
AppleSearch Client Developer’s Guide

Apple Computer, Inc.
This manual and the software described in it are
copyrighted, with all rights reserved. Under the
copyright laws, this manual or the software may not be
copied, in whole or part, without written consent of
Apple, except in the normal use of the software or to
make a backup copy of the software. The same
proprietary and copyright notices must be affixed to
any permitted copies as were affixed to the original.
This exception does not allow copies to be made for
others, whether or not sold, but all of the material
purchased (with all backup copies) may be sold, given,
or loaned to another person. Under the law, copying
includes translating into another language or format.

You may use the software on any computer owned by
you, but extra copies cannot be made for this purpose.

The Apple logo is a registered trademark of Apple
Computer, Inc. Use of the “keyboard” Apple logo
(Option-Shift-k) for commercial purposes without the
prior written consent of Apple may constitute
trademark infringement and unfair competition in
violation of federal and state laws.

Every effort has been made to ensure that the
information in this manual is accurate. Apple is not
responsible for printing or clerical errors.

© Apple Computer, Inc., 1994
20525 Mariani Avenue
Cupertino, CA 95014-6299
(408) 996-1010

Apple, the Apple logo, AppleLink, AppleShare,
AppleTalk, MacApp, Macintosh, and MPW are
trademarks of Apple Computer, Inc., registered in the
United States and other countries.

AppleSearch and Finder are trademarks of Apple
Computer, Inc.

MacWrite is a registered trademark of Claris
Corporation.

Simultaneously published in the United States and
Canada.

Mention of third-party products is for informational
purposes only and constitutes neither an endorsement
nor a recommendation. Apple assumes no
responsibility with regard to the performance or use of
these products.

Contents

Preface / vii

1 Architectural Overview / 1

AppleSearch software components / 2

Writing your own client application / 3

Client/server connection / 4

Information sources / 5

Immediate searches / 5

Article retrieval / 6

Original file retrieval / 6

Scheduled searches / 7

Server object database / 7

2 Apple Events Application Programming Interface / 9

Sending and receiving AppleSearch Apple events / 10
The AppleSearch Communication Extension / 11

Connecting to a server / 15

Apple event API calls / 15
Register / 16
Unregister / 17
Logon / 18
Set Auto Logon / 20
Get Auto Logon / 21
Logoff / 22
Status Changed / 23
Enumerate Sources / 23
Open Search Session / 25
Close Search Session / 26
Search / 29
Get Related Terms / 31
Get Article Text / 33
Get Article Info / 35

Get Article Matches / 37
Add Reporter / 39
Modify Reporter / 43
Get Reporter / 47
Delete Reporter / 49
Enumerate Reporters / 51
Add DB Object / 52
Modify DB Object / 54
Get DB Object / 56
Delete DB Object / 58
Enumerate DB Objects / 59
Import Reporter / 61
Export Reporter / 62
Get Original File / 64

3 C Library Application Programming Interface / 67

Making a C Library API function call / 68

Completion routines / 69

Errors / 69

Initializing the AppleSearch Client Library and connecting
to a server / 70

Building your application / 70

C Library API calls / 72
ASInitialize / 72
ASQuit / 72
ASDoIdle / 72
ASRegister / 73
ASUnregister / 74
ASSelectServer / 75
ASLogon / 76
ASLogoff / 79
ASEnumerateSources / 80
ASOpenSearchSession / 81
ASCloseSearchSession / 83
ASSearch / 84
ASGetRelatedTerms / 87
ASGetArticleText / 89
ASGetArticleInfo / 91
ASGetArticleMatches / 92
ASAddReporter / 95
ASModifyReporter / 98
ASGetReporter / 102

iv Contents

ASDeleteReporter / 104
ASEnumerateReporters / 105
ASAddDBObject / 107
ASModifyDBObject / 108
ASGetDBObject / 110
ASDeleteDBObject / 112
ASEnumerateDBObjects / 113
ASImportReporter / 115
ASExportReporter / 116
ASGetOriginalFile / 117

Appendix A Constants and Errors / 119

Search parameter block–related constants / 119

Reporter parameter block–related constants / 119

Get Text/Get Original parameter block–related constants / 119

Get Related Terms parameter block–related constants / 119

Client-generated errors / 120

Server-generated errors / 120

Appendix B Apple Events Summary / 123

Event classes / 123

Event IDs / 123

Apple event keywords / 124

Structures / 125

Appendix C C Library Summary / 127

Object types / 127

Type definitions / 127

Parameter blocks / 127
ASRegisterPB / 127
ASSelectServerPB / 128
ASLogonPB / 128
ASLogoffPB / 128
ASSearchSessionPB / 128
ASEnumeratePB / 129
ASSearchPB / 129
ASGetArticleInfoPB / 130
ASGetArticleTextPB / 130
ASGetArticleMatchesPB / 131

Contents v

ASGetFilePB / 131
ASReporterPB / 132
DBObjectPB / 132
ASImportExportPB / 132
ASGetRelatedTermsPB / 133

C API functions / 133
Housekeeping routines / 133
Search routines / 133
Data retrieval routines / 134
Reporter routines / 134
DBObject routines / 134

vi Contents

Preface

AppleSearch is full-text search-and-retrieval workgroup software that
allows users to retrieve customized information from unstructured
document files (for instance, correspondence, electronic mail, and reports)
that reside on an AppleSearch server. This document is intended for
developers who want to write their own custom AppleSearch client user
interface to the AppleSearch server or who want to integrate certain features
of the AppleSearch client software into their own existing applications.

What you need to know

Before you use this guide you should be familiar with the AppleSearch
Client and Server applications. You should be familiar with key features of
AppleSearch Client such as reporters, article retrieval, scheduled searches,
and updates. You should also be familiar with Apple events and know how
to program in the Macintosh environment. For information on these
subjects, see the references in “Suggested Reading,” later in this Preface.

What this guide contains

Here is a description of what you’ll find in this guide:

Chapter 1, “Architectural Overview,” presents an overview of the
AppleSearch client/server architecture and describes key concepts of the
AppleSearch Client application programming interface (API).

Chapter 2, “Apple Events Application Programming Interface,”
describes how to use the Apple events version of the API and then gives
a detailed specification of each Apple event.

Chapter 3, “C Library Application Programming Interface,” describes
how to use the C API and then gives a detailed description of each C
function call.

Appendix A, “Constants and Errors,” presents a summary of
AppleSearch API errors and related constants.

Appendix B, “Apple Events Summary,” presents a summary of the
Apple events API.

Appendix C, “C Library Summary,” presents a summary of the C
Library API.

Conventions used in this guide

The Courier font is used for event classes, event IDs, parameters, keywords,
and result code messages. This font is also used to indicate code elements
that must be typed into your program.

Format of API descriptions

The description of each Apple event API contains the finformation shown
in the following figure:

viii Preface

The description of each C Library API contains the finformation shown in
the following figure:

About the AppleSearch Client Developer’s Kit

This manual, the AppleSearch Client Developer’s Guide, is just one
component in the AppleSearch Client Developer’s Kit. The kit also
includes the following items:

AppleSearch client software

a C Library object file

header files for the C Library and Apple events

Preface ix

an Apple events tool that allows you to log Apple event activity on your
system

sample code and a SimpleText file that explains how the sample code
functions

the AppleSearch Update File Format Developer’s Kit, which includes the
AppleSearch Update File Format Reference and a set of utility routines

After you read this guide, refer to the AppleSearch Update File Format
Reference for information about the format of AppleSearch-generated
update documents.

Note: In order to test and use the AppleSearch client capability, you must
purchase the AppleSearch server software.

Suggested reading

Here is a list of reference materials that you may find helpful:

AppleSearch User’s Guide (included in the AppleSearch Server and
Client for Macintosh, version 1.5) describes how to use the AppleSearch
client to search for and retrieve information.

AppleSearch Administrator’s Guide (included in the AppleSearch Server
and Client for Macintosh, version 1.5) describes how to set up and
maintain an AppleSearch Server.

AppleSearch Update File Format Reference (included in the
AppleSearch File Format Developer’s Kit, which is in the AppleSearch
Client Developer’s Kit) describes the format of AppleSearch-generated
update documents.

Inside Macintosh: Interapplication Communication provides a complete
description of Apple events, explains how to send and receive Apple
events, and includes reference information for all Apple Event Manager
routines. Inside Macintosh: Interapplication Communication (Addison-
Wesley Publishing Co., 1993) is available in bookstores.

Inside Macintosh: Processes provides background information on the
parts of the Macintosh Operating System that allow you to manage
processes and tasks. Inside Macintosh: Processes (Addison-Wesley
Publishing Co., 1992) is available in bookstores.

x Preface

Software licensing

For information on developer licensing, please contact the Software
Licensing Department:

Software Licensing Department
Apple Computer, Inc.
2420 Ridgepoint Drive, M/S 198-SWL
Austin, TX 78754
U.S.A.
Telephone: (512) 919-2645
AppleLink: SW.LICENSE

Preface xi

1 Architectural Overview

This chapter presents an overview of the AppleSearch client/server
architecture and describes key concepts required to use the AppleSearch
Client application programming interface (API).

AppleSearch software components

AppleSearch Client consists of three components:

AppleSearch User Interface application

AppleSearch Communication Extension—the background task
application

AppleSearch Authentication Extension—the log-on application

The following diagram shows the relationships among these components
and between the client and the AppleSearch server software.

The AppleSearch User Interface application is a MacApp 3.0–based
Macintosh application that provides the user interface functionality of the
client. This is the only one of the three components that can be launched
by the user.

The AppleSearch Communication Extension has no menus and cannot
display any windows. Because this extension runs in the background,
generating update files at delivery time, the user does not have to keep the
user interface application running in order to receive updates. The
AppleSearch Communication Extension is responsible for communicating
with the AppleSearch server; thus the user can perform operations such as
reporter creation and article retrieval only if it is running. (If it is not
running, the user can only open and view existing article and update files
on the mounted volumes.) The AppleSearch Communication Extension is
stored in the user’s Extensions folder.

2 Chapter 1 / Architectural Overview

The AppleSearch Authentication Extension displays a connection dialog
box that allows the user to open a session with an AppleSearch server. Once
the user completes the log-on process, the AppleSearch Authentication
Extension sends session information to the AppleSearch Communication
Extension and then quits. The AppleSearch Authentication Extension
application is stored in the user’s Extensions folder.

All three components communicate with each other by way of Apple
events. The AppleSearch Communication Extension and the AppleSearch
Server communicate byusing the AppleSearch Client/Server protocol (an
Apple proprietary protocol). For instance, when a user double-clicks a
reporter in the AppleSearch window, the following occurs:

The AppleSearch Client sends an Apple event to the AppleSearch
Communication Extension, asking for information on that reporter.

The AppleSearch Communication Extension retrieves the information
from the server by using the AppleSearch Client/Server protocol.

The AppleSearch Communication Extension passes the information to
the AppleSearch Client in a reply event to the original request.

The AppleSearch Client displays the reporter window, which contains
information about that reporter.

Writing your own client application

You can write your own client application to access AppleSearch servers in
either of two ways:

You can write an application that replaces the AppleSearch User
Interface application provided by Apple. In this case, your application
must use Apple events to communicate with the AppleSearch
Communication Extension, which in turn communicates with the
AppleSearch server.

You can link your application directly to the AppleSearch Client
Library, a part of the AppleSearch Communication Extension. You will
need to make C function calls to the AppleSearch Client Library in
order to access the server.

The advantage of using Apple events is that you won’t have to change your
user interface application if Apple replaces the transport-layer-level
protocol in future releases of the product. Also, if your application
supports update delivery using the AppleSearch Communication Extension,
users can receive updates without having their user interface application
running.

Writing your own client application 3

The advantage of using the C API is you have more flexibility than you do
with Apple events. For instance, you can make a C function call that allows
a user to connect to the server without using the AppleSearch
Authentication Extension.

The following diagram shows how the various components interact.

Client/server connection

The AppleSearch Client/Server protocol resides on top of the Program-to-
Program Communications (PPC) protocol. The AppleSearch Client/Server
protocol uses PPC to send and receive high-level message blocks between
the AppleSearch Communication Extension and the AppleSearch Server.

Note: In future versions of AppleSearch, another transport-layer-level
protocol besides PPC may be used.

The client/server connection is established when the client’s log-on request
is successfully processed by the server. In AppleSearch, a client can connect
to only one server at a time. Once the connection is made, the user can
perform all AppleSearch functions—including searching information
sources, retrieving articles, and adding reporters to the server—until the
connection is terminated. If the user is connected as a guest, the client
cannot make reporter- or object-database-related requests to the server. (The
server object database is described in the section “Server Object Database”
later in this chapter.)

4 Chapter 1 / Architectural Overview

The client/server connection is terminated in one of three ways:

When a client logs off, a Logoff call is issued; the AppleSearch client
indicates a disconnect to the AppleSearch Communications Extension,
which makes the Logoff call to the AppleSearch server.

When a client encounters a fatal error, such as a PPC communication
error, it disconnects itself.

When the communication layer notifies the client and/or server that the
connection is no longer there, the server disconnects itself.

Information sources

The local information sources that users can search are shared volumes or
folders, containing documents in various formats, that reside on an
AppleSearch server. Users must have appropriate access privileges to
folders on the server before they can view or search information sources on
that server; access privileges are provided by AppleShare or by Macintosh
file sharing in System 7.

AppleSearch also supports WAIS (wide area information source) searches.
A WAIS search allows you to search through material on outside sources
such as the Internet.

Several of the API calls described in this document are related to
information sources. For example, the enumerate-sources call returns a list
of information sources available to the client on the currently connected
server.

Note: AppleSearch ranks articles in terms of how relevant they are to a
user’s search request. It will rank the articles for each information source;
that is, it will not determine relevancy across more than one information
source at a time.

Immediate searches

When an immediate search is initiated by the user, its results are returned
immediately by the server. (Scheduled searches, which return results at a
specified time, are discussed later in this chapter.) To perform an
immediate search, your application must make an AppleSearch open-
search-session call to open a search session, and then make an AppleSearch
search call with appropriate parameters. Your application can make as
many search calls as you want within one search session and can also open
as many search sessions simultaneously as resources on the server allow.
When your application is done searching, your application must close the
session by issuing an AppleSearch close-search-session call.

Immediate searches 5

As a result of an immediate search, the server returns a list of articles that
match the user’s search request, ranked in order of relevance within each
information source. The list shows the article ID, along with its
modification date, title, and file size. To get the actual article text or
information about an article, you must make separate calls, which are
described in the next section.

Article retrieval

There are three API calls related to article retrieval:

An AppleSearch get-article-text call returns the text of an article.

An AppleSearch get-article-info call returns an article’s attributes such
as its modification date, title, and size.

An AppleSearch get-article-matches call returns a list of offsets and
lengths, which represent the words matching the original query (used for
the highlight matching words feature in the AppleSearch Client
software). This list is not returned in the case of a WAIS search.

To make these calls, your application must have the article’s information
source ID and article ID, both of which are returned by a search call. Also,
to get matches, you must have a search session ID for the search session
which the article was found, and the search engine must be open.

Original file retrieval

When AppleSearch retrieves articles, it extracts plain text from various
document types, ignoring graphics and formatting instructions. The text of
each article is returned to the client by means of individual calls to a get-
article-text call. The server uses XTND file-format translators to extract the
text.

A get-original-file call allows you to retrieve an article in its original
format. For instance, if the original article on the server was formatted with
MacWrite, a get-original-file call would retrieve the article as a MacWrite
document. To make this call, your application needs the article’s
information source ID and article ID.

6 Chapter 1 / Architectural Overview

Scheduled searches

Reporters are queries that are saved with parameters specified by the user.
They are stored as database objects on the server. (See the next section for
more information about database objects.) Each reporter object contains its
search query, information sources to search, other search options, and its
delivery date, time, and update file destination. The AppleSearch Client
Library retrieves reporter object information from the server in order to
deliver updates or to allow users to modify the object information.

Your application can use API calls to add, delete, or modify reporters, or to
get reporter objects from and to the server. Each reporter can be active or
inactive; only those reporters that are active deliver updates. The active flag
is one of the reporter object attributes and can be set by an AppleSearch
modify-reporter call.

Server object database

The AppleSearch server maintains a database, called the server object
database, that stores a list of reporters and other relevant information. Your
application can use this database to store custom information. A set of
routines is provided to allow your application to gain access to the
database. For instance, an add-object call adds custom objects to the
currently connected server’s object database, and an enumerate-objects call
lists all objects of a specific type in the database. A database object stored
by one registered user is accessible only by that user.

Note: Internally, a reporter is a special kind of object that the AppleSearch
Client Library uses. An object is any chunk of information—basically, an
array of bytes—with a type and ID. Each object of the same type in the
database must have a unique ID for each registered user.

Server object database 7

2 Apple Events Application
Programming Interface

This chapter describes the Apple events application programming interface
(API) provided by AppleSearch. It describes how to use the API and then
gives a detailed specification for each Apple event.

Note: In AppleSearch, the AppleSearch client uses Apple events as a
private, interapplication transport mechanism for accessing the
AppleSearch Communication Extension API. Thus, AppleSearch does not
support the Object Support Library, nor does it establish a standard
information access suite.

Sending and receiving AppleSearch Apple events

Each AppleSearch request is an Apple event that your application must
send to the AppleSearch Communication Extension. You can specify the
AppleSearch Communication Extension by its creator type, which is
kAppleSearchCommunicationSignature. The event class of the request
should be kAppleSearchRequest. Your application can send it in any
mode you prefer—for example, kAEQueueReply or kAEWaitReply. Both
the creator type and event class are defined in the header file
AppleSearchAEAPI.h.

When the AppleSearch Communication Extension receives a request from
your application, it sends a request to a server asynchronously. When a
reply comes back from the server, the AppleSearch Communication
Extension sends a reply Apple event back to your application.

For example, to conduct an immediate search you need to send an Apple
event of event class kAppleSearchRequest and event ID kAEASSearch
with appropriate parameters. The AppleSearch Communication Extension
packages the search parameters into an appropriate parameter block and
then sends a search request to the server. After the server responds to the
request, a reply of event class kCoreEventClass and event ID kAEAnswer,
which contains a search result, will be returned.

The following diagram shows the relationship between an AppleSearch
request and its replies.

10 Chapter 2 / Apple Events Application Programming Interface

The AppleSearch Communication Extension

The AppleSearch Communication Extension is a background-only process
that receives Apple events from another application (such as your custom
client) and in turn communicates with an AppleSearch server. For example,
when your application sends a Search event to the AppleSearch
Communication Extension, it checks parameters and then issues a search
request to the server it is logged on to, using the AppleSearch Client/Server
protocol. When a reply comes back from the server, the AppleSearch
Communication Extension sends a search reply event to your application.
In essence, the AppleSearch Communication Extension appears as a server
to your application.

Before sending any Apple event to the AppleSearch Communication
Extension, your application must determine whether the extension is
already running. If not, your application needs to find it and launch it.
Since the AppleSearch Communication Extension is a system extension, it
can be found in the Extensions folder. Your application can find it by
making a PBCatSearch call with the AppleSearch Communication
Extension’s creator type and Extensions folder as the parent directory.
Then, you can make an FSSpec out of the CatSearch parameter block and
use it in the LaunchApplication trap. When launched, the AppleSearch
Communication Extension automatically displays the PPCBrowser dialog
box, prompting the user to select an AppleSearch server to connect to. If
the user is successfully authenticated, a session is established between the
client and the server. If the user does not connect to the server properly, the
AppleSearch Communication Extension sends an error message to your
application and quits.

The following sample code demonstrates how to find and launch the
AppleSearch Communication Extension from your application.

Sending and receiving AppleSearch Apple events 11

//__

// Function: LaunchASCommunication

// Abstract: Determines if the AppleSearch Communication extension is

// running. If it is not yet running, it tries to launch it.

// Parameters: isRunning - This value gets set to true if the extension is

// already running, or it was successfully launched by this

// function.

// Returns: OSErr - If the extension wasn’t already running and the attempt

// to launch failed, the error code from the attempt is returned.

//__

OSErr LaunchASCommunication(Boolean* isRunning)

{

OSErr err = noErr;

const OSType kASCommunicationSignature = ‘bgdp’;

if (ApplicationIsRunning(kASCommunicationSignature)) {

*isRunning = true;

}

else {

err = LaunchMyExtension(kASCommunicationSignature);

*isRunning = (err == noErr);

}

return err;

}

//__

// Function: ApplicationIsRunning

// Abstract: Determine if the specified application is running on this Mac.

// Parameters: signature - The creator signature of the desired application

// Returns: Boolean - True if the process specified by the signature is

// running, false if no process with that signature could be found.

//__

Boolean ApplicationIsRunning(OSType signature)

{

ProcessSerialNumber psn;

ProcessInfoRec info;

psn.processInfoLength = sizeof(ProcessInfoRec);

psn.processName = 0L; // we don’t care about the name

psn.processAppSpec = 0L; // or FSSpec of it

psn.highLongOfPSN = 0L; // start from the beginning of

psn.lowLongOfPSN = kNoProcess; // the process list

while (GetNextProcess(&psn) != procNotFound) {

// for each process

GetProcessInformation(&psn, &info); // get process info

12 Chapter 2 / Apple Events Application Programming Interface

if (info.processSignature == signature)

// if looking for signature matches

return (TRUE);

}

return (FALSE);

}

//__

// Function: LaunchMyExtension

// Abstract: This function uses PBCatSearch to find the extension in the

// Extensions folder, and if found, launches it with appropriate

// parameters.

// Parameters: signature - The creator signature of the desired Extensions

// Returns: OSErr - noErr if the application was found in the Extensions

// folder and launched successfully.

// Otherwise, an appropriate error from FindFolder, PBCatSearch,

// or LaunchApplication.

//__

OSErr LaunchMyExtension(OSType signature)

{

OSErr err;

short vRefNum;

long extensionsDirID;

CSParam searchPB;

FSSpecArrayPtr myMatches;

// first find the Extension folder

err = FindFolder(-1, kExtensionFolderType, false, &vRefNum, &extensionsDirID);

// if found, then find the extension wanted in the folder

if (err == noErr) {

CInfoPBRec info1, info2;

// setup paramBlock for the CatSearch call

info1.hFileInfo.ioNamePtr = nil;

// don’t search on string (don’t care what its name is)

info1.hFileInfo.ioFlAttrib = 0x00; // clear bit 4 to ask for files

info1.hFileInfo.ioFlFndrInfo.fdCreator = signature;

// signature we’re interested in

info1.hFileInfo.ioFlParID = extensionsDirID;

// search in Extensions folder

info1.hFileInfo.ioFlFndrInfo.fdType = 0x00;

info1.hFileInfo.ioFlFndrInfo.fdFlags = 0x00;

info1.hFileInfo.ioFlFndrInfo.fdLocation.h = 0x00;

info1.hFileInfo.ioFlFndrInfo.fdLocation.v = 0x00;

info1.hFileInfo.ioFlFndrInfo.fdFldr = 0x00;

Continued on following page

Sending and receiving AppleSearch Apple events 13

info2.hFileInfo.ioNamePtr = nil;

info2.hFileInfo.ioFlAttrib = 0x10;

info2.hFileInfo.ioFlFndrInfo.fdType = 0x00; // mask out type

info2.hFileInfo.ioFlFndrInfo.fdCreator = 0xFFFFFFFF; // mask for creator

info2.hFileInfo.ioFlFndrInfo.fdFlags = 0x00; // mask out flags

info2.hFileInfo.ioFlFndrInfo.fdLocation.h = 0x00; // mask out location

info2.hFileInfo.ioFlFndrInfo.fdLocation.v = 0x00; // mask out location

info2.hFileInfo.ioFlFndrInfo.fdFldr = 0x00; // mask out folder

info2.hFileInfo.ioFlParID = extensionsDirID; // max folder ID

myMatches = (FSSpec*) NewPtrClear(sizeof(FSSpec));

if (myMatches == nil) {

err = MemError();

}

else {

searchPB.ioCompletion = nil; // no completion routine

searchPB.ioNamePtr = nil; // no name, use vRefNum

searchPB.ioVRefNum = -1; // vRefNum -1 = Boot volume

searchPB.ioMatchPtr = myMatches; // pointer to result array of FSSpecs

searchPB.ioReqMatchCount = 1; // we only want one match (only allocated

// enough memory for one, should only

// find one)

searchPB.ioSearchBits = fsSBFlFndrInfo

+ fsSBFlAttrib

+ fsSBFlParID; // only interested in finder info

searchPB.ioSearchInfo1 = &info1; // pointer to first info block

searchPB.ioSearchInfo2 = &info2; // pointer to second info block

searchPB.ioSearchTime = 0; // no timeout on search

searchPB.ioCatPosition.initialize = 0; // start at beginning of catalog

searchPB.ioOptBuffer = nil; // no optional buffer

searchPB.ioOptBufSize = 0; // since no optional buffer, its

// size is 0

err = PBCatSearch(&searchPB, false);

}

}

// if we found the extension, now try to launch it

if (err == noErr) {

LaunchParamBlockRec launchPB;

AppParametersPtr appPBPtr;

14 Chapter 2 / Apple Events Application Programming Interface

launchPB.launchBlockID = extendedBlock;

launchPB.launchEPBLength = extendedBlockLen;

launchPB.launchFileFlags = 0;

launchPB.launchControlFlags = launchNoFileFlags + launchContinue +

launchUseMinimum;

launchPB.launchAppSpec = &searchPB.ioMatchPtr[0];

launchPB.launchAppParameters = appPBPtr;

err = LaunchApplication(launchPB);

if (appPBPtr != nil) {

DisposePtr((Ptr) appPBPtr);

}

}

if (myMatches != nil) {

DisposePtr((Ptr)myMatches);

}

return err;

}

Connecting to a server

Before your application can connect to a server, it must send a Register
event to register with the AppleSearch Communication Extension. Once
your application receives a registration ID in the reply event, you can send
a Logon event with that registration ID. If the Logon reply event comes
back without any errors in its keyErrorNumber parameter, then your
application has successfully logged on to the server. If the AppleSearch
Communication Extension is already connected to a server, you may get a
kAlreadyLoggedOnErr error.

Apple event API calls

This section specifies in detail each Apple event request and its replies.

Apple event API calls 15

Register

The Register Apple event registers your application with the AppleSearch
Communication Extension. This request must be issued before any other
request. The application should pass its registration ID, which is returned in
the reply, in all subsequent requests.

Request
Event Class: kAppleSearchRequest (bgrt)

Event ID: kAEASRegister (rstr)

Parameter: userRefCon

Type: long
Size: 4
Keyword: keyASUserRefCon (rfcn)
Comment: for the requester’s own use; optional

Reply
Event Class: kCoreEventClass (aevt)

Event ID: kAEAnswer (ansr)

Parameter: error

Type: short
Size: 2
Keyword: keyErrorNumber (errn)
Comment: an error if not 0

userRefCon

Type: long
Size: 4
Keyword: keyASUserRefCon (rfcn)
Comment: copied from request; if missing from the request,
returned as 0

registrationID

Type: long
Size: 4
Keyword: keyASRegistrationID (btid)
Comment: use this ID in all subsequent requests

Result Codes
noErr 0 The request was completed successfully.

kMaxRegisteredErr

3101 The AppleSearch Communication
Extension cannot handle any more user
interface applications at this time.

16 Chapter 2 / Apple Events Application Programming Interface

Unregister

The Unregister Apple event unregisters your application when it no longer
needs the services of the AppleSearch Communication Extension.

Request
Event Class: kAppleSearchRequest (bgrt)

Event ID: kAEASUnregister (urtr)

Parameter: registrationID

Type: long
Size: 4
Keyword: keyASRegistrationID (btid)
Comment: registration ID

userRefCon

Type: long
Size: 4
Keyword: keyASUserRefCon (rfcn)
Comment: for the requester’s own use; optional

Reply
Event Class: kCoreEventClass (aevt)

Event ID: kAEAnswer (ansr)

Parameter: error

Type: short
Size: 2
Keyword: keyErrorNumber (errn)
Comment: an error if not 0

userRefCon

Type: long
Size: 4
Keyword: keyASUserRefCon (rfcn)
Comment: copied from request; if missing from the request,
returned as 0

Result Codes
noErr 0 The request was completed successfully.

kInvalidRegistrationIDErr

3102 Invalid registration ID was passed.

Apple event API calls 17

Logon

Your application must send this Apple event to the AppleSearch
Communication Extension in order to log on to an AppleSearch server.
The AppleSearch Communication Extension will use the AppleSearch
Authentication Extension to display the PPCBrowser dialog box so that the
user can select a server. If the user selects a server and is authenticated,
information about the server and log-on status is returned in the reply.

Request
Event Class: kAppleSearchRequest (bgrt)

Event ID: kAEASLogon (cnct)

Parameter: registrationID

Type: long
Size: 4
Keyword: keyASRegistrationID (btid)
Comment: registration ID

userRefCon

Type: long
Size: 4
Keyword: keyASUserRefCon (rfcn)
Comment: for the requester’s own use; optional

deliverUpdate

Type: Boolean
Size: 2
Keyword: keyASDeliverUpdateFlag (dupd)
Comment: pass true in this descriptor if you want the
AppleSearch Client Library to automatically deliver updates
while connected; optional (defaults to true)

Reply
Event Class: kCoreEventClass (aevt)

Event ID: kAEAnswer (ansr)

18 Chapter 2 / Apple Events Application Programming Interface

Parameter: error

Type: short
Size: 2
Keyword: keyErrorNumber (errn)
Comment: error code

userRefCon

Type: long
Size: 4
Keyword: keyASUserRefCon (rfcn)
Comment: copied from request; if missing from the
request, returned as 0

isGuest

Type: Boolean
Size: 2
Keyword: keyASIsGuest (igst)
Comment: true if the user logged on as a guest

serverName

Type: char
Size: variable
Keyword: keyASServerName (svrn)
Comment: connected server’s name

Result Codes
noErr 0 The request was completed successfully.

kInvalidRegistrationIDErr

3102 Invalid registration ID was passed.

kAlreadyLoggedOnErr

3103 The AppleSearch Communication Extension is already
logged on to an AppleSearch server.

kLogOnCancelErr

3104 The user canceled the log-on process in the
PPCBrowser or authentication dialog box.

Apple event API calls 19

Set Auto Logon

The Set Auto Logon Apple event is sent to the AppleSearch
Communication Extension to set or clear the automatic log-on feature of
the extension. If your application turns this option on, the extension
automatically displays the PPCBrowser dialog box at startup time so that
the user can connect to the server.

Request
Event Class: kAppleSearchRequest (bgrt)

Event ID: kAEASSetAutoLogonFlag (salg)

Parameter: autoLogonFlag

Type: Boolean
Size: 2
Keyword: keyASAutoLogonFlag (alin)
Comment: pass true if you want the option to be turned on

userRefCon

Type: long
Size: 4
Keyword: keyASUserRefCon (rfcn)
Comment: for the requester’s own use; optional

Reply
Event Class: kCoreEventClass (aevt)

Event ID: kAEAnswer (ansr)

Parameter: error

Type: short
Size: 2
Keyword: keyErrorNumber (errn)
Comment: an error if not 0

userRefCon

Type: long
Size: 4
Keyword: keyASUserRefCon (rfcn)
Comment: copied from request; if missing from the
request, returned as 0

Result Codes
noErr 0 The request was completed successfully.

20 Chapter 2 / Apple Events Application Programming Interface

Get Auto Logon

The Get Auto Logon Apple event is sent to the AppleSearch
Communication Extension to get the status of the auto-log-on flag.

Request
Event Class: kAppleSearchRequest (bgrt)

Event ID: kAEASGetAutoLogonFlag (galg)

Parameter: userRefCon

Type: long
Size: 4
Keyword: keyASUserRefCon (rfcn)
Comment: for the requester’s own use; optional

Reply
Event Class: kCoreEventClass (aevt)

Event ID: kAEAnswer (ansr)

Parameter: error

Type: short
Size: 2
Keyword: keyErrorNumber (errn)
Comment: an error if not 0

userRefCon

Type: long
Size: 4
Keyword: keyASUserRefCon (rfcn)
Comment: copied from request; if missing from the
request, returned as 0

autoLogonFlag

Type: Boolean
Size: 2
Keyword: keyASAutoLogonFlag (alin)
Comment: returns true if it is set

Result Codes

noErr 0 The request was completed successfully.

Apple event API calls 21

Logoff

The Logoff Apple event disconnects the client from the currently
connected server.

Request

Event Class: kAppleSearchRequest (bgrt)

Event ID: kAEASLogoff (loff)

Parameter: registrationID

Type: long
Size: 4
Keyword: keyASRegistrationID (btid)
Comment: registration ID

userRefCon

Type: long
Size: 4
Keyword: keyASUserRefCon (rfcn)
Comment: for the requester’s own use; optional

Reply

Event Class: kCoreEventClass (aevt)

Event ID: kAEAnswer (ansr)

Parameter: error

Type: short
Size: 2
Keyword: keyErrorNumber (errn)
Comment: an error if not 0

userRefCon

Type: long
Size: 4
Keyword: keyASUserRefCon (rfcn)
Comment: copied from request; if missing from the request,
returned as 0

Result Codes

noErr 0 The request was completed successfully.

kInvalidRegistrationIDErr

3102 Invalid registration ID was passed.

kNotLoggedOnErr

3106 Client is currently not logged on to any server.

22 Chapter 2 / Apple Events Application Programming Interface

Status Changed

Initiated by the AppleSearch Communication Extension, the Status
Changed Apple event is sent to all registered applications when the server’s
status has been changed. One parameter, keyChangeType, is passed to
indicate what type of change has occurred.

Request

Event Class: kAEASAppleSearchRequest (bgrt)

Event ID: kAEASStatusChanged (chng)

Parameter: changeType

Type: long
Size: 4
Keyword: keyChangeType (ctyp)
Comment: indicates the nature of the change that occurred
on the server

Notes

The keyChangeType parameter may be one of the following:

kServerDownChangeType—the server has gone down.

kReporterListChangeType—the list of reporters for the user has been
changed.

Enumerate Sources

The Enumerate Sources Apple event returns a list of information sources
available on the currently connected server.

Request

Event Class: kAppleSearchRequest (bgrt)

Event ID: kAEASEnumerateSources (esrc)

Parameter: registrationID

Type: long
Size: 4
Keyword: keyASRegistrationID (btid)
Comment: registration ID

userRefCon

Type: long
Size: 4
Keyword: keyASUserRefCon (rfcn)
Comment: for the requester’s own use; optional

Apple event API calls 23

Reply

Event Class: kCoreEventClass (aevt)

Event ID: kAEAnswer (ansr)

Parameter: error

Type: short
Size: 2
Keyword: keyErrorNumber (errn)
Comment: request was unsuccessful if not 0

userRefCon

Type: long
Size: 4
Keyword: keyASUserRefCon (rfcn)
Comment: copied from request; if missing from the
request, returned as 0

numberOfSources

Type: long
Size: 4
Keyword: keyASNumberOfSources (nums)
Comment: number of sources in the list

sourcesList

Type: list
Size: variable
Keyword: keyASSourceList (dlst)
Comment: list of InfoSourceRecord structures

Result Codes

noErr 0 The request was completed successfully.

kInvalidRegistrationIDErr

3102 Invalid registration ID was passed.

kNotLoggedOnErr

3106 Client is currently not logged on to any server.

Notes

Each element in the sourcesList parameter in the final reply is a block
of bytes that can be cast to the InfoSourceRecord structure, which is
shown here.

struct InfoSourceRecord {

long sourceID;

Str31 sourceName;

long sourceFlags;

};

24 Chapter 2 / Apple Events Application Programming Interface

For example, once you put the sourcesList parameter into your own
buffer, myBuffer, by using AEGetParamPtr, you can obtain the name of
the first source in the list, as follows:

str31 firstName;

InfoSourceRecord myBuffer;

firstName = myBuffer[0].sourceName;

The highest byte of sourceFlags in the InfoSourceRecord structure
returned in the ASEnumerateSources() reply is used to indicate the type of
information source, as follows:

const Byte kASInfoSourceTypeNormal = 0;

const Byte kASInfoSourceTypeWAIS = 1;

 The low 24 bits are used to indicate the capabilities of the information
source. Of the 24 bits, the lowest three bits are currently used:

Bit 0: canCopyOriginal

Bit 1: canDoMatchTerms

Bit 2: canDoCOW

Some information sources may be filtered out by the server if the user
doesn’t have the appropriate access privileges.

Open Search Session

The Open Search Session Apple event opens a search session and must be
issued before a search request can be initiated. Your application can open
as many search sessions as needed, and there can be any number of
searches within each search session.

Request

Event Class: kAppleSearchRequest (bgrt)

Event ID: kAEASOpenSearchSession (ossn)

Parameter: registrationID

Type: long
Size: 4
Keyword: keyASRegistrationID (btid)
Comment: registration ID

userRefCon

Type: long
Size: 4
Keyword: keyASUserRefCon (rfcn)
Comment: for the requester’s own use; optional

Apple event API calls 25

Reply

Event Class: kCoreEventClass (aevt)

Event ID: kAEAnswer (ansr)

Parameter: error

Type: short
Size: 2
Keyword: keyErrorNumber (errn)
Comment: request was unsuccessful if not 0

userRefCon

Type: long
Size: 4
Keyword: keyASUserRefCon (rfcn)
Comment: copied from request; if missing from the request,
returned as 0

searchSessionID

Type: long
Size: 4
Keyword: keyASSearchSessionID (seid)
Comment: use this when making a search request, a
GetArticleText request, or a GetArticleMatches
request

Result Codes

noErr 0 The request was completed successfully.

kInvalidRegistrationIDErr

3102 Invalid registration ID was passed.

kNotLoggedOnErr

3106 Client is currently not logged on to any server.

Close Search Session

The Close Search Session Apple event closes a search session when your
application is done with it.

Request

Event Class: kAppleSearchRequest (bgrt)

Event ID: kAEASCloseSearchSession (cssn)

26 Chapter 2 / Apple Events Application Programming Interface

Parameter: registrationID

Type: long
Size: 4
Keyword: keyASRegistrationID (btid)
Comment: registration ID

userRefCon

Type: long
Size: 4
Keyword: keyASUserRefCon (rfcn)
Comment: for the requester’s own use; optional

searchSessionID

Type: long
Size: 4
Keyword: keyASSearchSessionID (seid)
Comment: ID of search session to be closed

Reply

Event Class: kCoreEventClass (aevt)

Event ID: kAEAnswer (ansr)

Parameter: error

Type: short
Size: 2
Keyword: keyErrorNumber (errn)
Comment: request was unsuccessful if not 0

userRefCon

Type: long
Size: 4
Keyword: keyASUserRefCon (rfcn)
Comment: copied from request; if missing from the request,
returned as 0

Result Codes

noErr 0 The request was completed successfully.

kInvalidSearchSessionIDErr

1028 Search session ID passed was invalid.

kInvalidRegistrationIDErr

3102 Invalid registration ID was passed.

kNotLoggedOnErr

3106 Client is currently not logged on to any server.

Apple event API calls 27

Search

The Search Apple event initiates an immediate search of the currently
connected server.

Request

Event Class: kAppleSearchRequest (bgrt)

Event ID: kAEASSearch (srch)

Parameter: registrationID

Type: long
Size: 4
Keyword: keyASRegistrationID (btid)
Comment: registration ID

userRefCon

Type: long
Size: 4
Keyword: keyASUserRefCon (rfcn)
Comment: for the requester’s own use; optional

searchSessionID

Type: long
Size: 4
Keyword: keyASSearchSessionID (seid)
Comment: ID from Open Search Session request

queryString

Type: char
Size: variable
Keyword: keyASQueryString (qrey)
Comment: search text to be submitted to the server

searchType
Type: long
Size: 4
Keyword: keyASSearchType (srtp)
Comment: not used in this version, but reserved for
future use

minimumRank
Type: long
Size: 4
Keyword: keyASMinimumRank (mino)
Comment: must be between 1 and 5 inclusive

maximumHits
Type: long
Size: 4
Keyword: keyASMaximumHits (maxo)
Comment: must be between 1 and 30,000 inclusive

28 Chapter 2 / Apple Events Application Programming Interface

sourceID

Type: long
Size: 4
Keyword: keyASSourceID (isid)
Comment: ID of a source to be searched

earliestModDate

Type: long
Size: 4
Keyword: keyASEarliestModDate (dato)
Comment: the earliest modification date for articles to be
returned; this number is the difference in seconds between the
current date and 12:00 midnight, January 1, 2000

Reply

Event Class: kCoreEventClass (aevt)

Event ID: kAEAnswer (ansr)

Parameter: error

Type: short
Size: 2
Keyword: keyErrorNumber (errn)
Comment: request was unsuccessful if not 0

userRefCon

Type: long
Size: 4
Keyword: keyASUserRefCon (rfcn)
Comment: copied from request; if missing from the request,
returned as 0

searchID

Type: long
Size: 4
Keyword: keyASSearchID (srid)
Comment: transaction ID for this search

numberOfHits

Type: long
Size: 4
Keyword: keyASNumberOfHits (thit)
Comment: number of articles returned

hitList

Type: list
Size: variable
Keyword: keyASHitList (hlst)
Comment: list of HitDataRecord structures

Apple event API calls 29

Result Codes

noErr 0 The request was completed successfully.

kInvalidSourceIDErr

1006 Information source ID passed was invalid.

kInvalidArticleIDErr

1007 Article ID passed was invalid.

kQueryMissingStringErr

1017 Query length was specified but the string pointer was
empty or length was 0.

kQueryLengthRangeErr

1018 Query length is out of range.

kMinRankRangeErr

1019 Minimum rank search option value is out of range.

kMaxHitsRangeErr

1020 Maximum hits search option value is out of range.

kInvalidSearchSessionIDErr

1028 Search session ID passed was invalid.

kQuerySyntaxErr

1032 Syntax error in query string.

kInvalidRegistrationIDErr

3102 Invalid registration ID was passed.

kNotLoggedOnErr

3106 Client is currently not logged on to any server.

Notes

Each element in the hitList parameter in the final reply is a block of
bytes that can be cast to the HitDataRecord structure, as follows:

struct ASHitInfo {

long HitArticleID;

long HitModDate;

long hitSize;

long hitRank;

Str31 hitTitle

};

30 Chapter 2 / Apple Events Application Programming Interface

Get Related Terms

The Get Related Terms Apple event obtains a list of co-occurring terms for
a specific term from the currently connected server.

Request

Event Class: kAppleSearchRequest (bgrt)

Event ID: kAEASGetRelatedTerms (gcow)

Parameter: registrationID

Type: long
Size: 4
Keyword: keyASRegistrationID (btid)
Comment: registration ID

userRefCon

Type: long
Size: 4
Keyword: keyASUserRefCon (rfcn)
Comment: for the requester’s own use; optional

sourceID

Type: long
Size: 4
Keyword: keyASSourceID (isid)
Comment: ID of a source to be searched

queryString

Type: char
Size: variable
Keyword: keyASQueryString (qrey)
Comment: the original term to expand

maximumTerms

Type: long
Size: 4
Keyword: keyASMaxTerms (mxtm)
Comment: maximum number of terms to return

Reply

Event Class: kCoreEventClass (aevt)

Event ID: kAEAnswer (ansr)

Parameter: error

Type: short
Size: 2
Keyword: keyErrorNumber (errn)
Comment: request was unsuccessful if not 0

Apple event API calls 31

userRefCon

Type: long
Size: 4
Keyword: keyASUserRefCon (rfcn)
Comment: copied from request; if missing from the request,
returned as 0

numberOfTerms

Type: long
Size: 4
Keyword: keyASNumberOfTerms (numt)
Comment: number of terms returned

termList

Type: list
Size: variable
Keyword: keyASTermList (tlst)
Comment: list of terms

Result Codes

noErr 0 The request was completed successfully.

kInvalidSourceIDErr

1006 Information source ID passed was invalid.

kQueryMissingStringErr

1017 Query length was specified but the string pointer was
empty or length was 0.

kQueryLengthRangeErr

1018 Query length is out of range.

kMaxTermsRangeErr

1021 Value specified in maximumTerms field is out
of range.

kQuerySyntaxErr

1032 Syntax error in query string.

kInvalidRegistrationIDErr

3102 Invalid registration ID was passed.

kNotLoggedOnErr

3106 Client is currently not logged on to any server.

Notes

Each element in the hitList parameter in the final reply is a Pascal string.

32 Chapter 2 / Apple Events Application Programming Interface

Get Article Text

The Get Article Text Apple event retrieves the text of an article whose ID
and source ID are specified. Your application can retrieve a portion of the
text by specifying its start offset and length; however, the length cannot
exceed 30,000 bytes.

Request

Event Class: kAppleSearchRequest (bgrt)

Event ID: kAEASGetArticleText (gatx)

Parameter: registrationID

Type: long
Size: 4
Keyword: keyASRegistrationID (btid)
Comment: registration ID

userRefCon

Type: long
Size: 4
Keyword: keyASUserRefCon (rfcn)
Comment: for the requester’s own use; optional

sourceID

Type: long
Size: 4
Keyword: keyASSourceID (isid)
Comment: ID of source to which this article belongs

searchSessionID

Type: long
Size: 4
Keyword: keyASSearchSessionID (seid)
Comment: ID of search session in which this article was
found

articleID

Type: long
Size: 4
Keyword: keyASArticleID (arid)
Comment: ID of article to be returned

startOffset

Type: long
Size: 4
Keyword: keyASStartOffset (ofst)
Comment: byte offset from which to start

Apple event API calls 33

textLength

Type: long
Size: 4
Keyword: keyASMaxLength (mlen)
Comment: number of bytes to be returned (must be between 1
and 30,000 inclusive); if you need more than 30,000 bytes,
you must make another request

Reply

Event Class: kCoreEventClass (aevt)

Event ID: kAEAnswer (ansr)

Parameter: error

Type: short
Size: 2
Keyword: keyErrorNumber (errn)
Comment: request was unsuccessful if not 0

userRefCon

Type: long
Size: 4
Keyword: keyASUserRefCon (rfcn)
Comment: copied from request; if missing from the request,
returned as 0

articleLength

Type: long
Size: 4
Keyword: keyASArticleLength (atln)
Comment: number of bytes returned

articleText

Type: char
Size: variable
Keyword: keyASArticleText (atxt)
Comment: text returned

Result Codes

noErr 0 The request was completed successfully.

kInvalidSourceIDErr

1006 Information source ID passed was invalid.

kInvalidArticleIDErr

1007 Article ID passed was invalid.

kInvalidTextBoundErr

1022 Start offset value or text length specified is out
of range.

34 Chapter 2 / Apple Events Application Programming Interface

kFileModSinceIndexErr

1033 The information requested could not be retrieved
because the file has been modified since the last
index time.

kInvalidRegistrationIDErr

3102 Invalid registration ID was passed.

kNotLoggedOnErr

3106 Client is currently not logged on to any server.

Get Article Info

The Get Article Info Apple event obtains an article’s modification date,
title, and size.

Request

Event Class: kAppleSearchRequest (bgrt)

Event ID: kAEASGetArticleInfo (gair)

Parameter: registrationID

Type: long
Size: 4
Keyword: keyASRegistrationID (btid)
Comment: registration ID

userRefCon

Type: long
Size: 4
Keyword: keyASUserRefCon (rfcn)
Comment: for the requester’s own use; optional

infosourceID

Type: long
Size: 4
Keyword: keyASSourceID (isid)
Comment: ID of source to which this article belongs

articleID

Type: long
Size: 4
Keyword: keyASArticleID (arid)
Comment: ID of article desired

Reply

Event Class: kCoreEventClass (aevt)

Event ID: kAEAnswer (ansr)

Apple event API calls 35

Parameter: error

Type: short
Size: 2
Keyword: keyErrorNumber (errn)
Comment: request was unsuccessful if not 0

userRefCon

Type: long
Size: 4
Keyword: keyASUserRefCon (rfcn)
Comment: copied from request; if missing from the request,
returned as 0

modDate

Type: long
Size: 4
Keyword: keyASEarliestModDate (dato)
Comment: the modification date of the article

title

Type: char
Size: variable
Keyword: keyASTitle (ttle)
Comment: article title

articleLengt

Type: long
Size: 4
Keyword: keyASArticleLength (atln)
Comment: size of the article in bytes

Result Codes

noErr 0 The request was completed successfully.

kInvalidSourceIDErr

1006 Information source ID passed was invalid.

kInvalidArticleIDErr

1007 Article ID passed was invalid.

kFileModSinceIndexErr

1033 The information requested could not be retrieved
because the file has been modified since the last
index time.

kInvalidRegistrationIDErr

3102 Invalid registration ID was passed.

kNotLoggedOnErr

3106 Client is currently not logged on to any server.

36 Chapter 2 / Apple Events Application Programming Interface

Get Article Matches

The Get Article Matches Apple event retrieves match terms for an article
whose ID and source ID are specified. (This retrieval does not happen in
the case of WAIS searches.)

Request

Event Class: kAppleSearchRequest (bgrt)

Event ID: kAEASGetArticleMatches (gamt)

Parameter: registrationID

Type: long
Size: 4
Keyword: keyASRegistrationID (btid)
Comment: registration ID

userRefCon

Type: long
Size: 4
Keyword: keyASUserRefCon (rfcn)
Comment: for the requester’s own use; optional

infosourceID

Type: long
Size: 4
Keyword: keyASSourceID (isid)
Comment: ID of source to which this article belongs

searchSessionID

Type: long
Size: 4
Keyword: keyASSearchSessionID (seid)
Comment: ID of the search session from which this article
ID was returned; ID obtained from the Open Search
Session call

articleID

Type: long
Size: 4
Keyword: keyASArticleID (arid)
Comment: ID of the article from which to retrieve matches

startOffset

Type: long
Size: 4
Keyword: keyASStartOffset (ofst)
Comment: number of bytes from the beginning of the
article from which you want to get matches

Apple event API calls 37

maximumLength

Type: long
Size: 4
Keyword: keyASMaxLength (mlen)
Comment: must be less than or equal to 30,000; if you want
more, you need to make another request

Reply

Event Class: kCoreEventClass (aevt)

Event ID: kAEAnswer (ansr)

Parameter: error

Type: short
Size: 2
Keyword: keyErrorNumber (errn)
Comment: request was unsuccessful if not 0

userRefCon

Type: long
Size: 4
Keyword: keyASUserRefCon (rfcn)
Comment: copied from request; if missing from the request,
returned as 0

matchTerms

Type: list
Size: variable
Keyword: keyASTermList (tlst)
Comment: list of 8-byte offset/length pair

Result Codes

noErr 0 The request was completed successfully.

kInvalidSourceIDErr

1006 Information source ID passed was invalid.

kInvalidArticleIDErr

1007 Article ID passed was invalid.

kInvalidTextBoundErr

1022 Start offset value or text length specified is out
of range.

kInvalidSearchSessionIDErr

1028 Search session ID passed was invalid.

kFileModSinceIndexErr

1033 The information requested could not be retrieved
because the file has been modified since the last
index time.

38 Chapter 2 / Apple Events Application Programming Interface

kInvalidRegistrationIDErr

3102 Invalid registration ID was passed.

kNotLoggedOnErr

3106 Client is currently not logged on to any server.

Notes

Each element in the matchTerms parameter in the final reply is a pair of
long integers. The first is the offset from the beginning of the article where
the matched term starts, and the second is the length of that term in bytes.

Add Reporter

The Add Reporter Apple event adds a new reporter to the currently
connected server.

Request

Event Class: kAppleSearchRequest (bgrt)

Event ID: kAEASAddReporter (arpt)

Parameter: registrationID

Type: long
Size: 4
Keyword: keyASRegistrationID (btid)
Comment: registration ID

userRefCon

Type: long
Size: 4
Keyword: keyASUserRefCon (rfcn)
Comment: for the requester’s own use; optional

reporterName

Type: char
Size: variable
Keyword: keyASReporterName (rpnm)
Comment: name must be 20 bytes or less

queryString

Type: char
Size: variable
Keyword: keyASQueryString (qrey)
Comment: search query

minimumRank

Type: long
Size: 4
Keyword: keyASMinimumRank (mino)
Comment: must be between 1 and 5 inclusive

Apple event API calls 39

maximumHits

Type: long
Size: 4
Keyword: keyASMaximumHits (maxo)
Comment: must be between 1 and 30,000 inclusive

earliestModDate

Type: long
Size: 4
Keyword: keyASEarliestModDate (dato)
Comment: the earliest modification date for articles to be
returned; this number is the difference in seconds between
the current date and 12:00 midnight, January 1, 2000

earliestIndexDate

Type: long
Size: 4
Keyword: keyASEarliestIndexDate (idto)
Comment: pass 0 in this field

deliveryDir

Type: alias
Size: variable
Keyword: keyASDeliveryDir (dldd)
Comment: alias record of a directory to which scheduled
search results should be delivered

deliveryDays

Type: long
Size: 4
Keyword: keyASDeliveryDays (dldy)
Comment: days of the week to deliver scheduled
search result

deliveryTime

Type: long
Size: 4
Keyword: keyASDeliveryTime (dldt)
Comment: scheduled search delivery time

deliveryFlags

Type: long
Size: 4
Keyword: keyASDeliveryFlags (dlfl)
Comment: set bit 0 to 1 if this scheduled search is active

40 Chapter 2 / Apple Events Application Programming Interface

infoSourcesIDList

Type: list
Size: variable
Keyword: keyASSourceIDList (isil)
Comment: list of source IDs

Reply

Event Class: kCoreEventClass (aevt)

Event ID: kAEAnswer (ansr)

Parameter: error

Type: short
Size: 2
Keyword: keyErrorNumber (errn)
Comment: request was unsuccessful if not 0

userRefCon

Type: long
Size: 4
Keyword: keyASUserRefCon (rfcn)
Comment: copied from request; if missing from the request,
returned as 0

reporterID

Type: long
Size: 4
Keyword: keyASReporterID (rpid)
Comment: ID of the reporter that was added

Result Codes

noErr 0 The request was completed successfully.

kInvalidSourceIDErr

1006 Information source ID passed was invalid.

kDuplicateObjectNameErr

1014 Reporter by that name already exists.

kQueryMissingStringErr

1017 Query length was specified but the string pointer was
empty or length was 0.

kQueryLengthRangeErr

1018 Query length is out of range.

kMinRankRangeErr

1019 Minimum rank search option value is out of range.

kMaxHitsRangeErr

1020 Maximum hits search option value is out of range.

Apple event API calls 41

kInvalidObjectNameErr

1025 Reporter name is invalid or missing.

kInvalidObjectDataErr

1026 Object data or data length is invalid.

kInvalidFlagErr

1027 deliveryFlags has an invalid flag set.

kInvalidSearchSessionIDErr

1028 Search session ID passed was invalid.

kInvalidRegistrationIDErr

3102 Invalid registration ID was passed.

kNotLoggedOnErr

3106 Client is currently not logged on to any server.

kInvalidDeliveryDaysErr

3407 Invalid delivery days were specified.

kInvalidDeliveryTimeErr

3408 Invalid delivery time was specified.

Notes

The deliveryDays field specifies the days of the week on which the
scheduled search result should be delivered. It is a long integer, but only
the lowest 7 bits are used. Bit assignments are as follows:

bit 0 = Sunday

bit 1 = Monday

bit 2 = Tuesday

bit 3 = Wednesday

bit 4 = Thursday

bit 5 = Friday

bit 6 = Saturday

To specify every day of the week, set all of the bits ($007F).

The deliveryTime field specifies what time the scheduled search should
be delivered. The time is expressed in the number of seconds since
midnight. For example, if the delivery time is 1:10:00 A.M., the value of the
field should be 4200:

(1 x 60 x 60) + (10 x 60) = 4200

All other bits in the deliveryTime field are reserved for future use
by Apple.

42 Chapter 2 / Apple Events Application Programming Interface

Modify Reporter

The Modify Reporter Apple event modifies an existing reporter on the
currently connected server.

Request

Event Class: kAppleSearchRequest (bgrt)

Event ID: kAEASModifyReporter (mrpt)

Parameter: registrationID

Type: long
Size: 4
Keyword: keyASRegistrationID (btid)
Comment: registration ID

userRefCon

Type: long
Size: 4
Keyword: keyASUserRefCon (rfcn)
Comment: for the requester’s own use; optional

reporterID

Type: long
Size: 4
Keyword: keyASReporterID (rpid)
Comment: ID of reporter to be modified

reporterName

Type: char
Size: variable
Keyword: keyASReporterName (rpnm)
Comment: name must be 20 bytes or less

queryString

Type: char
Size: variable
Keyword: keyASQueryString (qrey)
Comment: search query

minimumRank

Type: long
Size: 4
Keyword: keyASMinimumRank (mino)
Comment: must be between 1 and 5 inclusive

maximumHits

Type: long
Size: 4
Keyword: keyASMaximumHits (maxo)
Comment: must be between 1 and 30,000 inclusive

Apple event API calls 43

earliestModDate

Type: long
Size: 4
Keyword: keyASEarliestModDate (dato)
Comment: the earliest modification date for articles to be
returned; this number is the difference in seconds between
the current date and 12:00 midnight, January 1, 2000

earliestIndexDate

Type: long
Size: 4
Keyword: keyASEarliestIndexDate (idto)
Comment: pass 0 in this field

deliveryDir

Type: alias
Size: variable
Keyword: keyASDeliveryDir (dldd)
Comment: alias record of a directory to which scheduled
search results should be delivered

deliveryDays

Type: long
Size: 4
Keyword: keyASDeliveryDays (dldy)
Comment: days of the week on which to deliver scheduled
search result

deliveryTime

Type: long
Size: 4
Keyword: keyASDeliveryDays (dldy)
Comment: scheduled search delivery time

deliveryFlags

Type: long
Size: 4
Keyword: keyASDeliveryFlags (dlfl)
Comment: set bit 0 to 1 if this scheduled search is active

infoSourcesIDList

Type: list
Size: variable
Keyword: keyASSourceIDList (isil)
Comment: list of source IDs

Reply

Event Class: kCoreEventClass (aevt)

Event ID: kAEAnswer (ansr)

44 Chapter 2 / Apple Events Application Programming Interface

Parameter: error

Type: short
Size: 2
Keyword: keyErrorNumber (errn)
Comment: request was unsuccessful if not 0

userRefCon

Type: long
Size: 4
Keyword: keyASUserRefCon (rfcn)
Comment: copied from request; if missing from the request,
returned as 0

reporterID

Type: long
Size: 4
Keyword: keyASReporterID (rpid)
Comment: ID of the reporter that was modified

Result Codes

noErr 0 The request was completed successfully.

kInvalidSourceIDErr

1006 Information source ID passed was invalid.

kInvalidObjectIDErr

1010 Reporter ID passed was invalid.

kDuplicateObjectNameErr

1014 Reporter by that name already exists.

kQueryMissingStringErr

1017 Query length was specified but the string pointer was
empty or length was 0.

kQueryLengthRangeErr

1018 Query length is out of range.

kMinRankRangeErr

1019 Minimum rank search option value is out of range.

kMaxHitsRangeErr

1020 Maximum hits search option value is out of range.

kInvalidObjectNameErr

1025 Reporter name is invalid or missing.

kInvalidObjectDataErr

1026 Object data or data length is invalid.

kInvalidFlagErr

1027 deliveryFlags has an invalid flag set.

Apple event API calls 45

kInvalidSearchSessionIDErr

1028 Search session ID passed was invalid.

kInvalidRegistrationIDErr

3102 Invalid registration ID was passed.

kNotLoggedOnErr

3106 Client is currently not logged on to any server.

kDeliveryDirLengthErr

3405 Delivery directory length is out of range.

kInvalidDeliveryDaysErr

3407 Invalid delivery days were specified.

kInvalidDeliveryTimeErr

3408 Invalid delivery time was specified.

Notes

The deliveryDays field specifies the days of the week on which the
scheduled search result should be delivered. It is a long integer, but only
the lowest 7 bits are used. Bit assignments are as follows:

bit 0 = Sunday

bit 1 = Monday

bit 2 = Tuesday

bit 3 = Wednesday

bit 4 = Thursday

bit 5 = Friday

bit 6 = Saturday

To deliver every day of the week, set all of the bits ($007F).

The deliveryTime field specifies the time on which the scheduled search
should be delivered. The time is expressed in number of seconds since
midnight. For example, if the delivery time is 1:10:00 a.m., it should
be 4200:

(1 x 60 x 60) + (10 x 60) = 4200

All other bits in the deliveryTime field are reserved for future use
by Apple.

46 Chapter 2 / Apple Events Application Programming Interface

Get Reporter

The Get Reporter Apple event returns information about a reporter whose
ID is specified. The reporter must be on the currently connected server.

Request

Event Class: kAppleSearchRequest (bgrt)

Event ID: kAEASGetReporter (grpt)

Parameter: registrationID

Type: long
Size: 4
Keyword: keyASRegistrationID (btid)
Comment: registration ID

userRefCon

Type: long
Size: 4
Keyword: keyASUserRefCon (rfcn)
Comment: for the requester’s own use; optional

reporterID

Type: long
Size: 4
Keyword: keyASReporterID (rpid)
Comment: ID of reporter desired

Reply

Event Class: kCoreEventClass (aevt)

Event ID: kAEAnswer (ansr)

Parameter: error

Type: short
Size: 2
Keyword: keyErrorNumber (errn)
Comment: request was unsuccessful if not 0

userRefCon

Type: long
Size: 4
Keyword: keyASUserRefCon (rfcn)
Comment: copied from request; if missing from the request,
returned as 0

reporterID

Type: long
Size: 4
Keyword: keyASReporterID (rpid)
Comment: ID of reporter desired

Apple event API calls 47

reporterName

Type: char
Size: variable
Keyword: keyASReporterName (rpnm)
Comment: name of the reporter

queryString

Type: char
Size: variable
Keyword: keyASQueryString (qrey)
Comment: search query

minimumRank

Type: long
Size: 4
Keyword: keyASMinimumRank (mino)
Comment: minimum rank

maximumHits

Type: long
Size: 4
Keyword: keyASMaximumHits (maxo)
Comment: maximum number of hits to find

earliestModDate

Type: long
Size: 4
Keyword: keyASEarliestModDate (dato)
Comment: the earliest modification date for articles to be
found

earliestIndexDate

Type: long
Size: 4
Keyword: keyASEarliestIndexDate (idto)
Comment: pass 0 in this field

deliveryDir

Type: alias
Size: variable
Keyword: keyASDeliveryDir (dldd)
Comment: alias record of a directory to which scheduled
search results should be delivered

deliveryDays

Type: long
Size: 4
Keyword: keyASDeliveryDays (dldy)
Comment: days of the week on which the scheduled search
results are delivered

48 Chapter 2 / Apple Events Application Programming Interface

deliveryTime

Type: long
Size: 4
Keyword: keyASDeliveryDays (dldy)
Comment: time of scheduled search delivery

deliveryFlags

Type: long
Size: 4
Keyword: keyASDeliveryFlags (dlfl)
Comment: scheduled search is active if bit 0 is set

infoSourcesIDList

Type: list
Size: variable
Keyword: keyASSourceIDList (isil)
Comment: list of source IDs

Result Codes

noErr 0 The request was completed successfully.

kInvalidObjectIDErr

1010 Reporter ID passed was invalid.

kInvalidRegistrationIDErr

3102 Invalid registration ID was passed.

kNotLoggedOnErr

3106 Client is currently not logged on to any server.

Delete Reporter

The Delete Reporter Apple event deletes a reporter whose ID is specified.
The reporter must be on the currently connected server.

Request

Event Class: kAppleSearchRequest (bgrt)

Event ID: kAEASDeleteReporter (drpt)

Parameter: registrationID

Type: long
Size: 4
Keyword: keyASRegistrationID (btid)
Comment: registration ID

Apple event API calls 49

userRefCon

Type: long
Size: 4
Keyword: keyASUserRefCon (rfcn)
Comment: for the requester’s own use; optional

reporterID

Type: long
Size: 4
Keyword: keyASReporterID (rpid)
Comment: ID of the reporter to be deleted

Reply

Event Class: kCoreEventClass (aevt)

Event ID: kAEAnswer (ansr)

Parameter: error

Type: short
Size: 2
Keyword: keyErrorNumber (errn)
Comment: request was unsuccessful if not 0

userRefCon

Type: long
Size: 4
Keyword: keyASUserRefCon (rfcn)
Comment: copied from request; if missing from the request,
returned as 0

reporterID

Type: long
Size: 4
Keyword: keyASReporterID (rpid)
Comment: ID of the reporter that was deleted

Result Codes

noErr 0 The request was completed successfully.

kInvalidObjectIDErr

1010 Reporter ID passed was invalid.

kInvalidRegistrationIDErr

3102 Invalid registration ID was passed.

kNotLoggedOnErr

3106 Client is currently not logged on to any server.

50 Chapter 2 / Apple Events Application Programming Interface

Enumerate Reporters

The Enumerate Reporters Apple event lists all reporters that are on the
currently connected server and that belong to the user.

Request

Event Class: kAppleSearchRequest (bgrt)

Event ID: kAEASEnumerateReporters (erpt)

Parameter: registrationID

Type: long
Size: 4
Keyword: keyASRegistrationID (btid)
Comment: registration ID

userRefCon

Type: long
Size: 4
Keyword: keyASUserRefCon (rfcn)
Comment: for the requester’s own use; optional

Reply

Event Class: kCoreEventClass (aevt)

Event ID: kAEAnswer (ansr)

Parameter: error

Type: short
Size: 2
Keyword: keyErrorNumber (errn)
Comment: request was unsuccessful if not 0

userRefCon

Type: long
Size: 4
Keyword: keyASUserRefCon (rfcn)
Comment: copied from request; if missing from the request,
returned as 0

reporterList

Type: list
Size: variable
Keyword: keyASReporterList (ridl)
Comment: list of the ReporterInfoRecord structure

Apple event API calls 51

Result Codes

noErr 0 The request was completed successfully.

kInvalidRegistrationIDErr

3102 Invalid registration ID was passed.

kNotLoggedOnErr

3106 Client is currently not logged on to any server.

Notes

Each element in the reporterList parameter in the final reply is a block
of bytes that can be cast to the ReporterInfoRecord structure, which is
shown here. The first bit of the repFlags field is set if the scheduled
search is active.

struct ReporterInfoRecord {

long repID;

Str31 repName;

long repFlags;

};

Add DB Object

The Add DB Object Apple event adds a generic object containing any
custom data to the currently connected server’s object database.

Request

Event Class: kAppleSearchRequest (bgrt)

Event ID: kAEASAddDBObject (adbo)

Parameter: registrationID

Type: long
Size: 4
Keyword: keyASRegistrationID (btid)
Comment: registration ID

userRefCon

Type: long
Size: 4
Keyword: keyASUserRefCon (rfcn)
Comment: for the requester’s own use; optional

objectType

Type: long
Size: 4
Keyword: keyASDBObjectType (otyp)
Comment: type of the object

52 Chapter 2 / Apple Events Application Programming Interface

objectID

Type: long
Size: 4
Keyword: keyASDBObjectID (obid)
Comment: ID of the object; must be a positive integer and
unique per type

objectName

Type: char
Size: variable
Keyword: keyASDBObjectName (onam)
Comment: name must be 31 bytes or less

objectFlags

Type: long
Size: 4
Keyword: keyASDBObjectFlags (obfl)
Comment: object flags; can be used for any purpose

objectData

Type: wildcard
Size: variable
Keyword: keyASDBObjectData (odat)
Comment: object data; must be less than 30,000 bytes

Final Reply

Event Class: kCoreEventClass (aevt)

Event ID: kAEAnswer (ansr)

Parameter: error

Type: short
Size: 2
Keyword: keyErrorNumber (errn)
Comment: request was unsuccessful if not 0

userRefCon

Type: long
Size: 4
Keyword: keyASUserRefCon (rfcn)
Comment: copied from request; if missing from the request,
returned as 0

objectID

Type: long
Size: 4
Keyword: keyASDBObjectID (obid)
Comment: ID of the object

Apple event API calls 53

Result Codes

noErr 0 The request was completed successfully.

kInvalidObjectNameErr

1025 Reporter name is invalid or missing.

kInvalidObjectDataErr

1026 Object data or data length is invalid.

kInvalidRegistrationIDErr

3102 Invalid registration ID was passed.

kNotLoggedOnErr

3106 Client is currently not logged on to any server.

Modify DB Object

The Modify DB Object Apple event modifies a database object on the
currently connected server whose type and ID is specified.

Request

Event Class: kAppleSearchRequest (bgrt)

Event ID: kAEASModifyDBObject (mdbo)

Parameter: registrationID

Type: long
Size: 4
Keyword: keyASRegistrationID (btid)
Comment: registration ID

userRefCon

Type: long
Size: 4
Keyword: keyASUserRefCon (rfcn)
Comment: for the requester’s own use; optional

objectType

Type: long
Size: 4
Keyword: keyASDBObjectType (otyp)
Comment: type of the object

objectID

Type: long
Size: 4
Keyword: keyASDBObjectID (obid)
Comment: ID of the object to be modified

54 Chapter 2 / Apple Events Application Programming Interface

objectName

Type: char
Size: variable
Keyword: keyASDBObjectName (onam)
Comment: name must be 31 bytes or less

objectFlags

Type: long
Size: 4
Keyword: keyASDBObjectFlags (obfl)
Comment: object flags

objectData

Type: wildcard
Size: variable
Keyword: keyASDBObjectData (odat)
Comment: object data; must be less than 30,000 bytes

Reply

Event Class: kCoreEventClass (aevt)

Event ID: kAEAnswer (ansr)

Parameter: error

Type: short
Size: 2
Keyword: keyErrorNumber (errn)
Comment: request was unsuccessful if not 0

userRefCon

Type: long
Size: 4
Keyword: keyASUserRefCon (rfcn)
Comment: copied from request; if missing from the request,
returned as 0

objectID

Type: long
Size: 4
Keyword: keyASDBObjectID (obid)
Comment: ID of the object that was modified

Result Codes

noErr 0 The request was completed successfully.

kInvalidObjectNameErr

1025 Reporter name is invalid or missing.

kInvalidObjectDataErr

1026 Object data or data length is invalid.

Apple event API calls 55

kInvalidRegistrationIDErr

3102 Invalid registration ID was passed.

kNotLoggedOnErr

3106 Client is currently not logged on to any server.

Get DB Object

The Get DB Object Apple event returns information about a specific
database object on the currently connected server.

Request

Event Class: kAppleSearchRequest (bgrt)

Event ID: kAEASGetDBObject (gdbo)

Parameter: registrationID

Type: long
Size: 4
Keyword: keyASRegistrationID (btid)
Comment: registration ID

userRefCon

Type: long
Size: 4
Keyword: keyASUserRefCon (rfcn)
Comment: for the requester’s own use; optional

objectType

Type: long
Size: 4
Keyword: keyASDBObjectType (otyp)
Comment: type of the object

objectID

Type: long
Size: 4
Keyword: keyASDBObjectID (obid)
Comment: ID of the object desired

Reply

Event Class: kCoreEventClass (aevt)

Event ID: kAEAnswer (ansr)

Parameter: error

Type: short
Size: 2
Keyword: keyErrorNumber (errn)
Comment: request was unsuccessful if not 0

56 Chapter 2 / Apple Events Application Programming Interface

userRefCon

Type: long
Size: 4
Keyword: keyASUserRefCon (rfcn)
Comment: copied from request; if missing from the request,
returned as 0

objectType

Type: long
Size: 4
Keyword: keyASDBObjectType (otyp)
Comment: type of the object

objectID

Type: long
Size: 4
Keyword: keyASDBObjectID (obid)
Comment: ID of the object

objectName

Type: char
Size: variable
Keyword: keyASDBObjectName (onam)
Comment: name must be 31 bytes or less

objectFlags

Type: long
Size: 4
Keyword: keyASDBObjectFlags (obfl)
Comment: object flags

objectData

Type: wildcard
Size: variable
Keyword: keyASDBObjectData (odat)
Comment: object data; must be less than 30,000 bytes

Result Codes

noErr 0 The request was completed successfully.

kInvalidObjectIDErr

1010 Reporter ID passed was invalid.

kInvalidRegistrationIDErr

3102 Invalid registration ID was passed.

kNotLoggedOnErr

3106 Client is currently not logged on to any server.

Apple event API calls 57

Delete DB Object

The Delete DB Object Apple event deletes a database object on the
currently connected server.

Request

Event Class: kAppleSearchRequest (bgrt)

Event ID: kAEASDeleteDBObject (ddbo)

Parameter: registrationID

Type: long
Size: 4
Keyword: keyASRegistrationID (btid)
Comment: registration ID

userRefCon

Type: long
Size: 4
Keyword: keyASUserRefCon (rfcn)
Comment: for the requester’s own use; optional

objectType

Type: long
Size: 4
Keyword: keyASDBObjectType (otyp)
Comment: type of the object

objectID

Type: long
Size: 4
Keyword: keyASDBObjectID (obid)
Comment: ID of the object to be deleted

Reply

Event Class: kCoreEventClass (aevt)

Event ID: kAEAnswer (ansr)

Parameter: error

Type: short
Size: 2
Keyword: keyErrorNumber (errn)
Comment: request was unsuccessful if not 0

userRefCon

Type: long
Size: 4
Keyword: keyASUserRefCon (rfcn)
Comment: copied from request; if missing from the request,
returned as 0

58 Chapter 2 / Apple Events Application Programming Interface

objectID

Type: long
Size: 4
Keyword: keyASDBObjectID (obid)
Comment: ID of the object that was deleted

Result Codes

noErr 0 The request was completed successfully.

kInvalidObjectIDErr
1010 Reporter ID passed was invalid.

kInvalidRegistrationIDErr
3102 Invalid registration ID was passed.

kNotLoggedOnErr
3106 Client is currently not logged on to any server.

Enumerate DB Objects

The Enumerate DB Objects Apple event lists all database objects of a
specific type on the currently connected server.

Request

Event Class: kAppleSearchRequest (bgrt)

Event ID: kAEASEnumerateDBObjects (edbo)

Parameter: registrationID

Type: long
Size: 4
Keyword: keyASRegistrationID (btid)
Comment: registration ID

userRefCon

Type: long
Size: 4
Keyword: keyASUserRefCon (rfcn)
Comment: for the requester’s own use; optional

objectType

Type: long
Size: 4
Keyword: keyASDBObjectType (otyp)
Comment: type of the objects to be enumerated

Apple event API calls 59

Reply

Event Class: kCoreEventClass (aevt)

Event ID: kAEAnswer (ansr)

Parameter: error

Type: short
Size: 2
Keyword: keyErrorNumber (errn)
Comment: request was unsuccessful if not 0

userRefCon

Type: long
Size: 4
Keyword: keyASUserRefCon (rfcn)
Comment: copied from request; if missing from the request,
returned as 0

objectType

Type: long
Size: 4
Keyword: keyASDBObjectType (otyp)
Comment: type of the objects

objectList

Type: list
Size: variable
Keyword: obls
Comment: list of DBObjectRecord structures

Result Codes

noErr 0 The request was completed successfully.

kInvalidRegistrationIDErr

3102 Invalid registration ID was passed.

kNotLoggedOnErr

3106 Client is currently not logged on to any server.

Notes

Each element in the objectList parameter in the final reply is a block of
bytes that can be cast to the DBObjectRecord structure, which is
shown here.

struct DBObjectRecord {

long objID;

Str31 objName;

long objFlags;

};

60 Chapter 2 / Apple Events Application Programming Interface

Import Reporter

The Import Reporter Apple event adds a new reporter to the currently
connected server from a reporter file. A new reporter ID is assigned to the
reporter and is returned in the final reply.

Request

Event Class: kAppleSearchRequest (bgrt)

Event ID: kAEASImportReporter (irpt)

Parameter: registrationID

Type: long
Size: 4
Keyword: keyASRegistrationID (btid)
Comment: registration ID

userRefCon

Type: long
Size: 4
Keyword: keyASUserRefCon (rfcn)
Comment: for the requester’s own use; optional

sourcefile

Type: FSSpec
Size: 70
Keyword: keyASFileSpec (fspc)
Comment: reporter file from which the reporter should be
imported

Reply

Event Class: kCoreEventClass (aevt)

Event ID: kAEAnswer (ansr)

Parameter: error
Type: short
Size: 2
Keyword: keyErrorNumber (errn)
Comment: request was unsuccessful if not 0

userRefCon

Type: long
Size: 4
Keyword: keyASUserRefCon (rfcn)
Comment: copied from request; if missing from the request,
returned as 0

Apple event API calls 61

reporterID
Type: long
Size: 4
Keyword: keyASReporterID (rpid)
Comment: ID of the imported reporter

reporterName
Type: char
Size: variable
Keyword: keyASReporterName (rpnm)
Comment: name of the reporter

Result Codes

noErr 0 The request was completed successfully.

kInvalidRegistrationIDErr

3102 Invalid registration ID was passed.

kNotLoggedOnErr

3106 Client is currently not logged on to any server.

Export Reporter

The Export Reporter Apple event exports a specific reporter to a
reporter file.

Request

Event Class: kAppleSearchRequest (bgrt)

Event ID: kAEASExportReporter (xrpt)

Parameter: registrationID

Type: long
Size: 4
Keyword: keyASRegistrationID (btid)
Comment: registration ID

userRefCon

Type: long
Size: 4
Keyword: keyASUserRefCon (rfcn)
Comment: for the requester’s own use; optional

reporterID

Type: long
Size: 4
Keyword: keyASReporterID (rpid)
Comment: ID of the reporter to be exported

62 Chapter 2 / Apple Events Application Programming Interface

targetFile

Type: FSSpec
Size: 70
Keyword: keyASFileSpec (fspc)
Comment: specification of target reporter file

Reply

Event Class: kCoreEventClass (aevt)

Event ID: kAEAnswer (ansr)

Parameter: error

Type: short
Size: 2
Keyword: keyErrorNumber (errn)
Comment: an error if not 0

userRefCon

Type: long
Size: 4
Keyword: keyASUserRefCon (rfcn)
Comment: copied from request; if missing from the request,
returned as 0

Result Codes

noErr 0 The request was completed successfully.

kInvalidObjectIDErr

1010 Reporter ID passed was invalid.

kInvalidRegistrationIDErr

3102 Invalid registration ID was passed.

kNotLoggedOnErr

3106 Client is currently not logged on to any server.

Apple event API calls 63

Get Original File

The Get Original File Apple event copies the original file of an article or its
alias from the server to the local disk.

Request

Event Class: kAppleSearchRequest (bgrt)

Event ID: kAEASGetFile (cpfi)

Parameter: registrationID

Type: long
Size: 4
Keyword: keyASRegistrationID (btid)
Comment: registration ID

userRefCon

Type: long
Size: 4
Keyword: keyASUserRefCon (rfcn)
Comment: for the requester’s own use; optional

infoSourceID

Type: long
Size: 4
Keyword: keyASSourceID (isid)
Comment: ID of the source to which this file belongs

articleID

Type: long
Size: 4
Keyword: keyASArticleID (arid)
Comment: ID of the article whose original is to be retrieved

flags

Type: long
Size: 4
Keyword: keyASGetOriginalFileFlags (gofl)
Comment: set bit 0 if original is wanted, or set bit 1 if alias is
wanted

destination

Type: FSSpec
Size: 70
Keyword: keyASFileSpec (fspc)
Comment: needed only if flag bit 0 is set

64 Chapter 2 / Apple Events Application Programming Interface

Reply

Event Class: kCoreEventClass (aevt)

Event ID: kAEAnswer (ansr)

Parameter: error

Type: short
Size: 2
Keyword: keyErrorNumber (errn)
Comment: request was unsuccessful if not 0

userRefCon

Type: long
Size: 4
Keyword: keyASUserRefCon (rfcn)
Comment: copied from request; if missing from the request,
returned as 0

alias

Type: aliasSize: variable
Keyword: keyASAliasRecord (oals)
Comment: alias to original; returned only if flag bit 1 is set

Result Codes

noErr 0 The request was completed successfully.

kInvalidSourceIDErr

1006 Information source ID passed was invalid.

kInvalidArticleIDErr

1007 Article ID passed was invalid.

kInvalidFlagErr

1027 keyAsGetOriginalFileFlags has an invalid
flag set.

kInvalidRegistrationIDErr

3102 Invalid registration ID was passed.

kNotLoggedOnErr

3106 Client is currently not logged on to any server.

Apple event API calls 65

3 C Library Application
Programming Interface

This chapter describes the C Library application programming interface
(API) function calls provided by AppleSearch. It describes how to use the
API and then gives a detailed specification for each C function call.

IMPORTANT The AppleSearch Client Library communicates with the
AppleSearch server using the Program-to-Program Communications
(PPC) protocol. In future releases of AppleSearch, another protocol may be
used as a client/server communication mechanism. If another protocol is
used, you will need to rebuild your software with the new client library.
This is one reason you may want to create your client application by using
Apple events.

Making a C Library API function call

The AppleSearch API function calls are normal C functions that you can
link to and call from your application. Most of the function calls must be
made asynchronously, and they all have a similar calling convention. They
take the following two parameters:

A pointer to a parameter block—each parameter block differs from
function to function, but the first four fields, called
ASParamBlockHeader, are the same in all parameters.

A Boolean parameter—should always pass true.

Since they are always asynchronous, the functions return values, of type
ASErr, immediately to your calling code before sending the request to the
server. If this error code is nonzero, it usually means that your application
passed one or more invalid values in the parameter block, and the function
doesn’t perform any further operations. If the error code is 0, the function
performs the task—usually sending a request to the server—and calls your
completion routine when a reply from the server is returned.

Every AppleSearch API parameter block uses the following parameter
block header:

#define ASParamBlockHeader

long userRefCon;

ASErr error;

ASProcPtr completionProc;

long registrationID;

The userRefCon field is for your own use. It remains unchanged
during and after the execution of the call.

The error field returns the error code from the execution. If the
function was executed successfully, it should contain 0. Otherwise, it
contains either an AppleSearch-specific or a Macintosh Toolbox or
Macintosh Operating System error code. AppleSearch-specific errors for
a particular call are listed in each call section.

If you want to be notified when the execution is complete (which is
almost always the case), you should pass an address of a function to the
completionProc field.

You must specify your registration ID in the registrationID field.
You obtain your registration ID by calling the ASRegister function
before making any other calls (except ASInitialize).

Since the AppleSearch Client Library extracts all necessary information
from your parameter block while preparing to process your request, you
are free to dispose of the parameter block once you make an API call, even
before the call is completed and your completion routine is called.

68 Chapter 3 / C Library Application Programming Interface

Completion routines

Your completion routine is called by the AppleSearch Client Library with
two parameters. The first parameter is of type char*, which is actually a
parameter block pointer. You should cast it to an appropriate parameter
block pointer. For example, a pointer of type char* passed to a
completion routine called from ASAddReporter should be cast to type
ASReporterPBPtr. This parameter block is a copy of the parameter block
originally supplied by your code.

Note: Do not dispose of this pointer. It is disposed of automatically by the
AppleSearch Client Library after your completion routine is executed.

The second parameter, of type long, is the identifier value that was passed
in the ASRegister function call.

The syntax of the completion routine is as follows:

ASErr MyCompletionProc(char* pb, long identifier);

Note: Completion routines have to be universal proc pointers. This means
that they have to be instantiated (or created) using the NewASUPP macro
defined in the ASClient.h header file. For more information, see Making
the Leap to Power PC (“Mixed Mode Manager,” “Universal Interfaces,”
and “Universal ProcPtrs”), in the Macintosh On-RISC Software
Development Kit.

Errors

Each function can return a number of different error codes. There are two
places where the caller should check for errors. First, all of the API
functions return a synchronous error code. If the error code is not 0, an
error occurred while preparing to execute the function, and the
asynchronous portion will not be executed. For example, if you pass an
invalid registration ID to the ASSearch function call, ASSearch catches it
during its parameter-checking and returns an appropriate error code. In
this case, a query to the server is not made, and therefore the completion
routine will not be called.

The second type of error is returned by the server. Errors of this type are
returned in the error field of the parameter block, which your software
must check in its completion routine. For example, making an
ASGetReporter function call with a reporter ID that doesn’t exist causes the
server to return an appropriate error code to the completion routine in the
error field of the parameter block.

Errors 69

Synchronous errors—those generated by the client code before accessing
the server—are in the range 3,000 through 3,999, and asynchronous errors
returned by the server are in the range 1,000 through 1,999. You may also
get errors in the range 2,000 through 2,999 from the PPC library, which
provides communications between the client and server. In addition,
Macintosh Toolbox or Macintosh Operating System errors, such as out-of-
memory and file-not-found errors, may be returned in either place. These
Macintosh Toolbox and Operating System errors are always identified by a
negative number.

Initializing the AppleSearch Client Library and connecting to a server

Before making any other function calls, your application must initialize the
AppleSearch Client Library by calling ASInitialize. You then need to
register your application to the library by calling ASRegister. You should
pass 0 to the identifier field of the ASRegister parameter block.

Your application must then make a connection to an AppleSearch server.
You can make the connection by calling either ASLogon with the
autoLogon flag set or ASSelectServer followed by ASLogon. The
ASLogon call with the autoLogon flag set automatically causes the
PPCBrowser dialog box to appear, which prompts the user to select a server.
The server must then authenticate that user. If the log-on operation is
successful, the call returns the name of the server and a flag indicating
whether the user logged on as a guest or registered user. Error codes are
returned only if the call is unsuccessful.

Building your application

When building your application, you must include three header files—
ASClient.h, AppleSearchErrors.h, and AppleSearchAPI.h—and link
ASClientLib.o. You must also use the MPW rez command to compile
ASClient.r into your application. The following makefile example
illustrates how your application might be built:

File: MyApplication.make

#

Contains: A sample makefile for a custom AppleSearch

client application.

#

Note: Be sure to include all appropriate header files in your

source; place the AppleSearchClientLib.o object file in your

object directory and place the AppleSearchClientLib.r file

in your build directory

70 Chapter 3 / C Library Application Programming Interface

----Variables----

AppName=MyApplication

AppCreator= 'myap'

AppType= 'APPL'

SrcDir= :Sources:

HdrDir= :Headers:

ObjDir= :Objects:

SymOption= full

MacsBugOption= full

CompileOptions= -mf -sym {SymOption} -mbg {MacsBugOption} -i

“{HdrDir}”

RezOptions= -i “{HdrDir}”

LinkOptions= -mf -sym {SymOption}

xC = {C} {CompileOptions}

xCPlus = CPlus {CompileOptions}

Libs= “{Libraries}”Runtime.o ∂
“{Libraries}”Interface.o

CLibs= “{CLibraries}”CPlusLib.o ∂
“{CLibraries}”StdCLib.o

OtherLibs= “{ObjDir}”ASClientLib.o

----C++----

Main application components

“{ObjDir}”MyApplication.cp.o ƒ “{SrcDir}”MyApplication.cp ∂
“{HdrDir}”MyApplication.h

CPlus “{SrcDir}”MyApplication.cp -o “{ObjDir}” {CompileOptions}

----Objects List----

OBJFiles= “{ObjDir}”MyApplication.cp.o

----Link & Rez----

“{AppName}” ƒ {OBJFiles} {OtherLibs} {Libs} {CLibs} “{AppName}”.r

Rez {RezOptions} “{AppName}”.r “ASClient.r” -a -o “{AppName}”

Link -t {AppType} -c {AppCreator} -o “{AppName}” {LinkOptions}

∂
{OBJFiles}∂
{OtherLibs}∂
{Libs} {PLibs} {CLibs}

Building your application 71

C Library API calls

This section specifies in detail each C Library API function call.

ASInitialize

The ASInitialize function call initializes internal globals and creates several
objects used internally. Your application’s initialization code must call this
function once. It should be called before any other API function calls
are made.

Syntax

void ASInitialize (void);

ASQuit

The ASQuit function call must be called by your application right before it
quits. This function call must be called after your application has logged off
the server and has unregistered itself from the AppleSearch Client Library.
The call closes the open PPC ports and performs other cleanup tasks.

Syntax

void ASQuit (void);

ASDoIdle

The ASDoIdle function call sends requests in the queue, checks server
responses, and checks for the update delivery time. Your application should
call this function from the main event loop. Any function that performs a
lengthy operation should also call it.

Syntax

ASErr ASDoIdle (void);

72 Chapter 3 / C Library Application Programming Interface

ASRegister

The ASRegister function call registers your application to the library
before making any other call (except ASInitialize). The identifier
parameter must be 0.

Syntax

ASErr ASRegister (ASRegisterPBPtr pb);

struct ASRegisterPB {

ASParamBlockHeader

long identifier;

};

typedef ASRegisterPB ASRegisterPB , *ASRegisterPBPtr;

Parameters

userRefCon This field remains unchanged; for the caller’s
private use.

error Error code; returns 0 if the function was executed
successfully.

completionProc

This field is not used by ASRegister since it is a
synchronous call.

registrationID

A registration ID is returned.

identifier You must pass 0 in this field.

Errors Returned

kMaxRegisteredErr

3101 There is already a maximum number of applications
registered to the Library.

Notes

If the update generation code is present, it registers itself to the library with
an identifier of –1. Other than that, only one registration is allowed.

C Library API calls 73

ASUnregister

The ASUnregister function call unregisters your application when it no
longer needs library services. Call ASLogoff to be sure that your
application is already disconnected from the server.

Syntax

ASErr ASUnregister (ASRegisterPBPtr pb);

struct ASRegisterPB {

ASParamBlockHeader

long identifier;

};

typedef ASRegisterPB ASRegisterPB , *ASRegisterPB Ptr;

Parameters

userRefCon This field remains unchanged; for the caller’s
private use.

error Error code; returns 0 if the function was
executed successfully.

completionProc

This field is not used by ASUnregister since
it is a synchronous call.

registrationID

Pass your registration ID.

identifier This field is not used by ASUnregister.

Errors Returned

kInvalidRegistrationIDErr

3102 Invalid registration ID was passed.

74 Chapter 3 / C Library Application Programming Interface

ASSelectServer

The ASSelectServer function call displays the PPCBrowser dialog box,
which allows the user to select a server to connect to. This function call can
be used only if you are using the AppleSearch Client Library as the
foreground application. The information passed back by this function can
be used in the ASLogon parameter block to make a connection to a server.

Syntax

ASErr ASSelectServer (ASSelectServerPBPtr pb);

struct ASSelectServerPB {

ASParamBlockHeader

Ptr defaultServer;

unsigned long dataSize;

Ptr dataPtr;

};

typedef ASSelectServerPB ASSelectServerPB,

*ASSelectServerPBPtr;

Parameters

userRefCon This field remains unchanged; for the caller’s
private use.

error Error code; returns 0 if the function was executed
successfully.

completionProc

This field is not used by ASSelectServer since it is a
synchronous call.

registrationID

A registration ID.

defaultServer

Not currently used; should be set to nil.

dataSize If no error is returned, this field contains the size of
the

data pointed to by dataPtr.

dataPtr If no error is returned, this field points to a data
buffer created by the function; this field and the
dataSize field should be passed to the ASLogon call.

Errors Returned

kMaxRegisteredErr

3101 There is already a maximum number of applications
registered to the Library.

C Library API calls 75

Notes

Since this call displays a dialog box, it will fail if the application that makes
the call is a background-only application.

The memory allocated for dataPtr by the function is disposed of by the
ASLogon call. If your application is not passing the dataPtr to ASLogon,
you must dispose dataPtr by calling DisposePtr.

ASLogon

The ASLogon function call can be used in one of two ways:

Your application can make the call with the autoLogon flag set, which
causes the function to automatically display the PPCBrowser dialog box
and authenticate the user. The AppleSearch Client Library uses the
AppleSearch Authentication Extension to handle the user interaction.

Your application can call the ASSelectServer function call, which
displays the PPCBrowser dialog box, allowing the user to select a server
to connect to. The data size and data pointer returned by ASSelectServer
must be passed by your application into the ASLogon function call with
the autoLogon flag cleared. Since the function displays a dialog box,
you can use this method only if your application is running in the
foreground.

Syntax

ASErr ASLogon (ASLoginPBPtr pb);

struct ASLogonPB {

ASParamBlockHeader

unsigned long flags;

Ptr dataPtr;

unsigned long defaultUserNameLength;

char* defaultUserNameString;

unsigned long serverNameLength;

char* serverNameString

};

typedef ASLogonPB ASLogonPB, *ASLogonPBPtr;

Parameters

userRefCon This field remains unchanged; for the caller’s
private use.

error Error code; returns 0 if the function was executed
successfully.

completionProc

A pointer to your completion routine.

76 Chapter 3 / C Library Application Programming Interface

registrationID

Your application’s registration ID.

↔ flags Set bit 0 to set autoLogon; set bit 1 if you
want updates to be delivered automatically; bit 2 gets
set by the function if the user logged on to the server
as a guest.

dataSize If not autoLogon, then the dataSize field from the
ASSelectServer parameter block must be passed in
this field.

dataPtr If not autoLogon, then the dataPtr field from the
ASSelectServer parameter block must be passed in
this field.

defaultUseNameLength

If not autoLogon and you want to specify the
default log-on name in the authentication dialog box,
pass the length of the name in this field. If it is 0,
then the owner name from the Sharing Setup dialog
box is used.

defaultUserNameString

If not autoLogon and you want to specify the
default log-on name in the authentication dialog box,
pass a string in this field.

serverNameLength

The length of the server name.

serverNameString

The length of the server to which the user was
connected.

Errors Returned

kTransactionFailed

1005 Server search engine transaction failed.

kServerGoingDown

1009 Server is in the process of shutting down.

kNoSharingOnServer

1011 Server is not running AppleShare or file sharing.

kWrongProtocol

1012 Client is using the wrong protocol version.

kTooManyUsers

1015 The maximum number of users are already
logged on.

C Library API calls 77

kInvalidRegistrationIDErr

3102 Invalid registration ID was passed.

kAlreadyLoggedOnErr

3103 The client is already logged on to a server.

kLogOnCancelErr

3104 The user canceled the log-on operation in the
PPCBrowser or authentication dialog box.

Notes

If the autoLogon flag is set, this call launches the AppleSearch
Authentication Extension, which displays the PPCBrowser dialog box, starts
a PPC session, and sends the session information back to your application
by means of Apple events. Since it uses Apple events, your application’s
main event loops must handle high-level events. You should have code
similar to the following example in your source code:

HandleEvent(EventRecord& event)

{

OSErr err;

switch(event.what) {

case kHighLevelEvent:

err=AEProcessAppleEvent(&event);

break

case mouseDown:

.

.

.

}

}

The Apple event handler for the event sent back by the AppleSearch
Authentication Extension is installed by the AppleSearch Client Library
when your application calls ASInitialize.

An alternative way of logging on to a server without using the AppleSearch
Authentication Extension, and therefore any Apple events, is to call
ASSelectServer to select a server and then call ASLogon with values
returned by ASSelectServer to make a connection. This alternative method
can be used only if your application is running in the foreground (because
it displays a dialog box).

78 Chapter 3 / C Library Application Programming Interface

ASLogoff

The ASLogoff function call logs your application off the currently
connected server.

Syntax

ASErr ASLogoff (ASLogoffPBPtr pb);

struct ASLogoffPB {

ASParamBlockHeader

Boolean forceLogoff;

};

typedef ASLogoffPB ASLogoffPB , *ASLogoffPBPtr;

Parameters

userRefCon This field remains unchanged; for the caller’s
private use.

error Error code; returns 0 if the function was executed
successfully.

completionProc

This field is not used for ASLogoff.

registrationID

Your registration ID.

forceLogoff

Set this bit to force log-off regardless of the
registration ID passed.

Errors Returned

kSessionIDNotFound

1004 Client has attempted to log off with an invalid
session ID.

kTransactionFailed

1005 Server search engine transaction failed.

kInvalidRegistrationIDErr

3102 Invalid registration ID was passed.

kNotLoggedOnErr

3106 Client is currently not logged on to any server.

Notes

Your application should use this function to log off a server before making
the ASUnregister call.

C Library API calls 79

ASEnumerateSources

The ASEnumerateSources function call gets a list of information sources
available to the user. In the reply, Sources is an array of long integers,
which actually are pointers. There are as many pointers as the number of
information sources available, and each of them points to an
ASDBObjectInfo structure.

Syntax

ASErr ASGetInfoSources (ASEnumeratePBPtr pb);

struct ASEnumeratePB {

ASParamBlockHeader

long dbObjectType;

unsigned long numberOfDBObjects;

DBObjectInfoPtr dbObjectList;

};

typedef ASSearchSessionPB ASSearchSessionPB,

*ASSearchSessionPBPtr;

Parameters

userRefCon This field remains unchanged; for the caller’s
private use.

error Error code; returns 0 if the function was
executed successfully.

completionProc

A pointer to a completion routine.

registrationID

Your registration ID.

dbObjectType

This field is not used by ASEnumerateSources.

numberOfDBObjects

A number of information sources returned
in dbObjectList.

dbObjectList

An array of DBOjectInfo structures

Errors Returned

kTransactionFailed

1005 Server search engine transaction failed.

kServerGoingDown

1009 Server is in the process of shutting down.

80 Chapter 3 / C Library Application Programming Interface

kNoSharingOnServer

1011 Server is not running AppleShare or file sharing.

kOutOfMemoryNoObjectErr

3002 Not enough memory to create a request object.

kInvalidRegistrationIDErr

3102 Invalid registration ID was passed.

kNotLoggedOnErr

3106 Client is currently not logged on to any server.

kNoCompletionProcErr

3109 No completion routine pointer was specified.

Notes

Available information sources are returned in an array of DBObjectInfo
structure, which is as follows:

struct DBObjectInfo {

long dbObjectID;

long dbObjectFlags;

long dbObjectNameLength;

char* dbObjectNameString;

};

typedef DBObjectInfo DBObjectInfo, *DBObjectInfoPtr;

The highest byte of DBObjectFlags is used to indicate the type of
information source, as follows:

const Byte kASInfoSourceTypeNormal = 0;

const Byte kASInfoSourceTypeWAIS = 1;

The low 24 bits are used to indicate the capabilities of the information
source. Of the 24 bits, the lowest three bits are used:

Bit 0: canCopyOriginal

Bit 1: canDoMatchTerms

Bit 2: canDoCOW

ASOpenSearchSession

Your application must open a search request with the
ASOpenSearchSession function call before you can make a search request.
You then need to pass a search session ID, returned in its reply parameter
block, to any subsequent search calls. You also need to close the search
session when you no longer need it.

C Library API calls 81

Syntax

ASErr ASOpenSearchSession (ASSearchSessionPBPtr);

struct ASSearchSessionPB {

ASParamBlockHeader

long searchSessionID;

};

typedef ASSearchSessionPB ASSearchSessionPB,

*ASSearchSessionPBPtr;

Parameters

userRefCon This field remains unchanged; for the caller’s
private use.

error Error code; returns 0 if the function was executed
successfully.

completionProc

A pointer to a completion routine.

registrationID

You need to pass your registration ID in this field.

searchSessionID

The function returns a new search session ID in
this field.

Errors Returned

kTransactionFailed

1005 Server search engine transaction failed.

kServerGoingDown

1009 Server is in the process of shutting down.

kNoSharingOnServer

1011 Server is not running AppleShare or file sharing.

kOutOfMemoryNoObjectErr

3002 Not enough memory to create a request object.

kInvalidRegistrationIDErr

3102 Invalid registration ID was passed.

kNotLoggedOnErr

3106 Client is currently not logged on to any server.

kNoCompletionProcErr

3109 No completion routine pointer was specified.

82 Chapter 3 / C Library Application Programming Interface

Notes

Be sure to close the search session when you are done with it; keeping a
search session open consumes disk space on the server. Once you close a
search session, all search result information on the server is lost. Thus, you
will not be able to issue an ASGetArticleMatches request, which requires that
a search session from which the article was found be specified.

ASCloseSearchSession

The ASCloseSearchSession function call closes a previously opened search
session. You should always close search sessions when you no longer need
them.; doing so helps reduce the consumption of RAM and disk space on
the server.

Syntax

ASErr ASCloseSearchSession (ASSearchSessionPBPtr);

struct ASSearchSessionPB {

ASParamBlockHeader

long searchSessionID;

};

typedef ASSearchSessionPB ASSearchSessionPB,

*ASSearchSessionPBPtr;

Parameters

userRefCon This field remains unchanged; for the caller’s
private use.

error Error code; returns 0 if the function was executed
successfully.

completionProc

A pointer to a completion routine.

registrationID

You need to pass your registration ID in this field.

searchSessionID

Search session ID returned from
ASOpenSearchSession.

Errors Returned

kTransactionFailed

1005 Server search engine transaction failed.

kInvalidSearchSessionIDErr

1028 Search session ID passed was invalid.

C Library API calls 83

kOutOfMemoryNoObjectErr

3002 Not enough memory to create a request object.

kInvalidRegistrationIDErr

3102 Invalid registration ID was passed.

kNotLoggedOnErr

3106 Client is currently not logged on to any server.

ASSearch

The ASSearch function call initiates a new search with specified
parameters. Note that you can specify only one information source for
each search request.

Syntax

ASErr ASBeginSearch (ASSearchPBPtr pb);

struct ASSearchPB {

ASParamBlockHeader

long searchSessionID;

long sourceID;

unsigned long queryLength;

char* queryString;

unsigned long minimumRank;

unsigned long maximumHits;

long earliestModDate;

long searchType;

long searchID;

unsigned long numberOfHitsReturned;

unsigned long totalNumberOfHits;

ASHitInfoPtr* hitList;

};

typedef ASSearchPB ASSearchPB, *ASSearchPBPtr;

Parameters

userRefCon This field remains unchanged; for the caller’s
private use.

error Error code; returns 0 if the function was executed
successfully.

completionProc

A pointer to a completion routine.

registrationID

Pass your registration ID in this field.

84 Chapter 3 / C Library Application Programming Interface

searchSessionID

Search session ID returned from
ASOpenSearchSession.

sourceID ID of an information source to be searched.

queryLength Length of query string.

queryString A pointer to a buffer containing a query string; The
buffer must be less than 1000 characters and cannot
be empty.

minimumRank Minimum relevance rank required to be returned; it
must be between 1 and 5, inclusive.

maximumHits Maximum number of hits to be returned; it must be
between 1 and 30,000, inclusive.

earliestModDate

The earliest modification date an article must have
to be returned. This number is the difference in
seconds between the current date and 12:00
midnight, January 1, 2000.

searchType This field is reserved for future use.

searchID A search ID is returned in this field.

numberOfHitsReturned

The number of hits returned in the hitList field.

totalNumberOfHits

The total number of hits found by the server; it may
be different from numberOfHitsReturned, but is
always equal or greater.

hitList An array of pointers to ASHitPB structures.

Errors Returned

kTransactionFailed

1005 Server search engine transaction failed.

kInvalidSourceIDErr

1006 Information source ID passed was invalid.

kInvalidArticleIDErr

1007 Article ID passed was invalid.

kServerGoingDown

1009 Server is in the process of shutting down.

kNoSharingOnServer

1011 Server is not running AppleShare or file sharing.

C Library API calls 85

kQueryMissingStringErr

1017 Query length was specified, but the string pointer was
empty or length was 0.

kQueryLengthRangeErr

1018 Query length is out of range.

kMinRankRangeErr

1019 Minimum rank search option value is out of range.

kMaxHitRangeErr

1020 Maximum hits search option value is out of range.

kInvalidSearchSessionIDErr

1028 Search session ID passed was invalid.

kQuerySyntaxErr

1032 Syntax error in query string.

kInvalidRegistrationIDErr

3102 Invalid registration ID was passed.

kNotLoggedOnErr

3106 Client is currently not logged on to any server.

kNoCompletionProcErr

3109 No completion routine pointer was specified.

Notes

You must call ASOpenSearchSession before calling ASSearch. The result is
returned in a form of ASHitInfo. The hitList field of the parameter
block is a list of pointers to the following structure:

struct ASHitInfo {

long articleID;

long modDate;

unsigned long fileSize;

unsigned long rank;

unsigned long titleLength;

char* titleString;

};

typedef ASHitInfo ASHitInfo, *ASHitInfoPtr;

86 Chapter 3 / C Library Application Programming Interface

ASGetRelatedTerms

The ASGetRelatedTerms function call retrieves a list of co-occurring terms
for a particular term from an information source on the server.

Syntax

ASErr ASGetRelatedTerms (ASRelatedTermsPBPtr pb);

struct ASGetRelatedTermsPB {
ASParamBlockHeader
long sourceID;
unsigned long queryLength;
char* queryString;
unsigned long maximumTerms;
unsigned long numberOfTerms;
StringPtr* termList;

};
typedef ASGetRelatedTermsPB ASGetRelatedTermsPB,
*ASGetRelatedTermsPBPtr;

Parameters

userRefCon This field remains unchanged; for the caller’s
private use.

error Error code; returns 0 if the function was executed
successfully.

completionProc

A pointer to a completion routine.

registrationID

Pass your registration ID in this field.

sourceID Source ID to be used.

queryLength Length of the original term in bytes.

queryString Pointer to the original term to be expanded.

maximumTerms

The maximum number of terms to be returned.

numberOfTerms

Number of related terms returned.

termList An array of pointers to co-occurring terms in a
Pascal string.

C Library API calls 87

Errors Returned

kTransactionFailed

1005 Server search engine transaction failed.

kInvalidSourceID

1006 Information source ID passed was invalid.

kServerGoingDown

1009 Server is in the process of shutting down.

kNoSharingOnServer

1011 Server is not running AppleShare or file sharing.

kQueryMissingStringErr

1017 Query length was specified, but the string pointer was
empty or length was 0.

kQueryLengthRangeErr

1018 Query length is out of range.

kMaxTermsRangeErr

1021 Value specified in maximumTerms field is out of
range.

kQuerySyntaxErr

1032 Syntax error in query string.

kInvalidRegistrationIDErr

3102 Invalid registration ID was passed.

kNotLoggedOnErr

3106 Client is currently not logged on to any server.

kNoCompletionProcErr

3109 No completion routine pointer was specified.

Notes

You can specify only one source at a time.

88 Chapter 3 / C Library Application Programming Interface

ASGetArticleText

The ASGetArticleText function call retrieves the text of an article whose
information source ID and document ID are specified. Since this call allows
your application to retrieve only a portion of the text, you also need to
specify the start byte offset and the length of text wanted.

Syntax

ASErr ASGetArticleText (ASGetArticleTextPBPtr pb);

struct ASGetArticleTextPB {

ASParamBlockHeader

long searchSessionID;

long sourceID;

long articleID;

unsigned long startOffset;

unsigned long length;

Handle text;

};

typedef ASGetArticleTextPB ASGetArticleTextPB ,

*ASGetArticleTextPB Ptr;

Parameters

userRefCon This field remains unchanged; for the caller’s
private use.

error Error code; returns 0 if the function was executed
successfully.

completionProc

A pointer to a completion routine.

registrationID

Pass your registration ID in this field.

searchSessionID

ID of a search session in which this article was found;
use 0 if no session is open.

sourceID ID of a source to which this article belongs.

articleID ID of the article desired.

startOffset Byte offset from the beginning of the article.

length Pass the number of bytes wanted.

text A handle to the article text.

C Library API calls 89

Errors Returned

kTransactionFailed

1005 Server search engine transaction failed.

kInvalidSourceIDErr

1006 Information source ID passed was invalid.

kInvalidArticleIDErr

1007 Article ID passed was invalid.

kNoAccessPrivileges

1008 User tried to gain access to a file but lacked access
privileges for it.

kServerGoingDown

1009 Server is in the process of shutting down.

kNoSharingOnServer

1011 Server is not running AppleShare or file sharing.

kFileNotFound

1013 The article was not found on the server.

kInvalidTextBoundErr

1022 Start offset value or text length specified is out
of range.

kFileModSinceIndexErr

1033 The information requested could not be retrieved
because the file has been modified since the last
index time.

kInvalidRegistrationIDErr

3102 Invalid registration ID was passed.

kNotLoggedOnErr

3106 Client is currently not logged on
to any server.

kNoCompletionProcErr

3109 No completion routine pointer was specified.

90 Chapter 3 / C Library Application Programming Interface

ASGetArticleInfo

The ASGetArticleInfo function call retrieves information about an article,
returning the article’s modification date, title, and size.

Syntax

ASErr ASGetArticleInfo (ASGetArticleInfoPBPtr pb);

struct ASGetDocInfoPB {

ASParamBlockHeader

long sourceID;

long articleID;

long modDate;

unsigned long size;

unsigned long titleLength;

char*titleString;

};

Parameters

userRefCon This field remains unchanged; for the caller’s
private use.

error Error code; returns 0 if the function was executed
successfully.

completionProc

A pointer to a completion routine.

registrationID

Pass your registration ID in this field.

sourceID ID of a source to which this article belongs.

articleID ID of the article desired.

modDate The article’s modification date.

size Size of the article.

titleLength The length of the article title string.

titleString The article title.

Errors Returned

kTransactionFailed

1005 Server search engine transaction failed.

kInvalidSourceIDErr

1006 Information source ID passed was invalid.

kInvalidArticleIDErr

1007 Article ID passed was invalid.

C Library API calls 91

kNoAccessPrivileges

1008 User tried to gain access to a file but lacked access
privileges for it.

kServerGoingDown

1009 Server is in the process of shutting down.

kNoSharingOnServer

1011 Server is not running AppleShare or file sharing.

kFileNotFound

1013 The article was not found on the server.

kFileModSinceIndexErr

1033 The information requested could not be retrieved
because the file has been modified since the last
index time.

kInvalidRegistrationIDErr

3102 Invalid registration ID was passed.

kNotLoggedOnErr

3106 Client is currently not logged on to any server.

kNoCompletionProcErr

3109 No completion routine pointer was specified.

ASGetArticleMatches

The ASGetArticleMatches function call retrieves a set of long integer pairs
that identify the words in an article that matched the query. (This retrieval
does not happen in a WAIS search.) Since this call retrieves from only a
portion of the text, you need to specify the start byte offset and the length.

Syntax

ASErr ASGetArticleMatches (ASGetArticleMatchesPBPtr pb);

struct ASGetArticleMatchesPB{

ASParamBlockHeader

long searchSessionID;

long sourceID;

long articleID;

unsigned long startOffset;

unsigned long length;

unsigned long numberOfHiliteInfoRecs;

long* hiliteInfo;

};

typedef ASGetArticleMatchesPB ASGetArticleMatchesPB,

*ASGetArticleMatchesPBPtr;

92 Chapter 3 / C Library Application Programming Interface

Parameters

userRefCon This field remains unchanged; for the caller’s
private use.

error Error code; returns 0 if the function was executed
successfully.

completionProc

A pointer to a completion routine.

registrationID

Pass your registration ID in this field.

searchSessionID

ID of a search session in which this article was found.

sourceID ID of a source to which this article belongs.

articleID ID of the article desired.

startOffset Byte offset from the beginning of the article.

↔ length Pass the number of bytes wanted.

numberOfHiliteInfoRec

Number of matches returned.

hiliteInfo An array of matches in long integer pairs.

Errors Returned

kTransactionFailed

1005 Server search engine transaction failed.

kInvalidSourceIDErr

1006 Information source ID passed was invalid.

kInvalidArticleIDErr

1007 Article ID passed was invalid.

kNoAccessPrivileges

1008 User tried to gain access to a file but lacked access
privileges for it.

C Library API calls 93

kServerGoingDown

1009 Server is in the process of shutting down.

kNoSharingOnServer

1011 Server is not running AppleShare or file sharing.

kFileNotFound

1013 The article was not found on the server.

kInvalidTextBoundErr

1022 Start offset value or text length specified is out
of range.

kInvalidSearchSessionIDErr

1028 Search session ID passed was invalid.

kFileModSinceIndexErr

1033 The information requested could not be retrieved
because the file has been modified since the last
index time.

kInvalidRegistrationIDErr

3102 Invalid registration ID was passed.

kNotLoggedOnErr

3106 Client is currently not logged on to any server.

kNoCompletionProcErr

3109 No completion routine pointer was specified.

Notes

When the function completes, the HiliteInfo field of the parameter block
points to an array of the ASHiliteInfoRec structure as follows:

struct ASHiliteInfoRec {

unsigned long offset;

unsigned long length;

};

typedef ASHiliteInfoRec ASHiliteInfoRec,

*ASHiliteInfoRecPtr;

94 Chapter 3 / C Library Application Programming Interface

ASAddReporter

The ASAddReporter function call adds a new reporter to the server’s object
database.

Syntax

ASErr ASAddReporter(ASReporterPBPtr pb);

struct ASReporterPB {

ASParamBlockHeader

long reporterID;

unsigned long nameLength;

char* nameString;

unsigned long queryLength;

char* queryString;

unsigned long minimumRank;

unsigned long maximumHits;

long earliestModDate;

long earliestIndexDate;

unsigned long numberOfSources;

long* sourceList;

unsigned long deliveryDays;

unsigned long deliveryTime;

long deliveryFlags;

unsigned long deliveryDirLength;

AliasPtr deliveryDir;

};

typedef ASReporterPB ASReporterPB, *ASReporterPBPtr;

Parameters

userRefCon This field remains unchanged; for the caller’s
private use.

error Error code; returns 0 if the function was executed
successfully.

completionProc

A pointer to a completion routine.

registrationID

Pass your registration ID in this field.

↔ reporterID Specify the ID for this reporter; if it is 0, then the
library assigns an ID for you.

nameLength The length of the reporter name string.

nameString The reporter name.

C Library API calls 95

queryLength Length of the query in bytes.

queryString A null-terminated query string.

minimumRank Must be between 1 and 5, inclusive.

maximumHits Must be between 1 and 30,000, inclusive.

earliestModDate

The earliest modification date desired.

earliestIndexDate

Set this field to 0.

numberOfSources

The number of sources in sourceList.

sourceList A pointer to an array of source IDs.

deliveryDays

Days of the week on which to deliver scheduled
search results.

deliveryTime

Scheduled search delivery time.

deliveryFlags

Set bit 0 to 1 if this scheduled search is active.

deliveryDirLength

Number of bytes in deliveryDir.

deliveryDir An alias pointer of a directory to which scheduled
search results should be delivered.

Errors Returned

kInvalidRequestForGuest

1001 Guest is attempting to make a database request.

kInvalidRequestForGuest

1002 Client sent a nonexistent session ID.

kInvalidSourceIDErr

1006 Information source ID passed was invalid.

kServerGoingDown

1009 Server is in the process of shutting down.

kInvalidObjectIDErr

1010 Reporter ID was invalid.

kNoSharingOnServer

1011 Server isn’t running AppleShare or file sharing.

kDuplicateName

1014 A reporter by that name already exists.

96 Chapter 3 / C Library Application Programming Interface

kQueryMissingStringErr

1017 Query length was specified, but the string pointer was
empty or length was 0.

kQueryLengthRangeErr

1018 Query length is out of range.

kMinRankRangeErr

1019 Minimum rank search option value is out of range.

kMaxHitsRangeErr

1020 Maximum hits search option value is out of range.

kInvalidObjectNameErr

1025 Reporter name is invalid or missing.

kInvalidObjectDataErr

1026 Object data or data length is invalid.

kInvalidFlagErr

1027 deliveryFlags has an invalid flag set.

kInvalidRegistrationIDErr

3102 Invalid registration ID was passed.

kNotLoggedOnErr

3106 Client is currently not logged on to any server.

kNoCompletionProcErr

3109 No completion routine pointer was specified.

kInvalidDeliveryDaysErr

3407 Invalid delivery days were specified.

kInvalidDeliveryTimeErr

3408 Invalid delivery time was specified.

Notes

The deliveryDays field specifies the days of the week on which the
scheduled search result should be delivered. It is a long integer, but only
the lowest 7 bits are used. Bit assignments are as follows:

bit 0 = Sunday

bit 1 = Monday

bit 2 = Tuesday

bit 3 = Wednesday

bit 4 = Thursday

bit 5 = Friday

bit 6 = Saturday

C Library API calls 97

To deliver every day of the week, set all of the bits ($007F).

The deliveryTime field specifies the time when the scheduled search
should be delivered. The time is expressed in the number of seconds
since midnight. For example, if the delivery time is 1:10:00 A.M., it should
be 4200:

(1 x 60 x 60) + (10 x 60) = 4200

All other bits in the deliveryTime field are reserved for future use
by Apple.

ASModifyReporter

The ASModifyReporter function call modifies an already existing reporter
on the server’s object database.

Syntax

ASErr ASModifyReporter (ASReporterPBPtr pb);

struct ASReporterPB {

ASParamBlockHeader

long reporterID;

unsigned long nameLength;

char* nameString;

unsigned long queryLength;

char* queryString;

unsigned long minimumRank;

unsigned long maximumHits;

long earliestModDate;

long earliestIndexDate;

unsigned long numberOfSources;

long* sourceList;

unsigned long deliveryDays;

unsigned long deliveryTime;

long deliveryFlags;

unsigned long deliveryDirLength;

AliasPtr deliveryDir;

};

typedef ASReporterPB ASReporterPB, *ASReporterPBPtr;

98 Chapter 3 / C Library Application Programming Interface

Parameters

userRefCon This field remains unchanged; for the caller’s
private use.

error Error code; returns 0 if the function was executed
successfully.

completionProc

A pointer to a completion routine.

registrationID

Pass your registration ID in this field.

reporterID Specify the ID for this reporter; if it is 0, then the
Library assigns an ID for you.

nameLength The length of the reporter name string.

nameString The reporter name.

queryLength Length of the query in bytes.

queryString A null-terminated query string.

minimumRank Must be between 1 and 5, inclusive.

maximumHits Must be between 1 and 30,000, inclusive.

earliestModDate

The earliest modification date desired.

earliestIndexDate

This field is for internal use only.

numberOfSources

The number of sources in sourceList.

sourceList A pointer to an array of source IDs.

deliveryDays

Days of the week on which to deliver scheduled
search result.

deliveryTime

Scheduled search delivery time.

deliveryFlags

Set bit 0 to 1 if this scheduled search is active.

deliveryDirLength

Number of bytes in deliveryDir.

deliveryDir An alias pointer of a directory to which scheduled
search results should be delivered.

C Library API calls 99

Errors Returned

kInvalidRequestForGuest
1001 Guest is attempting to make a database request.

kInvalidRequestForGuest
1002 Client sent a nonexistent session ID.

kInvalidSourceIDErr
1006 Information source ID passed was invalid.

kServerGoingDown
1009 Server is in the process of shutting down.

kInvalidObjectIDErr

1010 Reporter ID specified was invalid.

kNoSharingOnServer

1011 Server isn’t running AppleShare or file sharing.

kQueryMissingStringErr

1017 Query length was specified, but the string pointer was
empty or length was 0.

kQueryLengthRangeErr

1018 Query length is out of range.

kMinRankRangeErr

1019 Minimum rank search option value is out of range.

kMaxHitsRangeErr

1020 Maximum hits search option value is out of range.

kInvalidObjectNameErr

1025 Reporter name is invalid or missing.

kInvalidObjectDataErr

1026 Object data or data length is invalid.

kInvalidFlagErr

1027 deliveryFlags has an invalid flag set.

kInvalidSearchSessionIDErr

1028 Search session ID passed was invalid.

100 Chapter 3 / C Library Application Programming Interface

kOutOfMemoryNoObjectErr

3002 Not enough memory to create a request object.

kInvalidRegistrationIDErr

3102 Invalid registration ID was passed.

kNotLoggedOnErr

3106 Client is currently not logged on to any server.

kInvalidDeliveryDaysErr

3407 Invalid delivery days were specified.

kInvalidDeliveryTimeErr

3408 Invalid delivery time was specified.

Notes

The deliveryDays field specifies the days of the week on which the
scheduled search result should be delivered. It is a long integer, but only
the lowest 7 bits are used. Bit assignments are as follows:

bit 0 = Sunday

bit 1 = Monday

bit 2 = Tuesday

bit 3 = Wednesday

bit 4 = Thursday

bit 5 = Friday

bit 6 = Saturday

To deliver every day of the week, set all of the bits ($007F).

The deliveryTime field specifies the time at which the scheduled search
should be delivered. The time is expressed in the number of seconds
since midnight. For example, if the delivery time is 1:10:00 A.M., it should
be 4200:

(1 x 60 x 60) + (10 x 60) = 4200

All other bits in the deliveryTime field are reserved for future use
by Apple.

C Library API calls 101

ASGetReporter

The ASGetReporter function call retrieves information about an already
existing reporter on the server’s object database. The only parameter you
need to specify besides the header is the reporter ID.

Syntax

ASErr ASGetReporter(ASReporterPBPtr pb);

struct ASReporterPB {

ASParamBlockHeader

long reporterID;

unsigned long nameLength;

char* nameString;

unsigned long queryLength;

char* queryString;

unsigned long minimumRank;

unsigned long maximumHits;

long earliestModDate;

long earliestIndexDate;

unsigned long numberOfSources;

long* sourceList;

unsigned long deliveryDays;

unsigned long deliveryTime;

long deliveryFlags;

unsigned long deliveryDirLength;

AliasPtr deliveryDir;

};

typedef ASReporterPB ASReporterPB, *ASReporterPBPtr;

Parameters

userRefCon This field remains unchanged; for the caller’s
private use.

error Error code; returns 0 if the function was executed
successfully.

completionProc

A pointer to a completion routine.

registrationID

Pass your registration ID in this field.

reporterID ID of the reporter desired.

nameLength The length of the reporter name string.

nameString The reporter name.

queryLength Length of the query in bytes.

102 Chapter 3 / C Library Application Programming Interface

queryString A null-terminated query string.

minimumRank Minimum rank.

maximumHits Maximum hits to find.

earliestModDate

The earliest modification date for articles to be
found.

earliestIndexDate

This field is for internal use only.

numberOfSources

The number of sources in sourceList.

sourceList A pointer to an array of source IDs.

deliveryDays

Days of the week scheduled search results
are delivered.

deliveryTime

Scheduled search delivery time.

deliveryFlags

Scheduled search is active if bit 0 is set.

deliveryDirLength

Number of bytes in deliveryDir.

deliveryDir An alias pointer of a directory to which scheduled
search results are delivered.

Errors Returned

kInvalidRequestForGuest

1001 Guest is attempting to make a database request.

kInvalidRequestForGuest

1002 Client sent a nonexistent session ID.

kInvalidObjectIDErr

1010 Reporter ID passed was invalid.

kNoSharingOnServer

1011 Server isn’t running AppleShare or file sharing.

kInvalidRegistrationIDErr

3102 Invalid registration ID was passed.

kNotLoggedOnErr

3106 Client is currently not logged on to any server.

kNoCompletionProcErr

3109 No completion routine pointer was specified.

C Library API calls 103

ASDeleteReporter

The ASDeleteReporter function call deletes an existing reporter on the server
object database. The only parameter you need to specify besides the header
is the reporter ID.

Syntax

ASErr ASDeleteReporter(ASReporterPBPtr pb);

struct ASReporterPB {

ASParamBlockHeader

long reporterID;

unsigned long nameLength;

char* nameString;

unsigned long queryLength;

char* queryString;

unsigned long minimumRank;

unsigned long maximumHits;

long earliestModDate;

long earliestIndexDate;

unsigned long numberOfSources;

long* sourceList;

unsigned long deliveryDays;

unsigned long deliveryTime;

long deliveryFlags;

unsigned long deliveryDirLength;

AliasPtrdeliveryDir;

};

typedef ASReporterPB ASReporterPB, *ASReporterPBPtr;

Parameters

userRefCon This field remains unchanged; for the caller’s
private use.

error Error code; returns 0 if the function was executed
successfully.

completionProc

A pointer to a completion routine.

registrationID

Pass your registration ID in this field.

reporterID ID of the reporter to be deleted.

104 Chapter 3 / C Library Application Programming Interface

Errors Returned

kInvalidRequestForGuest

1001 Guest is attempting to make a database request.

kInvalidRequestForGuest

1002 Client sent a nonexistent session ID.

kServerGoingDown

1009 Server is in the process of shutting down.

kInvalidObjectIDErr

1010 Reporter ID passed was invalid.

kNoSharingOnServer

1011 Server isn’t running AppleShare or file sharing.

kInvalidRegistrationIDErr

3102 Invalid registration ID was passed.

kNotLoggedOnErr

3106 Client is currently not logged on to any server.

kNoCompletionProcErr

3109 No completion routine pointer was specified.

ASEnumerateReporters

The ASEnumerateReporters function call returns a list of all reporters on
the server object database for this user.

Syntax

ASErr ASEnumerateReporters(ASEnumeratePBPtr pb);

struct ASEnumeratePB {

ASParamBlockHeader

long dbObjectType;

unsigned long numberOfDBObjects;

DBObjectInfo* dbObjectList;

};

typedef ASEnumeratePB ASEnumeratePB, *ASEnumeratePBPtr;

Parameters

userRefCon This field remains unchanged; for the caller’s
private use.

error Error code; returns 0 if the function was executed
successfully.

completionProc

A pointer to a completion routine.

C Library API calls 105

registrationID

Pass your registration ID in this field.

dbObjectType

This field is not used for the ASEnumerateReporters
call.

numberOfDBObjects

Number of reporters returned.

dbObjectList

List of ASDBObjectInfo structures that contain
information about reporters.

Errors Returned

kInvalidRequestForGuest

1001 Guest is attempting to make a database request.

kInvalidRequestForGuest

1002 Client sent a nonexisting session ID.

kServerGoingDown

1009 Server is in the process of shutting down.

kOutOfMemoryNoObjectErr

3002 Not enough memory to create a request object.

kInvalidRegistrationIDErr

3102 Invalid registration ID was passed.

kNotLoggedOnErr

3106 Client is currently not logged on to any server.

kNoCompletionProcErr

3109 No completion routine pointer was specified.

Notes

Each element in the dbObjectList field of the parameter block is a block
of bytes that can be cast to the DBObjectInfo structure, which is shown
here. The first bit of the dbObjectFlags field is set if the scheduled search
is active.

struct DBObjectInfo {

long dbObjectID;

long dbObjectFlags;

unsigned long dbObjectNameLength;

char* dbObjectNameString;

};

typedef DBObjectInfo DBObjectInfo, *DBObjectInfoPtr;

106 Chapter 3 / C Library Application Programming Interface

ASAddDBObject

The ASAddDBObject function call adds an object that contains custom
information to the server’s object database.

Syntax

ASErr ASAddDBObject(ASDBObjectPBPtr pb);

struct ASDBObjectPB {

ASParamBlockHeader

long dbObjectType;

DBObjectInfo dbObjectInfo;

long sourceID;

unsigned long dbObjectDataSize;

Ptr dbObjectData;

};

typedef ASDBjectPB ASDBObjectPB, *ASDBObjectPBPtr;

struct DBObjectInfo {

long dbObjectID;

long dbObjectFlags;

unsigned long dbObjectNameLength;

char* dbObjectNameString;

};

typedef DBObjectInfo DBObjectInfo, *DBObjectInfoPtr;

Parameters

userRefCo This field remains unchanged; for the caller’s
private use.

error Error code; returns 0 if the function was executed
successfully.

completionProc
A pointer to a completion routine.

registrationID
Pass your registration ID in this field.

dbObjectType
Type of the object.

dbObjectInfo
ID, name, and flags for the object; the ID must be

 unique for the object type.

sourceID This field is not used by ASAddDBObject call.

dbObjectDataSize
Number of bytes in dbObjectData.

dbObjectData

A pointer to a buffer containing the object’s data.

C Library API calls 107

Errors Returned

kInvalidRequestForGuest

1001 Guest is attempting to make a database request.

kInvalidRequestForGuest

1002 Client sent a nonexistent session ID.

kServerGoingDown

1009 Server is in the process of shutting down.

kNoSharingOnServer

1011 Server isn’t running AppleShare or file sharing.

kDuplicateName

1014 A reporter by that name already exists.

kInvalidObjectNameErr

1025 Reporter name is invalid or missing.

kInvalidObjectDataErr

1026 Object data or data length is invalid.

kInvalidRegistrationIDErr

3102 Invalid registration ID was passed.

kNotLoggedOnErr

3106 Client is currently not logged on to any server.

ASModifyDBObject

The ASModifyDBObject function call modifies an object that is already in
the server’s object database. Making this call is equivalent to making an
ASDeleteDBObject call and ASAddDBObject call, except that the object’s
ID is retained.

108 Chapter 3 / C Library Application Programming Interface

Syntax

ASErr ASModifyDBObject(ASDBObjectPBPtr pb);

struct ASDBObjectPB {

ASParamBlockHeader

long dbObjectType;

DBObjectInfo dbObjectInfo;

long sourceID;

unsigned long dbObjectDataSize;

Ptr dbObjectData;

};

typedef ASDBObjectPB ASDBObjectPB, *ASDBObjectPBPtr;

struct DBObjectInfo {

long dbObjectID;

long dbObjectFlags;

unsigned long dbObjectNameLength;

char* dbObjectNameString;

};

typedef DBObjectInfo DBObjectInfo, *DBObjectInfoPtr;

Parameters

userRefCon This field remains unchanged; for the caller’s
private use.

error Error code; returns 0 if the function was executed
successfully.

completionProc

A pointer to a completion routine.

registrationID

Pass your registration ID in this field.

dbObjectType

Type of the object.

dbObjectInfo

ID, name, and flags for the object.

sourceID This field is not used by the ASModifyDBObject
call.

dbObjectDataSize

Number of bytes in dbObjectData.

dbObjectData

A pointer to a buffer containing the object’s data.

C Library API calls 109

Errors Returned

kInvalidRequestForGuest

1001 Guest is attempting to make a database request.

kInvalidRequestForGuest

1002 Client sent a nonexisting session ID.

kServerGoingDown

1009 Server is in the process of shutting down.

kNoSharingOnServer

1011 Server isn’t running AppleShare or file sharing.

kDuplicateName

1014 A reporter by that name already exists.

kInvalidObjectNameErr

1025 Reporter name is invalid or missing.

kInvalidObjectDataErr

1026 Object data or data length is invalid.

kInvalidRegistrationIDErr

3102 Invalid registration ID was passed.

kNotLoggedOnErr

3106 Client is currently not logged on to any server.

ASGetDBObject

The ASGetDBObject function call retrieves information on an object in the
server’s object database.

Syntax

ASErr ASGetDBObject (ASDBObjectPBPtr pb);

struct ASDBObjectPB {

ASParamBlockHeader

long dbObjectType;

DBObjectInfo dbObjectInfo;

long sourceID;

unsigned long dbObjectDataSize;

Ptr dbObjectData;

};

typedef ASDBObjectPB ASDBObjectPB, *ASDBObjectPBPtr;

110 Chapter 3 / C Library Application Programming Interface

struct DBObjectInfo {

long dbObjectID;

long dbObjectFlags;

unsigned long dbObjectNameLength;

char* dbObjectNameString;

};

typedef DBObjectInfo DBObjectInfo, *DBObjectInfoPtr;

Parameters

userRefCon This field remains unchanged; for the caller’s
private use.

error Error code; returns 0 if the function was executed
successfully.

completionProc

A pointer to a completion routine.

registrationID

Pass your registration ID in this field.

dbObjectType

Type of the object.

↔ dbObjectInfo

Specify the ID of the object; name and
flags are returned.

sourceID This field is not used by the ASGetDBObject call.

dbObjectDataSize

Number of bytes in dbObjectData.

dbObjectData

A pointer to a buffer containing the object’s data.

Errors Returned

kInvalidRequestForGuest

1001 Guest is attempting to make a database request.

kInvalidRequestForGuest

1002 Client sent a nonexisting session ID.

kServerGoingDown

1009 Server is in the process of shutting down.

kInvalidObjectIDErr

1010 Reporter ID passed was invalid.

kNoSharingOnServer

1011 Server isn’t running AppleShare or file sharing.

kInvalidRegistrationIDErr

3102 Invalid registration ID was passed.

C Library API calls 111

kNotLoggedOnErr

3106 Client is currently not logged on to any server.

kNoCompletionProcErr

3109 No completion routine pointer was specified.

ASDeleteDBObject

The ASDeleteDBObject function call deletes an object in the server object
database.

Syntax

ASErr ASDeleteDBObject (ASDBObjectPBPtr pb);

struct ASDBObjectPB {

ASParamBlockHeader

long dbObjectType;

DBObjectInfo dbObjectInfo;

long sourceID;

unsigned long dbObjectDataSize;

Ptr dbObjectData;

};

typedef ASDBObjectPB ASDBObjectPB, *ASDBObjectPBPtr;

struct DBObjectInfo {

long dbObjectID;

long dbObjectFlags;

unsigned long dbObjectNameLength;

char* dbObjectNameString;

};

typedef DBObjectInfo DBObjectInfo, *DBObjectInfoPtr;

Parameters

userRefCon This field remains unchanged; for the caller’s
private use.

error Error code; returns 0 if the function was executed
successfully.

completionProc

A pointer to a completion routine.

registrationID

Pass your registration ID in this field.

dbObjectType

Type of the object.

↔ dbObjectInfo

Specify only the ID of the object to be deleted.

112 Chapter 3 / C Library Application Programming Interface

Errors Returned

kInvalidRequestForGuest

1001 Guest is attempting to make a database request.

kInvalidRequestForGuest

1002 Client sent a nonexistent session ID.

kServerGoingDown

1009 Server is in the process of shutting down.

kInvalidObjectIDErr

1010 Reporter ID passed was invalid.

kNoSharingOnServer

1011 Server isn’t running AppleShare or file sharing.

kInvalidRegistrationIDErr

3102 Invalid registration ID was passed.

kNotLoggedOnErr

3106 Client is currently not logged on to any server.

kNoCompletionProcErr

3109 No completion routine pointer was specified.

ASEnumerateDBObjects

Returns a list of objects whose type was specified from the server’s object
database.

Syntax

ASErr ASEnumerateDBObjects(ASEnumeratePBPtr pb);

struct ASEnumeratePB {

ASParamBlockHeader

long dbObjectType;

unsigned long numberOfDBObjects;

DBObjectInfo* dbObjectList;

};

typedef ASEnumeratePB ASEnumeratePB, *ASEnumeratePBPtr;

Parameters

userRefCon This field remains unchanged; for the caller’s
private use.

error Error code; returns 0 if the function was executed
successfully.

C Library API calls 113

completionProc

A pointer to a completion routine.

registrationID

Pass your registration ID in this field.

dbObjectType

Type of objects to be enumerated.

numberOfDBObjects

Number of objects returned in dbObjectList.

dbObjectList

A pointer to an array of DBObjectInfo structure.

Errors Returned

kInvalidRequestForGuest

1001 Guest is attempting to make a database request.

kInvalidRequestForGuest

1002 Client sent a nonexistent session ID.

kServerGoingDown

1009 Server is in the process of shutting down.

kInvalidRegistrationIDErr

3102 Invalid registration ID was passed.

kNotLoggedOnErr

3106 Client is currently not logged on to any server.

kNoCompletionProcErr

3109 No completion routine pointer was specified.

Notes

Each element in the dbObjectList field of the parameter block is a
block of bytes that can be cast to the DBObjectInfo structure, which is
shown here.

struct DBObjectInfo {

long dbObjectID;

long dbObjectFlags;

unsigned long dbObjectNameLength;

char* dbObjectNameString;

};

typedef DBObjectInfo DBObjectInfo, *DBObjectInfoPtr;

114 Chapter 3 / C Library Application Programming Interface

ASImportReporter

The ASImportReporter function call imports a reporter from a reporter
file. This call makes an ASAddReporter call internally and returns a new
reporter ID in the reporterID field. The reporter file must be of type
RPTR or kReporterFileType.

Syntax

ASErr ASImportReporter(ASImportExportPBPtr pb);

struct ASImportExportPB {

ASParamBlockHeader

FSSpec reporterFile;

long reporterID;

unsigned long nameLength;

char* nameString;

};

typedef ASImportExportPB ASImportExportPB,

*ASImportExportPBPtr;

Parameters

userRefCon This field remains unchanged; for the caller’s
private use.

error Error code; returns 0 if the function was executed
successfully.

completionProc

A pointer to a completion routine.

registrationID

Pass your registration ID in this field.

reporterFile

FSSpec of the reporter file from which a reporter
is imported.

reporterID ID of the reporter that is imported.

nameLength Length of the reporter name string.

nameString Name of the reporter that is imported.

Errors Returned

kInvalidRequestForGuest
1001 Guest is attempting to make a database request.

kInvalidRequestForGuest
1002 Client sent a nonexistent session ID.

kServerGoingDown
1009 Server is in the process of shutting down.

C Library API calls 115

kNoSharingOnServer
1011 Server isn’t running AppleShare or file sharing.

kInvalidRegistrationIDErr
3102 Invalid registration ID was passed.

kNotLoggedOnErr
3106 Client is currently not logged on to any server.

ASExportReporter

The ASExportReporter function call exports an existing reporter to a
reporter file. You only need to specify the reporter’s ID and the destination
file. The function completes the request by making an ASGetReporter call to
obtain the latest information about the reporter from the server and by saving
it in the proper format on the disk.

Syntax

ASErr ASExportReporter (ASImportExportPBPtr pb);

struct ASImportExportPB {
ASParamBlockHeader
FSSpec reporterFile;
long reporterID;
unsigned long nameLength;
char* nameString;

};
typedef ASImportExportPB ASImportExportPB,
*ASImportExportPBPtr;

Parameters

userRefCon This field remains unchanged; for the caller’s
private use.

error Error code; returns 0 if the function was
executed successfully.

completionProc
A pointer to a completion routine.

registrationID
Pass your registration ID in this field.

reporterFile
FSSpec to be used for reporter file creation.

reporterID ID of the reporter to be exported.

nameLength Length of the reporter name string.

nameString Name of the reporter that was imported.

116 Chapter 3 / C Library Application Programming Interface

Errors Returned

kInvalidRequestForGuest
1001 Guest is attempting to make a database request.

kInvalidRequestForGuest
1002 Client sent a nonexisting session ID.

kServerGoingDown
1009 Server is in the process of shutting down.

kNoSharingOnServer
1011 Server isn’t running AppleShare or file sharing.

kInvalidRegistrationIDErr
3102 Invalid registration ID was passed.

kNotLoggedOnErr
3106 Client is currently not logged on to any server.

ASGetOriginalFile

The ASGetOriginalFile function call retrieves the original file of a
document or its alias, if the information source ID and document ID are
specified. In addition to these two IDs, you also need to specify, in the
fileDestination field, the destination to which the original file should
be copied. The function automatically copies the file, both data and
resource forks, and sets the Finder information for you once it is copied.
By setting the bit 1 of the flags field, you can get an alias to the original
file instead of copying the actual file.

Syntax

ASErr ASGetOriginalFile (ASGetOriginalFilePBPtr pb);

struct ASGetOriginalFilePB {
ASParamBlockHeader
long sourceID;
long articleID;
long flags; // 1 = original; 2 = alias
FSSpec fileDestination;
AliasHandle alias;

};
typedef ASGetOriginalFilePB ASGetOriginalFilePB,
*ASGetOriginalFilePBPtr;

In the case of a WAIS search, the server returns a “file not found” error
(kFileNotFound = -43) because you cannot retrieve the original from a
WAIS server.

C Library API calls 117

Parameters

userRefCon This field remains unchanged; for the caller’s
private use.

error Error code; returns 0 if the function was executed
successfully.

completionProc
A pointer to a completion routine.

registrationID
Pass your registration ID in this field.

sourceID ID of a source to which the article belongs.

articleID ID of the article whose original is desired.

flags Set bit 0 if you want to copy the original file into
fileDestination, or set bit 1 if you want an alias
to the original file returned in alias field.

fileDestination
FSSpec to the original file that was copied; this field
is used only if bit 0 of flags is set.

alias Alias to the original file on the server; this field is
used only if bit 1 of flags is set.

Errors Returned

kInvalidSourceIDErr
1006 Information source ID passed was invalid.

kInvalidArticleIDErr
1007 Article ID passed was invalid.

kNoAccessPrivileges
1008 User tried to gain access to a file but lacked access
privileges for it.

kServerGoingDown
1009 Server is in the process of shutting down.

kNoSharingOnServer
1011 Server isn’t running AppleShare or file sharing.

kFileNotFound
1013 The file was not found on the server.

kInvalidFlagErr
1027 keyAsGetOriginalFileFlags has an invalid

flag set.

kInvalidRegistrationIDErr
3102 Invalid registration ID was passed.

kNotLoggedOnErr
3106 Client is currently not logged on to any server.

118 Chapter 3 / C Library Application Programming Interface

Appendix A Constants and Errors

This appendix presents a summary of AppleSearch application
programming interface (API) constants and errors.

Search parameter block–related constants

const long kMinQuerySize = 1;

const long kMaxQuerySize = 1000;

const long kMinRankAllowed = 1;

const long kMaxRankAllowed = 5;

const long kMinHitsAllowed = 1;

const long kMaxHitsAllowed = 30000;

 Reporter parameter block–related constants

const long kMaxReporterName = 20;

const long kMinReporterQuerySize = 0;

const long kMinReporterSources = 0;

const long kMinReporterFlags = 0;

const long kMaxReporterFlags = 1;

const long kMaxDeliveryDays = 0x7F;

const long kMaxDeliveryTime = 86399;

Get Text/Get Original parameter block–related constants

const long kMinTextSize = 1;

const long kMaxTextSize = 30000;

const long kMaxGetOriginalFileFlag = 2;

Get Related Terms parameter block–related constants

const long kMinTermsAllowed = 1;

const long kMaxTermsAllowed = 100;

Client-generated errors

const ASErr kUnknownErr = 3000;

const ASErr kOutOfMemoryErr = 3001;

const ASErr kOutOfMemoryNoObjectErr = 3002;

const ASErr kOutOfMemoryNoPBErr = 3003;

const ASErr kMaxRegisteredErr = 3101;

const ASErr kInvalidRegistrationIDErr = 3102;

const ASErr kAlreadyLoggedOnErr = 3103;

const ASErr kLogOnCancelErr = 3104;

const ASErr kStillLoggedOnErr = 3105;

const ASErr kNotLoggedOnErr = 3106;

const ASErr kNoIdentificationErr = 3108;

const ASErr kNoCompletionProcErr = 3109;

const ASErr kAlreadyLoggingOnErr = 3112;

const ASErr kReplyMatchesNoRequestErr = 3601;

const ASErr kInvalidReplyDataErr = 3602;

const ASErr kInvalidRequestDataErr = 3603;

Server-generated errors

const ASErr kInvalidRequestForGuestErr = 1001;

const ASErr kInvalidSessionIDErr = 1002;

const ASErr kRequestIDNotFoundErr = 1003;

const ASErr kSessionIDNotFoundErr = 1004;

const ASErr kTransactionFailedErr = 1005;

const ASErr kInvalidSourceIDErr = 1006;

const ASErr kInvalidDocIDErr = 1007;

const ASErr kNoAccessPrivilegesErr = 1008;

const ASErr kServerGoingDownErr = 1009;

const ASErr kInvalidObjectIDErr = 1010;

const ASErr kNoSharingOnServerErr = 1011;

const ASErr kWrongProtocolErr = 1012;

const ASErr kFileNotFoundErr = 1013;

const ASErr kDuplicateNameErr = 1014;

const ASErr kTooManyUsersErr = 1015;

const ASErr kInfoSourceHiddenErr = 1016;

const ASErr kNoQueryStringErr = 1017;

const ASErr kQueryStringTooLongErr = 1018;

const ASErr kInvalidMinRankErr = 1019;

const ASErr kInvalidMaxHitsErr = 1020;

const ASErr kInvalidMaxTermsErr = 1021;

const ASErr kInvalidTextBoundsErr = 1022;

const ASErr kInvalidOperationErr = 1023;

const ASErr kInvalidObjectTypeErr = 1024;

120 Appendix A / Constants and Errors

const ASErr kInvalidObjectNameErr = 1025;

const ASErr kInvalidObjectDataErr = 1026;

const ASErr kInvalidFlagsErr = 1027;

const ASErr kInvalidSubSessionIDErr = 1028;

const ASErr kParamErr = 1030;

const ASErr kInternalErr = 1031;

const ASErr kQuerySyntaxErr = 1032;

const ASErr kFileModSinceIndexErr = 1033;

const ASErr kWAISError = 1039;

const ASErr kWAISSrcUnavailable = 1040;

const ASErr kTCPProblem = 1041;

Server-generated errors 121

Appendix B Apple Events Summary

This appendix presents a summary of the Apple events application
programming interface (API).

Event classes

#define kAppleSearchRequest 'bgrt'

#define kAppleSearchReply 'brep'

Event IDs

#define kAEASRegister 'rstr'

#define kAEASUnregister 'ustr'

#define kAEASLogon 'cnct'

#define kAEASLogoff 'ocnt'

#define kAEASSetAutoLogonFlag 'salg'

#define kAEASGetAutoLogonFlag 'galg'

#define kAEASStatusChanged 'chng'

#define kAEASOpenSearchSession 'ossn'

#define kAEASCloseSearchSession 'cssn'

#define kAEASSearch 'srch'

#define kAEASImportReporter 'irpt'

#define kAEASExportReporter 'xrpt'

#define kAEASAddReporter 'arpt'

#define kAEASModifyReporter 'mrpt'

#define kAEASGetReporter 'grpt'

#define kAEASDeleteReporter 'drpt'

#define kAEASEnumerateReporters 'erpt'

#define kAEASAddDBObject 'adbo'

#define kAEASModifyDBObject 'mdbo'

#define kAEASGetDBObject 'gdbo'

#define kAEASDeleteDBObject 'ddbo'

#define kAEASEnumerateDBObjects 'edbo'

#define kAEASGetArticleText 'gatx'

#define kAEASGetArticleMatches 'gamt'

#define kAEASGetArticleInfo 'gain'

#define kAEASEnumerateSources 'esrc'

#define kAEASGetRelatedTerms 'gcow'

#define kAEASGetOriginalFile 'epfi'

Apple event keywords

#define keyASRegistrationID 'btid'

#define keyASPPCSessionID 'ssid'

#define keyASUserRefCon 'rfcn'

#define keyASServerName 'svrn'

#define keyASIsGuest 'igst'

#define keyASDeliverUpdateFlag 'dupd'

#define keyASHaveConnection 'vldc'

#define keyASAutoLogonFlag 'alin'

#define keyASSearchSessionID 'seid'
#define keyASSearchID 'srid'
#define keyASQueryString 'qrey'
#define keyASSearchType 'srtp'
#define keyASMinimumRank 'mino'
#define keyASMaximumHits 'maxo'
#define keyASEarliestModDate 'dato'
#define keyASEarliestIndexDate 'idto'
#define keyASSourceIDList 'isil'
#define keyASSourceList 'dlst'
#define keyASArticleID 'arid'
#define keyASNumberOfHits 'thit'
#define keyASNumberOfSources 'nums'
#define keyASHitList 'hlst'

#define keyASArticleText 'atxt'
#define keyASArticleLength 'atln'
#define keyASSourceID 'isid'
#define keyASStartOffset 'ofst'
#define keyASMaxLength 'mlen'
#define keyASHiliteInfoList 'hlst'

#define keyASReporterName 'rpnm'
#define keyASReporterID 'rpid'
#define keyASDeliveryDir 'dldd'
#define keyASDeliveryDays 'dldy'
#define keyASDeliveryTime 'dldt'
#define keyASDeliveryFlags 'dlfl'

#define keyASReporterFile 'rpfl'
#define keyASFileSpec 'fspc'

124 Appendix B / Apple Events Summary

#define keyASGetOriginalFileFlags 'gofl'

#define keyASAliasRecord 'oals'

#define keyASMaxTerms 'mxtm'

#define keyASNumberOfTerms 'numt'

#define keyASTermList 'tlst'

#define keyASDBObjectType 'otyp'

#define keyASDBObjectID 'obid'

#define keyASDBObjectFlags 'obfl'

#define keyASDBObjectName 'onam'

#define keyASDBObjectDataLength 'odln'

#define keyASDBObjectData 'odat'

#define keyASDBObjectList 'olst'

#define keyASReporterList 'ridl'

#define keyASTitleLength 'tlen'

#define keyASTitle 'ttle'

#define keyASModDate 'mdat'

Structures

typedef struct {

long hitArticleID;

long hitModDate;

long hitSize;

long hitRank;

Str31 hitTitle;

} HitDataRecord, *HitDataRecPtr, **HitDataRecHndl;

typedef struct {

long sourceID;

Str31 sourceName;

long sourceFlags;

} InfoSourceRecord, *InfoSourceRecPtr,

**InfoSourceRecHndl;

typedef struct {

long objID;

Str31 objName;

long objFlags;

} DBObjectRecord, *DBObjectRecPtr, **DBObjectRecHndl;

typedef struct {

long repID;

Str31 repName;

long repFlags;

} ReporterInfoRecord, *ReporterInfoRecPtr,

**ReporterInfoRecHndl;

Structures 125

Appendix C C Library Summary

This appendix presents a summary of the C Library application
programming interface (API).

Object types

#define kObjType_Reporter 1

#define kObjType_HitList 2

#define kObjType_NewspaperDate 3

Type definitions

typedef long ASErr;

typedef long (*ASProcPtr)(char*, long);

Parameter blocks

#define ASParamBlockHeader \

long userRefCon;

ASErr error;

ASProcPtr completionProc;

long registrationID;

ASRegisterPB
struct ASRegisterPB {

ASParamBlockHeader

long identifier;

};

typedef ASRegisterPB ASRegisterPB, *ASRegisterPBPtr;

ASSelectServerPB
struct ASSelectServerPB {

ASParamBlockHeader

Ptr defaultServer;

unsigned long dataSize;

Ptr dataPtr;

};

typedef ASSelectServerPB ASSelectServerPB,

*ASSelectServerPBPtr;

ASLogonPB
struct ASLogonPB {

ASParamBlockHeader

unsigned long flags;

Ptr dataPtr;

unsigned long defaultUserNameLength;

char* defaultUserNameString;

unsigned long serverNameLength;

char* serverNameString

};

typedef ASLogonPB ASLogonPB, *ASLogonPBPtr;

ASLogoffPB
struct ASLogoffPB {

ASParamBlockHeader

Boolean forceLogoff;

};

typedef ASLogoffPB ASLogoffPB, *ASLogoffPBPtr;

ASSearchSessionPB
struct ASSearchSessionPB {

ASParamBlockHeader

long searchSessionID;

};

typedef ASSearchSessionPB ASSearchSessionPB,

*ASSearchSessionPBPtr;

128 Appendix C / C Library Summary

ASEnumeratePB
struct ASDBObjectInfo {

long dbObjectID;

Str31 dbObjectName;

long dbObjectFlags;

unsigned long dbObjectNameLength;

char* dbObjectNameString;

};

typedef DBObjectInfo DBObjectInfo, *DBObjectInfoPtr;

struct ASEnumeratePB {

ASParamBlockHeader

long dbObjectType;

long numberOfDBObjects;

DBObjectInfo* dbObjectList;

};

typedef ASDBObjectInfo ASDBObjectInfo, *ASDBObjectInfoPtr;

struct ASEnumeratePB {

ASParamBlockHeader

long dbObjectType;

unsigned long numberOfDBObjects;

ASDBObjectInfoPtr dbObjectList;

};

typedef ASEnumeratePB ASEnumeratePB, *ASEnumeratePBPtr;

ASSearchPB
struct ASHitInfo {

long articleID;

long modDate;

unsigned long fileSize;

unsigned long rank;

unsigned long titleLength;

char* titleString;

};

typedef ASHitInfo ASHitInfo, *ASHitInfoPtr;

Parameter blocks 129

struct ASSearchPB {

ASParamBlockHeader

long searchSessionID;

long sourceID;

unsigned long queryLength;

char* queryString;

unsigned long minimumRank;

unsigned long maximumHits;

long earliestModDate;

long searchType;

long searchID;

unsigned long numberOfHitsReturned;

unsigned long totalNumberOfHits;

ASHitInfoPtr* hitList;

};

typedef ASSearchPB ASSearchPB, *ASSearchPBPtr;

ASGetArticleInfoPB
struct ASGetArticleInfoPB {

ASParamBlockHeader

long sourceID;

long articleID;

long modDate;

unsigned long size;

unsigned long titeLength;

unsigned long titleString;

typedef ASGetArticleInfoPB ASGetArticleInfoPB,

*ASGetArticleInfoPBPtr;

ASGetArticleTextPB
struct ASGetArticleTextPB {

ASParamBlockHeader

long searchSessionID;

long sourceID;

long articleID;

unsigned long startOffset;

unsigned long length;

Handle text;

};

typedef ASGetArticleTextPB ASGetArticleTextPB,

*ASGetArticleTextPBPtr;

130 Appendix C / C Library Summary

ASGetArticleMatchesPB
struct ASGetArticleMatchesPB {

ASParamBlockHeader

long searchSessionID;

long sourceID;

long articleID;

unsigned long startOffset;

unsigned long length;

unsigned long numberOfHiliteInfoRecs;

long* hiliteInfo;

};

typedef ASGetArticleMatchesPB ASGetArticleMatchesPB,

*ASGetArticleMatchesPBPtr;

struct ASHiliteInfoRec {

unsigned long offset;

unsigned long length;

};

typedef ASHiliteInfoRec ASHiliteInfoRec,

*ASHiliteInfoRecPtr;

ASGetFilePB
struct ASGetOriginalFilePB {

ASParamBlockHeader

long sourceID;

long articleID;

long flags;

FSSpec fileDestination;

AliasHandle alias;

};

typedef ASGetOriginalFilePB ASGetOriginalFilePB,

*ASGetOriginalFilePBPtr;

Parameter blocks 131

ASReporterPB
struct ASReporterPB {

ASParamBlockHeader

long reporterID;

unsigned long nameLength;

char* nameString;

unsigned long queryLength;

char* queryString

unsigned long minimumRank;

unsigned long maximumHits;

long earliestModDate;

long earliestIndexDate;

unsigned long numberOfSources;

long* sourceList;

unsigned long deliveryDays;

unsigned long deliveryTime;

long deliveryFlags;

unsigned long deliveryDirLength;

AliasPtr deliveryDir;

};

typedef ASReporterPB ASReporterPB, *ASReporterPBPtr;

DBObjectPB
struct ASDBObjectPB {

ASParamBlockHeader

long dbObjectType;

DBObjectInfo dbObjectInfo;

long sourceID;

unsigned long dbObjectDataSize;

Ptr dbObjectData;

};

typedef ASDBObjectPB ASDBObjectPB, *ASDBObjectPBPtr;

ASImportExportPB
struct ASImportExportPB {

ASParamBlockHeader

FSSpec reporterFile;

long reporterID;

Str31 reporterName;

unsigned long nameLength;

char* nameString;

};

typedef ASImportExportPB ASImportExportPB,

*ASImportExportPBPtr;

132 Appendix C / C Library Summary

ASGetRelatedTermsPB
struct ASGetRelatedTermsPB {

ASParamBlockHeader

long sourceID;

unsigned long queryLength;

char* queryString;

unsigned long maximumTerms;

unsigned long numberOfTerms;

StringPtr* termList;

};

typedef ASGetRelatedTermsPB ASGetRelatedTermsPB,
*ASGetRelatedTermsPBPtr;

C API functions

Housekeeping routines
void ASInitialize (void);

void ASQuit (void);

ASErr ASDoIdle (void);

ASErr ASRegister (ASRegisterPBPtr pb);

ASErr ASUnregister (ASRegisterPBPtr pb);

ASErr ASSelectServer (ASSelectServerPBPtr pb);

ASErr ASLogon (ASLogonPBPtr pb);

ASErr ASLogoff (ASLogoffPBPtr pb);

Search routines
ASErr ASOpenSearchSession(ASSearchSessionPBPtr pb,

Boolean async);

ASErr ASCloseSearchSession(ASSearchSessionPBPtr pb,

Boolean async);

ASErr ASSearch(ASSearchPBPtr pb, Boolean asynch);

C API functions 133

Data retrieval routines
ASErr ASEnumerateSources (ASEnumeratePBPtr pb,

Boolean async);

ASErr ASGetArticleText (ASGetArticleTextPBPtr pb,

Boolean asynch);

ASErr ASGetArticleMatches (ASGetArticleMatchesPBPtr

pb, Boolean asynch);

ASErr ASGetArticleInfo (ASGetArticleInfoPBPtr pb,

Boolean async);

ASErr ASGetOriginalFile (ASGetOriginalFilePBPtr pb,

Boolean asynch);

ASErr ASGetRelatedTerms (ASGetRelatedTermsPBPtr pb,

Boolean async);

Reporter routines
ASErr ASAddReporter (ASReporterPBPtr pb, Boolean

async);

ASErr ASModifyReporter (ASReporterPBPtr pb, Boolean

async);

ASErr ASGetReporter (ASReporterPBPtr pb, Boolean

async);

ASErr ASDeleteReporter (ASReporterPBPtr pb, Boolean

async);

ASErr ASEnumerateReporters (ASEnumeratePBPtr pb,

Boolean async);

ASErr ASImportReporter (ASImportExportPBPtr pb,

Boolean async);

ASErr ASExportReporter (ASImportExportPBPtr pb,

Boolean async);

DBObject routines
ASErr ASAddDBObject (ASDBObjectPBPtr pb, Boolean

async);

ASErr ASModifyDBObject (ASDBObjectPBPtr pb, Boolean

async);

ASErr ASGetDBObject (ASDBObjectPBPtr pb, Boolean

async);

ASErr ASDeleteDBObject (ASDBObjectPBPtr pb, Boolean

async);

ASErr ASEnumerateDBObjects (ASEnumeratePBPtr pb,

Boolean async);

134 Appendix C / C Library Summary

	AppleSearch Client Developer’s Guide
	Contents
	Preface
	What you need to know
	What this guide contains
	Conventions used in this guide
	Format of API descriptions
	About the AppleSearch Client Developer’s Kit
	Suggested reading
	Software licensing

	Architectural Overview
	AppleSearch software components
	Writing your own client application
	Client/ server connection
	Information sources
	Immediate searches
	Article retrieval
	Original file retrieval
	Scheduled searches
	Server object database

	Apple Events Application Programming Interface
	Sending and receiving AppleSearch Apple events
	The AppleSearch Communication Extension

	Connecting to a server
	Apple event API calls
	Register
	Unregister
	Logon
	Set Auto Logon
	Get Auto Logon
	Logoff
	Status Changed
	Enumerate Sources
	Open Search Session
	Close Search Session
	Search
	Get Related Terms
	Get Article Text
	Get Article Info
	Get Article Matches
	Add Reporter
	Modify Reporter
	Get Reporter
	Delete Reporter
	Enumerate Reporters
	Add DB Object
	Modify DB Object
	Get DB Object
	Delete DB Object
	Enumerate DB Objects
	Import Reporter
	Export Reporter
	Get Original File

	C Library Application Programming Interface
	Making a C Library API function call
	Completion routines
	Errors
	Initializing the AppleSearch Client Library and connecting to a server
	Building your application
	C Library API calls
	ASInitialize
	ASQuit
	ASDoIdle
	ASRegister
	ASUnregister
	ASSelectServer
	ASLogon
	ASLogoff
	ASEnumerateSources
	ASOpenSearchSession
	ASCloseSearchSession
	ASSearch
	ASGetRelatedTerms
	ASGetArticleText
	ASGetArticleInfo
	ASGetArticleMatches
	ASAddReporter
	ASModifyReporter
	ASGetReporter
	ASDeleteReporter
	ASEnumerateReporters
	ASAddDBObject
	ASModifyDBObject
	ASGetDBObject
	ASDeleteDBObject
	ASEnumerateDBObjects
	ASImportReporter
	ASExportReporter
	ASGetOriginalFile

	Appendix A Constants and Errors
	Search parameter block– related constants
	Reporter parameter block– related constants
	Get Text/ Get Original parameter block– related constants
	Get Related Terms parameter block– related constants
	Client- generated errors
	Server- generated errors

	Appendix B Apple Events Summary
	Event classes
	Event IDs
	Apple event keywords
	Structures

	Appendix C C Library Summary
	Object types
	Type definitions
	Parameter blocks
	C API functions

