
HW 1 – ADB - The Untold Story : Space Aliens Ate My Mouse 1 of 18

Hardware

New Technical Notes

Developer Support

ð
®Macintosh

ADB–The Untold Story : Space Aliens Ate My Mouse
Hardware

Written by: Tim Dierks, Jim Mensch January 1994
Originally by: Cameron Birse, Rich Kubota

This Technical Note explains a number of esoteric and unknown issues concerning the Apple
Desktop Bus (ADB). It incorporates material from the original version of this note, along with
a large amount of new information, and is intended to detail information concerning all levels of
the ADB, from the hardware to the application usage level. This note is supplementary to the
information in The Guide To Macintosh Family Hardware and in the Apple Desktop Bus
Specification. The information in the specification is the most accurate source of data, and
unless it is specifically refuted, it should be treated as the authoritative source.
Changes since October 1991: This note has been rewritten; new information appears
throughout the document. In particular, the Cursor Device Manager is discussed in this note
for the first time. The information regarding bugs fixed in System 6.0.4 was omitted.

Topics
• A discussion of ADB hardware issues
• Information on the ADB protocol, including a detailed description of the

relocation and autopolling mechanisms.
• The recommended method of ADB driver installation
• Documentation for the Cursor Device Manager
• Description of the data formats used by Apple mice and keyboards
• How to get an ADB license

The ADB Hardware

The ADB is a simple serial bus with collision detection. A common implementation platform
for the protocol is a simple microcontroller; a 2 MHz Motorola 68HC11 has been used with
success, although any number of microcontrollers would do a more than adequate job. The 2
MHz clock seemed to be close to minimal for this application. The bus has a relatively low
bandwidth; given the packet structure, the theoretical maximum bandwidth is on the order of
100 - 200 bytes/second. In practice, the bus is not suitable for data transfer applications; it
serves well as a general purpose input device bus, but high data rates will not work well.

In general, the timing for the ADB is fairly tolerant of small variances; however, many recent
Macintoshes are more demanding than their predecessors. For this reason, devices should be
tested on a wide range of machines; the best test for compliance is testing. Specifically, the Tlt
(stop to start time) parameter has become much less tolerant in recent Macintoshes; fairly close
adherence to its 200 µs timing is important. In particular, devices which respond more rapidly
than the 140 µs minimum delay will often fail to initialize properly.

Macintosh Technical Notes

2 of 18 HW 1 – ADB - The Untold Story : Space Aliens Ate My Mouse

Hardware

It is important that your device be fairly tolerant of problems on the bus; if a command packet
begins but never seems to complete, your device should time out rather than hang; the design of
the bus and its connectors means that there can be occasional glitches in the connection with the
host, and you should try to be as tolerant of these as possible.

Because the ADB bus is open collector, collisions can be detected when a device is attempting
to drive the bus high and another device pulls it low. This means that whenever the device is
driving the bus high, it should be watching to make sure the bus is actually high; if the bus
goes low, some other device is sending at the same time. When a device detects a collision, it
should immediately stop transmitting; this means that if two devices are colliding, one of them
will detect the collision, while one will not. This is because a device can only detect the
collision if it is driving the bus high and another device drives it low. The device driving it low
has no way to tell that there was a collision, as the bus follows it. Since the detecting device
immediately stops transmitting, the other device will not detect the collision. Thus, if there are
a number of devices transmitting on the bus, only one of them will complete its transmission
without detecting the collision, unless the unlikely occurrence of more than one device
transmitting exactly the same data with the same timing occurs, and neither detects the collision.

The ADB is not particularly tolerant of devices being connected and disconnected while the bus
is live. There isn't any software architecture to detect the presence of new devices or the
absence of old ones; furthermore, on some CPUs, the motherboard is not well protected from
voltage transients on the ADB connector; plugging in a device while the Macintosh is on could
cause damage to the ADB transceiver or other portions of the Macintosh's circuitry.

On some portable Macintoshes, the voltage characteristics are not exactly what is specified in
the ADB spec. Clearly, power is very valuable on all portable computers, so if your device is
targeted towards portable use, you should be extremely careful to keep your power
consumption as low as possible; while the ADB can supply the full voltage specified in the
spec., drawing this much power will lead to much more rapid battery draining. On the
PowerBook 140 and 170, there was a specific problem which caused the low-level input
voltage to go above the specified maximum of 0.8 volts; it commonly came close to 1.5 volts.
This has caused problems for some third-party devices; it has been corrected on all more recent
machines. There is a recommended service procedure for repairing this problem available from
Apple Service representatives, should this be a problem for a user.

Soft Power

On Macintoshes with software power control, the machine can be turned on by an ADB device.
This is accomplished by momentarily connecting pin 2 on the ADB connector (reserved) to pin
4 (ground). Pin 2 should be kept grounded until pin 3 (+5 volts) comes up to power, letting
you know that the machine has actually come on. Some Macintoshes do not have soft power
capabilities; on these machines, grounding pin 2 will have no effect.

The ADB Protocol

Registers

Each ADB device has four logical registers; the host can ask the device to talk or listen on each
one of these registers; a talk command asks the device to output the stored value from that
register; a listen commands asks the device to accept a new value for that register. A register
can contain between 2 and 8 bytes. Some of the registers have predefined functions: register 0
is used as the primary data transfer register for most devices; it is this register which is polled

Developer Technical Support January 1994

HW 1 – ADB - The Untold Story : Space Aliens Ate My Mouse 3 of 18

Hardware

by the input mechanism (as described below). Register 1 has no specified use; it is available
for any use the device might require. Register 2 has no specified use for most devices; the
ADB specification does define an "extended address device" protocol for register 2 on devices
at address 1, but this is unused by most developers. Register 3 is used to identify devices and
to separate devices which occupy the same address, as discussed in "Address Resolution"
below.

Default addresses and handler IDs

Each ADB device identifies its software interface with two constants; the default address and
the handler ID. This pair uniquely identifies a device's software interface; the default address
usually specifies a device's general type (such as relative pointing device or keyboard) while
the handler ID specified the particular data protocol this device uses for communication. The
default address categories are as follows:

Default
Address Device Type

1 Security & Dongles
2 Keyboards
3 Relative pointing devices (mice)
4 Absolute pointing devices (tablets)
5 Low speed data transfer devices
6 Reserved (PowerBook Duo charger)
7 Appliances (Miscellaneous catch-all)

Table 1–Default address categories

The default address is only a guide; there's no real reason a mouse can't be at address 7, but
default addresses are assigned on a category basis to try to avoid the case where a user has
more than one device at a particular address; by putting all the relative devices at address 3,
collisions will be avoided at address 3 for all users who have only one relative pointing device.
While the bus is robust with respect to seperating devices which are at the same address, the
ADBS driver loading mechanism, which is described blow, made it useful to try to avoid
having several dissimilar devices at the same address.

Default addresses and handler IDs are assigned by Apple Software Licensing when an ADB
license contract is completed. Default address 0 is used by the ADB host; addresses 8 through
15 are used as locations to dynamically locate devices at.

Some devices support more than one data protocol. An example is the extended keyboard,
which can be asked to send separate key codes for the left & right shift keys. This change is
accomplished by changing its handler ID to 3; the new handler ID reflects the new data
protocol. If your device receives a request to change handler IDs (via a listen register 3
command), it should only obey the request if it knows how to speak the protocol specified by
the new handler ID. For example, the extended keyboard, when receiving a request to change
handler IDs, should accept the change if it is going to ID 3 or some other ID it knows about,
and should thereafter report that ID as its own in response to talk register 3 commands; if it
receives a request to change to handler ID $52, it should ignore it, as it does not know what
handler ID $52 implies, and continue to report its original handler ID in response to talk register
3 commands.

Macintosh Technical Notes

4 of 18 HW 1 – ADB - The Untold Story : Space Aliens Ate My Mouse

Hardware

A special case is devices which emulate Apple device protocols. For example, you may be
constructing a 17-button mouse for use by specially trained squid; it has a special software
protocol to allow it to convey the state of all 17 mouse buttons. However, you may wish to
emulate the Apple mouse protocol so your device can be used as a one button mouse on
machines which don't have your driver software installed. Due to the software design of the
ADB manager, if your device is at default address 3, it will have the default mouse driver
installed as its driver at startup regardless of its handler ID; when your software loads, you can
install a new driver for your device and tell it to begin talking the 17 button protocol. You have
two options: you can have your device power up with the default Apple mouse handler ID
($01) or with your own handler ID as assigned by Apple Software Licensing. If you power up
with the $01 handler ID, your software will have to locate your device by trying to change the
handler ID of each device which started out at address 3 to you custom ID, then reading the
handler ID of that device back; if the change stuck, then you know you're talking to your
device, and can install your custom driver. In addition, the command to change handler IDs
told the device to begin using your custom protocol. Alternatively, you could have your device
power up with your custom handler ID; this would make identifying your device somewhat
easier, as your device could be identified by its special handler ID; you would have to use some
special command to tell the device that you have installed the new driver and that it can begin
speaking the custom protocol. For example, you could use a talk register 1 to tell the device
that you're ready for the 17 button data protocol. Both approaches work well, but the first one
is recommended; it ensures that the current protocol can always be determined by looking at the
current handler ID; however, it relies on all devices at that default address handling commands
asking them to change to a different handler ID properly, as a device which incorrectly changes
its handler ID to your assigned ID would fool you into thinking it was your device. This
doesn't seem to be a large problem, but there could be some obscure devices with this bug.

Address Resolution

Address resolution is the process the ADB manager uses to separate devices which share the
same default address, so they power up shadowing each other at a particular address. It relies
on devices using collision detection to determine when there is more than one device at a
particular address.

An ADB device's register 3 is 2 bytes long and includes 4 bits in which the address is stored.
When the device receives a listen register 3 command, it should take its address from this 4 bit
field. When it receives a talk register 3 command, it would be redundant to put the device's
address in that field; the device's address is already uniquely determined by the fact that the
device is responding to the talk register 3 command, which was sent to a specific address.
Instead, a random 4-bit value should be returned in this field; this makes it easier to detect
collisions between two devices responding to a talk register 3.

When a device receives a talk register 3 command, it should send back all of register 3,
including the random field, and it should pay careful attention to collision detection. Should a
device detect a collision when responding to a talk register 3 request, there is a special
provision in the ADB protocol which says that the device should ignore the next listen register
3 which asks it to change address. The next time the device receives a listen register 3
command, it should check to see if the handler ID field is set to $FE. This is a reserved handler
ID used to distinguish this type of listen request; if the handler ID field is $FE, the device
should only change address if it has safely transmitted a complete packet since its last collision.
Of course, the device should not adopt the handler ID of $FE.

Developer Technical Support January 1994

HW 1 – ADB - The Untold Story : Space Aliens Ate My Mouse 5 of 18

Hardware

Here is a summary of a typical sequence where the host is attempting to separate two devices.
There are two devices of the same type, which I will call Fred and Wilma, at address 3.

1) The host will send a talk register 3 command to address 3.
2) Both Fred and Wilma will receive the command and begin to respond.
3) Even though they are sending the same data, and they begin sending at the same
time, they select different random numbers to insert into the "device address" field of
register 3, bits 7-10.
4) Wilma detects a collision while trying to send bit 7 and immediately stops sending.
5) Fred does not detect a collision and completes his transmission of register 3.
6) The host, seeing that a device has responded to its talk register 3, sends a listen
register 3 to address 3, asking the device there to move to address $F. The handler ID
field is $FE, indicating that a device should not move if it has detected a collision.
7) Both Fred and Wilma receive the request.
8) Fred moves to address $F; however, Wilma does not, as she has been locked out of
moving because she detected a collision while responding to her last talk register 3
command.
9) The host sends a talk register 3 to address $F to ensure that a device moved there.
Fred responds, assuring the host he has moved.
10) The host repeats the separation procedure, sending a talk register 3 to address 3,
followed by a listen register 3 to address 3 asking the device there to move to address
$E.
11) This time, Wilma does not detect a collision, as she is the only device remaining at
address 3, so she moves to address $E.
12) The host sends yet another talk register 3 to address 3, but does not receive a
response, as there are no more devices remaining at address 3.
13) The host relocates Wilma from address $E back to address 3 with a listen register 3
command sent to address $E.
14) The host moves on and repeats the process for address 4.

Each and every ADB controller isn't guaranteed to follow this procedure precisely, but it gives
a feeling for the principle behind the address resolution process. You may see some
implementations moving devices many more times than is necessary; this is done because some
devices have been manufactured to tolerances close enough that not only do they send their bits
at exactly the same time and so cannot detect collisions with each other, but they select the same
random numbers to transmit. We recommend that you include some low tolerance device (such
as a capacitor on your reset line) to ensure that various devices will respond differently and be
able to detect their collisions with each other.

Autopolling

Autopolling is the primary method via which the host fetches data from your device. The basic
mechanism is that the host repeatedly issues talk register 0 commands to your device; if your
device responds with data, it is passed to your device's driver, which should act on it as new
data.

This implies that register 0 should be the primary data transfer register for most devices;
registers 1 and 2 are usually only used for supplementary data to configure the device. Most
device drivers have no need to issue commands to their device, as all necessary data has been
transferred within register 0.

Macintosh Technical Notes

6 of 18 HW 1 – ADB - The Untold Story : Space Aliens Ate My Mouse

Hardware

When a device wishes to transmit data, it should wait until a command is issued to it or some
other device. If, when this transmission is completing, it still wishes to transfer data (if the
command was sent to our device, it might have fetched the data already,) it should assert SRQ
after the data portion of the command by holding the bus low for 300 µs after the stop bit. This
will alert the host that some device wishes to transmit data. It will then begin polling those
addresses which it knows hold devices. If a device does not have any data, the host will move
on to the next address, asking each device in turn, until SRQ is no longer asserted, indicating
that all pending data has been fetched.

When an SRQ is not asserted, the host will continually poll the last device to send it data,
sending it talk register 0 commands periodically. This is done under the assumption that this is
likely to be the next place the user interacts; if the user types a character, she is very likely to
type another soon. On current hosts, this can happen up to 150 times a second, although it can
happen much less frequently in some cases. If the device responds with any data, the host will
call the device's driver with the data.

Your device should only respond with data when sent a talk register 0 command if it has new
data. If the status of the device has not changed since the last talk register 0, then it should not
respond at all, allowing the bus to time out. This is useful for two reasons: first, it tends to
reduce the demands on the host, as your driver need not be called when your device has
nothing useful to say. Second, in some ADB implementations, the host can get "hung up" on
your device if you always respond. For example, say that you have a device at address 4 which
will always respond, regardless of whether it has new data, there is another device at address
7, and the system is currently autopolling address 2. If the device at address 7 asserts SRQ, the
system will begin looking through the addresses looking for the device which has data to send.
When it reaches your device at address 4, your device will respond, although it has nothing
new to say. On some implementations, this will cause the host to repeatedly ask your device for
more data, and your device will continue responding. Meanwhile, device 7 is withering away at
the end of the bus and will never get serviced. What your device should do is not respond to
the talk register 0, as it has no new data; this will allow all host implementations to pass you by
and reach the device at address 7 which needs the host's attention.

A useful summary of a reasonable algorithm is:
• Wait for a command to begin
• If the command is directed to my address, handle it. If it is a talk register 0

command, only respond if there is new data waiting to be sent.
• At the end of the command, if there is data waiting to be sent, assert SRQ, regardless

of who the original command was directed towards.
This simple behavior will produce the appropriate responses and SRQ generation for proper
bus functioning. It shouldn't be necessary for your device to explicitly have any knowledge of
whether it is the "active" device or not; a robust basic behavior will eliminate any need for such
information.

As an optimization, all recent versions of the ADB manager will not automatically poll a device
which does not have a driver service routine installed. In this case, they will switch to
autopolling some other device, even if that device has not been recently communicated with.
However, the host may poll a device, even if it does not have a service request, in order to try
to clear an SRQ on the bus.

Bus Initialization

Developer Technical Support January 1994

HW 1 – ADB - The Untold Story : Space Aliens Ate My Mouse 7 of 18

Hardware

Bus initialization doesn't work exactly as it might seem from looking at some documentation.
A SendReset command is never sent to individual devices; rather, when a bus reset is
requested, the ADB manager sends a SendReset command which is broadcast to all devices,
causing them to reset themselves and go to their default addresses and handler IDs. The
relocation and driver loading procedure will follow immediately after the reset command is
sent.

ADB Drivers

Driver Installation

In the past, the recommended way to install an ADB driver was to install a resource of type
'ADBS' with the same resource ID as your device's default address in the system file which
held code to install the driver for the ADB driver, along with the driver itself. When the system
was booted or when the bus was reinitialized, the system would get the 'ADBS'resource and
execute it, which would let your code set the driver for that device up. Unfortunately, this
system is not well designed for the wide variety of devices available; the most prominent flaw
is that the 'ADBS'resources are indexed by default address only; thus, there is no way to use
the 'ADBS'mechanism to load drivers for two different devices at address 7, as there can be
only one resource with ID 7. A further flaw is that it requires installation into the system file,
which is not currently recommended for a number of reasons. In any case, it has always
required a special installation and deinstallation program and has been more than a little
confusing for users.

Currently, the recommended method is to supply the user with a system extension which will
load your driver; this can either be a simple extension, or it can be contained within a control
panel, should your device require some user interface for configuration. Your code, when
loaded, should look for your device and install your driver for it. If your device is at a default
address which is not shared with standard Apple devices, you don't have to concerned with
what driver is installed for you by default; your device can just power up at its standard address
with its handler ID. Your extension can then locate your device's current address by indexing
through all the known devices with the ADB manager call GetADBInfo(); when you find a
device whose initial address and handler ID match your device's, you can call
SetADBInfo() to install your driver's completion routine to handle autopolled data from
your device.

Because your ADB driver is in a system extension which will not load until well into the
system startup process, if your device is a standard one (a pointing device or keyboard) you
might need to provide standard system functionality before your driver loads in order to allow
the user to interact with the system during the startup process. This also allows the user to use
your device to control their machine even if they don't have the software installed, such as
when they are booting off of a floppy. In this case, your device will need to be able to emulate
the Apple protocol for mouse or keyboard devices until your software driver loads, as
discussed above in "Default Addresses and Handler IDs". Until your driver is installed, your
device will be serviced by the default driver for this address; this means that if your device is at
address 2 or 3, even if it cannot emulate an Apple device, it must supply harmless data in
register 0 until your driver loads and is installed, as the Apple ADB driver for that address may
inadvertantly receive the contents of your register 0 and attempt to use it as input data. If the
data in your field caused effects such as the mouse button or shift key sticking down, this could
cause problems for the user.

Macintosh Technical Notes

8 of 18 HW 1 – ADB - The Untold Story : Space Aliens Ate My Mouse

Hardware

If you use the recommended procedure for handler IDs in this case, powering up with the
appropriate Apple handler ID and switching to your custom ID when your driver loads, you
will need to use ADB commands to find your device at startup. You should index through the
connected ADB devices with GetADBInfo() and if you find a device which has an original
address and handler ID which indicates that it might be your device, attempt to switch it to your
handler ID by using ADBOp() to send it a listen register 3 to change its handler ID. (You will
first need to read its register 3 with a talk register 3 command so you can correctly copy the
various flag bits in the register you send to the device.) You should then issue a talk register 3
command to the device and examine the response to see if the new handler ID was accepted and
reported back by the device; if so, you can be certain that this device is your device and you can
then call SetADBInfo() to install your driver as the handler for that device.

In the original method using 'ADBS' resources, the system could automatically reload your
driver any time the bus was reinitialized. If your driver is loaded via a system extension there
isn't any way for the system to find your device and driver and reconnect them after the bus is
reinitialized and devices are relocated. Thus, you've got to manually reconnect your driver to
your device each time the bus is reinitialized. Fortunately, there is a system provision for you
to be notified each time the bus is reinitialized; there is a low memory global called jADBProc
(at address $6B8) which is a pointer to a procedure to be called just before and just after the bus
is initialized. When the procedure is called before the bus is initialized, register D0 is set to 0;
after, it is set to 1. When your extension loads and installs your driver, you should remember
the value in the jADBProc global and then install a pointer to a procedure of your own in that
location; when this procedure is called, it should do its thing, then call through to the next
procedure in the chain, whose address was in jADBProc before you replaced it (if
jADBProc was equal to 0 before you installed, just return from your procedure). Don't forget
to preserve register D0 so subsequent procedures can tell if they are being called before or after
the reinitialization. The actions you take in the post-initialization case should basically duplicate
your original installation procedure, including looking through all the devices for devices of
your type and calling SetADBInfo() to install your driver for your devices.

For history buffs, this is the second time we've changed our recommended procedure for
loading ADB drivers. Initially, it was recommended that ADB drivers be loaded with INITs;
however, at the time, jADBProc did not exist, so when the Macintosh Portable came out,
INIT-handled devices had the fatal flaw of not reloading their drivers when the Macintosh was
put to sleep and reawakened, since this procedure involved resetting the bus. This cause us to
begin recommending the use of the 'ADBS'resource, since in this way the driver could be
reloaded from the System file. However, the 'ADBS'approach has so many major flaws that
we have stopped recommending it now that the jADBProc global has been introduced. As far
as I can tell, jADBProc has been available at least since System 6.0.4.

For true history buffs, or possibly for specialized applications, here is the description of the
'ADBS'resource functionality: the 'ADBS'resource is loaded into the system heap by the
system and detached with DetachResource(). The resource is then called by JSRing to
the first byte of the resource. At this time, the registers are set up as follows: A0 holds the
address of the 'ADBS'resource data (although it is no longer in a resource handle, thanks to
the DetachResource() call); if a handle to the resource is needed, RecoverHandle()
can be called to retrieve it. The low byte of register D0 holds the ADB device's current address
(due to relocation, this might not be the same as the default address) and the low byte of
register D1 holds the handler ID of the device in question.

Developer Technical Support January 1994

HW 1 – ADB - The Untold Story : Space Aliens Ate My Mouse 9 of 18

Hardware

The Cursor Device Manager

In order to be able to manage an expanding set of relative movement devices, Apple has created
the Cursor Device Manager, which is a software architecture which provides a standard
interface to devices of widely varying resolutions and capabilities. This also allows better
management of multiple relative devices on a single bus; in the old architecture, all connected
devices shared a single button state and acceleration curve, which became a problem for Apple
and for third-party device manufacturers. The Cursor Device Manager provides a number of
calls for finding, configuring, and manipulating relative devices connected to the bus. It also
supports the new extended mouse protocol, which is described below in the "Apple Devices"
section.

Cursor Device Manager types

The Cursor Device Manager treats each relative or absolute device as a "Cursor Device". Each
one is specified by a CrsrDevRec which is defined as follows:

CrsrDevPtr = ^CrsrDevRec;
CrsrDevRec = RECORD

nextCrsrDev :CrsrDevRec^ ; ptr to next record in linked list
whichCursor :CrsrDataRec^ ; ptr to data for target cursor
refCon :LongInt ; Application defined
unused :LongInt ; reserved for future

devID :OSType ; device identifier(from ADB reg 1)
resolution :Fixed ; units/inch (orig. from ADB reg 1)
devClass :Char ; device class (from ADB reg 1)
cntButtons :Char ; # of buttons (from ADB reg 1)
spare1 :Char ; reserved

buttons :Char ; state of all buttons
buttonOp :Array[0..8] of Char ; action performed per button
buttonTicks :Array[0..8] of LongInt ; ticks when button last went up
buttonData :Array[0..8] of LongInt ; data for the button operation
doubleClickTime :LongInt ; device’s double click time
acceleration :Fixed ; current acceleration

accelPoints :Ptr ; Private: Ptr to array of (dev_delta,
; slope, intercept)

deltaX :Fixed ; Private: accumulated deltas
deltaY :Fixed ; Private: "
errorX :Fixed ; Private: accumulated errors
errorY :Fixed ; Private: "
denom :Fixed ; Private: fraction of the errors to

; use next time
spread :Fixed ; Private: Number of samples to spread

; errors over
newData :Char ; Private: set when deltas are new
spare2 :Char ; reserved

END;

The cursor controlled by this cursor device is described with a CrsrDataRec:

CrsrDataPtr = ^CrsrDataRec;
CrsrDataRec = RECORD

nextCrsrData :CrsrDataRec^ ; next in global list
displayInfo :Ptr ; reserved for future use
whereX :Fixed ; horizontal position
whereY :Fixed ; vertical position

Macintosh Technical Notes

10 of 18 HW 1 – ADB - The Untold Story : Space Aliens Ate My Mouse

Hardware

where :Point ; the pixel position
isAbs :Boolean ; has been stuffed with absolute coords
buttonCount :Char ; number of buttons currently pressed
screenRes :Integer ; Pixels per inch on the current display

END;

Most of the fields are fairly self-explanatory. The fields labeled as private at the end of the
CrsrDevRec are used to manage cursor acceleration and shouldn't be modified by your
software. Some of the usage of the other fields will be explained below in the description of
the cursor device manager routines.

Cursor Device Manager Routines

CrsrDevNextDevice:
Function CrsrDevNextDevice(VAR curDevice: CrsrDevPtr):OSErr;

CrsrDevNextDevice() can be used to index through the various devices the Cursor
Device Manager is aware of. You pass it a CrsrDevPtr; initialize this variable to nil to
advance to the first device in the list, then call CrsrDevNextDevice() repeatedly, each
time passing the CrsrDevPtr as it was last modified; when you have reached the end of the
device list, the pointer returned in the curDevice parameter will be 0.

CrsrDevNewDevice:
Function CrsrDevNewDevice(VAR ourDevice: CrsrDevPtr):OSErr;

Call CrsrDevNewDevice() to create a new cursor device and link it into the device chain.
The new device record will be initialized with values representing a standard one-button mouse;
you should call CrsrDevSetAcceleration() for the device after creating it. A pointer to
the created device is returned in the ourDevice variable.

New cursor devices are created for all ADB address 3 devices. This routine should only be
needed by devices which are connected though some other method, such as the serial port.

CrsrDevDisposeDevice:
Function CrsrDevDisposeDevice(ourDevice: CrsrDevRec):OSErr;

This routine disposes of a cursor device and unlinks it from the device chain. This isn't needed
by most developers, but could be useful for non-ADB devices which might be connected and
disconnected.

CrsrDevMove:
Function CrsrDevMove(ourDevice: CrsrDevRec;
 deltaX,deltaY: LongInt):OSErr;

CrsrDevMove() accumulates the deltaX and deltaY values into the recorded movement
of the device; the next time the cursor position is calculated, these deltas will be fed through the
acceleration algorithm and used to move the cursor. This routine should be called by a relative
device driver with the data it receives from its device, even if the deltas are both zero; this lets
the acceleration algorithm properly calculate the appropriate motion. This routine is
automatically called by the default driver for address 3 devices; you would only need to call it if
you were using a custom driver.

Developer Technical Support January 1994

HW 1 – ADB - The Untold Story : Space Aliens Ate My Mouse 11 of 18

Hardware

CrsrDevMoveTo:
Function CrsrDevMoveTo(ourDevice: CrsrDevRec;
 absX,absY: LongInt):OSErr;

CrsrDevMoveTo() sets the absolute position of the cursor to (absX, absY). The next time
the cursor position is calculated, it will be moved to this absolute location. This would
normally be used by a driver for an absolute pointing device to position the cursor.

CrsrDevFlush:
Function CrsrDevFlush(ourDevice: CrsrDevRec):OSErr;

CrsrDevFlush() causes the acceleration and motion algorithms to flush out all their error
collection and motion deltas into the cursor position; it indicates that your device is done
moving temporarily. This may be useful for devices which can tell when they become idle
(such as a stylus pointing device); if they call this routine when they become idle, it ensures that
all unused motion data will be worked into the cursor position at the next time it is calculated.

CrsrDevButtons:
Function CrsrDevButtons(ourDevice: CrsrDevRec;
 buttons: Char):OSErr;

CrsrDevButtons() handles posting mouseUp and mouseDown events and also deals
with debouncing mouse clicks. Pass the current button status in the buttons parameter,
going from bit 0 is button 0 to bit 7 representing button 7. For each button, a one bit represents
down, a zero bit represents up. This routine debounces mouse clicks to keep them from
looking like double clicks; if the button goes down less than 2 ticks after coming up, then the
mouseDown will be ignored. Button up events are never ignored to avoid problems such as
continuous scrolling which are confusing and difficult for the user to deal with. A device
driver should call this routine any time it gets a data packet; this routine deals with keeping track
of whether the button state has changed. This routine automatically calls routines installed with
CrsrDevButtonOp().

CrsrDevButtonDown:
Function CrsrDevButtonDown(ourDevice: CrsrDevRec):OSErr;

CrsrDevButtonDown() posts a mouseDown event if this is the first button to go down for
this device. It is called by the standard button operation routines; you should need to call it
only if you use a custom button operation routine.

CrsrDevButtonUp:
Function CrsrDevButtonUp(ourDevice: CrsrDevRec):OSErr;

CrsrDevButtonUp() posts a mouseUp event if this is the last button to come up for this
device. It is called by the standard button operation routines; you should need to call it only if
you use a custom button operation routine.

CrsrDevButtonOp:
Function CrsrDevButtonOp(ourDevice: CrsrDevRec; btnNo: Integer;
 opCode: Integer; data: LongInt):OSErr;

Macintosh Technical Notes

12 of 18 HW 1 – ADB - The Untold Story : Space Aliens Ate My Mouse

Hardware

CrsrDevButtonOp() sets a new operation to be associated with a particular button.
btnNo may range from 0 to 7, and opCode specifies what operation to use. The data field
specifies a parameter for the operation you are setting for the kButtonCustom operation.
The opCode parameter may have one of the following values:

kButtonNoOp No action
kButtonSingleClick Normal mouse button
kButtonDoubleClick Click, release, and click again when pressed
kButtonClickLock Click on press, release on next press
kButtonCharStroke Unimplemented, reserved
kButtonAppleScript Unimplemented, reserved
kButtonCustom Call a custom procedure; data holds its address

Using the btnCustom operation will cause a procedure whose address is passed in data to be
called whenever this button changes state. The procedure takes the following parameters: the
address of the CrsrDevRec record for its device is passed in register A2; the button being
pressed or released is in register D3. The new state of the button will already have been filled
into the buttons field in the CrsrDevRec, so you may use that flag to determine if the button
is being clicked or released. Your routine may destroy registers D0, D2, A0 and A1; it must
preserve all other registers.

The kButtonCharStroke and kButtonAppleScript operations are currently
unimplemented and will simply cause the button press to be ignored.

CrsrDevSetButtons:
Function CrsrDevSetButtons(ourDevice: CrsrDevRec;
 numButtons: Integer):OSErr;

CrsrDevSetButtons() allows you to set the number of buttons on the device specified by
ourDevice to numButtons.

CrsrDevSetAcceleration:
Function CrsrDevSetAcceleration(ourDevice: CrsrDevRec,
 acceleration: Fixed):OSErr;

CrsrDevSetAcceleration() lets you set the acceleration for the device specified by
ourDevice to the value specified by acceleration, where 0 ≤ acceleration ≤ 1.
The Cursor Device Manager will build an acceleration table for the device based on its device
ID or device class and the desired acceleration value. For details on acceleration resources, see
"Acceleration Tables" below. The acceleration table set by CrsrDevSetAcceleration()
is found by interpolating the tables stored in the appropriate acceleration resource. All 'accl'
resources in the resource chain or in the ROM are searched looking for the one applying to the
specified device, so a control panel which called CrsrDevSetAcceleration() could
implicitly use 'accl' resources stored within the control panel's resource fork.

CrsrDevDoubleTime:
Function CrsrDevDoubleTime(ourDevice: CrsrDevRec;
 duration: LongInt):OSErr;

Developer Technical Support January 1994

HW 1 – ADB - The Untold Story : Space Aliens Ate My Mouse 13 of 18

Hardware

CrsrDevDoubleTime() lets you set the double-click time associated with a particular
device. The duration parameter specifies the time, in ticks, to use as the double-click time for
this device. An application could be written to check the double-click time for the particular
device in checking for a double-click.

CrsrDevUnitsPerInch:
Function CrsrDevUnitsPerInch(ourDevice: CrsrDevRec;
 resolution: Fixed):OSErr;

CrsrDevUnitsPerInch() lets you set the resolution of a particular device to its physical
resolution, in units per inch. For devices adhering to the Apple extended mouse protocol, this
call shouldn't be needed, as the resolution can be read from the device's register 1; however,
this call might be made by a driver for a device which doesn't use the ADB.

Acceleration Tables

Acceleration tables are stored in resources of type 'accl', which have the following Rez
description:

type 'accl' {
literal longInt /* Device identifier or device class */

classAbsolute, /* A flat-response device */
classMouse, /* Mechanical or optical mouse */
classTrackball; /* Trackball */

integer = $$CountOf(AcclTable); /* Number of tables for this device */
array AcclTable { /* Entries sorted by first value; must have */

/* at least 0.0 and 1.0 tables */
unsigned hex longint; /* Acceleration provided by this table (Fixed) */

integer = $$CountOf(AcclPoint); /* Number of control points for this device */
wide array AcclPoint { /* Entries sorted by first value; implicit */

/* first entry (0.0, 0.0); at least one more */
/* entry required. */

unsigned hex longint; /* Device speed (inches per second) (Fixed) */
unsigned hex longint; /* Cursor speed (inches per second) (Fixed) */

};
};

};

The identifier for this 'accl' resource is stored in the first long word; this is either an
OSType four character device identifier or an integer value specifying the device class. In
either case, the device's identity is generally read from the device's register 1, as described
below in the section "Extended Apple Mouse Protocol." The Cursor Device Manager first tries
to match against the specific device identifier, then against the more general class. Each
'accl' resource can contain a number of acceleration tables for different acceleration values;
each table contains a number of entries which match a particular device speed to a particular
cursor speed. An 'accl' resource must contain at least two acceleration tables, one for an
acceleration of 0.0 and one for an acceleration value of 1.0. When an acceleration value is set
for a particular device, the acceleration table is calculated by interpolating between the two
nearest tables from the 'accl' resource. There is an implicit entry in each acceleration table
of (0.0, 0.0), which indicates that the cursor should not move if the device does not. At least
one additional entry is required; the Cursor Device Manager will use the table entries to figure
the cursor movement by using the device movement to interpolate based on the specified
movement control points.

Macintosh Technical Notes

14 of 18 HW 1 – ADB - The Untold Story : Space Aliens Ate My Mouse

Hardware

Availability Of The Cursor Device Manager

The Cursor Device Manager was introduced in the ROMs of Macintoshes introduced in
February, 1993. It may be installed via software on any Macintosh. To check to see if the
Cursor Device Manager is available, you should use the standard TrapAvailable routine to
check to see if its trap is implemented. The Cursor Device Manager trap is $AADB, making it a
toolbox trap, trap number $2DB.

Compatibility

When the Cursor Device Manager is installed, all Apple mouse drivers use its interface to move
the cursor; this means that the low memory globals such as Mouse and RawMouse are no
longer used. While a compatibility mode keeps drivers which still modify these globals
continue to work, the cursor position can no longer be read from these globals.

Apple Devices

Classic Apple Mouse Protocol

The original Apple mouse protocol has allowed for mice with a resolution of 100 or 200 units
per inch with 7 bit accumulation of relative movement with one or two buttons. Handler ID 1
was used to indicate 100 cpi operation; handler 2 to indicate 200 cpi operation. All data is
transferred through register 0 in the following format:

15 14 8 7 6 0Bit:

Button pressed

Y motion value

Optional second button

X motion value

Figure 1–Classic Mouse Register 0 Format

Where relative motion in each axis is accumulated until fetched with a talk register 0 command
sent by the host. The X value represents left-to-right motion, the Y value holds accumulated
forward-to-back motion.

Extended Apple Mouse Protocol

In order to be able to take advantage of the higher movement resolution support available with
the Cursor Device Manager, an extended mouse protocol has been defined; this allows a device
to communicate up to 16 bits of movement data with each polling and allows a standard device
to communicate the state of up to 8 buttons. In addition, the new format allows each device to
communicate its exact type, resolution and class. This new format applies to all relative devices
at default address 3, handler ID 4.

During startup or after a reset of the ADB bus, devices which power up at default address 3
with handler ID 1 will be switched to handler ID 4 with a listen register 3 command. If the

Developer Technical Support January 1994

HW 1 – ADB - The Untold Story : Space Aliens Ate My Mouse 15 of 18

Hardware

device accepts the switch and reports the new handler ID of 4 back in response to a talk register
3 command, all subsequent communication with the device will be assumed to follow the
extended mouse protocol. Currently, the ADB manager makes an additional check, making
sure that a talk register 1 returns 8 bytes (the format of register 1 is specified below). If a
device accepts a handler ID change but does not return 8 bytes from register 1, it is assumed to
not actually be an extended mouse protocol device and is switched back to its original handler
ID.

All movement and button data still passes through register 0, which can now hold between 2
and 5 bytes, where 2 bytes provides the device with the data transfer capability of the original
mouse protocol and additional bytes allow added resolution and buttons.

Bytes 0 and 1 of register 0 have the same format as they did in the classic mouse protocol,
communicating the state of the first two buttons and the low order 7 bits of the accumulated
motion in the X and Y axes. There can be up to 3 bytes of additional information: each one of
these bytes can communicate the state of 2 more buttons and add 3 higher order bits of
resolution to each of the X and Y axes. The format of each additional byte is:

Bit: 7 6 03 24

First additional button

Additional Y motion value

Second additional button

Additional X motion value

Figure 2–Format Of Additional Register 0 Bytes For Extended Mouse Protocol

As a specific example, in a maximal 5 byte transmission, the data would be transferred in this
format:

Bit #: 7 6 5 4 3 2 1 0
Byte 0: b0 y06 y05 y04 y03 y02 y01 y00
Byte 1: b1 x06 x05 x04 x03 x02 x01 x00
Byte 2: b2 y09 y08 y07 b3 x09 x08 x07
Byte 3: b4 y12 y11 y10 b5 x12 x11 x10
Byte 4: b6 y15 y14 y13 b7 x15 x14 x13

Table 2–Format Of A 5 Byte Register 0 Data Transfer

Where bn indicates the status of button n and xaa or ybb indicates the value of bit aa or bb of
the X or Y movement.

Macintosh Technical Notes

16 of 18 HW 1 – ADB - The Untold Story : Space Aliens Ate My Mouse

Hardware

In addition, register 1 is used in the extended mouse protocol to provide some general
information about the device. Register 1 is 8 bytes long and is formatted in this way:

Byte range Format
0-3 Unique device identifier
4-5 Device resolution in units/inch
6 Device class (Mouse, trackball, etc.…)
7 Number of buttons (0-8)

Table 3–Format Of Extended Mouse Protocol Register 1

The unique device identifier is intended to be a four character ASCII identifier similar to the
OSType identifiers used as types and creators in the Macintosh file system; they can be
registered using the same mechanism used to register creator types. A developer should only
use a device identifier in this field if they have obtained a registration for that identifier's use as
a creator from Apple.

The device class is a value which is used to identify the type of device and to control the
acceleration curve used for that device. The currently defined constants include:

Device constant Device type
0 Tablet device (absolutely positioned)
1 Mouse
2 Trackball

Table 4–Currently defined device classes

There currently isn't any mechanism for developers to create or register device classes; if a
developer needs a device class not available from Apple, the only alternative available currently
is not to use the handler ID 4 extended mouse protocol, instead using a custom handler ID and
custom driver software.

Apple Keyboard protocol

The Apple keyboards have a simple data transfer protocol. Register 0 is used to inform the
host as keys are depressed and released; register 2 is used to communicate the state of the
modifier keys and to control the LED indicators on the extended keyboards.

The format of register 0 is:

15 14 8 7 6 0Bit:

Key 1 released

Key code field 1

Key 2 released

Key code field 2

Figure 3–Keyboard Register 0 Format

Developer Technical Support January 1994

HW 1 – ADB - The Untold Story : Space Aliens Ate My Mouse 17 of 18

Hardware

Register 0 can communicate up to two key transitions at once. Each transition consists of a key
code and a key released bit, which is 0 for key depressions and 1 for key releases. The key
codes are described in Inside Macintosh volume V, pages 191-192. The special case is the
reset key, which returns the value $7F7F in register 0 when it is depressed and $FFFF when
released; thus, it uses both key code positions within register 0.

The format of register 2 is:

Bit: 15 14 8 7 6 013 12 11 10 9 5 3 2 1

LED 1 (num lock)

LED 2 (caps lock)

LED 3 (scroll lock)

Reserved

Scroll lock

Num lock / clear

Apple / command

Option

Shift

Control

Reset

Caps lock

Delete

Reserved

Figure 4–Keyboard Register 2 Format

The current state of the keys listed in figure 4 is available in bits 6-14 of register 2, if those
keys exist on the keyboard being examined. Bits 0-2 hold the current state of the LEDs on the
extended keyboard; the states of these LEDs can be changed by sending the keyboard a listen
register 2 command. Note that key transition events are generated in register 0 for modifier
keys, as they are for all other keys; these keys are available in register 2 in addition to their
status being transmitted through register 0.

Macintosh Technical Notes

18 of 18 HW 1 – ADB - The Untold Story : Space Aliens Ate My Mouse

Hardware

Miscellany

Licensing

The Apple Desktop Bus is patented. In order to build an ADB device, you will need to get a
license from Apple. Contact:

Apple Software Licensing
Apple Computer, Inc.
20525 Mariani Avenue, M/S 38-I
Cupertino, CA 95014
(408) 974-4667

AppleLink: SW.LICENSE
Internet: SW.LICENSE@applelink.apple.com

The license is available for a nominal fee in most cases, and the licensing package includes the
latest version of the ADB spec., which is the definitive reference to the bus.

Further Reference:
• The Apple Desktop Bus specification, revision F.
• Inside Macintosh, Volume V, chapter 20, "The Apple Desktop Bus"
• Guide to the Macintosh Family Hardware, Second Edition, Chapter 8, "Apple Desktop

Bus"

	The ADB Hardware
	The ADB Protocol
	ADB Drivers
	The Cursor Device Manager
	Apple Devices
	Miscellany

