New Technical Notes

Macintosh ®
Developer Support

OV 12 - Version Territory

Overview

Revised by: Rich Collyer October 1990

Writtenby: Darin Adler April 1988

This Technical Note describesthe' ver s' resource supported by Finder 6.1 and later.
Changes since April 1989: Changed MPW C code to reflect the changesin MPW C 3.1.

Finder 6.1 introduced a feature alowing the creator of afileto identify the version of that file as
well as the version of a set of files which includes that file. These version numbers are stored
in' vers' resources, and each contains a BCD form of the version number and a longer
version message (which the Finder displaysin the Get Info window for each file).

Apple’'s Version Numbering Scheme

Apple uses a version numbering scheme for its software products which you might want to
adopt. Table 1 summarizes the scheme, which involves three numbers, each separated by
periods.

Event Version
First released version 1.0
First revision 1.1
First bug fix to thefirst revision 1.1.1
First magjor revision or rewrite 2.0

Table 1-Apple’'s Version Numbering Scheme

Note that Apple increments the first number when it releases a mgjor revision, the second
number when it releases a minor revision, and the third number when it releases a version to
address bugs (the third number is omitted if it is zero).

During product development, Apple uses a version number followed by a suffix which
indicates the stage of development. Table 2 presents afew examples.

OV 12 - Version Territory lof 6

Overview

Macintosh Technical Notes

Event Version Stage
First versions 1.0d1, 1.002... development
Product features defined (begin testing) 1.0al, 1.0a2... alpha
Product is stable (begin final testing) 1.0b1, 1.0b2... beta
First released version 1.0 release
First revision 1.1d1, 1.1d2, 1.
1d3...1.1
First bug fix to thefirst revision 1.1.1d1, 1.1.1d2,
1.1.1d3...1.1.1
First mgor revision 2.0d1, 2.0d2,
2.0d3 2.0

Table 2-Development Version Numbering

Version Resources

Each' ver s' resource hasthe following format (described with a Rez template):

#i ncl ude "SysTypes.r" [* for country codes */

type 'vers' {

byt e; /* first part of version nunber in BCD */

byt e; /* second and third parts of version nunber */
byt e devel opnent =0x20, al pha=0x40, beta=0x60, rel ease=0x80;

byt e; /* stage of non-rel ease version */

integer Country;, /* country code as in international utilities */
pstring; /* short version nunber */

pstring; /* long version nessage */

}s

The short version number is a string which only contains the version number (e.g., “1.0").
The long version message can also include a copyright notice, a release date, or other
information, but it should not include the name of the program. The following examples
illustrate the proper use of the Rez template to create version resources.

resource 'vers' (1) {
0x01, Ox00, release, 0x00, verUs,
"1. 0",
"1.0 (US), ©1989 Inside Joke"

resource 'vers' (2) {
0x12, 0x00, rel ease, 0x00, verUs,
"12.0",
"Watt-R Wilities Dsk 12.0"

b

resource 'vers' (1) {
0x23, 0x45, beta, 0x67, verFinland,
"23.4.5b67",
"23.4.5b67 (Finland), ©1989 Squid, Inc."

20f 6 QV 12 - Version Territory

Overview

Developer Support Center October 1990

resource 'vers' (2) {
0x55, 0x00, devel oprment, 0x67, verFinland,
"55.0d67",
"Friends of Skippy Wite 55.0d67"

b
Thefollowing isatype definition for' ver s’ resourcesin MPW Pascal:

NumVer si on = PACKED RECCRD
CASE | NTEGER CF

0:
(maj orRev: SignedByte; {1st part of version nunber in BCD}
mnorRev: 0..9; {2nd part is 1 nibble in BCD}
bugFi xRev: 0..9; {3rd part is 1 nibble in BCD
stage: SignedByte; {stage code: dev, alpha, beta, final}
nonRel Rev: SignedByte); {revision |level of non-rel eased version}

1
(version: LCNG NT); {to use all 4 fields at one time}

END;

{ Nuneric version part of 'vers' resource }
VersRecPtr = "VersRec;
Ver sRecHhdl = ~VersRecPtr;
Ver sRec = RECCRD
nureri cVer si on: NunVer si on; {encoded versi on nunber}

count ryCode: | NTEGER {country code fromintl utilities}

short Version: Str255; {version nunber string - worst case}

reserved: Str255; {l ongMessage string packed after short Version}
END,

The type definition in MPW C is as follows (these structures are not needed in your code since
they are included in the header file Files.h):

struct NumVersion {
unsi gned char ngj or Rev; /*1st part of version nunber in BCD*/
unsigned int mnorRev : 4; /*2nd part is 1 nibble in BCD*/
unsi gned int bugFixRev : 4; /*3rd part is 1 nibble in BCD*/
unsi gned char st age; /*stage code: dev, al pha, beta, final*/
unsi gned char nonRel Rev; /*revision level of non-rel eased version*/

}s

/* Nuneric version part of 'vers' resource */
struct VersRec {
NurmVer si on nuneri cVersion; /*encoded versi on nunber*/

short countryCode; /*country code fromintl utilities*/
Str255 short Ver si on; /*version nunber string - worst case*/
Str255 reserved; /*1 ongMessage string packed after shortVersion*/

b
typedef VersRec *VersRecPtr, **VersRecHndl;
Thel ongMessage string is not necessarily word-aligned due to the way the resource is

formatted, so you should use Bl ockMove to extract it from the record. Following are
examples of thistechnique:

OV 12 - Version Territory 30of 6

Overview

Macintosh Technical Notes

MPW Pascal

VAR
version: VersRecHand! e;
messagePtr: StringPtr;
| ongMessage: Str255;

version := GetResource ('vers', 1);
W TH versi on™ DO
BEG N
{calculate a pointer to the | ong nessage}
nessagePtr := StringPtr(Od(@hortVersion[1])+Lengt h(shortVersion));
{move the |long nessage into a string}
Bl ockMove(Ptr(messagePtr), @ongMessage, Length(nessagePtr”)+1);
END;

MPW C

Ver sRecHhdl versi on;
StringPtr messagePtr;
char *shortversion, *|longversion;

version = (VersRecHnhdl) GetResource ('vers', 1);

/* calculate a pointer to the | ong nmessage */

messagePtr = (StringPtr) (((unsigned |ong) & **version).shortVersion[1]) +
((**version).shortVersion[0]));

/* nove the long message into a string */

Bl ockMove(messagePtr, & ongMessage, ((unsigned char) &messagePtr) + 1);

A file can contain either one, two, or no' ver s' resources. If present, a’ vers' (1)

resource identifies the file version whilea' ver s' (2) resource identifies the version (and
name) of a set of fileswhich includesthat file, thus linking al the files which make up the set.
Apple uses this mechanism to identify System Software versions. All files on System Tools
diskshavea' vers' (2) resource that identifies the version of System Tools with which
they were released. In addition, each filehasa' vers' (1) resource that identifies the
version of the particular file.

Version Resources and the Finder

The Finder displays the long message from ' vers' (1) and' vers' (2) resources, if
they are present, in the Get Info window of afile; it ignores the rest of the' ver s’ resource.

Following is an example of the' ver s' resources from Finder 6.1 with a Get Info window
for the Finder filein Figure 1.

resource 'vers' (1) {

0x06, 0x10, rel ease, 0x00, verUs,

"6.1",

"6.1, Copyright Apple Conputer, Inc. 1983-88"
b

resource 'vers' (2) {
0x06, 0x03, rel ease, 0x00, verUs,
"6.0.3",
"System Sof tware Version 6.0. 3"
b

40f 6 OV 12 - Version Territory

Overview

Developer Support Center October 1990

Locked [|
—'| Finder
—— Systern Software Version 6.03 —— From' vers' (2)
Kind - Sy=stern docurnent resource
Size: 107,282 bytes used, 105K on disk
Where: Musions, SC51 0
Created: Sat, a4pr 20, 1922, 12:00 PM
Meodified : Thu, Mar 2, 19289, 235 PM
¥ersion: &.1, Copyright Apple Computer, g | From' vers' (1)
Inz. 1933-22 resource

Suggested Memory Size (K): 180

Application Memory Size (K): [256

Figure 1-Get Info Window for the Finder File

The other fields (besides the long message) are often useful to applications other than the
Finder. The short version number is good for displaying the version of a particular file, asthe
Finder does for the System and Finder in the About the Macintosh Finder window. The BCD
version number is well suited for checking for a desired version number or comparing two
versions. Note that this BCD numbering scheme represents a more recent version with a
number greater than an older version, so a numeric comparison between two four-byte values
isal that is necessary to determine which value is the most recent.

Final Note

The Finder Interface chapter of Inside Macintosh, Volume I11-7 describes a resource (part of
the bundle) that contains the version data of an application. This version dataistypically a
string that gives the name, version number, and date of the application. The Finder displays
the version data (treating it as a string) in the Get Info window if thereisno' vers' (1)
resource in the application. Unlike this version data in an application, any type of file can
contain' ver s' resources, not just those files which contain bundles.

OV 12 - Version Territory 50f 6

Overview

Macintosh Technical Notes

Further Reference:

* |nside Macintosh, Volume I11-7, The Finder Interface
e Technica Note TB 1 - Bundles

6 of 6 OV 12 - Version Territory

Overview

	Apple’s Version Numbering Scheme
	Version Resources
	Version Resources and the Finder
	Final Note

