog looks really tacky. How can I fix this?

A The critical thing is knowing when and where to set the window’s text
characteristics. Tools provide a resource ('finf' or 'flst', defined in SysTypes.r
and CTBTypes.r) that gives you the font information for the tool’s DITL.
Between the CMSetupPreflight and CMSetupSetup calls, you should fetch the
font, size, face, and mode from the resource and set your custom dialog’s port to
match it. You also need to stuff the same information into the dialog’s TextEdit
record so that the editable fields show up correctly. Controls provided in a
DITL by Communications Toolbox tools have the useWFont bit set so that
they always follow the settings in the dialog’s port.

Q We’re calling CMListen synchronously in our application, and if it times out an error
alert is displayed that doesn’t go away until the user clicks OK (or after a very long
time). Is it possible not to have this dialog displayed, or to have it go away quickly as the
“connected” dialog does?

A With regard to all Communications Toolbox interface components, you can
only leave them all on or turn them all off with the flag parameter to CMNew
(cmQuiet and cmNoMenus). We don’t know of any way to affect the behavior
of specific elements like the error dialog raised by CMListen. (CMListen is best
implemented in an application as an asynchronous call, particularly in the
cmQuiet mode.)

Q The Connection Manager sample code in Inside the Macintosh Communications
Toolbox sets the buffer sizes for cmDataIn and cmDataOut to 1K and the rest to 0, and
there’s a comment that the other channels are to be ignored. Then, in the description of
CMNew, it says, “To have the tool set the size of these buffers, your application should
put zeros in the array.” What’s the recommended way to go?

A You should consider the buffer sizes you set in the CMBufferSizes array as a
request for buffers. The tool’s implementation will always override your choices
based on what the developer felt was the proper thing to do. Many
programmers initialize the array to all zeros and let the tool defaults be set;
there’s some argument for increasing the sizes on network protocols for
efficiency, but it’s up to the tool designer to determine what makes the best
sense. Rather than depend on any particular buffer sizes in your application, you
should deal with what the tool allocates dynamically.

Q What is that green slime that you can buy in toy stores made of?

A We’re not exactly sure what the composition of that stuff is, and the toy
companies aren’t about to tell us, but we’re pretty sure that it’s some sort of
polymer that’s cross-linked via hydrogen bonding. Hydrogen bonds are
relatively weak, and can be easily pulled apart. That’s why these materials
behave like “slow liquids” and eventually seek their own level.

A very satisfying white version of slime can be concocted at home from
common ingredients as follows: Mix 1/2 cup water and 1/2 cup white glue in a
bowl. In another bowl (or a cup) dissolve 1 teaspoon borax in 1/2 cup water
(make sure the borax is completely dissolved; it may take a minute of stirring).
Pour the borax solution into the glue solution, stirring rapidly and constantly.
Keep stirring for a minute; then reach in with your fingers and keep mixing,
trying to break up the lumps. At first the material will be lumpy and wet, but
soon it will become smooth and rubbery. This recipe makes a blob the size of a
grapefruit. Use less water with the glue for stiffer slime. Store in an airtight
container, and keep it away from carpets!

Q Nothing in the documentation for MacTCP deals with the state of register A5 if an
ioCompletion routine is specified within struct CntrlParam (MacTCP version 1.1
documentation, page 7). I’ve been manually preserving and setting A5 with some inline
assembly code but wonder if this is really necessary. If I must set A5, and want to use the
same source code in the 680x0 and PowerPC environments, how do I go about it?

A When MacTCP calls the application’s ioCompletion routine, it restores the
application’s A5 register, so the application shouldn’t worry about this (the
MacTCP driver takes care of it). On a Power Macintosh, you can still set
register A5 in the emulator as you did before (with SetA5 and SetCurrentA5).
However, be aware that with native code, register A5 is no longer used to store
references to global variables. Any piece of PowerPC native code, even
MACINTOSH Q & A 97

d e v e l o p Issue 18 June 199498
standalone code, can have its own global variables without making its own A5
world.

Q When a driver is operating synchronously, what kinds of system calls are prohibited?
Specifically, can I make memory allocation calls and file system calls from the driver?

A If your driver is called synchronously, you should be able to allocate memory
and make file system calls and other system calls that move memory. If it’s called
asynchronously, you should not make these calls. There’s one important
exception to this guideline: the Macintosh file system isn’t reentrant, so in a disk
driver or a network driver that serves the file system, you must not make any
calls to the file system, as you will tie it into metaphorical knots.

Q I’m creating an application from an existing file by adding CODE resources to it,
setting the bundle bit, clearing the inited bit, closing the file, and flushing the volume.
My problem is that the Finder doesn’t recognize the change immediately. I have to
move the file to another folder before the icon changes and it’s recognized as an
application. What do I need to do to have the Finder recognize the change immediately?

A The problem you’re having stems from the fact that the Finder only scans for
changes about every 10 seconds. To make the Finder aware of changes before
that, you need to change the modification date of the parent directory. Use a
routine like this:

OSErr TouchDir(short vRefNum, long dirID)
{

CInfoPBRec info;
Str255 name;
OSErr theErr;

info.dirInfo.ioDrDirID = dirID;
info.dirInfo.ioVRefNum = vRefNum;
info.dirInfo.ioNamePtr = name;
info.dirInfo.ioFDirIndex = -1;
theErr = PBGetCatInfo(&info, false);
if (!theErr) {

info.dirInfo.ioCompletion = 0;
info.dirInfo.ioDrDirID = info.dirInfo.ioDrParID;
info.dirInfo.ioFDirIndex = 0;
GetDateTime(&info.dirInfo.ioDrMdDat);
theErr = PBSetCatInfo(&info, false);

}
return theErr;

}

The Finder will rescan the specified directory immediately after this routine
updates the modification date, usually well within one second.

Q Does the idleProc of AESend get called before every event is sent, even those to the
current process (which are directly dispatched)? What I really care about is whether
WaitNextEvent is called each time.

A AESend’s idleProc will be called if kAEWaitReply is the sendMode. In this
mode the Apple Event Manager uses the Event Manager to send the event. The

Event Manager then calls WaitNextEvent on behalf of your application. This
causes your application to yield the processor, giving the server application a
chance to receive and handle the Apple event. You must supply an idleProc in
order to process any update events, null events, operating system events, or
activate events that occur while your application is waiting for a reply.

If you use kAENoReply or kAEQueueReply as the sendMode, AESend will
immediately return after using the Event Manager to send the event. Your
idleProc will never be called (in the case of kAEQueueReply, it’s assumed that
you want to receive your reply via your application’s event queue, and you must
install a handler for the reply Apple event).

Likewise, your idleProc will never be called in the case of a direct dispatch. In
doing a direct dispatch you’re sending an Apple event to yourself using the
typeProcessSerialNumber and kCurrentProcess. These events are delivered
directly, bypassing the event queue and executing your handler routine directly.
For more information, see the Macintosh Technical Note “SendToSelf: Getting
in Touch With Yourself Via the Apple Event Manager” (Interapplication
Communication 1).

Q I’m having a problem sending custom Apple events over the network. We have a
background-only application on one machine sending custom Apple events to another
machine via LocalTalk. If we manually pull the LocalTalk cable out from the back of the
sending Macintosh, the event is never received on the remote machine, but an error is
never returned by AESend. AETracker logs show that the event is being sent with no
error, but AETracker on the remote machine shows no sign of the event. We’ve also seen
a similar thing happen when phone lines are bad. Note that in both cases, other events
are sent between the machines just fine. What gives?

A The reason AESend doesn’t report an error in cases like the one you mention is
because it can’t. As soon as the event is sent, AESend returns noErr indicating
that the event has been handed off to the PPC Toolbox for sending. You’re then
back in your main event loop and doing other things. If for some reason the
connection goes down (or there’s any other transmission problem), there may
be a resulting error from the network layer that’s actually transporting the
event, but the resulting error may not occur for seconds or even minutes. At
that point there’s no way for the AESend that sent the event to detect the error.

We saw a good example of this recently using a standard Ethernet connection
between two machines. The network connection was broken between the
machines and an event was sent from one to the other. AESend returned noErr
on the sending Macintosh, and as long as we reconnected the two machines
before the end of the associated timeout period — two minutes — the event was
received. If we waited longer the event never made it. But in either case AESend
returned noErr.

There are a couple of ways to address the problem. The first way is to use
kAEWaitReply when sending your event; however, you give up the processor in
favor of ensuring a reply. The other solution is to pass kAEWantReceipt in the
sendMode parameter of AESend and have a timeout for the amount of time
you’re willing to wait for a reply.

Q We have two questions regarding AppleScript. First, what’s the significance of Begin
Transaction and End Transaction for a single-threaded application? Do we need to
MACINTOSH Q & A 99

d e v e l o p Issue 18 June 1994100
support these two events if we don’t send events or scripts to another application? The
Apple Event Registry says to return a transaction ID for the Begin Transaction call
and to check for the transaction ID of all the incoming Apple events. Is this really
necessary? Second, what’s the user interface guideline for the Print Document ('pdoc')
event in the required suite? Currently, I bring the application to the front by calling
AEInteractWithUser (only if both the server and the client are in the same machine)
and open the print job dialog box.

A A single-threaded application doesn’t need to support Begin or End
Transaction. If you need transactions, you may implement them as you see fit.
Regarding the 'pdoc' event, what you’re doing is correct. When you receive a
'pdoc' event, you should call AEInteractWithUser and check the result: if you
get noErr (meaning you can interact), open the standard print job dialog; if you
get errAENoUserInteraction (you can’t interact), just do whatever the default is
for that document, printing without interaction.

Q I’m doing a project where I need about 1500K for my own off-screen GWorlds and
sundry data structures, and we’re targeting the 4 MB Macintosh LC. Here’s the
kicker: we need Text to Speech. I’d like to know more precisely how the memory
allocation works in the Speech Manager so that I know what our options are — for
example, how much memory gets allocated from the system versus how much from my
application heap.

A When trying to preflight the memory needs for an application that uses Text to
Speech, keep in mind that there are at least three different managers involved in
the production of speech on the Macintosh: the Component Manager, the
Speech Manager, and the Sound Manager. All these have their own memory
allocation schemes and take memory from different places.

As a rough rule of thumb, to use Text to Speech in a robust manner, plan on
adding 250K for each SpeechChannel you expect to keep open at any given
time; this should accommodate both MacinTalk 2 and MacinTalk Pro voices. If
this causes a minimum application size that’s not acceptable, you can add only
50K for each MacinTalk 2 channel you allow to be open at a time and include in
your documentation instructions on how to increase the size if the user decides
to use MacinTalk Pro voices instead.

The more complete scenario goes like this: The Component Manager takes up
about 20K of the system heap (possibly slightly less when no components are
open). The Speech Manager code and data use around 20K of system heap, and
should be a one-time investment (note that little variance should be expected
from version to version). The Sound Manager memory usage depends on the
version and other factors, but a good estimate is 30K per SndChannel. Note
that the Sound Manager code goes into the system heap, with sound buffers and
sound data being allocated in the application heap.

The amount of space needed for the Text to Speech engine code and data (such
as pronunciation dictionaries and rules data) varies quite a bit between
MacinTalk 2 (about 100K) and MacinTalk Pro (about 300K); this memory is
allocated in the system heap whenever possible to make it available to different
applications using the same engine. If the Speech Manager can’t allocate the
necessary space in the system heap, it tries to get it from the application heap.
Naturally when this happens the code and data cannot be shared across
applications. There’s also some Text to Speech engine–specific SpeechChannel
data whose size varies from engine to engine: MacinTalk 2 uses roughly 10K

and MacinTalk Pro uses about 175K. Finally, there’s the voice data and code:
MacinTalk 2 takes between 20K to 40K depending on the chosen voice, while
MacinTalk Pro voices can use between 300K and 2.25 MB of RAM. Again, the
memory needed for voice data and code is allocated from the system heap if
possible to allow sharing between applications using the same voices; if there’s
no room in the system heap, the Speech Manager tries to load this in the
application heap, and no sharing is possible.

Finally (you knew this was coming, didn’t you?), be aware that these numbers
may change in the future. Use them as a guide, but as always, don’t depend on
them.

Q What should we do when renaming a document that contains a publisher section? I try
to call AssociateSection with the already registered section and the new FSSpecPtr.
AssociateSection returns no error and I unregister the publisher section. But the next
time I open up and register the publisher section of that document, I get a -463 error
code on RegisterSection. What am I doing wrong?

A AssociateSection doesn’t change any information in the edition container file,
which is where this needs to be changed; it only acts on the “hot” links the
Edition Manager is currently maintaining with any open documents that are
using a section. What you have to do if you rename a publishing document is
to open the publisher and update it. When you call OpenNewEdition with the
new file name, that will update things. This means that a “save as” must dirty
all your publisher sections, which slows you down a bit and may be
counterintuitive. But the only other option would be to update the alias
directly, and that would be bad.

Q I’m working on a video-conferencing solution that uses the video digitizer (vdig)
incorporated in the Macintosh Quadra 840AV. I want to capture data from the system’s
built-in video hardware using the VDCompressOneFrame and VDCompressDone calls.
I have the following questions about the vdig that supports the 840AV built-in video
hardware:

• What’s the header and data format for the captured video?

• What’s the compressor type (cType) for this compression format?

• Does this compressor support more than one spatial compression setting and, if so,
what are the data formats for the compression settings?

A We can’t provide information regarding the data format of the captured video.
It’s considered proprietary and confidential, except in cases where the codec in
use is an industry standard like JPEG. Fortunately, you don’t need to know the
data format if you’re using the correct QuickTime vdig and Image Compression
Manager calls to manipulate the data.

We don’t think you should use the vdig directly, but if you do, you can call
VDGetCompressionType to determine the compression types it supports. You
can select the compression type you want to use by calling VDSetCompression.
Since the vdig uses standard codecs for compression, you don’t need to know
the data format; all you have to do is use the codec to decompress the image
data when you want to draw it. Call VDGetImageDescription to get an image
description handle, which you can pass to DecompressImage along with a
pointer to the data, and the Image Compression Manager will take care of
decompressing the data as long as the correct codec is available.
MACINTOSH Q & A 101

d e v e l o p Issue 18 June 1994102

Th
D
Br
D
Jo

Your
Get easy access to New
resources, and informa
development products

Ordering is easy, and A

Call for additional infor
copy of the APDA Tools
We don’t recommend using vdigs directly because every one is different and
supports different features. They can be pretty hard to work with because your
code will require a lot of error handling and workarounds. The sequence
grabber was written to provide a seamless interface between any vdig and
applications, so you can use the sequence grabber as the engine for your video-
conferencing system. It was designed with this kind of flexibility in mind. For
more information about the sequence grabber, see Chapter 6, “Sequence
Grabber Channel Components,” in Inside Macintosh: QuickTime Components.

Using the sequence grabber with the right flags, you can get high-performance
grabs, even over the network. You do this by supplying application-defined
functions to the sequence grabber component. If you replace the grab function
on the receiver side, you can use the sequence grabber to grab right off the
network on that end. On the sender side, you can replace the data function so
that you’ll be able to write the frames out over the network, using whatever
network protocol you like.
ese answers are supplied by Apple’s
eveloper Support Center. Special thanks to
ian Bechtel, Matt Deatherage, Godfrey
iGiorgi, Steve Falkenburg, Dave Hersey, Dave
hnson, Scott Kuechle, Joseph Maurer, Kevin

Mellander, Jim Mensch, Martin Minow, Guillermo
Ortiz, and Brigham Stevens for the material in
this Q & A column. If you need more answers,
take a look at the Macintosh Q & A Technical
Notes on this issue’s CD.•

 main source for Apple development products
 Inside Macintosh and over 200 other programming products, tools, technical
tion through APDA, Apple’s worldwide source for Apple and third-party
.

PDA offers convenient payment and shipping options, including site licensing.

mation on APDA or recently announced products, or to request a complimentary
 Catalog.

Call APDA today.
United States 1-800-282-2732

Canada 1-800-637-0029
International (716) 871-6555

apda
tools for developers

Newton
Q & A:
Ask the
Llama
Q Here’s something that’s been puzzling me a bit: I want to pop up something like a
copyright message for ten seconds when my application starts up. So I drew up a layout
called Presents with a protoFloater containing all the necessary text. In my main layout
is a link to Presents called presentsLink. The following is the viewShowScript for the
topmost view in my application:

func()
begin

presentsLink:open();
AddDelayedAction(presentsLink:close(), nil, 10000)

end

This says to me: open the linked view, wait ten seconds, and close it. And that’s exactly
what it does, except that after the view is closed, there’s an exception. What am I doing
wrong and how do I fix it?

A The short answer is that the second argument to the AddDelayedAction
function is of the wrong type. This argument is supposed to be an array of
parameters to be passed to the delayed function, and nil is not an array. The
proper syntax for no arguments is [] instead of nil.

But there’s more: Although the closure you supplied in the first argument works
in this case, you should get out of the habit of using that type of function call for
delayed or deferred actions. You’re better off providing a full closure and
sending in the view you want closed, as in this:

func()
begin

// Define a closure to use in the delayed action.
local myClose := func(whichView)

whichView:Close();

presentsLink:Open();
AddDelayedAction(myClose, [presentsLink], 10000);

end

Unfortunately, things do not end there. You also need to make sure that the
myClose function is in internal RAM. The best way to do this is to use
DefConst to define the function:

// In your ProjectData file:
DefConst('kDelayedClose, func(whichView) whichView:Close());

// This changes the function above:
func()
begin

presentsLink:Open();
AddDelayedAction(EnsureInternal(kDelayedClose),

[presentsLink], 10000);
end
NEWTON Q & A: ASK THE LLAMA 103

The llama is the unofficial mascot of the
Developer Technical Support group in Apple’s
Personal Interactive Electronics (PIE) division.
Send your Newton-related questions to the PIE

llama at AppleLink DR.LLAMA (on the Internet,
dr.llama@applelink.apple.com). The first time
we use a question from you, we’ll send you a
T-shirt.•

d e v e l o p Issue 18 June 1994104
However, there is an easier solution. Instead of doing a delayed action you can
use the view idle mechanism to do what you want. All you need to do is add a
viewIdleScript and viewIdleFrequency to the presentsLink top-level view. The
viewIdleScript simply sends a Close message. The viewIdleFrequency is set to
the desired delay (10000 in this case).

The really short answer is that you can just use protoGlance. This proto has the
show-and-disappear behavior built in. You can set the viewIdleFrequency to
10000 to get the behavior you want.

Q I have an alphabetically sorted list of items in a protoTable and I want to use protoa2z
to quickly move through the table (like the cardfile overview). How do I do it?

A The first thing you need to do is find the index in the protoTable of the correct
item (that is, find the right item in the def.tabValues array of the protoTable).
How you do this will depend on what type of data you’re representing. Then
you can figure out how high each item in the protoTable is, set the VOrg slot of
the table to the correct line, and force the protoTable to redraw. You probably
want to make sure that you don’t scroll off the bottom of the table. Below is a
method you can add to your protoTable that will do what you want. You can
then send the message from your a2zChanged method (make sure you send the
message to the protoTable).

func(index)
begin

// Figure out the height of an item in the table.
local childHeight := if def.tabProtos.viewFont exists then

fontHeight(def.tabProtos.viewFont)
else

fontHeight(viewFont);

// Make sure that the table will not scroll off the end
// by calculating the index of the bottommost item that
// will be displayed.
local largestIndex := def.tabDown - ((:LocalBox().bottom -

:LocalBox().top) DIV childHeight) - 1;

// Use the bottommost item (largestIndex) to make sure
// the table has no empty space on the bottom.
vOrg := MIN(index, largestIndex);

// Now force the table to redraw.
:RedoChildren();

end

Q I would like to use the protoa2z sample code in my application, but I can’t figure out
how to set the highlighted letter when the user scrolls through my data.

A It’s easy once you realize that protoa2z is based on a protoPictIndexer. All you
have to do is a SetValue of the currIndex slot to the correct index. This will
change the highlighting of the protoa2z.

Note that using SetValue will not call the IndexClickScript, but this is probably
what you want. If you do want it to be called, you’ll have to manually

unhighlight the current selection, set the currIndex slot, and then highlight the
new item. The appropriate code would be

a2z:Unhilite();
a2z.currIndex := newIndex;
a2z:Hiliter(newIndex);

Q What is your quest?

A To answer the questions of those who develop for Newton.

Q I tried to use a protoPictRadioButton in my application but the highlight rectangle isn’t
the right size. I know that I need to write some code to draw the correct-sized highlight,
but where do I hook it in?

A Minimally you need to override the viewDrawScript of the protoPictRadioButton.
You may also want to change the viewFormat since it defaults to a thick rounded-
rectangle border. Assuming that you wanted some sort of rectangle highlight
around the selected button, you could use the following viewDrawScript:

func()
begin

// If the button is selected, highlight it.
if viewValue then
begin

// Get the bounds of the protoPictRadioButton.
local b := :LocalBox();

// Inset the bounds.
b.top := b.top + 2;
b.left := b.left + 2;
b.bottom := b.bottom - 2;
b.right := b.right - 2;

// Now draw a rectangle.
:DrawShape(MakeRect(b.left, b.top, b.right, b.bottom), nil);

end;
end

Q What is the AutoClose checkbox in the Newton Toolkit for? Why should I use it?

A The AutoClose flag causes all other AutoClose applications to be closed when
your application is clicked. The effect is that only one “auto-close” application
can be open at one time. You should always make your application auto-close,
to help conserve memory and other resources, unless it’s providing special
functionality to other applications (like the built-in Calculator or Styles
application).

Q How do I create my own class of binary object?

A To get a binary object of your own class, you first need to create a binary object,
then change its class to your own. The easiest way to do this is to create a string
that’s the same length as your intended binary object and then change (coerce)
NEWTON Q & A: ASK THE LLAMA 105

d e v e l o p Issue 18 June 1994106
the class of this new object to your own class. You can use the string class as
your basic binary object.

Suppose you wanted to have a binary class called CharID for an ID consisting
of four ASCII characters. You could write a NewID function in your
ProjectData file that would create the object and optionally initialize it, like this:

// Define a constant for a default CharID object. This constant
// can be cloned at run time. kDefaultCharIDObj will be a CharID
// object with 4 bytes that are set to 0x00.
DefConst('kDefaultCharIDOBj, SetClass(SetLength("", 4), 'CharID));

// CharString is a string of 4 characters or nil.
NewCharID := func(CharString)
begin

// Create a binary object of the correct length.
local newObj := Clone(kDefaultCharIDObj);

// Optionally initialize it.
if CharString then

for i := 0 to 3 do
StuffChar(newObj, i, CharString[i]);

// Return the new object.
newObj;

end;

To see this code in action, you can type it into the Inspector window in the
Newton Toolkit and evaluate it. Note that you cannot use DefConst in the
Inspector since it’s a compile-time function. Just substitute the second argument
in the DefConst function for kDefaultCharIDObj in the function to evaluate it.
Then you can try things like this:

x := :NewCharID(nil);
#440DD01 <CharID, length 4>
ExtractChar(x, 2);
#6 $\00
x := NewCharID("abcd");
#4410FC9 <CharID, length 4>
ExtractChar(x, 2);
#636 $c
ExtractByte(x, 2);
#18C 99

Q What is your favorite color?

A Llama fur beige.

Q In my application I have a clPictureView that can display a variable number of pictures.
Right now I create a bunch of picture slots in my application and then make another slot
at run time that is an array of those items. There must be an easier way.

A You’re right; there is an easier way. You can use the GetPictAsBits function in
your ProjectData file to read in the bitmaps. Note that you’ll first have to open
the resource file that contains the pictures.

// Open the resource file that contains the pictures.
// Assumes the file "Pictures" exists in the project folder.
r := OpenResFileX("Pictures");

// Get an array of pictures.
myPictures := [

GetPictAsBits("TARDIS", nil),
GetPictAsBits("Planet", nil)

];

// Now close the resource file.
CloseResFileX(r);

Once you have the myPictures array, you can create a slot of type Evaluate and
just type “myPictures” in the editor for the slot. Then you can use SetValue to
set the icon slot of the clPicture view to one of the elements of the array.

Q How do I put my own default person in the fax information slip?

A You can set up a default person in your SetupRoutingSlip method, which is
called before the fax slip is shown. The argument to that method is used to set
up the particular routing slip. In the case of a fax slip, there’s a slot called
“alternatives” which is an array of cardfile entries for the possible people to fax
to. If there’s just one entry, that’s the person. The fax number will be set from
the cardfile entry. So your SetupRoutingSlip method would look like this:

func(fields)
begin

// Check for a fax.
if fields.category = 'faxSlip then

fields.alternatives := SmartCFQuery("Llama");
// Do other stuff here, like put a title for the out box.

end

Note that the fields.category is set to the same value you set in the routeSlip slot
of a frame in your application’s entry in the global routing frame. The
SmartCFQuery function returns an array of cardfile entries that have strings
starting with the string passed in.

Q I noticed that every soup entry has a _uniqueID slot. Just how unique is it?

A The _uniqueID slot is only unique within that soup on that particular store.
The ID will never be reused in that soup on that store. However, it’s not
necessarily unique across stores (say, RAM and a PCMCIA card).

Q What is the ground velocity of an unladen llama climbing a 5% grade?

A What do you mean — Mexican or Venezuelan?
NEWTON Q & A: ASK THE LLAMA 107

Thanks to Glen Raphael and our PIE Partners
for the questions used in this column, and to
jXopher, Todd Courtois, Bob Ebert, Mike Engber,
Kent Sandvik, Maurice Sharp, and Scott (“Zz”)
Zimmerman for the answers.•

Have more questions? Need more answers?
Take a look at PIE Developer Info on AppleLink.•

108
See if you can solve this programming puzzle, presented in the form of
a dialog between Konstantin Othmer (KON) and Bruce Leak (BAL).
The dialog gives clues to help you. Keep guessing until you’re done; your
score is the number to the left of the clue that gave you the correct
answer. Even if you never run into the particular problems being solved
here, you’ll learn some valuable debugging techniques that will help you
solve your own programming conundrums. And you’ll also learn
interesting Macintosh trivia.

KON & BAL’S PUZZLE PAGE

Monitor Madness
d e v e l o p Issue 18 June 1994

K
a
w
a
to

KONSTANTIN OTHMER
AND BRUCE LEAK
KON With all the talk of PowerPC, I should give you one of the really nasty
PowerPC bugs I’ve been working on. But to be fair to those who aren’t
up to speed yet, namely one BAL, I’ll give you a bug that’s right up
your alley.

BAL You’re a saint.

KON Have you heard of the Display Enabler software that went out with the
new 17-inch Multiple Scan display and is part of System 7.5? It lets
you dynamically change your monitor configurations, such as your
menu bar screen and resolution on Multiple Scan displays.

BAL You mean I can Option-drag the menu bar across screens in the
Monitors control panel and it changes dynamically? Totally cool! I
hate that “takes effect on restart” stuff. This means that I can help out
all those multimedia applications that don’t understand my second
monitor is color.

KON And if you get one of the Multiple Scan displays, you can double-click
on a screen in Monitors and change its resolution on the fly. Last time
I saw someone try that on a Windows machine, it crashed!

BAL Give ’em ten more years, I’m sure they’ll get it right.

KON With Display Enabler, the system automatically keeps windows on the
screen when you move the menu bar. It even moves your icons to
reasonable positions. If you’re using the new scriptable Finder, the
icon relocation is awesome. Sometimes I get the feeling it can read my
mind.
ONSTANTIN OTHMER AND BRUCE LEAK
bsconded to the ski slopes immediately after
riting this Puzzle Page, leaving develop without
 bio. Fortunately, they had AppleLink hooked up
 their cellular phone–based Newtons, so they

could pen their bio remotely. Although develop’s
editors repeatedly sent them mail requesting a
bio, all they ever got back was a cryptic message
about Crinoline Gopher and Brunch Creek. Go
figure.•

BAL Wait. Are you running a Macintosh or a Newton?

KON Ha ha.

BAL OK, back to the puzzle. What’s the bug? Was there trouble with
applications that hide windows by moving them off the screen? Those
windows wouldn’t be able to be located after being moved along with
the menu bar.

KON We handle that case for the most part, although that’s a pretty cheesy
way of hiding windows. Apparently some developers have trouble
figuring out what ShowHide does. The bug I have for you is way
better than that.

BAL Yeah, sure. It probably only happens on a particular machine, in one
magic case that’s really hard to reproduce, and only when MacsBug
isn’t loaded.

KON No fair. You’ve played this game before. Actually, someone reported
that when you change the resolution of a monitor and then try to
restart, the machine hangs on boot.

BAL Well, it’s a good thing monitor reconfigurations take effect without
restarting, since restarting doesn’t work anymore! Does it happen if I
don’t have Display Enabler installed?

KON Without Display Enabler, you can’t change the resolution of the
monitor. Solve the problem.

BAL Only under protest. How far does he get when he tries to reboot?

KON Smiley Mac and that’s it. It dies right about where you would expect
the death chimes.

BAL And it only happens on this one machine?

KON When we tried to reproduce it on an identical configuration we
couldn’t.

BAL What’s his configuration?

KON Macintosh Quadra 900, on-board video connected to a 17-inch
Multiple Scan display, two hard drives, and System 7.1 with Display
Enabler.

BAL How does he regain access to his machine?

KON He resets parameter RAM (PRAM) by holding down Command-
Option-P-R until the machine chimes the second time. Then
everything boots fine.

BAL But it boots into the default video mode, not the one he specified in
Monitors.

100 KON Of course. Because the original Macintosh was floppy-based, PRAM
was added to hold a lot of system configuration information, such as
mouse speed, double-click time, and sound volume for each monitor.
That way you could boot off of different floppies and still maintain all
your system preferences.

BAL The Macintosh II extended the use of PRAM to add support for
multiple video cards and slot devices. Since PRAM is in such short
supply, there’s also a 'scrn' resource that’s maintained by Monitors that
contains the relative locations of the different monitors, as well as each
monitor’s mode. The problem is that the 'scrn' resource and your
KON & BAL’S PUZZLE PAGE 109

d e v e l o p Issue 18 June 1994110
PRAM are out of sync, so the system gets confused and hangs. Go fix
your bug. Over.

90 KON Nice theory, but wrong. First of all, we restart right after closing
Monitors. The last thing Monitors does is update the 'scrn' resource
and tell the driver to update its PRAM settings. So there’s not much
chance for them to get out of sync. Second, the 'scrn' resource is read
and acted upon at extension loading time, and we’re hanging way
before that.

BAL So something that’s getting written to PRAM must be causing all the
fuss. On his machine, use the DPRAM dcmd to check the PRAM
locations related to video before and after changing the mode. To
factor Monitors out of the equation, boot and set the PRAM locations
by hand and see if that’s the only dependency.

KON Slick sleuthing, BAL! It turns out that PRAM location that holds the
new mode for the on-board video (in your case, $49) gets changed. If
you change it using the SPRAM dcmd rather than Monitors, the
problem still occurs.

BAL Drat. I was hoping that Monitors was somehow trashing the startup
drive PRAM location. I’ve always been looking for a good excuse to
rewrite Monitors out of that Pascal morass. This certainly narrows it
down.

KON If you say so. But you can only get it to happen on this one machine,
and how could video PRAM be related to booting, anyway?

BAL It’s going to be hard to get MacsBug involved since we’re too early in
the boot process.

KON You could get MacsBug-like capabilities at boot time using BootBug,
but there’s no card around.

BAL So what’s special about this configuration? Is it a prototype 17-inch
Multiple Scan display?

KON Nope. He claims to be using a production unit.

BAL What if you remove the extra hard drive?

85 KON It boots fine. No problem.

BAL You mean if I just turn off the external drive, the machine boots fine?

KON Yep.

BAL What if I set the system to boot off of the external drive?

KON There’s no system on the external drive. But you can tell the system to
set the startup disk there. It’s not as if it checks for a valid boot volume
or anything. I’ve heard you can even set it to boot off of a Sega CD.

BAL So I put a system on there and set it as the boot drive. What happens?

80 KON It boots fine.

BAL But if I set the boot drive back to the internal drive, I crash?

KON Nope. That seems to be working fine now too.

BAL Aha! I’ll remove the system from the external drive and try to reboot.
Now I crash, right?

75 KON Nope. The system seems to be booting fine now. Nice going, BAL!
You fixed the only reproducible case! Could you recap the symptom

and the fix so that I can just add them to the Read Me file and be done
with it?

BAL Yeah, yeah. Somehow something must have changed on that external
disk. Maybe the Finder wrote out some new boot blocks or removed
some stale boot blocks when I trashed the System file. Can we put the
disk back to its original state?

70 KON We’ll break into our hermetically sealed digital fiberoptic wireless
remote personal information highway archive server and restore your
disk image. The machine still boots fine.

BAL If it’s not the disk, I must have changed something in PRAM. What’s
the startup drive set to now and what was it when I dumped PRAM
earlier?

65 KON The long word that holds the boot drive (PRAM location $78–$7B)
used to hold $0 and now it holds $FFFFFFDF (a driver refNum),
which indicates that you’re booting off the internal drive.

BAL What does $0 specify?

KON That’s what PRAM gets set to when you don’t select a boot drive in
the Startup Disk control panel. It tells the system to go look for a valid
boot drive and boot off of the first one it finds.

BAL When I set the boot drive to the internal drive using Startup Disk, the
PRAM location was set. What happens if I set it back to $0?

60 KON You hang on boot, same as before.

BAL What if you put a System Folder on the external drive but leave the
PRAM boot drive set to $0?

55 KON You don’t hang anymore, and the system boots off of the external
drive.

BAL And if I drag that System Folder to the trash?

50 KON The system hangs on boot.

BAL What if I use a newly initialized external drive with the same SCSI ID?

45 KON It boots fine.

BAL Let’s recap for those just joining us. The machine hangs on boot on a
two-drive system under these circumstances: the System Folder on the
external drive has been deleted; there’s no default boot drive selected;
and the video mode of the on-board driver is set to something other
than the default. Did I forget anything?

KON The solution.

BAL So how does the system go searching for boot drives?

40 KON If the device specified in PRAM doesn’t exist or isn’t bootable, the
boot code starts with the device with the highest SCSI ID and looks
for boot blocks. If they exist, it tries to boot off of that drive. If it
works, great. If there’s no System Folder or Finder, it will start over
with the next highest SCSI ID.

BAL I bet if I put the same SCSI driver on both disks using Apple HD SC
Setup, the problem goes away.

KON You got a theory here, or what?
KON & BAL’S PUZZLE PAGE 111

d e v e l o p Issue 18 June 1994112
BAL Early in the boot process, the system heap is really small. When you
put the video driver into one of the new modes tickled by Display
Enabler, it loads patches out of ROM into the system heap. These
patches fight with the SCSI driver for the limited system heap RAM.
When no boot drive is selected, the boot code trolls the SCSI bus
looking for a valid boot device. It loads the SCSI driver off the first
candidate, starts booting, and finds there’s no valid System Folder
present. So it goes to the next drive, sees that there’s a different SCSI
driver version on it, and tries to load that version. Because the video
driver loaded its extended tables and forgot to grow the system heap,
the load fails and the system hangs without a clue as to how to
proceed.

35 KON Wow! Fabulous theory, but wrong. If you get BootBug — a wonderful
product for anyone wanting to debug system startup, by the way —
and watch the SCSI Manager allocate space for the driver, it succeeds.
Furthermore, when the system fails to boot from the first drive it
finds, it throws everything away by calling InitZone on the system
heap zone and starts over with the next drive. Your story about the
video driver patches is accurate, but there’s still enough room in the
system heap after they load. Your move.

BAL OK, I need some tools. What have you got? Do you expect me to
debug this with my bare hands?

KON Well, we don’t have an emulator handy, but we could probably call in a
few favors and get a BootBug NuBus card.

BAL Now this should be easy! Where do I crash?

30 KON You crash in code that’s monkeying around with the low-memory
global at $DD8, UniversalInfoPtr. It’s the table that tells you
everything you ever wanted to know about this machine’s
configuration: the clock speed, all kinds of I/O stuff, the kind of sound
hardware, SCSI hardware, on-board video, and memory controller, the
number of NuBus slots . . .

BAL OK, OK. What’s the problem?

KON Well, it dereferences $DD8, makes some calculations with the offsets,
and ends up with a bogus address and a bus error.

BAL Where does $DD8 point?

25 KON Into RAM.

BAL That’s strange. All that configuration information should be in ROM.
I’ll stop BootBug immediately and step spy on $DD8 to see who
changes it.

20 KON By the time BootBug comes in, the location is already changed.

BAL Wait, BootBug loads first. It should come in before any other slots get
called.

15 KON It works that way on the Macintosh Quadra 610, 650, and 800 models
and later (including the AV models). But you’re on a Quadra 900, and
on-board video occupies the first NuBus slot. The video is already
gray, so the primary INIT of the on-board video has already been
called.

BAL If I don’t set the new video mode, so that I boot successfully, where
does $DD8 point?

KON Into ROM.

BAL Aha! The video driver is doing something different because it sees it
needs one of the extended modes. It must patch $DD8 to change the
configuration information for the video display.

10 KON So? What’s wrong with patching? Why does it work when only one
drive is involved?

BAL I got it! The video driver patches out $DD8 to replace the tables for
the extended video modes. Then the boot code starts looking for a
valid boot drive. It finds the external drive, which has valid boot blocks
since it once had a system on it, and tries to boot off of that. When it
realizes there’s no valid System Folder on the disk, the machine
performs a warm restart and tries the next drive.

5 KON Nothing new here yet.

BAL The problem is that when the system restarts, it reinitializes the
system heap, throwing out the video patches, but doesn’t reinitialize
$DD8 since that’s set very early by the boot code to describe the type
of machine that was detected. Now $DD8 points to garbage. As soon
as someone tries to reference $DD8 they get garbage, resulting in a
bus error. The machine doesn’t know what to do and locks up.

KON Why don’t you get a system error or at least the death chimes?

BAL Since there’s no way to draw to the screen until a video driver is
successfully found and opened, the death chimes were designed to
audibly indicate where in the boot process failure occurred. Once the
video driver is successfully opened, the death chimes error handler is
replaced with the standard system error handler. But when the external
drive failed to boot, the video driver was thrown out and the error
occurred before it was reopened, so no error message could be
displayed.

KON Precisely. Since all the problems happen in ROM long before we can
get control, unless we want to do one of those nasty Darin-changed-
the-boot-blocks patches, we can’t write those extended modes to
PRAM. So we wait until the Display Enabler INIT loads to
synchronize the display with the 'scrn' resource. Trying to debug
things at boot time is hard enough, especially when they happen
before BootBug loads.

BAL Nasty.

KON Yeah.
KON & BAL’S PUZZLE PAGE 113

SCORING
75–100 If you’re so smart, you write the next one.
50–70 You’re qualified to rewrite the boot code. Please use C this time.
25–45 You’re qualified to rewrite the boot code in Pascal.
5–20 Study the pipeline instruction architecture used by the 68000 versus the emulator to get a

head start for next time.•

Thanks to Ian Hendry, Carl Hewitt, and Mike Puckett for reviewing this column.•

114
In Issue 17, we told part 1 of the history of the dogcow.
We’ll warn you again: If you don’t know what or who
the dogcow is, or you don’t care for Apple cultural
minutiae, you should just flip past this column.

DISTRIBUTION OF TECH NOTE #31
We left off at the point where the former Macintosh
Technical Note #31, “The Dogcow,” had been created.
The question then was how to distribute it. Mark
Johnson and I both thought that since it was an April
Fool’s joke anyway, the best thing would be to just
include it in the April monthly mailing to Apple
Partners and Associates; we’d drop it from the
subsequent batches, with the direct intent of making it
a curio. The idea was that the people who were
currently in the Macintosh community would get it and
everyone else wouldn’t. We very intentionally were
trying to build an aura around it. The April 1989
mailing is the only time this Tech Note was ever in
print under the official auspices of Apple.

There was a bit of a lag time between the writing of the
Note and the actual release; by the time it went out, I
actually had forgotten about it. The response was
immediate and intense. Internally I received a couple of
vaguely threatening calls from people claiming false
ownership, but the overwhelming majority of people
thought it was great. One gentleman in the developer
community took offense saying that “dogcow” was too
close to “Dachau” and showed how the note had
underpinnings of anti-Semitism. (I showed this one to

History of the
Dogcow, Part 2

MARK (“THE RED”)
HARLAN
d e v e l o p Issue 18 June 1994

MARK (“THE RED”) HARLAN went through extensive
deprogramming after six years at Apple. Unfortunately, the therapy
didn’t hold and he has since joined yet another cult: General
Magic. In a recent interview, Mark was asked if he had any words
of wisdom on the dogcow. “Yeah. Warn everyone that both the
dogcow logo and ‘Moof!’ are trademarks of Apple Computer. You
don’t ever want to be in the position of having to answer ‘What
are you in for?’ with ‘Bootleg T-shirts.’”•
my Jewish father-in-law, who had to be resuscitated, he
was laughing so hard.)

Aside from that, it really struck a chord with the
developer community like nothing I’ve seen before or
since. I received about 40 pieces of fan mail that month.
Developer Technical Support (DTS) must have gone
for a year before there was a batch of e-mail that didn’t
have a dogcow reference in it. In fact, to this day people
say to me, “Mark Harlan? I know your name from Tech
Notes” — but it’s the only one I ever wrote.

Then came the concept of a Developer CD as a vehicle
for distributing Tech Notes electronically (along with
sample code and more). I was overseeing that project,
and immediately we had an interesting conundrum: We
wanted all information in electronic format, yet what
were we going to do with Tech Note #31? Merely
slipping it into the Tech Notes stack seemed like
disaster, but then it didn’t really feel right to omit it.

Again, it was Mark Johnson who came to the rescue
with the excellent idea of burying the Tech Note. So on
the early CD, “Phil and Dave’s Excellent CD,” you
have to go through a bizarre sequence of commands to
bring it up. Even now, tradition requires that I not give
the details, but it involves Shift-Option-clicking and
typing “grazing off a cliff,” and it emits “Moof!” and
“Foom!” sounds. (For the “Moof!” sound we took a
real cow and then Zz said “fff” into a MacRecorder; the
“Foom!” is just the same sound played backwards.) It
took a while for anyone to find the Note using any
technique, and I’ve never heard of anyone doing it
except through ResEdit.

The Note stayed on the first few Developer CDs. The
access technique changed from disc to disc, and not
even I knew how to do it after the original “Phil and
Dave.” Somewhere along the line the Note was
dropped from the CD altogether.

OTHER DOGCOW PARAPHERNALIA
Bootleg T-shirts started appearing. There was an
apartment near Apple headquarters that started flying a
dogcow flag. The stack version of the Note had a
watermarked background that someone removed pixel
Our friend in the LaserWriter Page Setup Options
dialog, normal and flipped vertically:

by pixel before posting it to the Internet. Several
developers were nearly thrown out of a movie theater
at MacHack for “Moofing” before a movie.

In addition to the Tech Note there are three pins:
green background, the most common; red background
with Kanji (the word on the pin actually is pronounced
“Moo-aann!” because Japanese dogs don’t woof, they
say something like “aann-aann”); and the super-rare red
background with “Moof!”, which are misprints of the
Kanji batch. Also, there’s a dogcow window sticker. All
of these were given away in DTS labs, and all but the
window sticker have been collected up a long time ago.

If you think of the dogcow fathers as being Zz
Zimmerman, Mark Johnson, and me, there’s only one
dogcow shirt that received our supervision and
approval: the black DTS sweatshirt with the small
dogcow on the chest (designed by Toni Trujillo). I also
designed the graphic for a DTS gift that was a shoulder
bag with all incarnations of the dogcow on it (flipped,
rotated, and inverted). Unfortunately the bag was
incredibly cheap and most of them have self-destructed.

Chris Derossi and Mary Burke designed a dogcow
mousepad and even went so far as to call Pepsi-Cola to
If you have questions, suggestions, or even gripe
Drop us a line and let us know what you think.

Send editorial suggestions or comments
to AppleLink DEVELOP or to:

Caroline Rose
Apple Computer, Inc.
20525 Mariani Avenue, M/S 303-4DP
Cupertino, CA 95014
AppleLink: CROSE
Internet: crose@applelink.apple.com
Fax: (408)253-8521

Please direct all subscription-related queries to d
7858 or AppleLink DEV.SUBS (or, on the Inter
1-800-877-5548 in the U.S., (815)734-1116 outs

How’re ✍
get the exact color of Mountain Dew green for the
background. They made 500 of these and I wrote an
insert that went into the packaging. Aside from the
original Tech Note, it’s the only thing I’ve ever written
about dogcattle — until these develop columns.

DOGCOW TRIVIA
Somewhere along the line I baptized the dogcow
“Clarus.” Of course she’s a female, as are all cows;
males would be referred to as dogbulls, but none exist
because there are already bulldogs, and God doesn’t
like to have naming problems.

Now things are much bigger than they were then —
both in number of developers and number of Apple
employees. The dogcow regularly appears on
documents that are no longer connected to DTS, or in
some cases (such as Scott Knaster’s books) not even
from Apple. In a sense, the dogcow has become
mainstream; people are copying it — and that’s exactly
what I was fighting against in the first place (not to
mention that she, and her “Moof!” cry, are bona fide
trademarks of Apple Computer). To put a stop to all
this, I’m threatening to kill her off, but develop’s editor
has become such a fan that she’s not sure she’ll accept a
“Dogcow is Dead” column. Stay tuned!
HISTORY OF THE DOGCOW, PART 2 115

s about develop, please don’t keep them to yourself.

Send technical questions about develop
to:

Dave Johnson
Apple Computer, Inc.
20525 Mariani Avenue, M/S 303-4DP
Cupertino, CA 95014
AppleLink: JOHNSON.DK
Internet: dkj@apple.com
CompuServe: 75300,715
Fax: (408)253-8521

evelop, P.O. Box 531, Mount Morris, IL 61054-
net, dev.subs@applelink.apple.com). Or call
ide the U.S., or (815)734-1127 for fax.

we doing?

✍

116
For a cumulative index to all issues of
develop, see this issue’s CD.•

A
A5 register, Macintosh Q & A

97–98
accelerator cards, QuickDraw

1.3.5 and 48, 50
access window (Apple Guide) 7
AddCollectionItem, Macintosh

Q & A 93
AddDelayedAction, Newton

Q & A 103
AEInstallSpecialHandler, OSA

and 37
AEInteractWithUser, Macintosh

Q & A 100
AEProcessAppleEvent, OSA and

37
AEPutParamPtr, Apple Guide and

16
AESend, Macintosh Q & A 98–99
AGClose, Apple Guide and 19–20
AGCoachRefNum, Apple Guide

and 17
AGContextRefNum, Apple Guide

and 18–19
AGFileGetIndDB, Apple Guide

and 12
AGFile library (Apple Guide)

10–11, 19
AGGetAvailableDBTypes, Apple

Guide and 10
AGGetStatus, Apple Guide and

9–10
AGInstallCoachHandler, Apple

Guide and 17
AGInstallContextHandler, Apple

Guide and 18
AGIsDatabaseOpen, Apple Guide

and 12–13
AGOpen, Apple Guide and 13,

20
AGOpenWithSearch, Apple

Guide and 15
AGQuit, Apple Guide and 19
AGRefNum, Apple Guide and

13, 19
Alexander, Pete (“Luke”) 41
AlignScreenRect, QuickTime and

24–25

INDEX
d e v e l o p Issue 18 June 1994
AlignWindow, QuickTime and
24–25

Apple event object model, OSA
and 27

Apple events
OSA and 26–30, 33
routing to scripts 36–38

Apple Guide buttons 16
Apple Guide database files 7–8,

11
multiple 20

Apple Guide help system 6–21
context checks 18–19
context sensitivity 21
getting information about

9–13
integrating into applications

20
interactivity 21
menu items identified by

database type 11
modifying help content 19
quitting 19–20
responding to 15–19
starting up 13–15
view options 13–15

Application.cp file (SimpliFace)
30

AssociateSection, Macintosh
Q & A 101

AutoClose, Newton Q & A 105

B
“Balance of Power” (Evans),

enhancing PowerPC native
speed 55–57

Balloon Help, movie controllers
and 23–24

Begin Transaction, Macintosh
Q & A 99–100

BestBlitter, QuickDraw 1.3.5 and
51–54

binary object class, Newton Q & A
105–106

blitters, custom
timing 43, 51–54
versus CopyBits 48–49

BlockMove, QuickDraw 1.3.5 and
48–49

'BNDL' resources, preferences
files and 82
BootBug, KON & BAL puzzle
112–113

BuildVisibleList, hierarchical lists
and 67, 71

C
caches

Power Macintosh and 53
QuickDraw GX and 50

canHiliteSelection, hierarchical
lists and 64

casting data types 57
'cfrg' resource, Power Macintosh

and 77
Close events, OSA and 38
CloseMovieFile, QuickTime and

22
ClosePreferencesFile 90
clPictureView, Newton Q & A

106–107
CMBufferSizes, Macintosh Q & A

97
CMChoose, Macintosh Q & A 96
cmDataIn buffer size, Macintosh

Q & A 97
cmDataOut buffer size, Macintosh

Q & A 97
CMEvent, Macintosh Q & A 96
CMListen, Macintosh Q & A

96–97
CMNew, Macintosh Q & A 97
CMOpen, Macintosh Q & A

95–96
coach marks, Apple Guide and

16–17
CoachReplyProc, Apple Guide

and 17
Color2Index, Macintosh Q & A

95
color tables

Macintosh Q & A 95
QuickDraw 1.3.5 and 46–47

Communications Toolbox,
Macintosh Q & A 95–97

ContextReplyProc, Apple Guide
and 18

Continue statement (AppleScript)
37

converting code, for Power
Macintosh 77

CopyBits
QuickDraw 1.3.5 and 47,

48–50
timing routines 51–54
versus custom blitters 48–49

CountVisibleElements,
hierarchical lists and 68

Cox, Brian 43
CPU time breakdown, application

versus system (graph) 44
CreateVisibleList, hierarchical lists

and 65
cross-platform movie files,

QuickTime and 22
cursor shape, QuickTime and 24
custom color search procedure,

Macintosh Q & A 95
custom dialogs, Macintosh Q & A

96

D
$DD8 (UniversalInfoPtr), KON

& BAL puzzle 112–113
DebugTrace module (SimpliFace)

31
default person, Newton Q & A

107
DeletePreference, preferences files

and 91
DeletePreferencesFile 90
DeletePreferencesFolder,

preferences files and 90
DeviceLoop, hierarchical lists and

74
Display Enabler, KON & BAL

puzzle 108–113
“Displaying Hierarchical Lists”

(Minow) 58–78
DisposeTwistDownElement,

hierarchical lists and 60
DisposeTwistDownHandle,

hierarchical lists and 61–62
dithering, QuickDraw 1.3.5 and

47
dogcow 114–115
DoScript, OSA and 35
Do Script Apple event, OSA and

35
DoTwistDownClick, hierarchical

lists and 67–68, 69–71
DragAlignedWindow, QuickTime

and 24–25
DragWindow, QuickTime and 24
DrawThisTriangle, hierarchical

lists and 74, 75–76
DrawTriangle, hierarchical lists
and 72, 74, 75–76

E
Edit menu, standard and modified

25
editText items, Macintosh Q & A

94–95
End Transaction, Macintosh

Q & A 99–100
errAEEventNotHandled, OSA

and 37
errors, QuickDraw GX and

41–42
Evans, Dave 55
ExecuteEventInContext, OSA and

38
ExpandOrCollapseTwistDownList,

hierarchical lists and 69, 71, 72
“Exploiting Graphics Speed on the

Power Macintosh” (Othmer,
Holland, and Cox) 43–54

Express Modem Tool, Macintosh
Q & A 96

F
fAttachedScript field, OSA and 34
FindNextComponent, QuickTime

and 22
flag field, hierarchical lists and

62–63
floating point–intensive

applications, PowerPC and 45,
46

floating-point multiplication,
PowerPC and 57

FlushDataCache, PowerPC and
53

FlushInstructionCache, PowerPC
and 53

folderName, preferences files and
89, 90

'FREF' resources, preferences files
and 81–82

FSpOpenResFile, QuickTime and
22

FSSpecs, AppleGuide and 11–12,
13

fully-factored applications, OSA
and 27

G
gArraySize, scoping variables and

56
Gestalt selectors, Apple Guide and
19

Get Data Apple event, OSA and
36, 38

GetPictAsBits, Newton Q & A
106–107

GetPreferencesFileVersion 90
GetProperty, OSA and 36
GetTrackMatrix, Macintosh

Q & A 93
“Giving Users Help With Apple

Guide” (Powers) 6–21
“Graphical Truffles” (Alexander),

the debugging version of
QuickDraw GX 41–42

GraphicsBug debugging tool,
QuickDraw GX and 42

graphics speed, Power Macintosh
and 43–54

Graphing Calculator desk
accessory 46

GWorlds, QuickDraw 1.3.5 and
46–47

GXBufferData, Macintosh Q & A
92

GXCloseConnection, Macintosh
Q & A 92

GXCountPages, Macintosh
Q & A 92

GXFinishSendPage, Macintosh
Q & A 92

“GXGraphics (debug)” file 41, 42
GXImageDocument, Macintosh

Q & A 92
GXImageJob, Macintosh Q & A

93
GXOpenConnection, Macintosh

Q & A 92
GXSetValidation, QuickDraw GX

and 42
GXStartSendPage, Macintosh

Q & A 92
GXValidateShape, QuickDraw

GX and 42
GXWriteData, Macintosh Q & A

92

H
HandleEvent, OSA and 38
Harlan, Mark (“The Red”) 114
hierarchical lists, displaying

58–78
“History of the Dogcow, Part 2”

(Harlan) 114–115
Hoddie, Peter 22
Holland, Shannon 43
INDEX 117

118
I
idleProc (AESend), Macintosh

Q & A 98–99
Image Compression Manager

(QuickTime) 24
Index2Color, Macintosh Q & A

95
Infinity Windoid floating window

WDEF 3
Input Trays dialog, Macintosh

Q & A 92
international number formatting,

creating Script Manager
canonical formats 3

isLeftJustify, hierarchical lists and
64

J
Jones, Tao 79

K
kAEWaitReply, Macintosh Q & A

99
kAEWantReceipt, Macintosh

Q & A 99
kAGCreator, Apple Guide and 11
kAGDBTypeBitAny bit, Apple

Guide and 10
kAGDefault flag, Apple Guide and

13
kAGErrDatabaseNotAvailable,

Apple Guide and 13
kAGErrDatabaseOpen error,

Apple Guide and 19
kAGFileDBTypeHelp, Apple

Guide and 13
kAGFileDBTypeOther files, Apple

Guide and 11
kAGFileMain, Apple Guide and

11
kAGFileMixin, Apple Guide and

11
kAGViewFullHowdy view, Apple

Guide and 14–15
kAGViewSingleTopics view, Apple

Guide and 15
kDrawButtonFilled, hierarchical

lists and 63
kDrawIntermediate, hierarchical

lists and 63
kEraseButtonArea, hierarchical

lists and 63, 69
kHasTwistDown, hierarchical lists

and 63
d e v e l o p Issue 18 June 1994
'kind' resources, preferences files
and 82–83

kOldShowSublist, hierarchical lists
and 63

“KON & BAL’s Puzzle Page”
(Othmer and Leak), Monitor
Madness 108–113

kOnlyRedrawButton, hierarchical
lists and 63, 71, 72

kOSADontUsePhac, OSA and 37
kOSANullScript, OSA and 33
kOSAUseStandardDispatch, OSA

and 37
kSelectedElement, hierarchical

lists and 63
kShowSublist, hierarchical lists

and 63

L
Leak, Bruce 108
linked lists, storing data in 59–62
list cells, drawing 71–74
List Manager 64
List Manager lists 59
LoadScriptFromFile (SimpliFace)

32
loops, expanding (PowerPC) 56

M
Macintosh Easy Open, preferences

files and 86
Macintosh Q & A 92–102
MacsBug messages, QuickDraw

GX and 42
MakeDataExecutable, Power

Macintosh and 53
MakeTwistDownElement,

hierarchical lists and 60, 61, 65
mcActionSetKeysEnabled,

QuickTime and 23
mcActionShowBalloon,

QuickTime and 24
MCClick, QuickTime and 23
MCEnableEditing, QuickTime

and 25
MCGetControllerInfo,

QuickTime and 25
MCGetMenuString, QuickTime

and 25
MCIdle, QuickTime and 24
MCIsPlayerEvent, QuickTime

and 23, 24
MCSetUpEditMenu, QuickTime

and 25
MegaMovies application 24
memory dereferencing 57
Microseconds, Power Macintosh
and 54

Minow, Martin 58
mix-in guide database files, Apple

Guide and 19
MoGuide sample application, for

Apple Guide 7, 9
Monitors control panel, KON &

BAL puzzle 108–110
mouse events, hierarchical lists

and 67–71
movie controller editing,

QuickTime and 25
Multiple Scan displays, KON &

BAL puzzle 108–113
MyBuildHierarchy, hierarchical

lists and 65, 76
MyGetInfo, hierarchical lists and

65
MyInfoRecord, hierarchical lists

and 65

N
NewMovieController, QuickTime

and 22–23
NewMovieFromFile, QuickTime

and 22
NewPreferencesFile 89
Newton Q & A: Ask the Llama

103–107
NewTwistDownList, hierarchical

lists and 64
nonrectangular movies,

QuickTime and 23
notices, QuickDraw GX and

41–42
NuBus frame buffers, QuickDraw

1.3.5 and 49

O
objects, attaching scripts to 33–35
Object Support Library (OSL),

Apple Guide and 16

ObjModelEvents.cp file, OSA and
29, 30

ObjModelTokens.h file, OSA and
29

“OCE Mail Enclosures” volume,
Macintosh Q & A 93–94

“On Panel Hide” action, attaching
Apple events to 17–18

“On Panel Show” action, attaching
Apple events to 17–18

Open Application Apple event,
OSA and 38

OpenDefaultComponent
OSA and 33
QuickTime and 22

Open Documents Apple event,
preferences files and 85

OpenMovieFile, QuickTime and
22

OpenNewEdition, Macintosh
Q & A 101

OpenPreferencesFile 89
'open' resources, preferences files

and 86–88
Open Scripting Architecture

(OSA) 26–40
OSA (Open Scripting

Architecture) 26–40
OSACompileExecute 35
OSACompile 35
OSADoEvent 37, 38
OSAExecuteEvent 37
OSAExecute 33
OSAGetSource 36
OSAIDs 32, 33
OSALoad 32
OSASetResumeDispatchProc 37
OSAStore 32, 36
Other Controller Movie sample

movie 23
Othmer, Konstantin 43, 108
ownerName, preferences files and

89

P
Palette2CTab, Macintosh Q & A

95
parameter RAM (PRAM), KON

& BAL puzzle 109–113
patching, QuickDraw 1.3.5 and

47
'pdoc' event, Macintosh Q & A

100
'PICT' file type, preferences files

and 88
PointInMovieController,

QuickTime and 24
Power Macintosh

compared with a Macintosh
Quadra 45–46

converting code for 77
graphics speed and 43–54

PowerPC
enhancing native speed

55–57
graphics speed and 43–54

Powers, John 6
preferences files
contents of 88–89
icons 83
implementing 81–91
opening 84–88
standard preferences library

89–91
PreferencesFileExists 90
'pref' file type, preferences files

and 82
presentation window (Apple

Guide) 7
“Programming for Flexibility: The

Open Scripting Architecture”
26–40

protoa2z, Newton Q & A
104–105

protoGlance, Newton Q & A 104
protoPictRadioButton, Newton

Q & A 105
protoTable, Newton Q & A 104

Q
QDError, QuickDraw 1.3.5 and

46
'QLfy' Gestalt selector, Apple

Guide and 19
QuickBuck sample movie 22
QuickDraw 1.3.5

compared with QuickDraw
1.3.0 45

and Power Macintosh
graphics speed 43–54

reducing overhead 49–50
timing routines 51–54

QuickDraw globals, Power
Macintosh and 77

QuickDraw GX
caches and 50
debugging version of 41–42

QuickTime, basic movie playback
support 22–25

R
ReadPreference, preferences files

and 90
recursion, hierarchical lists and 62
register contents, QuickDraw

1.3.5 and 47
“Right Way to Implement

Preferences Files, The”
(Woodcock) 81–91

S
ScaleMatrix, Macintosh Q & A 93
scope of variables (PowerPC) 56
'scpt' (typeOSAGenericStorage),

OSA and 32, 34
ScriptableObjects.cp file, OSA and

30
ScriptableObjects.h file, OSA and

29
Script Editor (AppleScript), OSA

and 26, 31–32
scripts

attaching/embedding with
OSA 26–40

importing from the Script
Editor 31–32

selector-based traps, Macintosh
Q & A 92

SelIText, Macintosh Q & A 95
Set Data Apple event, OSA and

36, 38
SetIText, Macintosh Q & A 95
SetPreferencesFileVersion,

preferences files and 90
SetProperty, OSA and 34, 35
SetTrackDimensions, Macintosh

Q & A 93
SetTrackMatrix, Macintosh Q & A

93
SetValue, Newton Q & A

104–105
ShieldCursor, QuickDraw 1.3.5

and 47
SimpliFace.cp file (SimpliFace)

30, 38
SimpliFace sample program 27,

28–40
debugging 31

SimpliFace Startup script 31
skank device, QuickDraw 1.3.5

and 46–47
Smith, Paul G. 26
“Somewhere in QuickTime”

(Hoddie), basic movie playback
support 22–25

Speech Manager, Macintosh
Q & A 100–101

srcBic pen mode, Macintosh
Q & A 95

standard preferences library,
preferences files and 89–91

StdAEvtPreHandler, OSA and 39
'STR ' resources, preferences files

and 85–86
surrogate device, QuickDraw 1.3.5

and 46–47
SysError, QuickDraw 1.3.5 and

46
INDEX 119

120
system routine usage (graph) 44
systemwide help, Apple Guide and

8

T
TContext::ReplyToContext,

AppleGuide and 18
TestSimpleWindow sample script,

OSA and 30
'TEXT' file type, preferences files

and 88
Text to Speech, Macintosh Q & A

100–101
TimeBlitProc, QuickDraw 1.3.5

and 51–54
timing routines, QuickDraw 1.3.5

and 51–54
'TMPL' resources, preferences

files and 88
TObjModelToken class, OSA and

29
topic ID numbers (Apple Guide)

15
transfer modes, QuickDraw 1.3.5

and 47
Translation Manager, preferences

files and 86–88
Trays dialog, Macintosh Q & A

93
triangular buttons 59, 62, 64–65,

66, 69, 72, 74
TScriptableObject class, OSA and

29, 34
TScriptableObject::GetProperty

(SimpliFace) 36
TScriptableObject::SetProperty

(SimpliFace) 34, 35
TScriptAdministrator::DoScript

(SimpliFace) 35
TScriptAdministrator, OSA and

30
TSimpliFace::HandleEvent

(SimpliFace) 38
twist-down LDEF, hierarchical

lists and 64, 69
drawing code 71–74

TwistDown library, hierarchical
lists and 59, 63, 78

twist-down lists
building 66–67
data specifications for 76–78

TwistDownPrivateRecord,
hierarchical lists and 65

TwistDownRecord, hierarchical
lists and 60

typeWildCard, OSA and 36
d e v e l o p Issue 18 June 1994
U
_uniqueID slot, Newton Q & A

107
UnsignedWide, Power Macintosh

and 54
update events, QuickTime and 23

V
variables, scoping (PowerPC) 56
vdigs, Macintosh Q & A 101–102
VersRec, preferences files and 90
'vers' resources, preferences files

and 83–84, 90
“View From the Ledge” (Jones)

79–80
viewIdleFrequency, Newton

Q & A 104
viewIdleScript, Newton Q & A

104

W
WaitNextEvent, Macintosh

Q & A 98–99
warnings, QuickDraw GX and

41–42
WideSubtract, Power Macintosh

and 54
window alignment, QuickTime

and 24–25
Woodcock, Gary 81
WritePreference, preferences files

and 91
write-through memory 53

Apple provides a wealth of information,

products, and services to assist

developers. APDA, Apple’s source for

developer tools, and Apple Developer

University are open to anyone who

wants access to development tools and

instruction. Developers may access

additional information and services

through Apple’s Developer Programs.

R E S O U R C E S
APDA To order products or receive a
complimentary catalog, call 1-800-282-
2732 in the U.S., 1-800-637-0029 in
Canada, (716)871-6555 internationally, or
(716)871-6511 for fax. You can also order
electronically (AppleLink APDA; Internet
apda@applelink.apple.com; America Online
APDAorder; or CompuServe 76666,2405)
or write APDA, Apple Computer, Inc., P.O.
Box 319, Buffalo, NY 14207-0319.
APDA offers convenient worldwide
access to development tools,
resources, training products, and
information for anyone interested in
developing applications on Apple
platforms. Customers receive the
quarterly APDA Tools Catalog
featuring over 200 Apple and third-
party development products. There
are no membership fees. APDA
offers convenient payment and
shipping options, including site
licensing.

Apple Developer University
(DU) provides training designed to
increase your software development
productivity. The curriculum
includes courses to get you started
programming on Apple platforms,
as well as advanced, in-depth
training on the newest Apple
technologies, such as PowerPC,
OpenDoc, QuickDraw GX, and
Newton. DU offers courses in
Cupertino CA and at selected
training locations. The DU
Extension partner located in
Portsmouth NH also schedules
selected courses in its facilities.

In addition to classroom training,
DU offers multimedia self-paced
courses and low-cost mini-course
tutorials.

The Associates Program is Apple’s
primary program for developers
across all Apple technologies,
including Macintosh, Personal
Interactive Electronics (such as
Newton), and multimedia. It’s a
Apple Developer University The
registrar at (408)974-4897 can reserve
your place or send a current Curriculum
Guide and Course Schedule. You can also
send an AppleLink to DEVUNIV or write
Developer University, Apple Computer, Inc.,
20525 Mariani Avenue, M/S 305-1TU,
Cupertino, CA 95014. Self-paced products
should be ordered directly through APDA.
low-cost, self-support program that
also provides a connection with
Apple and fellow developers,
information on new technologies,
and discounts on equipment.

The Apple Multimedia Program
is designed for developers interested
in the emerging multimedia market.
Program features include a quarterly
mailing and discounts on third-party
products, training, and events.

The Macintosh Technology
Partners Program is open to
Apple-selected strategic developers
focused on Macintosh technology,
including PowerPC, QuickTime,
QuickDraw GX, and PowerTalk. In
addition to receiving the same
development information and tools
as members of the Associates
Program, Macintosh Technology
Partners receive programming-level
development support via electronic
mail. Membership in this program is
limited to strategic developers who
directly contribute to Apple’s long-
term product plans and business
objectives.

The PIE Partners Program is
open to Apple-selected strategic
developers focused on Personal
Interactive Electronics. It offers the
same core features as the Associates
Program, but also includes
programming-level development
support via electronic mail,
additional hardware purchasing
privileges, marketing programs, and
media production assistance.
Apple Developer Programs Call the
Developer Support Center at (408)974-
4897, AppleLink DEVSUPPORT, or write
20525 Mariani Avenue, M/S 303-2T,
Cupertino, CA 95014, for information or an
application form. Developers outside the U.S.
and Canada should instead contact the
Apple office in their country for information
about developer programs.

Sa
ve

 2
5% Name

Yes! Send me a year (4 issues) of develop and the develop
Bookmark CD for only $30 in the U.S. That’s 25% off the cover
price. All other countries $50.

Company/Institution Title

City State/Province Zip Code

Country Telephone

Please bill me. Payment enclosed.

B
6
9
4
A

Phone orders 1-800-877-5548 in the U.S.
(815)734-1116 other countries

Fax orders (815)734-1127
AppleLink DEV.SUBS
Internet dev.subs@applelink.apple.com
Allow 6–8 weeks for delivery. U.S. subscription price is $30 for 4 issues of develop and the
develop Bookmark CD. All other countries $50 U.S. For Canadian orders, price includes
GST (R100236199). Please make check payable to Apple Computer, Inc.

Address

Sa
ve

 2
5%

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 201 MT. MORRIS, IL

d e v e l o p
Apple Computer, Inc.
P.O. Box 531
Mount Morris, IL 61054-7858
U.S.A.

POSTAGE WILL BE PAID BY ADDRESSEE

NO POSTAGE
NECESSARY IF
MAILED IN THE
UNITED STATES

	Table of Contents
	EDITOR’S NOTE
	LETTERS
	Back Issues
	Giving Users Help With Apple Guide
	WHAT IS APPLE GUIDE?
	Figure 1.

	WHAT SYSTEMWIDE HELP MEANS
	TO INTEGRATE OR NOT TO INTEGRATE?
	GETTING INFORMATION ABOUT APPLE GUIDE
	IS APPLE GUIDE INSTALLED?
	WHAT’S THE STATUS OF APPLE GUIDE?
	IS AN APPLE GUIDE DATABASE AVAILABLE?
	HOW MANY AND WHICH GUIDE DATABASES ARE AVAILABLE?

	ABOUT APPLE GUIDE DATABASE FILES
	Figure 2.
	Listing 1.
	IS YOUR GUIDE DATABASE OPEN?

	STARTING UP APPLE GUIDE
	DEFAULT STARTUP
	DATABASE OTHER THAN THE DEFAULT
	VIEW OTHER THAN THE DEFAULT
	Figure 3.

	PRIMING A SEARCH
	GOING DIRECTLY TO A TOPIC

	RESPONDING TO APPLE GUIDE
	RECEIVING THE AUTHOR’S EVENTS
	Figure 4.

	PROVIDING OBJECT LOCATION FOR COACH MARKS
	Figure 5.

	RESPONDING TO THE USER’S HELP FOCUS
	RESPONDING TO CONTEXT CHECKS

	MODIFYING HELP CONTENT
	QUITTING APPLE GUIDE
	STEPS TOWARD INTEGRATION
	PUTTING IT ALL TOGETHER
	MULTIPLE DATABASE FILES
	HELP EVERYWHERE YOU NEED IT
	CONTEXT SENSITIVITY
	INTERACTIVITY

	NEXT STOP, GOLDEN MASTER

	SOMEWHERE IN QUICKTIME: Basic Movie Playback Support
	OPENMOVIEFILE if (PBGetFCBInfoSync(&anFCB) != noErr)
	NEWMOVIECONTROLLER
	UPDATE EVENTS
	Figure 1.

	KEYSTROKES
	MOUSE CLICKS
	MOVIE CONTROLLER HELP
	CURSOR SHAPE
	WINDOW ALIGNMENT
	MOVIE CONTROLLER EDITING
	Figure 2.

	JUST DO IT

	Programming for Flexibility: The Open Scripting Architecture
	STRUCTURING THE OSA-SAVVY PROGRAM
	THE BASIC REQUIREMENTS
	Figure 1.

	A SAMPLE PROGRAM: SIMPLIFACE
	Figure 2.
	Figure 3.
	Figure 4.

	DEBUGGING SIMPLIFACE
	TECHNIQUES FOR OSA-SAVVY PROGRAMS
	IMPORTING SCRIPTS FROM THE SCRIPT EDITOR
	Listing 1.

	RUNNING SCRIPTS
	ATTACHING SCRIPTS TO OBJECTS
	Listing 2.

	COMPILING AND EXECUTING SCRIPTS
	Listing 3.

	DECOMPILING SCRIPTS
	Listing 4.

	ROUTING APPLE EVENTS TO SCRIPTS
	HANDLING USER-INTERFACE EVENTS

	FURTHER OSA SUPPORT
	Listing 5.

	RECOMMENDED READING

	GRAPHICAL TRUFFLES: The Debugging Version of QuickDraw GX
	THE EXTENSIONS OF QUICKDRAW GX
	THE ADVANTAGES OF THE DEBUGGING VERSION DURING DEVELOPMENT
	CLEANING UP
	RELATED READING

	Exploiting Graphics Speed on the Power Macintosh
	HOW SPEED-CRITICAL IS QUICKDRAW?
	Figure 1.
	Figure 2.

	TAKING ADVANTAGE OF THE SPEED
	Figure 3.

	WHAT’S DIFFERENT WITH VERSION 1.3.5?
	QDERROR
	MATCHING COLOR TABLES
	TRANSFER MODES
	DITHERING
	STRETCHING AND SHRINKING IMAGES
	UNEXPECTED REGISTER CONTENTS
	PATCHING
	DISABLED ACCELERATOR CARDS

	THE COPYBITS/CUSTOM BLITTER RACE
	Figure 4.

	REDUCING QUICKDRAW OVERHEAD
	Figure 5.
	Figure 6.

	STRATEGY FOR SPEED-CRITICAL APPLICATIONS
	Listing 1.

	HERE’S THE CACHE
	OFF AND RUNNING

	BALANCE OF POWER:Enhancing PowerPC Native Speed
	MEASURING YOUR SPEED
	UNDERSTANDING YOUR COMPILER
	EXPANDING YOUR LOOPS
	SCOPING YOUR VARIABLES
	STYLING YOUR CODE
	KNOWING YOUR PROCESSOR
	MAKING THE DIFFERENCE
	RECOMMENDED READING

	Displaying Hierarchical Lists
	Figure 1.
	STORING DATA IN A LINKED LIST
	Figure 2.
	CREATING A LIST ELEMENT
	Listing 1.

	DISPOSING OF A LIST ELEMENT
	Listing 2.
	Listing 3.

	CONTROLLING DATA APPEARANCE
	CREATING THE LIST RECORD
	THE TWISTDOWNPRIVATERECORD
	CREATING TRIANGULAR BUTTON POLYGONS
	Listing 4.
	Figure 3.

	PUTTING DATA INTO THE LIST
	CREATING THE VISIBLE DISPLAY
	Listing 5.
	Listing 6.

	HANDLING MOUSE EVENTS
	Listing 7.
	Table 1
	Listing 8.
	EXPAND OR COLLAPSE THE HIERARCHY

	DRAWING THE LIST CELL
	Listing 9.
	Listing 10.
	THE DRAWTRIANGLE FUNCTION

	THE SAMPLE PROGRAM
	Listing 11.

	TWISTED LISTERS
	CONVERTING FOR POWER MACINTOSH
	REFERENCES

	View From the Ledge
	RECOMMENDED READING AND LISTENING

	The Right Way to Implement Preferences Files
	WHAT MAKES A WELL IMPLEMENTED PREFERENCES FILE
	FILE TYPE
	Figure 1.

	DOCUMENT KIND
	FINDER ICON
	Figure 2.

	VERSION INFORMATION

	CAN USERS OPEN PREFERENCES FILES?
	SUPPRESSING LAUNCH UPON DOUBLE-CLICK
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Figure 7.

	WHAT GOES IN A PREFERENCES FILE
	THE STANDARD PREFERENCES LIBRARY
	CREATING AND MANIPULATING A PREFERENCES FILE
	ACCESSING INFORMATION IN A PREFERENCES FILE

	PLEASE PROVIDE PREFERRED PREFERENCES FILES (SAY THAT THREE TIMES FAST!)
	REFERENCES

	Macintosh Q & A
	Newton Q & A: Ask the Llama
	KON & BAL’S PUZZLE PAGE: Monitor Madness
	History of the Dogcow, Part 2
	DISTRIBUTION OF TECH NOTE #31
	OTHER DOGCOW PARAPHERNALIA
	DOGCOW TRIVIA

	INDEX
	RESOURCES
	Subscription Card

