
Pick Your Picker With Color Picker 2.0 • Media Capture Using the Sequence Grabber

Building an
OpenDoc Part
Handler

Tuning PowerPC
Memory Usage

Designing for the
Power Macintosh

Adding QuickDraw
GX Printing to
QuickDraw
Applications

Making the Most
of QuickDraw GX
Bitmaps

Implementing
Inheritance in
Scripts

Issue 19 September 1994

d e v e l o p
T h e A p p l e T e c h n i c a l J o u r n a l

$10.00

Issue 1
9

d
 e v e l o p

O

p
enD

oc Pa
rt H

a
nd

ler •
 Pow

erPC M
em

ory U
sa

g
e •

 D
esig

ning
 for Pow

er M
a
cintosh •

 Q
uick

D
ra

w
 G

X
: Printing

, B
itm

a
p
s

Apple Computer, Inc.
One Infinite Loop

Cupertino, CA 95014

BULK RATE
U.S. POSTAGE PAID

Los Angeles, CA
Permit No. 1831

19

E D I T O R I A L S T A F F

Editor-in-Cheek Caroline Rose

Managing Editor Cynthia Jasper

Technical Buckstopper Dave Johnson

Bookmark CD Leader Alex Dosher

Our Boss Greg Joswiak

His Boss Dennis Matthews

Review Board Pete (“Luke”) Alexander, Dave
Radcliffe, Jim Reekes, Bryan K. (“Beaker”)
Ressler, Larry Rosenstein, Andy Shebanow,
Gregg Williams

Contributing Editors Lorraine Anderson,
Steve Chernicoff, Toni Haskell, Judy
Helfand, Jody Larson, Joe Williams

Indexer Marc Savage

A R T & P R O D U C T I O N

Production/Art Director Diane Wilcox

Technical Illustration Ruth Anderson,
Sandee Karr

Formatting Forbes Mill Press

Film Services Aptos Post, Inc.

Prepress Production PrePress Assembly

Printing Wolfer Printing Company, Inc.

Photography Sharon Beals, Cynthia Jasper,
Mark Maxham, John Wang, Diane Wilcox

Cover Illustration Hal Rucker and Peter
Andrea of Rucker Huggins Design

ISSN #1047-0735. © 1994 Apple Computer,
Inc. All rights reserved. Apple, the Apple logo,
APDA, AppleLink, AppleTalk, HyperCard,
ImageWriter, LaserWriter, Mac, MacApp,
Macintosh, MacTCP, MPW, Newton,
QuickTime, and TrueType are trademarks of
Apple Computer, Inc., registered in the U.S. and
other countries. AOCE, AppleScript, A/ROSE,
Balloon Help, ColorSync, develop, DocViewer,
Finder, MessagePad, NewtonMail, NewtonScript,
OpenDoc, Power Macintosh, PowerShare,
PowerTalk, QuickDraw, and QuickTake are
trademarks of Apple Computer, Inc. PostScript is
a trademark of Adobe Systems Incorporated,
which may be registered in certain jurisdictions.
PowerPC is a trademark of International Business
Machines Corporation, used under license
therefrom. FaceSpan is a trademark of Software
Designs Unlimited, Inc. All other trademarks are
the property of their respective owners.

T H I N G S T O K N O W

develop, The Apple Technical
Journal, a quarterly publication of
Apple Computer’s Developer Press
group, is published in March, June,
September, and December. develop
articles and code have been reviewed
for robustness by Apple engineers.

This issue’s CD. Subscription issues
of develop are accompanied by the
develop Bookmark CD. The Bookmark
CD contains a subset of the materials
on the monthly Developer CD Series,
which is available from APDA.
Included on the CD are this issue and
all back issues of develop along with the
code that the articles describe. The
develop code is updated when necessary,
so always use the most recent CD.
The CD also contains Technical
Notes, sample code, and other useful
documentation and tools (these
contents are subject to change).
Software and documentation referred
to as being on this issue’s CD are
located on either the Bookmark CD or
the Reference Library or Tool Chest
edition of the Developer CD Series.

The develop issues and code are also
available on AppleLink and via
anonymous ftp at ftp.apple.com.

Macintosh Technical Notes.
Where references to Macintosh
Technical Notes in develop are followed
by something in parentheses like
“(Memory 13),” this indicates the
category and number of the Note on
this issue’s CD.

E-mail addresses. Most e-mail
addresses mentioned in develop are
AppleLink addresses; to convert one of
these to an Internet address, append
“@applelink.apple.com” to it. For
example, DEVELOP on AppleLink
becomes develop@applelink.apple.com
on the Internet. To convert a
NewtonMail address to an Internet
address, append “@online.apple.com”
to it.

C O N T A C T I N G U S

Feedback. Send editorial suggestions
or comments to Caroline Rose at
AppleLink CROSE, Internet
crose@applelink.apple.com, or fax
(408)974-6395. Send technical
questions about develop to Dave
Johnson at AppleLink JOHNSON.DK,
Internet dkj@apple.com, CompuServe
75300,715, or fax (408)974-6395. Or
write to Caroline or Dave at Apple
Computer, Inc., One Infinite Loop,
M/S 303-4DP, Cupertino, CA 95014.

Article submissions. Ask for our
Author’s Guidelines and a submission
form at AppleLink DEVELOP,
Internet develop@applelink.apple.com,
or fax (408)974-6395. Or write to
Caroline Rose at the above address.

Subscriptions. Subscribe to develop
through APDA (see below) or use the
subscription card in this issue. For
subscription changes or queries, call
1-800-877-5548 in the U.S. or
(815)734-1116 outside the U.S., or
write to AppleLink DEV.SUBS,
Internet dev.subs@applelink.apple.com,
or develop, P.O. Box 531, Mount Morris,
IL 61054-7858.

Back issues. Printed back issues are
available for $13 each in the U.S. or
$20 outside the U.S. To order, call
1-800-877-5548 in the U.S. or
(815)734-1116 outside the U.S., or
write to AppleLink DEV.SUBS,
Internet dev.subs@applelink.apple.com,
or develop, P.O. Box 531, Mount Morris,
IL 61054-7858.

APDA. To order products from APDA
or receive a catalog, call 1-800-282-
2732 in the U.S., 1-800-637-0029 in
Canada, (716)871-6555 internationally,
or (716)871-6511 for fax. Order
electronically at AppleLink APDA,
Internet apda@applelink.apple.com,
CompuServe 76666,2405, or America
Online APDAorder. Or write APDA,
Apple Computer, Inc., P.O. Box 319,
Buffalo, NY 14207-0319.

Printed on recycled paper

d e v e l o p

A R T I C L E S

6 Building an OpenDoc Part Handler by Kurt Piersol
Writing code to support Apple’s new compound-document architecture is a lot like writing any Macintosh
application. Here’s an overview of what you’ll need to know.

24 Adding QuickDraw GX Printing to QuickDraw Applications by Dave Hersey
Even if your application doesn’t need the advanced graphics capabilities of QuickDraw GX, your users will
love the new printing architecture, and you can support it with a minimum of effort.

48 Making the Most of QuickDraw GX Bitmaps by David Surovell
A primer on handling bitmapped graphics in QuickDraw GX: tips, tricks, and whizzy effects.

68 Pick Your Picker With Color Picker 2.0 by Shannon Holland
The new Color Picker Manager is flexible and customizable, allowing much tighter integration of color
pickers with your application.

89 Implementing Inheritance in Scripts by Paul G. Smith
Supporting inheritance in your application’s scripts so that they can share handlers and global variables isn’t
as difficult as you might think.

C O L U M N S

17 BALANCE OF POWER
Tuning PowerPC Memory Usage
by Dave Evans
Avoiding inadvertent cache thrashing is
important for maximum performance.

20 Designing Applications for the Power
Macintosh
by Greg Robbins and Ron Avitzur
The power of the Power Macintosh means
more than just faster spreadsheets.

65 GRAPHICAL TRUFFLES
A Cool QuickDraw GX Clipping Effect
by Pete (“Luke”) Alexander
A stroll through a snippet of code that
demonstrates some fancy clipping.

85 SOMEWHERE IN QUICKTIME
Media Capture Using the Sequence
Grabber
by John Wang and Fernando Urbina
The sequence grabber component supports
capture of any media type. Here’s how to use it.

100 Macintosh Q & A
Apple’s Developer Support Center answers
questions about Macintosh product
development.

110 THE VETERAN NEOPHYTE
Rubber Meets Road
by Dave Johnson
Edges make the world go ’round.

112 Newton Q & A: Ask the Llama
Answers to Newton-related development
questions; you can send in your own.

117 KON AND BAL’S PUZZLE PAGE
Heaps of Fun
by Konstantin Othmer, Bruce Leak, and Steve
Newman
Our heroes take on a guest puzzler.

2 EDITOR’S NOTE
3 LETTERS

124 INDEX

Issue 19 September 1994

CONTENTS 1

2

EDITOR’S NOTE
CAROLINE ROSE

d e v e l o p Issue 19 September 1994
Around the time I was faced with writing this editorial, I had just attended the
celebration of my friend Mrs. Robertson’s 100th birthday, and my 85-year-old father
had flown over from Florida to celebrate it with us. With the subject of longevity on
my mind, I got to thinking about how it relates to develop.

develop’s goal is to provide you with articles and code that will have a long life — that
can live in your applications happily and compatibly even as new Macintosh systems
are introduced. We do all we can to ensure this (at the risk of incurring the wrath of
our authors, who may wonder why it takes so long to see something in print after
it’s submitted to develop). We’d rather an article “have legs” than be published
prematurely and get you into trouble further down the line. We do our best to test
the code and get our technical reviewers’ opinions on whether a particular method is
safe. This should be a primary concern of all developers, especially now in light of
the whole new world of Power Macintosh systems.

Evidence that we’re succeeding is that we still get requests to reprint articles as far
back as Issue 2, and we often hear from readers who save every issue because they
retain their usefulness. (Remember that, the next time you’re thinning out your
bookshelves!)

Our being an Apple publication gives us the distinct advantage of being able to have
a thorough code review with future systems in mind, but at the same time it puts us
in a unique position to have early articles on new Apple technology. So we also try to
give you articles as soon as possible after the API for a new technology has frozen.
And if we can, we give you a prerelease version of the new software along with the
code on our CD. These articles may have somewhat shorter legs, but the bulk of the
information should remain accurate for a very long time.

In the past we’ve given you early QuickDraw GX versions and articles; now that
QuickDraw GX has shipped, the two articles on that subject in this issue are only the
most recent in a long line. Also in this issue we’re pleased to bring you our first
article on OpenDoc, Apple’s new cross-platform compound-document architecture,
even though the final version of OpenDoc will not have shipped by the time you
read this.

Further evidence that we’re succeeding is that we’ve again won in the International
Technical Publications Competition of the Society for Technical Communication,
this time the highest award in our category. But nothing would please us more than
to hear from you, the most important judges of all, on what we can do to make
develop an even better publication; please let us know at AppleLink DEVELOP.

Caroline Rose

Editor
CAROLINE ROSE (AppleLink CROSE) As a
child, Caroline wrote a one-page newsletter
about the goings-on in her neighborhood; it
included news items, a gossip column, and a
comic strip. Her readership was small, and the
operation folded after one issue. She’s happy that
develop has lasted longer than that, because

after various jobs at Tymshare, NeXT, and Apple
as a programmer, writer, editor, and manager,
she feels she’s found her niche here. These days
when Caroline’s not at work she’s likely to be
sailing, swimming, jogging, dancing, gardening,
or otherwise not being sedentary. She hopes to
live 100 very active years.•

LETTERS
MISSING GAME FOLDER
The column by Brigham Stevens on
game development in develop Issue 17
refers to a Game Development folder
on the Bookmark 17 CD. I was unable
to locate the folder. Is it me, or was
there a production glitch?

Also, is the folder the same one that was
on the February Developer CD?

— Bob Boonstra

There was a production glitch. The folder
was on Issue 16’s Bookmark CD but was
inadvertently removed from Issue 17’s CD.
We have since restored it (it’s in the Tools &
Applications folder). We also got the name
wrong: it’s Games, not Game Development.

And yes, it’s the same folder as the one on
the Developer CD. The Bookmark CD
always contains a subset of the Developer
CD Series.

Happy gaming!

— Dave Johnson

DEVELOP ON THE SMALL SCREEN
In Issue 17 you ask why so many
applications lack common sense, and
then you go on to list a number of
annoyances caused by bad designs. I
agree that the items mentioned could
be better handled, but I have a similar
complaint with develop!

develop, shipped on CD-ROM with
Apple DocViewer, is a software product
that’s produced like a printed document.
Things like double-columned pages are
extremely difficult to read on a standard
Macintosh 13-inch monitor — you have
to scroll down the entire page as you
read a single column and then scroll
WE’RE DYING TO HEAR FROM YOU
We welcome timely letters to the editors,
especially from readers reacting to articles that
we publish in develop. Letters should be
addressed to Caroline Rose (or, if technical
develop-related questions, to Dave Johnson) at
Apple Computer, Inc., One Infinite Loop, M/S
back up and repeat the process. While
this orientation makes sense on a
printed page, it really bites on my 13-
inch monitor. Also, develop is nearly
unreadable with its serif typefaces,
italics, etc.

Right now you’re probably shaking your
head and saying that you don’t have the
money to produce two versions of
develop — one for print and one for CD.
If so, then you also know why so many
applications lack common sense!

— Brooks Bell

Certainly time and money do enter into
design decisions, even at Apple. But there
are still a lot of cases where common sense
could be followed without a big hit to the
schedule or pocketbook.

Regarding your problem with viewing the
CD version of develop on a 13-inch screen,
you might try DocViewer’s “text” view (the
icon in the tool bar that looks like a sheet of
paper with writing, just to the left of the
scaling pop-up menu). This view gets rid
of all special formatting such as double
columns. You can still look at illustrations,
by clicking the Open button next to the
figure caption.

In text view you can change the font size
and type of any structural part of the
document, using the Format command in
the Edit menu. For example, you can choose
Body in the Format dialog and change the
font of all the body text. (In the normal
view, the scaling pop-up menu can be used
to magnify everything.)

Thanks for writing and giving us the
opportunity to provide these tips. We
welcome all gripes!

— Caroline Rose
LETTERS 3

303-4DP, Cupertino, CA 95014 (AppleLink
CROSE or JOHNSON.DK). All letters should
include your name and company name as well as
your address and phone number. Letters may be
excerpted or edited for clarity (or to make them
say what we wish they did).•

d e v e l o p Issue 19 September 19944
QUICKDRAW GX MORPH TABLES
The Macintosh Q&A section of develop
Issue 16 stated that there’s no way to
do an automatic checksum digit
insertion using QuickDraw GX’s glyph
metamorphosis tables. I haven’t read
much about QuickDraw GX’s 'mort'
tables, but I do know finite state tables.
It’s quite feasible to build a 12-state
table that will generate a checksum digit
for a digit-string of any length. The key
is to make the checksum be calculated
dynamically instead of at the end. This
reduces the required number of states to
ten, plus beginning and end, which is
well within the limits of QuickDraw GX.

— Mark Cogan
Developer Wannabe

You’re quite right; you can indeed use
morph tables to generate checksums. Other
cyclic kinds of calculations are also possible;
for example, a morph table could be set up
to do pseudo-random selection of letterforms
from a font that was designed with five
variant forms of A-Z and a-z. When a
letter is encountered, it would be replaced
with its version from one of the sets. But
regardless of the specific glyph, each time a
glyph is processed the state advances and
eventually loops back to the starting state.
This is in general the template for how
cyclic effects can be implemented with the
QuickDraw GX morph tables.

— Dave Opstad
GX Line Layout Weenie

WATCH-CURSOR PUSH-UPS
AND BEYOND
Regarding Dave Johnson’s bio in Issue
16: He’s not the only one who plays with
the cursor while waiting for the Mac.
Here are some other silly things to do:

• Try to fit the watch inside an empty
horizontal scroll bar. It always overlaps
one of the lines, either the top or
bottom one, so if you move that single
pixel that alternates between them, the
watch seems to be slipping on its wrist
belt.

• While installing the system, position
the counting hand so that it’s just
touching a horizontal line. Don’t
overlap the line, and the hand will seem
to be cut from its owner, instead of
being a ghost unterminated hand.

— Javier Guerra G.

Dave is not alone in doing watch-cursor
push-ups and pull-ups. My personal
favorite activity here is trying to find a
place where I can do both at once. I
remember that the old Font/DA Mover
has a spot between two buttons where
you can do that nicely.

— Maarten Hazewinkel

Hot Dawg! I knew there were others out
there doing the watch cursor thing. I’ve
heard from a half dozen or so; it’s a lot more
common than I thought.

I remember doing that with the old
Font/DA Mover, too. The progress bar
during long Finder operations also worked
well. (Nowadays we have movable modal
progress windows, so the watch cursor is
gone — the price of progress.)

Thanks for letting me know I’m not alone!

— Dave Johnson

UNABASHED PRAISE
develop is an inspiring magazine. The
layout is clean yet warm and inviting.
The articles are relevant and the authors
are knowlegeable.

The on-line issues of develop are
invaluable. This is the best on-line
documentation I have seen, period. The
articles look great — just like the
magazine. And searching and setting
filters is fast. Microsoft’s CD comes
with a lot of files, but most of it is old,
irrelevant, and ugly to read.

I sure appreciate your effort.

— Brent Foust

We can’t thank you enough for taking the
time to write. Letters like this keep us
going, in more ways than one. We hope
you’re as happy with the recent changes to
our layout; please let us know if not.

— Caroline Rose

Are there issues of develop that have passed you by? If you’d like to complete your develop collection,
full-color, bound copies are available. (Back issues are also on the develop Bookmark CD and the

Reference Library edition of the Developer CD Series.)

To order printed back issues, send $13 per issue in the U.S. (or $20 outside the U.S.) to develop Back Issues,
P.O. Box 531, Mount Morris, IL 61054-7858. Or call 1-800-877-5548 in the U.S. or (815)734-1116 elsewhere.
Supplies are limited. Please allow 4 to 6 weeks for delivery.

The (w)hole collection

Issue 1 Color; Palette Manager; Offscreen Worlds;
PostScript; System 7 Compatibility; Debugging
Declaration ROMs; Apple II Development Dynamo

Issue 2 C++ Objects; Object Pascal; Memory Manager;
MacApp; How to Design an Object-Based Application;
C++ Style Guide; The GS/OS Cache

Issue 3 ISO 9660 and High Sierra; A Mixed-Partition
CD; Accessing CD Audio Tracks; Comm Toolbox;
Macintosh Display Card 8•24 GC; PrGeneral

Issue 4 Device Driver in C++; Polymorphism in C++;
A/ROSE; PostScript; Apple IIGS Printer Driver

Issue 5 (Volume 2, Issue 1) Asynchronous Background
Networking; Scanning From ProDOS; Palette Manager
Animation; Macintosh Common Lisp

Issue 6 Threads; CopyBits; MacTCP Cookbook:
Constructing Network-Aware Applications

Issue 7 QuickTime 1.0; TrueType; Threads and Futures;
C++ Objects in a World of Exceptions

Issue 8 Curves in QuickDraw; Validating Date and
Time Entry in MacApp; Debugging; Hybrid Applications
for A/UX

Issue 9 Color on 1-Bit Devices; The TextBox You’ve
Always Wanted; Making Your Macintosh Sound Like an
Echo Box; Simple Text Windows via the Terminal
Manager; Tracks: A New Tool for Debugging Drivers

Issue 10 Apple Event Objects; PostScript Enhancements
for the LaserWriter Font Utility; Drawing in GWorlds;
The Optimal Palette

Issue 11 Asynchronous Sound; Multibuffering Sounds;
Exceptions; NetWork: Distributed Computing

Issue 12 Components; Time Bases; Apple Event Coding
Through Objects; Globals in Standalone Code

Issue 13 Asynchronous Routines; QuickTime and
Component-Based Managers; Macintosh Debugging
Revisited; Adventures in Color Printing; DeviceLoop

Issue 14 Writing Localizable Applications; 3-D Rotation
Using a 2-D Input Device; Video Digitizing Under
QuickTime; Making Better QuickTime Movies

Issue 15 QuickDraw GX (Getting Started; Printing
Extensions; PostScript); Component Registration;
Floating Windows; Working in the Third Dimension

Issue 16 Making the Leap to PowerPC; PowerTalk;
Drag and Drop From the Finder; Color Matching With
QuickDraw GX; International Number Formatting

Issue 17 Proto Templates on the Newton; Standalone
Code on PowerPC; Debugging on PowerPC; Thread
Manager; Window Zooming

Issue 18 Apple Guide; Open Scripting Architecture;
Graphics Speed on the Power Macintosh; Displaying
Hierarchical Lists; Preferences Files

6

Building an OpenDoc Part Handler
KURT PIERSOL

d e v e l o p Issue 19 September 1994
OpenDoc, Apple’s compound-document architecture, brings users a new,
more powerful metaphor for working with documents. Writing code to
support OpenDoc is a lot like writing a normal application. This article
gives an overview of what’s involved in writing OpenDoc code and
presents a simple working example.

OpenDoc provides a new way to write application code for the Macintosh and a
number of other desktop platforms. By following the OpenDoc guidelines, you can
produce applications that share files, windows, and interface elements seamlessly. The
process of writing an OpenDoc application, which we call a part handler, is much like
writing any Macintosh application. There are differences as well, of course, and this
article will help you understand them.

OpenDoc applications are designed to allow code from several sources to cooperate
in producing compound documents, documents that can embed almost any kind of
content inside them. Each piece of content in the document (each part) includes its
own part handler, the code that’s used to edit and view it. To achieve this, OpenDoc
part handlers must cooperate in a number of ways. They must sort out how events
are passed, where data is stored on the disk, and where drawing is allowed to occur on
windows or printed pages.

This article starts with a brief overview of OpenDoc and then talks about
implementing a simple part handler. It will show you the absolute basics, much as
TESample does for TextEdit in the Macintosh Toolbox. You’ll learn about a simple
example of building a part handler, included on this issue’s CD: a clock that can
handle two different display modes, digital and analog. The clock updates itself every
second and allows the user to select the display mode from a menu.

A quick caveat: The sample code provided on the CD is from the alpha version of
OpenDoc, but by the time you read this, a beta version should be available. When
you begin implementing your own part handler, you may find that some details of the
API have changed; however, the overall structure will be the same. The sample clock,
for instance, is specific to C++ and the alpha version of OpenDoc. The final version
of OpenDoc will be based on IBM’s System Object Model (SOM), which will allow
part handlers to be written in a variety of languages, both object-oriented and
procedural. Similarly, the XMP prefix on OpenDoc class names (you’ll see a lot of
them in this article) will be changed to OD beginning with the beta release.
KURT PIERSOL, the chief architect of OpenDoc,
previously led the Apple Event project and was
an early technical lead for AppleScript. He’s
responsible for making technologies fit together at

Apple. Kurt also likes to wear suspenders, though
that has very little to do with his software
architectural responsibilities.•

This is perhaps a good time to mention a bit more about SOM. This technology is
the basic mechanism that OpenDoc part handlers use to communicate with one
another. SOM solves many hard problems associated with using object-oriented
languages, including those of subclassing across language boundaries, altering base
classes under dynamic linking, and long-term maintenance of object-oriented APIs.

OVERVIEW OF OPENDOC
Before getting into the specifics of OpenDoc and how to write part handlers, we’ll
talk about some of the basic services you’ll see in OpenDoc and where your own code
fits into the OpenDoc architecture.

PART HANDLERS
Part handlers are what provide OpenDoc with its ability to handle different kinds of
content in a single document. You, the developer community, will write the various
part handlers that plug into OpenDoc.

Part handlers are a lot like existing applications. They handle events, draw and print,
and read and store data onto disk. Every part handler provides a series of entry points
that allow OpenDoc to request any of these actions from the part handler. In
addition, the API has a number of “bookkeeping calls,” which allow OpenDoc to
provide undo services and notify part handlers when their environment has changed.

Overall, there are about 50 calls in the OpenDoc part API that a part needs to
implement. This is a lot, but it actually maps fairly closely with the number of things
you’d have to do to write any Macintosh application. In addition, you can ignore
many of these calls in many cases. For instance, if you don’t allow embedding of other
parts within your part, there are about ten calls that you can safely ignore. If you
don’t update your display asynchronously, but simply wait for update calls, there are
additional calls that you can ignore. In many typical cases, this means that you can
build a part handler very quickly from existing code.

Part handlers are packaged as shared libraries in the Macintosh version of OpenDoc.
This won’t always be the case on other OpenDoc platforms, but you can count on the
API being the same on all platforms. The alpha version of OpenDoc uses the Apple
Shared Library Manager to dynamically link your part handler into OpenDoc, while
the beta version will use SOM. These versions will have different linker behavior but
will essentially require the same basic packaging of your code: a shared library.

In either case, you’ll find that OpenDoc is an object-oriented API. That means
you’ll be talking to OpenDoc objects, and your part handler will itself be an
OpenDoc object (or set of objects). This doesn’t mean that your code has to be built
from the ground up in C++, though. SOM will provide interfaces to many languages,
including C.

Because part handlers are themselves objects, we often refer to them as “part objects”
or “parts” in conversation. In fact, what the user would call a “part” in a document is
really the combination of some persistent data stored in the document file and a set of
objects that OpenDoc uses to display and manipulate the stored data. OpenDoc
chooses appropriate part handlers based on the type of data stored in the document.

RUNTIME OBJECTS
As we describe how to write a part handler, we’ll mention some runtime objects that
interact with your code. In OpenDoc, these objects can be located at run time using
the session object (XMPSession), to which your part object will be given a pointer
BUILDING AN OPENDOC PART HANDLER 7

d e v e l o p Issue 19 September 19948
when it’s initialized. The session object is very important because it’s your link to the
rest of the OpenDoc objects that are running in the document.

There’s a whole list of objects that the session object makes available. Of these, only
three will be important for the purposes of this article: the arbitrator, the dispatcher,
and the undo stack.

• The arbitrator is an object of class XMPArbitrator. The arbitrator
for a session is the place where part handlers register their
ownership of certain resources. The menu bar, the keystroke
stream, and the current selection are all examples of resources that
the arbitrator tracks.

• The dispatcher is the object that dispatches events to the various
part handlers. It’s an object of class XMPDispatcher. It’s used in
our example as a way to register for background time.

• The undo stack is an object of class XMPUndo that allows
OpenDoc to support multilevel undo across part handler
boundaries.

Each of these objects will be discussed as it’s encountered.

A RUNNING START
To give you a running start, we’ve built a small object-oriented framework for parts
that implements the direct interface to OpenDoc. This framework is a precursor to
the new part handler framework that Apple is building, and is included here simply as
sample code. Our sample clock uses this framework. The good thing about the
framework is that it clearly separates the work that any part handler must do to be
OpenDoc compliant from the specific work performed in putting up a clock.

The framework divides the work of a part into three objects: a frame object, a facet
object, and a part object. OpenDoc itself doesn’t require that you create anything but
a part object, but for the sake of clarity the framework divides the labor among
several smaller objects. For easy reference, here’s a list of the classes we’ll be
discussing throughout the article and their corresponding source files, included on
the CD:

CPart FWPart.h, FWPart.cpp
CFrame FWFrame.h, FWFrame.cpp
CFacet FWFacet.h, FWFacet.cpp
CClockPart ClockPar.h, ClockPar.cpp
CClockFrame ClockFra.h, ClockFra.cpp
CClockFacet ClockFac.h, ClockFac.cpp

The classes defined by the framework generally start with the letter C, hence the
classes CPart, CFrame, and CFacet. These three parts are helper objects for three
OpenDoc classes, XMPPart, XMPFrame, and XMPFacet. XMPPart objects are
OpenDoc part handlers: you’ll subclass XMPPart when writing your own. OpenDoc
uses the frame and facet objects to help part handlers lay themselves out in a window.
How these classes work together is probably the single most complex thing to
understand in OpenDoc.

XMPPart, the class from which part handlers are derived, is simply the base class of
every OpenDoc part handler. It’s the class that actually handles the drawing, editing,
and storage. Every part handler is an implementation of some subclass of XMPPart.

CPart, in the framework, is a class derived from XMPPart. It’s just a default
implementation of the basic XMPPart behavior. As such, CPart is a treasure trove of
information about the correct way to “ignore” calls that aren’t interesting because
your part handler doesn’t support embedding, update asynchronously, or use
offscreen bitmaps.

Every part is embedded in another part, with the exception of the root part, the top-
level part in each compound document. When a part is embedded in another part,
there’s an object that’s used to store information about the shape of the embedded
part. This boundary between a container and an embedded part is a frame — an
instance of the class XMPFrame. Every frame has a single part displayed inside it.
The container actually embeds the frame; it knows nothing about the part inside.

Any part can be displayed in several frames at the same time. This makes it easy for a
part to be visible in several windows or to have several different presentations. For
example, a charting part might want to have one frame displaying the chart and
another allowing the data to be edited in a table.

A facet (an instance of an XMPFacet object) is a visible part of a frame. There can be
many facets displaying within any given frame. This is a useful property, for instance,
when a container wants to “split” windows.

Both XMPFrames and XMPFacets have a field, partInfo, for storing information
specific to the part being displayed. This is rather like a window refCon, a handy
place to store information independent of the object itself. The CFrame and CFacet
objects are designed to be plugged into the partInfo fields of their XMPFrame and
XMPFacet counterparts. The containing part creates the XMPFrame and XMPFacet
objects and then allows your part handler to initialize their partInfo fields. In the
framework, the actual work of drawing the part on the screen is done in the CFacet
object. The work of deciding what shape the embedded part will take is done in the
CFrame object. As we describe the specific operations, we’ll point out the class in
which the code resides.

INITIALIZATION CODE
The first bit of code we’ll consider is the initialization code for each part object. Each
distinct part in a document gets an instance of the part object, so if there are seven
little clocks running in different windows (or the same window, for that matter) there
are seven instances of the clock part object. This means that you probably want to
come up with a scheme to share any global data so that you aren’t wasting space with
many copies of it. Both the Apple Shared Library Manager and SOM support
systemwide global storage, so this should be straightforward.

Resources are a special case. You’ll want to be very polite about not permanently
fiddling with the resource chain or making assumptions about where your resource
file is in the chain. We suggest saving the previous head of the resource chain, setting
your file to be the end of the chain, and using the single-level resource calls (such as
Get1IndResource) to find the resources you’re after. Since you’ll probably want to
share the resources among separate instances of your part object, it may be better to
detach the resources you get and manage them yourself instead of counting on any
particular application heap to have the correct resource map.

THE CONSTRUCTOR
The first step in initialization is the constructor. You should never do anything that
could possibly fail in a constructor. This pretty much limits you to operations like
BUILDING AN OPENDOC PART HANDLER 9

d e v e l o p Issue 19 September 199410
setting pointer variables to NULL, setting numeric variables to appropriate values,
and making similar assignments from constants.

You can see a good example in ClockPar.cpp. The clock part simply sets up its fields
with appropriate constant values.

XMPPART::INITPART
The next phase of initialization takes place in the InitPart method that every part
object implements. The InitPart method is called by OpenDoc after the part object
has been created, and here you can attempt things that can fail. This is where you
should attempt to allocate any extra memory you need for your part instance, get
resources if you need them, and set up your persistent storage.

Let’s examine how OpenDoc’s storage system looks to a part handler. When your
part object is created, the InitPart method is passed a storage unit object in which you
can persistently store information. A storage unit is really just a list of named
properties, each of which has one or more values. Each value is an entire stream, like an
existing Macintosh file. You can do read, write, seek, insert, and delete operations on
individual values.

Each value has a type, much like the type code associated with a Macintosh file. Every
property in a storage unit can have one or more values, each with their own type
code. Thus, you can store multiple representations of any property. You can make up
any property names you like. One special property name, kXMPPropContents, is
used by OpenDoc to determine which handler goes with which part at run time.
Every part object should have a property named kXMPPropContents so that OpenDoc
can determine what part handler to run.

In our sample, CClockPart has an Initialize method, which is called by CPart::InitPart.
It sets up the menu bar for the clock and sets up a focus set for obtaining system
resources from the arbitrator (more about this later). A good example of code to set
up persistent storage can be found in the implementation of CPart. The framework
calls its own method, called CheckAndAddProperties, to make sure that the storage
unit is set up correctly.

DRAWING CODE
Now that your initialization code is in place, you’ll want to make sure you can get
your part to draw onscreen. OpenDoc will call your part with the Draw method and
tell you which facet should be drawn.

Our sample, CClockPart, inherits some code from CPart that asks the CFacet object
to do the drawing. Notice, though, that before it does this, CPart::Draw sets up the
graphics port for drawing using the clipping information from the facet. This is very
similar to the basic drawing model for the Macintosh, where you draw using the
appropriate graphics port and clipping region. You can find the rest of the drawing
code in CClockFacet::Draw. This code consists of just the straightforward QuickDraw
calls and attendant calculations needed to display either the digital or the analog clock
face.

We use a utility class called CDrawInitiator to set up the drawing environment
reliably. The constructor of this class does all the work of setting the graphics port’s
clipping region and origin. Later, the destructor restores the port to its previous state.
This is a tricky bit of C++ coding that takes advantage of the object allocation
behavior of stack-based objects in C++.

HANDLING LAYOUT
One of the features of CClockPart is that it presents a round shape when it’s
embedded. To do this, it uses the XMPFrame object’s layout negotiation features.
To understand this, you need to understand the notions of canvas, shape, and
transform in OpenDoc.

• A canvas is simply a drawing context. On the Macintosh it can be
either a QuickDraw graphics port or a QuickDraw GX view port.

• A shape is a way of describing an area of a canvas. OpenDoc
supports describing shapes in terms of polygons, regions, or
rectangles on the Macintosh.

• A transform is a geometric transformation appropriate to the type
of canvas in use. In QuickDraw, the only transformation available
is an offset. In QuickDraw GX, the transformations are much
more powerful, capable of scaling, rotating, and offsets, as well as
some more interesting transformations such as skewing.

An OpenDoc frame has a set of shapes associated with it. One, called the frame shape,
is how the container tells an embedded object how to lay itself out. Your part handler
should use the frame shape to decide what to display and how to lay it out. When
your part is finished laying itself out, it can optionally specify to the container exactly
what part of the frame shape it plans to use. This shape is called the used shape of the
frame. Finally, the embedded part can specify an active shape, which is the subset of
the frame shape that you want to use for determining whether you receive a mouse
event. Often the used shape and the active shape are set to be the same shape. The
container can take care of filling in any areas left untouched by the part handler.

For example, assume we have a clock part embedded in a word processor that does
text wrapping. The word processor allows its embedded frames to be laid out as
rectangles. When the clock is embedded, it uses the frame shape (the rectangle given
by the word processor) to determine the size of the clock face. After determining the
size, it sets its used and active shapes to match the shape of the round clock face. The
word processor is now free to wrap text around the round clock face, and any clicks in
the rectangular frame shape that aren’t actually on the clock face are passed through
to the word processor. Those clicks can be used to manipulate the text that’s wrapped
close to the clock face.

CClockPart negotiates to get the frame shape to match the clock’s round face. This
works but is not strictly necessary. Instead, it could simply set its used shape to match
the round area of the clock. Either method will ensure that the container knows how
to clip any underlying parts so that they don’t draw in the clock’s area.

A quick aside about shape negotiation: Negotiation is rather straightforward in
OpenDoc, but knowledgeable programmers will notice that there is little support for
constrained negotiation. This is not an oversight, but instead a fundamental design
choice. It’s up to the embedding part to constrain layout according to its model of
content. This means that constraint strategies like “Boxes & Glue” or “Springs &
Wires” are the province of your part handler, not OpenDoc. You can implement any
of a number of layout constraint schemes on top of OpenDoc, but every part handler
may constrain layout within its own frame.

You can see what happens when the container reshapes the clock in the method
CClockFrame::FrameShapeChanged. CClockFrame requests a round shape from the
container and then invalidates the correct areas so that redrawing occurs. For most
parts, the standard behavior is to redo the layout based on the new shape, update the
active and used shapes of the frame, and then invalidate the proper areas.
BUILDING AN OPENDOC PART HANDLER 11

d e v e l o p Issue 19 September 199412
EVENT HANDLING
Our next area of implementation is the event handling for the clock part. This is
much like writing the event handling for any Macintosh application, with one
difference: you don’t poll the system for events by calling WaitNextEvent. Instead,
when there’s an event for your part handler OpenDoc calls your part’s HandleEvent
method.

XMPPART::HANDLEEVENT
The code inside HandleEvent is usually a switch statement, just as in applications
today. There are some minor differences, which are nicely illustrated by the code that
CClockPart inherits from CPart. This code effectively delegates the various events to
code that can handle each event, using a switch statement. Notice the behavior for
mouse-down events, which calls CFacet::HandleMouseDown, which in turn causes
the frame to become active if it isn’t already.

The notion of activation in OpenDoc is closely tied to the object discussed briefly
earlier, the arbitrator. An object is “active” if it owns some of the foci in the arbitrator.
A focus is just a shared data structure or system service of some kind, such as the menu
bar or keystroke stream.

When CClockFrame is told to activate, it requests a set of foci from the arbitrator.
In this case, it wants the menus and selection focus. These two, with the addition of
the keystroke stream, constitute the basic focus set that almost every part asks for
when it wants to allow editing. You can find the code that sets up the focus set in
CClockFrame::InitClockFrame. In CFrame::ActivateFrame, the focus set is
requested.

Notice that the part is requesting the menu focus before it attempts to put up its
menu bar. This is the basic rule to follow in all cases. If there’s an arbitrator focus for
the resource, you must request it and succeed in getting it before it’s OK to use the
resource. OpenDoc uses the arbitrator to carefully manage the sharing of data and
system services, so it’s very important to do the right thing and ask for foci whenever
you need shared resources.

PUTTING UP A MENU BAR
One of the things that CClockPart does is to set up a menu bar. You can see the code
for this in CClockPart::Initialize. The initialization code gets a reference to its menu
bar object and then calls the AddMenu method of the menu bar object to add its
menus. Finally, it registers command IDs to pass back when menu items are selected.

OpenDoc provides a menu bar object to help you set up menus and display them
when your part has obtained the menu focus. The major reason for this object to exist
at all is to support compatibility with Microsoft’s proprietary OLE 2.0 document
architecture. This object hides the complex menu-mixing behavior of OLE 2.0
behind a simple interface that works correctly in either an OpenDoc or an OLE 2.0
container.

Later, during execution of CFrame::FocusStateChanged, the menu bar object is asked
to display itself. The actual code invoked is in CPart::InstallMenus, and basically just
calls the Display method of the menu bar object.

GETTING IDLE TIME
You can get background time, delivered as idle events, on any of your frames. This is
done by getting the dispatcher from the session object and registering particular
frames for idle time.

You can see an example of this sort of registration in CClockPart::Initialize. In this
case, the part itself is registering to receive idle events, but individual frames can also
be registered. Once a frame or part has been registered for idle time, it will receive
idle events in its HandleEvent method.

UNDO AND REDO
Although CClockPart is too simple to support undo, it’s worthwhile to look at how
you would go about adding undo support to your OpenDoc part handler. We’ve
tried to make it as simple and unobtrusive as possible to do multilevel undo in
OpenDoc.

The first step is to create code that tells OpenDoc you’ve done something that can
be undone. You do this by getting the undo object, an instance of XMPUndo, from
the session object. You then call the XMPUndo::AddActionToHistory method,
which takes a hunk of data that you create to hold instructions about how to undo
the latest action. OpenDoc never looks inside this hunk of bits; it merely stores it for
later.

The code might look like this:

fSession->GetUndo()->AddActionToHistory(thisPart, myUndoData,
kXMPSingleAction, myUndoString, myRedoString)

myUndoData is a pointer to the undo data, and myUndoString and myRedoString
are strings to show in the Edit menu, to tell the user what action will be undone or
redone.

Once the information is on the undo stack, simply calling the XMPUndo::Undo and
XMPUndo::Redo methods will cause the system to send the correct messages to the
parts to get the last action undone. This allows the user to undo actions that were
made in other parts, without your part knowing precisely what needs to be done.

When the undo object is told to undo or redo, it calls your part handler back using
the Undo or Redo method. If you never post undo actions, you never need worry
about having these methods called, and you can ignore them. The XMPUndo object
will always return exactly what you store in it, and it makes sure that undo and redo
operations are invoked in the correct order. When the Undo object is finished with
the undo data, it asks your part to dispose of it by calling your part’s DisposeActionState
method. This means that you can safely put pointers to other data into the undo data,
since you’ll get a chance to dispose of the data, and anything it points to, at a later
time.

On some systems, such as one that supports persistent undo stacks, you may be asked
to read and write your undo data against a persistent storage medium. This is not the
case on the Macintosh, but OpenDoc does allow for it. You can safely ignore this
until it becomes an issue on some platform you choose to support.

STORAGE
Eventually it becomes time to save a document. We’ve already discussed the OpenDoc
storage environment to some degree. The storage unit object in OpenDoc is set up
for the part by the OpenDoc libraries themselves, so generally a part never needs to
talk directly to the file system just to read and write its own data. This system
supports not only compound document storage, but also a versioning system that
allows for multiple drafts.
BUILDING AN OPENDOC PART HANDLER 13

d e v e l o p Issue 19 September 199414
DEALING WITH STORAGE UNITS
Once you’ve been given a storage unit, you typically get it ready by using the Focus
call. To minimize the API, a set of common functions that can apply to the entire
storage unit, a particular property, or a particular value has been abstracted out.
Properties and values within a storage unit are not represented by distinct objects, but
are instead captured in the focus state of the storage unit: the Focus method sets up
the context for later calls. For example, the Remove method can apply to an entire
property or to a single value of it, depending on whether the storage unit was focused
on the property or on a value. Focusing can be absolute (when you pass a particular
property ID or value index) or relative (when you pass a position code).

The read operation is performed with the XMPStorageUnit::GetValue method, and
the write operation with XMPStorageUnit::SetValue. The position can be set or
read with XMPStorageUnit::SetOffset and XMPStorageUnit::GetOffset. Efficient
inserts and deletes can be performed with XMPStorageUnit::InsertValue and
XMPStorageUnit::DeleteValue. You can also use the latter call to truncate a given value.

Typically, your part will focus on the kXMPPropContents property and do various
reads or writes, depending on whether your part is being internalized (read in from
storage) or externalized (written out). If your part is sufficiently large and complex,
you’ll probably want to use inserts and deletes to store changes to your persistent
data. This has two useful effects: it makes your data more randomly accessible, and it
makes the OpenDoc draft system store changes more efficiently.

This draft system allows a user to save a draft of a document and return to view the
draft at any future time. Where possible, it stores only the changes between
succeeding drafts, instead of storing entire copies of the document for each draft. By
using OpenDoc’s storage APIs, you automatically get this efficient storage of separate
versions with no additional work on your part. OpenDoc only watches the storage
operations, though; it doesn’t attempt to detect differences on its own. If you use
insert and delete operations, OpenDoc’s storage system can efficiently store the
changes between drafts.

BASIC I/O FOR YOUR PART
When your part is brought into memory, your InitPartFromStorage method is called,
and it’s passed a storage unit. You are then responsible for reading the storage unit
and getting ready to receive other messages. This will happen once, and never again
until the object is deleted from memory. Later, when the document is being saved,
your part’s Externalize method is called. You must immediately write anything you
need to store persistently out into your storage unit, before returning from this
method.

Your part is also free to write to its storage unit, as well as read from it, whenever it
wants to. For part handlers that “virtualize” themselves from disk, this means that
OpenDoc won’t get in your way.

The CClockPart::InternalizeContent and CClockPart::ExternalizeContent methods
are called by the framework in response to the standard methods InitPartFromStorage
and Externalize. They demonstrate focusing a storage unit and doing read and write
operations. CClockPart’s storage needs are very simple; it just reads and writes a few
flags into its storage unit.

PART INFORMATION ATTACHED TO FRAMES
As mentioned earlier, the XMPFrame objects associated with embedding have a
partInfo field, which is used like a window refCon by your code. When the document

is saved, you may be asked to save the contents of this partInfo field to a particular
storage unit. Your part will be called using the XMPPart::WritePartInfo method.
Your responsibility is to write enough information to be able to reconstruct the
partInfo field. Later, when the document is reopened, your part object will be called
with the XMPPart::ReadPartInfo method. This is your cue to read the data back into
memory and set up the part info for that frame object once again.

These partInfo fields are useful when you want to write a part that can have several
visible frames, each with a different presentation. The chart example we used earlier
is a case in point. We would want to allow a chart to be viewed as a table of data or a
chart, possibly one of various chart kinds. By storing information about what to
display in the frame’s part info, you’re freed from writing your own data structure to
remember what kind of display to do in what frame. Instead, you store that
information as a part of the frame’s part info and implement WritePartInfo and
ReadPartInfo methods to save and restore the data.

CClockPart doesn’t actually use the partInfo field of its frames in a persistent fashion.
It simply inherits code from CPart, which reconstructs the appropriate CFrame and
CFacet objects at run time. This is completely adequate for simple parts.

BEING A GOOD OPENDOC CITIZEN
Now that we’ve covered the basics, there are a few last details to implement before
we’ve got a good basic part. Since a part can have multiple frames, and a frame can be
visible in multiple facets, we need to make sure our part handler does the right thing
and avoids stepping on the toes of other parts.

ADDING AND REMOVING FACETS
When a part becomes visible (that is, when a facet appears), OpenDoc notifies the
part with a call to the FacetAdded method. This is when your part should do any
special setup it needs to (for instance, you may want to register for idle time on the
frame associated with that facet). Similarly, OpenDoc calls your part handler’s
FacetRemoved method when the facet goes away; here you should clean up any
actions you took in response to FacetAdded.

ADJUSTING MENUS
When your part handler acquires the menu focus, OpenDoc calls its AdjustMenus
method. Your job is to correctly update the menus so that the right elements are
checked, enabled, and so on. You can see an example in CClockPart::DoAdjustMenus,
which is called by the inherited code from CPart::AdjustMenus.

RELINQUISHING ARBITRATOR FOCI
Once you’ve acquired any focus from the arbitrator, you’ll eventually be called on to
release it. This will happen via three methods: XMPPart::BeginRelinquishFocus,
XMPPart::CommitRelinquishFocus, and XMPPart::AbortRelinquishFocus. The first
method is called to ask your part if it’s willing to relinquish a focus it owns. It should,
if at all possible, say yes. It’s possible, though, that you won’t give up a focus, because
your part object is in a mode. For instance, you wouldn’t give up the serial port focus
if you were in the middle of an XMODEM transfer.

Once your part has responded to the XMPPart::BeginRelinquishFocus call, you
can expect another call shortly after that which informs your part that the focus has
really been given to another frame, or that it hasn’t. The first case is signaled by
XMPPart::CommitRelinquishFocus, and the second case is signaled by
XMPPart::AbortRelinquishFocus.
BUILDING AN OPENDOC PART HANDLER 15

d e v e l o p Issue 19 September 199416
Occasionally, under difficult conditions, your part will simply be informed that it has
either acquired a focus (through the XMPPart::FocusAcquired method) or lost a
focus (through the XMPPart::FocusLost method). If your part has lost a focus, you’re
expected to avoid inappropriate behavior, such as attempting to adjust menus or
display a menu bar when you don’t have the menu bar focus.

FREEING MEMORY
Your part is expected, if possible, to free some memory on request. When it’s needed,
you’ll be called with the XMPPart::Purge method. You’re given a size that’s the
amount of memory requested. If you can manage it, you should free any unneeded
memory from your part’s data structures. Don’t free anything you need to keep
running, of course. You might free any resources you were holding, or free some
cached data. CClockPart, our example, is so simple that it has almost nothing to
purge.

IN CLOSING
By now you should have a good idea of what’s involved in writing an OpenDoc part
handler. As you’ve seen, it’s much like writing an application today: you still write
code to handle events, deal with storage issues, draw to the screen, and so on. The
main differences are really in the “packaging” of the code and in the environment it
runs in. (Some previously messy areas have even been cleanly abstracted for you. The
storage system is a good example: no more ugly file handling code; you just deal with
storage units and let OpenDoc handle the details.)

But the differences for users are amazing. No more worrying about which application
can open which document. Instead, when they select a particular type of content to
work with, the tools they need to work with that content simply appear. In user tests,
many people thought that this radically wonderful technology was just a bug fix, and
that it was finally working the way it was always supposed to. There can be no better
indication that OpenDoc is a step in the right direction.
Thanks to our technical reviewers David Austin,
Ray Chiang, Mark Minshull, Alan Spragens, and
Borek Vokach-Brodsky.•

BALANCE OF
POWER

Tuning PowerPC
Memory Usage

DAVE EVANS
If you care about the performance of code you write for
the Power Macintosh, memory usage should be your
foremost concern. With the PowerPC™ 601 processor
today, and even more important with future processors,
memory usage of your code will have the greatest effect
on its performance. Poorly written code will execute at
a fraction of its potential, and often very simple
changes will greatly improve the execution speed of
your critical code.

Processors are improving much faster than the memory
subsystems that support them. As the PowerPC chips
move from 80 MHz to 100 MHz and beyond, their
thirst for data to process and instructions to execute
will increasingly tax memory. Memory caches attempt
to mitigate that thirst, and all PowerPC processors
come equipped with built-in caches. But your code can
work well with a cache or it can work very poorly with
a cache. I’ll show you why and discuss what you can do
to optimize your memory usage.

CACHE BASICS
As you know, a cache is simply very fast RAM that the
processor can access quickly and that it uses to store
recently referenced data and code. On the PowerPC
processors, any data stored in the cache can be accessed
without stalling the processor’s pipeline. Accesses to
data not in the cache will take about 20 times as long
reading from main memory, or even 1 million times as
long if the access causes a page fault with virtual
memory. Getting and keeping your performance-
critical code and data in the cache are therefore key to
your execution speed.

A cache is divided into small blocks called cache lines.
On the PowerPC 601, for example, the cache has 1024
DAVE EVANS occasionally uses the combinatorics skills he
learned at the Massachusetts Institute of Technology, but more often
he’s been practicing his combination punches at a Thai kickboxing
cache line blocks, each holding 32 bytes. In addition,
the 601 will fetch two blocks when it can, making the
cache line size effectively 64 bytes.

The first PowerPC processors have set associative
caches of different sizes. The 601 has an eight-way set
associative, unified cache that’s 32K in size, and the 603
has a two-way set associative, split cache with 8K for
data and 8K for instruction code. The term set
associative refers to the way the cache relates to main
memory, which is important to your performance. In
some simple caching schemes, each cache line maps
directly to specific areas of main memory; any access to
one of these areas loads bytes into that cache line. But
on the PowerPC processor, sets of cache lines are
combined and then mapped to memory. There are
eight cache lines in each set on the 601, and two in
each set on the 603. An access to one of the areas
mapped to a set will load bytes into the last-used cache
line of the set, keeping the most frequently used cache
lines from being purged. This more complicated
scheme typically yields much better performance than
the directly mapped cache.

CACHE THRASHING
The cache will most affect your performance when
you’re accessing large amounts of data. A typical
example of this is walking through arrays to perform
some operation. The best strategy is to minimize cache
collisions during your accesses, and the best tactic for
this is to access your data as sequentially as possible. If
you walk through memory sequentially, you’ll load the
cache every 64 bytes, but all 64 bytes will be available
for fast processing. Here’s an example:

unsigned long data[64][1024];
for (row = 2; row < 64; row++)

for (column = 0; column < 1024; column++)
data[row][column] = data[row-1][column] +

data[row-2][column];

This example performs additions on each element of a
large matrix and accesses that matrix sequentially in
memory. It walks across each row, adding elements and
storing the result. But just inverting the loops can
significantly change the way memory is accessed:

unsigned long data[64][1024];
for (column = 0; column < 1024; column++)

for (row = 2; row < 64; row++)
data[row][column] = data[row-1][column] +

data[row-2][column];
BALANCE OF POWER: TUNING POWERPC MEMORY USAGE 17

gym. Designing fast algorithms for Apple’s OS Platforms Group is
definitely rewarding, but developing a fast left hook really gets him
pumped up.•

18
Reversing the loops leads to less than optimal
performance since we perform each addition for all the
columns before moving to the next element of a row.
Instead of sequential access, this access pattern jumps
across memory in even steps of 4K. Unfortunately, on
the PowerPC processor these accesses map to the same
set of cache lines, and every operation causes the cache
to reload from main memory. This second example
takes twice as long to execute the same calculation on a
Power Macintosh 6100/60.

By paying attention to how your code accesses memory,
you can avoid serious cache thrashing like that done by
the second example. Things to look out for are loops
that iterate for a power of 2 steps (128, 256, and so on)
and code whose memory accesses are not close together.

An approach called blocking may help your loops. Often
your code isn’t as simple as above, and your memory
accesses aren’t regular during the loop. If you’re
walking two different arrays with different increments
through memory, it may be impossible to serialize your
accesses. Blocking performs the calculations in blocks
of rows and columns. Instead of iterating across all the
columns and then proceeding to the next row, you
divide the dimensional space into blocks and calculate
one whole block at a time. In this next example, we
calculate the multiplication of two matrices.

long result[64][64], foo[64][128], bar[128][64];
for (row = 0; row < 64; row++)

for (column = 0; column < 64; column++) {
long sum = 0;
for (i = 0; i < 128; i++)

sum += foo[row][i] * bar[i][column];
result[row][column] = sum;

}

As this algorithm walks through memory, it accesses
result and foo sequentially, but bar is accessed in 256-
byte steps. Accessing bar by jumping through memory
causes cache misses, and sequential elements of bar are
flushed from the cache before they’re needed.

By performing this operation in small blocks, we can
better use the cache. The key is to use all the elements
of foo and bar that are in a cache line before moving
on. One way to do this is to expand the loop and
perform four operations in a single iteration:

long result[64][64], foo[64][128], bar[128][64];
for (row = 0; row < 64; row++)

for (column = 0; column < 64; column += 4) {
long sum1 = 0, sum2 = 0;
long sum3 = 0, sum4 = 0;
for (i = 0; i < 128; i++) {
d e v e l o p Issue 19 September 1994
sum1 += foo[row][i] * bar[i][column];
sum2 += foo[row][i] * bar[i][column+1];
sum3 += foo[row][i] * bar[i][column+2];
sum4 += foo[row][i] * bar[i][column+3];

}
result[row][column] = sum1;
result[row][column+1] = sum2;
result[row][column+2] = sum3;
result[row][column+3] = sum4;

}

This expanded loop calculates a block of four cells in
each iteration. This executes faster because elements of
bar are read from the cache and don’t always cause
cache misses as in the earlier example. Notice that in
the expanded inner loop, a cache line of the bar matrix
will be loaded the first time that it’s referenced; then
the following three references to bar will occur without
stalling. Using the bar elements while they’re still in
the cache gives us a significant improvement.

CODE STYLE
Good compilers can pay attention to your memory
accesses and will optimize how you access memory. For
example, load and store operations can be reordered by
the compiler to occur when the data is most likely to be
available. The first time data is accessed it tends to
cause a cache line to load, and subsequent accesses to
nearby data must also wait for the cache load to
complete. The compiler may be able to help by
inserting a few instructions between the loads. This
way the cache line will be fully loaded when the
subsequent accesses are needed.

For more information on loop expansion and instruction
reordering, see the Balance of Power column in develop Issue 18.•

You can help your compiler by using local variables
when you can. These tell the compiler exactly how the
data will be used, enabling it to easily reorder the loads
and stores for this data.

You should also carefully note memory dereferences,
especially double dereferences. Although it may be
obvious to you, the compiler often can’t tell whether
two pointers address the same object in memory. The
compiler may be prevented from reordering
instructions because it can’t tell whether two operations
are really dependent on each other, just because they
contain dereferences. Here’s an example:

paramBlock->size = myStructure->size;
paramBlock->offset = myStructure->offset;

Although it appears obvious, the compiler usually can’t
tell if paramBlock references the same memory as

myStructure. In the resulting binary, the compiler will
be conservative and not reorder these operations for
best execution. Replacing the dereference of
myStructure with local variables for size and offset will
allow the compiler to fully optimize this example.

INSTRUCTION THRASHING
Your code binary itself can cause the cache to thrash as
it loads to be executed. This is very hard to detect and
optimize. The basic problem is that your subroutines
may map to the same areas of the cache, and frequent
calls among them will stall to reload the cache. Some
code profilers for RISC workstations have attempted to
detect this problem, but for the Macintosh I can’t
suggest much help. Just changing the link order of your
code and then executing profiles may have an effect;
some link orders will thrash more than others.

DATA STRUCTURES
The layout of your data structures can greatly affect
your cache usage and your memory usage in general.
For example, memory accesses that cross 64-bit
memory boundaries take twice as long to process, as
this forces two bus transactions. On the PowerPC 601
Thanks to Tom Adams, Mike Cappella, Rob Johnston, and Mike
Neil for reviewing this column.•
processor, any misaligned data access within a memory
boundary takes the standard amount of time, which
(because of typical Macintosh data structures) is a
valuable feature of the chip; future PowerPC
processors, however, may take longer to access
misaligned data. If you can align your data structures,
do so now. A good tactic is to keep 64-bit data at the
top of your structure, followed by your 32-bit data, and
so on to prevent accidental misalignment of elements.
Pad the end of the structure to an even 64-bit
increment if you will have arrays of structures or will
allocate them on the stack. And if certain parts of your
structure are accessed much more often than other
parts, keep these together so that they stay in the cache,
and make sure they’re aligned.

DON’T FORGET
The memory usage of your speed-critical code will
greatly affect its performance today, and current
problems will just get worse when PowerPC processors
go above 100 MHz. Profile your code to find the most
critical bottlenecks; then pay close attention to how
that code addresses memory. You’ll be rewarded with
an excellent return on your investment.
BALANCE OF POWER: TUNING POWERPC MEMORY USAGE 19

Power up with
PowerPC

Apple Developer University has just
what you need to jump start your PowerPC

development efforts.

• Programmer’s Introduction to RISC and
PowerPC self-paced training

• PowerPC BootCamp

For more information, contact the Developer
University Registrar at (408) 974-4897.

DEVELOPER

UNIVERSITY

DU

20
Designing
Applications for
the Power
Macintosh

GREG ROBBINS AND
RON AVITZUR
The Power Macintosh offers surprises both for users
and for developers. Users notice that it’s a fully
compatible Macintosh and that native applications run
blazingly fast. Developers, upon learning how the
Power Macintosh differs from a 680x0-based
Macintosh, discover that it’s still basically a Macintosh.
But the Power Macintosh can offer a much richer
experience than was possible with previous computers
if developers break free of their old assumptions and
harness the power of the machine to make software not
just faster, but easier and more enjoyable to use.

The Graphing Calculator desk accessory that ships
with the Power Macintosh was designed to take
advantage of the machine’s power to make some
challenging mathematical tasks easily accessible — in
particular, algebraic manipulation and 2-D and 3-D
graphing. In this column we’ll share some lessons we
learned when writing the Graphing Calculator. We’ll
speak about software design rather than programming
details because we frequently discovered that our
intuition and the standard approaches to many aspects
of the application design were no longer appropriate.

In general, we learned that it’s time to break free of the
idioms developed for the machines of 1984 and begin
designing a new generation of software. We’re not in
Kansas anymore. The lowest common denominator of
hardware — where developers usually aim in order to
maintain consistency across all Macintosh models —
has changed. The target has typically been an 8 MHz
68000 processor or, for color applications, perhaps a
machine twice as fast. The lowest common
d e v e l o p Issue 19 September 1994

GREG ROBBINS began writing educational software on the
Apple II as a high school student. Since then, he’s picked up
computer engineering degrees from U.C. San Diego and the
University of Pennsylvania, bagged wild boar in Fiji, and evaded
sharks off Australia. When he’s not consulting on Macintosh
development, Greg gets way off the beaten track as a member of
the Bay Area Mountain Rescue Unit.•
denominator for Apple’s RISC-based line of machines
is a 60 MHz PowerPC 601 processor. This change
represents an enormous jump: on some floating-point
operations, for example, the Power Macintosh is as
much as 20,000 times faster.

In our tests, calculations using the PowerPC processor’s single-
precision floating-point multiply-add instruction were 20,000 times
faster. This means that if we had started a lengthy floating-point
calculation in 1984 at the release of the Macintosh, and that
calculation were still being worked on by the computer, it would
take a Power Macintosh starting now just four hours to catch up.•

Even for developers targeting 680x0-based machines, a
new approach to software design can dramatically
improve users’ experiences. The goal is to maximize
use of whatever processing power is available in the
design of the user interface.

Here’s a summary of the tips we’d like to pass on; we’ll
look at each one in more detail below.

1. Tackle expensive computations when they can
improve the interface.

2. Eliminate dialogs and command lines in favor of
direct manipulation.

3. Drop old assumptions and idioms. Use the
processing power to explore new interfaces.

4. Provide a starting point for exploration.

5. Avoid programming cleverness. Instead, assume a
good compiler and write readable code.

6. Invest development time in user-centered design.

7. Learn the new rules for performance.

8. Design tiered functionality: take advantage of
whatever hardware you’re running on.

9. Test on real users.

THE TIPS IN DETAIL

1. Tackle expensive computations when they can
improve the interface.

We took a fresh look at how to implement the visual
feedback for dragging, scrolling, and zooming.
Traditionally, the Macintosh has represented these with
RON AVITZUR considered working on the Graphing Calculator
to be an exercise in single-minded obsessive behavior — good
training for graduate school in physics. Ron has been writing
educational math software since the dawn of the Macintosh. You
haven’t really seen the Graphing Calculator until Ron has shown it
to you; in fact, Stewart Alsop’s PC Letter names Ron one of the first
Demo Gods.•

XOR animation, which gives the impression of the
action without really recalculating the window
contents. This is how we first implemented them in the
Graphing Calculator as well; redrawing an algebraic
equation or 2-D curve, not to mention a 3-D rendered
surface, is computationally expensive.

But to try to stress the processor, we tested the direct
approach, and we found that the PowerPC processor
could easily keep up. So now in the Calculator, when
the user drags the axes, not only is the image dragged
live but the exposed parts of the function are calculated
and drawn as the mouse is moved. When the zoom
buttons are clicked, the entire function is recomputed
and redrawn several times to animate the zoom. In this
way, applications can take advantage of the PowerPC
processor to dramatically improve the quality of
interaction in ways that are not possible on slower
machines.

2. Eliminate dialogs and command lines in favor of
direct manipulation.

Since there’s processing power to burn in the PowerPC
601, we simplified the user interface by replacing many
dialogs with direct manipulation. The Graphing
Calculator doesn’t have the dialogs typical of graphing
programs for specifying the range and precision of a
graph (xmin, xmax, ymin, ymax, number of points, and so
on). Instead, the user controls the view of a graph
through direct manipulation.

Today’s computers are fast enough to allow you to
implement direct interaction for complex tasks. Certain
time constants play crucial roles in human factors
analysis. Recognizing these thresholds can help create a
smoother interface. If a task like interacting with an
equation takes under one-tenth of a second, users
won’t be bothered by the delay; if it takes under one-
fourth of a second, it’s fast enough not to be annoying.
Longer delays, however, make users realize that they’re
waiting. With fast response times, users can ignore
the computer and have fun exploring the subject at
hand.

By emphasizing direct manipulation, we reduced even
algebraic simplification, a task that might seem to
require a command-line interface, to the paradigm of
MacDraw. Math is traditionally intimidating, and math
programs even more so, but we wanted to make
mathematics fun. This was really a user-interface
challenge, and it required rethinking many
fundamental assumptions. Usability was our primary
design goal; functionality was second. We were pleased
to discover that with direct manipulation, we could
simplify the interface without giving up powerful
functionality.
Since direct manipulation doesn’t require users to learn
any new commands or concepts, the manipulations
immediately become part of a user’s arsenal of tools. A
powerful example of this is the drag algebra facility,
which strikes many people as the most intriguing
feature of the Calculator. The user can select a term of
an equation and drag it elsewhere in the equation, just
like dragging an object in a drawing program. The
Calculator performs the algebraic manipulations
necessary to keep the equation consistent. This feature
immediately boosts users into a realm where they can
confidently and easily manipulate an equation. Just as
simple calculators did with multiplication and division,
it allows users who understand the essential concepts to
immediately move on to more interesting problems.

3. Drop old assumptions and idioms. Use the
processing power to explore new interfaces.

On a Power Macintosh, you can handle hundreds or
thousands of times more information than before
interactively. This might allow rendered 3-D objects to
become user-interface components, for example. While
the Graphing Calculator flashes its buttons for the
usual 8 ticks to indicate that they’ve been clicked, in
that time it could compute and render a 3-D surface
with 1000 polygons. Imagine what controls might look
like if they really taxed the processing power of the
machine.

Because functions are rendered so quickly on a Power
Macintosh, we made 3-D surfaces spin by default. This
gives users more information about the functions right
away. Furthermore, there are no menus or dialogs to
control the view of surfaces; just as it does for 2-D
graphs, the Calculator lets users change the 3-D view
by grabbing the surface with the mouse.

4. Provide a starting point for exploration.

Applications should avoid batch setup operations, such
as requiring users to set a lot of dialog options before
performing an operation. Instead, provide a starting
point for exploration, with reasonable defaults for
whatever’s necessary to get users to that point.

Perhaps the most unusual aspect of the Graphing
Calculator is what it doesn’t ask of users. They don’t
have to set up any graphing options before viewing a
curve or a surface; there are no preliminary dialogs or
required commands for users to do this. For any
equation that can be graphed, the user simply clicks a
Graph button to draw it.

We’ve all had the bewildering experience of trying to
use a program only to discover that we don’t even know
how to begin. One of the toughest problems is to
DESIGNING APPLICATIONS FOR THE POWER MACINTOSH 21

22
create an interface that makes functionality available
and enjoyable for first-time users. But clearly this is
where the design effort offers the greatest payoff.

5. Avoid programming cleverness. Instead, assume a
good compiler and write readable code.

Cycle-counting and compiler-specific optimizations are
favorite pastimes of hackers, and sometimes they’re
important. But we could never have completed the
Graphing Calculator in under six months had we
worried about optimizing each routine. Rather, we
dealt with speed problems only when they were
perceptible to users.

We made no attempt to look at performance
bottlenecks or at the compiled code of the Calculator
until after running execution profiles. We were
surprised where the time was being spent. Most of the
time that the Calculator is compute-bound it’s either in
the math libraries or in QuickDraw. So little time is
spent in our code that even compiling it unoptimized
didn’t slow it down perceptibly. Improving our code’s
performance meant calling the math libraries less often.

Programmers are often tempted to spend time saving a
few bytes or cycles or to fine-tune an algorithm. If the
change isn’t visible to users, however, the benefits may
not extend beyond the programmer’s satisfaction.
When most of the code in an application is
straightforward and readable, maintenance and
improvements are easier to make. Those are changes
that users will notice.

To maximize drawing speed without sacrificing compatibility,
the Calculator renders its graphs offscreen in GWorlds and uses
CopyBits to transfer them to the screen. See “Drawing in GWorlds
for Speed and Versatility” in develop Issue 10 for a discussion of
this technique.•

6. Invest development time in user-centered design.

Complex algorithms should be used not for their own
sake but to improve the user experience. For example,
as the user drags the pane divider in the Calculator
window, the application redraws most of the window
(offscreen in a GWorld) rather than recalculating
exposed areas. The Power Macintosh is fast enough
that it wasn’t worth spending coding and debugging
time to save on runtime calculation, because the savings
wouldn’t be perceived by the user.

In contrast, when users click on a 2-D curve to read an
(x,y) coordinate, some quite sophisticated processing
happens. As the user moves the mouse, a numeric root-
finding algorithm looks for interesting points such as
maxima, minima, and zero-crossings to solve equations
d e v e l o p Issue 19 September 1994
numerically. Furthermore, because numerical methods
to find maxima and minima are imprecise, we also
compute symbolic derivatives of the functions and then
look for where the derivative is 0, which locates
maxima and minima much more accurately.

All this work goes completely unnoticed by the user.
But the user does notice the result: simply clicking on
the curve tells with great precision what’s interesting at
that point.

7. Learn the new rules for performance.

You may discover that there are places where
performance tuning would be worthwhile in your
application. The rules for performance have changed,
and knowing the new rules is essential. Some
programming techniques that traditionally improve
performance can be counterproductive. In particular,
on PowerPC-based systems, avoiding instruction cache
misses is far more important than saving instructions.

Getting good performance out of a fast machine
doesn’t always come without effort. To be able to
exploit modern hardware to improve an application,
you must have some understanding of the hardware
and what allows it to be fast. It’s extremely important to
understand the processor and memory architecture of
your target platform.

The memory system in the Power Macintosh is much
faster than the memory system of other Macintosh
models. The 64-bit bus allows for substantially
improved data transfer. However, the processor is
much, much faster than the memory system. An
uncached memory reference may take 20 times as long
as a cached memory reference. Performance will
actually be slowed down dramatically by a speed
optimization that saves floating-point multiply
instructions (expensive on some processors, but not on
the PowerPC) at the expense of extra memory usage
that forces instructions or data out of the cache.

Understanding patterns of memory reference is very
important in analyzing algorithms for performance.
Stepping through an array across cache lines can
quickly flush all lines out of the cache. (Cache lines are
discussed in the Balance of Power column in this issue.)
This can cripple attempts to walk the data structures
typically maintained by interface-intensive applications.
The PowerPC 601 has an eight-way set associative
cache, which is fairly resilient to degradation from
flushing of cache lines. However, the 603 processor has
just a two-way set associative cache. Any processor-
intensive calculations must avoid cache thrashing if
they are to avoid degrading below an acceptable level of
user responsiveness.

For additional architecture insights and tuning strategies,
see the Balance of Power column in develop Issue 18 and in this
issue.•

Because no two platforms will run at the same speed,
it’s important to design software to work well on a
variety of machines. In principle, this means that the
same application could run on any Macintosh, while
being far more powerful — and more pleasant to use —
on a Power Macintosh.

8. Design tiered functionality: take advantage of
whatever hardware you’re running on.

Just as it’s frustrating for users of entry-level machines
to be unable to run software, it’s equally frustrating for
users of fast, high-end hardware with plenty of memory
to have features execute unnecessarily slowly, or to be
constrained by programs that expect and only take
advantage of minimal resources.

The Graphing Calculator does assume a Power
Macintosh as its base platform; otherwise its
expectations are modest. However, its appetite is
unbounded. It does all drawing using offscreen buffers
in temporary memory when adequate RAM is available,
but will scale back to onscreen, QuickDraw-based
rendering when temporary memory is limited. System
7 makes this easy with purgeable GWorlds; once
LockPixels fails, the Calculator knows that it must
work within tighter constraints. Later, when it can
reallocate the offscreen buffer, it does so and resumes
the fast, smooth graphing effects. When memory is
abundant, the Calculator uses many temporary
GWorlds to buffer frames of 2-D inequality graphs
calculated for varying values of n, such as the animation
of cos nx < 0.

The Graphing Calculator does all 2-D graph
computation in 15-tick chunks. For simple curves, this
typically renders the entire curve at once. But 2-D
inequalities are drawn piece by piece. Once Power
Macintosh computers are fast enough that an entire,
complex inequality graph can be drawn in a single 15-
tick time slice, users will be able to explore inequalities
as fluidly as they can now play with simple functions.

To take advantage of faster machines, always base
computational units on real time rather than on more
arbitrary measures. If the Calculator had recomputed a
fixed number of points and then called WaitNextEvent,
too much time would have been yielded to other
processes, even on graphs simple enough to be
Thanks to Arnaud Gourdol, Mike Neil, Don Norman, and Alex
Rosenberg for reviewing this column.•
recomputed and drawn all at once. Instead, the
Calculator calls TickCount and lets that dictate when it
needs to yield time. This approach allows for a smooth
user interface and cooperative execution regardless of
the processor’s speed.

Designing tiered functionality means abandoning
assumptions about what is and is not practical on the
target hardware. For addressing resources, such as
available hardware and memory, or when execution can
be threaded or time-sliced, the options are usually
clear. For matters of raw speed, the proper approach
may not be so obvious. It may come down to measuring
the execution speed of a particular procedure at run
time and basing a decision on that. For example, an
animation effect might be suitable if it takes under 8
ticks, or a routine that bypasses QuickDraw for
drawing in a GWorld may be worthwhile if it really is
faster than its QuickDraw alternative.

For an example of timing graphics speed, see the article
“Exploiting Graphics Speed on the Power Macintosh” in develop
Issue 18.•

9. Test on real users.

The Graphing Calculator reflects our vision of a new
kind of calculator. But user testing was essential for
showing us the holes in our vision. For example,
elements that were directly manipulable in our eyes
were overlooked by users. So we redesigned them to
make their functions clearer, and then added a demo
mode to point out important controls explicitly.

In tests, the users who looked at the help pages
invariably turned first to the page at the end offering
“tips.” This surprised us, but also made clear where to
put the most important information for using the
Calculator.

Toward the end of the development of the Graphing
Calculator, as the final user tests were being conducted,
we saw students using the Calculator effectively within
minutes, without instruction. Watching a high school
student say “Wow!” as an equation came to life on the
screen was probably the most satisfying moment for us
as programmers. It was also the one that offered us the
greatest hope about the future of personal computing.
The Power Macintosh offers us the chance to reach
more people while making the experience more
enjoyable and easier for users than ever possible on
earlier generations of computers. As developers, we
have a new world to explore.
DESIGNING APPLICATIONS FOR THE POWER MACINTOSH 23

24
Adding QuickDraw GX Printing to QuickDraw
Applications
DAVE HERSEY

d e v e l o p Issue 19 September 1994
Now that QuickDraw GX has been released, you may be wondering
what to do with your older QuickDraw applications. The good news is
that by adding a relatively small percentage of code to your existing
applications, you can support all the new features of the QuickDraw
GX printing architecture and still retain full compatibility with
non–QuickDraw GX systems.

Compatibility with the existing application base was a primary concern during the
development of QuickDraw GX; only the most hardened “print criminals” should have
compatibility problems. Since a pre–QuickDraw GX application should work in both
QuickDraw GX and non–QuickDraw GX environments, you may think that leaving
your code as it stands is good enough. Becoming compatible probably doesn’t require
any revisions to your existing software, and the fact that your application will perform
with or without QuickDraw GX sounds like a pretty good deal. Where’s the catch?

Here it is: A non–QuickDraw GX application doesn’t have access to several key
features of QuickDraw GX, so its users can’t take advantage of many of the new
printing features. For example, with QuickDraw GX a user can:

• Redirect print jobs using the new Print dialog.

• Choose page-by-page formatting, so that page 1 prints on US
Letter, page 2 prints on #10 envelope, page 3 prints on landscape-
oriented US Legal, and so on, instead of printing the entire
document in a single format.

• Work with the new QuickDraw GX printing dialogs (shown in
Figure 1) instead of the dialogs provided for compatibility with
non–QuickDraw GX applications.

• Use features provided by printing extensions. Printing extensions
can add items to the QuickDraw GX printing dialogs, but not to
the compatibility dialogs. (Added items show up as icons in the
column on the left side of each dialog.)

• Print a single copy of a document with the new Print One Copy
command.

• Print documents by dragging them to desktop printers.
DAVE HERSEY likes the annoying buzzing noise
that ImageWriters and ImageWriter LQs make.
He also enjoys listening to Guns N Roses, but
only while he’s answering developer e-mail at
Apple’s Developer Support Center. Dave recently
wrote a QuickDraw GX printer driver for the

Apple Color Plotter (which is from an era before
the first Macintosh). When asked why he
bothered, he said “Well, it makes this cool
wacka-wacka sound.” Clearly, Dave is an
audiophile for the ’90s.•

Users are shut out from all these features if they’re using a non–QuickDraw GX
application. In this article, you’ll see how to increase an application’s level of
QuickDraw GX support. I’ll take a QuickDraw application and convert it step by step
into an application that fully supports both the QuickDraw and QuickDraw GX
printing architectures. First, we’ll consider some definitions and background
information.

DIFFERENT LEVELS OF QUICKDRAW GX SUPPORT
To begin, let’s define the different levels of QuickDraw GX support (from lowest to
highest) that an application can have:

• QuickDraw GX unaware: The application doesn’t implement any
QuickDraw GX code, and QuickDraw GX translates all
QuickDraw printing and drawing calls into QuickDraw GX
equivalents. In other words, this is a non–QuickDraw GX
application.

• QuickDraw GX aware: The application implements a core set of
QuickDraw GX printing features but retains compatibility with
documents created with earlier versions.

• QuickDraw GX savvy: The application implements full support for
QuickDraw GX graphics, typography, and printing features. It
also retains compatibility with documents created with earlier
versions.

• QuickDraw GX dependent: The application requires the presence of
QuickDraw GX graphics, typography, and printing routines to
function.

Figure 1. The new QuickDraw GX printing dialogs

Page Setup dialog Custom Page Setup dialog

Print dialog
ADDING QUICKDRAW GX PRINTING TO QUICKDRAW APPLICATIONS 25

d e v e l o p Issue 19 September 199426
Applications don’t need to implement any code to be QuickDraw GX unaware.
Becoming QuickDraw GX aware requires some coding, but typically not very much.
Making your application QuickDraw GX aware is the minimal level of QuickDraw
GX support that you should set your sights on — just follow the guidelines in this
article.

A QuickDraw GX–aware application is really a non–QuickDraw GX application at
heart, with support for QuickDraw GX printing added. This application still uses its
old QuickDraw commands to represent shapes and text; however, in its print loop,
the application uses the QuickDraw GX graphics translator to translate QuickDraw
commands into QuickDraw GX shapes for printing, if QuickDraw GX is available.

If you’re just starting out on a new project, or you’re in the process of rewriting an
existing product, you should consider the next level of compatibility: QuickDraw GX
savvy. A QuickDraw GX–savvy application meets the requirements for being
QuickDraw GX aware but also takes advantage of the extensive QuickDraw GX
graphics and typography tools. You may feel that becoming QuickDraw GX savvy,
although it brings with it a wealth of increased capabilities, is too big a leap to take in
the short term. In that case, consider making your existing applications QuickDraw
GX aware and, once they’re released, going back and working on QuickDraw
GX–savvy versions.

A WORD ABOUT COMPATIBILITY
It’s Apple’s hope and goal that no QuickDraw GX–unaware applications will be
incompatible with QuickDraw GX. An existing application can be incompatible only
if it relies on unsupported methods or on unpublished information that breaks under
QuickDraw GX. For printing, this would include things such as trying to access the
Printer Access Protocol (PAP) code from the 'PDEF' 10 resource of the LaserWriter
driver. The QuickDraw GX LaserWriter driver doesn’t contain a 'PDEF' 10
resource, so applications that rely on this approach must be modified to work with
QuickDraw GX.

Developers were warned about the disappearance of the 'PDEF' 10 resource in
“Print Hints: Looking Ahead to QuickDraw GX” in develop Issue 13.•

If your application has compatibility problems with QuickDraw GX, you probably
already suspect it. You’re a candidate for such problems if you’re perpetrating any of
the “printing crimes” or shaky methods that Apple has warned about in the past.
Sweaty palms and pangs of guilt whenever your application is tested under new
system software are likely indications that you should get out your development tools
and reform your code now. (If you need the old code to run on non–QuickDraw GX
systems, simply provide alternative code for running with QuickDraw GX.) Delve
into the QuickDraw GX API — you’re sure to find a better way of doing things.

SOME FUNDAMENTALS
Before we go into the specifics of how to add QuickDraw GX printing to your
existing applications, we need to cover some fundamental ideas. I’ll start with a
discussion of the Collection Manager, which makes its debut with QuickDraw GX,
and then briefly cover overriding messages and the Message Manager.

For a review of QuickDraw GX printing, see “Getting Started With
QuickDraw GX” and “Developing QuickDraw GX Printing Extensions,” both in
develop Issue 15. See also Inside Macintosh: QuickDraw GX Printing.•

CREATING A FOUNDATION TO BUILD ON: THE COLLECTION MANAGER
The Collection Manager is somewhat like a memory-based version of the Resource
Manager. It provides API calls that allow you to create and access collections, which are
amorphous structures that can contain data of different types with different sizes.
Collections are similar to resource files under the Resource Manager except that
collections must be in memory, while resource files are by definition disk based.
Routines exist for “flattening” collections into a series of bytes that can be written to
disk and for “unflattening” them for later use.

Just as a resource file may contain Apple-defined data structures such as 'WIND' and
'MENU' resources, a collection may contain predefined collection items such as
'copy' and 'rang', which specify the number of copies of a print job and the page
range of a print job, respectively. Like resources, collection items have attributes that
are predefined (for example, the collectionLockMask attribute), but unlike resources,
they also have attributes that can be programmer defined. And, as with resources, you
aren’t simply stuck with the core set that’s been defined by Apple. Figure 2 illustrates
the similarities, including a programmer-defined resource of type 'USER' and a
programmer-defined collection item, also of type 'USER'.

Items in a collection are uniquely identified in three different ways. Every item has a
4-character label, or tag, which identifies the type of collection item. In Figure 2,
there are three collection items having the tags 'USER', 'copy', and 'rang',
respectively. In addition to the tag, every collection item has a longword ID.
Together, the tag and ID are one way to uniquely identify a collection item. Each
collection item can be also be referenced by its collection index or by its tag and tag
list position. The index is the relative position of an item in a collection, and the tag list
position is the relative position of a collection item within the item’s tag type — for
example, the first, second, or third 'USER' item in a collection. This gives us three
ways to refer to a specific collection item:

• by its tag and ID

• by its collection index

• by its tag and tag list position

It’s important to note that although a collection item’s index and tag list position may
change as items are added or removed from a collection, an item’s tag and ID will
never change. Therefore, the most common way to refer to collection items is by tag
and ID.

Collection tag and resource type naming conventions are the same. Apple
reserves tags listed in the printing interface files, as well as those consisting entirely of
lowercase letters.•

Resources on hard disk Collection items in memory

'USER'

'WIND'

'MENU'

'USER'

'copy'

'rang'

CollectionResource
file Resource type: 'USER'

Resource ID: 128

Resource attributes:
 locked

Variable-length data...

Collection item type: 'USER'

Collection item ID: 10

Collection item attributes:
 collectionLockMask

Variable-length data...

Figure 2. Similarities between resources and collection items
ADDING QUICKDRAW GX PRINTING TO QUICKDRAW APPLICATIONS 27

d e v e l o p Issue 19 September 199428
You can either create a collection with the NewCollection routine or use one of the
three types of collections that QuickDraw GX automatically creates for you during
printing. These types are job collections, format collections, and paper-type
collections. Every time a new gxJob, gxFormat, or gxPaperType object is created, a
collection is also created for that object. These collections contain items specifying
the following types of information:

• job collection: number of copies, page range, destination file
information (if printing to a file)

• format collection: scaling factor, page orientation, page flipping
information

• paper-type collection: paper-type creator, paper-type comment

These predefined collections contain many more collection items than are shown
here. See the QuickDraw GX interface file PrintingManager.h for the complete
listing. By simply changing the contents of the collection items, any application,
printing extension, or printer driver can easily affect how a document will be printed.

Note that all predefined collection items have the ID gxPrintingTagID =
–28672.•

Your application can create and use collections for its own purposes. By no means are
you restricted to using collections only within the QuickDraw GX printing
architecture, although that’s probably where you’ll use them the most.

OVERRIDING MESSAGES FROM AN APPLICATION: THE MESSAGE MANAGER
Sam Weiss’s article in develop Issue 15, “Developing QuickDraw GX Printing
Extensions,” introduced the Message Manager. The QuickDraw GX printing
architecture uses the Message Manager to invoke printing operations, and your
application, printing extension, or printer driver can override messages to change
printing behavior. This process is explained in Sam’s article, which is a good reference
for anyone unfamiliar with the Message Manager and how QuickDraw GX uses it.
This article assumes that you already have at least a passing familiarity with the basic
concepts.

When you override a message from an application, you’re more restricted in what
you can do than if you override a message from a printing extension or printer driver.
To understand why, consider a case where you want to override the QuickDraw GX
printing message GXDespoolPage to add a serial number to the page before it’s
printed. You can add this override to a printing extension in a straightforward way
that works regardless of which application prints the document. If, on the other hand,
the override is attempted by an application, the situation becomes more problematic.
The override won’t be invoked because it’s a despooling-phase message; only
application-phase and spooling-phase messages can be overridden by applications.

To understand a second limitation of application overrides, let’s look at how they’re
installed in the message handler chain. This is done by passing the routine
GXInstallApplicationOverride a pointer to the override procedure and a reference
to the document’s job, like so:

GXInstallApplicationOverride(docJob, gxJobPrintDialog,
MyJobPrintDialogOverride);

In this example, the application is overriding the GXJobPrintDialog message with an
override function called MyJobPrintDialogOverride. docJob is the gxJob object for a

document. Because your application has access only to its own gxJob objects, an
application override can be invoked only for the application that installed it. On the
other hand, a message override from a printing extension can affect every document
that’s printed, regardless of which application printed it.

In summary:

• Application overrides are reliable only during the application and
spooling phases of printing, which end once the document has
been spooled to a print file. You should attempt to override only
application-phase and spooling-phase messages from an
application.

• Application overrides are invoked only for the application
installing the override, and only for the gxJob objects in which the
overrides are installed.

Application overrides are best suited for adding features to the printing dialogs and
modifying the print file as a document is being spooled. If you feel limited by either
of the conditions mentioned above, you should move your override out of your
application and into a printing extension.

BECOMING AWARE
Now let’s look at what an application developer needs to do to support QuickDraw
GX printing. We’ll take a QuickDraw application called Simple Sample and convert
it into its QuickDraw GX–aware counterpart, Simple Sample GX. The code for both
samples is on this issue’s CD.

The Simple Sample application draws using various QuickDraw commands,
including those for simple objects, bitmaps, and PicComments. It can handle
multiple documents with multiple pages, and although it knows nothing about
QuickDraw GX, it is System 7 dependent (I made it that way to save on code and
confusion).

Here’s a summary of what most QuickDraw GX–aware applications need to do:

• Determine whether QuickDraw GX is present, and if so, initialize
the QuickDraw GX managers (and close them down when the
application quits).

• Create a gxJob object for each document created and dispose of
the gxJob when the document is closed.

• Override the GXPrintingEvent message (in order to support the
QuickDraw GX movable modal printing dialogs) while printing
dialogs are displayed.

• Update gxJob objects on resume events (in case the characteristics
of the desktop printer you’re printing to have changed).

• Save and load a document’s gxJob object to and from disk and
convert print records to gxJob objects when loading documents
created from pre–QuickDraw GX versions of your application.

• Make the Custom Page Setup and Print One Copy menu items
available in the File menu.

• Invoke the QuickDraw GX printing dialogs and support custom
formatting by page (each page can have a unique page format, or
can share another page’s format).
ADDING QUICKDRAW GX PRINTING TO QUICKDRAW APPLICATIONS 29

d e v e l o p Issue 19 September 199430
• Store page-to-format correspondences to disk with a document
(and load them again when the document is opened).

• Have a print loop that uses QuickDraw GX printing commands
and translates QuickDraw commands to QuickDraw GX shapes
for printing.

• Implement the Print One Copy feature.

• Support the new attribute of the 'pdoc' Apple event to properly
support drag-and-drop printing of documents from the Finder.

Each of these is discussed in order in the rest of this article.

PREPARATION
Before you can do anything with QuickDraw GX, you need to determine whether it’s
available. You should do this in your initialize routine, after you’ve determined that
the other managers your application requires are available. The MyInitGXIfPresent
routine in Listing 1 shows one way of doing this.

In MyInitGXIfPresent, we use Gestalt to determine whether the QuickDraw GX
graphics and printing routines are present. If so, we call GXNewGraphicsClient
to set aside memory for QuickDraw GX graphics operations, and we call
GXEnterGraphics and GXInitPrinting to enable the QuickDraw GX functions we’ll

Listing 1. QuickDraw GX preparation and cleanup

void MyInitGXIfPresent()
{

long gxVersion, gxPrintVersion;

gGXIsPresent = false;
/* Check to see whether QuickDraw GX is available. */
if (Gestalt(gestaltGXVersion, &gxVersion) == noErr)

if (Gestalt(gestaltGXPrintingMgrVersion, &gxPrintVersion)
== noErr)

gGXIsPresent = true;
/* If so, initialize QuickDraw GX. */
if (gGXIsPresent) {

gClient = GXNewGraphicsClient(nil, kGraphicsHeapSize,
(gxClientAttribute) 0);

GXEnterGraphics();
GXInitPrinting();

}
}

void MyCleanUpGXIfPresent()
{

if (gGXIsPresent) {
GXExitPrinting();
GXDisposeGraphicsClient(gClient);
GXExitGraphics();

}
}

use. Note that we also set a global variable, gGXIsPresent, which indicates whether
the QuickDraw GX managers we require are present. We’ll check this value
whenever we need to make a decision about whether to use QuickDraw or
QuickDraw GX methods.

Important: You cannot intermix Printing Manager and QuickDraw GX printing calls.
Do not call _PrGlue[A8FD] if you have called _InitPrinting.

When the user quits the application, we need to release any memory we allocated and
close down QuickDraw GX printing and graphics. We do this as shown in the
MyCleanUpGXIfPresent routine in Listing 1.

CREATING AND DISPOSING OF GXJOB OBJECTS
With the MyInitGXIfPresent and MyCleanUpGXIfPresent routines added to our
code, we’re now ready to make our application’s documents fit into the QuickDraw
GX print model. We do this by creating a gxJob object whenever we create a
document. Our non–QuickDraw GX application, Simple Sample, contains a routine
named MyCreateDocument that’s called whenever the user creates a document. As
shown in the Simple Sample GX application, this routine is modified so that when
QuickDraw GX is present (as indicated by the gGXIsPresent global variable), the
application creates a gxJob for each document, using the GXNewJob routine. If
QuickDraw GX is not present, the application creates a print record handle
(THPrint) instead.

It’s common for an application to store descriptive information about a document in a
private data structure, and our sample is no exception. The application uses a private
structure called MyDocumentRec that contains information about the number of
pages in a document, the current page being viewed, and so forth. We modify this
structure also, so that we can store a document’s job reference and page formatting
information with the document. As seen in Listing 2, we’ve added the documentJob
and pageFormat fields to the structure. The rest of the fields in this structure were
already being managed by the QuickDraw GX–unaware application, and we’ll
continue to use them.

We also need to modify the application’s MyDisposeDocument routine, which is
called whenever a document is closed. In the modified routine, we dispose of the
document’s gxJob.

Listing 2. MyDocumentRec, modified for QuickDraw GX

#define kMaxPages 20 /* Max pages the sample handles. */
typedef struct MyDocumentRec {

THPrint documentPrintHdl; /* Print record for document. */
gxJob documentJob; /* Job for document. */
gxFormat pageFormat[kMaxPages]; /* Format for each page. */

/* If nil, we use the job format. */
long numPages; /* Number of pages in document. */
long curPage; /* The current page displayed. */
FSSpec documentFSSpec; /* Document's file spec. */
Str31 documentTitle; /* The title of this document. */
WindowPtr documentWindow; /* The window for this document.*/

} MyDocumentRec, *MyDocumentPtr;
ADDING QUICKDRAW GX PRINTING TO QUICKDRAW APPLICATIONS 31

d e v e l o p Issue 19 September 199432
The changes that we’ve made so far are indicative of the approach we’ll continue to
use as we make our sample QuickDraw GX aware: adding code that executes only if
QuickDraw GX is present. If the user isn’t running QuickDraw GX, our converted
sample will appear and function as the original did. But if QuickDraw GX is present,
all the new functionality will kick in.

OVERRIDING GXPRINTINGEVENT
When we added support for gxJobs in the MyCreateDocument routine, we also
added the following line of code:

GXInstallApplicationOverride((*createdDocument)->documentJob,
gxPrintingEvent, MyPrintingEventOverride);

Every application that aspires to be QuickDraw GX aware should include such a
line. Remember, QuickDraw GX has movable modal printing dialogs; the
GXPrintingEvent message is sent whenever a dialog is moved. Unless you override
GXPrintingEvent, you won’t have a chance to update your application’s windows
when the dialogs are moved.

The code to support window updates when the printing dialogs are moved is actually
quite simple. You just need to add a routine that overrides the GXPrintingEvent
message and calls your event-handling routine (Listing 3), and to make sure that
you’ve disabled the appropriate menu items before displaying the new printing
dialogs. Note that your override should not forward the GXPrintingEvent message,
but instead should perform a total override of it.

UPDATING GXJOB OBJECTS ON RESUME EVENTS
There’s another piece of event-handling code that every QuickDraw GX–aware
application should include. To support the reentrant nature of QuickDraw GX, you
must call GXUpdateJob on each gxJob that your application is using whenever you
receive a resume event. (See the code for Simple Sample GX on the CD.) This
enables QuickDraw GX to update the information in the gxJob in case it changed
while your application was in the background. As an example, suppose that a user
suspends your application to change the printing extension setup for the destination

Listing 3. MyPrintingEventOverride

OSErr MyPrintingEventOverride(EventRecord *anEvent, Boolean filterEvent)
{

/* Handle events in whatever way is appropriate. MyDoEvent is
our generic event handler. We don't pass it events that it
shouldn't handle while printing dialogs are displayed. */

if (!filterEvent)
switch (anEvent->what) {

case mouseDown:
case keyDown:
case autoKey:

break;
default:

MyDoEvent(anEvent);
}

return noErr;
}

desktop printer. Upon switching back to your application, this user will expect any
open documents to use these new settings at print time. Unless you call GXUpdateJob
on your gxJob objects, the new settings won’t be there.

SAVING AND LOADING A DOCUMENT’S GXJOB
Now that we can create gxJob objects for new documents, let’s take a look at how we
can save these to disk and later retrieve them when the documents are opened. We
want to save them for the same reason that we want to store print records with
documents under non–QuickDraw GX systems: if a user has gone to the trouble of
configuring print settings for a document, the user-friendly thing to do is to use those
settings the next time the document is opened.

Because the data we want to save is stored in an abstract data structure (gxJob), we
need a way to convert it to a more tangible form. We accomplish this with the
GXFlattenJob or GXFlattenJobToHdl routine. GXFlattenJob passes the converted
data as a stream of bytes, whereas GXFlattenJobToHdl places the flattened data in a
handle. You would typically use GXFlattenJob to store the flattened gxJob in a data
fork, but GXFlattenJobToHdl to save it as a resource.

Since our application stores its print records in resources, we’ll store its flattened
gxJob objects in resources as well. To do this, we modify our application’s
MySavePrintInfo routine, which is called to save print records to disk. If QuickDraw
GX is present, the routine will instead save our flattened gxJob.

In the following code, we flatten a gxJob into a handle called thePrintData, which can
then be written to the disk as a resource.

thePrintData = NewHandle(0);
GXFlattenJobToHdl(whichDocument->documentJob, thePrintData);

Next, we modify the application’s MyLoadPrintInfo routine, which is used to retrieve
print records that were previously saved with MySavePrintInfo. This routine must do
several things, based on whether QuickDraw GX is present and whether a gxJob or
print record has been previously stored with a document. The flow of control is
shown in Listing 4.

Listing 4. MyLoadPrintInfo flow of control

if (gGXIsPresent) {
if there’s a previously saved gxJob

unflatten it and use it
else

if there’s a previously saved print record
convert that to a gxJob and use it

else
use the default gxJob we created in MyCreateDocument

}
else {

if there’s a previously saved print record
use it

else
use the default print record we created in MyCreateDocument

}

ADDING QUICKDRAW GX PRINTING TO QUICKDRAW APPLICATIONS 33

d e v e l o p Issue 19 September 199434
As it turns out, some of the steps in Listing 4 can be combined. For example,
regardless of whether QuickDraw GX is present, we may need to retrieve a
previously saved print record. What?! Accessing old-style print records when
QuickDraw GX is present? Sounds strange, doesn’t it? We need to do this if
QuickDraw GX is available and the user opens a document that contains a print
record but not a gxJob (because it was created with an older version of the
application). We convert the print record to a gxJob with the GXConvertPrintRecord
routine, so that the gxJob has as many of the old print record’s settings as possible.

CONFIGURING AND HANDLING MENUS
We need to alter our menu routines so that the Custom Page Setup and Print One
Copy commands are available to QuickDraw GX users. We might decide to have two
different File menus, the installation of which would depend on whether QuickDraw
GX is present. Or we might have only one File menu and add or subtract items from
it when it’s installed in the menu bar. The approach that’s best for a particular
application depends on how the application is structured. (The same choice of
approaches applies to other menus that might need to be modified based on whether
QuickDraw GX is available.)

In the sample code, we modify the File menu as follows: the application contains a
'MENU' resource for the QuickDraw GX version of the File menu; if gGXIsPresent
is false, we remove the Print One Copy and Custom Page Setup menu items from
this menu.

fileMenu = GetMHandle(mFile);
DelMenuItem(fileMenu, iPrintOneCopy);
DelMenuItem(fileMenu, iCustomPageSetup);

The order of the deletions is very important! If we deleted in the reverse order, the
Custom Page Setup menu item would be deleted, but when we tried to delete Print
One Copy, we would actually delete whatever came after Print One Copy. Why?
Because the menu would be one item shorter, and the index into it would no longer
be valid. Just delete menu items from bottom to top and you’ll be fine.

Monkeying around with the placement (and inclusion) of menu items like this will
throw our menu-enabling and menu-selection routines out of whack. We need to
make sure that regardless of whether the Print command is item number 8 or 9 in the
menu, we still treat it as a Print command. Again, the approach to use will depend on
the application.

It’s conceivable that you would use macros and would make the same changes to both
the menu-enabling and menu-selection routines, but in the sample I chose to tackle
menu enabling and disabling differently than I did menu handling. For the simple
enabling and disabling of menus in the MyAdjustMenus routine, I check to see
whether QuickDraw GX is present and adjust the item numbers based on that. This
is the easiest approach because it requires only minor changes to the routine.

The menu selection situation is a little different. Typically, applications contain a
routine that uses a switch statement based on the ID of the menu and menu items
chosen. This means that we’d need either two such routines (one for QuickDraw
and one for QuickDraw GX) or a different approach from what we used in
MyAdjustMenus. I opted for a different approach.

The sample application’s MyDoMenuCommand routine uses a switch statement (as
most applications do) based on the menu ID and menu item extracted from the result
of the MenuSelect and MenuKey routines. When QuickDraw GX is not present, the

Quit menu item will be item 10 in the File menu; otherwise, it will be at item 12 (see
Figure 3). The switch statement in the MyDoMenuCommand function compares the
menu item selected to the items in the QuickDraw GX version of our File menu.
Therefore, it will expect that item 12 will be Quit. Item 10 will be interpreted as
Print One Copy! This would be disastrous — the application would not quit, and our
QuickDraw GX–specific code would be executed when QuickDraw GX wasn’t
around! That’s not likely to be a pleasant user experience.

A new routine, MyConvertMenuItem, solves this problem (Listing 5). This routine is
called just before we enter the switch statement in MyDoMenuCommand. If
QuickDraw GX is present, MyConvertMenuItem does nothing; otherwise, it checks
to see if the menu item selected was affected by our deletion of the QuickDraw GX
menu items, and if so adjusts it. How’s that for an easy solution?

INVOKING THE PRINTING DIALOGS AND SUPPORTING CUSTOM
FORMATTING
Earlier, we added code to our application to support window updates when the
printing dialogs are displayed. Now, let’s discuss the code required to actually display
the dialogs.

There are now three printing dialogs instead of two (as shown earlier in Figure 1).
The Page Setup dialog now allows users to modify a document’s default page format.

Item 12

 When QuickDraw GX is present

Item 10

 Without QuickDraw GX

Figure 3. The File menu without QuickDraw GX and with QuickDraw GX

Listing 5. MyConvertMenuItem

void MyConvertMenuItem(short *menuID, short *menuItem)
{

if (!gGXIsPresent) {
if (*menuItem == iCustomPageSetup)

menuItem = iPrint; / Print was selected. */
else

if (*menuItem == iPrintOneCopy)
menuItem = iQuit; / Quit was selected. */

}
}

ADDING QUICKDRAW GX PRINTING TO QUICKDRAW APPLICATIONS 35

d e v e l o p Issue 19 September 199436
The new dialog, Custom Page Setup, provides a way to change page formatting on a
page-by-page basis. If your application creates documents that can have only a single
page, implementing the Custom Page Setup dialog isn’t necessary; the Page Setup
dialog can be used to configure the document’s only page format. The Print dialog is
similar to its non–QuickDraw GX counterpart, although much enhanced.

We use GXJobDefaultFormatDialog, GXFormatDialog, and GXJobPrintDialog to
display the Page Setup, Custom Page Setup, and Print dialogs, respectively.

We modify our MyDoPageSetup routine to call GXJobDefaultFormatDialog instead
of PrStlDialog when QuickDraw GX is present. In our MyDoCustomPageSetup
routine, which is called only when QuickDraw GX is available, we simply call
GXFormatDialog, passing the current page’s gxFormat.

In both of these page setup routines, and in the code for MyPrintDocument that
follows, we call a function named MyAdjustMenusForPrintDialogs, which disables
and enables entire menus (Listing 6). We disable menus before displaying a printing
dialog, and enable them once the dialog goes away. If we didn’t disable the menus,
users would be able to select menu items. And, because the GXPrintingEvent
override calls our MyDoEvent routine, any queued-up menu selections would be
processed when the GXPrintingEvent message was sent. The user could be in the
Print dialog, then select Quit from the File menu, and the next time the window was
updated, the application would quit! The only menus a user should have access to are
the Edit menu and the system menus. (Users can open desk accessories from the
Apple menu, for example, while a printing dialog is displayed — but they should not
be able to open the About item for the application.)

Listing 6. MyAdjustMenusForPrintDialogs

void MyAdjustMenusForPrintDialogs(Boolean dialogGoingUp)
{

MenuHandle appleMenu, fileMenu, editMenu, documentMenu;

appleMenu = GetMHandle(mApple);
fileMenu = GetMHandle(mFile);
editMenu = GetMHandle(mEdit);
documentMenu = GetMHandle(mDocument);
if (dialogGoingUp) {

DisableItem(appleMenu, iAbout);
DisableItem(fileMenu, 0);
DisableItem(documentMenu, 0);
HiliteMenu(0);

}
else {

EnableItem(appleMenu, iAbout);
EnableItem(fileMenu, 0);
DisableItem(editMenu, 0);
EnableItem(documentMenu, 0);

}
DrawMenuBar();
gInPrintDialog = dialogGoingUp;

}

The system enables some menus, namely the Help menu, the Application
menu, and the Keyboard menu, even when dialogs are displayed. Your code doesn’t
need to deal with them.•

The MyPrintDocument routine (Listing 7) displays the appropriate Print dialog and
then branches to our QuickDraw or QuickDraw GX printing routine. Note that
we’ve been careful to call PrOpen and PrClose only when QuickDraw GX is not
present. As mentioned earlier, you cannot intermix Printing Manager and
QuickDraw GX printing calls.

We’ve made a few other changes behind the scenes; see the complete code on the
CD for details. The code for repaginating a document has been changed slightly to
use the dimensions of QuickDraw GX page formats, if available, rather than those
in the rPage field of the old print record. We also made minor changes to our
MyInsertPage and MyDisposePage routines in order to manage gxFormats on a
page-by-page basis. In the Simple Sample GX application, we store nil in our
MyDocumentRec.pageFormat array whenever a new page is created. Because nil is

Listing 7. MyPrintDocument

OSErr MyPrintDocument(MyDocumentPtr whichDocument)
{

OSErr err = noErr;
gxEditMenuRecord editMenuRec;
gxDialogResult result;

if (gGXIsPresent) {
/* If GX is present, fill in the location of the application's

Edit menu items, enable/disable the appropriate menu items,
and display the Print dialog. If the user clicks OK, print. */

editMenuRec.editMenuID = mEdit;
editMenuRec.cutItem = iCut;
editMenuRec.copyItem = iCopy;
editMenuRec.pasteItem = iPaste;
editMenuRec.clearItem = iClear;
editMenuRec.undoItem = iUndo;
MyAdjustMenusForPrintDialogs(true);
result = GXJobPrintDialog(whichDocument->documentJob,

&editMenuRec);
MyAdjustMenusForPrintDialogs(false);
if (result == gxOKSelected)

err = MyGXPrintLoop(whichDocument);
}
else {

/* If GX is NOT present, open the printer driver and print
using the Printing Manager. */

PrOpen();
if (PrJobDialog(whichDocument->documentPrintHdl))

err = MyQDPrintLoop(whichDocument);
PrClose();

}
return err;

}

ADDING QUICKDRAW GX PRINTING TO QUICKDRAW APPLICATIONS 37

d e v e l o p Issue 19 September 199438
an invalid gxFormat reference, we can use it to tell the application to use our gxJob
object’s default format for a given page. If the value stored is non-nil, we can safely
assume that it’s a valid reference to a custom page format. Finally, in our
MyDisposePage routine, we now call GXDisposeFormat if the page being removed
uses a custom page format.

Since we store gxFormat references on a page-by-page basis, shouldn’t we also
dispose of page formats in the MyDisposeDocument routine? Well, we certainly can
do that, but there’s really no need. When we dispose of the document’s gxJob,
QuickDraw GX automatically disposes of all of the job’s page formats. The flip side
of this is that you must not attempt to use any gxFormat references once the format’s
corresponding job is disposed of.

Continuing with this line of thought, what happens to a document’s page formats
when the document is saved to disk and later reopened? As it turns out, flattening a
gxJob causes all of the job’s page formats to be flattened also. This means that the
code we wrote earlier to flatten and store a document’s gxJob in a resource will also
store page formats. When we later unflatten the job, the page formats will be
unflattened as well.

STORING THE PAGE-TO-FORMAT CORRESPONDENCES
It’s easy to fall into the trap of thinking that you don’t need to do anything more to
support saving and loading of by-page formats — but don’t. There are still two more
issues to consider.

The first issue is straightforward enough: we haven’t stored our page-to-format
correspondences, so the next time we open the document we’ll have no idea which
format goes with which page. The second issue requires a bit more explaining.

When QuickDraw GX creates a page format, it returns a format reference that’s
based partially on the reference of the job with which the format is associated. Since
reference IDs for gxJob objects differ depending on conditions when the job is
created, a job reference that’s valid when a document is saved is unlikely to be correct
when the document is later reopened. Similarly, the format references we have when
a document is saved are unlikely to be correct when the document’s job is later
unflattened.

It should now be clear that we can’t simply store our page format reference IDs with
a document. To provide the page-to-format information we’ll need when we open the
document, we have to find another method. Fortunately, there’s a very easy way to do
this via the Collection Manager.

As mentioned earlier, every gxFormat has a collection associated with it. QuickDraw
GX creates these collections automatically when a gxFormat is created. When a
format is flattened, its collection is also flattened. Specifically, any collection items
that have the collectionPersistenceBit attribute set are included in the flattened data
stream. This attribute is set by default when a new collection item is added, so you
need to change it only if you don’t want a collection item to be included in the
flattened data.

To store page-to-format mapping, we’ll create a custom collection item. We’ll store
this collection item in the default format’s format collection. The collection item
consists of an array of long words — one for each page in the document. In this
array, we store the index of the format to use for each page, in order. Since format
indices are preserved during flattening (unlike format references), we’ll be able to
reconstruct the page-to-format relationships when we reopen the document. The

MySaveFormatRefs routine (Listing 8) saves the format indices. This routine is called
from our MySavePrintInfo routine, just before we flatten the document’s gxJob (and
in turn its page formats and format collections).

Our saved documents now contain information for associating pages with page
formats. The MyAdjustFormats routine (Listing 9) extracts this information from the
default format’s format collection when we load the saved document. In effect, the
code finds new format reference IDs for each format we flattened and stores those
IDs with the pages that use them. In this way, we completely avoid relying on the old
(and invalid) format references.

TRANSLATING AND PRINTING QUICKDRAW COMMANDS
At long last, we’re ready to look at the code that translates our QuickDraw
commands to QuickDraw GX shapes and prints them.

To do the translation, we’ll use the QuickDraw GX translator routines. We specify
how we would like the translation to be performed by passing one of the
gxTranslationOptions to the translator routines. (The routines and translation
options are listed in Inside Macintosh: QuickDraw GX Environment and Utilities.)
Normally, the default translation options are all you need, and those are what we use
in Simple Sample GX.

Listing 8. MySaveFormatRefs

#define kMyFormatInfoType 'FLST'
#define kMyFormatInfoTagID 1000
OSErr MySaveFormatRefs(MyDocumentPtr whichDocument)
{

OSErr err = noErr;
Handle theFormatIdxList;
Collection fmtCollection;
gxFormat defaultFmt;

if (whichDocument->numPages > 0) {
/* Get the job's default format's collection. */
defaultFmt = GXGetJobFormat(whichDocument->documentJob, 1);
fmtCollection = GXGetFormatCollection(defaultFmt);
/* Create a list of page-to-format correspondences for the

current document. If there are no errors, add the item to
the job's default format's collection for later retrieval. */

err = MyCreateFormatIndexList(whichDocument, &theFormatIdxList);
if (err == noErr) {

HLock(theFormatIdxList);
err = AddCollectionItem(fmtCollection, kMyFormatInfoType,

kMyFormatInfoTagID, GetHandleSize(theFormatIdxList),
*theFormatIdxList);

DisposeHandle(theFormatIdxList);
}

}
return err;

}

ADDING QUICKDRAW GX PRINTING TO QUICKDRAW APPLICATIONS 39

d e v e l o p Issue 19 September 199440
The translation routines come in two varieties — those that take a single QuickDraw
PicHandle and convert it to a QuickDraw GX picture shape, and those that let you
execute QuickDraw commands and create equivalent QuickDraw GX shapes as you
do so. Converting a PicHandle to a gxPicture shape is straightforward; therefore,
we’re going to take the second approach. Most applications don’t print by simply
making a QuickDraw DrawPicture call, so understanding how to convert individual
QuickDraw commands to QuickDraw GX shapes “on the fly” is probably more
useful. If your needs are different, you can use the GXConvertPICTToShape routine
to convert a PicHandle into a gxPicture shape.

The routines we’ll use are GXInstallQDTranslator and GXRemoveQDTranslator.
GXInstallQDTranslator tells QuickDraw GX to begin translating QuickDraw
commands into QuickDraw GX shapes, and GXRemoveQDTranslator tells
QuickDraw GX that we’ve completed drawing. These routines are used in
conjunction with a third routine, called a gxSpoolProc, which you create. Your

Listing 9. MyAdjustFormats

OSErr MyAdjustFormats(MyDocumentPtr whichDocument)
{

OSErr err = noErr;
Handle theFormatIdxList = nil;
gxFormat theFormat, defaultFmt;
long pg, numPages, fmtIdx, *idxList, idx, listSize, attribs;
Collection fmtCollection;

defaultFmt = GXGetJobFormat(whichDocument->documentJob, 1);
fmtCollection = GXGetFormatCollection(defaultFmt);
err = GetCollectionItemInfo(fmtCollection, kMyFormatInfoType,

kMyFormatInfoTagID, &idx, &listSize, &attribs);
if (err == noErr)

theFormatIdxList = NewHandle(listSize);
if (theFormatIdxList != nil) {

HLock(theFormatIdxList);
err = GetCollectionItem(fmtCollection, kMyFormatInfoType,

kMyFormatInfoTagID, dontWantSize, *theFormatIdxList);
numPages = listSize / sizeof(long);
idxList = (long *) *theFormatIdxList;
for (pg = 0; (err == noErr) && (pg < numPages); pg++) {

fmtIdx = idxList[pg];
if (fmtIdx != (long) nil) {

theFormat = GXGetJobFormat(whichDocument->documentJob,
fmtIdx);

err = GXGetJobError(whichDocument->documentJob);
}
else

theFormat = nil;
if (err == noErr)

whichDocument->pageFormat[pg] = theFormat;
}
DisposeHandle(theFormatIdxList);

}
return err;

}

gxSpoolProc routine will have the following format and will be called whenever
QuickDraw GX completes a new shape during the translation:

OSErr MyShapeSpoolProc(gxShape currentShape, long refCon);

The currentShape parameter contains the QuickDraw GX shape that the translator
just created, and the refCon parameter is a programmer-defined value that you pass
to GXInstallQDTranslator. You needn’t use the refCon parameter (you can pass nil),
but as we’ll see in a moment, the refCon can be very handy.

The code in Listing 10 shows the basic QuickDraw GX print loop, with support
added to translate QuickDraw commands into QuickDraw GX shapes.

The code in Listing 10 contains nrequire, require, nrequire_action, and
require_action macros, which are discussed in the article “Living in an Exceptional
World” in develop Issue 11. These macros, which don’t require QuickDraw GX
themselves, are now included in the QuickDraw GX interface file GXExceptions.h.•

Listing 10. MyGXPrintLoop

OSErr MyGXPrintLoop(MyDocumentPtr whichDocument)
{

OSErr err;
long firstPage, lastPage, numPages, pg;
short oldPage;
gxViewPort printViewPort;
Point patStretch = {1,1};
gxFormat pageFormat;
Rect everywhereRect;
gxShape pageShape;
MySpoolDataRec spoolData;

oldPage = whichDocument->curPage;
/* Determine which pages the user selected to print, and print

only those pages that are actually in the document. */
GXGetJobPageRange(whichDocument->documentJob, &firstPage, &lastPage);
if (lastPage > whichDocument->numPages)

lastPage = whichDocument->numPages;
/* Calculate the number of pages to print and begin printing. */
numPages = lastPage - firstPage + 1;
err = GXGetJobError(whichDocument->documentJob);
nrequire(err, PageRangeError);
GXStartJob(whichDocument->documentJob, whichDocument->documentTitle,

numPages);
err = GXGetJobError(whichDocument->documentJob);
nrequire(err, StartJobFailed);
/* Create a new view port for printing and set our translator

rects to "wide open" so that they include all data we're
drawing. For each page we print, call GXStartPage, draw,
and call GXFinishPage. */

SetRect(&everywhereRect, 0, 0, 32767, 32767);
printViewPort = GXNewViewPort(gxScreenViewDevices);

(continued on next page)
ADDING QUICKDRAW GX PRINTING TO QUICKDRAW APPLICATIONS 41

d e v e l o p Issue 19 September 199442
Several important things are going on in the code in Listing 10. You may recognize
the basic QuickDraw GX print loop, which consists of everything in MyGXPrintLoop
except the view port and translator routines. The first thing we do in the print loop is
create a gxViewPort object, because GXStartPage needs to know which view ports
we’ll be drawing to. Only shapes drawn in the specified view ports will be printed.
For our purposes, one view port will suffice, so that’s all we create.

There are two basic print loop methods for QuickDraw GX: the first uses GXPrintPage
to print a single gxPicture shape; the second method uses the GXStartPage and
GXFinishPage routines. In the second method, the application specifies a list of view
ports, and any QuickDraw GX drawing that occurs in any of these view ports is
instead redirected to a print file. Since our application draws several shapes on a page,
it makes sense to use the GXStartPage and GXFinishPage approach. If we had only
one shape to print (for instance, if we had used GXConvertPICTToShape), or if our
gxSpoolProc collected all the converted shapes into one gxPicture shape, using
GXPrintPage would make more sense.

for (pg = firstPage; (err == noErr) && (pg <= lastPage); pg++)
{

/* Get the page's format and start printing the page. */
pageFormat = whichDocument->pageFormat[pg - 1];
if (pageFormat == nil)

pageFormat = GXGetJobFormat(whichDocument->documentJob, 1);
GXStartPage(whichDocument->documentJob, pg, pageFormat, 1,

&printViewPort);
err = GXGetJobError(whichDocument->documentJob);
/* If there were no errors, set up the translator, draw

the QuickDraw data for current page, and remove the
translator. */

nrequire(err, StartPageFailed);
spoolData.printViewPort = printViewPort;
GXGetFormatDimensions(pageFormat, &spoolData.pageArea, nil);
GXInstallQDTranslator(whichDocument->documentWindow,

gxDefaultOptionsTranslation, &everywhereRect,
&everywhereRect, patStretch, MyPrintAShape, &spoolData);

whichDocument->curPage = pg;
SetPort(whichDocument->documentWindow);
MyDrawContents(whichDocument->documentWindow);
GXRemoveQDTranslator(whichDocument->documentWindow, nil);
GXFinishPage(whichDocument->documentJob);

}
StartPageFailed:

GXFinishJob(whichDocument->documentJob);
err = GXGetJobError(whichDocument->documentJob);
GXDisposeViewPort(printViewPort);
whichDocument->curPage = oldPage;

StartJobFailed:
PageRangeError:

return err;
}

Listing 10. MyGXPrintLoop (continued)

Notice that the custom page formats that we’ve added to our application are
supported, and they require only a couple of lines of code. Recall that in this
application we’ve decided to use nil to represent the default job format. If the current
page’s format reference ID is not nil, we pass GXStartPage the reference; otherwise,
we pass the gxJob object’s default format. This default format is always positioned as
the first format in a gxJob, so we can obtain it as follows:

pageFormat = GXGetJobFormat(whichDocument->documentJob, 1);

Before we can issue our QuickDraw drawing commands, we must call
GXInstallQDTranslator. Because all QuickDraw drawing calls are ignored by the
QuickDraw GX printing routines, we need to translate all QuickDraw commands
to QuickDraw GX shapes for printing. In the GXInstallQDTranslator call, we
specify that we want to use the default translation options, that we don’t want to
stretch patterns, and that our shape-handling routine is called MyPrintAShape.
Finally, remember the refCon parameter we discussed earlier? Well, here’s where it
comes into play. In the refCon, we pass a pointer to a MySpoolDataRec, which is
defined as

typedef struct MySpoolDataRec {
gxRectangle pageArea; /* Page rectangle. */
gxViewPort printViewPort; /* View port we're printing in. */

} MySpoolDataRec, *MySpoolDataPtr;

The MyPrintAShape routine is passed each QuickDraw GX shape that is created as
the result of the QuickDraw translation. We can print each shape because a pointer
to our MySpoolDataRec is passed in the refCon parameter of MyPrintAShape. We
print a shape by attaching the MySpoolDataRec.printViewPort to the current shape,
and then drawing the shape. We use the page rectangle in the MySpoolDataRec to
determine whether a translated shape will appear on the printed page. If the shape
isn’t on the page, it doesn’t make sense to waste time and disk space spooling it.
Listing 11 shows how cleanly this all fits together.

Listing 11. MyPrintAShape

OSErr MyPrintAShape(gxShape currentShape, long refCon)
{

MySpoolDataPtr spoolData;
gxShapeType theShapeType;

spoolData = (MySpoolDataPtr) refCon;
theShapeType = GXGetShapeType(currentShape);

/* Don't waste time spooling the shape if it's being drawn off
the page. */

if ((theShapeType == gxEmptyType) || (theShapeType == gxFullType) ||
(theShapeType == gxPictureType) ||
GXTouchesBoundsShape(&spoolData->pageArea, currentShape)) {

GXSetShapeViewPorts(currentShape, 1, &spoolData->printViewPort);
GXDrawShape(currentShape);

}
return (OSErr) GXGetGraphicsError(nil);

}

ADDING QUICKDRAW GX PRINTING TO QUICKDRAW APPLICATIONS 43

d e v e l o p Issue 19 September 199444
Back in our print loop, we simply draw our page’s QuickDraw representation
between the GXInstallQDTranslator and GXRemoveQDTranslator calls.
QuickDraw commands are translated to QuickDraw GX shapes and printed in one
fell swoop.

PRINT ONE COPY
A soon-to-be-familiar sign of the QuickDraw GX application will be the Print One
Copy command in the application’s File menu. The option to print one copy of a
document without any dialogs is a big convenience to the user, and it requires only a
few minutes of coding to support.

In addition to changing the necessary menu setup and handling routines, we need to
add a routine to support Print One Copy (Listing 12). In this routine, we temporarily
reset three of the printing options that the user may have previously changed. First,
we set up the print job so that it prints only one copy. The number of copies last
printed is stored in the gxJob object, and we want to make sure that if the user
previously printed multiple copies of a document, only one copy comes out of the
printer when Print One Copy is chosen. Second, we indicate that we want to print all
pages of the document, rather than the last page range used. Finally, the output
should come out of the printer. If the job was last printed to a file, we’ll need to change
the job object’s “Print to disk” setting. Once again, we call upon the Collection
Manager, although this time we access the job collection.

Listing 12. MyPrintOneCopy

OSErr MyPrintOneCopy(MyDocumentPtr whichDocument)
{

OSErr err;
Collection jobCollection;
gxCopiesInfo copiesInfo;
gxFileDestinationInfo destInfo;
gxPageRangeInfo pageRangeInfo;
Ptr oldCopiesInfo = nil, oldPageRangeInfo = nil,

oldDestInfo = nil;
long oldCopiesSize, oldPageRangeInfoSize,

oldDestInfoSize;

/* Get the job collection and set it up to print one copy. */
jobCollection = GXGetJobCollection(whichDocument->documentJob);
/* Set number of copies to 1. */
copiesInfo.copies = 1;
err = MyReplaceCollectionItem(&copiesInfo, sizeof(gxCopiesInfo),

gxCopiesTag, gxPrintingTagID, jobCollection, &oldCopiesInfo,
&oldCopiesSize);

nrequire(err, ReplaceCopies_error);
/* Set page range to "all". */
pageRangeInfo.simpleRange.optionChosen = gxDefaultPageRange;
pageRangeInfo.minFromPage = 1;
pageRangeInfo.simpleRange.fromPage = 1;
pageRangeInfo.maxToPage = whichDocument->numPages;
pageRangeInfo.simpleRange.toPage = whichDocument->numPages;
pageRangeInfo.simpleRange.printAll = true;

(continued on next page)

The MyReplaceCollectionItem routine, which I created for the Simple Sample GX
application, has the format

OSErr MyReplaceCollectionItem(void *newData, long collectionItemSize,
OSType collectionType, long collectionID, Collection
whichCollection, Ptr *oldData, long *oldDataSize);

This routine replaces a collection item and returns a copy of its old data. It takes a
pointer to the collection data we want to store, and the size, type, ID, and collection
to store it in. In the last two parameters, you pass a reference to a pointer in which to
store the existing data and a reference to a long word in which to store its size. If the
oldData pointer is nil, the existing data is not returned; otherwise, a new pointer is
created in the oldData parameter, and the data is returned there.

MyReplaceCollectionItem allows you to replace a collection item, execute some
code, and then restore the collection item. That’s exactly what we do in the
MyPrintOneCopy routine.

err = MyReplaceCollectionItem(&pageRangeInfo,
sizeof(gxPageRangeInfo), gxPageRangeTag, gxPrintingTagID,
jobCollection, &oldPageRangeInfo, &oldPageRangeInfoSize);

nrequire(err, ReplacePageRange_error);
/* Set destination to "printer". */
destInfo.toFile = false;
err = MyReplaceCollectionItem(&destInfo,

sizeof(gxFileDestinationInfo), gxFileDestinationTag,
gxPrintingTagID, jobCollection, &oldDestInfo,
&oldDestInfoSize);

nrequire(err, ReplaceDestination_error);
/* Print one copy of our document. */
err = MyPrintDocument(whichDocument);
/* Restore original number of copies, page range, and output

destination in case anybody uses that info. */
ReplaceDestination_error:

MyReplaceCollectionItem(oldDestInfo, oldDestInfoSize,
gxFileDestinationTag, gxPrintingTagID, jobCollection, nil, nil);

ReplacePageRange_error:
MyReplaceCollectionItem(oldPageRangeInfo, oldPageRangeInfoSize,

gxPageRangeTag, gxPrintingTagID, jobCollection, nil, nil);
ReplaceCopies_error:

MyReplaceCollectionItem(oldCopiesInfo, oldCopiesSize, gxCopiesTag,
gxPrintingTagID, jobCollection, nil, nil);

/* Dispose of pointers that MyReplaceCollectionItem created. */
if (oldCopiesInfo)

DisposePtr(oldCopiesInfo);
if (oldPageRangeInfo)

DisposePtr(oldPageRangeInfo);
if (oldDestInfo)

DisposePtr(oldDestInfo);
return err;

}

Listing 12. MyPrintOneCopy (continued)
ADDING QUICKDRAW GX PRINTING TO QUICKDRAW APPLICATIONS 45

d e v e l o p Issue 19 September 199446
DRAG-AND-DROP PRINTING
The final thing that a QuickDraw GX–aware application should support is the new
attribute of the 'pdoc' Apple event, enabling users to print documents by dragging
their icons to desktop printers. You need to make only a few changes to your current
'pdoc' Apple event handler, as you can see from Listing 13. With these changes to the
Apple event handler, our conversion of the QuickDraw sample application to one
that’s QuickDraw GX aware is complete.

For information on the 'pdoc' Apple event, see Inside Macintosh:
Interapplication Communication, Chapter 4.•

Listing 13. 'pdoc' Apple event handler, modified for QuickDraw GX

pascal OSErr MyHandlePDOC(AppleEvent *theAppleEvent, AppleEvent *reply,
long myRefCon)

{
OSErr err;
AEDescList docList, dtpList;
FSSpec myFSS, dtpFSS;
long itemsInList, i;
AEKeyword theKeyword;
DescType typeCode;
Boolean draggedToDTP = false;
Size actualSize;
MyDocumentPtr newDocument;

/* See if the document was dragged to a desktop printer. */
err = AEGetAttributeDesc(theAppleEvent, keyOptionalKeywordAttr,

typeAEList, &dtpList);
if (err == noErr) draggedToDTP = true;
/* If we dragged to a desktop printer, get the name of that

printer and then throw away the description list for it. */
if (draggedToDTP) {

err = AEGetNthPtr(&dtpList, 1, typeFSS, &theKeyword, &typeCode,
(Ptr) &dtpFSS, sizeof(FSSpec), &actualSize);

AEDisposeDesc(&dtpList);
}
/* Get our document list. */
err = AEGetParamDesc(theAppleEvent, keyDirectObject, typeAEList,

&docList);
nrequire(err, AEError);
/* Make sure we've accounted for all of the parameters passed,

and count the number of documents passed in. */
err = MyCheckAEParams(theAppleEvent);
nrequire(err, AEError);
err = AECountItems(&docList, &itemsInList);
nrequire(err, AEError);
/* For each entry in the doc list, load it, print it, and close it. */
for (i = 1; i <= itemsInList; i++) {

err = AEGetNthPtr(&docList, i, typeFSS, &theKeyword, &typeCode,
(Ptr) &myFSS, sizeof(FSSpec), &actualSize);

nrequire(err, AEEntryError);

(continued on next page)

WHERE TO TAKE IT FROM HERE
Now that you know how to add QuickDraw GX printing to a QuickDraw
application, go do it! Think of all the features you’ll instantly support by being
QuickDraw GX aware. The time hit to gain this level of compatibility is minimal for
most applications, and well worth it.

Still not convinced? Take the sample applications and print with both versions under
QuickDraw GX. Even this simple program shows that if your applications aren’t
QuickDraw GX aware, you (and your users) are really missing out.

/* Load the document. */
err = MyCreateDocument(kDefaultTitle, &newDocument);
nrequire(err, CreateDocFailed);
err = MyFSLoadDocument(newDocument, &myFSS);
nrequire(err, LoadDocFailed);
/* If we dragged to a desktop printer, select that as the

output printer for this job, and print one copy. */
if (draggedToDTP) {

GXSelectJobOutputPrinter(newDocument->documentJob, dtpFSS.name);
err = MyPrintOneCopy(newDocument);

}
else /* "Print" chosen from Finder. Show dialog and print. */

err = MyPrintDocument(newDocument);
/* Close the document once it's printed. */

LoadDocFailed:
MyDisposeDocument(newDocument);

}
/* When we're all done, throw away the document list and exit. */

CreateDocFailed:
AEEntryError:

AEDisposeDesc(&docList);
AEError:

if (gQuitAfterPrinting)
gQuitting = true;

return err;
}

Listing 13. 'pdoc' Apple event handler, modified for QuickDraw GX (continued)

RELATED READING
• Inside Macintosh: QuickDraw GX Printing and Inside Macintosh: QuickDraw GX

Environment and Utilities (Addison-Wesley, 1994).

• “Getting Started With QuickDraw GX” by Pete (“Luke”) Alexander, develop
Issue 15.

• “Developing QuickDraw GX Printing Extensions” by Sam Weiss, develop Issue 15.
ADDING QUICKDRAW GX PRINTING TO QUICKDRAW APPLICATIONS 47

Thanks to our technical reviewers Pete (“Luke”)
Alexander, Hugo Ayala, Tom Dowdy, and Ken
Hittleman.•

48
Making the Most of QuickDraw GX Bitmaps
DAVID SUROVELL

d e v e l o p Issue 19 September 1994
Besides letting you do a lot of cool things with geometric shapes and
typography, QuickDraw GX has useful tools for manipulating bitmaps.
For example, bitmap shapes (the QuickDraw GX counterpart to
pixMaps) can be skewed, rotated, and scaled, and transforms allow
these operations to be performed repeatedly without data loss. Bitmap
shapes can share image data, can be used to clip other shapes, and can
reside on disk instead of in memory. This article tells how you can use
QuickDraw GX to improve the way you handle bitmapped graphics.

New users of QuickDraw GX will probably start by going through Inside Macintosh:
QuickDraw GX Objects or the article “Getting Started With QuickDraw GX” in
develop Issue 15. If you’re mainly a QuickDraw programmer, however, you may have
a lot of questions about how QuickDraw GX applies specifically to bitmaps —
probably the most commonly used graphic objects. As it turns out, it can do most
anything QuickDraw can do, and quite a few useful and exotic new things besides.

If you have at least a nodding familiarity with QuickDraw GX, this article will give
useful tips on how to apply your knowledge to bitmap shapes. If you’re a QuickDraw
GX neophyte, this article will confuse you from time to time, but you may learn
enough to decide to make the leap to QuickDraw GX.

CREATING BITMAP SHAPES
It takes about the same information to create a bitmap shape in QuickDraw GX as
it does to make a pixMap in QuickDraw. The biggest difference is that while
QuickDraw insists that you calculate the size of the image buffer and allocate it
explicitly, QuickDraw GX can optionally allocate it for you when the shape is created.
This is illustrated in the code in Listing 1, which creates an indexed bitmap shape.

For indexed pixelSize values (1, 2, 4, or 8), you set the gxBitmap’s space field to
gxIndexedSpace and its set field to a color set (the QuickDraw GX equivalent of a
QuickDraw color table) with an appropriate number of entries. Direct pixelSize
values (16 or 32) require that the set field be nil. For example, to make the routine in
Listing 1 create a 16-bit bitmap shape, you would set the gxBitmap’s space field to
gxRGB16Space and its set field to nil.
DAVID SUROVELL Where there was once one,
there now are three: after approximately 1500
years of bachelorhood, David recently married
(Jane) and achieved fatherhood (Elliot Ivan). He
once wrote a book on QuickDraw, but that was
long ago. When he’s not sleeping under his

desk at Apple, David’s passionate avocations
include auditioning as a guitarist for bands that
fail to play in public, committing brutal fouls in
otherwise friendly soccer matches and basketball
games, and playing paintball with other rush-hour
commuters.•

Note that the gxBitmap’s rowBytes is a long, not a short as in QuickDraw. This
means no more convoluted rowByte hacks, no more magic bits needed for flags, and
no more unreasonable limits on image width.

Note also that the gxBitmap contains a profile field, a reference to a gxColorProfile
(essentially an object with ColorSync data wrapped inside). If this field is nil,
QuickDraw GX uses its default profile. Color matching occurs only when the target
view port has the gxEnableMatchPort attribute set — by default, it’s off.

MANIPULATING BITMAP SHAPES
Once a bitmap shape is created, you can access and change its characteristics with
GXGetBitmap and GXSetBitmap.

GXGetBitmap(targetShape, &bitmapInfo, &origin);
// Alter the necessary gxBitmap fields here.
. . .
GXSetBitmap(targetShape, &bitmapInfo, &origin);

Listing 1. Creating an indexed bitmap shape

gxShape CreateIndexedBitmapShape(long horiz, long vert,
long targetDepth)

{
gxBitmap bitShapeInfo;
gxColorSet targetSet;
gxShape resultShape;

if ((horiz <= 0) || (vert <= 0))
return nil;

if (targetDepth > 8)
return nil;

// Create a familiar "color" gxColorSet.
// (The default gxColorSet is a gray ramp.)
targetSet = GetStandardColorSet(targetDepth);
if (targetSet == nil)

return nil;

// Let QDGX calculate the image buffer block size and allocate it.
bitShapeInfo.image = nil;
bitShapeInfo.rowBytes = 0;
bitShapeInfo.width = horiz;
bitShapeInfo.height = vert;
bitShapeInfo.pixelSize = targetDepth;
bitShapeInfo.space = gxIndexedSpace;
bitShapeInfo.set = targetSet;

// Use the default color profile.
bitShapeInfo.profile = nil;
resultShape = GXNewBitmap(&bitShapeInfo, nil);

return resultShape;
}

MAKING THE MOST OF QUICKDRAW GX BITMAPS 49

d e v e l o p Issue 19 September 199450
GXSetBitmap is similar to QuickDraw’s UpdateGWorld; it lets you change bitmap
depth, color specification, and size. To change specific attributes, you may need to
modify a combination of fields.

To change a bitmap’s width or height, set the width or height field. If QuickDraw GX
originally allocated the image buffer, you can set rowBytes to 0 and the image field to
nil, and QuickDraw GX will reallocate the buffer. If you allocated the buffer yourself,
you’ll have to maintain it yourself.

An image isn’t scaled when you change size this way. If you increase the width or
height, the new areas contain undefined values; if you decrease them, the image is
truncated. Bitmap scaling is discussed later in this article.•

To change a bitmap’s pixel depth, set the pixelSize field to the desired depth. If the
bitmap needs a new color set (which it will, unless the new depth is greater than 8
bits), create it and assign it to the set field. An example that changes the depth to
4-bit is shown in Listing 2.

To change a bitmap’s color characteristics, just change the set, space, and profile
fields. No changes to pixel data will occur — all pixel values will be interpreted in the
new color set. To transform pixel values, you’d need to set up a new bitmap shape and
draw the existing bitmap into it. (The offscreen library routine CopyToBitmaps is
ideal for this.)
A raster image is, naturally enough, an array of pixel
values. For indexed color, each pixel value is an index
into an associated color set.

For direct color (16 or 32 bits per pixel), a pixel value is
converted directly into a color value by expanding bit
fields of the 16- or 32-bit value into three or four 16-bit
unsigned integer values.

The expansion of direct pixel values depends on the color
space of the raster image and the “packing” of the color
components. QuickDraw supports only RGB and a

PIXEL VALUE REPRESENTATION
handful of packing schemes, but QuickDraw GX supports
a whole family of color spaces and packing formats,
some of which are shown in Figure 1.

The packing types are defined in the gxColorSpaces
enum in the header file graphics types.h. You’ll also find
definitions for extended color space specifications, such
as gxRGB16Space (gxRGBSpace + gxWord5ColorPacking)
and gxARGB32Space (gxLong8ColorPacking +
gxRGBASpace + gxAlphaFirstPacking). Only explicitly
defined permutations are valid — you can’t just make up
your own.
Index value1-, 2-, 4-, or 8-bit

x Red Green Blue16-bit

32-bit

gxRGB16Space

MSB LSB
Red Green Blue

32-bit

x Hue Saturation Value32-bit

x

Red Green Blue

gxRGB32Space

gxHSV32Space
(Long 10 packing)

gxARGB32Space

Alpha

Figure 1. Some QuickDraw GX pixel packing formats

USING DISK-BASED PIXEL IMAGES
QuickDraw GX provides support for disk-based bitmap shapes. They’re structurally
the same as regular bitmaps, except that their image data is contained in a file, so
they’re always drawn from disk. Ten calls to GXDrawShape(diskBitmap) means
QuickDraw GX reads the entire file from disk ten times. (QuickDraw GX can’t
assume that you didn’t write into the file between accesses.) The idea is that the file
system’s disk caches will do the work; if the file wasn’t changed, subsequent reads
should be cached.

Make sure the file size is at least as large as the bitmap, or you’ll get an
“unexpected end of file” error.•

Disk-based bitmaps have limitations. For one thing, certain routines can’t be
performed on them — GXSetShapePixel, for example. (See Inside Macintosh:
QuickDraw GX Graphics for the complete list.) You can’t use disk-based bitmap shapes
as drawing destinations. If you draw into the data you trigger an error.

So how do you create a disk-based bitmap? As shown in Listing 3, you first set the
gxBitmap’s image field to gxBitmapFileAliasImageValue. After creating the bitmap
shape, create a tag of type gxBitmapFileAliasTagType containing an alias record that
references the file containing the target raster data and attach it to the shape.

ACCESSING IMAGE DATA
You can manipulate the image data of bitmap shapes directly. If the image data is
maintained by your application, all you have to do is call GXChangedShape
afterward. If the image data was allocated by QuickDraw GX, it’s more complicated:

1. Force the shape to be heap-resident with GXSetShapeAttributes.

2. Lock the shape with GXLockShape and check for an error.

3. Call GXGetShapeStructure to obtain a reference to the image
data.

4. Read from or write to the image data as desired.

Listing 2. Changing the depth of a bitmap shape

void ChangeDepthToFour(gxShape bitmapShape)
{

gxBitmap imageInfo;

if ((bitmapShape != nil) &&
(GXGetShapeType(bitmapShape) == gxBitmapType))

{
GXGetBitmap(bitmapShape, &imageInfo, nil);
if (imageInfo.pixelSize != 4)
{

imageInfo.pixelSize = 4;
imageInfo.space = gxIndexedSpace;
imageInfo.set = GetStandardColorSet(4);
GXSetBitmap(bitmapShape, &imageInfo, nil);

}
}

}

MAKING THE MOST OF QUICKDRAW GX BITMAPS 51

d e v e l o p Issue 19 September 199452
Listing 3. Creating a disk-based bitmap

gxShape CreateDiskBitmap(FSSpec *fsData, gxBitmap *targetBM)
{

gxBitmap localBM;
gxShape targetShape;
gxTag targetTag;

if ((fsData == nil) || (targetBM == nil))
return nil;

targetShape = nil;
targetTag = CreateBitmapAliasTag(fsData, 0L);
if (targetTag != nil)
{

localBM = *targetBM;
localBM.image = gxBitmapFileAliasImageValue;
targetShape = GXNewBitmap(&localBM, nil);
if (targetShape != nil)

GXSetShapeTags(targetShape, gxBitmapFileAliasTagType,
1L, -1L, 1L, &targetTag);

GXDisposeTag(targetTag);
}
return targetShape;

}

gxTag CreateBitmapAliasTag(FSSpec *bitmapFS, unsigned long fileOffset)
{

struct gxBitmapDataSourceAlias *aliasRecordPtr;
gxTag targetTag;
FSSpec targetFS;
AliasHandle aliasHdl;
OSErr iErr;
long aliasSize, aliasRecordSize;
Boolean wasChanged;

targetTag = nil;
aliasHdl = nil;
aliasRecordPtr = nil;

// Create an alias and resolve it.
iErr = NewAlias(nil, bitmapFS, &aliasHdl);
if (iErr == noErr)

iErr = ResolveAlias(nil, aliasHdl, &targetFS, &wasChanged);

// Build up a compact representation for inclusion into a gxTag.
if (iErr == noErr)
{

aliasSize = GetHandleSize((Handle)aliasHdl);
aliasRecordSize = aliasSize + 2 * sizeof(long);
aliasRecordPtr = (struct gxBitmapDataSourceAlias*)

NewPtr(aliasRecordSize);
iErr = MemError();

}

(continued on next page)

5. If the image data was changed, call GXChangedShape.

6. Unlock the shape with GXUnlockShape.

7. Call GXSetShapeAttributes to allow the shape to be cached again.

GXLockShape loads an image into memory, so it might not succeed if there isn’t
enough memory. And don’t forget to check a bitmap shape’s space field before
processing the shape — don’t assume that bitmap images are always in RGB space.

See Listing 4 for an example of changing a bitmap shape’s data directly.

MEMORY ISSUES
Raster surfers and Photoshop junkies know that raster images can be memory hogs;
it’s easy to run out of application heap when you allocate them. So what happens
when QuickDraw GX runs out of memory? It doesn’t. Well, almost never. Here are
the steps it will go through, in order, to deliver the memory you need:

1. Flush out-of-date caches.

2. Flush up-to-date caches.

3. If allowed, grow the current gxHeap.

4. Unload shapes and other objects to disk.

5. Give up, and return an error.

Most QuickDraw developers resort to some sort of GrowZoneProc to handle a
tight application heap. QuickDraw GX provides a tiered response to abnormal
occurrences. Items 1 through 4 above return notices (in the debugging version of
QuickDraw GX); item 5 returns an error. All you have to do is implement a routine
to handle the notices and errors.

// Create the gxTag.
if (iErr == noErr)
{

// Create a gxBitmapDataSourceAlias with specified fileOffset
// and appropriate aliasRecordSize and aliasRecord.
aliasRecordPtr->fileOffset = fileOffset;
aliasRecordPtr->aliasRecordSize = aliasSize;
BlockMove(*aliasHdl, &aliasRecordPtr->aliasRecord[0], aliasSize);
targetTag = GXNewTag(gxBitmapFileAliasTagType, aliasRecordSize,

aliasRecordPtr);
}
// Clean up.
if (aliasHdl != nil)

DisposeHandle((Handle)aliasHdl);
if (aliasRecordPtr != nil)

DisposePtr((Ptr)aliasRecordPtr);

return targetTag;
}

Listing 3. Creating a disk-based bitmap (continued)
MAKING THE MOST OF QUICKDRAW GX BITMAPS 53

d e v e l o p Issue 19 September 199454
Listing 4. Directly changing an indexed bitmap shape

void InvertBitmapShape(gxShape sourceBits)
{

gxBitmap sourceInfo, *sourceInfoRef;
gxShapeAttribute curAttributes;
unsigned char *sourcePtr, *rowPtr;
long sourceRowSize, structLen, i, j;
Boolean isQDGXImage;

// Make sure that this is an indexed bitmap shape.
if (sourceBits == nil)

return;
if (GXGetShapeType(sourceBits) != gxBitmapType)

return;
GXGetBitmap(sourceBits, &sourceInfo, nil);
if (sourceInfo.pixelSize > 8)

return;
if (sourceInfo.image == gxBitmapFileAliasImageValue)

return;
// If the image data was allocated by QuickDraw GX...
isQDGXImage = (sourceInfo.image == nil);
if (isQDGXImage)
{

// Load and lock the image data.
curAttributes = GXGetShapeAttributes(sourceBits);
if (!(curAttributes & gxDirectShape))

GXSetShapeAttributes(sourceBits,
curAttributes | gxDirectShape);

GXLockShape(sourceBits);
if (GXGraphicsError(nil) != 0)

return;

// Get a reference to the image data.
sourceInfoRef =

(gxBitmap*)GXGetShapeStructure(sourceBits, &structLen);
if ((sourceInfoRef == nil) || (structLen < sizeof(gxBitmap)))

return;

sourceInfo = *sourceInfoRef;
}

// Invert index values, one row at a time.
sourcePtr = (unsigned char*)(sourceInfo.image);
for (i = sourceInfo.height; i > 0; i--)
{

rowPtr = sourcePtr;
sourceRowSize = sourceInfo.rowBytes;
while (sourceRowSize-- > 0)
{

*rowPtr = ~*rowPtr;
rowPtr++;

}

(continued on next page)

GEOMETRIC OPERATIONS
One of the niftiest features of QuickDraw GX is the ability to perform geometric
operations on bitmap shapes. Most of the operators that apply to geometric shapes
also apply to bitmaps: rotate, scale, skew, perspective, and clip. In comparison,
QuickDraw provides only three geometric operators: scale, clip, and mask.

ALTERING THE TRANSFORM VERSUS THE GEOMETRY
When you change a bitmap shape’s geometry (that is, its actual pixel data), whether
by rotating, skewing, applying perspective, or scaling, you normally lose image data
— it’s often impossible to return the image to its pristine state.

You can eliminate this data loss by instead applying geometric operators to a shape’s
transform. A shape can make use of a 3 x 3 matrix to mathematically change its
appearance when rendered without changing the underlying data. This is especially
important for bitmaps. Figure 2 shows both possibilities of multiple rotations of a
bitmap.

Rotation, translation (change in origin), skew, perspective, and scale operations can
all be performed on transforms directly, by GXRotateTransform, GXSkewTransform,
and so forth, or indirectly, using the gxMapTransformShape attribute.

When a shape’s gxMapTransformShape attribute is set, geometric operations
automatically apply to its transform rather than its geometry. Bitmap and picture
shapes default to having this attribute set; other shapes begin with it off. This
means that if you convert a polygon shape (for example) to a bitmap shape, the
gxMapTransformShape attribute won’t automatically be set.

When a QuickDraw GX routine modifies a bitmap shape’s geometry, a clip shape is
often attached to define the geometric extent of the modified bitmap. More often

// Skip to the next row.
sourcePtr = (unsigned char*)sourcePtr + sourceInfo.rowBytes;

}

GXChangedShape(sourceBits);
if (isQDGXImage)
{

GXUnlockShape(sourceBits);
GXSetShapeAttributes(sourceBits, curAttributes);

}
}

Listing 4. Directly changing an indexed bitmap shape (continued)

Geometry rotation

Transform rotation

Figure 2. Successive rotations of a bitmap
MAKING THE MOST OF QUICKDRAW GX BITMAPS 55

d e v e l o p Issue 19 September 199456
than not, the bitmap’s image buffer is expanded, as shown in Figure 3. Rotating a
bitmap’s geometry can increase its memory requirements by over 40%.

ROTATION
There aren’t many QuickDraw programmers who haven’t wished for a simple way to
rotate bitmaps. GXRotateShape takes parameters for the target shape, degrees
clockwise to rotate, and center point of rotation, as shown in Listing 5.

SKEWING AND PERSPECTIVE
Skewing and perspective are just as much fun as rotation, and even more useful as
general-purpose graphic effects. The code in Listing 6 illustrates a simple type of
perspective; Figure 4 shows the results of this perspective mapping.

SCALING
You can expand or shrink bitmap shapes, like other shape types, with GXScaleShape.
QuickDraw pixMaps are scaled by setting the destination rectangle passed to
CopyBits, whereas GXScaleShape uses a scaling factor. To convert your QuickDraw
bitmap scaling code into the equivalent QuickDraw GX code, you have to calculate
this scaling factor. Listing 7 shows how.

You can flip a bitmap horizontally or vertically by using negative scaling values.•

Original bitmap

Rotate 45°

New bitmap

Clip shape

New bounds
Original
bounds

Figure 3. Effect of GXRotateShape on bitmap geometry

Listing 5. Rotating a bitmap shape

void RotateBitmap(gxShape targetShape, Fixed theta)
{

gxBitmap targetBM;
gxPoint origin, shCenter;

// Determine the bitmap shape's current center point.
GXGetBitmap(targetShape, &targetBM, &origin);
shCenter.x = ff(targetBM.width) / 2 + origin.x;
shCenter.y = ff(targetBM.height) / 2 + origin.y;

// Rotate it around its center point.
GXRotateShape(targetShape, theta, shCenter.x, shCenter.y);

}

Listing 6. Applying perspective to a bitmap shape

void TrapezoidalWarp(void)
{

gxShape bitsShape, warpShape;
long trapezoidData[] =
{

1L, 4L,
ff(130), ff(100), ff(170), ff(100),
ff(200), ff(200), ff(100), ff(200)

};

bitsShape = CreateBasicBitmapShape();
warpShape = GXNewShapeVector(gxPolygonType, trapezoidData);
if (warpShape != nil)
{

ShapeSetPolyMap(bitsShape, warpShape);
GXDisposeShape(warpShape);

}
GXDrawShape(bitsShape);

}

void ShapeSetPolyMap(gxShape targetShape, gxShape mappingShape)
{

gxRectangle boundsRect;
gxPolygon *mapPoly, *targetPoly;
gxMapping theMapping;
gxShape targetBounds;
long ignored;

if (targetShape == nil)
return;

if ((mappingShape == nil)
|| (GXGetShapeType(mappingShape) != gxPolygonType))

return;

// Determine the dimensions of the target shape.
GXGetShapeBounds(targetShape, 0L, &boundsRect);
targetBounds = GXNewRectangle(&boundsRect);
if (targetBounds == nil)

return;

// Scale the mapping shape to the dimensions of the target shape.
GXSetShapeBounds(mappingShape, &boundsRect);
GXSetShapeType(targetBounds, gxPolygonType);

// Load & lock both shapes so that their structures can be accessed.
GXSetShapeAttributes(mappingShape,

GXGetShapeAttributes(mappingShape) | gxDirectShape);
GXLockShape(mappingShape);
GXSetShapeAttributes(targetBounds,

GXGetShapeAttributes(targetBounds) | gxDirectShape);
GXLockShape(targetBounds);

(continued on next page)
MAKING THE MOST OF QUICKDRAW GX BITMAPS 57

d e v e l o p Issue 19 September 199458
CLIPPING AND MASKING
QuickDraw GX can do some neat tricks with clipping. These tricks work with bitmap
shapes, too. For example, to create a gradient-filled polygon, you can make a
rectangular bitmap shape with a gradient and then set the polygon shape as the
bitmap’s clip shape. (For another example, see Graphical Truffles in this issue.)

// NOTE: Structure is actually of type gxPolygon.
mapPoly = (gxPolygon*)GXGetShapeStructure(mappingShape, &ignored);
targetPoly = (gxPolygon*)GXGetShapeStructure(targetBounds, &ignored);

if ((mapPoly != nil) && (targetPoly != nil))
{

// Skip past the gxPolygons contour count to the first contour.
mapPoly = (gxPolygon*)((Ptr)mapPoly + sizeof(long));
targetPoly = (gxPolygon*)((Ptr)targetPoly + sizeof(long));

// Calculate the desired shape mapping.
// PolyToPolyMap() is in "mapping library.c."
PolyToPolyMap(targetPoly, mapPoly, &theMapping);

}

// Release both shapes from bondage.
GXUnlockShape(mappingShape);
GXSetShapeAttributes(mappingShape,

GXGetShapeAttributes(mappingShape) & ~gxDirectShape);
GXUnlockShape(targetBounds);
GXSetShapeAttributes(targetBounds,

GXGetShapeAttributes(targetBounds) & ~gxDirectShape);

// Set the target shape's mapping as desired.
GXSetShapeMapping(targetShape, &theMapping);

GXDisposeShape(targetBounds);
}

Listing 6. Applying perspective to a bitmap shape (continued)

Before perspective After perspective

Figure 4. Applying perspective to a bitmap shape

You can use 1-bit bitmap shapes as clip shapes, too. The effect is just like that of
CopyMask; pixels in the source shape are drawn only where the clipping bitmap pixel
value is nonzero. (On this issue’s CD, you’ll also find example code that does image
processing similar to CopyDeepMask using the new transfer modes.)

Clipping occurs in geometry space, before transform mapping, so a bitmap’s
clip shape should be based on its bounds rectangle, not its rendered location.•

To convert geometric shapes into masking bitmap shapes, you can call the
GXSetShapeType routine to convert the shape to a 1-bit mask bitmap.

With GXCheckBitmapColor, you can generate a masking bitmap from an existing
bitmap shape. If you pass GXCheckBitmapColor a color set, it puts 0 in the result
bitmap for source pixel values that are in the color set. If you pass it a color profile, it
puts 0 in the result bitmap for source pixel values that are within the color profile’s
gamut. The result bitmap can be useful for color correction.

QUICKDRAW GX TRICKS FOR QUICKDRAW DOGS
QuickDraw GX has ways to do almost anything you can do with QuickDraw. All you
need to know is how their environments and feature sets compare, and you’ll
understand how to convert from one to the other.

THE VIEW PORT LIST VERSUS THE GRAPHICS PORT
Most of the time you won’t have to concern yourself with view ports at rendering
time, because there’s no sense of the “current port” as there is in QuickDraw. Here’s
the recommended method for drawing an existing shape into a new view port:

1. Copy the shape’s transform and install the desired destination view
port into the copy.

2. Call GXDrawShape.

3. Restore the original transform.

4. Dispose of the copied transform.

Listing 7. Calculating a scaling factor

void BitmapShapeScaleQDStyle(gxShape targetShape, Rect *qdSourceR,
Rect *qdDestR)

{
gxPoint centerPt;
fixed scaleFactorH, scaleFactorV;

scaleFactorH = FixRatio(qdSourceR.right - qdSourceR.left,
qdDestR.right - qdDestR.left);

scaleFactorV = FixRatio(qdSourceR.bottom - qdSourceR.top,
qdDestR.bottom - qdDestR.top);

centerPt.x = ff((qdDestR.right + qdDestR.left) / 2);
centerPt.y = ff((qdDestR.bottom + qdDestR.top) / 2);
GXScaleShape(targetShape, scaleFactorH, scaleFactorV, centerPt.x,

centerPt.y);
GXMoveShapeTo(targetShape, ff(qdDestR.left), ff(qdDestR.top));
GXDrawShape(targetShape);

}

MAKING THE MOST OF QUICKDRAW GX BITMAPS 59

d e v e l o p Issue 19 September 199460
Examples of preserving view port lists can be found in the library routine
CopyToBitmaps and in the DrawShapeOffscreen example later in this article
(Listing 9).

BITMAPS AND TRANSFER MODES
QuickDraw GX has a lot of transfer modes. This is a good thing, really. Not all
transfer modes are functionally equivalent to those in QuickDraw, but the transferMode
library is fairly complete. Many of the capabilities of QuickDraw search procedures
can be implemented using transfer modes. (The first page of Inside Macintosh:
QuickDraw GX Graphics has color pictures of the new transfer modes in action.)

The transfer mode is contained in a shape’s ink. Since transfer modes are applied on a
per-component basis, you can easily get some groovy effects. For example, you can
add the hue of one image to the brightness of another. Usually, though, you’ll want
all components to use the same mode. The transferMode library routine
SetCommonTransfer will do this for you.

There are some differences between QuickDraw GX transfer modes and those found
in QuickDraw:

• Dithering is a view port feature, not a transfer mode. Halftoning is
also available on a per-gxViewPort basis. These two features are
mutually exclusive; you can’t dither and halftone at the same time.

• Transparency is not a single mode. It’s a whole family of modes
based on alpha component values.

• All QuickDraw GX transfer modes occur in color space, while
some QuickDraw transfer modes are bitwise.

ONSCREEN BITMAPS
QuickDraw GX maintains a view device list that mirrors the QuickDraw GDevice
list. (Utility routines are provided for getting one if you have the other.) The
Window Manager is patched in a couple of places so that a window’s view port
transforms and image memory are maintained when it enters and leaves GDevice real
estate.

Drawing a bitmap onscreen obeys the screen GDevice’s index entry protections —
QuickDraw GX doesn’t use indexes reserved by the Palette Manager for other
applications. If you want to draw an image that uses animated palette entries, you’ll
need to clone references to the destination viewDevice color set and profile, and then
insert those references into the bitmap shape before drawing. Example code that does
this is on this issue’s CD.

COPYBITS IN QUICKDRAW GX
Let’s see what it takes to make GXDrawShape do what CopyBits does. CopyBits has
several explicit parameters: the source, destination, clipping region, and transfer
mode. In QuickDraw GX, the source is the bitmap shape. The destination is defined
by the shape’s view port list. The clipping region is any shape that you attach to the
bitmap shape with GXSetShapeClip. As mentioned before, the transfer mode is
contained in the shape’s ink.

So, to do a CopyBits-style blit in QuickDraw GX:

1. Set up the shape’s view port list.

2. Determine the transfer mode (usually just “copy,” but it’s your
choice).

3. Adjust the shape clip. Don’t change the device clip or view port
clip.

4. Adjust the transform if you want to reposition, scale, skew, rotate,
or apply perspective to the shape.

5. Call GXDrawShape.

6. Clean up as needed.

QuickDraw GX doesn’t implement all of the color capabilities of CopyBits.
There’s no colorizing and no color interpolation for indexed values beyond the end of
a bitmap’s color set.•

DRAWING OFFSCREEN WITH QUICKDRAW GX
Successive QuickDraw implementations have presented newer and better ways to
draw into a offscreen image buffer. The QuickDraw GX offscreen library contains
routines to help maintain the data structures necessary to implement the equivalent
of a GWorld.

The example in Listing 8 uses the CreateIndexedBitmapShape routine from Listing 1
and the library routine CreateOffscreen to create a fully functional offscreen bitmap.

You might think drawing into a QuickDraw GX offscreen bitmap would be difficult,
but it’s not. To draw a shape into the offscreen bitmap, set its view port list to the
offscreen bitmap’s view port and call GXDrawShape (see Listing 9).

BITMAP SHAPES VERSUS PIXMAPS
Sometimes, converting existing QuickDraw code to QuickDraw GX is impractical. If
your application needs to use the same data in both offscreen pixMaps and bitmap
shapes, it can, provided that the bitmap shape is packed the same as the pixMap —
that is, of identical width, height, pixel depth, and color space.

To use bitmap shape data in a QuickDraw pixMap, build the pixMap with the
baseAddr the same as the gxBitmap.image. (Make sure that the bitmap shape is
locked down.) To use pixMap data in QuickDraw GX, create a gxBitmap with the
image field set to the base address of the source pixMap.

Listing 8. Creating an offscreen bitmap

OSErr MakeIndexedOffscreen(offscreen *targetOffWorld, long horiz,
long vert, long targetDepth)

{
gxShape bitsShape;

if (!CheckArguments(...))
return paramErr;

bitsShape = CreateIndexedBitmapShape(horiz, vert, targetDepth);
if (bitsShape == nil)

return paramErr;
CreateOffscreen(targetOffWorld, bitsShape);
return noErr;

}

MAKING THE MOST OF QUICKDRAW GX BITMAPS 61

d e v e l o p Issue 19 September 199462
THE QUICKDRAW GX LIBRARIES
Several libraries are included with the QuickDraw GX Software Developer’s Kit.
They contain, among other things, routines for offscreen rendering and converting
image data between QuickDraw and QuickDraw GX. The library code instructs by
example and is a good starting point for your own library.

The library code is not completely tested. You should treat it as template
code, not a final solution.•

The offscreen library. This library contains support for offscreen bitmaps, copying
between bitmap shapes, and simple gradient fills. The offscreen image implementation
is basic but solid (it lacks some of the features found in QuickDraw GWorlds, such as
automatic longword realignment of images). The utility routine CopyToBitmaps is
also useful; it shows a good example of saving a view port list.

The math library. This library contains a number of useful routines for manipulating
mappings. The routine PolyToPolyMap is used in the trapezoidal warp example
(Listing 6). The header file math routine.h contains essential macros for conversion
between fixed-point, floating-point, and integral values.

The ramp library. Get your gradient fills here. Pleasing to the eye, easy on the
code. A gradient-filled bitmap can be rotated and clipped, and voilà! Gradient-filled
shapes.

The qd and oval libraries. The qd library has facilities for conversion of bitmap
and color data between QuickDraw and QuickDraw GX formats. The oval library
has real ovals, not those phony squished QuickDraw things.

The transferMode library. This library facilitates access to a shape’s transfer mode
information and contains routines for emulating most of the QuickDraw transfer
modes. It also contains a bonus — one of my favorite routines. If you’ve ever wanted

Listing 9. Drawing into an offscreen bitmap

void DrawShapeOffscreen(offscreen *offGXWorld, gxShape targetShape)
{

gxTransform newXform, savedXform;

if ((offGXWorld == nil) || (targetShape == nil))
return;

if (offGXWorld->port == nil)
return;

savedXform = GXGetShapeTransform(targetShape);
newXform = GXCopyToTransform(nil, savedXform);
GXSetTransformViewPorts(newXform, 1L, &(offGXWorld->port));
GXSetShapeTransform(targetShape, newXform);

GXDrawShape(targetShape);

GXSetShapeTransform(targetShape, savedXform);
GXDisposeTransform(newXform);

}

to get the results of a QuickDraw transfer mode on color values without having to
use CopyBits, TransmogrifyColor is for you. Check it out.

The storage library. This library implements spooling routines for use with
GXFlattenShape and GXUnflattenShape, which you’ll need for reading and writing
shapes to and from files. These routines detect errors but don’t report them, so
they’re only useful as templates.

The camera library. Perspective is cool, but hard to use unless your math skills are
well developed. This library provides nifty 3-D techniques.

AND A FEW MORE THINGS . . .
Here I’ll point out some caveats and additional interesting features of QuickDraw
GX, just so you know what to look for (and look out for).

EXECUTION OVERHEAD
How fast are QuickDraw GX blits? How slow does an offscreen, 256 x 256, 45°-
rotated, 32-bit, YXY, gradient-filled bitmap draw into a window on a 4-bit monitor?
How much for all of these shiny pebbles? It depends. Let’s look at the issues involved.
QuickDraw GX and QuickDraw have much in common here:

• They’re fastest when there’s no conversion of value or image
location.

• Common code paths are optimized inside the API: 8-bit to 8-bit,
1-bit to 1-bit, 24-bit to 8-bit, no clipping, rectangle clipped.

• Blits involving complex transformations are usually orders of
magnitude slower.

Some transformations require more processing. QuickDraw GX does only
as much work as the transformation matrix mandates. From fastest to slowest, the
order is: no transformation (or translation only); scaling; skewing or rotation;
perspective.•

The basic performance guidelines are similar to automotive fuel efficiency ratings —
though we have no hard estimates, mileage is better on a smooth highway (no color
mapping, skewing, or scaling) than on surface streets.

A transform mutation can require a 3 x 3 matrix operation for each pixel value when
rendered. That’s a lot of fixed-point multiplications. If execution speed is critical and
the mutated version will be used a lot, copy the bitmap shape, mutate the geometry,
and draw like crazy. Otherwise, mutate the transform and draw as needed.

SHARED IMAGE BUFFERS
A bitmap shape’s raster image buffer can be shared by other bitmap shapes. Just make
the source bitmap shape’s image field the same as that of another bitmap shape.
GXCopyToShape uses this sharing of image buffers. If you need a copy of a bitmap
shape (or a picture that contains bitmap shapes) to have its own image buffer, use
GXCopyDeepToShape.

USING BITMAPS AS PATTERNS
Bitmap shapes can be used as patterns. Unlike QuickDraw, QuickDraw GX has no
limitation on area dimension or size of raster data in a pattern. To do simple tiling,
you can just set the bitmap pattern on the shape.
MAKING THE MOST OF QUICKDRAW GX BITMAPS 63

d e v e l o p Issue 19 September 199464
You can align the pattern to all destination view ports simply by setting the
gxPortAlignPattern attribute. This forces all shapes drawn with that pattern in a
given view port to visually line up with each other. Another pattern attribute,
gxPortMapPattern, keeps a pattern from being affected by a shape’s transform; this
is useful, for example, when you want a shape rotated and its pattern unrotated.

BITMAP SHAPE EQUIVALENCE
You can test QuickDraw GX shapes for equivalence by calling GXEqualShape.
However, this routine doesn’t account for mapping effects. For example, a bitmap
gradient from black to white would be considered not equal to a white-to-black
gradient bitmap whose transform is rotated 180°, even though the two shapes would
produce identical results when drawn.

SIMPLIFICATION
GXSimplifyShape reduces an indexed bitmap to its simplest representation, even
reducing the pixel depth when possible. For example, if an 8-bit-deep bitmap shape
contains only 15 colors, GXSimplifyShape will convert it to a 4-bit-deep bitmap. If a
bitmap is all one color, it will be converted into a rectangle shape — it won’t be a
bitmap shape any more.

SUBSET EDITING
QuickDraw GX provides tools for working with area subsets of bitmaps. A piece can
be copied from a source bitmap via GXGetBitmapParts, edited, and then blasted back
into the source image with GXSetBitmapParts.

Individual pixel values can be accessed with the GXGetShapePixel and
GXSetShapePixel routines. Unlike in QuickDraw, these routines don’t need to
reference a gxViewDevice to determine the color.

SO GET GOING
As you can see, QuickDraw GX does some really cool things with bitmaps. The
transforms alone make it worthwhile — it’s easy to get addicted to rotating and
skewing your bitmaps without having to do a lot of work. The new transfer modes
are great. All the rest is a bonus. In the future, when memory is cheap and every
machine is fast, you’ll see more and more Macintosh systems and applications
become dependent on QuickDraw GX.
Thanks to our technical reviewers Pete (“Luke”)
Alexander, Josh Horwich, and Chris Yerga.•

GRAPHICAL
TRUFFLES

A Cool
QuickDraw GX
Clipping Effect

PETE (“LUKE”) ALEXANDER
Wading through the vast sea of documentation you get
with the QuickDraw GX Software Developer’s Kit, you
may not realize all the cool things this new graphics
model lets you do. In this column, we’ll look at just one
of those cool things: clipping one shape to the inside of
another arbitrary shape. As an illustration, we’ll take a
bitmapped image of a tropical beach (Figure 1) and clip
it to the word “BAY” (Figure 2). Figure 3 shows the
result. There’s a sample application and source code on
this issue’s CD.

CREATING THE SHAPES
We’ll be collecting the results of our operations into a
picture shape. We’ll assume that the QuickDraw GX
environment has already been set up and that we have a
window ready to draw into.

For information on setting up the QuickDraw GX environment,
see “Getting Started With QuickDraw GX” in develop Issue 15.
The full details are in Inside Macintosh: QuickDraw GX Objects
and Inside Macintosh: QuickDraw GX Graphics.•

We start by creating an empty picture to which we can
add shapes:

gxShape thePicture;
thePicture = GXNewShape(gxPictureType);

The bitmap shape we’ll be clipping (Figure 1) is stored
in our application’s resource fork as a 'pxmp' resource.
We retrieve it with the GetPixMapShape call from the
qd library.
PETE (“LUKE”) ALEXANDER Regular readers of Luke’s columns
will know that he took his sabbatical from Apple this summer. He
sent us a postcard: “Hey dudes! While you’re looking out your
windows at Silicon Valley smog, I’m looking out my windows at the
rocky faces of Montana. Have you heard of National Parks?
They’re places of unusual beauty set apart from development.
Not that kind of development! The kind that causes smog. At
gxShape theBitmap;
theBitmap = GetPixMapShape(kPixMapID);

To create the clip shape, we start with a text shape
containing the word BAY.

Figure 1. The shape to be clipped

Figure 2. The clip shape

Figure 3. Result of clipping Figure 1 to Figure 2
GRAPHICAL TRUFFLES: A COOL QUICKDRAW GX CLIPPING EFFECT 65

Yellowstone Park I enjoyed the clear air, I found where the buffalo
roam, and I learned why they call it Old Faithful. I’m now flying
somewhere over Montana (don’t worry, I’m steering with my knee),
admiring the mountains with their lingering snow and enjoying the
wide open spaces. Oops, mountain ahead and no more room on
the card.” He signed it, “See you later, Luke” but then crossed out
the “See you later.” We’re worried, really worried.•

66
gxShape theClip;
theClip = GXNewText(3, (unsigned char*)"BAY", nil);

POSITIONING AND SCALING THE TEXT SHAPE
Before we set our text shape to be the clip of our
bitmap shape, we need to move it to the top left corner
of the bitmap shape and then scale it to encompass the
entire bitmap.

We’ll look at two ways to do this. The first method
takes us through all the steps in the process, while the
second is simpler and lets QuickDraw GX do more of
the work for us.

The origin of a text shape is on the baseline, but in this
case, because there are no descenders in the text, we
just use the bottom left corner of the shape’s bounds.
We need to offset the text shape by its own height from
the top of the bitmap shape. So we need to know the
bounds of both the bitmap shape (to find the
coordinates of its top left corner) and the text shape (to
calculate its height):

gxRectangle bitmapBounds, textBounds;
GXGetShapeBounds(theBitmap, 0, &bitmapBounds);
GXGetShapeBounds(theClip, 0, &textBounds);
textHeight = textBounds.bottom - textBounds.top;
GXMoveShapeTo(theClip, bitmapBounds.left,

bitmapBounds.top + textHeight);

Our original text shape, which is the default text size of
12 points, isn’t big enough to cover the entire bitmap
shape. If we were to do the clipping at this point, we
would get just a tiny piece of the corner instead of the
whole bitmap. To get the whole thing, we have to scale
the text shape to match the size of the bitmap shape.

For the text shape to scale linearly, without taking the
font’s hinting into account, we have to turn off
QuickDraw GX’s built-in metrics and contour grid-
fitting capabilities. We do this by setting the shape’s
text attributes as follows:

GXSetShapeTextAttributes(theClip,
gxNoMetricsGridText | gxNoContourGridText);

Although QuickDraw GX lets us clip to any arbitrary
shape, clipping is actually limited to primitive shapes
only. That is, the clip shape must be a shape whose
geometry and fill properties by themselves define the
shape; primitive shapes don’t use information from a
style or transform object. This is not a problem,
though, because we can easily convert a shape to its
primitive form. The following call does the job:

GXPrimitiveShape(theClip);
d e v e l o p Issue 19 September 1994
The result is a filled path shape (which is a primitive
shape) representing the outlines of the letters in the
word BAY.

Next we need to determine how much to scale the text
shape to encompass the entire bitmap shape. We do
this by finding the width and height of both shapes’
bounds rectangles and scaling the text shape in each
direction by the ratio between the two:

Fixed bitmapWidth, bitmapHeight;
Fixed textWidth, textHeight;
Fixed xScale, yScale;

// Determine the width ratio.
bitmapWidth = bitmapBounds.right -

bitmapBounds.left;
textWidth = textBounds.right - textBounds.left;
xScale = FixedDivide(bitmapWidth, textWidth);

// Determine the height ratio.
bitmapHeight = bitmapBounds.bottom -

bitmapBounds.top;
textHeight = textBounds.bottom - textBounds.top;
yScale = FixedDivide(bitmapHeight, textHeight);

GXScaleShape(theClip, xScale, yScale,
bitmapBounds.left, bitmapBounds.top);

We’ve now scaled the text shape to encompass the
entire area of our bitmap shape, and we’re ready to
use it to clip the bitmap shape. But it turns out that
there’s a shorter way to do this; we can actually
accomplish the same thing with only three lines of
code:

GXSetShapeTextAttributes(theClip,
gxNoMetricsGridText | gxNoContourGridText);

GXGetShapeBounds(theBitmap, 0, &textBounds);
GXSetShapeBounds(theClip, &textBounds);

As in the earlier method, we turn hinting off and get
the bounds of our bitmap shape. The magic here is
in the GXSetShapeBounds call: when applied to
typographic shapes, this call positions and scales the
text to the new bounds and converts it to a primitive
shape. That’s it! QuickDraw GX does the hard work
for us automatically, and we’re ready to set the clip of
our bitmap shape.

SETTING THE CLIP SHAPE
Now that the text shape is positioned and scaled the
way we want it, we’re ready to set it up as the clip of
our bitmap shape:

GXSetShapeClip(theBitmap, theClip);

Thanks to Hugo Ayala and Cary Clark for reviewing this
column.•

How’re we doing?
If you have questions, suggestions, or even gripes
about develop, please don’t keep them to yourself.
Let us know what you think.

Send editorial suggestions or comments to
AppleLink DEVELOP or to:
Caroline Rose
Apple Computer, Inc.
One Infinite Loop, M/S 303-4DP
Cupertino, CA 95014
AppleLink: CROSE
Internet: crose@applelink.apple.com
Fax: (408)974-6395

Send technical questions about develop to:
Dave Johnson
Apple Computer, Inc.
One Infinite Loop, M/S 303-4DP
Cupertino, CA 95014
AppleLink: JOHNSON.DK
Internet: dkj@apple.com
CompuServe: 75300,715
Fax: (408)974-6395

✍

✍

This call changes the clip shape contained within the
transform used by our bitmap shape, replacing it with
the new clip shape that we’ve created.

If the same transform were being shared by other shapes,
QuickDraw GX would make a copy of the transform to associate
with our bitmap shape, ensuring that the new clip would not affect
any of the other shapes sharing the same transform.•

The next step is to add the clipped bitmap shape to our
picture with GXSetPictureParts. (Note that we could
also use the library call AddToShape or the core call
GXSetShapeParts to do the same thing, but I chose to
be more explicit here.)

GXSetPictureParts(thePicture, 0, 0, 1, &theBitmap,
nil, nil, nil);

The picture now contains a new reference to the
original bitmap shape, complete with the new clip
we’ve added to it. Once there’s a reference to it in the
picture, we don’t need the original reference anymore,
so we dispose of it:

GXDisposeShape(theBitmap);

DRAWING THE OUTLINE
The last order of business is to draw an outline around
the clipped bitmap. We can accomplish this by setting
up the drawing characteristics of our scaled text shape
to draw the outline and then adding it to our picture.
To frame the shape with a closed outline, we set its fill
characteristic to gxClosedFrameFill. Since we want the
frame to lie outside the geometry of the shape, we set
its style attributes to gxOutsideFrameStyle. Finally, we
set the pen size to 3 to get a satisfyingly fat outline, and
we set the color of the outline to blue:

GXSetShapeFill(theClip, gxClosedFrameFill);
GXSetShapeStyleAttributes(theClip,

gxOutsideFrameStyle);
GXSetShapePen(theClip, ff(3));
SetShapeCommonColor(theClip, blue);

Now we can add the outlined shape to our picture and
dispose of it, as before:

GXSetPictureParts(thePicture, 0, 0, 1, &theClip,
nil, nil, nil);

GXDisposeShape(theClip);

DRAWING THE PICTURE
Before drawing our picture, we’ll move it down a little
from the top left corner of the window. We could do
this by retrieving the picture’s transform and shifting it
down and to the right with GXMoveTransform;
however, since the gxMapTransformShape attribute
is set for pictures by default, we can just call
GXMoveShape:

GXMoveShape(thePicture, f(20), ff(15));

Finally, we’re ready to draw the picture:

GXDrawShape(thePicture);

We’re done! The result should look like Figure 3.

THAT’S ALL, FOLKS
You’ve had a quick look at one of the many cool things
you can do with the QuickDraw GX graphics system.
As you can see from this example, the power and
flexibility of QuickDraw GX can give your application
the ability to do things you could only dream about
until now.
GRAPHICAL TRUFFLES: A COOL QUICKDRAW GX CLIPPING EFFECT 67

S

68
Pick Your Picker With Color Picker 2.0
HANNON HOLLAND

d e v e l o p Issue 19 September 1994
The limitations of the old Color Picker Package forced many developers
to write their own color pickers. The flexibility of Color Picker version
2.0 overcomes the old limitations and provides many new features —
most notably, use with ColorSync color. Now it’s easy to design color
pickers to suit your needs. This article describes how to use the new
Color Picker Manager and take advantage of its customization features
from within your application.

Apple designed the Color Picker Package as a way for applications to present a
standard user interface for color selection. The goal in developing Color Picker
version 2.0 was to remain compatible with the existing Color Picker Package while
providing tighter integration of color pickers with the application and allowing
development of customized color pickers (for example, to support other color spaces
or specific devices).

These goals were achieved by adding a Color Picker Manager, turning color pickers
into components, and separating the color picker components from the Color Picker
Manager. As components, color pickers are now accessed through the Component
Manager, which provides a layer between the application and the color picker
component. In other words, the application calls the Color Picker Manager, which
then calls the Component Manager, which calls the color picker component. In the
old Color Picker Package, the application called the color picker directly.

This separation of the color picker components from the Color Picker Manager
allows new color picker components to be dynamically added to the system by the
user or an application. Once a new color picker component has been registered to the
Component Manager, it’s available for use by the Color Picker Manager.

The interface to the new Color Picker Manager is divided into high- and low-level
calls:

• The high-level calls are designed to be used with a minimum of
fuss, but provide access to nearly the whole feature set available to
the application through the Color Picker Manager. For
compatibility with previous versions, the old high-level call,
SHANNON HOLLAND, once of Apple and
now starting up something elsewhere, had little
time to write his bio for this article. His only three
activities include working, eating, and sleeping.
Once upon a time he had a life in which he
enjoyed photography, cultural activities, and
abusing his friends.•

Color Picker version 2.0 ships with
QuickDraw GX and also with System 7.5. The
forthcoming Inside Macintosh: Advanced Color
Imaging will describe Color Picker 2.0 in detail.•

GetColor, is still there. A new high-level call, PickColor, replaces
GetColor and offers a much broader feature set.

• The low-level calls are designed to allow maximum flexibility.
They let the application determine the type of dialog the color
picker is placed in, rather than using the modal dialog you get with
high-level calls. The application can also set the current color and
maintain explicit control over the event loop. Color pickers that
are invoked through the low-level calls can exist for the life of an
application.

This article discusses how to use these calls and take advantage of the new Color
Picker Manager. The code examples are provided on this issue’s CD. Color Picker 2.0
allows multiple color picker components to exist on a system at one time (through the
Component Manager). Although the interface for these components is public, this
article doesn’t discuss the creation of color picker components.

SPECIFYING COLORS
Unlike the old Color Picker Package, Color Picker 2.0 uses the more complete
ColorSync definition of a color, which contains both a color and a profile. The
profile defines the color space of the color (which includes the type of color —
CMYK, HSL, RGB, and so on). You can also specify a destination profile, which
describes the color space of the device for which the color is being chosen (for
example, a color printer that will eventually print the document). Given knowledge of
the destination profile, color pickers that are ColorSync aware can help the user
choose a color that’s within the destination device’s gamut.

ColorSync is described in the forthcoming Inside Macintosh: Advanced Color
Imaging. See also “Print Hints: Syncing Up With ColorSync” in develop Issue 14.•

The ColorSync definition for a color, shown below, is used only with the new calls.
The old call, GetColor, still uses RGBColor for compatibility. These structures are
compatible with QuickDraw GX.

typedef struct CMProfile **CMProfileHandle;

typedef union {
RGBColor rgb;
unsigned short reserved[4];

} CMColor, *CMColorList;

typedef struct PMColor {
CMProfileHandle profile;
CMColor color;

} PMColor, *PMColorPtr;

If you’re specifying an RGB color with no particular profile, you can simply set the
CMProfileHandle field of PMColor to nil, which uses the system profile. To specify a
color that uses a profile, you need to provide the profile that describes that color.

USING THE HIGH-LEVEL CALLS
The high-level calls are designed to handle the most common uses for the Color
Picker Manager. The old GetColor call provides access to the new dialog and the
color picker component, but not to any of the new features that are accessible
through the Color Picker Manager (such as ColorSync colors).
PICK YOUR PICKER WITH COLOR PICKER 2.0 69

d e v e l o p Issue 19 Septemb70
The new PickColor call is designed to replace GetColor. It can be used very simply,
providing roughly the same feature set as GetColor, or it can be used to take
advantage of some of the more advanced features of Color Picker 2.0.

The new dialog for the high-level calls is much the same as the old one. A new
button, More Choices, reveals a list of all available color pickers (and changes to
“Fewer Choices”; see Figure 1). Clicking a color picker in the list makes it the current
color picker for the dialog. Both PickColor and GetColor display this dialog.

The biggest difference between PickColor and GetColor is that PickColor allows the
application to provide a pointer to an event filter procedure. If the application
supplies such a procedure, a movable modal dialog will be created rather than the old
modal dialog. You can do this from within PickColor because you’re now able to pass
update events to windows within the same application layer as the color picker.

PickColor also uses the new ColorSync color definition, so you can specify a color in
any color space along with a destination profile. Likewise, a color can be returned in
any color space.

PICKCOLOR PARAMETER BLOCK
Listing 1 shows the parameter block that you pass through to PickColor. The first
two fields, theColor and dstProfile, are pretty obvious; they’re simply the input (and
output) color and the profile for the final output device. If there’s no output device,
you just set dstProfile to nil.

The flags field is a little more complicated. (It’s also used in many of the low-level
calls.) With PickColor, there are three flags you need to worry about:

• CanModifyPalette. If you set this flag, you’re telling the color
picker component that it’s able to install a palette of its own that
may modify (but not animate) the current color table. If you don’t
want the colors in your document to change as you make choices
in the color picker dialog, don’t set this flag.

Figure 1. Color picker dialog for high-level calls
er 1994

• CanAnimatePalette. This flag is similar to CanModifyPalette,
except that it allows the color picker component to modify or
animate the palette as much as it wants to.

• AppIsColorSyncAware. This informs the Color Picker Manager
that your application understands ColorSync colors. This means
that a color may be returned to you in a different space than the
one you passed in. For example, you could pass an RGB color
(with no profile) to the Color Picker Manager and receive back a
CMYK color (with its associated profile). If you don’t set this flag,
the Color Picker Manager automatically converts any color it
receives back from the color picker component to RGB space.

The placeWhere field tells the Color Picker Manager where to position the color
picker dialog. The choices are kAtSpecifiedOrigin (at the point specified by the
dialogOrigin field), kDeepestColorScreen (centered on the deepest color screen), and
kCenterOnMainScreen (centered on the main screen).

The dialogOrigin field (in conjunction with kAtSpecifiedOrigin) is used when you
request that the color picker dialog be placed at a specific point. When PickColor
returns, this field contains the location of the color picker dialog at the time it was
closed.

You use the pickerType field to specify the component subtype of the color picker to
select initially. If you set this field to 0, the default system color picker will be used
(the last color picker chosen by the user). When PickColor returns, this field contains
the component subtype of the color picker that was open when the user closed the
dialog.

You should set the eventProc field to point to an event filter procedure that will
handle events meant for your application. If this procedure returns true, the Color
Picker Manager won’t process the event further. If it returns false, the Color Picker
Manager will handle the event if it was meant for the color picker. If you set this field
to nil, a modal dialog will be created (rather than a movable modal dialog).

The colorProc field can contain a pointer to a procedure that will be called whenever
the color changes. This allows live updating of colors in application documents as the

Listing 1. PickColor parameter block

typedef struct ColorPickerInfo {
PMColor theColor;
CMProfileHandle dstProfile;
long flags;
DialogPlacementSpec placeWhere;
Point dialogOrigin;
long pickerType;
UserEventProc eventProc;
ColorChangedProc colorProc;
long colorProcData;
Str255 prompt;
MenuItemInfo mInfo;
Boolean newColorChosen;

} ColorPickerInfo;
PICK YOUR PICKER WITH COLOR PICKER 2.0 71

d e v e l o p Issue 19 September 199472
user selects them. The colorProcData field contains a long integer that’s passed to the
color-changed procedure and can be used for any private data.

The prompt field is a prompt string that the color picker displays to give the user
some indication as to what the new color is for (for example, a highlight color).

The mInfo field tells the Color Picker Manager what the Edit menu ID is and where
the various menu items are located within it.

The newColorChosen field is set on return from PickColor. If true, it means that the
user chose a color and clicked OK; otherwise, the user clicked Cancel.

IMPLEMENTING PICKCOLOR
Now let’s look at an example of how all this would be used. Listings 2 and 3 show two
callbacks — the event filter procedure (MyEventProc) and the color-changed
procedure (MyColorChangedProc). In the color-changed procedure we assume that
ColorSync is installed. This is because we’ll be setting the AppIsColorSyncAware flag
when we call PickColor, so a non-RGB color might come back from the picker and,
if so, you need to call ColorSync to convert it to RGB.

Once you have the two callback procedures, you can go ahead and call PickColor (see
Listing 4).

USING THE LOW-LEVEL CALLS
The low-level Color Picker Manager calls are designed to allow tight integration of
an application and a color picker (a floating palette, for example). Two features make
this possible: the application can specify the type of dialog to put the color picker in,
and the application maintains control over the event loop.

You can create three types of color picker dialogs with the low-level calls: system-
owned, application-owned, and color picker–owned.

• A system-owned dialog is exactly like the dialog created by the high-
level calls — it has OK, Cancel, and More Choices buttons.
However, with the low-level calls, you can make the dialog modal,
movable modal, or modeless.

• An application-owned dialog is actually owned (and supplied) by the
application. You can use this type of dialog to integrate the color
picker with other application window features or to extend the
controls of the color picker. For example, you could add controls
for altering the style of an object as well as its color.

• A color picker–owned dialog is created and owned by the color
picker component itself, which gives that component great
flexibility because it can determine the size and shape of the color
picker and the dialog (color pickers in system-owned and
application-owned dialogs are always the same size). This is useful
for implementing floating pickers (such as the color wheel in
Color MacCheese).

The application interacts with all three types of dialogs in the same way once they’re
created. The rest of this section describes how to create each type and then moves on
to discuss how the application interacts with the color pickers, no matter what type of
dialog you use. In other words, the type of dialog a color picker is in is abstracted
enough that the application can use roughly the same code to handle all three types.

Listing 3. Color-changed procedure

pascal void MyColorChangedProc(long userData, PMColorPtr newColor) {
GrafPtr port;
CWorld cWorld;
CMColor color;
CMError cwError;

GetPort(&port);
SetPort(myDocWindow);

// Now check to see if the color has a profile. If so, we need to
// convert it to RGB space.
if (newColor->profile) {

// Create a color world and convert the color. This color world
// matches from the color's space to the system space (RGB).
cwError = CWNewColorWorld(&cWorld, newColor->profile, 0L);
if (cwError == noErr || cwError == CMProfilesIdentical) {

// We created the color world. Now match the color using a copy
// so that we don't munge the original.
color = newColor->color;
CWMatchColors(cWorld, &color, 1);
CWDisposeColorWorld(cWorld);

}
} else

color.rgb = newColor->color.rgb;

// Set the new color and paint the port with it.
myRGBColor = color.rgb;
RGBForeColor(&color.rgb);
PaintRect(&myDocWindow->portRect);

SetPort(port);
}

Listing 2. Event filter procedure

WindowPtr myDocWindow;

pascal Boolean MyEventProc(EventRecord *event) {
Boolean handled = false; // Assume we don't handle the event.

switch (event->what) {
case updateEvt:

// Check to see if the update is for our window.
if ((WindowPtr) event->message == myDocWindow) {

DoTheUpdate(myDocWindow);
handled = true;

}
}
return handled;

}

PICK YOUR PICKER WITH COLOR PICKER 2.0 73

d e v e l o p Issue 19 September 199474
CREATING THE DIALOG
When creating a system-owned dialog, the application needs to choose whether the
dialog will be modal, movable modal, or modeless. This is handled by the use of two
flags: DialogIsModal and DialogIsMoveable. Through obvious combinations of these
flags, all three dialog types can be created. A nonmovable, modeless dialog (neither
flag set) is illegal.

Listing 5 shows the code used to create a modeless system-owned dialog.

Listing 4. Calling PickColor

ColorPickerInfo cpInfo;
PMColor savedColor;

// Set the input color to be an RGB color in system space.
cpInfo.theColor.color.rgb = myRGBColor;
cpInfo.theColor.profile = 0L;

cpInfo.dstProfile = 0L;
cpInfo.flags = AppIsColorSyncAware | CanModifyPalette | CanAnimatePalette;

// Center the picker on the deepest color screen.
cpInfo.placeWhere = kDeepestColorScreen;

// Use the default picker.
cpInfo.pickerType = 0L;

// Install the callbacks.
cpInfo.eventProc = MyEventProc;
cpInfo.colorProc = MyColorChangedProc;
cpInfo.colorProcData = 0L;

strcpy(cpInfo.prompt,"\pChoose a new color");

// Tell the Color Picker Manager about the Edit menu.
cpInfo.mInfo.editMenuID = kMyEditMenuID;
cpInfo.mInfo.cutItem = kMyCutItem;
cpInfo.mInfo.copyItem = kMyCopyItem;
cpInfo.mInfo.pasteItem = kMyPasteItem;
cpInfo.mInfo.clearItem = kMyClearItem;
cpInfo.mInfo.undoItem = kMyUndoItem;

// Save the current color, in case the user cancels.
savedColor = cpInfo.theColor;

// And finally, pick that color!
if (PickColor(&cpInfo) == noErr && cpInfo.newColorChosen)

// Go use this new color. Remember it can be in any color space.
DoNewColorStuff(&cpInfo.theColor);

else
// Canceled or an error; restore old color.
DoNewColorStuff(&savedColor);

}

Listing 6 shows how to add a color picker to an application’s own dialog (application-
owned dialog).

Listing 5. Creating a modeless system-owned dialog

SystemDialogInfo sInfo;
OSErr result;

sInfo.flags = DialogIsMoveable + AppIsColorSyncAware + CanModifyPalette
+ CanAnimatePalette;

sInfo.pickerType = 0L;
sInfo.placeWhere = kDeepestColorScreen;

sInfo.mInfo.editMenuID = kMyEditMenuID;
sInfo.mInfo.cutItem = kMyCutItem;
sInfo.mInfo.copyItem = kMyCopyItem;
sInfo.mInfo.pasteItem = kMyPasteItem;
sInfo.mInfo.clearItem = kMyClearItem;
sInfo.mInfo.undoItem = kMyUndoItem;

result = CreateColorDialog(&sInfo, &myPicker);

Listing 6. Creating an application-owned dialog

DialogPtr myDialog;
ApplicationDialogInfo aInfo;
OSErr result;

// First create the dialog (make sure it's a color dialog so that the
// color picker can do all the color stuff it needs to do!).
myDialog = GetNewDialog(kMyDialogID, nil, (WindowPtr)-1);

// Set up the ApplicationDialogInfo structure.
aInfo.flags = DialogIsMoveable + AppIsColorSyncAware + CanModifyPalette

+ CanAnimatePalette;
aInfo.pickerType = 0L;
aInfo.theDialog = myDialog;

// Put the color picker's origin at (0,0) in the dialog.
aInfo.pickerOrigin.h = 0;
aInfo.pickerOrigin.v = 0;

// Set the Edit menu information.
aInfo.mInfo.editMenuID = kMyEditMenuID;
aInfo.mInfo.cutItem = kMyCutItem;
aInfo.mInfo.copyItem = kMyCopyItem;
aInfo.mInfo.pasteItem = kMyPasteItem;
aInfo.mInfo.clearItem = kMyClearItem;
aInfo.mInfo.undoItem = kMyUndoItem;

// Finally, add the color picker to the dialog.
result = AddPickerToDialog(&aInfo, &myPicker);
75PICK YOUR PICKER WITH COLOR PICKER 2.0

d e v e l o p Issue 19 September 199476
Listing 7 shows how to create a color picker–owned dialog. As you can see, the code
to create all three types of dialogs is nearly identical. Likewise the code to manage
them after creation is very similar. Any explicit differences or requirements will be
pointed out and explained as they’re encountered.

SETTING AND GETTING THE CURRENT COLOR
One of the most obvious requirements for making a color picker useful is that there
be a way to set and get the current color. This is very simple. Complexities arise only
if you need to convert colors from the space they’re returned in to a space you can
understand (such as RGB). The following examples assume you’re familiar enough
with ColorSync to do this (Listing 2 shows how to convert from any space to system
RGB space). If you don’t want to deal with this, don’t set the AppIsColorSyncAware
flag and the Color Picker Manager will automatically convert any color it gets back
from the color picker to RGB.

The concepts of original color and new color have been carried through from the old
Color Picker Package to the new Color Picker Manager. Simply put, the original color
is the color that the user is about to change and the new color is the color to which the
user changes it. When setting the color for a color picker, you need to set both
colors. Suppose, for example, that you’re writing an object-based paint program and
have created a floating color picker. When the user clicks an object, you want the
color picker to show the color of that object. You would do this by setting the original
color and new color for the color picker to the current color of that object. As the
user changes the color of the object, the original color would remain the same and
the new color would change. This gives feedback as to what would happen if the user
were to cancel the color change. The code to do this is very simple:

void SetPickerToColor(RGBColor *rgb) {
PMColor aColor;

aColor.color.rgb = *rgb;
aColor.profile = 0L;
SetPickerColor(myPicker, kOriginalColor, &aColor);
SetPickerColor(myPicker, kNewColor, &aColor);

}

Listing 7. Creating a color picker–owned dialog

PickerDialogInfo pInfo;
OSErr result;

pInfo.flags = DialogIsMoveable + AppIsColorSyncAware + CanModifyPalette
+ CanAnimatePalette;

pInfo.pickerType = 0L;

pInfo.mInfo.editMenuID = kMyEditMenuID;
pInfo.mInfo.cutItem = kMyCutItem;
pInfo.mInfo.copyItem = kMyCopyItem;
pInfo.mInfo.pasteItem = kMyPasteItem;
pInfo.mInfo.clearItem = kMyClearItem;
pInfo.mInfo.undoItem = kMyUndoItem;

result = CreatePickerDialog(&pInfo, &myPicker);

Whenever the user changes the current color, you need to be able to get the new
color so that you can update your object accordingly:

void GetCurrentColor(RGBColor *rgb) {
PMColor aColor;

GetPickerColor(myPicker, kNewColor, &aColor);
*rgb = aColor.color.rgb;

}

Some of you might be saying, “But wait, this example is stupid. Isn’t that what the
color-changed callback is for?” The answer is yes, in the modal case, when the color-
changed procedure is the only way the application knows that the color changed. In
the modeless case, as we’ll see below in the section “Giving Events to the Color
Picker,” the application is informed in other ways when the color changes. So in the
modeless case, you might want to view the colors that the color-changed procedure
provides you with as temporary colors and not update your internal data until the
user has actually chosen a color (or at least stopped dragging on a slider). You should
then make an explicit call to the Color Picker Manager to get the color, and update
your internal data.

SETTING THE DESTINATION PROFILE
If you’re picking a color for an output device for which you have a ColorSync profile,
you can give this profile to the color picker component so that it can communicate
the profile’s information to the user (assuming it knows how). You do this with a
simple call, SetPickerProfile. There’s also a matching call, GetPickerProfile, to get
the current profile from the color picker. It’s important to remember that the
application owns the memory of any profiles it gives or receives from the color picker.
When you set the destination profile, the color picker component makes a copy of
the profile handle; when you get the destination profile, you give the color picker
component a handle into which it copies the profile data. The following code shows
how to set and get the destination profile. Setting it is optional; the color picker
assumes that there’s no profile unless you explicitly set one.

void SetDestinationProfile(CMProfileHandle profile) {
if (SetPickerProfile(myPicker, profile) != noErr)

HandleError();
}

void GetDestinationProfile(CMProfileHandle profile) {
if (GetPickerProfile(myPicker, profile) != noErr)

HandleError();
}

GIVING EVENTS TO THE COLOR PICKER
The basic model for giving events to the color picker is similar to DialogSelect. For
the most part, you give the event to the Color Picker Manager through the
DoPickerEvent call. It either handles the event or returns it to the application for the
application to handle.

There’s one exception to this rule: menus. If you’ve created a modal system dialog,
the Color Picker Manager can handle the Edit menu events for you (as it does when
you call PickColor). However, for modeless color pickers there are many menu items
that the Color Picker Manager has no idea how to handle. If you do send these events
through to the Color Picker Manager, it will assume all Edit menu selections are
PICK YOUR PICKER WITH COLOR PICKER 2.0 77

d e v e l o p Issue 19 September 199478
meant for the color picker and ignore everything else. Therefore, with modeless
dialogs, the application needs to be sure to handle its own menu events before calling
DoPickerEvent.

You’ll also need to do some extra work in order for the Color Picker Manager to
handle the Edit menu correctly. If an Edit menu choice will be for the color picker
(that is, the color picker dialog is frontmost and the current text item in the dialog
belongs to the color picker), you need to set up the Edit menu as the Color Picker
Manager and color picker component want it. To determine how they want the Edit
menu, call GetPickerEditMenuState. If the user does choose an Edit menu item, the
application needs to call DoPickerEdit to tell the Color Picker Manager which edit
operation to perform. There’s more on this later under “Handling the Edit Menu.”

Each time you call DoPickerEvent and the color picker component or the Color
Picker Manager handles the event, it returns a constant describing what happened.
There are several possible results, which are listed in Table 1.

Internally, the Color Picker Manager handles the event by calling DialogSelect and
then processing the event from there. If the color picker is in an application dialog
and an application item is selected, the Color Picker Manager returns kApplItemHit
as well as the item number.

There are a few things to keep in mind regarding the DoPickerEvent return
constants. How you handle kColorChanged with application dialogs depends on your
application; for system-owned and color picker–owned dialogs you probably should
wait until the user clicks OK before treating the color as final. With kOKHit, you
should save the new color and close the dialog. With kCancelHit, you should restore
the old color and dispose of the color picker. If kApplItemHit is returned, you need
to handle the event as you would for the Dialog Manager. You don’t need to care
about kNewPickerChosen, which happens only with a system-owned dialog.

If you have a color-changed procedure for the color picker to call, you supply the
procedure, along with any data it needs to be called with, to DoPickerEvent.

Listing 8 shows what your event loop might look like. In this code we assume that
you always want to handle the menu events yourself, as discussed above.

Table 1. DoPickerEvent return constants

Constant Meaning
kDidNothing Nothing happened that’s worth reporting.

kColorChanged The user changed the color; you may need to call GetPickerColor to
get the new color.

kOKHit The user clicked OK; returned only by system- or color picker–owned
dialogs.

kCancelHit The user clicked Cancel; returned only by system- or color picker–
owned dialogs.

kNewPickerChosen The user chose a new color picker from the More Choices list; returned
only by system-owned dialogs.

kApplItemHit The Dialog Manager returned an item intended for one of the
application’s dialog items; returned only by application-owned dialogs.

Listing 8. Sample event loop

#define IsMenuKey(x) ((x)->what == keyDown && (x)->modifiers & cmdKey)
Boolean SampleDoEvent(EventRecord *event) {

Boolean handled = false, isMenuEvent = false;
EventData pEvent;
short inWhere;
WindowPtr whichWindow;

// We are assuming that the application always wants to handle menus.
if (event->what == mouseDown) {

inWhere = FindWindow(event->where, &whichWindow);
if (inWhere == inMenuBar)

isMenuEvent = true;
}
if (isMenuEvent || IsMenuKey(event)) {

DoMenu(event);
handled = true;

}

// If the event's not handled yet, call the Color Picker Manager to
// give it a shot.
if (!handled) {

pEvent.event = event;
pEvent.colorProc = MyModelessColorChangedProc;
pEvent.colorProcData = 0L;
DoPickerEvent(myPicker, &pEvent);
handled = pEvent.handled;

// If the color picker handled it, we might want to do something
// with the results.
if (handled) {

switch (pEvent.action) {
case kDidNothing:

break;
case kColorChanged:

UseNewColor(myPicker);
break;

case kOKHit:
UseNewColor(myPicker);
DisposeColorPicker(myPicker);
myPicker = nil;
break;

case kCancelHit:
UseOriginalColor(myPicker);
DisposeColorPicker(myPicker);
myPicker = nil;
break;

case kNewPickerChosen:
// You shouldn't care about this.
break;

(continued on next page)
PICK YOUR PICKER WITH COLOR PICKER 2.0 79

d e v e l o p Issue 19 September 199480
FORECAST EVENTS
When dealing with a color picker, you’ll sometimes need to warn it about a user
action that might affect it. For example, if you have a color picker in an application
dialog and the user closes that dialog, you might want to see if the color picker is in a
state that can handle this. If the user had just typed some numbers into the color
picker that left it in an inconsistent state, it would be nice if the color picker could
have a chance to complain to the user before it was indiscriminately closed.

You can do this by using forecast events. These aren’t really events in themselves, but
are warnings to the color picker. To send forecast events to the color picker component,
you use the same call as for regular events — DoPickerEvent — except that you set
the event field to nil and set the forecast field to an appropriate constant. The color
picker component tells you whether it’s ready for the action to occur by setting the
handled field of the EventData structure to true if it’s not ready and false if it is.

For the most part, the only time your application needs to worry about this is when
the color picker is about to be closed. If the Color Picker Manager has instigated the
closing (such as when the action field is set to kOKHit after you called DoPickerEvent),
you don’t need to worry about telling the color picker component because the Color
Picker Manager has already done so. However, if the user has just clicked the
window’s close box (for an application dialog) or has chosen Close from a menu, you
should send a forecast event to the color picker component.

The following example shows a function called CheckIfPickerCanClose. If this
function returns true, the color picker can close; otherwise, it can’t close for some
reason. It’s safe to assume that the color picker has informed the user of the problem.

Boolean CheckIfPickerCanClose() {
EventData pEvent;

pEvent.event = 0L; // Make it a forecast event.
pEvent.forcast = kDialogAccept;
DoPickerEvent(myPicker, &pEvent);

return !pEvent.handled;
}

case kApplItemHit:
// Handle the item as you would for the Dialog Manager.
HandleAppItem(pEvent.itemHit);
break;

}
}

}
if (!handled) {

// The event hasn't been handled. Treat it as you would any normal
// Macintosh event. If you have other dialogs, you need to call
// DialogSelect. Remember, if the event is a mouseDown, you
// already called FindWindow!

}
return handled;

}

Listing 8. Sample event loop (continued)

HANDLING THE EDIT MENU
As mentioned earlier, the Edit menu takes some special work. In addition to standard
menu processing, if an Edit menu choice will be for the color picker, you need to set
the state of the Edit menu items according to the color picker specifications and, if an
Edit menu item is chosen, send the appropriate message to the color picker. This is
done through two simple calls: GetPickerEditMenuState and DoPickerEdit.

Once you’ve determined that there has been a mouse-down event in the menu bar or
a keyboard equivalent has been pressed, you need to determine who owns the Edit
menu. If the color picker is in a color picker–owned or system-owned dialog and it’s
frontmost, the color picker obviously owns it. If the color picker is in an application-
owned dialog and it’s frontmost, ownership of the Edit menu depends on the current
item. The choice really depends on your application. As a general rule, whoever owns
the current item owns the Edit menu. If you do call DoPickerEdit while the current
item belongs to your application, it will implement the standard cut, copy, paste, and
clear features for you. If your application needs to do more than this, you’ll need to
handle it yourself.

In Listing 9 we assume that the owner of the current item owns the Edit menu. The
item number for the application’s last dialog item is kMyLastItem. If you have a
system-owned or color picker–owned dialog, this constant should be set to 0. In an
application-owned dialog the picker’s items will always be added after the
application’s, so your item numbers remain the same.

Listing 9. Handling the Edit menu

Boolean DoMenu(EventRecord *event) {
long mChoice;
EditData eData;
EditOperation eOperation;

// If picker is in front and current edit item is the picker's,
// set up the Edit menu the way the picker wants it.
if (FrontWindow() == myDialog &&

((DialogPeek)myDialog)->editField + 1 > kMyLastItem) {
MenuState mState;
MenuHandle theMenu;

GetPickerEditMenuState(myPicker, &mState);
theMenu = GetMenu(kMyEditMenuID);
if (mState.cutEnabled)

EnableItem(theMenu, kMyCutItem);
else

DisableItem(theMenu, kMyCutItem);
if (mState.copyEnabled)

EnableItem(theMenu, kMyCopyItem);
else

DisableItem(theMenu, kMyCopyItem);
if (mState.pasteEnabled)

EnableItem(theMenu, kMyPasteItem);
else

DisableItem(theMenu, kMyPasteItem);

(continued on next page)
PICK YOUR PICKER WITH COLOR PICKER 2.0 81

d e v e l o p Issue 19 September 199482
if (mState.clearEnabled)
EnableItem(theMenu, kMyClearItem);

else
DisableItem(theMenu, kMyClearItem);

if (mState.undoEnabled) {
SetItem(theMenu, kMyUndoItem, mState.undoString);
EnableItem(theMenu, kMyUndoItem);

}
else

DisableItem(theMenu, kMyUndoItem);
}

// Give the event to the Menu Manager.
if (event->what == mouseDown)

mChoice = MenuSelect(event->where);
else

mChoice = MenuKey(event->message);

// If not the Edit menu, handle normally.
if (HiWord(mChoice) != kMyEditMenuID) {

HandleMenuChoice(mChoice);
return true;

}

switch (LoWord(mChoice)) {
case kMyCutItem:

eOperation = kCut;
break;

case kMyCopyItem:
eOperation = kCopy;
break;

case kMyPasteItem:
eOperation = kPaste;
break;

case kMyClearItem:
eOperation = kClear;
break;

case kMyUndoItem:
eOperation = kUndo;
break;

default:
eOperation = -1;
break;

}
if (eOperation >= 0) {

eData.theEdit = eOperation;
DoPickerEdit(myPicker, &eData);
// Ignore the results here; assume that the color changed.
UseNewColor(myPicker);

}
HiliteMenu(0);
return true;

}

Listing 9. Handling the Edit menu (continued)

USING BALLOON HELP
The Color Picker Manager provides support for Balloon Help. Most applications
don’t need to do anything special for Balloon Help to work for a color picker in any
type of dialog. However, for applications in which you need more control over
Balloon Help, you can call ExtractPickerHelpItem to get the balloon for the color
picker. It’s up to the application to determine whether the cursor is over a color
picker’s item or one of its own. The best way to do this is to check to see if it’s over
one of the application items. If so, put up your own balloon; otherwise, call
ExtractPickerHelpItem and put up the balloon it returns. ExtractPickerHelpItem will
ask the color picker for a balloon and search the color picker’s help resource for an
appropriate balloon. If it can’t find one, it returns the error noHelpForItem.

The hardest part about using ExtractPickerHelpItem is determining which item the
cursor is over. Fortunately, there’s a Dialog Manager call, FindDItem, that does the
dirty work for you. Listing 10 shows how you would use these calls. Everything in
this example is actually done by the Color Picker Manager internally; the example
just gives you a general idea of how to use the ExtractPickerHelpItem call.

Listing 10. Using ExtractPickerHelpItem

void DoBalloonHelp(void) {
HelpItemInfo helpInfo;
short itemNo;
Point where;
OSErr err;

GetMouse(&where);
itemNo = FindDItem(myDialog, where) + 1;

// Go and get the color picker's help item.
helpInfo.options = 0;
helpInfo.tip.v = helpInfo.tip.h = 0;
SetRect(&helpInfo.altRect, 0, 0, 0, 0);
helpInfo.theProc = 0;
helpInfo.variant = 0;
helpInfo.helpMessage.hmmHelpType = 0;
helpInfo.helpMessage.u.hmmPictHandle = 0L;
err = ExtractPickerHelpItem(myPicker, itemNo, 0, &helpInfo);

// Show the balloon if we found one.
if (err == noErr) {

// If altRect is empty, we need to use the item's rectangle.
if (EmptyRect(&helpInfo.altRect)) {

short iType;
Handle iHandle;

GetDItem(myDialog, itemNo, &iType, &iHandle, &helpInfo.altRect);
}

// Convert the tip to dialog coordinates.
helpInfo.tip.h += helpInfo.altRect.left;
helpInfo.tip.v += helpInfo.altRect.top;

(continued on next page)
PICK YOUR PICKER WITH COLOR PICKER 2.0 83

d e v e l o p Issue 19 September 199484
TAKE YOUR PICK
You should now have a general idea of how to use the new Color Picker Manager.
Most applications will need only the high-level calls. However, developers who use
color more thoroughly may want to take advantage of the low-level calls. The
low-level calls were designed to be very flexible and easy to use. The simple
implementations shown in this article are trivial; more complicated uses are possible,
and shouldn’t be much harder to write.

Having experimented with the new features of Color Picker 2.0, you may still want to
write your own color picker component — for example, to implement your own
floating color picker. The new Color Picker Manager makes it easier for you to write
your own color picker component and allows you to share it among several
applications (and make it available for general system use as well).

So take your pick of the color pickers already available through the high-level or low-
level calls or move beyond this article to create your own custom color picker
component. Either way, you’re looking at a colorful future with Color Picker 2.0.

// Convert the tip and altRect to global coordinates.
LocalToGlobal(&helpInfo.tip);
LocalToGlobal((Point *) &helpInfo.altRect.top);
LocalToGlobal((Point *) &helpInfo.altRect.bottom);

// Finally, put the balloon up.
HMShowBalloon(&helpInfo.helpMessage, helpInfo.tip,

&helpInfo.altRect, 0L, helpInfo.theProc, helpInfo.variant,
kHMRegularWindow);

}
}

Listing 10. Using ExtractPickerHelpItem (continued)
Thanks to our technical reviewers Don Moccia,
Konstantin Othmer, and David Surovell.•

SOMEWHERE IN
QUICKTIME

Media Capture
Using the
Sequence Grabber

JOHN WANG AND
FERNANDO URBINA
A very important and often overlooked feature of
QuickTime is the standardization of media capture.
Since its initial release, QuickTime has defined an API
for capturing different types of media, including video
and sound. This API, known as the sequence grabber,
makes it possible to easily add media capture to any
application.

Not only are applications that use the sequence grabber
able to automatically support any QuickTime-
compatible media capture hardware, but they also
perform flawlessly and efficiently regardless of system
configuration. This is not an easy task considering all
the variations in hardware features and system
configurations. In fact, we’re even hesitant to say that
the sequence grabber “supports video and sound
capture” because the sequence grabber API also
insulates the programmer from the actual media type
being captured. The sequence grabber supports any
media type, and, with the release of QuickTime 2.0,
users can automatically capture the new music media
type in addition to sound and video.

To demonstrate the proper use of the sequence
grabber, we’ve included on this issue’s CD a simple, but
complete, sequence grabber application — all in about
10K of compiled C code! If you’re looking for a general
all-purpose capture application that’s efficient, reliable,
and best of all, customizable, look no further. After a
brief introduction to the sequence grabber, we’ll discuss
the sample code, and then end with some special
S

JOHN WANG (AppleLink WANG.JY) While writing the
sequence grabber sample code for this column, John watched the
movie Top Gun so many times that he can now duplicate each and
every air combat scene with his favorite flight simulator, FA/18
Hornet. John once aspired to become a private pilot, but that idea
was quickly quelled once his significant others found out. As Skate
so succinctly put it, “Woof woof wooof?” Translation: “Who’s
going to feed me if you kill yourself?”•
considerations for media capture on Macintosh AV
models.

WHAT IS THE SEQUENCE GRABBER?
The sequence grabber is actually a component of type
'barg' (read it backwards). Although the specification
for the component is completely defined in Chapter 5
of Inside Macintosh: QuickTime Components, it’s very
unlikely that you’ll ever want to implement your own
'barg' component. Instead, you’ll be using this
component specification as the API definition for the
standard sequence grabber.

The sequence grabber component implements the
basic functionality of media capture. For handling
specific media-related functions, the sequence grabber
calls on various sequence grabber channel components
(as defined in Chapter 6 of Inside Macintosh: QuickTime
Components); there’s one such component for each
media type. Before QuickTime 2.0, the two standard
channel components available were the video and
sound sequence grabber channels, enabling the
sequence grabber to capture video and sound media.
QuickTime 2.0 includes the new music sequence
grabber channel, allowing real-time capture of music
from MIDI instruments.

Sequence grabber panel components (described in
Chapter 7 of Inside Macintosh: QuickTime Components)
manage items in a settings dialog box that allows the
sequence grabber to obtain configuration information
from a user. Applications typically don’t use sequence
grabber panel components directly; instead, the
sequence grabber automatically uses them for relevant
sequence grabber component calls.

USING THE SEQUENCE GRABBER
Using the sequence grabber is as simple as opening the
sequence grabber component and calling SGInitialize
(complete error checking can be found in the sample
code on the CD):

theSG =
OpenDefaultComponent(SeqGrabComponentType, 0);

SGInitialize(theSG);
OMEWHERE IN QUICKTIME: MEDIA CAPTURE USING THE SEQUENCE GRABBER 85

FERNANDO (“NANO”) URBINA (AppleLink NANO) uses his
Macintosh AV to capture the views of the Rockies from his home
office in Colorado Springs. He still doesn’t understand how it can
thunder and snow at the same time, but thinks he’ll be able to
figure this out once he adjusts to the lack of oxygen. Nano suffers
severe withdrawal from his favorite coffee shop near the Apple
campus in Cupertino, but manages to get a fix about once a
month when he returns there. He worked on the original AV
models and is now a member of the second-generation AV team.•

86
It’s also important to call SGSetGWorld to set the
window used for displaying any visual data.

SGSetGWorld((**myWindowInfo).theSG,
(CGrafPtr) myWindow, nil);

Opening the channel components. Now it’s a
matter of calling SGNewChannel to open a sequence
grabber channel component to access a particular
channel media type. However, rather than hard-coding
the media types into the sample application, as in the
call

SGNewChannel(theSG, VideoMediaType,
&videoChannel);

it’s better to use the Component Manager to search for
all the different sequence grabber channel components
and open a connection to each one. This guarantees
that the capture application can automatically support
new media types such as the music media type in
QuickTime 2.0.

For example, the following code compiles a list of
sequence grabber channel components:

cd.componentType = SeqGrabChannelType;
cd.componentSubType = 0;
cd.componentManufacturer = 0;
cd.componentFlags = 0;
cd.componentFlagsMask = 0;
aComponent = 0;

for (i=0, done=false; i<kMAXCHANNELS && !done;
i++) {

aComp = FindNextComponent(aComp, &cd);
if (aComp != 0) {

// Get the channel name and type.
gSGInfo.channelName[i] = NewHandle(4);
GetComponentInfo(aComp, &theCD,

gSGInfo.channelName[i], nil, nil);
gSGInfo.channelType[i] =

theCD.componentSubType;
} else

done = true;
}

This list of component types can then be used to open
a connection to each of the media types with
SGNewChannel, or SGNewChannelFromComponent
if the channel component is already open.

Saving and restoring settings. We want the sample
application to start up each time with the same channel
settings and video compression settings as when the
application was last used. To implement this, we use a
d e v e l o p Issue 19 September 1994
preferences file to store these settings. The
compression settings are restored with two sequence
grabber calls:

SGSetVideoCompressorType(
(**myWindowInfo).channel[videoChannel],
gSGInfo.cInfo.compressorType);

SGSetVideoCompressor(
(**myWindowInfo).channel[videoChannel],
gSGInfo.cInfo.depth, nil,
gSGInfo.cInfo.spatialQuality,
gSGInfo.cInfo.temporalQuality,
gSGInfo.cInfo.keyFrameRate);

The channel settings are restored by a simple call to
SGSetChannelSettings with the settings retrieved from
the preferences file:

SGSetChannelSettings(theSG, channel[i],
channelSettings[i], 0);

Previewing. We’re almost ready to begin previewing.
But note that some sequence grabber channel
components require additional calls before they can be
used. For instance, spatial channels such as video
require a call to SGSetChannelBounds to set the
channel’s display boundary rectangle. So, once the
channels are created and the previous settings are
restored as discussed above, we make a call to
SGSetChannelBounds for the video media to set the
video capture to encompass the entire window. We also
call SGSetChannelUsage for all sequence grabber
channels, which tells the sequence grabber that we
want to preview and record every channel.

To start previewing, we simply call SGStartPreview.
However, while we’re previewing, any changes to the
system must be handled with care. First, we’ll pause the
preview whenever an event that requires updating of
the channel information occurs. For example, if the
capture window is dragged, we’ll pause the video,
move the window, and then unpause the video.
Likewise, if we resize the window, we’ll want to pause
the preview, resize the window, and then unpause the
preview:

// Pause the sequence grabber before resizing.
SGPause((**myWindowInfo).theSG, true);

// Resize and then update the video channel.
SizeWindow(theWindow, width, height, false);
MyUpdateChannels(theWindow);

// OK. We can restart again.
SGPause((**myWindowInfo).theSG, false);

Notice the call to MyUpdateChannels. This is a
routine in the sample application that updates the
video bounds and channel usage by calling
SGSetChannelBounds and SGSetChannelUsage.

The user configuration dialog. Another feature that
needs to be handled in a capture application is the user
configuration dialog for each of the different capture
medias. This is actually one of the simplest things to
deal with because the sequence grabber component
handles everything. It even stores the settings
internally. To retrieve the settings, we can simply call
SGGetChannelSettings at a later time. In the sample
application, we get the channel settings before we close
the connection to the sequence grabber. Then we save
the settings in the preferences file.

This is all the code necessary to display and handle the
user configuration dialog:

SGSettingsDialog(theSG, theChannel, 0, nil, 0,
nil, 0);

Recording. The last important part of the sample code
is sequence grabber recording. Before recording can
begin, we need to specify an output file with
SGSetDataOutput so that the sequence grabber knows
where to save the captured media data:

StandardPutFile("\PName of new movie:", "\pMovie",
&reply);

if (!reply.sfGood)
return;

SGSetDataOutput(mySG, &reply.sfFile,
seqGrabToDisk);

Then we start recording by simply calling

SGStartRecord(theSG);

We loop and call SGIdle until the mouse button is
pressed to stop recording. This is the most efficient
way to record: we don’t want to call WaitNextEvent,
since that would give other processes time. Instead, we
want to hog the CPU time until the recording process
is done.

while (!Button() && !err) {
err = SGIdle(theSG);

}

We stop recording and start previewing again as
follows:

SGStop(mySG);
SGStartPreview((**myWindowInfo).theSG);
S

And, of course, just to be nice, we flush the mouse-
down events so that no application switching takes
place after the mouse button is pressed:

FlushEvents(mDownMask, 0);

That’s really all there is to the sequence grabber sample
application.

SPECIAL CONSIDERATIONS FOR AV MODELS
As mentioned earlier, one of the key features of the
sequence grabber is its ability to work with all hardware
and system configurations. This is not an easy task
considering all the different types of video capture
boards. For example, there are boards that are simply
frame grabbers, and there are those that support on-
board hardware video compression. To make every
configuration work, the sequence grabber has to handle
every case. Here we’ll discuss the unique features of the
Macintosh AV models and some steps you can take to
improve their capture rate.

The video-in circuitry allows the AV models to display
16-bit color and 8-bit grayscale. And, although the
hardware can’t display video-in at 24 bits per pixel, you
can capture video using YUV 4:2:2 compression and
achieve an effective 24 bits per pixel. To capture in
YUV, you must use the AV’s video digitizer hardware
compression feature, which you can do simply by
selecting “Component Video - YUV” from the list of
compressors in the Compression panel of the video
settings dialog. You should also make sure that you
haven’t checked a “Post Compress Video” or similar
checkbox in a movie-grabbing application. Selecting
this checkbox would bypass the hardware compression,
and the sequence grabber would grab the data in raw
RGB format.

The AV circuitry can’t display video when it’s capturing
the compressed data. The sequence grabber realizes
that it needs to decompress the data into the capture
window in order to give the visual feedback that’s
normally expected. This is fine and dandy, but since
there’s no hardware decompression in the system, the
image decompression is completed in software. This
degrades the capture rate.

Knowing that the decompression during recording is
what’s hurting the capture rate, you can easily rectify
the problem by turning off preview during recording so
that decompression into the capture window won’t take
place. To do this, you just call SGSetChannelUsage for
the video channel with the seqGrabPlayDuringRecord
flag set to 0. In the sample code, a menu selection
allows you to turn off video playthrough during
recording.
OMEWHERE IN QUICKTIME: MEDIA CAPTURE USING THE SEQUENCE GRABBER 87

88
The downside of using YUV compression is that
playback without hardware decompression isn’t very
smooth because of the high data rate and raw
processing power needed to decompress each pixel.
After capturing, you should recompress the movie
using a compressor such as Cinepak or Video that
provides a better playback rate.

GO MAKE A MOVIE
The sequence grabber obviously makes the job of
media capture simpler. But there are many other
factors that can play a part. Hard drive transfer rate,
disk fragmentation, SCSI bandwith, sound settings, and
AppleTalk activity all play an important part in limiting
the maximum capture rate. You can also maximize the
capture rate by rebooting with no AppleTalk
connections. You should also experiment with the
different sound sample rates, as these also affect the
capture rate.

New additions to the sequence grabber in QuickTime
2.0 also help. Instead of capturing to a single movie file,
it’s now possible to specify a different file for each
d e v e l o p Issue 19 September 1994

Thanks to Peter Hoddie and Don Johnson for reviewing this
column.•

Your main source for Appl
Get easy access to New Inside Macintosh and hundred
technical resources, and information through APDA, A
development products.

Ordering is easy, and APDA offers convenient paymen

Call for additional information on APDA or recently an
copy of the APDA Tools Catalog.

Call APDA
United States 1-

Canada 1-800
International (7

apd
tools fo
channel. For example, you can record video to a large
and fast external hard drive and record audio to the
internal hard drive. This optimization allows for better
allocation of resources and better efficiency because
each channel has higher bandwidth. Using the sample
code, if QuickTime 2.0 is installed, you can select
recording to separate files.

There are, of course, other optimizations that can be
explored. With a bit of creativity and testing, you can
achieve the optimal capture rates.

RELATED READING
• Inside Macintosh: QuickTime Components,

Chapters 5–7, and Inside Macintosh: More
Macintosh Toolbox, Chapter 6, “Component
Manager” (Addison-Wesley, 1993).

• “Video Digitizing Under QuickTime” by Casey
King and Gary Woodcock, develop Issue 14.
About the sequence grabber and video capture.
e development products
s of other programming products, tools,
pple’s worldwide source for Apple and third-party

t and shipping options, including site licensing.

nounced products, or to request a complimentary

 today.
800-282-2732
-637-0029

16) 871-6555

a
r developers

Implementing Inheritance In Scripts
PAUL G. SMITH
“Programming for Flexibility: The Open Scripting Architecture” in
develop Issue 18 showed you how to use scripts to increase your
program’s flexibility. This article builds on that one and explains how to
implement an inheritance scheme in your application that will enable
your AppleScript scripts to share handlers and properties and to support
global variables. You’ll also learn a way to support inheritance in other
OSA languages with just a little extra work.

In Issue 18 of develop, I showed you how to attach scripts to application-domain
objects and how to delegate the handling of Apple events to those scripts. I left you
with a challenge: to figure out how to support global variables and to enable scripts to
share subroutines and handlers. To meet this challenge you need to implement
inheritance. The AppleScript 1.1 API gives you all the necessary calls to implement
inheritance in embedded AppleScript scripts, but not all are documented yet in Inside
Macintosh. This article documents the calls you need and describes an inheritance
scheme that relies on them.

In a nutshell, here’s the scheme:

1. Decide what kind of script inheritance hierarchy to use.

2. Link your scripts together in an inheritance chain.

3. Create a shared handlers script to define subroutines and Apple
event handlers that are shared among all scripts. Make this script
the parent of all other scripts in your program, in effect putting it
at the end of the inheritance chain.

4. Create a global variables script and add this to the start of the
inheritance chain so that it’s the first script to receive incoming
messages. Save this script to disk when the program exits and
reload it when the program restarts, so that variables persist.

You can use much the same scheme to implement inheritance in other Open
Scripting Architecture (OSA) languages, but more work is required to link scripts
together in an inheritance chain, and you must forgo the luxury of sharing global
variables between scripts. At the end of this article, the section “Inheritance in Other
OSA Languages” describes the extra work your program must do.
IMPLEMENTING INHERITANCE IN SCRIPTS 89

PAUL G. SMITH (AppleLink COMMSTALK.HQ)
took time out from his preferred occupation of
snoozing on a beach to write this article. He also
occasionally takes time out to write software for
Full Moon Software Inc., provide consultancy

services to corporate clients, and watch his cat,
Mack, dismember his Macintosh’s mouse. He was
the lead developer of AgentBuilder and wrote
ScriptWizard, the AppleScript debugger, before
he found his true, totally prone, calling.•

d e v e l o p Issue 19 September 199490
The sample program SimpliFace2 on this issue’s CD demonstrates the inheritance
mechanisms discussed here. SimpliFace2 is an extension of SimpliFace, the basic
interface builder used to illustrate the article in Issue 18. The SimpliFace2 sample
code has a compile-time flag qUseOSAinheritance, defined in the header file
SimpliFace2Common.h. If this flag is undefined, the program uses the AppleScript-
specific inheritance scheme described in the bulk of this article. If the flag is defined,
SimpliFace2 uses a general-purpose scheme that involves the extra work outlined in
the section on inheritance in other OSA languages.

CHOOSE A SCRIPT INHERITANCE HIERARCHY
The first thing to do is to decide what kind of script inheritance hierarchy to use. You
can use a runtime containment hierarchy (like that used by HyperCard and FaceSpan™),
a class hierarchy (like that used by AgentBuilder), or some hybrid of the two, as
demonstrated by SimpliFace2. Let’s look at each of these hierarchy types in turn.

FaceSpan (formerly Frontmost) is the interface builder bundled with the
AppleScript 1.1 Software Development Toolkit. Perhaps the best known OSA “client,”
FaceSpan was developed by Lee Buck (of “WindowScript” fame) of Software Designs
Unlimited, Inc. AgentBuilder, from commstalk hq and Full Moon Software Inc., is a
framework for the creation of communications and information-processing agents that
uses embedded OSA scripts to customize agent behavior.•

Figure 1 shows a runtime containment hierarchy. In this kind of hierarchy, objects
inherit behavior from their containers at run time. In the object containment
hierarchy used by HyperCard, for example, the scripts of buttons and fields within
cards are at the bottom of the hierarchy. Above them are the scripts of the cards that
contain the buttons and fields, and above each card script is the script of the
background that contains the card. Above each background script, in turn, is the
script of the stack that contains all the backgrounds. The handlers in each container’s
script are shared by the scripts of all the objects it contains.

Figure 2 shows a class hierarchy. In this kind of hierarchy, objects inherit behavior
from their parent classes. For instance, the behavior of AgentBuilder objects is
defined in an “ancestor” object of each class, which is the parent of all instances of
that class. This permits the standard scripted behavior of object classes to be
overridden in derived class instances.
Application
object

Window
object

Window
object

View
object

View
object

Button
object

Field
object

Figure 1. A runtime containment hierarchy
“Standard”
button

Default behavior
in Apple event
handler code

 Button 1
instance

Button 2
instance

Figure 2. A class hierarchy

Figure 3 shows the hybrid script inheritance hierarchy used in SimpliFace2. In
SimpliFace2, the scripts of user-interface objects — such as windows, labels, and
buttons — are organized so that they inherit behavior from the runtime containment
hierarchy. However, the script of the application object isn’t included in the
inheritance chain for the script of any user-interface object, and the shared handlers
script becomes the ultimate parent of all other scripts. I chose to use this hybrid
hierarchy in order to demonstrate a wider range of techniques, not for any reason
intrinsic to the program design.

The kind of script inheritance hierarchy to use depends on the nature of the messages
being handled in your program. Using a class hierarchy is most appropriate if the
messages are Apple events defined in the program’s 'aete' resource. If the incoming
messages are primarily user-defined subroutines being handled inside scripts, using a
runtime containment hierarchy is probably more natural for the scripter.

Another way to look at this choice is that if you want to enable users to customize
your program’s capabilities by attaching scripts to application-domain objects, using a
runtime containment hierarchy isn’t always the best idea. Because different
application-domain objects handle the same Apple event message in different ways (in
other words, the semantic meaning of the message differs depending on what object
it’s directed at), unwanted side effects could result from an object’s handling an Apple
event message intended for a different level in the containment hierarchy. Using a
class hierarchy ensures that messages will be dealt with only by objects of the class
that understands them.

Once you’ve chosen the type of script inheritance hierarchy most appropriate for
your program, you can link scripts together in an inheritance chain.

LINK SCRIPTS IN AN INHERITANCE CHAIN
Linking scripts together in an AppleScript inheritance chain is as simple as setting
their parent properties. Before I tell you how to do that, though, let’s review a few
facts about script objects and inheritance. As mentioned in the Issue 18 article, a
script context (a script compiled using the AppleScript OSA component) is equivalent
to a script object in the AppleScript language, so everything I say here about script
objects applies to script contexts as well.

ABOUT APPLESCRIPT SCRIPT OBJECTS AND INHERITANCE CHAINS
Script objects can contain global variables, properties, and handlers for Apple event
messages and subroutine calls. A script object can have as its parent property an
object specifier or another script object. Thus, one script object can become the

Shared
handlers

Application
object

Window
object

Field
object

Button
object

Figure 3. The hybrid script inheritance hierarchy used in SimpliFace2
IMPLEMENTING INHERITANCE IN SCRIPTS 91

d e v e l o p Issue 19 September 199492
parent of another, and the child script object can inherit properties and handlers from
the parent script object. Parent and child script objects are linked together in an
inheritance chain; this is the path from child to parent to grandparent and so on in an
inheritance hierarchy, as illustrated in Figure 4.

For (a lot) more on object specifiers, see “Apple Event Objects and You” by
Richard Clark in develop Issue 10.•

An incoming Apple event message is received by the child script object at the start of
the inheritance chain. If AppleScript can’t resolve a reference to a handler or variable
name within this script object, it searches through the entire inheritance chain to find
it. The handler or variable is resolved wherever it’s found in the inheritance chain.
When a handler continues a message (that is, passes the message to its parent),
AppleScript starts searching in its parent script object. Messages that target objects
outside the program’s domain, or that aren’t handled anywhere in the script
inheritance chain (such as Apple events defined in the program’s 'aete' resource,
which are handled in the program code instead), or that are continued out of the
inheritance chain, are redispatched as Apple events.

SETTING A SCRIPT’S PARENT PROPERTY
Now that you understand the dynamics of script inheritance, I’ll show you how to set
a script’s parent property and thus link it to an inheritance chain. In the AppleScript
language, you simply say what you’d like the parent set to, as illustrated here:

script mom
on getName()

return "Fenella"
end getName

end script

script toddler
property parent : mom
on getName()

set myMom to continue getName()
return "Bart, son of " & myMom

end getName
end script

getName() of toddler --> returns "Bart, son of Fenella"

Script attached to
application object

(grandparent)

Script attached to
window object

(parent)

Script attached to
button object

(child)

End of chain

Start of chain

Figure 4. A script inheritance chain

To set the parent of a script context from a programming language, you can use the
AppleScript routine OSASetProperty. This general-purpose routine (defined in the
header file ASDebugging.h, which was added with the AppleScript 1.1 API) accesses
either a predefined property or a user-defined variable, depending on the AEDesc
passed to it. To access a predefined property — the parent property — you create a
descriptor of typeProperty (not typeType), specifying the property ID as the data.
The parameters to the call are (1) the scripting component (probably the AppleScript
component), (2) a mode flag (we use the null mode, indicating no special action
should be taken; alternatively, we could instruct AppleScript to replace the property
only if it already exists), (3) the script context ID that’s to be changed, (4) the
AEDesc, and (5) the value you’re setting the property to, in our case the new parent.
The OSA routine OSAGetProperty performs the converse function: you can use it to
inspect the values of properties and variables.

Here’s a fragment from SimpliFace2 that sets the parent of a script by calling
OSASetProperty:

OSAError err = noErr;
AEDesc nameDesc;
DescType thePropCode = pASParent;

err = AECreateDesc(typeProperty, (Ptr)&thePropCode, sizeof(thePropCode),
&nameDesc);

if (err == noErr) {
err = OSASetProperty(scriptingComponent, kOSAModeNull, contextID,

&nameDesc, newParentID);
AEDisposeDesc(&nameDesc);

}

The structure of the inheritance chain is static; each parent link needs to be set up
only once, as long as no scripts are replaced. The only exception to this is that the
parent property of the global variables script used in SimpliFace2 needs to be set
every time an incoming Apple event message is handled, as I’ll explain later.
Whenever a script in the chain is replaced by a new one, the script’s OSAID will
change and you’ll need to set the parent property in the new script and in its children
again.

STRIPPING COPIED PARENT SCRIPTS
By setting the parent properties of scripts and thus linking them in inheritance
chains, your program limits unnecessary duplication of script objects. Still, when
AppleScript sets the parent of a script, it stores a copy of the script’s parent (and of
the parent’s parent, and so on) with the original script. This is the basis of the trick
that allows SimpliFace to simulate sharing scripts between objects: every script carries
with it a copy of all the scripts it shares. But this is wasteful — it means that, for
instance, each button script for a window contains a copy of the window’s script,
when only one copy is necessary. Because your program is directly controlling script
inheritance chains, you’ll want to block this behavior when it loads and stores scripts.
You can do it by specifying the kOSAModeDontStoreParent flag when you call
OSAStore and recreating the inheritance chain when the scripts are reloaded.

Listing 1 shows the routine used to set the script property of an object in
SimpliFace2. Note how it’s changed from the routine used in SimpliFace: it now
strips the copied parent scripts from the incoming script so that SimpliFace2 can
manage the inheritance chain itself.
IMPLEMENTING INHERITANCE IN SCRIPTS 93

d e v e l o p Issue 19 September 199494
ATTACH SHARED HANDLERS AND GLOBAL VARIABLES
SCRIPTS
Now the plot thickens. You’re going to use the inheritance chain you’ve set up to
make it possible for your program’s AppleScript scripts to share handlers and
properties and to support global variables.

Listing 1. TScriptable Object::SetProperty

OSErr TScriptableObject::SetProperty (DescType propertyID,
const AEDesc *theData)

{
OSAError err = errAEEventNotHandled;

switch (propertyID) {
case pScript:

OSAID theValueID = kOSANullScript;
if (theData->descriptorType == typeChar

|| theData->descriptorType == typeIntlText)
err = OSACompile(gScriptingComponent, theData,

kOSAModeCompileIntoContext, &theValueID);
else { // If it's not text, we assume script is compiled.

err = OSALoad(gScriptingComponent, theData, kOSAModeNull,
&theValueID);

// The following new section strips any existing parent script.
if (err == noErr) {

AEDesc newData;
err = OSAStore(gScriptingComponent, theValueID,

typeOSAGenericStorage,
kOSAModeDontStoreParent,
kOSAModeDontStoreParent, &newData);

if (err == noErr) {
OSADispose(gScriptingComponent, theValueID);
theValueID = kOSANullScript;
err = (OSErr)OSALoad(gScriptingComponent, &newData,

kOSAModeNull, &theValueID);
AEDisposeDesc(&newData);

}
}

}
if (err == noErr) {

if (fAttachedScript != kOSANullScript)
OSADispose(gScriptingComponent, fAttachedScript);

fAttachedScript = theValueID;
err = SetCurParent(fParentObj);
// This fixes up the references in any object that
// has the current object as its parent.
this->FixUpScriptReferences(this);

}
break;

}
return (OSErr)err;

}

Our strategy, as demonstrated in SimpliFace2, is to attach a shared handlers script to
the application object and a global variables script to the global script administrator
object (which, as in SimpliFace, is responsible for fetching the script attached to
objects and preparing it for execution). The shared handlers script, which as a
convenience for the scripter I’ve made a property of the application object (in
addition to the application object’s attached script), defines common subroutines for
all the object scripts known to the program. This script is added to the end of the
inheritance chain so that it becomes the parent of all other scripts. Globals are
created in the global variables script, which is always inserted at the start of the
AppleScript inheritance chain when an Apple event is handled by a script.

Let me explain why the global variables script is necessary. The AppleScript OSA
component creates global variables in the script context that received the current
message, the one at the start of the inheritance chain. If the variables weren’t
predefined as properties when the parent script was defined, they won’t be visible to
all scripts. But we’d like variables that are declared in handlers with the Global
keyword to be available to handlers in all scripts. We achieve this by adding the global
variables script that we create to the start of the inheritance chain. Thus, the only
script actually to be dispatched messages is the global variables script, and its parent
becomes the currently resolved object’s script. Because its parent changes to whatever
is the appropriate script in the inheritance chain, messages are handled by the correct
targets.

HOW IT ALL WORKS
The AppleScript-only inheritance approach demonstrated in SimpliFace2 works like
this: Whenever the Apple event prehandler receives an event that might be handled
in a script, it tries to resolve the object that should handle it. If it can’t resolve an
object it assumes that the application object’s script should handle the event instead.
It then attaches the global variables script (the script that receives all incoming
events) to the start of the inheritance chain that ends with the shared handlers script
(the parent of all scripts). In between is the script of the object to which the event was
targeted; if that object is a button or a field in a window, the inheritance chain also
contains the window’s script. The result is the inheritance chain shown in Figure 5.

Shared
handlers script

Window
object script

Button
object script

Global
variables script

Apple event
message

Figure 5. The script inheritance chain used in SimpliFace2
IMPLEMENTING INHERITANCE IN SCRIPTS 95

d e v e l o p Issue 19 September 199496
The Apple event prehandler routine in SimpliFace2 calls the global script
administrator object to manage the scripts, as shown in this extract from the
prehandler:

TScriptableObject* theScriptableObj = NULL;
TScriptableObject* savedParent = NULL;

if (err == noErr && theToken)
err = gScriptAdministrator->GetAttachedScript(theToken->GetTokenObj(),

theScriptableObj, savedParent);
if (err == noErr) { // Pass to script for handling.

if (theScriptableObj)
err = ExecuteEventInContext(theEvent, theReply, theScriptableObj);

else
err = errAEEventNotHandled;

if (theToken)
gScriptAdministrator->ReleaseAttachedScript(theToken->GetTokenObj(),

savedParent);
}

The script administrator function GetAttachedScript (Listing 2) is responsible for
adding the global variables script to the start of the inheritance chain by setting its
parent to the script of the target object. Here’s how it works: First, it asks the
scriptable object that’s the target for the Apple event message to deliver its attached
script. If there’s no attached script, the parent of the global variables script is set to be
the shared handlers script. If the object does have an attached script, that script
becomes the parent of the global variables script.

GetAttachedScript returns the ID of the global variables script so that the prehandler
can send the Apple event to the inheritance chain that the script now starts. The

Listing 2. TScriptAdministrator::GetAttachedScript

OSAError TScriptAdministrator::GetAttachedScript (
TScriptableObject* theObj,
TScriptableObject* &useObject,
TScriptableObject* &savedParent)

{
OSAError err = noErr;
OSAID theObjScript = kOSANullScript;

if (theObj)
theObjScript = theObj->GetObjScript();

if (theObjScript != kOSANullScript)
err = StartUsing(theObj, savedParent);

else // If target has no script, new parent is shared handlers.
err = StartUsing(NULL, savedParent);

if (err != noErr)
useObject = NULL;

else
useObject = this; // If OK, return global variables script.

return err;
}

global variables script receives the Apple event message in the function
ExecuteEventInContext, called from the prehandler. The StartUsing function in
Listing 3, which is inherited by the script administrator from TScriptableObject,
returns the current parent of the script so that it can be saved for subsequent
restoration by the script administrator function ReleaseAttachedScript.

The parent of the global variables script must be saved and restored every time the
Apple event prehandler handles an Apple event. This is because Apple events are
dispatched recursively during the execution of scripts: you should assume that any
Apple event handler can be interrupting the processing of another Apple event. For
the same reason, if you need to set the resume/dispatch procedure differently in
different handlers you must carefully save and restore it each time. The sample code
in SimpliFace2 contains examples of how you might do this.

SimpliFace2 also shows how you can make global variables persistent, by saving the
global variables script in a script file in the Preferences folder when the program exits
and reloading it when the program starts up again. The code to handle this is in the
script administrator routines SaveGlobalVariables and LoadGlobalVariables.

A RUN HANDLER WRINKLE
Be aware of a wrinkle: If you ever intend to dispatch the Run ('oapp') Apple event to
an AppleScript inheritance chain, each script in the chain must contain a continue
run handler.

on run
continue run

end run

The reason for this is that when AppleScript compiles a script into a script context it
collects all the top-level statements in the script (those not contained in any handler)
into a default run handler, so that if the script is simply executed the top-level
statements will run. If there are no top-level statements, an empty run handler is
created. The trouble is, this default handler doesn’t realize you want it to continue

Listing 3. TScriptableObject::StartUsing

OSAError TScriptableObject::SetCurParent (TScriptableObject* theParent)
{

OSAError err = noErr;
OSAID newParentScriptID = GetParentScript();

if (fAttachedScript != kOSANullScript)
err = gScriptAdministrator->SetScriptParent(gScriptingComponent,

fAttachedScript, newParentScriptID);
return err;

}

OSAError TScriptableObject::StartUsing (TScriptableObject* newParent,
TScriptableObject* &oldParent)

{
oldParent = fParentObj; // Returned in case it must be saved.
return SetCurParent(newParent);

}

IMPLEMENTING INHERITANCE IN SCRIPTS 97

d e v e l o p Issue 19 September 199498
the Run message, so the message will be caught and lost in the script, never to be
seen farther along in the inheritance chain.

INHERITANCE IN OTHER OSA LANGUAGES
The inheritance scheme just described is specific to AppleScript scripts because it
relies on OSASetProperty to set up the inheritance chain. This call and others in the
AppleScript 1.1 API aren’t part of the required OSA API, so not all scripting
components support them. If your program is to support inheritance in scripts
written in other OSA languages, it must take control of the message passing between
scripts in the chain at script execution time.

Your application can do this by simulating, entirely under program control, the
mechanism that AppleScript uses. Messages that aren’t handled in a particular script
in the chain are passed along to the next script in the chain. If they’re continued out
of, or not handled in, the chain, the program routes them to its standard Apple event
handlers. The drawback to this approach is that scripting becomes a little more rigid,
because handlers are resolved only toward the parent rather than wherever they are in
the chain. The advantage is that it will work with any OSA language that supports the
event handling API and the Subroutine Apple event, which is the message protocol
AppleScript uses to call subroutines.

When your program’s Apple event prehandler deals with an incoming Apple event
message by passing it to a script, it’s responsible for manually redispatching messages
that aren’t handled or that are continued along the inheritance chain. The
SimpliFace2 routine ExecuteEventInContext (Listing 4) shows how to do this. The
first and second parameters to this routine are the Apple event and reply; the third
parameter is the scriptable object that is to handle the message. This routine is first
called from the prehandler, which passes it the scriptable object that starts the
inheritance chain (the object to which the message was originally sent). The
scriptable object has a field that’s a reference to its parent object, which can be read
using the accessor function GetParentObj. If the current object has a parent, the
routine sets the OSA resume/dispatch procedure to be a recursive call to
ExecuteEventInContext, passing the address of the parent object as the reference
constant. If the current object doesn’t have a parent (if the end of the chain has been
reached), the routine sets the resume/dispatch procedure to be the program’s
standard Apple event handler, ignoring the prehandler.

If the Apple event message isn’t handled in the script of the current object, the routine
OSADoEvent returns the error errAEEventNotHandled. At this point you must
manually redispatch the message, mirroring the OSA’s resume/dispatch mechanism: if
the current object has a parent, you recursively call ExecuteEventInContext, passing
it the address of the parent object. If you’ve reached the end of the inheritance chain,
you simply call the program’s standard Apple event handler.

WHERE YOU’VE BEEN, WHERE YOU’RE GOING
You’ve learned that implementing inheritance starts with choosing an appropriate
script inheritance hierarchy. With this hierarchy in mind, you can link scripts in an
inheritance chain, either by setting their parent properties (if you’re working only
with embedded AppleScript scripts) or by directly controlling inheritance at script
execution time (if your program needs to support scripts in other OSA languages).
Then you’re ready to create a shared handlers script and put it at the end of the
inheritance chain, making it the parent of all scripts, and (if you’re working only with
AppleScript scripts) to add a global variables script to the start of the inheritance
chain where it can receive incoming messages and route them to the correct targets.

You’ve seen these techniques illustrated by the sample program SimpliFace2. You can
simply drop the classes from SimpliFace2 into your own programs, use them as the
basis of new programs, or use them as a guide to restructuring existing programs.
Armed with the information in this article and its predecessor, you should now be
able to implement an inheritance scheme for scripts in your own software.

Listing 4. ExecuteEventInContext

static pascal OSErr ExecuteEventInContext (AppleEvent *theEvent,
AppleEvent *theReply,
TScriptableObject* theScriptableObj)

{
OSAError err = errAEEventNotHandled;
OSAID theScriptID = kOSANullScript;

if (theScriptableObj)
theScriptID = theScriptableObj->GetObjScript();

else if (gScriptAdministrator)
theScriptID = gScriptAdministrator->GetSharedScript();

if (theScriptID != kOSANullScript) { // Pass to script for handling.
AEHandlerProcPtr oldResumeProc;
long oldRefcon;
TScriptableObject* parentObj = NULL;
OSAGetResumeDispatchProc(gScriptingComponent, &oldResumeProc,

&oldRefcon);
if (theScriptableObj) {

parentObj = theScriptableObj->GetParentObj();
err = OSASetResumeDispatchProc(gScriptingComponent,

(AEHandlerProcPtr)&ExecuteEventInContext,
(long)parentObj);

}
else

err = OSASetResumeDispatchProc(gScriptingComponent,
kOSAUseStandardDispatch, kOSADontUsePhac);

if (err == noErr) {
err = OSADoEvent(gScriptingComponent, theEvent, theScriptID,

kOSAModeAlwaysInteract, theReply);
if (err == errAEEventNotHandled) { // Not handled in script.

if (theScriptableObj) // Make recursive call.
err = ExecuteEventInContext(theEvent, theReply, parentObj);

else // Otherwise, dispatch directly to standard handler.
err = StdAEvtHandler(theEvent, theReply, 0);

}
}
OSASetResumeDispatchProc(gScriptingComponent, oldResumeProc,

oldRefcon);
}
return (OSErr)err;

}

IMPLEMENTING INHERITANCE IN SCRIPTS 99

Thanks to our technical reviewers Kevin
Calhoun, Ron Karr, and Jeroen Schalk, and to Lee
Buck of Software Designs Unlimited.•

100
Macintosh
Q & A
d e v e l o p Issue 19 September 1994
Q What operations cause QuickDraw GX to invalidate its shape caches? We want to
maximize drawing performance in our application, and it would be nice to know ahead
of time when caches will need to be rebuilt.

A As you might imagine, this topic is complex, but we’ll try to explain the basics
and give you some ideas about improving performance.

There are several caches associated with a shape, since each object associated
with the shape has a separate cache. (By the way, the caches are in the
QuickDraw GX heap and can be seen using GraphicsBug.) Every time you call
GXDrawShape, QuickDraw GX determines which caches need to be updated,
updates them, and then draws the shape. So the first thing to know is that if you
want GXDrawShape to execute as fast as possible (for instance, if you’re
drawing several shapes and want the time between successive GXDrawShape
calls to be minimal), you should call GXCacheShape ahead of time to update
the shape’s caches, minimizing the work GXDrawShape needs to do.

In general, any time you change information within a shape, you cause
QuickDraw GX to invalidate at least one of the shape’s caches. Layout shapes
are exceptions to this rule, however. The cache associated with a layout shape
will not be invalidated if all of the following conditions are met:

• You’re adding characters to the end of the layout shape.

• There’s a single run of text within the layout shape.

• The shape remains on the same device.

If you’re drawing non-hairline geometric shapes and want to get them on the
screen as fast as possible, you can set the gxCacheShape attribute of the shape.
With this attribute set, QuickDraw GX will preprocess all the required parts of
a shape into compressed bitmaps. This means the shape is completely ready to
be drawn when you call GXDrawShape: the bits are just blasted to the screen.

Any time you change a view port’s clip or mapping, QuickDraw GX will update
all of the caches for the shapes and child view ports associated with that view
port. There isn’t any speed advantage to setting the clip or mapping of a shape
rather than the clip or mapping of the shape’s view port; the same work has to
happen in either case. Note, though, that if the view port contains other shapes
or has child view ports, their caches will be invalidated, too. You should change
the view port’s mapping to move a shape only when you want all shapes within
the view port to move the same amount.

Q I’m looking into the possibility of writing a QuickDraw GX printer driver that will
only print to a file, and I’ve run into a couple of stumbling blocks I hope you can help
with. First, is there a way to create a desktop printer from the Chooser without having
an actual printer attached or selecting a port? Can I get to the Chooser list so that I can
display some kind of dummy or ghost printer? The second issue has to do with the user
interface of the Print dialogs/panels. I would like to set the “Destination: File” radio
button and disable the “Destination: Printer” one for QuickDraw GX application
interfaces.

A There should be no problem creating a printer driver that only prints to a file.
And yes, users will be able to create a desktop printer from such a driver. You
can access the Chooser list: for an example of this, look at the source code file
Chooser.c from any of the QuickDraw GX printer driver samples. You can do

whatever you want within the Chooser to handle and display lists of available
printers for the currently selected printer driver. You’ll also need to modify the
'comm' resource to make sure that the Chooser does the right thing. You
should be able to put a “nops” 'comm' resource reference into the 'look'
resource.

You can disable any item in the Print dialog by overriding the GXJobPrintDialog
message and, in your override, getting the destination tag for the appropriate
item and locking it. This will make the item appear disabled in the dialog.
PrintingMgr.h contains all the tags you can lock. You should be sure to set up
the item to be gxVolatileOutputDriverCategory so that your settings go away if
the user switches drivers in the pop-up menu; you can simply OR this with
collectionLockMask when you set the item’s attributes.

Q The documentation seems a bit thin on what resource type/ID is needed for ColorSync
profiles in QuickDraw GX printer drivers. Is the appropriate type 'prof' or 'cmat'?
Will QuickDraw GX automatically use one if I stick it in my driver, or do I also have
to override the various profile messages?

A All you need to do is include a 'cmat' resource with ID gxColorMatchingDataID
and specify it in your 'rdip' resource. However, you should also override
GXFindFormatProfile so that inquiring applications can ask you what the
format’s profile will be. Additionally, you should override the GXImagePage
message if you want to provide different profiles on a page-by-page basis.

Q I’m working on QuickDraw GX printer drivers. Can you give me some information on
what must be done to support PrGeneral?

A PrGeneral support within your QuickDraw GX printer driver is automatic. The
printing system will automatically maintain the appropriate information within
the QuickDraw GX print record. The only exception to this automatic support
is the SetRsl opcode: if you don’t want QuickDraw GX to use the default
gxReslType resource when the SetRsl opcode is used, you need to define a
gxReslType resource of your own that reflects the capabilities of your printer.

Q Our application generates its own custom PostScript™ code when printing to PostScript
printers. We’d like to support QuickDraw GX–style printing and still be able to
continue generating our own custom PostScript code to send directly to the printer.
What’s the best way to handle this? I’ve tried generating empty shapes with custom
PostScript code attached as a tag (using synonyms), but the LaserWriter QuickDraw
GX driver emits its own “wrapper” code around our custom PostScript code, which
could alter the printer’s graphics state. Are there any other methods to achieve this
without the possible side effects?

A You’re actually very close to sending PostScript code correctly through the
QuickDraw GX printing system without the side effects. As you already know,
after a shape with 'post' tags has been sent to a PostScript printer, QuickDraw
GX performs a PostScript restore. There’s no way to prevent this from
happening. However, only shape objects cause this behavior; QuickDraw GX
will not perform a PostScript restore for any other object besides a shape.

The fastest and best method for sending PostScript code is to attach the code
with tags (using synonyms) to only one empty shape. You can attach as many
MACINTOSH Q & A 101

d e v e l o p Issue 19 September 1994102
tags as are required. We recommend that the tags contain 12K of PostScript
data each, for optimal performance. If you’re sending PostScript code down to
replace the clip or ink or some other object besides a shape, just attach a 'post'
tag to the object your PostScript code describes; in this case a restore will not
occur.

Q How should I download fonts to a PostScript printer under QuickDraw GX? I’m
sending a direct stream of custom PostScript code, but I don’t expect the driver to be able
to deduce which fonts need to be included. I’ve read about the PostScript control tag that
can be attached to a shape, and I know the structure for the tag contains font
information, but the documentation about this tag is sketchy. Can you provide more
details?

Related to this question, what’s the best way to cause fonts to be downloaded under the
current Printing Manager? We’re using the “draw a single character off the page in
the proper font” trick. I understand this practice is frowned on. Is there an approved
way to do this short of intermixing QuickDraw and PostScript code in PicComments?

A Our thinking has changed regarding the use of the PostScript control tag for
downloading a font. If you want to download a font within your PostScript
stream, you should call GXFlattenFont and pass the font within your 'post' tag.
The GX PostScript engine will unflatten the font and download it when it finds
it attached to your 'post' tag.

The method you’re using (drawing a character off the page) is completely
supported under QuickDraw GX. It was the recommended method for a long
time. However, the current recommendation is to use DrawText and pass in text
that contains all the glyphs you want to use. The reason this approach is better
for QuickDraw GX is that only the required information is downloaded,
thereby saving memory on the printer.

Q Do I need to override the GXFreeBuffer message in my QuickDraw GX printer driver
if I perform a total override of the GXDumpBuffer message? If I do need to override
GXFreeBuffer, what do I do with the buffer? Should I dispose of it with DisposePtr?

A The documentation is a little confusing about the purpose of the GXFreeBuffer
message. GXFreeBuffer is sent to ensure that the indicated buffer has been
processed and is now available for more data; it doesn’t actually dispose of a
buffer. The only time you need to override GXFreeBuffer is if you’re doing
custom I/O (the customIO flag is set in your 'iobm' resource). The default
implementation of GXFreeBuffer will work correctly for QuickDraw GX’s
default buffering mechanism.

GXFreeBuffer allows you to start asynchronous I/O in GXDumpBuffer;
then other buffering routines can be sure that operations on a buffer are
completed before they reuse the buffer (or dispose of it). If you’re overriding
GXFreeBuffer, you should just hang out in your override until I/O has
completed for the buffer passed, and then return. If you’re doing synchronous
I/O, just return immediately, since all I/O must have completed.

Q When I control the start of a QuickTime movie from within my application, the movie
controller doesn’t get updated properly. I’m calling StartMovie to begin the movie as
soon as it becomes visible, and I’m updating the movie controller like this:

theResult := MCDoAction(tmpMovie.fController, mcActionPlay, @curRate);

However, this doesn’t seem to work. What am I doing wrong?

A The MCDoAction call with mcActionPlay doesn’t take a pointer to the data in
the last parameter; it takes the data itself. But since the prototype specifies type
(void *), to make the compiler happy it must be cast to a pointer. Many people
have fallen into this trap.

The recommended method to start a movie when you’re using the standard
movie controller component is as follows:

// Play normal speed forward, taking into account the possibility
// of a movie with a nonstandard PreferredRate.
Fixed rate = GetMoviePreferredRate(MyMovie);
MCDoAction(MyMovieController, mcActionPlay, (void *)rate);

If you do need to use StartMovie, the correct way to cause the movie controller
to update is to call MCMovieChanged.

Q We’re using the Communications Toolbox in our application and have noticed some
strange behavior. Specifically, when a tool is being used, the tool’s resource fork is
placed not at the top of the resource chain, but behind the System and application
resource forks. As a result, we’re having trouble with tools that use STR# resources that
conflict with those in our application. This results in bad configuration strings or
configuration dialogs with the wrong text. I can easily work around this by changing
the resource IDs in my application, but this doesn’t solve the problem in the long run.
Any advice?

A What you’re seeing is a part of the “pathology” of the Communications
Toolbox and its tools. Both do a less than perfect job of looking in the correct
resource map for string resources. The result is what you’re currently seeing:
application strings end up being placed where tool strings are expected.

There are a couple of workarounds. The first you’ve cited, which is to make
sure that none of your application’s resource ID numbers conflict with the CTB
tool’s ID numbers. However, as you also noted, this can be a problem when
you’re using several CTB tools, and may not work if the user happens to select a
tool that has a conflicting ID.

The better way to work around the problem is to save a reference to the current
resource file and then set the resource file to the System file. After completing a
call to CMChoose or CMGetConfig, you can reset the resource file to the one
you started with. Here’s how to do this:

short oldResFile;
Point dlogBoxPt;
Ptr myConfigString;

/* First save the current resource file. */
oldResFile = CurResFile();
/* Now set the resource file to the System file. */
UseResFile(0);
/* Next call CMChoose to configure your connection tool. */
myErr = CMChoose(&myConnectionHdl, dlogBoxPt, nil);
MACINTOSH Q & A 103

d e v e l o p Issue 19 September 1994104
/* Now call CMGetConfig to get the configuration string from the
connection tool. */

myConfigString = CMGetConfig(myConnectionHdl);
/* And finally, restore the old resource file. */
UseResFile(oldResFile);

Q What is the Human Interface suggestion for removing a digital signature from a
signed document? I see how to add and how to verify, but I can’t find any suggestions
for removing signatures.

A Here’s the relevant paragraph from the AOCE Human Interface Guidelines
document, which can be found on AppleLink (search the AOCE Talk folder):

Signatures may also be deleted by users. To accomplish this, the user
should select the signature by clicking on its icon and choosing Clear
from the application’s Edit menu. Selecting the signature icon and
pressing the delete key is a desirable alternative. Note that signatures
must not be cut, copied, or pasted.

To actually remove a signature, just remove the 'dsig' resource from the file.
Note that signed files may have the Finder “locked” bit set. If you remove the
signature, you should also clear this bit.

Q I launch my application by dragging files onto its icon. It then opens the files, performs
some quick operation, and quits. I can put '****' and 'fold' resources in FREFs to let
users drag any file or folder onto the application icon. But when a user drags an AOCE
catalog (or anything inside the catalog) onto the icon, the Finder won’t let the user drop
it onto my application. What do I need to do to my application to let users drop-launch
it with AOCE catalogs (or their contents)? I know it’s possible: the “Find in Catalog”
application will drop-launch if a user dragged to it from a catalog.

A If you look, you’ll see that “Find in Catalog” is a Catalogs Extension template.
It’s not an application program; it actually executes as part of the Finder.
Unfortunately, you can’t do what you want to with an application. You
might want to look at the Catalog Service Access Modules chapter in Inside
Macintosh: AOCE Service Access Modules for more information on the Catalogs
Extension.

Q When users launch my utility application by double-clicking, I present a Standard File
dialog that lets them choose a file to operate on. I’d like them to be able to browse
AOCE catalogs as well as HFS files, but catalogs don’t show up in the Standard File
dialog. I could use another dialog for browsing AOCE catalogs, but why use two
different interfaces for the same action (from the user’s point of view, that is; the user
just wants to specify an object, wherever it may be)? Is there a way to get catalogs to
show up in the Standard File dialog? Is there any way to browse the file system and the
AOCE catalog system in the same dialog? If the answer is no, is there an analog to
Standard File for AOCE catalogs?

A You can’t browse HFS files and AOCE catalogs in the same dialog, since they’re
two different file systems. To let the user browse the AOCE catalog system, you
need to use the AOCE Standard Catalog Package Reference routines, which are
documented in Inside Macintosh: AOCE Application Interfaces. There is a routine
that’s analogous to StandardGetFile. The AOCE Software Developer’s Kit

(available through APDA) includes sample code that shows how to browse
AOCE catalogs.

Q I’m writing an application that will watch a user-specified folder and operate on files or
folders that are dropped into it. I need to perform operations on every item in the folder
and its subfolders. What will happen if I begin to walk through a new folder with
PBGetCatInfo while the Finder is still copying files into the subfolder structure? Can I
guarantee that I’ll detect all the files?

A There’s no way to find out directly when the Finder is done copying items into
the folder, but there is a strategy we can recommend. First, though, you should
know that the recommended way to determine whether items have been added
to a folder is to watch its modification date. So how can you know when all the
files have arrived? The recommended strategy is to poll the parent folder’s
modification date every few seconds after you first detect a change, and keep
polling until you have a reasonably long interval during which there’s no change
in the date (30 seconds is probably about right). This means, of course, that
there’s a delay before you act on files dropped into the folder, but as the Print
Monitor shows us, this delay is probably reasonable to the user.

One more possible gotcha you should know about: to tell whether it’s safe to
work with a particular file, it’s not enough just to make sure the file isn’t open;
you need to check its length. If a file is closed (that is, not busy) but has no
length in either its resource or data fork, you caught the Finder at an
uncomfortable time, after it created the file but before it opened it. So to know
if you can operate on a file the Finder might be copying, you must determine
two things: it’s not already open, and it has length in its resource or data fork.

Q Our application uses the Icon Utilities interface, and we want to verify that these
features are present before we use them. We’ve been unable to do this successfully. The
Macintosh Technical Note “Drawing Icons the System 7 Way” (QuickDraw 18) doesn’t
say how to do this, but Inside Macintosh: More Macintosh Toolbox recommends using
Gestalt with the gestaltIconUtilities selector. When we try this, Gestalt returns an error
of -5551 (undefined selector). What are we doing wrong?

A There isn’t a Gestalt selector for the Icon Utilities; Inside Macintosh and the
header files are wrong. Even if we were to correct that situation tomorrow (or
in the next system software release), it wouldn’t help, since the Icon Utilities are
available on systems where the Gestalt selector isn’t. The solution is to use the
TrapAvailable function to see if the _IconDispatch A-trap is available. You can
find the source code for TrapAvailable in Inside Macintosh Volume VI on page
3-8, or in Inside Macintosh: Overview on page 180.

Q I have a System 7 application that the user can drag files, disks, or folders to. How can I
determine from the Apple event information which type of item (file, disk, or folder) has
been dragged to the application icon?

A When the user drags a file, disk, or folder to an application icon, the Finder
uses the Process Manager to open the application and then sends it an Open
Document ('odoc') event containing a list of alias records for each object
dropped. When your application receives the event, it needs to open each of
the objects specified in the event by getting each alias record from the list and
coercing the data for that record to an FSSpec. Once you have the FSSpec, you
MACINTOSH Q & A 105

d e v e l o p Issue 19 September 1994106
can check its parID to determine whether the directory ID is fsRtParID,
indicating that you’re looking at a volume. If the parID is anything other than
fsRtParID, use PBGetCatInfo to determine if you have a file or a folder. Here’s
the code:

enum {kItsAVolume = 1, kItsAFolder, kItsAFile};
pascal OSErr GetSpecType(FSSpec *myFSS)
{

CInfoPBRec pb;
OSErr myErr;
short objType = 0;

if ((myFSS->parID) == fsRtParID)
objType = kItsAVolume;

else {
pb.hFileInfo.ioNamePtr = (StringPtr) *(myFSS).name;
pb.hFileInfo.ioVRefNum = *(myFSS).vRefNum;
pb.hFileInfo.ioDirID = *(myFSS).parID;
pb.hFileInfo.ioFDirIndex = 0;
myErr = PBGetCatInfoSync(&pb);
if (myErr == noErr) {

/* Check to see if bit 0x10 of ioFlAttrib is set; if it is,
we've got a directory */

if ((pb.hFileInfo.ioFlAttrib & 0x10) != 0)
objType = kItsAFolder;

else
objType = kItsAFile;

}
}
return (objType);

}

Q I’m trying to implement “the perfect component.” The goals for this component are fast
dispatching, delegatable, able to rely on delegates, ready for everything, and surprised
by nothing. I’ve been using develop Issues 12 and 14 and Inside Macintosh: More
Macintosh Toolbox to guide me, but I still have a question that wasn’t addressed in those
references.

I’m using the Fast Dispatch method to dispatch my component’s calls. I’ve figured out
how to repair the stack after getting an unsupported routine selector code, but I can’t
figure out how to delegate a call. I think I’m recovering the stack correctly, but all the
documentation I’ve read doesn’t even hint at this sort of functionality. I was thinking
that I could use DelegateComponentCall after creating a ComponentParameters record,
or I could calculate the size of the parameters and attempt to set up the stack for a
ComponentCallNow call. However, neither of these is a good solution — they both take
too many instructions to implement and obviate the advantages of fast dispatching. Is
there such a thing as a DelegateFastComponentCall that I haven’t heard of?

A Try the following to delegate a component call:

move.l d0, -(sp) ; push d0 onto stack
PUSHDELEGATEGUY ; macro to push component instance
move.q #-2,d0
dc.w $a82a

What apparently happened is that the engineers realized how difficult it was to
call DelegateComponentCall when the stack was screwed up. So they created a
“special” delegate call. As you can see, the selector is -2. This is supposed to be
documented somewhere in the Component Manager documentation, but was
inadvertently left out.

Q Why aren’t my components getting register calls? I’ve set the appropriate flag. I’m
registering the component from my application.

A Your component won’t get called to register at all since it’s being registered by
an application. If you removed your component and placed it in the Extensions
folder so that it was registered at system startup, it would receive a register call.
The reason for this is that registration of components happens only when the
Component Manager is first loaded at system startup. After system startup,
components can be registered by applications, but the register routine will not
be called.

Q I heard that the new Apple digital camera will introduce a graphics format called
QuickTake. Is this truly a new format or are these just QuickTime compressed PICTs?
If it’s a new format, where can I find documentation on it?

A QuickTake stores its pictures as compressed PICT files. There’s a new CODEC
that’s necessary to decompress the images, but no new file type. The QuickTake
100 Digital Camera Developer Note contains extensive information about
talking to the camera from both Macintosh and Windows machines. It also
documents the picture formats. The QuickTake Camera Software Development
Kit is available from APDA.

The QuickTake application that comes with the camera can save the pictures in
a variety of formats, including PICT (with or without various compressions)
and TIFF. There’s also a control panel that allows the user to mount the camera
as a read-only serial RAM disk (similar to MountImage), so your application can
directly download the information from the camera’s memory.

Q I’m writing my first action atom for the Installer. I tried writing a skeletal example, as
follows:

resource 'inaa' (30000) {
format2 {

continueBusyCursors, actAfter, dontActOnRemove,
actOnInstall,

'infn', 149,
0,
1000,
"Delete Folder"

}};

#include "ActionAtomHeader.h"

ActionAtomResult ActionAtomFormat2(ActionAtom2PBPtr aa)
{

Debugger();
return (kActionAtomResultContinue);

}

MACINTOSH Q & A 107

d e v e l o p Issue 19 September 1994108
But the action never gets called! I don’t have to explicitly refer to the 'inaa' anywhere,
do I? I checked that the resources were copied into the file correctly and had the right
IDs. What am I doing wrong?

A Your action atom is fine. The only mistake you’ve made is not tying your 'inaa'
to a package ('inpk'). You have to add to your 'inaa' a reference to an active
'inpk'. Once you do that, it works great. (We had trouble with this one until we
found a cool diagram on page 8 of the Installer documentation that shows how
the script resources interrelate; that diagram is your friend, and seems to
encapsulate quite a bit of critical information.)

Q We’re planning a zone name change for the zone that contains some of our PowerShare
servers. Will this require any action on the part of the administrators of the various
servers beyond informing users of the change?

A It depends on whether you’re changing the zone names of some or all of the
servers. If you’re changing the names of only some servers, it’s entirely possible
that you don’t have to notify anybody, depending on how you’ve replicated your
folders. For a while the new servers won’t be contacted by any clients since all
clients will try to address them at their old location, but eventually all servers
will again start receiving requests from clients.

If you’re changing the zone names of all the servers, the client software won’t
recognize that the zone names have changed, so you’ll have to throw away your
key chain and add it again after the zone names have changed. The PowerShare
servers will eventually recover and rediscover all the other servers. We
recommend that you bring up the Master Pathfinder first after changing its
zone name and then bring up all the other servers. Once all the servers are up, it
should take a few hours at most for everything to settle down again and for the
system to be purring.

Q The function SMPEnumerateBlocks takes a buffer that returns information about the
blocks in a letter. The documentation (Inside Macintosh: AOCE Application Interfaces,
page 3-87) says that the buffer contains “a count byte indicating the number of blocks in
the letter, followed by a block information structure for each block.” I can’t find
anything that tells me what a “block information structure” is.

It looks to me as if it actually returns the count of blocks in a short, not a byte. Is this the
total number of blocks, or the number of blocks returned by the call? If I have to call the
function again to get information that didn’t fit in the buffer, do I get another count
followed by more block information structures, or do I just get an array with more block
information structures without the count (short)?

The block information structure seems to be 16 bytes long, starting with an
OCECreatorType structure. Is this always correct, and what is the other information?

A This is somewhat confusing. The “block information structure” referred to here
is the MailBlockInfo structure defined in the OCEMail.h header file:

struct MailBlockInfo {
OCECreatorType blockType;
unsigned long offset;
unsigned long blockLength;

};

And yes, the count byte returned in the buffer you provide is actually a short
(the documentation is wrong). This value is placed right in front of the first
MailBlockInfo structure each time you make the call. The count indicates the
number of blocks that were put in your buffer for this particular call (not the
total), which of course depends on the size of the buffer you pass; it fits in as
many as it can. Check the “more” parameter to see if your buffer was too small
to hold all the blocks, and check the nextIndex parameter for the sequence
number of the next item to be returned.

Q I found what I think is a problem with the TEGetOffset routine: when it returns, a
28-byte handle has been locked for single-styled text. I believe it’s a style handle that gets
locked. This seems to be an intermittent bug, occurring only about half the time. Is there
a workaround? Is it safe to just unlock the style handle after calling TEGetOffset?

A It’s a bug all right, and it is the style handle that’s getting locked. Here’s a
workaround:

static short MyTEGetOffset(Point pt, TEHandle th)
{

TEStyleHandle sh;
short theResult;
char saveState;

if (th == 0L)
return;

sh = GetStyleHandle(th);
saveState = HGetState(sh);
theResult = TEGetOffset(pt,th);
HSetState(sh, saveState);
return theResult;

}

Q I have a question about the Japanese art of bonsai (colloquially known as stunting
trees): What happens if you bonsai a fruit tree? Does the fruit come out dwarfed as
well? Or does the tiny tree produce full-size fruit?

A This was a difficult one to find an answer to. It seems to depend on many
factors, not the least of which is the kind of fruit tree you’re talking about. One
person we talked to said he once saw a bonsai lemon tree nine inches tall, with a
single, full-size lemon hanging from a branch. (Actually, the lemon didn’t hang;
it would have broken the poor tree. Instead it rested on a small platform built
especially for that purpose.) But there were also reports of a stunted crabapple
tree that produced apples the size of peas. Go figure.
MACINTOSH Q & A 109

These answers are supplied by the
technical gurus in Apple’s Developer Support
Center. Special thanks to Pete (“Luke”) Alexander,
Joel Cannon, Mark (“The Red”) Harlan, Dave
Hersey, Dave Johnson, Don Johnson, Scott

Kuechle, Jim Luther, Kevin Mellander, Jim
Mensch, Martin Minow, and John Wang for the
material in this Q & A column. If you need more
answers, take a look at the Macintosh Q & A
Technical Notes on this issue’s CD.•

110
THE VETERAN
NEOPHYTE

Rubber Meets
Road

DAVE JOHNSON
I’ve been thinking about edges lately — about the
places where dissimilar domains meet and interact. You
know how every now and then you come up with a new
view on things? A new model to try to fit the facts into,
a new lens to use to examine the world, a new pattern
that you haven’t noticed before but that suddenly seems
pervasive? Edges are like that right now for me. It
seems that everywhere I look I see edges, and the edge
always seems to be where the action is.

I think it started in January, when I was called for jury
duty. I was promptly selected to serve on a long,
complex, and sordid criminal trial. I’ve been called for
jury duty only once before, and that time the
experience was short and dull. I did serve on two juries,
but neither trial lasted more than a couple of days, and
they were both very mundane. This time was decidedly
different. There were 4 defendants, 53 separate counts
to decide, 3 different crime scenes, dozens of spent
bullet casings and slugs and shotgun waddings to keep
track of, something like 14 police witnesses and 6 or 8
civilian witnesses, a two-inch thick stack of 8 by 10
color glossies, and lots more. The whole adventure
took nine weeks to play out. Yow.

The atmosphere in the courtroom spanned the full
range of intensities. There was plenty of plodding
boredom: day after somnolent day of slow, thorough,
painstaking ballistics testimony, matching bullets to
guns and mapping where they were found. There was
high drama: the tapes of the police transmissions
during the chase and as the final shootout began were
filled with panic, screaming. There was humor: Helen
in chair 5 often started to fall asleep in the afternoons.
The court reporter would see her dropping off, make a
little hissing noise, and Wes in chair 4 would
surreptitiously nudge Helen back to consciousness.
We’d all grin.
d e v e l o p Issue 19 September 1994

DAVE JOHNSON likes to try to slip new words he’s learned into
casual conversations without anyone really noticing. Two years
But no matter what was happening at the moment, I
found the process absolutely riveting, from beginning to
end. Here were the great and mighty wheels of justice
in America, slowly and ponderously turning, grinding
away at the facts like so much dry corn under a
millstone. The courtroom is a place where politics
actually collides directly with people’s lives, through the
strange intervening filter called law. It’s an edge, an
active boundary separating two domains, where work
actually gets done.

I’m constantly drawn to active boundaries like that,
places where two dynamic systems collide and affect
each other. Interfaces. Precipices. Limits. Edges. And
they are everywhere. In a previous column I pointed
out an edge in the realm of language: semantics, where
a language’s structure collides with meaning and where
the real work of the language — creating meaning from
abstract symbols — gets done. In biology, there are
edges all over the place. An obvious and important one
is the semi-permeable membrane. It’s the structure that
allows life to create and control its own environment,
and it’s arguably the single most important structure
enabling complex multicellular life to exist. Biologically
active molecules are active because of their shape, their
boundaries; proteins and enzymes work because they fit
together with complementary molecules. In philosophy
there is the edge between self and not-self, and
teetering along this edge, hopping back and forth
across it and trying to look at it from all angles, is how
the work of philosophy gets done. In physics, often the
edges are where the truly interesting — and, not
coincidentally, mathematically intractable — stuff
happens. (In engineering school, an all-too-common
phrase was “ignore edge effects.”)

All the exciting stuff seems to happen at edges. Large
systems that incorporate feedback often exhibit a
behavior known as “self-organized criticality” in which
they evolve toward a critical state, an edge, and
forevermore exist there, teetering on the crumbling lip
of stability. A great example is a conical pile of sand on
a circular plate, with grains being added to the top one
at a time. Over time the overall shape of the pile will
change very little, but if you turn up the magnification
and look closely at the side of the pile, there are
constant avalanches of all sizes, all extremely
unpredictable and chaotic. This is an interesting dual
behavior: at one scale there is incredible robustness; the
overall shape of the pile is very stable and will always
recover itself, even if disturbed. But on a smaller scale,
the scale of an individual grain on the side of the pile,
the dynamics are wildly unpredictable and incredibly
ago he learned the word enantiomorph. As you might imagine,
he’s still waiting for the right opening.•

unstable. The pile is poised at a limit, a dynamic
balance between growth and decay.

An interesting thing is how many different varieties of
dynamic systems seem to exhibit this kind of behavior.
The locations and magnitudes of earthquakes,
fluctuations in traffic flow, the rise and fall of economic
markets, the rhythmic variations in a heartbeat, the
varying current through a resistor, and the population
changes in an ecosystem all exhibit dynamic
characteristics similar to the sand pile, and this is not an
exhaustive list by any means. That state, pushed up
against the edge of stability, seems to be a natural one.
Life itself appears to be delicately poised on the
boundary between order and chaos.

In computers (you knew I was going to get around to
this eventually, didn’t you?), as in any complex system,
there are lots of interesting edges and boundaries if you
look for them. Internally, there’s the place where the
software collides with the hardware; sparks really fly
down there, all right. Object-oriented programming is
all about repackaging the boundaries between and
among data and functions. (A large part of good object
design is minimizing the “surface area” of your objects.)
And then there’s the edge of the computer itself. And I
don’t mean the plastic or metal surface of the box, but
the experiential boundary, the true edge between the
machine and the user, the interface. Here the animal
collides with the machine, and the boundary between
them is infinitely convoluted, elastic, dynamic, and
interesting.

For software designers, perhaps the most important
lesson to be learned from the edge-centric view is this:
the shape of a boundary defines the shape of things on
both sides of the boundary simultaneously. The
boundary of my dog Natty defines not only her own
shape, but that of a Natty-shaped hole in the air as well.
The edge between two interlocking tiles in an Escher
drawing defines the shape of both tiles at once. If the
edge in question is one we have control over, this can
be very important.

By programming a computer we’re not only shaping
the machine; we’re also shaping the humans who use it.
Thanks to Jeff Barbose, Michael Clark, Michael Greenspon,
Brian Hamlin, Mark (“The Red”) Harlan, Bo3b Johnson, Lisa
Jongewaard, and Ned van Alstyne for their always enlightening
review comments.•
This is often overlooked, but is crucial to designing
good software; it needs to fit. Humans are incredibly
adaptable, and will contort themselves grotesquely to
use awkward tools, if necessary. Like kids with their
faces squashed against the toy store window, computer
users smash themselves up against the interface — even
though it might hurt — to get at what’s inside.

But because of the chameleon-like nature of the
computer, we have more or less total control over the
interface. So in principle we have the power to shape
the computer to the user, rather than the other way
around. We should be able to make a truly human-
shaped dent in the computer, a dent people can slip
into effortlessly and comfortably, like slipping into a
fuzzy slipper. It’s incredibly hard work, shaping the
computer to the human, all that snipping and tucking
and smoothing. It requires constant readjustment,
painstaking attention to detail, and massive amounts of
brute-force trial and error. But it’s good work, some
would say the work that humans are best at: the
shaping of tools.

So now here I am, seeing edges everywhere. Sigh. Last
year it was basins of attraction, this year it’s edges, next
year maybe it’ll be networks of interconnections. But
there’s one thing I can count on: every time I get tired
of looking through one particular glass, there will be
another within reach. Humans have this uncanny
ability to apply order to everything they see, to perceive
structure in everything around them. Our minds seem
to operate by forming and then reforming meaning,
establishing and then reestablishing context, constantly
slipping and adjusting to accommodate the relentless
stream of input. Hmm. Just like that pile of sand.

RECOMMENDED READING
• Complexity: The Emerging Science at the Edge of

Order and Chaos by M. Mitchell Waldrop (Simon
& Schuster, 1992).

• How Dogs Really Work! by Alan Snow (Little,
Brown and Company, 1993).
THE VETERAN NEOPHYTE 111

Dave welcomes feedback on his musings. He can be reached
at JOHNSON.DK on AppleLink, dkj@apple.com on the Internet, or
75300,715 on CompuServe.•

112
Newton
Q & A:
Ask the
Llama
d e v e l o p Issue 19 September 1994
Q I’m having trouble with the protoRoll. I have a protoApp with a protoRoll at the bottom
with a couple of items in it. (Note that I’m not using the protoRollBrowser proto.) It
compiles OK, but when I download to the Newton, nothing shows up. In fact, when I
use the inspector to look at the view hierarchy, the protoRoll doesn’t show up at all. The
other views are fine. What am I doing wrong?

A The protoRoll doesn’t show up because of the setting of the viewFlags of the
ROM prototype: the vApplication and vClipping flags are set, but not the
vVisible flag. If the protoRoll were the base template of your application, the
vApplication flag would be sufficient to make it visible.

In your case, the protoRoll is a child of your base application template. Since it
isn’t visible (vVisible isn’t set), the system doesn’t create a runtime view frame
for the child. You could get the system to create the runtime view by declaring
the protoRoll to be the base template, but this still wouldn’t show the protoRoll.

To make the protoRoll visible, add a viewFlags slot to the protoRoll and check
the vVisible flag. You may or may not want to uncheck the vApplication flag. If
you uncheck it, the system will no longer send scroll and overview messages
(viewScrollUpScript, viewScrollDownScript, viewOverviewScript) to the
protoRoll, so it will appear to be broken. But you can support these messages in
your base application view and just pass them on to the protoRoll as needed. If
you leave the vApplication flag checked, protoRoll will get the scroll events.

Q My print format never seems to get called, ever. I don’t get a printNextPageScript or
even a viewSetupFormScript. I’m not using ROM_coverPageFormat because I don’t
ever want to print a cover page. How can I get this to work?

A The answer to your problem is in your question. A print (or fax) format must
proto to ROM_coverPageFormat; it’s not optional (as the manual implies). It may
help to know that ROM_coverPageFormat is really misnamed. The generation
of a cover page is controlled by a slot in your format. The proto should be
called something like ROM_allThePrintingAndFaxingBehaviorProto, but that
would be verbose :-)

Q I would like to add a [button|view|Llama] to the [Notepad|Calendar|Cardfile|etc.].
How can I do that safely?

A This is a simple one: you can’t. If you add any element to a built-in application,
you take the chance that your application will break in future releases of
MessagePad. Also note that adding llamas to MessagePad will theoretically
cause a multidimensional implosion. (“Don’t cross the llamas, er . . . beams.” —
LlamaBusters)

Q I’ve noticed some peculiar behavior in the Compile function and am wondering if it
might be a bug. The problem is with special characters and string objects. When
Compile is passed a string object containing special characters rather than a literal
string with Unicode codes, the result is incorrect. This example works as expected:
The llama is the unofficial mascot of the
Developer Technical Support group in Apple’s
Personal Interactive Electronics (PIE) division.
Send your Newton-related questions to

NewtonMail DRLLAMA or AppleLink DR.LLAMA.
The first time we use a question from you, we’ll
send you a T-shirt.•

x:= Compile("{msg: \"A string with special character \u00A5\u\"}";
y:= :x();

—> y is {msg: "A string with special character ¥"}

This example doesn’t work as expected:

a:= "A string with special character \u00A5\u";
x:= Compile(a);
y:= :x();

—> y is {msg: "A string with special character *"} where * is some character other than
the expected "¥".

Can you explain what’s going on here?

A The problem is that you’re using illegal NewtonScript syntax in the second
example. If you used the inspector instead of Compile for this example, it would
be like typing

A string with special character \u00A5\u

and then hitting Enter. This would result in a syntax error from NewtonScript.
What you probably want is the equivalent of typing

"A string with special character \u00A5\u"

into the inspector. This is done with the following call to Compile:

x := Compile("\"A string with special character \\u00A5\\u\"");
call x with ();

—> #4415F49 "A string with special character ¥"

Note that the escape characters (\) for the Unicode string are themselves
escaped. If you don’t do this, you’ll be putting the actual Unicode characters
into the string being compiled, which is probably not what you want. Although
your first example worked, you could easily get a case where not escaping the
escape characters could bite you.

Q In the communications input spec below, why does the call to UpdateStatus fail?
UpdateStatus is a method in my base view, and the whole endpoint is in my base view,
so why can’t the input spec find the method?

GetMessage: {
inputForm: 'string,
endCharacter: unicodeCR,

InputScript: func(endpoint, data)
begin

:UpdateStatus(data);
endpoint:SetInputSpec(GetMessage);

end;
}

A The call to UpdateStatus fails because it’s a message send that uses full
inheritance to find the method. That means the system will look in the current
NEWTON Q & A: ASK THE LLAMA 113

d e v e l o p Issue 19 September 1994114
context (that is, self), then check the proto chain, and then check the parent
chain. However, the current context is not what you think it is. In an input spec,
the current context is the frame that defines the input spec. In this case, it’s the
GetMessage frame you define.

Since the GetMessage frame has no proto or parent pointer, the message send
fails. There’s a second problem waiting to happen: the call to SetInputSpec will
also fail, because the symbol GetMessage isn’t valid in this context.

The solution is to get a reference to your base view (or another view that
contains or inherits the UpdateStatus message). The usual way to do this is to
add an _parent slot to your endpoint at run time during initialization. Now your
InputScript can use endpoint._parent to find the base view, as follows:

InputScript: func(endpoint, data)
begin

endpoint:UpdateStatus(data);
endpoint:SetInputSpec(endpoint.GetMessage);

end;

If you really want to use a simple message send (for example, :UpdateStatus),
you could add an _parent slot to the input spec. This may be useful in situations
where you have several input scripts that rely on a dynamic inheritance
mechanism. That is, you change what the _parent slot of the input spec points
to on the fly.

Q Did you know that “gullible” is not in the Newton dictionary?

A It is now.

Q I have a large amount of static data in my application. I’d like to use Project Data to
edit this data, but it won’t fit. What can I do?

A You must have an old version of the Newton Toolkit. As of version 1.0.1, the
32K limit is gone. You could use another text editor to edit the Project Data file.
You could also use the Load command to load another NewtonScript source
file.

As an example, assume you had a file called MyData.f in the same directory as
your project and that this file contained the script that defined your constant
data structures. You could use the Load command like this:

// This line appears in your Project Data file.
// Load in the data file and use the HOME compile-time variable
// to get the path to the project folder.
Load(HOME & "MyData.f");

Q How can I figure out how much space my package and data will take on a card? I really
want my application to fit on a 1-meg card.

A The short answer is, you can’t. The long answer is, load your packages and
soups after completely erasing the card. To completely erase the card, open up
preferences and then insert the card. Before the card is loaded, you’ll get a
chance to erase it.

Look at the difference in the free space on the card. Use the value in the card
dialog. The value in the remove-package picker is the uncompressed size. You
must erase the card before you check the free space difference.

Q I have an input spec that receives data and places it into a queue. When I get data, I set
a flag in my base view (DataInQ) that indicates data is available. I know the data is
getting sent, but my input specs never seem to get called. What’s going on?

A The chances are that your base view has some code like this:

myBase.WaitForData := func()
while Not DataInQ do nil;

You may have more statements in the loop, and you may be using repeat
instead of while, but you probably have a loop that waits for the DataInQ
flag to be set. The problem is that you’re not giving control back to the
NewtonScript thread so that it can process the pending InputScript call (from
your input spec).

If you really need to wait for data, you can use either an idle script or a
repeating delayed action. The idle script will be significantly easier to
implement. You should make the delay on your idle script long enough to give
time to the Newton. Also note that the Newton is a battery-powered device,
and excessive use of this kind of programming tends to drain the users — I
mean, batteries.

Q I have an array of text elements called MyFirstArray in my Project Data file. I want
to set the text of a clParagraphView that I open to an item in this array. The
clParagraphView has a slot (strRef) that references MyFirstArray[0]. The first element
appears as the clParagraph’s view. There are four buttons on the base view, and
depending on which button is tapped I want a different element of this array to be the
clParagraph’s text. When I try replacing MyFirstArray[0] in strRef during the
viewSetupFormScript, I get as text “MyFirstArray[1]”, not the text this represents.
Here’s the code in SetupFormScript in the clParagraph:

SetValue(self, 'strRef, "MyFirstArray["&tempslot&"]");

tempslot is a slot in the base view where I store a value depending on which button is
tapped. What’s the problem?

A The basic answer is that your SetValue statement is incorrect. This statement
sets strRef to the string “MyFirstArray[” concatenated with the string
representation of tempslot concatenated with “]”. What you really want is the
string that’s in MyFirstArray at the position defined by tempslot; that statement
would be

SetValue(self, 'strRef, MyFirstArray[tempslot]);

But there are better ways to do this. Which method you use depends on when
you set the text of the clParagraphView. If you set up things at open time, use
the viewSetupFormScript, but just assign directly to the text slot:

clParagraphView.viewSetupFormScript := func()
text := MyFirstArray[tempslot];
NEWTON Q & A: ASK THE LLAMA 115

d e v e l o p Issue 19 September 1994116

Do you yea

YOUR NAME H

YOUR PHOTO
Remember that SetValue will also dirty the view and call RefreshViews. This
isn’t something you want to happen when you Open a view.

The other case is that the clParagraphView is already open. In this case, you can
use a SetValue statement to set the text slot directly, instead of setting a strRef
slot.

One other note: If the user can edit the strings you place in a clParagraphView,
you must Clone the string. Otherwise you can get a “tried to modify read only
object” error.

Q How long does it take to train a llama to be a competent NewtonScript programmer?

A About four weeks, but the hooves get in the way of really fast coding.
Thanks to our PIE Partners for the questions
used in this column, and to jXopher, Todd
Courtois, Bob Ebert, Mike Engber, Kent Sandvik,
Jim Schram, Maurice Sharp, and Scott (“Zz”)
Zimmerman for the answers.•

Have more questions? Need more answers?
Take a look at PIE Developer Info on AppleLink.•

Yearn no more: write for develop. We’re always looking for people
who might be interested in submitting an article or a column. If
you’d like to spotlight and distribute your code to thousands of
developers of Apple products, here’s your opportunity.

If you’re a lot better at writing code than writing articles, don’t
worry. An editor will work with you. The result will be something
you’ll be proud to show your colleagues (and your Mom).

So don’t just sit on those great ideas; feel the thrill of seeing them
published in develop!

For Author’s Guidelines, editorial schedule, and information
on our incentive program, send a message to DEVELOP on
AppleLink, develop@applelink.apple.com on the Internet, or
Caroline Rose, Apple Computer, Inc., One Infinite Loop,
M/S 303-4DP, Cupertino, CA 95014.

rn for the adulation of your colleagues?

ERE

HERE

KON & BAL’S PUZZLE PAGE

Heaps of Fun
KONSTANTIN OTHMER,
BRUCE LEAK,
AND STEVE NEWMAN
See if you can solve this programming puzzle, presented in the form of
a dialog between Konstantin Othmer (KON) and Bruce Leak (BAL)
— and a special guest, developer Steve Newman. The dialog gives clues
to help you. Keep guessing until you’re done; your score is the number to
the left of the clue that gave you the correct answer. Even if you never
run into the particular problems being solved here, you’ll learn some
valuable debugging techniques that will help you solve your own
programming conundrums. And you’ll also learn interesting Macintosh
trivia.

Steve I’ve got a machine that crashed into MacsBug. I think it’s this bug that
some of our beta testers have been reporting; it’s really intermittent, so
I may not get it to happen again. I’ve got to find it just by looking at
this one crash.

KON It’s not reproducible?

Steve Not if it’s the bug I’ve been hearing about. The reports are always the
same: The machine crashes while saving a file. Afterward the file is
unreadable. If they go back to an older copy of the file, the problem
doesn’t recur. No single user seems to have had this crash happen
more than twice, and no one has been able to associate it with
something they were doing in the program before they told it to save.

BAL What does this program do?

Steve It’s a PIM — personal information manager. Data entry and dialog
boxes and stuff. It’s a pretty big program, but very vanilla in its use of
the ROM — strictly Volume I stuff, plus the Memory Manager and
File Manager, of course.

KON You’ve tried stress testing? Heap scramble, low-memory conditions,
MemHell, QC, all of that?
KON & BAL’S PUZZLE PAGE 117

KONSTANTIN OTHMER AND BRUCE LEAK
have given up sleep because they need all the
time they can get to manipulate the penny stock
market via the budding information superhighway.
They’re no longer trying to break the sound
barrier, but are working on the Hedgehog
barrier. BAL wonders, “What’s that blue
Hedgehog got that our green Armadillo doesn’t
have?”•

STEVE NEWMAN (AppleLink STEVENEWMAN)
has been programming on the Macintosh since
1984. Currently, he works at Common Knowledge,
Inc., writing information management tools. In a
previous life he cowrote FullPaint, FullWrite
Professional, and Spectre. When asked if he
thought the Power Macintosh was the hottest new
game platform he’d seen since the Atari 800, he
replied “yes.”•

d e v e l o p Issue 19 September 1994118
Steve Yeah. It was a war zone, and we couldn’t bring out the bug. But it just
happened to one of our tech support people, Stephanie. I’ve taken over
her machine until I can figure out what’s going on. She closed a file, it
asked her if she wanted to save changes, she clicked Yes, and it crashed
into MacsBug with an illegal instruction.

BAL Illegal instruction? Sounds like you’ve branched off into the middle of
nowhere. Where’s the program counter?

100 Steve wh pc says we’re in CODE segment 44, $017C bytes into a routine
called Preflush. According to a link map I can look at on another
machine, segment 44 has the file-saving code.

KON Is the heap trashed?

95 Steve MacsBug says the heap is fine.

BAL Perhaps some random memory-trashing bug has overwritten part of
the code segment. Disassemble around the program counter.

90 Steve It looks like valid code, but the PC is in the middle of an instruction.

KON Do you have any purgeable code segments?

85 Steve We have a fairly complicated code segment management scheme based
on reference counting. We’re pretty careful about it, though; it’s been
a long time since we’ve had any problems there. As it happens,
segment 44 is purgeable, but it has too many entry points to do
reference counting, so we just unload it from our event loop.

BAL Sounds like code right out of the Finder. Let’s try to find out how we
managed to branch into the middle of an instruction. Do a stack crawl
and see where we came from. Let’s look at all the registers to see if one
of them contains a clue as to how we got here.

80 Steve OK. sc6 says the last call came from a function named “Document::
SaveAs(int, unsigned char)”.

KON What kind of a function name is that? It looks more like a UNIX
pathname than a function name.

Steve Hey, you should see what it looks like with name unmangling
disabled. sc7 shows another return address under that one, in
“Document::SaveAs(char*, short, unsigned char, int, unsigned char)”.

BAL SaveAs? I thought it was just doing a regular save. And why two
functions called SaveAs?

75 Steve Stephanie insists that it was a regular save — the document had been
opened from an existing file and was being saved to that same file.
But if that were true, the program should have called a function
named Save, not SaveAs. As far as having two functions with the same
name, the five-parameter one saves into a specified disk file; the two-
parameter one brings up a Standard File dialog and then calls the five-
parameter one. I’m using C++ function overloading.

BAL You sure you’re not running the Finder? Mercer should be able to
solve this for you in a snap.

KON I heard Mercer moved to Chicago. So, how did we get called?

70 Steve The call came from a “JSR (A1)” instruction. It looks like a standard
C++ virtual function call.

KON What’s the value of A1?

Steve It points into the jump table. Disassembling at that address shows a
JMP to the current program counter.

KON That makes sense. Virtual function tables are stored in the global data
segment, so their function pointers are data-to-code references, which
have to go through the jump table. So all virtual function calls go
through the jump table. That would be necessary no matter how the
vtables were implemented, since at link time there’s no way of knowing
what version of the function will get called or what segment it’s in.

BAL So the jump table is trashed relative to the data in the heap. I still think
something’s wrong with the heap. MacsBug can be funny about
deciding whether a heap is trashed. Do a heap dump and page down
until you see the block containing the program counter.

65 Steve It’s code segment 44, and everything around it looks reasonable. But
there’s a question mark next to the master pointer address.

KON That probably means the master pointer doesn’t point back to this
heap block. Let’s look at the header for the heap block and find its
master pointer to double-check MacsBug. The format of the header
depends on whether the machine is using 24- or 32-bit addressing. We
can tell the current mode, which is probably the machine’s standard
mode unless we’re in some slimy QuickDraw code, by looking at
MacBug’s status display along the left side of the screen.

Steve MacsBug says the machine is in 24-bit mode. It’s an old IIci with only
8 meg of memory.

BAL In that case, the block header is 8 bytes long. The first byte is a tag
byte that indicates the type of block (free, pointer, or handle) and the
slop factor; the next three bytes are the size; and for handles, the final
four bytes are the offset from the beginning of the heap zone to the
master pointer for this block. Check that offset in the heap and make
sure there’s a valid master pointer there.

60 Steve It agrees with the location printed in the heap dump. But the value in
that master pointer doesn’t point back to this heap block. It turns out
MacsBug won’t flag this as heap corruption, but it will put a question
mark next to the master pointer for blocks where the master pointer
doesn’t make sense.

KON Do a heap dump and keep paging down until you find the address that
it does point to.

55 Steve It points to a block labeled “CODE segment 44”. There are two code
segment 44s in the heap!

KON Is there a question mark on this one?

50 Steve No, MacsBug seems to be happy with the second block. According to
MacsBug, it has the same master pointer address as the first block.
Both blocks are marked as being locked and purgeable.

BAL But the master pointer really does point to this block, so there’s no
question mark. And “locked and purgeable” is the expected state for a
purgeable code segment that’s currently loaded — the lock flag
overrides the purgeable flag.

KON To decide whether a heap block is a resource, MacsBug looks at the
resource flag for the block. In a 24-bit heap, that flag is stored in the
high byte of the master pointer. Since both blocks think they have the
same master pointer, they’re sharing the same flag byte; and when
KON & BAL’S PUZZLE PAGE 119

d e v e l o p Issue 19 September 1994120
MacsBug searches the open resource maps to figure out which
resource each block comes from, it gets the same answer.

BAL Now we have two mysteries: why there are two heap blocks with the
same master pointer, and why the jump table points into the middle of
a routine. Let’s see if the heap blocks are really the same. Check the
heap dump to see if they have the same size, and then dump memory
from each one to see if they’re the same.

45 Steve They are the same. And by the way, you left out one mystery: If we’re
doing a Save, why is SaveAs on the stack? There’s no way that the two-
parameter SaveAs can call the five-parameter SaveAs without first
bringing up the Standard File dialog; but Stephanie insists there was
no such dialog.

KON Maybe we took another bad branch through the jump table earlier on.
Take another look at the stack crawl. When did we first enter segment
44?

40 Steve A routine called OKToClose, which is not in segment 44, called the
two-parameter SaveAs, which is.

BAL Look at the JSR instruction in OKToClose.

35 Steve It’s jumping to an A5-relative address, in the jump table. That address
contains a JMP into the middle of the two-parameter SaveAs, shortly
before the place where it calls the five-parameter version.

KON Aha! By taking a wild branch into the middle of the routine, it skipped
over the call to Standard File. Maybe all the jump table entries for this
segment are skewed by the same amount. Disassemble from $017C
bytes above where this JMP points.

30 Steve $017C bytes above the JMP target is the beginning of
Document::Save.

BAL That makes sense. OKToClose tried to call into segment 44 to the
Save routine, but something went wrong with LoadSeg, and it ended
up $017C bytes farther down, in the middle of the two-parameter
SaveAs. Two-parameter SaveAs called five-parameter SaveAs; this is an
intra-segment call, so it wasn’t affected by the bad jump table. Then
five-parameter SaveAs called Preflush, which is a virtual function, so it
went through the jump table even though it’s in the same segment.
This time the wild branch happened to hit an illegal instruction, so it
dropped into MacsBug.

KON It’s interesting that the two SaveAs routines were able to function
more or less correctly even though OKToClose branched into the
middle of the first routine, thus bypassing all of its parameter setup.

BAL Well, it sounds like all of these functions are methods of the same
object. MPW’s C++ compiler usually puts the object pointer in A4. So
any references to object data members or virtual functions would work
even though we skipped the entry code for the first SaveAs.

KON Aren’t all C++ functions fairly interchangeable? Link, save A4, load A4,
test a bit off A4, restore A4, unlink, rts? That’s part of the efficiency.

BAL In any case, we need to find out what went wrong in the LoadSeg call.
Maybe there’s a clue on the stack. Dump memory for a few hundred
bytes starting at the stack pointer.

25 Steve $0028 bytes after the stack pointer, you notice a funny value:
$4080BD0A.

KON That’s an address in ROM, probably a return address. Disassemble
around that address.

20 Steve It’s in LoadSeg, one instruction after a call to StripAddress. It looks
like this:

Disassembling from 4080bce0
_LoadSeg

+0000 4080BCE0 MOVEM.L D0-D2/A0/A1,-(A7)
+0004 4080BCE4 MOVE.L D1,-(A7)
+0006 4080BCE6 JSR Dispatcher+00C6
+000A 4080BCEA MOVE.L (A7)+,D1
+000C 4080BCEC MOVE.W $0018(A7),D0
+0010 4080BCF0 BSR.S LoadSeg+007C
+0012 4080BCF2 BEQ.S LoadSeg+0076
+0014 4080BCF4 HGetState
+0016 4080BCF6 BTST #$07,D0
+001A 4080BCFA BNE.S LoadSeg+0026
+001C 4080BCFC TST.B SegHiEnable
+0020 4080BD00 BEQ.S LoadSeg+0024
+0022 4080BD02 MoveHHi
+0024 4080BD04 HLock
+0026 4080BD06 MOVE.L (A0),D0
+0028 4080BD08 StripAddress
+002A 4080BD0A MOVEA.L D0,A0
+002C 4080BD0C MOVEA.L A5,A1
+002E 4080BD0E ADDA.W CurJTOffset,A1
+0032 4080BD12 ADDA.W (A0),A1
+0034 4080BD14 CMPI.W #$4EF9,$0002(A1)
+003A 4080BD1A BEQ.S LoadSeg+005C
+003C 4080BD1C MOVE.W $0002(A0),D0
+0040 4080BD20 BEQ.S LoadSeg+005C
+0042 4080BD22 MOVE.W $0018(A7),D1
+0046 4080BD26 MOVEQ #$00,D2
+0048 4080BD28 MOVE.W (A1)+,D2
+004A 4080BD2A MOVE.W D1,-$0002(A1)
+004E 4080BD2E MOVE.W #$4EF9,(A1)+
+0052 4080BD32 PEA $04(A0,D2.L)
+0056 4080BD36 MOVE.L (A7)+,(A1)+
+0058 4080BD38 SUBQ.W #$1,D0
+005A 4080BD3A BNE.S LoadSeg+0048
+005C 4080BD3C MOVEA.L $0014(A7),A1
+0060 4080BD40 SUBQ.L #$6,A1
+0062 4080BD42 MOVE.L A1,$0016(A7)
+0066 4080BD46 MOVEM.L (A7)+,D0-D2/A0/A1
+006A 4080BD4A ADDQ.W #$2,A7
+006C 4080BD4C TST.B LoadTrap
+0070 4080BD50 BEQ.S LoadSeg+0074
+0072 4080BD52 Debugger
+0074 4080BD54 RTS
+0076 4080BD56 MOVEQ # $0F,D0
+0078 4080BD58 SysError
+007A 4080BD5A Debugger
+007C 4080BD5C ST ResLoad
KON & BAL’S PUZZLE PAGE 121

d e v e l o p Issue 19 September 1994122

1

1

+0080 4080BD60 SUBQ.W #$4,A7
+0082 4080BD62 MOVE.L #$434F4445,-(A7) ;'CODE'
+0088 4080BD68 MOVE.W D0,-(A7)
+008A 4080BD6A GetResource
+008C 4080BD6C MOVEA.L (A7)+,A0
+008E 4080BD6E MOVE.L A0,D0
+0090 4080BD70 RTS

BAL The JSR to Dispatcher+00C6 flushes the instruction cache. Because
the 68030 has separate instruction and data caches, LoadSeg needs to
do that to make sure that the newly loaded data is eligible to make it
into the cache. Next the subroutine at +007C gets the code resource.
If the handle isn’t locked, it’s moved high and locked. Then we find the
first jump table entry for the segment, and test to see if it’s loaded by
checking whether the first instruction is $4EF9 (a JMP.L). If it’s not
loaded, each entry for this segment is updated from the unloaded form
(involving a call to LoadSeg) to the loaded form (involving a JMP.L).
But it must have skipped this, because otherwise the PEA at +0052
would have overwritten the return address from the call to StripAddress,
and that return address is still on the stack.

KON It skipped over the code to transform the jump table entries, so the
segment must have already been loaded. But if the segment was
loaded, the jump table wouldn’t have any LoadSeg calls for that
segment. Somehow LoadSeg was called for a segment that was already
loaded. So your application must be calling LoadSeg manually!

5 Steve Honest, I’m not calling LoadSeg manually. A search of my source code
verifies this.

BAL The only other way for LoadSeg to get called is through the jump
table. How does your reference-counting segment unloader work? Is it
possible that a segment gets called by your reference-counting code
while you’re in the process of loading it?

0 Steve It shouldn’t be. The reference counting is done manually; we don’t
patch LoadSeg or anything nasty like that. At any rate, segment 44
isn’t reference-counted.

KON Here’s an idea: When LoadSeg was called to bring in segment 44, it
called GetResource to bring the resource into memory. Assuming the
code segment had been loaded in the past and later unloaded and
purged, GetResource would have called ReallocHandle, which was
short on memory and called your GrowZone hook. Your GrowZone
function started freeing memory and then called another function in
segment 44, triggering a recursive call to LoadSeg.

BAL With enough memory free, segment 44 was loaded. Then the
GrowZone function exited back to the ReallocHandle call, which
succeeded, and segment 44 was loaded again when the GetResource
call completed. When the original LoadSeg checked the state of the
jump table, it was already kosher, so the test for $4EF9 fired and the
return address from StripAddress didn’t get overwritten.

KON That certainly explains the confused heap. The GZSaveHnd that was
passed to the GrowZone function shouldn’t be touched, but you called
GetResource on it indirectly via LoadSeg. It also explains the skewed
jump table entries: after allocating a memory block, ReallocHandle
simply assigns the master pointer to point to that block, without
preserving the handle state stored in the high byte of the master

5

S
8
5
3
5

T
o

pointer. This effectively sets the handle state to 0, erasing the HLock
call from the inner LoadSeg. Thus, when the outer LoadSeg called
MoveHHi on the second copy of the segment, the lock bit in the
master pointer — which is shared by both blocks — was clear. So when
MoveHHi called CompactMem, the first copy of the segment was free
to move (in this case, by $017C bytes). Finally, GetResource returned
to the original LoadSeg, which set the lock bit again.

BAL Take another look at your link map. Are there any routines in segment
44 that could be called from your GrowZone hook?

Steve That’s funny. There are some routines in this segment that shouldn’t
be there — in fact, they shouldn’t be anywhere. They’re supposed to
be inline functions!

BAL The C++ compiler won’t always copy a function inline, even if it’s
declared that way. This can happen if the function body is too
complicated. Segment loading is a foreign concept that doesn’t fit well
into a C++ class hierarchy, and the MPW implementation has a few
puzzlers.

KON Some of the calls to these “inline” functions were from segment 44, so
they happened to be placed in that segment. Then, when the
GrowZone hook tried to call one of the inline functions, it had to load
segment 44 — and the rest is history.

BAL C++ claims another victim.

Steve So how do I avoid this in the future? Put segment #pragmas around all
my inline functions?

BAL That’s a superstition believed by some people who should know better.
It doesn’t work.

KON What does work is what those Finder folks did. MPW CFront puts the
uninlineable functions at the end of the file it’s compiling. The Finder
folks just end every file with “#pragma segment CFrontCruft,” and all
the unexpected functions wind up in one easy-to-manage segment.

Steve “Uninlineable” isn’t a word.

BAL That’s why it’s called cruft. Incidentally, this technique also catches
functions that the compiler has to synthesize entirely, such as
constructors and destructors for classes where they’re needed (to
initialize the vtable, for example) but aren’t declared explicitly. And by
looking at the link map, you can see what the compiler is doing behind
your back — although you might be happier not knowing.

KON Nasty.

BAL Yeah.
KON & BAL’S PUZZLE PAGE 123

CORING
0–100 You should be a guest puzzler yourself; send in a draft to AppleLink DEVELOP.
5–75 Pretty sharp; maybe you can write the first hot OpenDoc container app.
0–50 Maybe you can write an OpenDoc part.
–25 Maybe you’d better stick to AppleScript.•

hanks to scott douglass for reviewing this column, and to Ludis Langens for wading into a haystack
f hex and emerging with a needle labeled 4080BD0A.•

124
For a cumulative index to all issues of
develop, see this issue’s CD.•

A
active shape (OpenDoc) 11
“Adding QuickDraw GX Printing

to QuickDraw Applications”
(Hersey) 24–47

AdjustMenus method (OpenDoc)
15

AgentBuilder, script inheritance
and 90

Alexander, Pete (“Luke”) 65
AOCE catalogs, browsing

104–105
AppIsColorSyncAware (Color

Picker Manager) 71
Apple digital camera, Macintosh

Q & A 107
AppleScript 1.1 API, script

inheritance and 89, 91–99
application-domain objects, script

inheritance and 91
application overrides (QuickDraw

GX) 28–29
application-owned dialogs, Color

Picker Manager and 72, 75, 81
arbitrator object (OpenDoc) 8
Avitzur, Ron 20

B
“Balance of Power” (Evans),

tuning PowerPC memory usage
17–19

bitmapped graphics, QuickDraw
GX and 48–64

block headers, KON & BAL
puzzle 119

blocking, PowerPC memory usage
and 18

bookkeeping calls, OpenDoc 7
“Building an OpenDoc Part

Handler” (Piersol) 6–16

C
cache lines, PowerPC and 17, 22
caches, PowerPC memory usage

and 17–18, 22
cache thrashing, PowerPC and

17–18, 22
camera library (QuickDraw GX)

63

INDEX
d e v e l o p Issue 19 September 1994
CanAnimatePalette (Color Picker
Manager) 71

CanModifyPalette (Color Picker
Manager) 70

canvases (OpenDoc) 11
Catalogs Extension, Macintosh

Q & A 104
CClockFrame::FrameShape-

Changed (OpenDoc) 11
CClockFrame::InitClockFrame

(OpenDoc) 12
CClockPart (OpenDoc) 10, 11,

12
CClockPart::DoAdjustMenus

(OpenDoc) 15
CClockPart::ExternalizeContent

(OpenDoc) 14
CClockPart::Initialize (OpenDoc)

12, 13
CClockPart::InternalizeContent

(OpenDoc) 14
CDrawInitiator (OpenDoc) 10
CFacet class (OpenDoc) 8, 9
CFacet::HandleMouseDown

(OpenDoc) 12
CFrame::ActivateFrame

(OpenDoc) 12
CFrame class (OpenDoc) 8, 9
CFrame::FocusStateChanged

(OpenDoc) 12
CFrontCruft, KON & BAL

puzzle 123
CheckAndAddProperties

(OpenDoc) 10
CheckIfPickerCanClose (Color

Picker Manager) 80
clParagraphView, Newton Q & A

115–116
'cmat' resource, Macintosh Q & A

101
collection index (QuickDraw GX)

27
Collection Manager (QuickDraw

GX) 27–28, 38
collections (QuickDraw GX)

27–28
color-changed procedure (Color

Picker Manager) 71–73
Color Picker 2.0 68–84
color picker dialogs 72–76
Color Picker Manager 68–84

setting original/new colors
76–77
color picker–owned dialogs, Color
Picker Manager and 72, 76, 81

colorProc (Color Picker Manager)
71

ColorSync
Color Picker 2.0 and 69, 70,

76, 77
Macintosh Q & A 101

Communications Toolbox,
Macintosh Q & A 103–104

CompactMem, KON & BAL
puzzle 123

Compile function, Newton Q & A
112–113

Component Manager
color pickers and 68
sequence grabber and 86

compound documents 6
constructors (OpenDoc) 9–10
CopyBits, in QuickDraw GX

60–61
CPart::AdjustMenus (OpenDoc)

15
CPart class (OpenDoc) 8, 9
CPart::Draw (OpenDoc) 10
CPart::InitPart (OpenDoc) 10
CPart::InstallMenus (OpenDoc)

12
CreateIndexedBitmapShape,

QuickDraw GX and 61
CreateOffscreen, QuickDraw GX

and 61
Custom Page Setup command,

QuickDraw GX and 34–35
Custom Page Setup dialog,

QuickDraw GX and 36

D
DataInQ, Newton Q & A 115
DelegateComponentCall,

Macintosh Q & A 106–107
“Designing Applications for the

Power Macintosh” (Robbins
and Avitzur) 20–23

DialogIsModal (Color Picker
Manager) 74

DialogIsMoveable (Color Picker
Manager) 74

dialogOrigin (Color Picker
Manager) 71

DialogSelect (Color Picker
Manager) 78

direct manipulation, on the Power
Macintosh 21

disk-based bitmap shapes
(QuickDraw GX) 51–53

dispatcher object (OpenDoc) 8
DoPickerEdit (Color Picker

Manager) 78, 81–82
DoPickerEvent (Color Picker

Manager) 77–80
Draw method (OpenDoc) 10
DrawText, Macintosh Q & A 102

E
Edit menu, Color Picker Manager

and 78, 81–82
escape characters (\), Newton

Q & A 113
Evans, Dave 17
event filter procedure (Color

Picker Manager) 71–73
eventProc (Color Picker Manager)

71
ExecuteEventInContext

(SimpliFace2), script
inheritance and 97, 98, 99

ExtractPickerHelpItem (Color
Picker Manager) 83–84

F
FaceSpan, script inheritance and

90
FacetAdded method (OpenDoc)

15
facet objects, OpenDoc and 8
FacetRemoved method

(OpenDoc) 15
facets (OpenDoc) 9, 15
Fast Dispatch method

(components), Macintosh
Q & A 106

flags field (Color Picker Manager)
70–71

foci (OpenDoc) 12, 15–16
Focus method (OpenDoc) 14
forecast events, Color Picker

Manager and 80
format collections (QuickDraw

GX) 28
frame objects, OpenDoc and 8
frames (OpenDoc) 9, 11
frame shape (OpenDoc) 11

G
Games folder 3
GetAttachedScript, script
inheritance and 96

GetColor (Color Picker Manager)
69, 70

GetMessage, Newton Q & A
113–114

GetParentObj, script inheritance
and 98

GetPickerEditMenuState (Color
Picker Manager) 78, 81–82

GetPickerProfile (Color Picker
Manager) 77

GetPixMapShape, QuickDraw GX
and 65

GetResource, KON & BAL
puzzle 122

global variables, script inheritance
and 94–98

“Graphical Truffles” (Alexander), a
cool QuickDraw GX clipping
effect 65–67

Graphing Calculator desk
accessory 20–23

GrowZone, KON & BAL puzzle
122–123

GXCacheShape, Macintosh
Q & A 100

GXChangedShape 51, 53
GXCheckBitmapColor 59
GXConvertPrintRecord 34
GXCopyDeepToShape 63
GXCopyToShape 63
GXDisposeFormat 38
GXDrawShape 59, 60–61, 67

Macintosh Q & A 100
GXEnterGraphics 30
GXEqualShape 64
GXFindFormatProfile, Macintosh

Q & A 100
GXFinishPage 42
GXFlattenFont, Macintosh Q & A

102
GXFlattenJob 33
GXFlattenJobToHdl 33
GXFormatDialog 36
GXFreeBuffer, Macintosh Q & A

102
GXGetBitmap 49
GXGetBitmapParts 64
GXGetPixelShape 64
GXGetShapeStructure 51
GXImagePage, Macintosh Q & A

100
GXInitPrinting 30
GXInstallApplicationOverride 28,

32
GXInstallQDTranslator 40
GXJobDefaultFormatDialog 36
gxJob objects (QuickDraw GX)

creating/disposing of 31–32
saving/loading 33–34
updating 32–33

GXJobPrintDialog 36
Macintosh Q & A 101

GXLockShape 51, 53
gxMapTransformShape

(QuickDraw GX) 55
GXMoveShape 67
GXNewGraphicsClient 30
GXNewJob 31
gxPortAlignPattern (QuickDraw

GX) 64
gxPortMapPattern (QuickDraw

GX) 64
GXPrimitiveShape 66
GXPrintingEvent, overriding 32,

36
GXPrintPage 42
GXRemoveQDTranslator 40
GXRotateShape 56
GXRotateTransform 55
GXScaleShape 56, 66
GXSetBitmap 49–50
GXSetBitmapParts 64
GXSetPictureParts 67
GXSetPixelShape 64
GXSetShapeAttributes 51, 53
GXSetShapeBounds 66
GXSetShapeTextAttributes 66
GXSetShapeType 59
GXSimplifyShape 64
GXSkewTransform 55
GXStartPage 42–43
GXUnlockShape 53
GXUpdateJob 32–33

H
HandleEvent method (OpenDoc)

12, 13
Hersey, Dave 24

I
Icon Utilities, Macintosh Q & A

105
idle time, OpenDoc and 12–13
“Implementing Inheritance In

Scripts” (Smith) 89–99
inheritance, implementing in

scripts 89–99
indexed bitmap shapes

(QuickDraw GX) 49, 54–55
INDEX 125

126
InitPartFromStorage method
(OpenDoc) 14

InitPart method (OpenDoc) 10
Installer, Macintosh Q & A

107–108

J
job collections (QuickDraw GX)

28
Johnson, Dave 110

K
kApplItemHit (Color Picker

Manager) 78
kCancelHit (Color Picker

Manager) 78
kColorChanged (Color Picker

Manager) 78
kDidNothing (Color Picker

Manager) 78
kNewPickerChosen (Color Picker

Manager) 78
kOKHit (Color Picker Manager)

78
“KON & BAL’s Puzzle Page”

(Othmer, Leak, and Newman),
Heaps of Fun 117–123

kOSAModeDontStoreParent,
script inheritance and 93

kXMPPropContents (OpenDoc)
10, 14

L
Leak, Bruce 117
LoadSeg, KON & BAL puzzle

120–123

M
Macintosh AV models, using the

sequence grabber 87–88
Macintosh Q & A 100–109
MacsBug, KON & BAL puzzle

117
MailBlockInfo, Macintosh Q & A

108–109
“Making the Most of QuickDraw

GX Bitmaps” (Surovell) 48–64
math library (QuickDraw GX) 62
MCMovieChanged, Macintosh

Q & A 103
media capture, using the sequence

grabber 85–88
memory usage, PowerPC 17–19,

22
d e v e l o p Issue 19 September 1994
Message Manager (QuickDraw
GX) 28–29

message overrides (QuickDraw
GX) 28–29

MessagePad, Newton Q & A 112
mInfo (Color Picker Manager) 72
morph tables, generating

checksums 4
MoveHHi, KON & BAL puzzle

123
MyAdjustFormats (Simple

Sample) 39, 40
MyAdjustMenus (Simple Sample)

34
MyAdjustMenusForPrintDialogs

(Simple Sample) 36
MyCleanUpGXIfPresent

(QuickDraw GX) 30–1
MyColorChangedProc (Color

Picker Manager) 72, 73
MyConvertMenuItem (Simple

Sample GX) 35
MyCreateDocument (Simple

Sample GX) 31, 32
MyDisposeDocument (Simple

Sample GX) 31, 38
MyDisposePage (Simple Sample

GX) 37–38
MyDocumentRec (Simple Sample

GX) 31
MyDoCustomPageSetup (Simple

Sample GX) 36
MyDoMenuCommand (Simple

Sample GX) 34–35
MyDoPageSetup (Simple Sample

GX) 36
MyGXPrintLoop (Simple Sample

GX) 41–42
MyInitGXIfPresent (Simple

Sample GX) 30
MyInsertPage (Simple Sample

GX) 37
MyLoadPrintInfo (Simple Sample

GX) 33
MyPrintAShape (Simple Sample

GX) 43
MyPrintDocument (Simple

Sample GX) 36–37
MyPrintingEventOverride

(Simple Sample GX) 32
MyPrintOneCopy (Simple Sample

GX) 44–45
MyReplaceCollectionItem (Simple

Sample GX) 45
MySaveFormatRefs (Simple

Sample GX) 39
MySavePrintInfo (Simple Sample
GX) 33, 39

N
NewCollection (QuickDraw GX)

28
newColorChosen (Color Picker

Manager) 72
Newman, Steve 117
Newton Q & A: Ask the Llama

112–116

O
'oapp', script inheritance and 97
offscreen drawing, with

QuickDraw GX 61
offscreen library (QuickDraw GX)

62
OKToClose, KON & BAL puzzle

120
OpenDoc 6–16

document storage 13–15
drawing code 10–11
event handling 12–13
freeing memory 16
initialization code 9–10
object classes (listed) 8
and resources 9
shape negotiation 11

Open Scripting Architecture
(OSA), script inheritance and
89–90, 98

OSADoEvent, script inheritance
and 98

OSAGetProperty, script
inheritance and 93

OSASetProperty, script
inheritance and 93, 98

OSAStore, script inheritance and
93

Othmer, Konstantin 117
oval library (QuickDraw GX) 62

P
Page Setup dialog, QuickDraw

GX and 35–36
paper-type collections

(QuickDraw GX) 28
part handlers (OpenDoc) 6–16
partInfo field (OpenDoc) 14–15
part objects (OpenDoc) 7, 8
parts (OpenDoc) 7
PBGetCatInfo, Macintosh Q & A

105, 106

'PDEF' 10 resources, QuickDraw
GX and 26

'pdoc' Apple event handler
(QuickDraw GX) 46–47

PicHandle (QuickDraw),
converting to gxPicture shapes
40

PickColor (Color Picker Manager)
69, 70–72, 74

pickerType (Color Picker
Manager) 71

“Pick Your Picker With Color
Picker 2.0” (Holland) 68–84

Piersol, Kurt 6
pixelSize values (QuickDraw GX)

48, 50
pixMaps (QuickDraw) 48

versus bitmaps 61
placeWhere (Color Picker

Manager) 71
PostScript code, QuickDraw GX

and (Macintosh Q & A)
101–102

Power Macintosh, designing
applications for 20–23

PowerPC, tuning memory usage
17–19, 22

PreFlush, KON & BAL puzzle
118, 120

PrGeneral, Macintosh Q & A 101
Print dialog, QuickDraw GX and

36–38
printNextPageScript, Newton

Q & A 112
Print One Copy command,

QuickDraw GX and 34–35
Process Manager, Macintosh

Q & A 105
prompt field (Color Picker

Manager) 72
protoRoll, Newton Q & A 112

Q
qd library (QuickDraw GX) 62
QuickDraw applications,

compatibility with QuickDraw
GX 24–47

QuickDraw GX
clipping effect 65–67
compatibility with non–

QuickDraw GX
applications 24–47

creating bitmap shapes
48–49

disk-based bitmap shapes
51–53
indexed bitmap shapes 49,
54–55

libraries 62–63
manipulating bitmap shapes

49–64
morph tables 4
page-to-format

correspondences 38–39
pixel value representation

50
PostScript code and

(Macintosh Q & A)
101–102

printer drivers (Macintosh Q
& A) 100–102

Printing Manager and 31
shape caches (Macintosh Q

& A) 100
transfer modes 60
translating QuickDraw

commands 39–44
QuickTake, Macintosh Q & A

107
QuickTime 2.0, media capture

using the sequence grabber
85–88

R
ramp library (QuickDraw GX) 62
ReallocHandle, KON & BAL

puzzle 122
Redo method (OpenDoc) 13
registration of components,

Macintosh Q & A 107
Robbins, Greg 20
ROM_coverPageFormat, Newton

Q & A 112
root parts (OpenDoc) 9
Run Apple event, script

inheritance and 97
runtime objects, in OpenDoc 7–8

S
SaveAs, KON & BAL puzzle 120
scripts, implementing inheritance

89–99
seqGrabPlayDuringRecord

(sequence grabber) 87
sequence grabber, media capture

85–88
session object (OpenDoc) 7–8
set associative caches, PowerPC

and 17
SetPickerProfile (Color Picker

Manager) 77
SetValue, Newton Q & A
115–116

SGGetChannelSettings (sequence
grabber) 87

SGIdle (sequence grabber) 87
SGInitialize (sequence grabber)

85
SGNewChannel (sequence

grabber) 86
SGNewChannelFromComponent

(sequence grabber) 86
SGSetChannelBounds (sequence

grabber) 86, 87
SGSetChannelSettings (sequence

grabber) 86
SGSetChannelUsage (sequence

grabber) 86, 87
SGSetDataOutput (sequence

grabber) 87
SGSetGWorld (sequence grabber)

86
SGStartPreview (sequence

grabber) 86
shapes (OpenDoc) 11
shared handlers, script inheritance

and 94–98
signatures, deleting 104
Simple Sample application

(QuickDraw GX) 29, 31
SimpliFace2 sample program 90,

95, 97
script inheritance hierarchy

91, 95
Smith, Paul G. 89
SMPEnumerateBlocks, Macintosh

Q & A 108
SOM (System Object Model)

(IBM) 6–7
“Somewhere in QuickTime”

(Wang and Urbina), media
capture using the sequence
grabber 85–88

StartMovie, Macintosh Q & A
102–103

StartUsing, script inheritance and
97

static data, editing (Newton
Q & A) 114

storage library (QuickDraw GX)
63

storage unit objects (OpenDoc)
10

Surovell, David 48
system-owned dialogs, Color

Picker Manager and 72,
74–75, 81
INDEX 127

128
T
tag (QuickDraw GX) 27
tag list position (QuickDraw GX)

27
TEGetOffset, Macintosh Q & A

109
transferMode library (QuickDraw

GX) 62–63
transfer modes (QuickDraw GX)

60
transforms

OpenDoc 11
QuickDraw GX 55

TrapAvailable, Macintosh Q & A
105

TScriptableObject::SetProperty,
script inheritance and 94

TScriptableObject::StartUsing,
script inheritance and 97

TScriptAdministrator::
GetAttachedScript, script
inheritance and 96

U
Undo method (OpenDoc) 13
undo stack object (OpenDoc) 8
UpdateStatus, Newton Q & A

113–114
Urbina, Fernando 85
used shape (OpenDoc) 11

V
vApplication, Newton Q & A 112
vClipping, Newton Q & A 112
“Veteran Neophyte, The”

(Johnson), Rubber Meets Road
110–111

viewFlags, Newton Q & A 112
view ports, versus graphics ports

(QuickDraw GX) 59–60
viewSetupFormScript, Newton

Q & A 112, 115
virtual function calls, KON &

BAL puzzle 118–119
vVisible, Newton Q & A 112

W
WaitNextEvent

OpenDoc and 12
Power Macintosh and 23

Wang, John 85

X
XMPArbitrator (OpenDoc) 8
d e v e l o p Issue 19 September 1994
XMPDispatcher (OpenDoc) 8
XMPFacet (OpenDoc) 8, 9
XMPFrame (OpenDoc) 8, 9
XMPPart (OpenDoc) 8–9
XMPPart::AbortRelinquishFocus

(OpenDoc) 15
XMPPart::BeginRelinquishFocus

(OpenDoc) 15
XMPPart::CommitRelinquishFocus

(OpenDoc) 15
XMPPart::FocusAcquired

(OpenDoc) 16
XMPPart::FocusLost (OpenDoc)

16
XMPPart::HandleEvent

(OpenDoc) 12
XMPPart::Purge (OpenDoc) 16
XMPPart::ReadPartInfo

(OpenDoc) 15
XMPPart::WritePartInfo

(OpenDoc) 15
XMP prefix (OpenDoc) 6
XMPSession (OpenDoc) 7–8
XMPStorageUnit::DeleteValue

(OpenDoc) 14
XMPStorageUnit::GetOffset

(OpenDoc) 14
XMPStorageUnit::GetValue

(OpenDoc) 14
XMPStorageUnit::InsertValue

(OpenDoc) 14
XMPStorageUnit::SetOffset

(OpenDoc) 14
XMPStorageUnit::SetValue

(OpenDoc) 14
XMPUndo (OpenDoc) 8, 13
XMPUndo::AddActionToHistory

(OpenDoc) 13
XMPUndo::Redo (OpenDoc) 13
XMPUndo::Undo (OpenDoc) 13

Y
YUV compression, sequence

grabber and 87–88

Z
zone names, Macintosh Q & A

108

Apple provides a wealth of information,

products, and services to assist

developers. APDA, Apple’s source for

developer tools, and Apple Developer

University are open to anyone who

wants access to development tools and

instruction. Developers may access

additional information and services

through Apple’s Developer Programs.

R E S O U R C E S
APDA To order products or receive a
complimentary catalog, call 1-800-282-
2732 in the U.S., 1-800-637-0029 in
Canada, (716)871-6555 internationally, or
(716)871-6511 for fax. You can also order
electronically (AppleLink APDA; Internet
apda@applelink.apple.com; America Online
APDAorder; or CompuServe 76666,2405)
or write APDA, Apple Computer, Inc., P.O.
Box 319, Buffalo, NY 14207-0319.
APDA offers convenient worldwide
access to development tools,
resources, training products, and
information for anyone interested in
developing applications on Apple
platforms. Customers periodically
receive the APDA Tools Catalog
featuring hundreds of Apple and
third-party development products.
There are no membership fees.
APDA offers convenient payment
and shipping options, including site
licensing.

Apple Developer University
(DU) provides training designed to
increase your software development
productivity. The curriculum
includes courses to get you started
programming on Apple platforms,
as well as advanced, in-depth
training on the newest Apple
technologies, such as PowerPC,
OpenDoc, QuickDraw GX, and
Newton. DU offers courses in
Cupertino CA and at selected
training locations. The DU
Extension partner located in
Portsmouth NH also schedules
selected courses in its facilities.

In addition to classroom training,
DU offers multimedia self-paced
courses and low-cost mini-course
tutorials.

The Associates Program is Apple’s
primary program for developers
across all Apple technologies,
including Macintosh, Personal
Interactive Electronics (such as
Newton), and multimedia. It’s a
Apple Developer University The
registrar at (408)974-4897 can reserve
your place or send a current Curriculum
Guide and Course Schedule. You can also
send an AppleLink to DEVUNIV or write
Developer University, Apple Computer, Inc.,
One Infinite Loop, M/S 305-1TU, Cupertino,
CA 95014. Self-paced products should be
ordered directly through APDA.
low-cost, self-support program that
also provides a connection with
Apple and fellow developers,
information on new technologies,
and discounts on equipment.

The Apple Multimedia Program
is designed for developers interested
in the emerging multimedia market.
Program features include a quarterly
mailing and discounts on third-party
products, training, and events.

The Macintosh Technology
Partners Program is open to
Apple-selected strategic developers
focused on Macintosh technology,
including PowerPC, QuickTime,
QuickDraw GX, and PowerTalk. In
addition to receiving the same
development information and tools
as members of the Associates
Program, Macintosh Technology
Partners receive programming-level
development support via electronic
mail. Membership in this program is
limited to strategic developers who
directly contribute to Apple’s long-
term product plans and business
objectives.

The PIE Partners Program is
open to Apple-selected strategic
developers focused on Personal
Interactive Electronics. It offers the
same core features as the Associates
Program, but also includes
programming-level development
support via electronic mail,
additional hardware purchasing
privileges, marketing programs, and
media production assistance.
Apple Developer Programs Call the
Developer Support Center at (408)974-
4897, AppleLink DEVSUPPORT, or write
One Infinite Loop, M/S 303-2T, Cupertino,
CA 95014, for information or an application
form. Developers outside the U.S. and
Canada should instead contact the Apple
office in their country for information about
developer programs.

Name

Yes! Send me a year (4 issues) of develop and the develop
Bookmark CD for only $30 in the U.S. That’s 25% off the cover
price. All other countries $50.

Company/Institution Title

City State/Province Zip Code

Country Telephone

Please bill me. Payment enclosed.

B
9
9
4
A

Phone orders 1-800-877-5548 in the U.S.
(815)734-1116 other countries

Fax orders (815)734-1127
AppleLink DEV.SUBS
Internet dev.subs@applelink.apple.com
Allow 6–8 weeks for delivery. U.S. subscription price is $30 for 4 issues of develop and the
develop Bookmark CD. All other countries $50 U.S. For Canadian orders, price includes
GST (R100236199). Please make check payable to Apple Computer, Inc.

Address

Save 25%

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 201 MT. MORRIS, IL

d e v e l o p
Apple Computer, Inc.
P.O. Box 531
Mount Morris, IL 61054-7858
U.S.A.

POSTAGE WILL BE PAID BY ADDRESSEE

NO POSTAGE
NECESSARY

IF MAILED IN THE
UNITED STATES

	Table of Contents
	EDITOR’S NOTE
	LETTERS
	Back Issues
	Building an OpenDoc Part Handler
	OVERVIEW OF OPENDOC
	PART HANDLERS
	RUNTIME OBJECTS

	A RUNNING START
	INITIALIZATION CODE
	THE CONSTRUCTOR
	XMPPART::INITPART

	DRAWING CODE
	HANDLING LAYOUT

	EVENT HANDLING
	XMPPART::HANDLEEVENT
	PUTTING UP A MENU BAR
	GETTING IDLE TIME
	UNDO AND REDO

	STORAGE
	DEALING WITH STORAGE UNITS
	BASIC I/O FOR YOUR PART
	PART INFORMATION ATTACHED TO FRAMES

	BEING A GOOD OPENDOC CITIZEN
	ADDING AND REMOVING FACETS
	ADJUSTING MENUS
	RELINQUISHING ARBITRATOR FOCI
	FREEING MEMORY

	IN CLOSING

	BALANCE OF POWER:Tuning PowerPC Memory Usage
	CACHE BASICS
	CACHE THRASHING
	CODE STYLE
	INSTRUCTION THRASHING
	DATA STRUCTURES
	DON’T FORGET

	Designing Applications for the Power Macintosh
	THE TIPS IN DETAIL

	Adding QuickDraw GX Printing to QuickDraw Applications
	Figure 1.
	DIFFERENT LEVELS OF QUICKDRAW GX SUPPORT
	A WORD ABOUT COMPATIBILITY
	SOME FUNDAMENTALS
	CREATING A FOUNDATION TO BUILD ON: THE COLLECTION MANAGER
	Figure 2.

	OVERRIDING MESSAGES FROM AN APPLICATION: THE MESSAGE MANAGER

	BECOMING AWARE
	PREPARATION
	Listing 1.

	CREATING AND DISPOSING OF GXJOB OBJECTS
	Listing 2.

	OVERRIDING GXPRINTINGEVENT
	Listing 3.

	UPDATING GXJOB OBJECTS ON RESUME EVENTS
	SAVING AND LOADING A DOCUMENT’S GXJOB
	Listing 4.

	CONFIGURING AND HANDLING MENUS
	Figure 3.
	Listing 5.

	INVOKING THE PRINTING DIALOGS AND SUPPORTING CUSTOM FORMATTING
	Listing 6.
	Listing 7.

	STORING THE PAGE-TO-FORMAT CORRESPONDENCES
	Listing 8.

	TRANSLATING AND PRINTING QUICKDRAW COMMANDS
	Listing 9.
	Listing 10.
	Listing 11.

	PRINT ONE COPY
	Listing 12.

	DRAG-AND-DROP PRINTING
	Listing 13.

	WHERE TO TAKE IT FROM HERE
	RELATED READING

	Making the Most of QuickDraw GX Bitmaps
	CREATING BITMAP SHAPES
	Listing 1.

	MANIPULATING BITMAP SHAPES
	PIXEL VALUE REPRESENTATION
	Figure 1.
	Listing 2.
	USING DISK-BASED PIXEL IMAGES
	ACCESSING IMAGE DATA
	Listing 3.

	MEMORY ISSUES
	Listing 4.

	GEOMETRIC OPERATIONS One
	ALTERING THE TRANSFORM VERSUS THE GEOMETRY
	Figure 2.
	Figure 3.

	ROTATION
	Listing 5.

	SKEWING AND PERSPECTIVE
	SCALING
	Listing 6.
	Figure 4.

	CLIPPING AND MASKING
	Listing 7.

	QUICKDRAW GX TRICKS FOR QUICKDRAW DOGS
	THE VIEW PORT LIST VERSUS THE GRAPHICS PORT
	BITMAPS AND TRANSFER MODES
	ONSCREEN BITMAPS
	COPYBITS IN QUICKDRAW GX
	DRAWING OFFSCREEN WITH QUICKDRAW GX
	Listing 8.

	BITMAP SHAPES VERSUS PIXMAPS
	Listing 9.

	THE QUICKDRAW GX LIBRARIES
	AND A FEW MORE THINGS . . .
	EXECUTION OVERHEAD
	SHARED IMAGE BUFFERS
	USING BITMAPS AS PATTERNS
	BITMAP SHAPE EQUIVALENCE
	SIMPLIFICATION
	SUBSET EDITING

	SO GET GOING

	GRAPHICAL TRUFFLES: A Cool QuickDraw GX Clipping Effect
	CREATING THE SHAPES
	Figure 1.
	Figure 2.
	Figure 3.

	POSITIONING AND SCALING THE TEXT SHAPE
	SETTING THE CLIP SHAPE
	DRAWING THE OUTLINE
	DRAWING THE PICTURE
	THAT’S ALL, FOLKS

	Pick Your Picker With Color Picker 2.0
	SPECIFYING COLORS
	USING THE HIGH-LEVEL CALLS
	Figure 1.
	PICKCOLOR PARAMETER BLOCK
	Listing 1.

	IMPLEMENTING PICKCOLOR

	USING THE LOW-LEVEL CALLS
	Listing 2.
	Listing 3.
	Listing 4.
	CREATING THE DIALOG
	Listing 5.
	Listing 6.
	Listing 7.

	SETTING AND GETTING THE CURRENT COLOR
	SETTING THE DESTINATION PROFILE
	GIVING EVENTS TO THE COLOR PICKER
	Table 1.
	Listing 8.

	FORECAST EVENTS
	HANDLING THE EDIT MENU
	Listing 9.

	USING BALLOON HELP
	Listing 10.

	TAKE YOUR PICK

	SOMEWHERE IN QUICKTIME: Media Capture Using the Sequence Grabber
	WHAT IS THE SEQUENCE GRABBER?
	USING THE SEQUENCE GRABBER
	SPECIAL CONSIDERATIONS FOR AV MODELS
	GO MAKE A MOVIE
	RELATED READING

	Implementing Inheritance In Scripts
	CHOOSE A SCRIPT INHERITANCE HIERARCHY
	Figure 1.
	Figure 2.
	Figure 3.

	LINK SCRIPTS IN AN INHERITANCE CHAIN
	ABOUT APPLESCRIPT SCRIPT OBJECTS AND INHERITANCE CHAINS
	Figure 4.

	SETTING A SCRIPT’S PARENT PROPERTY
	STRIPPING COPIED PARENT SCRIPTS
	Listing 1.

	ATTACH SHARED HANDLERS AND GLOBAL VARIABLES SCRIPTS
	HOW IT ALL WORKS
	Figure 5.
	Listing 2.
	Listing 3.

	A RUN HANDLER WRINKLE

	INHERITANCE IN OTHER OSA LANGUAGES
	WHERE YOU’VE BEEN, WHERE YOU’RE GOING
	Listing 4.

	Macintosh Q & A
	THE VETERAN NEOPHYTE: Rubber Meets Road
	RECOMMENDED READING

	Newton Q & A: Ask the Llama
	KON & BAL’S PUZZLE PAGE: Heaps of Fun
	INDEX
	RESOURCES
	Subscription Card

