ColorSync 2.0 Source Control With SourceServer e About Scripting Dictionaries

e Apple

Music the Easy
Way: The
QuickTime Music
Architecture

The Basics of
QuickDraw 3D
Geometries

Implementing
Shared Internet
Preferences With
Internet Config

Multipane Dialogs

Document
Synchronization

Power Macintosh:

The Next
Generation

$10.00

develop

Issue 23 September 1995

develop

EDITORIAL STAFF

Editor-in-Cheek Caroline Rose
Managing Editor Toni Moccia
Technical Buckstopper Dave Fohnson
Bookmark CD Leader Alex Dosher
Able Assistant Meredith Best

Our Boss Mark Bloomquist

His Boss Dennis Matthews

Review Board 7im Luther, Dave Radcliffe,
Fim Reekes, Bryan K. “Beaker” Ressler,
Larry Rosenstein, Andy Shebanow, Gregg
Williams

Contributing Editors Lorraine Anderson,
Toni Haskell, Judy Helfand, Tim Monroe,
Cheryl Potter; foan Stigliani

Indexer Marc Savage

ART & PRODUCTION

Production Manager Diane Wilcox

Technical Illustration Mary Prusmack Ching,
Deb Dennis, John Ryan, Laurie Wigham

Formatting Forbes Mill Press

Photography Sharon Beals, Maggie Fishell,
Gretchen Linton

Cover lllustration Grabam Metcalfe of
Metcalfe/Shubert Design

ISSN #1047-0735. © 1995 Apple Computer, Inc. All
rights reserved. Apple, the Apple logo, APDA,
AppleLink, ColorSync, HyperCard, LaserWriter; Mac,
MacApp, Macintosh, MacTCP, MPW, Newton, Power
Macintosh, QuickTime, SANE, and TrueType are
trademarks of Apple Computer; Inc., registered in the
U.S. and other countries. AOCE, AppleScript,
A/ROSE, Balloon Help, develop, DocViewer; Dylan,
Finder, MessagePad, NewtonMail, NewtonScript,
OpenDoc, Power Mac, PowerTalk, and QuickDraw
are trademarks of Apple Computer; Inc. Adobe,
Acrobat, and PostScript are trademarks of Adobe
Systems Incorporated or its subsidiaries and may be
registered in certain jurisdictions. PowerPC is a
trademark of International Business Machines
Corporation, used under license therefrom. UNIX is a
registered trademark of Novell, Inc. in the United
States and other countries, licensed exclusively through
the X/Open Company, Ltd. NuBus is a trademark of
Texas Instruments. All other trademarks are the

property of their respective owners.

@ Printed on recycled paper

THINGS TO KNOW

develop, The Apple Technical
Journal, a quarterly publication of
Apple Computer’s Developer Press
group, is published in March, June,
September, and December. develop
articles and code have been reviewed
for robustness by Apple engineers.

This issue’s CD. Subscription issues
of develop are accompanied by the
develop Bookmark CD. This CD contains
a subset of the materials on the monthly
Developer CD Series, available from
APDA. Included on the CD are this
issue and all back issues of develop along
with the code that the articles describe.
(The code is updated periodically, so
always use the most recent CD.) The
CD also contains Technical Notes,
sample code, and other documentation
and tools (these contents are subject to
change). Items referred to as being on
“this issue’s CD” are located on either
the Bookmark CD or the Reference
Library or Tool Chest edition of the
Developer CD Series. The develop issues
and code are also available in the
Developer Services areas on AppleLink
and eWorld and at ftp.info.apple.com.
(Selected articles are on the World
Wide Web at http://www.apple.com,

in the Developer Services area.)

Macintosh Technical Notes.
Where references to Macintosh
Technical Notes in develop are followed
by something like “(QT 4),” this
indicates the category and number of
the Note on this issue’s CD. (QT is the
QuickTime category.)

E-mail addresses. Most e-mail
addresses mentioned in develop are
AppleLink addresses; to convert one of
these to an Internet address, append
“@applelink.apple.com” to it. For
example, DEVELOP on AppleLink
becomes develop@applelink.apple.com
on the Internet. Append “@eworld.com”
to eWorld addresses, and append
“@online.apple.com” to NewtonMail
addresses.

CONTACTING US

Feedback. Send editorial suggestions
or comments to Caroline Rose at
AppleLink CROSE, Internet
crose@applelink.apple.com, or fax
(408)974-6395. Send technical
questions about develop to Dave
Johnson at AppleLink JOHNSON.DK,
Internet dkj@apple.com, CompuServe
75300,715, or fax (408)974-6395. Or
write to Caroline or Dave at Apple
Computer, Inc., 1 Infinite Loop, M/S
303-4DP, Cupertino, CA 95014.

Article submissions. Ask for our
Author’s Guidelines and a submission
form at AppleLink DEVELOP,
Internet develop@applelink.apple.com,
or fax (408)974-6395. Or write to
Caroline Rose at the above address.

Subscriptions and back issues.
You can subscribe to develop through
APDA (see ordering information
below) or use the subscription card in
this issue. You can also order printed
back issues from APDA. For all
subscription changes or queries,
contact APDA and be sure to include your
name, address, and account number as it
appears on your mailing label.

The one-year U.S. subscription price is
$30 (for 4 issues and 4 develop Bookmark
CD:s), or $50 U.S. in other countries.
Back issues are $13 each. These prices
include shipping and handling. For
Canadian orders, the subscription price
includes GST (R100236199).

APDA. To order products from APDA
or receive the Apple Developer Tools
Cutalog of all the products available
from APDA, call 1-800-282-2732 in
the U.S., 1-800-637-0029 in Canada,
(716)871-6555 internationally, or
(716)871-6511 for fax. Order
electronically at AppleLink APDA,
Internet apda@applelink.apple.com,
CompuServe 76666,2405, or America
Online APDAorder. Or write APDA,
Apple Computer, Inc., PO. Box 319,
Buffalo, NY 14207-0319.

ARTICLES

Issue 23 September 1995

5 [Music the Easy Way: The QuickTime Music Architecture by David Van Brink
The QuickTime Music Architecture lets you easily add music to your application, without having to learn
the intricacies of MIDI or sound production. Unleash the orchestra!

30

55

77

94

|The Basics of QuickDraw 3D Geometries |by Nick Thompson and Pablo Fernicola

Geometries are the backbone of any 3D graphics system. This article shows how the geometries in
QuickDraw 3D fit in with the rest of the system, and how to make good use of them.

Implementing Shared Internet Preferences With Internet ConfigJ

by Quinn “The Eskimo!”

This article examines a shared preferences solution for Internet applications: how to use it in your
applications, and also how it works, using the Component Manager as a robust shared library mechanism.

[Multipane Dialogs |by Norman Franke

Dialog boxes with multiple panes are becoming more and more common. This implementation uses a

scrolling list of icons to select panes.

Document Synchronization and Other Human Interface Issues

by Mark H. Linton

"The Macintosh Human Interface Guidelines say that a window’s title should match the corresponding
document’s name at all times. Here’s some code that will help you do that.

25

52

72

90

COLUMNS

PRINT HINTS

Syncing Up With ColorSync 2.0
by David Hayward

ColorSync version 2.0 dramatically improves the
quality and performance of color management.

BALANCE OF POWER

Power Macintosh: The Next Generation
by Dave Evans

The latest Power Macintosh computers are
better than ever, as you'll see from this overview
of new features.

MPW TIPS AND TRICKS
Customizing Source Control With
SourceServer

by Tim Maroney

SourceServer is a “scriptable Projector,” allowing
extensive source control customization.

ACCORDING TO SCRIPT

Thinking About Dictionaries

by Cal Simone
Tips on organizing your dictionary, and other
assorted bits of wisdom and advice.

103

112

MACINTOSHQ & A

Apple’s Developer Support Center answers
queries about Macintosh product development.

THE VETERAN NEOPHYTE
A Feel for the Thing

by Dave Johnson
Computers are getting more and more like
boomerangs. Goody.

114 | NEWTON Q & A: ASK THE LLAMA |

117

Answers to Newton-related development
questions, along with a bit of llama lore. Send
in your own questions for a chance at a T-shirt.

KON & BAL’'S PUZZLE PAGE
Video Nightmare

by lan Hendry and Eric Anderson
Another intricate and entertaining enigma, this
time from a pseudo KON & BAL.

2 | EDITOR’S NOTE
3 [LETTERS]
123

CONTENTS

1

EDITOR’S NOTE

On this issue’s CD, all the files that used to be in Apple DocViewer format have been
converted to Adobe™ Acrobat™. Based on feedback that we’ve gotten from many of
you since we started using DocViewer, we trust you’ll be happy with this change. You
should find that Acrobat has better search features and resolves some other problems.
Because conversion is faster, the information can be more timely. Also, the files take
up less space. So we hope you're satisfied — but you probably won’t be for very long.
It’s just not the nature of the computer-using beast.

Think about it: How long after you get an upgrade to some software or hardware
product do you start looking ahead to the next version? With the old problems
solved and your old needs satisfied, you go on to realize a set of new ones. When it
comes to computers, we always want more, and better.

CAROLINE ROSE

I remember when the Macintosh was first designed, Steve Jobs kept saying it was to be an
appliance, like a toaster: you simply plug it in and it does what you want, reliably and
without fuss. (We’re not talking multi-attachment Cuisinart here.) As you no doubt recall
only too well, the options to add to the functionality of the first Macintosh were
intentionally limited. It was to be a simple “black box” (“beige box”?).

Now, I know you’re glad that that era didn’t last very long, but think for a moment about
all those non-nerds out there who haven’t yet seen fit to buy a computer — all those
potential customers Jobs was hoping to attract. They write things and add up numbers
sometimes just like we do, don’t they? So what are they waiting for?

I think the problem is that they want toasters — machines that work year after year
without always needing to be updated, upgraded, or extended. They see the computer as
a moving target, constantly advancing to satisfy some relatively insignificant new needs
they never even knew they had — doomed to instant obsolescence. Better they should use
a pen or pencil.

I suffer from this attitude myself to some degree, at least when I’'m wearing my Home
User hat. There I use a little old Macintosh with old but reliable software that works
every time I do the paperwork on it that I've been doing for ten years now. But at
Apple, I become a Computer Professional monster with ravenous needs for the latest
and greatest software and hardware — downright insatiable.

So enjoy it while you can: have your fill of our new Acrobat files or whatever
innovation pleases you these days. But rest assured that you’ll be hungry again in no

time.

Caroline Rose
Editor

CAROLINE ROSE (Applelink CROSE) resisted and, eventually, computers with display screens.

learning anything about computers in college, This was a big “Wow!” at first, but now Caroline
where she majored in math, but she couldn’t gets her excitement from non-computer endeavors,
escape them in the real world. First she used such as travel. On her frip this year to the Big
gigantic IBM machines at her statistical research Island of Hawaii, she kayaked among (breaching)
job in Manhattan. But California beckoned, and humpback whales and watched lava flow down
with it came terminals spewing yellow paper cliffs and into the Pacific. Hard to top that!®

2 develop Issue23 September 1995

LETTERS

FLOATING WINDOWS AGAIN

I'd like to use the library of functions
for floating windows described in
by Dean Yu (updated on
Issue 21’ CD). I'm using CodeWarrior
5.5, and when I try to compile the
sample project (or any other project that
includes the WindowExtensions.h file)

I get a “WindowRef redeclared” error.

There seems to be a conflict with the
universal headers.

Before I try to get rid of this error
myself (and probably make everything
wrong), I thought I'd ask if you could
suggest a simple and clean solution.

— Fred Klein

On this issue’s CD is a new version of the
floating windows library that fixes this
problem, and others. The problem was that
Apple finally “caught up” with Dean and
defined things in the universal headers that
be bad defined, in bis forward-looking way,
back when be first wrote the article.

Also on the CD you’ll find an even newer
version of the library that compiles with
STRICT _WINDOWS defined. This
necessitated a complete rewrite of some
portions of the code, so consider it risky.
Please try it and send me any bugs you find!

— Dave Fobnson

POWERPC ASSEMBLY NITS

Great article on PowerPC™ assembly

language in|develop Issue 21] It was clear,

and I learned a lot reading it. But I have
two nitpicks. On page 27 you show glue
code for a cross-TOC call. The second

instruction should be

stw RTOC,20(SP)

And the third instruction has a typo in
it. It should be

lwz r0,0(rl2)
— David Shayer

Thanks for catching these. The interesting
thing is that the second instruction appears
that (wrong) way in the PPCAsm manual.
Whoops!

— Dave Evans

UP ON THE DOWNSIDE

I just wanted to tell you that I really
liked the[Veteran Neophytelcolumn in
Issue 21, about the downside of
programming. It struck a nerve with
me. The thing that goes through my
mind whenever I sit down to write some
code is “There has to be a better way!”
Alas, by the time there is a better way, I
will probably have moved on to some

other profession.

— Jamie Osborne

Your|[Veteran Neophyte| column on the
pains of programming really struck a
nerve (and not just because I have carpal
tunnel syndrome). I often spend a while
putting things on paper, only to
abandon the project once I become
convinced that I've figured out the
solution and its implementation would
just be hours and hours of typing. Sort
of meta-programming.

— Tom Busey

I just finished reading the Veteran
Neophyte columns in Issue 17 and

Issue 21,[“Why We Do It”|and| “The |

[Downside.” [They were given to me by

KEEP US ON OUR TOES!

We welcome your nitpicking letters to the editors,
especially regarding articles published in
develop. Letters should be addressed to Caroline
Rose — or, if technical develop-related questions,
to Dave Johnson — at Applelink CROSE or
JOHNSON.DK. Or you can write to Caroline

or Dave at Apple Computer, Inc., 1 Infinite Loop,
M/S 303-4DP, Cupertino, CA 95014. All letters
should include your name and company name as
well as your address and phone number. Letters
may be excerpted or edited for clarity (or to
make them say what we wish they did).®

LETTERS

4 develop lIssue23 September 1995

a friend who is an avid programmer.
The type of things you described
sounded just like my friend; I think he
showed the columns to me to explain
why every time I see him he’s sitting in
front of the computer, and why he stays
up till all hours of the morning working
on programs that end up frustrating
him.

I thought I should let you know that
your columns were appreciated not only
by those who program, but by those
who are close to programmers and
wonder sometimes what unseen force
has gotten hold of them and sucked
them into their work.

— Greta Meussling

The “Downside” column seems to have bit
bome with many people; 1 got a lot of
comments about it. It’s nice to be assured
that I'm not the only reluctant programmer
in the world, and that I'm not the only one
who thinks there ought to be a better way.

— Dave Fobnson

ACROBAT: PRETTY DARN FINE

This probably isn’t the first time you’ve
heard this, but how about offering
develop in Acrobat (PDF format) as well?
For me, Acrobat is more convenient
than Apple DocViewer as an application
and, most important, its files are a lot
smaller. I routinely convert develop to
PDF and then add PDF hyperlinks and
bookmarks. For one issue I converted,
for instance, the DocViewer version
(without the index) is 2.9 meg, while the
PDF version is only 770K. It’s even
smaller than the Stufflt version of the
DocViewer document (1.2 meg). And
the onscreen appearance is identical.

I still like the HTML versions for their
immediacy, but for true WYSIWYG,
low conversion effort, and small file
size, you can’t beat PDE.

— Shannon Spires

We agree with you. You’ll notice that on this
issue’s CD, every issue of develop has been

converted to Acrobat — along with all the
other files on the CD that used to be in
Apple DocViewer format. Enjoy!

— Caroline Rose

UP ON THE WEB

Thanks for making both develop and
Apple Directions available on the World
Wide Web. We’re on a very tight
budget and can’t afford a subscription at
this time. The online versions allow us
to access the information and still come
out with a product on budget.

— Mattias Fornander

I’'m a student who reads develop online
via the Internet through UCLA’s
(UNIX®) workstations. Your putting
develop on the World Wide Web is
great! Even though the comfort of
reading (and printing) develop online
will never equal the ease of the regular
version, I don’t have to fight with ftp
and MS-DOS floppy disks to read your
magazine. So please continue to publish
develop in HTML.

IMHO, your magazine is a service to
the Mac developer community, and you
would help Apple by letting every
possible programmer access it without

hassle. Thanks for this effort.

— Eric Gouriou

We’ve got articles from some issues of
develop on the World Wide Web now (at
bttp:/fwww.apple.com, in the Developer
Services area) and are working on putting
more up there. This kind of feedback belps
make it happen — so thanks for writing.

Readers of the online version: Don’t confuse
printed develop with the montbly Apple
Developer Mailing; a subscription to the
montbly mailing (which includes a CD that
bas develop on it) is rather costly, but it
costs only $30 for four quarterly printed
issues of develop (with Bookmark CD). See
the inside front cover of this issue for
ordering information. (Sorry, I couldn’t
resist this opportunity for a plug!)

— Caroline Rose

Music the Easy Way: The QuickTime
Music Architecture

DAVID VAN BRINK

Music has become cheap and plentiful on the Macintosh, and many
applications are now making “casual” use of music. With the
Quick'Time Music Architecture, or QTMA, including music in your
application bas never been simpler. Its API is straightforward and easy
to use, and you don’t need intimate knowledge of MIDI protocols or
channel and voice numberings. Nor do you need an external MIDI
device; QTMA can play music directly out of the Macintosh’s built-in
speakers. And QTMA is widely available — it’s on every Macintosh
that has Quick’Time 2.0 (or later) installed.

The QuickTime Music Architecture is perfect for adding a little bit of music to your
application. It has a set of well-supported high-level calls for playing musical notes
and sequences, it deals with MIDI protocols so that your application doesn’t have to,
and it handles timing for entire tunes. With QTMA, you can specify musical
instruments independent of device, and play music either directly out of built-in
speakers or through a MIDI synthesizer.

QTMA first became available with QuickTime 2.0 and offers some new features in

QuickTime 2.1, which should be available through APDA by the time you read this.
The code in this article is written for version 2.1; minor changes will be required for
2.0. (Before making use of the QuickTime 2.1 features, your code should call Gestalt
with the gestaltQuickTimeVersion selector and check the version number returned.)

This article shows how your application can use QTMA to play individual notes,
sequences of notes composed on the fly, or prescored sequences, and how to read
input from external MIDI devices. This issue’s CD contains all the sample code and a
THINK C project to build and run it. We’ll start with a look at QTMA in relation to
other ways of supporting music on the Macintosh; then we’ll get down to business
and play some music with QTMA.

QTMA IN CONTEXT — A LOOK AT MUSIC AND MIDI
SUPPORT ON THE MACINTOSH

Support for MIDI and musical applications on the Macintosh platform has a
somewhat checkered history. Developers have been faced with such options as writing
their own serial drivers, using the MIDI Manager, or using third-party operating
system extensions such as the Open Music System (OMS, formerly Opcode MIDI

DAVID VAN BRINK lives in a tiny experimental 14,400 bits per second. See http://www.srm.com
habitat overlooking the Denny’s parking lot in for more information.®
Santa Cruz, California. He experiences life at

MUSIC THE EASY WAY: THE QUICKTIME MUSIC ARCHITECTURE

6 develop Issue23 September 1995

System) and the Free MIDI System (FMS) from Mark of the Unicorn. None of these
are practical for adding just a little music to your application.

Writing a serial driver to send MIDI output to an Apple MIDI adapter or to any
third-party MIDI adapter isn’t that complicated if you enjoy writing low-level code
to access hardware registers on the SCC serial chip. I say this in all seriousness: that
kind of code really is fun to write! But it’s not the best way to do things, because
changes in the OS and hardware can render your work useless. And writing the low-
level serial code for MIDI input has additional complexities, primarily because of the
interrupt timings in many parts of the Mac OS.

The MIDI Manager is a slightly better tool to use for MIDI input and output.
Unfortunately, Apple’s support for this product has been less than consistent, and the
MIDI Manager itself has some inherent performance limitations, though these are
less critical on faster hardware (68030 processor or better).

Both OMS and FMS are quite appropriate for professional music scoring and
editing products. Among the facilities that these extensions provide is a “studio
configuration”; this lets the user describe to the system the various MIDI devices
attached to the computer so that different applications can access them.

All of these options have drawbacks for making casual use of music: you have to
access an external MIDI device, which most users don’t have, and you have to use
MIDI protocols to talk to that device. QTMA frees you from both of these
constraints. It also frees you from needing to know a lot about MIDI itself; if you
want to know anyway, check out the information in “A MIDI Primer.”

QTMA'’S BASIC COMPONENTS

QTMA is implemented in three easy pieces, as QuickTime components for playing
individual notes, playing tunes (sequences of notes), and driving MIDI devices.

* 'The note allocator component is used to play individual notes. The calling
application can specify which musical instrument sound to use and exactly
which musical synthesizer to play the notes on. The note allocator
component also includes a utility that allows the user to pick the instrument.

* 'The tune player component can accept entire sequences of musical notes and
play them from start to finish, asynchronously, with no further need for
application intervention. This is handy if you’d like to play some infernally
irritating little melody, or perhaps threnody, during each game level of Boom
Three Dee or whenever.

¢ Individual music components act as device drivers for each type of synthesizer
attached to a particular computer. Two music components are provided with
QuickTime 2.0: the software synthesizer component, to play music out of
the built-in speaker, and the General MIDI component, to play music on a
General MIDI device attached to a serial port. QuickTime 2.1 supports a
small number of other popular synthesizers as well.

PLAYING NOTES WITH THE NOTE ALLOCATOR

Playing a few notes with the note allocator component is simple. To play notes that
have a piano-like sound, you need to open up the note allocator component, allocate
a note channel with a request for piano, and play. That’s it! If you're feeling like a
particularly well-behaved software engineer, you might dispose of the note channel
and close the note allocator component when you’re done. We'll get to the code in a
moment; first we’ll look at some important related data structures.

A MIDI PRIMER

MIDI, or Musical Instrument Digital Interface, uses a serial
protocol and a standard 5-pin connector that you'll find
on professional electronic music gear made after 1985 or
so. The connector’s relatively large size, about half an
inch in diameter, was chosen so that it could withstand
the rigors of the road — in other words, so that even
drummers could plug it in.

Because MIDI cables can carry signals in only one
direction, synthesizers have separate connectors for MIDI
input and MIDI output. (This differs from modem cables,
which carry signals in both directions.)

MIDI is a serial protocol running at 31250 baud, 8 data
bits, 1 stop bit, no parity. The command structure for a
MIDI stream is simple: each byte is either a status byte or
a data byte.

A status byte establishes a mode for interpreting the data
bytes that follow it. The high bit is set, and the next three
bits indicate the type of status byte. The low four bits are
typically used to specify a MIDI channel. Thus MIDI can

play a different musical instrument sound. Later extensions
to MIDI let you address more channels through the use of
escape codes and bank switching.

The most common status message is the Play Note message,
which has a value of 0x90 plus the MIDI channel number.
Each note is defined by a pitch and velocity. The pitch is
an infeger from 0 to 127, where 60 is musical middle C
(61 is C sharp, 59 is B, 72 is the C above middle C, and
so on). The velocity is an integer from O to 127 that
describes how loud to play the note; 64 is average
loudness, 127 is very loud, 1 is nearly inaudible, and O
means fo stop playing the note.

So, to play a C-major chord on MIDI channel O, you send
the seven bytes 0x90 0x3C 0x40 0x40 0x40 0x43 0x40
to begin the sound. After a suitable interval, you send
0x90 0x3C 0x00 0x40 0x00 0x43 0x0O0 to silence it.

All of this is exactly the sort of stuff you don’t need to
know if you use the QuickTime Music Architecture for your
music-playing needs. But you just can’t know too many

address up fo 16 unique channels, each of which may useless facts, right?

NOTE-RELATED DATA STRUCTURES

A note channel is analogous to a sound channel in that you allocate it, issue
commands to it to produce sound, and close it when you’re done. To specify details
about the note channel, you use a data structure called a NoteRequest (see Listing 1).
The NoteRequestInfo structure in the NoteRequest is new in QuickTime 2.1; it
simply encapsulates the first few fields of the old NoteRequest structure and splits the
first of those fields into two, flags and reserved (which are decribed in the
documentation accompanying the QuickTime 2.1 release).

The next two fields specify the probable polyphony that the note channel will be used
for. Polyphony means, literally, many sounds. A polyphony of 5 means that five notes
can be playing simultaneously. The polyphony field enables QTMA to make sure that
the allocated note channel can play all the notes you’ll need. The typicalPolyphony
field is a fixed-point number that should be set to the average number of voices the
note channel will play; it may be whole or fractional. Some music components use
this field to adjust the mixing level for a good volume.

The ToneDescription structure is used throughout QTMA to specify a musical
instrument sound in a device-independent fashion. This structure’s synthesizerType
and synthesizerName fields can request a particular synthesizer to play notes on.
Usually, they’re set to 0, meaning “choose the best General MIDI synthesizer.” The
gmNumber field indicates the General MIDI (GM) instrument or drum kit sound,
which may be any of 135 such sounds that are supported by many synthesizer
manufacturers. (All these sounds are available on a General MIDI Sound Module.)
The GM instruments are numbered 1 through 128, and the seven drum kits are
numbered 16385 and higher. A complete list of instrument and drum kit numbers is
provided in Table 1. For synthesizers that accept sounds outside the GM library, you

MUSIC THE EASY WAY: THE QUICKTIME MUSIC ARCHITECTURE

7

8 develop Issue23 September 1995

Listing 1. Note-related data structures

struct NoteRequest {
NoteRequestInfo
ToneDescription

info; /-
tone;

in post-QuickTime 2.0 only

}i

struct NoteRequestInfo {

UInt8 flags;

UInt8 reserved;

short polyphony;

Fixed typicalPolyphony;

}i

struct ToneDescription {

OSType synthesizerType;
Str31l synthesizerName;
Str3l instrumentName;
long instrumentNumber;
long gmNumber ;

}i

can use the instrumentName and instrumentNumber fields to specify some other
sound.

THE NOTE-PLAYING CODE

The routine in Listing 2 plays notes in a piano-like sound with the note allocator
component. We start by calling OpenDefaultComponent to open up the component.
If this routine returns 0, the component wasn’t opened, most likely because QTMA
wasn’t present.

Next we fill in the NoteRequestInfo and ToneDescription structures, calling the note
allocator’s NAStuff ToneDescription routine and passing it the GM instrument
number for piano. This routine fills in the gmNumber field and also fills in the other
"ToneDescription fields with sensible values, such as the instrument’s name in text
form in the instrumentName field. (The routine can be useful for converting a GM
instrument number to its text equivalent.)

After allocating the note channel with NANewNoteChannel, we call NAPlayNote to
play each note. Notice the last two parameters to NAPlayNote:

ComponentResult NAPlayNote(NoteAllocator na, NoteChannel nc,
long pitch, long velocity);

"The value of the pitch parameter is an integer from 1 to 127, where 60 is middle C,
61 is C sharp, and 59 is C flat, or B. Similarly, 69 is concert A, and is played at a
nominal audio frequency of 440 Hz. The velocity parameter’s value is also an integer
from 1 to 127, or 0. A velocity of 1 corresponds to just barely touching the musical
keyboard, and 127 indicates that the key was struck as hard as possible. Different
velocities produce tones of different volumes from the synthesizer. A velocity of 0
means the key was released; the note stops or fades out, as appropriate to the kind of
sound being played. Here we stop the notes after delaying an appropriate amount of
time with a call to the Delay routine.

Table 1. The General MIDI instruments and drum kits

Piano

Acoustic Grand Piano
Bright Acoustic Piano
Electric Grand Piano
Honky-tonk Piano
Rhodes Piano
Chorused Piano
Harpsichord

Clavinet

Chromatic Percussion

9
10
11

°12
* 13
14
15
16

Celesta
Glockenspiel
Music Box
Vibraphone
Marimba
Xylophone
Tubular bells
Dulcimer

Organ

°17
18
19
20
2]
22
23
24

Hammond Organ
Percussive Organ
Rock Organ
Church Organ
Reed Organ
Accordion
Harmonica
Tango Accordion

Guitar

25
26
27
28
29
30

e 31
32

Acoustic Nylon Guitar
Acoustic Steel Guitar
Electric Jazz Guitar
Electric Clean Guitar
Electric Muted Guitar
Overdriven Guitar
Distortion Guitar
Guitar Harmonics

GM Drum Kits
® 16385 Standard Kit

® 16393

16401 Power Kit
16409 Electronic Kit
16410 Analog Kit
16425 Brush Kit
16433 Orchestra Kit

Bass

88
* 34
35
36
37
38
39
40

Acoustic Fretless Bass
Electric Bass Fingered
Electric Bass Picked
Fretless Bass

Slap Bass 1

Slap Bass 2

Synth Bass 1

Synth Bass 2

Strings and Orchestra

o 41
42
43
44
45
46
47

. 48

Violin

Viola

Cello
Contrabass
Tremolo Strings
Pizzicato Strings
Orchestral Harp
Timpani

Ensemble

® 49
50
51
52

* 53
54
55

* 56

Acoustic String Ensemble 1
Acoustic String Ensemble 2

SynthStrings 1
SynthStrings 2
Aah Choir
Ooh Choir
Synth Vox
Orchestra Hit

Brass

e 57
58
59
60

LY
62
63
64

Trumpet
Trombone
Tuba

Muted Trumpet
French Horn
Brass Section
Synth Brass 1
Synth Brass 2

Room Kit (a memory-reduced version of the Standard Ki)

Reed

65
® 66
67
68
® 69
70
71
©72

Pipe
73
74
75
e 76
77
78
° 79
80

Soprano Sax
Alto Sax
Tenor Sax
Baritone Sax
Oboe
English Horn
Bassoon
Clarinet

Piccolo
Flute
Recorder
Pan Flute
Bottle Blow
Shakuhachi
Whistle
Ocarina

Synth Lead

81
* 82
83
84
85
86
* 87
88

Square Wave
Saw Wave
Calliope
Chiffer
Charang

Solo Vox

5th Saw Wave
Bass and Lead

Synth Pad

* 89
* 90
* 9]
92
93
94
95
96

Fantasy
Warm
Polysynth
Choir
Bowed
Metal
Halo
Sweep

Synth
97

98
99
100
101
102
103
104

Ethnic
e 105
e 106
107
108
109
110
111
112

Effect

Ice Rain
Sound Tracks
Crystal
Atmosphere
Brightness
Goblins
Echoes
Space

Sitar
Banjo
Shamisen
Koto
Kalimba
Bagpipe
Fiddle

Shanai

Percussive

113
e 114
e 115

116

117
*118

119
* 120

Tinkle Bell
Agogo

Steel Drums
Woodblock
Taiko Drum
Melodic Tom
Synth Drum
Reverse Cymbal

Sound Effects

121
122
* 123
124
* 125
* 126
127
* 128

o Bullets indicate the instruments and drum kits that are available for playing on the built-in synthesizer.

MUSIC THE EASY WAY: THE QUICKTIME MUSIC ARCHITECTURE

Guitar Fret Noise
Breath Noise
Seashore

Bird Tweet
Telephone Ring
Helicopter
Applause
Gunshot

9

1 o develop Issue23 September 1995

Listing 2. Playing notes with the note allocator component

void PlaySomeNotes(void)

{
NoteAllocator na;
NoteChannel nc;
NoteRequest nr;
ComponentResult thisError;
long t, i;
na = 0;
nc = 0;
// - Open up the note allocator.
na = OpenDefaultComponent (kNoteAllocatorType, 0);
if (!na)
goto goHome;
// - Fill out a NoteRequest using NAStuffToneDescription to help, and
// - allocate a NoteChannel.
nr.info.flags = 0;
nr.info.reserved = 0;
nr.info.polyphony = 2; // + simultaneous tones
nr.info.typicalPolyphony = 0x00010000; // + usually just one note
thisError = NAStuffToneDescription(na, 1, &nr.tone); // - 1 is piano
thisError = NANewNoteChannel(na, &nr, &nc);
if (thisError || !nc)
goto goHome;
// + 1f we've gotten this far, OK to play some musical notes. Lovely.
NAPlayNote(na, nc, 60, 80); // - middle C at velocity 80
Delay (40, &t); // - delay 2/3 of a second
NAPlayNote(na, nc, 60, 0); // - middle C at velocity 0: end note
Delay (40, &t); // - delay 2/3 of a second
// - Obligatory do-loop of rising tones
for (i = 60; i <= 84; i++) {
NAPlayNote(na, nc, i, 80); // + pitch i at velocity 80
NAPlayNote(na, nc, i+7, 80); // - pitch i+7 (musical fifth) at
// - velocity 80
Delay(10, &t); // + delay 1/6 of a second
NAPlayNote(na, nc, i, 0); // + pitch i at velocity 0: end note
NAPlayNote(na, nc, i+7, 0); // - pitch i+7 at velocity 0:
// - end note
}
goHome:
if (nc)
NADisposeNoteChannel (na, nc);
if (na)
CloseComponent (na) ;
}

ROGER SHEPARD’S MELODY

In Listing 2, if you replace the code in the section labeled “Obligatory do-loop of
rising tones” with the following code, you'll receive a secret treat.

i=0;
while (!Button()) {
long j, v;

for (j =1 % 13; j < 128; j+=13) {
v=7<647?3*2: (127 -) * 2;
NAPlayNote(na, nc, j, V);

}

Delay(13, &t);

for (j = 1 % 13; j < 128; j+=13)
NAPlayNote(na, nc, j, 0);

it++;

}

This snappy litle melody was discovered by psychologist Roger Shepard in the 1960s.

Finally, being well behaved, we dispose of the note channel and close the note
allocator component.

LETTING THE USER PICK THE INSTRUMENT

Rather than specify the instrument sound itself, your application may want to let the
user pick it. For this purpose, a nifty instrument picker utility is provided in the note
allocator component. The instrument picker dialog, shown in Figure 1, enables users
to choose musical instruments from the available synthesizers and sounds.

Pick An Instrument:

— Best Synthesizer |

Category:

Instrument: | Acoustic Grand Piano |

dbisdhidbiadiadbiadindintdiadien

Figure 1. The instrument picker dialog

The routine in Listing 3 shows one way that your application can use the
instrument picker. It’s nearly identical to the code in Listing 2, except that the
NAPickInstrument routine is called right after the call to NAStuffToneDescription.
As in Listing 1, NAStwuffToneDescription fills out a ToneDescription record for a
particular GM instrument number; NAPickInstrument then invokes the instrument

MUSIC THE EASY WAY: THE QUICKTIME MUSIC ARCHITECTURE 1 l

12 develop Issue23 September 1995

picker dialog and alters the passed ToneDescription to whatever instrument the user
selects.

Listing 3. Using the instrument picker
void PickThenPlaySomeNotes(void)
{
// -+ declarations and initialization
// + Open up the note allocator.
// - Fill out a NoteRequest using NAStuffToneDescription to help,
// -+ call NAPickInstrument, and allocate a NoteChannel.
nr.info.flags = 0;
nr.info.reserved = 0;
nr.info.polyphony = 2; // + simultaneous tones
nr.info.typicalPolyphony = 0x00010000;
thisError = NAStuffToneDescription(na, 1, &nr.tone); // - 1 is piano
thisError = NAPickInstrument(na, nil, "\pPick An Instrument:",
&nr.tone, 0, 0, nil, nil);
if (thisError)
goto goHome;
thisError = NANewNoteChannel(na, &nr, &nc);
if (thisError || !nc)
goto goHome;
// - Play some musical notes.
// - Obligatory do-loop of rising tones
goHome::
// + Dispose of the NoteChannel and close the component.
}

ADDING EXPRESSIVENESS WITH CONTROLLERS

There’s much more to music than simply playing the right notes at the right times.
Although your code can simulate only a scant fraction of the expressiveness of a
skillfully played acoustic instrument, there are certain things the note allocator
component lets you do that help make your computer-synthesized music sound more
interesting.

As we'’ve already seen, the NAPlayNote routine has parameters for specifying pitch
and velocity, the latter determining the volume of the note; changes in these
parameter values can affect the expressiveness of your music. You can also add
expressiveness to whatever notes are being played by using QT MA’s controllers.

A controller is a parameter that’s set independently of the notes being played, with a
call to the NASetController routine:

ComponentResult NASetController(NoteAllocator na, NoteChannel nc,
long controllerNumber, long controllerValue);

"Two simple controllers are the pitch bend controller and the volume controller. The pitch
bend controller alters the frequency of any notes being played. It’s like the whammy-
bar on an electric guitar, which tightens or loosens all the strings simultaneously. The
volume controller affects the sound of all notes similarly to the way key velocity
affects the sound of individual notes.

Let’s look at some source code that uses the pitch bend controller (Listing 4). This
routine plays a major-fifth interval for a half second, “bends” it up by three
semitones, holds it a half second, and then bends it back down to its original pitch.

Listing 4. Using the pitch bend controller

void PlaySomeBentNotes(void)

{

// - declarations and initialization

// - Open up the note allocator.

// + Fill out a NoteRequest using NAStuffToneDescription to help, and
// - allocate a NoteChannel.

// + 1f we've gotten this far, OK to play some musical notes. Lovely.
NAPlayNote(na, nc, 60, 80); // - middle C at velocity 80
NAPlayNote(na, nc, 67, 60); // - G at velocity 60

Delay(30, &t);

// - Loop through differing pitch bendings.

for (i = 0; i <= 0x0300; i+=10) { // - bend 3 semitones
NASetController(na, nc, kControllerPitchBend, i);
Delay(l, &t);

}

Delay(30, &t);

for (i = 0x0300; i >= 0; i-=10) { // - bend back to normal
NASetController(na, nc, kControllerPitchBend, i);
Delay(l, &t);

}

Delay(30, &t);

NAPlayNote(na, nc, 60, 0); // - middle C off

NAPlayNote(na, nc, 67, 0); // + G off

goHome:
// + Dispose of the NoteChannel and close the component.

Most QuickTime controller values are 16-bit signed fixed-point numbers (where the
lower eight bits are fractional) and have a range of 0 to 127, with a default value of 0.
However, the pitch bend controller has a range of -127 to 127, and the volume
controller has a default value of 127, or maximum volume.

"The pan controller has a slightly different definition from the other controllers. “Pan”
refers to the position of the sound in the stereo field. Most synthesizers have audio

MUSIC THE EASY WAY: THE QUICKTIME MUSIC ARCHITECTURE

13

14 develop Issue23 September 1995

output for left and right; on such synthesizers, the pan value is interpreted as follows:
The default pan position (usually centered) is specified by a value of 0 to the pan
controller. To position the sound arbitrarily, values between 1 (0x0100) and 2
(0x0200) are used to range between left and right, respectively. For synthesizers with
n outputs, values between 1 and 7 are used to pan between each adjacent pair of
outputs. Note that the built-in synthesizer doesn’t currently support panning.

BUILDING A TUNE

As mentioned earlier, an application can use the tune player component to play entire
sequences of notes, or tunes. Applications often find it useful to play a tune that has
been precomposed and stored in the application; other times, it may be useful to
construct a tune at run time and then play it. In either case, the application must first
build the tune. Here we’ll take a look at the format of a tune and the routines and
macros we use for building one.

THE FORMAT OF A TUNE

The format for tunes is a series of long words, subdivided into bitfields. Your
application needs to build a tune header and tune sequence made up of different types of
“events.” The tune header contains one or more note request events, each a NoteRequest
data structure with some encapsulating long words. The tune sequence is made up of
note events that specify notes and durations, controller changes, and so on, as well as
rest events; it’s the musical score.

In the tune header, each note request event has the structure shown in Figure 2.

(It’s actually a general event, of the note request subtype.) Thus the first word is
0xFnnn0017, where nnn is the part number, and the last word is 0xC0010017. The
part number is referred to later on by note events in the tune sequence. For example,
given a header than contains a note request event specifying part 3, subsequent note
events that specify part 3 will play in a note channel allocated according to that
NoteRequest.

type.4 part.12 message length.16 (with head and fail)

T 1T 1 1f{x x xx|xxxxxxxx[000000O00/0OO0OO0OT1TO0T1 11

NoteRequest data structure (21 long words total)

X X X X X X X XX X X X X X X XX X X X X X X X|X X X X X X X X

(last long word of NoteRequest)

X X X X X X X X|[X X X X X X X XX X X X X X X X|X X X X X X X X

event subtype = kGeneralEventNoteRequest message length.16 (with head and tail)

1171000000/00000001{0000000O0O0O0O0T1TO0T 11

Figure 2. A note request event

In the tune sequence, each note event includes the part, pitch, velocity, and duration
of the note; a rest event specifies only a duration (see Figure 3). A note event can have
either a short or an extended format. In a short note event, the pitch is limited to the
range 32 to 95 (which covers most musical notes) and the part number must be less

than 32. If either of these ranges is too small, or if you want to use a fixed-point pitch
value or a very long duration, the extended note format may be used. Much of the
time you can use the short format, to save space.

type.3 part.5 pitch.6 (32-95) velocity.7 duration.11

00 T|x x x x x|x x x x x x|x x|x X x X X[x x x|x X X x x X X X

A short note event

type.4 part. 12 pitch.15

100 1]x x x x|x x x x x x x x|O0]x x x x X x XxX|Xx X X X X X X X
velocity.7 duration.22

1 0 Ofx x x x x|x X[x x X X X X|X X X X X X X X|X X X X X X X X

An extended note event

type.3 unused.9 duration.20

0000000000 O0O0fx x x x|[x x x X X X X X|X X X X X X X X

A rest event

Figure 3. Note and rest events

Both headers and sequences end with a zarker event containing all zeroes (equivalent
to 0x60000000), shown in Figure 4.

type.3

011000OO|OOOOOOOOOOOOOOOOOOOOOOOO

Figure 4. A marker event

THE TUNE-BUILDING CODE

Our sample code includes routines for building the tune header and tune sequence.
These routines use some handy event-stuffing macros that are defined in the file
QuickTimeComponents.h, and all have the form _StuffSomething(arguments).
BuildTuneHeader (Listing 5) uses the following macro:

_StuffGeneralEvent(wl, w2, part, subtype, length);

The _StuffGeneralEvent macro fills in the head and tail long words of a

particular type of general event — in our case, a note request event. Its arguments
are, in order: the head and tail long words; the part number; the event subtype
(kGeneralEventNoteRequest for a note request event); and the length in long words
of the entire event, counting the head and tail. Note that the first two arguments are
the head and tail themselves, not pointers — the macro expands to a direct
assignment of these arguments.

BuildTuneSequence (Listing 6) uses the _StuffNoteEvent and _StuffRestEvent
macros.

MUSIC THE EASY WAY: THE QUICKTIME MUSIC ARCHITECTURE

15

16 develop isve23 Sepember 1995

Listing 5. BuildTuneHeader

#define kNoteRequestHeaderEventLength \

(sizeof (NoteRequest) /sizeof(long) + 2) // -+ long words

#define our_header length \

((2 * kNoteRequestHeaderEventLength + 1)) * sizeof(long) // - bytes

unsigned long *BuildTuneHeader (void)

{

unsigned long *header, *w, *w2;
NoteRequest *nr;
NoteAllocator na; // + just for the NAStuffToneDescription call

ComponentResult thisError;

header = 0;
na = 0;

// - Open up the note allocator.
OpenDefaultComponent (kNoteAllocatorType, 0);
if (!na)

goto goHome;

na

// -+ Allocate space for the tune header, rather inflexibly.
header = (unsigned long *) NewPtrClear(our_ header_ length);
if (!header)

goto goHome;
w = header;

// - Stuff request for piano polyphony 4.
w2 = w + kNoteRequestHeaderEventLength - 1; // - last long word of
// - note request event

_StuffGeneralEvent(*w, *w2, 1, kGeneralEventNoteRequest,
kNoteRequestHeaderEventLength);

nr = (NoteRequest *)(w + 1);

nr->info.flags = 0;

nr->info.reserved = 0;

nr->info.polyphony = 4; // + simultaneous tones

nr->info.typicalPolyphony = 0x00010000;

thisError = NAStuffToneDescription(na, 1, &nr->tone); // - 1 is piano

w += kNoteRequestHeaderEventLength;

// - Stuff request for violin polyphony 3.

w2 = w + kNoteRequestHeaderEventLength - 1; // - last long word of
// - note request event

_StuffGeneralEvent(*w, *w2, 2, kGeneralEventNoteRequest,

kNoteRequestHeaderEventLength);

nr = (NoteRequest *)(w + 1);

nr->info.flags = 0;

nr->info.reserved = 0;

nr->info.polyphony = 3; // + simultaneous tones

nr->info.typicalPolyphony = 0x00010000;

thisError = NAStuffToneDescription(na, 41, &nr->tone); // - violin

w += kNoteRequestHeaderEventLength;

*w++ = 0x60000000; // - end-of-sequence marker

(continued on next page)

Listing 5. BuildTuneHeader (continued)

goHome:
if (na)
CloseComponent (na);
return header;

_StuffNoteEvent(w, part, pitch, volume, duration);

The _StuffNoteEvent macro fills in a note event. Its arguments are, in order: the
long word to stuff; the part number; the pitch (where, as usual, 60 is middle C); the
volume (velocity); and the duration (usually specified in 600ths of a second). The
pitch must be between 32 and 95, and the part number must be less than 32. For

values outside these ranges, a fixed-point pitch value, or a very long duration, use
_StuffXNoteEvent.

_StuffXNoteEvent(wl, w2, part, pitch, volume, duration);

The _StuffXNoteEvent macro is for extended note events. It’s identical to
_StuffNoteEvent except that it provides larger ranges for pitch, part, and duration,
and the event itself takes two long words.

_StuffRestEvent(w, restDuration);

The _StuffRestEvent macro fills in a rest event. It takes two arguments: the long
word to stuff and the duration of the rest.

Listing 6. BuildTuneSequence

#define kNoteDuration 240 // + in 600ths of a second
#define kRestDuration 300 // + in 600ths -- tempo will be 120 bpm

#define our sequence length (22 * sizeof(long)) // + bytes
#define our sequence duration (9 * kRestDuration) // + 600ths

unsigned long *BuildTuneSequence(void)

{

unsigned long *sequence, *w;

// - Allocate space for the tune sequence, rather inflexibly.
sequence = (unsigned long *) NewPtrClear(our_sequence length);
if (!sequence)

goto goHome;
w = sequence;
_StuffNoteEvent (*w++, 1, 60, 100, kNoteDuration); // - piano C
_StuffRestEvent (*w++, kRestDuration);
_StuffNoteEvent (*w++, 2, 60, 100, kNoteDuration); // + violin C
_StuffRestEvent (*w++, kRestDuration);
_StuffNoteEvent (*w++, 1, 63, 100, kNoteDuration); // - piano
_StuffRestEvent (*w++, kRestDuration);

(continued on next page)

MUSIC THE EASY WAY: THE QUICKTIME MUSIC ARCHITECTURE 1 7

1 8 develop Issue23 September 1995

Listing 6. BuildTuneSequence (continued)

_StuffNoteEvent (*w++, 2, 64, 100, kNoteDuration); // - violin
_StuffRestEvent (*w++, kRestDuration);

// + Make the 5th and 6th notes much softer, just for fun.
_StuffNoteEvent (*w++, 1, 67, 60, kNoteDuration); // - piano
_StuffRestEvent (*w++, kRestDuration);

_StuffNoteEvent (*w++, 2, 66, 60, kNoteDuration); // - violin
_StuffRestEvent (*w++, kRestDuration);

_StuffNoteEvent (*w++, 1, 72, 100, kNoteDuration); // + piano
_StuffRestEvent (*w++, kRestDuration);

_StuffNoteEvent (*w++, 2, 73, 100, kNoteDuration); // - violin
_StuffRestEvent (*w++, kRestDuration);

_StuffNoteEvent (*w++, 1, 60, 100, kNoteDuration); // + piano
_StuffNoteEvent (*w++, 1, 67, 100, kNoteDuration); // + piano
_StuffNoteEvent (*w++, 2, 63, 100, kNoteDuration); // - violin
_StuffNoteEvent (*w++, 2, 72, 100, kNoteDuration); // - violin
_StuffRestEvent (*w++, kRestDuration);

*w++ = 0x60000000; // - end-of-sequence marker

goHome::
return sequence;

It’s important to understand that the duration of a sequence equals the total durations of
all the rest events. The durations within the note events don’t contribute to the
duration of the sequence! If two note events occur in a row, each with a duration of
say 100, they’ll both start at the same time, not 100 time units apart. If the next event is
an end-of-sequence marker, the notes will immediately be stopped, having played for
zero time units. If, however, a rest event is placed between the note events and the
end marker, both notes will sound for the duration of the rest event, up to 100 time
units.

PLAYING A TUNE WITH THE TUNE PLAYER

Playing a tune with the tune player component is ideal if for some reason your
application will be constructing a tune at run time and then playing it. For prescored
music, however, the best solution is to create a QuickTime movie containing only a
music track and play it as a regular movie with the Movie Toolbox, as described below.

Using the tune player to play a tune without application intervention is straightforward,
as illustrated in Listing 7. After building the tune with BuildTuneHeader and
BuildTuneSequence, this routine opens up a connection to the tune player
component, calls TuneSetHeader with a pointer to the header information, and then
calls TuneQueue with a pointer to the sequence data. All the details of playback are
taken care of by the tune player. The tune will stop playing when it reaches the end
or when the tune player component is closed.

PLAYING PRESCORED MUSIC IN A QUICKTIME MOVIE

The best way to play prescored music is to create a QuickTime movie with just a
music track and play it with the Movie Toolbox, which takes care of details like
spooling multiple segments of sequence data from disk. This is currently the only way

Listing 7. Playing a tune with the tune player component

void BuildSequenceAndPlay(void)
{
unsigned long *header, *sequence;
TunePlayer tp;
TuneStatus ts;
ComponentResult thisError;

tp = 05
header = BuildTuneHeader();
sequence = BuildTuneSequence();
if (!header || !sequence)
goto goHome;
tp = OpenDefaultComponent (kTunePlayerType, 0);
if (!tp)
goto goHome;
thisError = TuneSetHeader(tp, header);
thisError = TuneQueue(tp, sequence, 0x00010000, 0, Ox7FFFFFFF,
0, 0, 0);

// + Wait until the sequence finishes playing or the user clicks
// - the mouse.
spin:
thisError = TuneGetStatus(tp, &ts);
if (ts.queueTime && !Button())
goto spin; // + I use gotos primarily to shock the children.

goHome:
if (tp)
CloseComponent (tp);
if (header)
DisposePtr((Ptr) header);
if (sequence)
DisposePtr((Ptr) sequence);

to create QuickTime music that will also play under QuickTime for Windows. There
are many tools for authoring music into Standard MIDI Files, which are then easily
imported as QuickTime movies — but first let’s look at the more hard-core method
of creating your own sequence and header data and saving it as a Quick Time movie.

CREATING A QUICKTIME MUSIC TRACK

Creating a QuickTime music track is exactly the same as creating any other kind of
track. You create or open the movie you’re adding the track to, and then add a new
track and a new media followed by a sample description and the sample data. For a
music track, the sample description is the tune header information, and the data is
one or more tune sequences. The routine in Listing 8 constructs a QuickTime movie
with a music track and saves it to disk.

IMPORTING A STANDARD MIDI FILE AS A MOVIE
Most music content exists in a format called Standard MIDI File (SMF). All
sequencing and composition programs have an option to Save As or Export files to

MUSIC THE EASY WAY: THE QUICKTIME MUSIC ARCHITECTURE

19

20 develop Issue23 September 1995

Listing 8. Creating a QuickTime music track

void BuildMusicMovie(void)

{
ComponentResult result;
StandardFileReply reply;
short resRefNum;
Movie mo;
Track tr;
Media me;
unsigned long *tune, *header;
MusicDescription **mdH, *md;

StandardPutFile("\pMusic movie file name:", "\pMovie File", &reply);
if (!reply.sfGood)

goto goHome;
EnterMovies();

// + Create the movie, track, and media.

result = CreateMovieFile(&reply.sfFile, 'TVOD', smCurrentScript,
createMovieFileDeleteCurFile, &resRefNum, &mo);

if (result)
goto goHome;

tr = NewMovieTrack(mo, 0, 0, 256);

me = NewTrackMedia(tr, MusicMediaType, 600, nil, 0);

// - Create a music sample description.
header = BuildTuneHeader();
mdH = (MusicDescription **)
NewHandleClear (sizeof (MusicDescription) - 4 + our_header_ length);
if (!mdH)
goto goHome;
md = *mdH;
md->descSize = GetHandleSize((Handle) mdH);
md->dataFormat = kMusicComponentType;
BlockMove (header, md->headerData, our_ header length);
DisposePtr((Ptr) header);

// - Get a tune, add it to the media, and then finish up.

tune = BuildTuneSequence();

result = BeginMediaEdits(me);

result = AddMediaSample(me, (Handle) &tune, 0, our_sequence length,
our_sequence_duration, (SampleDescriptionHandle) mdH, 1, 0, nil);

result = EndMediaEdits(me);

result = InsertMedialIntoTrack(tr, 0, 0, our_sequence_duration,
(11<<16));

result = OpenMovieFile(&reply.sfFile, &resRefNum, fsRdWrPerm);

result = AddMovieResource(mo, resRefNum, 0, 0);

result = CloseMovieFile(resRefNum);

DisposePtr((Ptr) tune);

DisposeMovie(mo);

goHome:
ExitMovies();

this format. QuickTime has facilities for reading an SMF file and easily converting it
into a QuickTime movie. (QuickTime 2.1 corrects some critical bugs in the 2.0
converter.) During any kind of conversion, the SMF file is assumed to be scored for
a General MIDI device, and MIDI channel 10 is assumed to be a drum track.

The conversion to a QuickTime movie can happen in several ways. Because the
conversion is implemented in a QuickTime 'eat ' component, it very often will
happen automatically. Any application that uses the StandardGetFile routine to
open a movie can also open 'Midi' files transparently, and can transparently paste
Clipboard contents of type 'Midi' into a movie that’s shown with the standard movie
controller. To explicitly convert a file or handle into a movie, an application can use
the Movie Toolbox routines ConvertFile ToMovieFile and PasteHandleIntoMovie,
respectively.

For those of you who are hard-core MIDI heads, the following two MIDI system-
exclusive messages, new in QuickTime 2.1, may be useful for more precise control of
the MIDI import process. (Note that QuickTime data is divided into media samples.
Within video tracks, each video frame is considered one sample; in music tracks, each
sample may contain several seconds worth of musical information.)

* FO0 11 00 01 xx yy 2z F7 sets the maximum size of each media sample to the
21-bit number xxyyzz. (MIDI data bytes have the high bit clear, so they have
only seven bits of number.) This message can occur anywhere in an SMF file.

¢ FO0 11 00 02 F7 marks an immediate sample break; it ends the current sample
and starts a new one. All messages after a sample break message will be
placed in a new media sample.

Applications can define their own system-exclusive messages of the form

FO 11 7F ww xx yy zz ... application-defined data ... F7, where ww xx yy zz is the
application’s unique signature with the high bits cleared. This is guaranteed not to
interfere with Apple’s or any other manufacturer’s use of system-exclusive codes.®

READING INPUT FROM A MIDI DEVICE

If the user has a MIDI keyboard attached to the computer, your application can use it
as an input device by calling Q'TMA routines that capture each event as the user
triggers it.

"The defaulr MIDI input is whichever MIDI port the user has chosen for a General
MIDI device from the QuickTime Music control panel, shown in Figure 5. (The
default MIDI input can also be specified with the NASetDefaultMIDIInput call in
the note allocator, but this call should be made only by music-configuration software,
such as the control panel.)

An application can receive MIDI events from the default MIDI input by installing a
readHook routine. This routine is called at interrupt level whenever MIDI data
arrives. It’s installed with the NAUseDefaultMIDIInput call (and later deinstalled
with NALoseDefaultMIDIInput).

pascal ComponentResult NAUseDefaultMIDIInput(NoteAllocator na,
MusicMIDIReadHookUPP readHook, long refCon, unsigned long flags);

The readHook routine is defined as follows:

typedef pascal ComponentResult (*MusicMIDIReadHookProcPtr)
(MusicMIDIPacket *mp, long myRefCon);

MUSIC THE EASY WAY: THE QUICKTIME MUSIC ARCHITECTURE

21

22 develop Issue23 September 1995

ES[J=—— qQuickTime Music

g

==] QuickTime 2.1

) Built-1n Synthesizer

i General MIDI In Modem Port
) Ganaral MG in Printey Poart
i MacllaveMaker

Figure 5. The QuickTime Music control panel

When the readHook routine is called, it’s passed its refCon (installed with the routine)
and a pointer to the MIDI packet. The MIDI packet structure is simply a list of bytes
of a MIDI message, preceded by a length:

struct MusicMIDIPacket {
unsigned short length;
unsigned long reserved;
UInt8 data[249];
bi

The length field is the number of bytes in the MIDI message. (If you’re familiar with
the MIDI Manager definition of a MIDI packet or with OMS’s packet, note that their
length field is different from this one: Theirs is the length of both the header and the
packet data, so the minimum length would be 6; but in QuickTime’s packets, the
length field is only the number of bytes of MIDI data actually in the data array.)

In QuickTime 2.0, the reserved field must be set to 0, but in QuickTime 2.1, this
field takes on some additional meanings (as reserved fields occasionally do). When
an application is using the default MIDI input, it may occasionally lose the use of
that input, such as when another application tries to use it, or if the instrument
picker dialog box comes to the front. If the use of the input is lost, the reserved field
will have the value kMusicPacketPortLost = 1, and the length field will be 0: no
MIDI data. When the port is once again available, the readHook routine will receive
a packet with the reserved field set to kMusicPacketPortFound = 2, also with no
data.

The data array in the MIDI packet contains a raw MIDI message that your readHook
routine will have to parse. Our example code parses only the MIDI messages for noze-
on events and note-off events; other messages, such as pitch-bend controls, are simply
ignored.

The note-on event message has three bytes, 9 pp vv (in hexadecimal), where ¢ is the
MIDI channel that the musical keyboard is transmitting on, pp is a MIDI pitch from
0 to 127 (60 is middle C), and vv is the velocity with which the key was struck, from
1 to 127. If the velocity is 0, the message signifies a note-off event. Some devices,
however, use a separate message type for note-off events; it has the form & pp vv,
where ¢ and pp are the channel and pitch, and vv is the velocity with which the key
was released. Nobody in the world pays attention to the release velocity, so in our

example we won'’t either. When an 8¢ message is received, we’ll just set the velocity to
0 and pretend it was a 9c message.

Listing 9 shows a readHook routine and the routine that installs it. The main routine,
UseMIDIInput, allocates a note channel and then calls NAUseDefaultMIDIInput,
specifying a readHook routine that parses note-on or note-off event messages. These
messages are expanded into a chord that’s played on the note channel. Any packet
that isn’t of that type — that is, doesn’t contain three bytes or start with 0x8n or 0x9n
— is ignored.

Listing 9. Parsing MIDI messages in the readHook routine

pascal ComponentResult AReadHook(MusicMIDIPacket *mp, long refCon)
{

MIDIInputExample *mie;

Boolean major;

short status, pitch, vel;

mie = (MIDIInputExample *)refCon;
if (mp->reserved == kMusicPacketPortLost) // + port gone? make
// - channel quiet
NASetNoteChannelVolume(mie->na, mie->nc, 0);
else if (mp->reserved == kMusicPacketPortFound) // + port back?
// -+ raise volume
NASetNoteChannelVolume(mie->na, mie->nc, 0x00010000);
else if (mp->length == 3) {
status = mp->data[0] & O0xFO0;
pitch = mp->data[l];
vel = mp->data[2];
switch (status) {
case 0x80:
vel = 0;
// - Falls into case 0x90.
case 0x90:
major = pitch % 5 == 0;
NAPlayNote(mie->na, mie->nc, pitch, vel);
NAPlayNote(mie->na, mie->nc, pitch+3+major, vel);
NAPlayNote(mie->na, mie->nc, pitch+7, vel);
break;

}

return noErr;

void UseMIDIInput(void)

{
ComponentResult result;
MIDIInputExample mie;
NoteRequest nr;

mie.na = OpenDefaultComponent (kNoteAllocatorType, 0);
if (!mie.na)
goto goHome;

(continued on next page)

MUSIC THE EASY WAY: THE QUICKTIME MUSIC ARCHITECTURE

23

Listing 9. Parsing MIDI messages in the readHook routine (continued)

nr.polyphony = 2;

nr.typicalPolyphony = 0x00010000;

result = NAStuffToneDescription(mie.na, 1, &nr.tone); // -+ piano
result = NANewNoteChannel (mie.na, &nr, &mie.nc);

result = NAUseDefaultMIDIInput(mie.na, AReadHookUPP, (long) &mie, 0);
while (!Button());

result = NALoseDefaultMIDIInput(mie.na);

goHome::
if (mie.na)
CloseComponent (mie.na); // - disposes of NoteChannel, too

GIVE QTMA A TRY

Sometimes a little music can make your application easier and more fun to use.
Adding music doesn’t have to be a complex task; QTMA takes care of all the hard
parts, like using MIDI protocols, so you can concentrate more on the music itself. So
go ahead, play some tunes and enjoy the music!

Thanks to our technical reviewers Peter Hoddie,
Duncan Kennedy, Jim Nitchals, Jim Reekes, and
Kent Sandvik.®

hNT—— = M 0 g

Add a New Dimension
to Your Applications

Apple Developer University’s newest class,
“Programming with QuickDraw 3D,” teaches
what you need to know to use the new
QuickDraw 3D graphics library in
your applications.

« Create, manipulate, and render 3D objects
e Learn the 3D Human Interface Guidelines
* Understand the metafile format for 3D objects

For class dates, schedule, and complete course
description, call (408) 974-4897.

AL

AN

24 develop Issue23 September 1995

PRINT HINTS

Syncing Up With
ColorSync 2.0

DAVID HAYWARD
In March of this year, Apple announced a major
upgrade to the ColorSync extension and API: ColorSync
2.0. Like version 1.0, ColorSync 2.0 is a powerful color
management system that allows applications and device
drivers to produce consistent color across different
devices. However, ColorSync 2.0 dramatically
improves the quality, flexibility, and performance of
color management. This column focuses on the new
features of ColorSync 2.0 and how applications can
take advantage of them. (For a good review of
ColorSync 1.0 and color management in general, see

[John Wang’s Print Hints|column in develop Issue 14.)

WHAT IS COLORSYNC 2.0?

ColorSync 2.0 is an extension to the Mac OS that
provides a color management system for applications,
scanner drivers, printer drivers, and other components
of the OS such as QuickDraw and QuickDraw GX.
The objective of the color management system is to
provide consistent color across devices that have
different color ranges, or gamuts.

All the versions of QuickDraw GX that have shipped as
of this writing (v1.0.1 through v1.1.2) use the ColorSync 1.0
API. ColorSync 2.0 is backward compatible, so QuickDraw GX
will work fine if ColorSync 2.0 is installed. QuickDraw GX
version 1.2 will add full ColorSync 2.0 support.®

"To understand the task of color management, consider
the process of scanning, displaying, editing, and
printing a color document: In a typical configuration, a
color document may interact with three devices —
scanner, monitor, and printer — each of which works
with color in different ways. A scanner contains a CCD
array, which is nonlinearly sensitive to specific

frequencies of red, green, and blue light. A monitor
hurls electrons at special phosphors to produce varying
amounts of red, green, and blue light. And a color
printer relies on a mixture of dyes, waxes, or toner to
subtract cyan, magenta, yellow, and black from white
paper. Because each of these devices uses different
physical systems in different color spaces with different
gamuts, providing consistent color is difficult. The goal
is to provide the best consistency given the physical
limitations of each device.

"To meet this goal, ColorSync 2.0 requires detailed
information about each device and how it represents or
characterizes color. This information is encapsulated in
a device profile. A ColorSync-savvy scanner stores (or
“embeds”) its profile in the document it creates. A
ColorSync-savvy application uses the profile embedded
in the document and displays it according to the
monitor’s profile; a ColorSync-savvy printer renders
the document according to the printer’s profile.

DEVICE PROFILES

Device profiles are the key ingredient of any color
management system because they define the unique
color behavior of each device. They’re used by color
management module (CMM) components, which
perform the low-level calculations required to
transform colors from a source device color space to a
destination device color space.

CMM vused to stand for color matching method. There
was disagreement with that name because a CMM component
does a lot more than just color matching. So we changed the
name to color management module to be more accurate.®

ICC profile format. ColorSync 2.0 uses a new profile
format defined by the International Color Consortium
(ICC), the founding members of which include Apple,
Adobe Systems, Agfa-Gevaert, Eastman-Kodak,
Microsoft, Silicon Graphics, Sun, and FOGRA
(honorary). The International Color Consortium Profile
Format Specification states the following in its
introduction:

The intent of this format is to provide a cross-platform
device profile format. Such device profiles can be used to
transiate color data created on one device into another
device’s native color space. The acceptance of this format
by operating system vendors allows end users to
transparently move profiles and images with embedded

DAVID HAYWARD (Applelink HAYWARD.D) has been working
in the Printing, Imaging, and Graphics group in Developer
Technical Support for over a year. His proudest achievement to
date is the ability to make his hourlong commute every morning

without waking up until he hits the speed bumps on Apple’s R&D
campus. Currently Dave is developing a ColorSync CMM for his
closet so that he no longer has to worry about mismatching his
clothes.®

PRINT HINTS: SYNCING UP WITH COLOR SYNC 2.0

25

profiles between different operating systems. For example,
this allows a printer manufacturer to create a single
profile for multiple operating systems.

The ICC profile format is designed to be flexible and
extensible so that it can be used on a wide variety of
platforms and devices. The profile structure is defined
as a header followed by a tag table followed by a series
of tagged elements that can be accessed randomly and
individually. In a valid profile, a minimal set of tags
must be present, but optional and private tags may be
added depending on implementation needs. Complete
definitions of the required tags can be found in the
profile format specification. Perhaps just as important,
Apple and Adobe have defined how profiles can be
embedded in the common graphics file formats PICT,
EPS, and TIFFE.

There have been changes in the way ColorSync works
with profiles as a result of this new format. For
example, with ColorSync 1.0, the entire profile format
was compact enough to be used as a memory-based
data structure, whereas with ColorSync 2.0, profiles
can be much larger and typically are disk-based.
However, ColorSync 2.0 can still make use of old 1.0
profiles for backward compatibility.

Profile types. There are three main types of device
profile: input, display, and output. These types have the
following signatures:

* 'scnr’ — input devices such as scanners or digital
cameras

* 'mntr' — display devices such as monitors or liquid
crystal displays

* 'prtr' — output devices such as printers

In addition to these basic types, three other device
profile types are defined:

* 'link' — Device link profiles concatenate into one
profile a series of profiles that are commonly used
together. A profile of this type can simplify and
expedite the processing of batch files when the same
combination of device profiles and non-device
profiles is used repeatedly.

* ‘'spac’' — Color space conversion profiles are used by
CMMs to perform intermediate conversions
between different device-independent color spaces.

* ‘'abst' — Abstract profiles provide a generic method
for users to make subjective color changes to images
or graphic objects by transforming the color data.

Profile quality and rendering intent. Typically you
can think of a profile as a self-contained set of data that

26 develop Isve23 Seplember 1995

contains all the information needed for a CMM to
perform a color match. Therefore, if an application
wants to embed a profile in a document, it shouldn’t
have to make any changes to the profile — the profile is
just a black box of data. This is true for the most part,
but there are a few attributes of a profile that an
application can change to modify the behavior of the
profile. So, it’s better to conceptualize a profile as a
black box of data with a few switches on the outside.
Before embedding a profile in a document, an
application can toggle any of these switches by setting
the appropriate bit or bits in the profile’s header. One
of the switches determines the profile’s quality and
another specifies its rendering intent:

* The quality flag bits provide a convenient place in
the profile for an application to indicate the desired
quality of a color match (potentially at the expense
of speed and memory) as normal, draft, or best
quality. In ColorSync 2.0 these qualities do not
mandate the use of one algorithm over another;
they’re just “recommendations” that the CMM may
choose to ignore or implement as it sees fit.

* The rendering intent determines how the CMM
performs the match. The possible intents are
photographic matching, saturation matching,
relative colormetric matching, and absolute
colormetric matching.

Profile header structure: CMAppleProfileHeader.
In the ColorSync 1.0 profile format, the first member
of the profile header structure (CMAppleProfileHeader)
is a CMHeader structure, which contains all the basic
information about the profile. Similarly, the ColorSync
2.0 profile begins with a CM2Header structure. The
fields of the CM2Header structure are slightly different
from those in the old CMHeader, to reflect some of the
improvements provided by the new ICC profile format.
However, to be backward-compatible with 1.0,
ColorSync 2.0 defines a union of the two header
structures. Because the version field is at the same offset
in both header structures, it can be used to determine
the version of the profile format.

Because ColorSync 2.0 provides support for ColorSync
1.0 profiles, your application should be prepared to
handle both formats. Your code should always check
the version field of the header before accessing any of
the other fields in the header or reading any of the
profile’s tags.

Profile location structure: CMProfileLocation.
ColorSync 2.0 profiles are typically disk-based files, but
they can also be memory-based handles or pointers. To
allow this flexibility, whenever a profile location needs
to be specified (as a parameter for CMOpenProfile, for

example) a CMProfileLocation structure is used. This
structure contains a type flag followed by a union of an
FSSpec, a handle, and a pointer.

Profile reference structure: CMProfileRef. Once a
profile has been opened, a private structure is created
by ColorSync to maintain the profile until it’s closed.
A CMProfileRef (defined as a pointer to the private
structure) can be used to refer to the profile.

COLOR WORLDS

A color world is a reference to a private ColorSync
structure that represents a unique color-matching
session. Although profiles can be large, a color world is
a compact representation of the mapping needed to
match between profiles. Conceptually, you can think of
a color world as a sort of “matrix multiplication” of two
or more profiles that distills all the information
contained in the profiles into a fast multidimensional
lookup table. A color world can be created explicitly
with low-level routines such as NCWNewColorWorld
or automatically with high-level routines like
NCMBeginMatching.

COLORSYNC 2.0 ROUTINES
Here I'll briefly describe the most commonly used
ColorSync 2.0 routines, grouped according to purpose.

The API naming convention is as follows: Calls prefixed
with “CM” are high-level color management routines, while
those prefixed with “CW" are low-level routines that take a
color world as an argument. An “N” before “CM” or “CW"
indicates calls that are new to ColorSync 2.0, to distinguish
them from the old ColorSync 1.0 calls (which are still supported
for backward compatibility).®

Accessing profile files. There is a set of basic
routines to work with profiles as a whole. For example,
CMNewProfile, CMOpenProfile, CMCopyProfile,
and CMGetSystemProfile do what you would expect
from their names.

Accessing profile elements. These routines perform
more specific operations on profiles and profile
elements. CMValidateProfile checks whether a profile
contains all the needed tags, CMGetProfileElement
gets a specific tag type from a profile, and
CMGetProfileHeader gets the important header
information of a profile.

Embedding profiles. NCMUseProfile is a simple
routine for embedding a profile into a PICT. If you
need to extract a profile or embed a profile into a
different file format, you can use CMFlattenProfile to
embed or CMUnflattenProfile to extract.

QuickDraw-specific matching. These high-level
routines provide a basic API to simplify color matching
for QuickDraw drawing routines. NCMBeginMatching
tells Color QuickDraw to begin matching for the
current graphics device using the specified source and
destination profiles. NCMUseProfileComment inserts
a profile as a picture comment into an open picture.
NCMDrawMatchedPicture draws a picture using color
matching. CWMatchPixMap matches a PixMap using
the specified color world.

Low-level matching. These low-level routines
create color worlds and perform color matching.
NCWNewColorWorld creates a color world using
the specified source and destination profiles, while
CW<ConcatColorWorld creates one using an array of
two or more profiles. Using the specified color world,
CWMatchColors matches a list of colors and
CWNMatchBitmap matches a generic bitmap.

Searching profile files. This set of routines allows
your application to search the ColorSync™ Profiles
folder for the subset of profiles that meets your needs.
For example, you could search for only printer profiles
and use the search result to provide a pop-up menu for
the user. CMNewProfileSearch searches the
ColorSync™ Profiles folder for all profile files that
match the supplied CMSearchRecord. The matches
aren’t returned to the caller, but the number of profiles
matched and a reference to the search result are
returned. The search result is a CMProfileSearch
structure that points to private structures maintained
by ColorSync and can be accessed with a call like
CMSearchGetIndProfile, which opens and returns a
CMProfileRef for the nth member of the search result.

PostScript code generation. This set of routines
allows your application or printer driver to generate
PostScript™ code that can be sent to a PostScript
Level 2 printer so that the actual matching calculations
will be performed in the printer instead of on the user’s
computer. CMGetPS2ColorRendering gets a color
rendering dictionary (CRD) for a specified source and
destination profile. CMGetPS2ColorSpace gets a color
space array (CSA) for a specified source profile.

BECOMING COLORSYNC-AWARE

At the very least, your application should respect any
embedded profiles in the documents it works with.

For example, if your application works with PICT files,
it shouldn’t do anything that would strip out the
ColorSync picture comments used for embedding.
Even though your application may choose not to make
use of the profiles, another application or printer driver
may be able to take advantage of them.

PRINT HINTS: SYNCING UP WITH COLOR SYNC 2.0

27

PRINTING WITH COLORSYNC

If your application prints QuickDraw data to a
ColorSync-savvy printer driver, you need do nothing to
get matched output. When the stream of QuickDraw
data sent to the driver contains an embedded profile in
picture comments, the ColorSync-savvy printer driver
will create a new color world to match from the
embedded profile to the printer’s profile. The driver
will then match subsequent QuickDraw operations
accordingly before sending them to the printer. If the
QuickDraw data stream doesn’t contain embedded
profiles, the driver will use the current system profile
(the profile that the user selected in the ColorSync
control panel) as the source profile. That way, the
printed output will match the screen display.

One example of a ColorSync-savvy printer driver is the
LaserWriter 8.3 driver. Whereas previous versions of
LaserWriter 8 allowed the user to choose between “Black
and White” and “Color/Grayscale” in the Print dialog,
this version adds two new choices. “ColorSync Color
Matching” tells the driver to use ColorSync to match an
image on the host Macintosh before sending it to the
printer. The other option, “PostScript Color Matching,”
instructs the driver to generate PostScript CSAs and
CRDs, which are sent to the printer so that the actual
matching is performed in the printer. (The ColorSync
API is used to generate the CSAs and CRDs according
to the source profiles that may be embedded in the
document and the destination profile of the printer.) In
either case, the LaserWriter 8.3 driver allows the user
to choose a printer profile from a list of printer profiles
installed in the ColorSync™ Profiles folder.

Because ColorSync-savvy printer drivers do much of
the work for you, it’s best if your application prints
documents with QuickDraw even if they’re not PICT
files. For example, if your application reads and prints
TTFF files, the best approach is to convert the TIFF
data (which may have a profile embedded in tags) to a
PicHandle (which would have the profile embedded in
picture comments). To print, you draw the PicHandle
with DrawPicture into the printer’s color graphics port.

If the printer’s driver doesn’t support ColorSync, your
application can still use ColorSync to produce matched
output as long as you have an appropriate profile for
the device. (There are several commercial tools that
build ICC profiles.) Given a source and destination
profile, you can use the ColorSync API to match the

image or, if your application must send PostScript data
directly to a printer, to generate CRDs.

WHAT ELSE A COLORSYNC-SAVVY APPLICATION
CAN DO

There is much that an application can do with
ColorSync that will help the user work with color. For
starters, an application could do the following:

* Provide the user with information on any profiles
embedded in a document, and possibly also allow
the user to change the quality and rendering intent
settings of embedded profiles.

¢ Include a print preview mode that shows a “soft
proof” of the matched output on the display. The
application accomplishes this by building a color
world with CWConcatColorWorld that matches
through three profiles: from the source profile
(which is embedded in the document) to the
printer’s profile (which you allow the user to pick
from a list of installed printer profiles) and back to
the screen profile (which is the current system
profile).

* Along with soft-proofing, it’s useful to show the user
what colors in the document are out of gamut
according to the current destination profile. Gamut
checking can be done with routines such as
CWCheckColors and CWCheckBitmap.

Note that the LaserWriter engineering team is
designing new PrGeneral code for the 8.3.1 version of
the driver. This will allow an application to determine
what profile is selected in the Print dialog.

WHERE TO GO FOR MORE

Everything you need to use ColorSync 2.0, including
interfaces, libraries, sample code, utilities, and the ICC
profile format specification, is on this issue’s CD and in
the Mac OS Software Developer’s Kit. The technical
reference for ColorSync 2.0 consists of several chapters
in the book Advanced Color Imaging on the Macintosh,
which is also included on this issue’s CD and will soon
be available in print from Addison-Wesley; this
documentation covers everything from a high-level
discussion of color management theory to a detailed
description of the ColorSync 2.0 API. Why not take a
closer look and see how you can take of advantage of
this new improved technology in your application?

Thanks to Paul Danbold, Steve Swen, Nick Thompson, and John
Wang for reviewing this column.®

28 develop Isue23 Seplember 1995

Missing something?

develo

Gurttin g §roartd

Music the Easy
Way: The
QuidkTime Music
Architeciure
Tho Basics of
QuikDraw 30
Geometries

Implomonting
Shared Infomet

re there issues of develop that have passed you by? If you’d like to complete your develop collection,

full-color, bound copies are available for $13 per issue, including shipping and handling. (Back issues are
also on the develop Bookmark CD and the Developer CD Series Reference Library edition, as well as on AppleLink,
eWorld, and the Internet.) For more information about how to order printed back issues (and where to find

them online), see the inside front cover of this issue. Supplies are limited. Please allow 4 to 6 weeks for delivery.

Issue 1 Color; Palette Manager; Offscreen Worlds;
PostScript; System 7; Debugging Declaration ROMs

Issue 2 C++ (Objects; Style Guide); Object Pascal;
Memory Manager; MacApp; Object-Based Design

Issue 3 ISO 9660 and High Sierra; Accessing CD Audio
Tracks; Comm Toolbox; 8924 GC Card; PrGeneral

Issue 4 Device Driver in C++; Polymorphism in C++;
A/ROSE; PostScript; Apple 1IGS Printer Driver

Issue 5 (Volume 2, Issue 1) Asynchronous Background
Networking; Palette Manager; Macintosh Common Lisp

Issue 6 Threads; CopyBits; MacTCP Cookbook

Issue 7 QuickTime 1.0; True'Type; Threads and Futures;
C++ Objects in a World of Exceptions

Issue 8 Curves in QuickDraw; Date and Time Entry in
MacApp; Debugging; Hybrid Applications for A/UX

Issue 9 Color on 1-Bit Devices; The TextBox You've
Always Wanted; Sound; Text Windows via the Terminal
Manager; Tracks: A Tool for Debugging Drivers

Issue 10 Apple Event Objects; Enhancements for the
LaserWriter Font Utlity; GWorlds; The Optimal Palette

Issue 11 Asynchronous Sound; Multibuffering Sounds;
Exceptions; NetWork: Distributed Computing

Issue 12 Components; Time Bases; Apple Event Coding
Through Objects; Globals in Standalone Code

Issue 13 QuickTime and Component-Based Managers;

Asynchronous Routines; Macintosh Debugging Revisited;
Adventures in Color Printing; DeviceLoop

Issue 14 Writing Localizable Applications; 3-D Rotation
Using a 2-D Input Device; Video Digitizing Under
QuickTime; Making Better QuickTime Movies

Issue 15 QuickDraw GX; Component Registration;
Floating Windows; Working in the Third Dimension

Issue 16 Making the Leap to PowerPC; PowerTalk;
Drag and Drop From the Finder; Color Matching With
QuickDraw GX; International Number Formatting

Issue 17 Proto Templates on the Newton; Standalone
Code on PowerPC; Debugging on PowerPC; Thread
Manager; Window Zooming

Issue 18 Apple Guide; Open Scripting Architecture;
Graphics Speed on the Power Macintosh; Displaying

Hierarchical Lists; Preferences Files

Issue 19 OpenDoc Part Handlers; PowerPC Memory
Usage; Designing for the Power Macintosh; QuickDraw
GX (Printing; Bitmaps); Inheritance in Scripts

Issue 20 AOCE; Make Your Own Sound Components;
Scripting the Finder; NetWare on PowerPC

Issue 21 OpenDoc Graphics; Dylan; Designing a
Scripting Implementation; Object-Oriented Hierarchical
Lists; Introducing PowerPC Assembly Language

Issue 22 QuickDraw 3D; Copland; PCI Device Drivers;
Custom Color Search Procedures; The OpenDoc User
Experience; Futures

The Basics of QuickDraw 3D Geometries

s

NICK THOMPSON AND
PABLO FERNICOLA

30 develop lssue23 Seplember 1995

No matter how realistic or sophisticated you want your 3D images to

be, you must always build objects with the primitive geometric shapes

provided by the graphics system. Our article in Issue 22 gave the basic
information you need to start developing applications with QuickDraw
3D. Here we delve deeper into the primitive geometric shapes provided
by QuickDraw 3D and show how to use them effectively. We also give
you some tips we’ve gained from working with developers.

Geometric shapes — or geometries — form the foundation of any 3D scene.
QuickDraw 3D provides a rich set of primitive geometric types that you use to define
the shapes of things. You can apply attributes (such as colors) to geometric objects,
collect geometric objects into groups, and copy, illuminate, texture, transform, or
otherwise modify them to attain the visual effects you want. In other words,

everything that’s drawn by QuickDraw 3D is either a geometry or a modification of
a geometry. So you need to know how to define geometries (and usually also how to
create and dispose of them) to work effectively with QuickDraw 3D. This article
describes the geometries available in QuickDraw 3D version 1.0 and shows how they
relate to other aspects of the QuickDraw 3D architecture (such as the class hierarchy).

We’re assuming that you’re already familiar with the basic capabilities of QuickDraw
3D. For a good introduction, see our article “QuickDraw 3D: A New Dimension for

Macintosh Graphics” in Issue 22 of develop (a copy is on this issue’s CD). In that
article, we provided an overview of QuickDraw 3D’s architecture and capabilities.
You can think of QuickDraw 3D as having three main parts: graphics, I/O (the
QuickDraw 3D metafile), and human interface guidelines. Here, we provide more
detail on the graphics portion of the QuickDraw 3D API and highlight some parts of
that API that could use clarification as you try to implement geometries.

NICK THOMPSON (Applelink NICKT) from
Apple’s Developer Technical Support group took a
trip o Las Vegas this year in a rented Cadillac. He
was impressed by some of the ancient architecture
on show in this fine city, such as the Pyramid of
Luxor, Excalibur’s Castle, and Caesar’s Palace (he
was surprised that the ancient Egyptians, King
Arthur, and the Roman emperor had all made it
that far west). He was also impressed by the free
food and drinks — all he had to do was sit at a
table and buy small plastic disks with green scraps
of paper that he got from a hole in the wall.
Having rented a Cadillac for this trip, Nick now
has his heart set on a 1968 Eldorado convertible. ®

PABLO FERNICOLA (Applelink PFF, eWorld
EscherDude), the short one in the picture, is the
brains behind the operation. His hobbies include
traveling fo exotic places (such as the local
supermarket), eating fine cuisine, and talking to
his dog (who is almost as big as Nick, and
probably a lot smarter). He's hard at work on
the next generation of QuickDraw 3D, which —
like Pablo — is bound to be even smarter. Pablo
says, “You can use QuickDraw 3D’s metafile
format everywhere, even for defining virtual
environments on the net. So get those
applications ready, won't you2”*®

To help you get started using geometries, this issue’s CD contains version 1.0 of the
QuickDraw 3D shared library and programming interfaces, sample code, and an
electronic version of the book 3D Graphics Programming With QuickDraw 3D,
which provides complete documentation for the QuickDraw 3D programming
interfaces.

A WORD ABOUT RENDERING AND SUBMITTING

Our previous article included an introduction to rendering; we’ll review a key
concept here — retained vs. immediate rendering. We’ll also elaborate on an
important point we glossed over in that article: submitting something to be rendered
rather than just rendering it. These concepts will help set the stage for what you’ll
learn here about working with geometries.

RETAINED VS. IMMEDIATE MODE RENDERING

A powerful feature of QuickDraw 3D is that it supports both retained and immediate
modes for rendering geometric data; you can even mix these modes within the same
rendering loop. In retained mode, the definition and storage of the geometric data are
kept internal to QuickDraw 3D — as abstract geometric objects. Inimmediate mode,
the application keeps the only copy of the geometric data; for efficiency, the
application should use QuickDraw 3D data structures to hold the data, but those
structures can be embedded in application-defined structures. Retained mode
geometric objects and immediate mode geometric data define the shapes of objects.
You’ll typically use one or more primitive geometric types provided by QuickDraw
3D (such as triangles or meshes) to build up a scene.

Whether you use retained or immediate mode to render geometries usually depends
on how much of a model changes from one rendering operation to the next. As we’ll
illustrate with examples in this section, we prefer to use retained geometries most of
the time and to use immediate mode only for temporary objects. Since our preference
for retained mode is a departure from the traditional QuickDraw way of drawing,
we’ll attempt to convince you that retained mode is a much more efficient method of
rendering geometries.

Immediate mode. When you use immediate mode rendering, the data that defines
a geometry is stored and managed by your application. For example, to draw a
triangle you would write code similar to that in Listing 1. If you wanted to draw this
triangle many times, or from different camera angles, you would have to maintain the
data in your application’s data structures.

"Typically when using immediate mode, you stick to a single type of geometry
(triangles are popular with developers accustomed to lower-level 3D graphics

Listing 1. Rendering a triangle in immediate mode
TQ3TriangleData myTriangle;
// Set up the triangle with appropriate data.

// Render the triangle.
Q3View StartRendering(myView);

do {
Q3Triangle Submit(&myTriangle, myView);
} while (Q3View EndRendering(myView) == kQ3ViewStatusRetraverse);

THE BASICS OF QUICKDRAW 3D GEOMETRIES 3 l

32 develop lssue23 Seplember 1995

libraries). If you use multiple geometric types, you need to define a data structure to
manage the order of the geometries. An example of rendering several geometries in
immediate mode is shown in Listing 2.

Listing 2. Rendering several geometries in immediate mode

typedef struct myGeometryStructure {
TQ30bjectType type;
void *geom;
struct myGeometryStructure *next;
} myGeometryStructure;

myGeometryStructure *currentGeometry;

Q3View StartRendering(myView);
do {
while (currentGeometry != NULL) ({
switch (currentGeometry->type) {
case kQ3GeometryTypeTriangle:
Q3Triangle Submit((TQ3TriangleData *) currentGeometry->geom,
myView);
break;
case kQ3GeometryTypePolygon:
Q3Polygon_Submit((TQ3PolygonData *) currentGeometry->geom,

myView);
break;
}
currentGeometry = currentGeometry->next;
}
} while (Q3View_EndRendering(myView) == kQ3ViewStatusRetraverse);

If you wanted to apply transforms to a geometry as it’s being drawn, you would have
to add a new case to the switch statement. This gets complicated pretty quickly. As a
result, many developers, when given a choice, will use immediate mode only for
models that have a fixed geometry and are not being altered.

Retained mode. Creating geometric objects allows renderers to take advantage of
characteristics of particular geometries and thus optimize the drawing code. The
code in Listing 3 draws a triangle in retained mode.

SUBMITTING

You'll notice that the routine to draw an object is Q3Object_Submit. This probably
seems a bit strange: why didn’t we call it Q3Object_Draw? The reason is that there
are four occasions in which you need to specify a geometry — when writing data to a
file, when picking, when determining the bounds of a geometry, and when rendering
— and QuickDraw 3D provides a single routine that you use in all of these cases. To
indicate which operation you want to perform, you call the Submit routine inside a
loop that begins and ends with the appropriate calls. For instance, to render a model,
you call Submit functions inside a rendering loop, which begins with a call to
Q3View_StartRendering and ends with a call to Q3View_EndRendering (as shown
in Listing 3). Similarly, to write a model to a file, you call Submit functions inside a
writing loop, which begins with a call to Q3View_StartWriting and ends with a call
to Q3View_EndWriting.

Listing 3. Rendering a triangle in refained mode
TQ3TriangleData triangleData;

// Set up the triangle with appropriate data.
};.Create the triangle.

triangleObject = Q3Triangle New(&triangleData);

// Render the triangle.
Q3View StartRendering(myView);

do {
Q30bject Submit(triangleObject, myView);
} while (Q3View EndRendering(myView) == kQ3ViewStatusRetraverse);

Listing 4. A submitting function

// Submit the scene for rendering, file I/O, bounding, or picking.
TQ3Status SubmitScene(DocumentHdl theDocument)

{
TQ3Vector3D globalScale, globalTranslate;
globalScale.x = globalScale.y = globalScale.z =
(**theDocument) .fGroupScale;
globalTranslate = *(TQ3Vector3D *)&(**theDocument).fGroupCenter;
Q3Vector3D Scale(&globalTranslate, -1, &globalTranslate);
Q3Style Submit((**theDocument).fInterpolation,
(**theDocument).fView);
Q3Style Submit((**theDocument).fBackFacing, (**theDocument).fView);
03Style Submit((**theDocument).fFillStyle, (**theDocument).fView);
Q3MatrixTransform Submit (& (**theDocument).fRotation,
(**theDocument).fView);
Q3ScaleTransform Submit(&globalScale, (**theDocument).fView);
Q3TranslateTransform Submit(&globalTranslate, (**theDocument).fView);
Q3DisplayGroup_Submit((**theDocument).fModel, (**theDocument).fView);
return (kQ3Success);
}

We recommend that you put all your Submit calls together within a single function
(such as the one shown in Listing 4) that you can then call from your rendering loop,
picking loop, writing loop, or bounding loop. Organizing your code in this fashion
will prevent a common mistake: creating rendering loops that are out of sync with
picking or bounding loops. It also simplifies your rendering and picking loops — you
just call your submitting function from within the loop. Here’s an example of calling
the function in Listing 4 from within a rendering loop:

Q3View_StartRendering((**theDocument).fView);
do {
theStatus = SubmitScene(theDocument);
} while (Q3View_EndRendering((**theDocument).fView) ==
kQ3ViewStatusRetraverse);

THE BASICS OF QUICKDRAW 3D GEOMETRIES

33

QUICKDRAW 3D CLASS HIERARCHY

Even if you perform all your rendering in immediate mode — that is, without
creating any QuickDraw 3D geometric objects — you still need to create some
QuickDraw 3D objects, such as a view, camera, and draw context, in order to render
any image at all. So working with geometries in QuickDraw 3D means working with
at least some objects. Before going into detail about how to create and use QuickDraw
3D geometric objects, let’s review the object system and some of its basic classes.

QuickDraw 3D is an object-based system. We chose to implement the API with the
C language, which doesn’t support objects directly; nevertheless QuickDraw 3D is
organized into a definite class hierarchy. Figure 1 shows part of this hierarchy,
emphasizing the classes that are discussed in this article. At the top of the class
hierarchy is the basic QuickDraw 3D Object class. Geometries, such as the triangle,
polygon, and mesh classes, are at the bottom of the hierarchy.

The Obiject class is really named TQ3ODbject. This article uses shortened forms of
the QuickDraw 3D class names.®

You can determine the class in which a function is defined simply by looking at the
function’s name: function names have the form Q3class-name_method. For example,
the function Q3Shared_GetReference is defined in the Shared class and returns a
reference to the shared object that’s passed as an argument. The function
Q30Object_Dispose is defined in the Object class; it accepts any QuickDraw 3D
object as an argument (since Object is the root class) and disposes of it.

@ °
context
Attribute
set
Simple General
polygon polygon °tt

Figure 1. Partial QuickDraw 3D class hierarchy

34 develop lssue23 Seplember 1995

In the following sections, we’ll talk more about the classes shown in Figure 1 and
answer some questions developers have had about using them when working with
geometries. Then we’ll (finally!) talk about the geometric objects themselves and

provide sample code for using many of them.

THE SHARED CLASS

Generally speaking, drawing anything with QuickDraw 3D involves working with
objects that inherit from the Shared class. There can be multiple references to shared
objects (hence the name); the way QuickDraw 3D determines whether a shared
object is still referenced is by way of a reference count, initially 1. Developers new to
QuickDraw 3D are sometimes confused by reference counts, but they’re actually very
straightforward. When you create a shared object, its reference count is 1. For example:

myNewObject = Q3Mesh New();
// myNewObject now has a reference count of 1.

When you get a shared object as a result of a Get call, or pass one as an argument in
an Add or Set call, the object’s reference count is incremented.

// The following calls increment the object's reference count.
Q3Group_GetPositionObject(myGroup, currentPosition, &myExistingObject);

03Group_AddObject (myGroup, myObject);
Q3View_SetDrawContext(myView, myDrawContext);

Passing a shared object as the argument to a Dispose call decrements its reference
count; only when the count goes to 0 does QuickDraw 3D actually dispose of the
memory occupied by the object. As a general rule, you should dispose of the object
before the scope of the variable expires. For example:

{ // Start of the block. Variables come into scope.
TQ30bject myObject = Q3Mesh New(); // The start of myObject's scope

// Do something that manipulates myObject.

// The scope of myObject is going to end at the next closing brace,
// so dispose of it before we go out of scope.
030bject Dispose(myObject);

} // End of the block.

If you were assigning an object reference to a global variable, you would dispose of
the object before calling Q3Exit and exiting your program.

Q: Why does my application crash when | call Q3Exit?

A: In the debugging version of QuickDraw 3D, Q3Exit generates a debugging
message for each remaining object. The default behavior is to display the message
with the DebugStr call; the message is displayed in MacsBug (or whatever debugger
you use). So your application isn't crashing; it's trying to tell you to tidy up after
yourself! To avoid this unscheduled trip into your debugger, you can install your own
error handler and log the message to a file. And, of course, you should fix your
application so that it doesn’t leak memory!®

Let’s take a closer look at what happens to reference counts when you create and

dispose of a shared object. Figure 2 shows the typical lifetime of a group of
QuickDraw 3D objects (we’ll talk more about groups later).

THE BASICS OF QUICKDRAW 3D GEOMETRIES 35

1 2 3
-~ Geometry Geometry Geometry
@} reference count=1 reference count=1 reference count=2
Add to group
GCre
e
Group Group
Application Application reference count=1 Application reference count=1
4a 4b
..q0® _{ Geometry Geometry
D)E?/’ reference count=1 reference count=1
Group Group
Application reference count=1 Application reference count=1
5a 5b 5¢
Geometry Geometry
reference count=1 reference count=0
T
| .
0, i Dispose
\isﬁ‘)&e :
=~ Group Group
Application reference count=0 Application reference count=0 Application

Figure 2. Reference counts in QuickDraw 3D

1. An application creates a geometric object. Its reference count is 1.
2. The application creates a group object. Its reference count is also 1.

3. The application adds the geometry to the group (by calling the function
Q3Group_AddObject), which increments the reference count of the
geometric object (to 2).

4. The application disposes of the geometric object (by calling the function
Q3Object_Dispose), which is safe to do once it’s added to the group. This
decrements the reference count of the geometry back to 1. The application
can then operate on the group (which now contains the geometry).

5. When it’s finished with the group, the application can dispose of the group
object. This lowers the reference count of the group to 0, which causes
QuickDraw 3D to dispose of the group and of all the objects within the
group. As you can see, the geometry is disposed of as a side effect of
disposing of the group.

THE VIEW CLASS

The view object ties together the elements required to draw a scene; it’s the central
object that holds the state information for rendering a scene. A scene consists of the
geometry being drawn (hereafter referred to as the 7odel), together with the light,
camera, draw context, and other objects. Our previous article discussed how to set up
a view; we'll expand on that discussion by describing how to create and manage
multiple scenes of a model.

"To display a scene, you need at least one view object, and each view object must have
a camera associated with it. Each of your application’s windows usually has one view
object attached to it. When you need to display multiple scenes of the same model,
you can create multiple windows, each with its own view object. Then you simply

36 develop lssue23 Seplember 1995

submit the model to the desired view. Alternatively, you can display multiple scenes

using a single view object by setting up several different cameras and draw contexts

and switching between them — manipulating the view’s camera to create each scene
(see Figure 3).

Camera 1

Draw
context

1

End projection

Draw
context

2

Side projection

Camera 3

Draw
context

3

Perspective projection

Figure 3. Multiple scenes of the same model

You can have only one active draw context and camera for each view object, so to
update one of your windows, you need to manually set the active draw context and
camera for the appropriate scene. For this reason, the first option (one view per
window) is usually simpler to implement.

THE GROUP CLASS

QuickDraw 3D provides a number of classes for grouping objects together. Groups
are useful because they provide a structure to your models, allowing you to express
the relationship between different geometric objects. Of course, if you want to use
your own data structures for storing your geometries, you can do so, but generally
it’s more work. Using QuickDraw 3D’s group classes, you can create hierarchies of
geometric data by nesting groups within other groups. Figure 4 shows the group
classes provided with QuickDraw 3D.

You can create a group object by calling Q3Group_New. This creates an object
belonging to the generic Group class. QuickDraw 3D provides the following
subgroups of the generic Group class, which are distinguished by the types of objects

you’re allowed to place in them:

o A light group places the light objects for a scene in a group, which simplifies
lighting management. For example, you could provide an iterator function to
loop through the group and turn all the lights on or off.

THE BASICS OF QUICKDRAW 3D GEOMETRIES 37

38 develop lssue23 September 1995

Light group %‘:OPLOPY InFt;rrr;\SF’r)ion

Figure 4. Group classes provided by QuickDraw 3D

* A display group manages objects that are drawable, including geometries,
styles, and transforms. You can use the function Q3Object_IsDrawable to
confirm whether an object is drawable.

* An information group stores informational strings, such as the author,
copyright, trademark, and other human-readable information within a
metafile.

Because we want to talk about geometries, which are drawable objects, we’ll
concentrate on display group objects. In addition to “plain” display groups, there are
two specialized subclasses of the display group class: ordered and 1/O proxy. For a
plain display group, the order in which items are placed in the group is the order in
which they’re drawn when the group is submitted, regardless of the class that the
objects belong to. For an ordered display group, objects in the group are sorted by
object type and are submitted (when you call Q3DisplayGroup_Submit) in the
following order: transforms, styles, attribute sets, shaders, geometric objects, groups.

Ordered display groups are most useful when you want to operate on a group of
objects as a single entity. For example, you know that transforms are always at the
start of the group, so you could manipulate the transform to alter the orientation of
the entire group. (If you were using a plain display group, you would have to search
for the transform, or otherwise store a reference to it, which makes life more
complicated.) Sometimes you’ll want to nest a number of ordered display groups
within a plain display group. If you were animating a robotic arm, for example, each
component of the arm could be an ordered display group that’s nested within a plain
display group.

You can use I/O proxy display groups to provide multiple representations of the same
data. This is useful when dealing with applications that aren’t based on QuickDraw
3D or that run on other platforms. For example, some applications might be able to
read only mesh objects; your application may want to use NURB patches (another
type of geometric object), but you want other applications to be able to read your
metafiles. In this case, you could write a NURB patch representation of your data,
followed by a mesh representation. To provide both representations of the same data
in a metafile, you would create an I/O proxy group that contains the NURB patch
object first and the mesh object second, and write the group to the metafile. When
you draw with QuickDraw 3D, the objects that appear first in the group are preferred
over later objects in the group.

THE TRANSFORM CLASS

The Transform class enables you to change the position, orientation, or size of
geometries. When you specify the coordinates for the vertices that define a geometry,
the x, y, z values are expressed as floating-point values in loca/ coordinates. Rendering,
however, and associated operations like backface removal and lighting are performed
in world coordinates. 1o transform a geometry from one space to another, QuickDraw
3D multiplies the local coordinates by a local-to-world matrix. The default value for
this matrix is the identity matrix, which leaves the original geometry unchanged. By
changing the value of the local-to-world matrix, you can transform geometries
without having to change the geometries’ coordinates.

Using an example from our previous article, let’s say that you have a model that
contains several boxes (see Figure 5). We could enter the coordinates for the points
that make up each of the four boxes, but that’s a lot of work (and if you’re creating an
object for each box, it’s a waste of memory). Instead, we define one box at a certain
location and call it the reference box. To get the effect of four boxes in different
locations, we draw the reference box four times — changing the local-to-world
matrix each time before drawing.

S[1=————— Spinning Box = |

Figure 5. Boxes drawn by changing the localto-world matrix four times

If you look in the file QD3DTransform.h, you’ll notice that there are several different
types of transforms. The most general type is the matrix transform, which isa 4 x 4
matrix. To use this transform, you supply the translation, rotation, and scale values in
the appropriate entries of the matrix, as shown in Figure 6. You can do any type of
transform that can be expressed as a 4 x 4 matrix. In the figure, you can see that the
upper 3 x 3 submatrix is a rotation matrix, with the entries in the main diagonal
containing the scale factors for x, y, and z. The lower row contains the translation
factors.

If you know which type of transform you’ll be applying, however, it’s better to use
one of the more specific types. In this way, QuickDraw 3D renderers and shaders
will be able to take advantage of the information contained in the transform,; for
example, if your local-to-world matrix is just a translate transform, the renderer

THE BASICS OF QUICKDRAW 3D GEOMETRIES

39

40 develop lIssue23 September 1995

S« * Roo Ro,1 Ro,2 0.0

R],O Sy * R],] R],Q 0.0
R2,0 R2,1 S, * Ry 2 0.0
T, Ty T, 1.0

Note: S is the scale transform, R is the rotate transform, and T is the translate transform.

Figure 6. A matrix transform

doesn’t have to transform normals before performing the backface removal operation
(because directions are not affected by translations). Also, using the more specific
types provides a better abstraction and tends to make the logic of your code easier to
understand (and you don’t have to deal with all those pesky matrices).

When you change the local-to-world matrix by applying transforms, each transform
is concatenated as it’s applied through a Submit call. For example, if before drawing a
point object, we submit a translate transform, a rotate transform, a scale transform,
and then a point, the point will be transformed as follows:

p'=p*S*R*T

p' is the resulting transformed point and p is the original point. T is the matrix
containing the translate operation, R is the matrix containing the rotate operation,
and S is the matrix containing the scale operation.

You can apply transforms either by using immediate mode calls or by creating
transform objects — just as you do for geometries. Note that transforms accumulate;
that is, if you apply a translation, any objects drawn after that will be translated by the
same amount. If you want a transform to apply to a certain object only, you can use
the Q3Push_Submit and Q3Pop_Submit calls around it or place the object in a
group, since groups perform an implicit push and pop (you can change this behavior
if you want).

So, let’s build on what we’ve learned so far. We want to draw the model shown in
Figure 5. Let’s first do it by submitting new transforms in immediate mode, before
each box is drawn, as shown in Listing 5.

Alternatively, we could create the model of the four boxes as a group, as shown in
Listing 6.

THE ATTRIBUTE SET CLASS

Attributes affect the way an object is rendered in QuickDraw 3D. A view has a default
set of attributes, defined in the QD3DView.h file, that can be modified to suit a
particular application. If no attributes are supplied for the objects being rendered within
a view, the default view attributes are applied. Attributes can be applied in a number
of ways: by submitting them to a view object; by adding them to a group; or by
attaching them to a geometry, to a geometry’s face, or to each vertex of a geometry.

The order in which attribute sets are applied during rendering is based on a fixed
hierarchy, as illustrated in Figure 7. Attributes of the same type (such as diffuse color)
can override one another; they use the following preference hierarchy, from highest
to lowest precedence: vertex, face, geometry, group, view. For example, a specular
color attribute at the vertex level does not override a diffuse color attribute at the
geometry level, whereas a specular color attribute at the vertex level does override a

Listing 5. Using translate transforms in immediate mode

Q3View StartRendering(viewObject);
do {

TQ3Vector3D translationX = {2.0, 0.0, 0.0},
£0.0, -2.0, 0.0};

translationY
Q3View_Push(viewObject);

// Note how we are using a retained mode geometry with immediate mode
// transforms. As we execute each of the calls, the boxes are drawn.

Q30bject Submit(referenceBox, viewObject);
// Move to the right.
Q3TranslateTransform Submit(&translationX, viewObject);
Q30bject Submit(referenceBox, viewObject);
// The Pop will move back to the left.
Q3View_Pop(viewObject);
// Move down.
Q3TranslateTransform Submit(&translationY, viewObject);
Q30bject Submit(referenceBox, viewObject);
// Move to the right.
Q3TranslateTransform Submit(&translationX, viewObject);
Q30bject Submit(referenceBox, viewObject);

} while (Q3View EndRendering(viewObject) == kQ3ViewStatusRetraverse);

Listing 6. Creating translate transform objects

TQ3GroupObject myModel;

TQ3Vector3D translationX = {2.0, 0.0, 0.0},
translationYAndNegativeX = {-2.0, -2.0, 0.0};

TQ3TransformObject xform x, xform yx;

// Note that as we execute these calls, nothing is drawn.

myModel = Q3Group New();

xform x = Q3TranslateTransform New(&translationX);

xform yx = Q3TranslateTransform New(&translationYAndNegativeX);
Q3Group_AddObject (myModel, referenceBox);

Q3Group_AddObject (myModel, xform x);

Q3Group AddObject(myModel, referenceBox);

03Group AddObject(myModel, xform yx);

Q3Group AddObject(myModel, referenceBox);
03Group_AddObject(myModel, xform x);

03Group AddObject(myModel, referenceBox);

// To draw the boxes, you would call Q30bject Submit(myModel, myView)
// within a submitting loop.

specular color attribute at the geometry level (because they are attributes of the same
type). If attributes at any level are not supplied, the parent’s attributes apply. If there
are no attributes supplied anywhere in the hierarchy, the default attribute set for the

view will be used.

THE BASICS OF QUICKDRAW 3D GEOMETRIES 4]]

Lower View ——————— Attribute set
precedence

Group

—— Attribute set

Attribute set

Attribute set /

/ Face 1 Vertex 1

Higher — Geometry< E E Vertex 2
Face 2

precedence Vertex 3

Attribute set
Attribute set
Attribute set

Lower Higher
precedence precedence

Figure 7. Hierarchy of applying attributes to a geometry

Here are the six most commonly used predefined attribute types that you can specify
(there are 12 in all):

* 'The diffuse color is the actual color of the object.

® The specular color is the color of the light reflected by the object, which may
or may not be the same as the diffuse color.

* 'The specular control determines how much light of the specular color is
reflected.

® 'The ambient coefficient determines how much the ambient lighting affects the
object.

® The surface UV attribute specifies how a texture is mapped to a geometry’s
vertex.

* A texture shader can be applied to a surface that has UV parameterization

applied (more on this later).

You can also define your own custom attributes. Later, in the geometry code samples,
we’ll create attribute sets to affect the way the geometries are drawn.

BUILDING GEOMETRIES

Now we’re ready to look at the specific geometries and show how to build them.
QuickDraw 3D version 1.0 supports 12 geometries (illustrated in Figure 8). In the
code examples later in this article, we’ll cover the most commonly used geometries.

* A marker object is a bitmap that’s displayed face-on at any orientation —
similar to a sprite. It’s useful for denoting the position of objects and for
providing annotations, such as labels on objects in a 3D chart.

* A point object is the most basic object in QuickDraw 3D; it specifies discrete
points in a scene.

* A Jine object is a line between two points.
* A polyline object is a line that consists of multiple segments.

* A triangle object is a closed planar geometry defined by three intersecting
lines. It’s the simplest form of a polygon.

* A simple polygon object is a planar geometry described by a list of vertices; it’s
a figure formed by a closed chain of intersecting straight lines. A simple
polygon consists of a single convex contour and may not contain holes.

A9 develop lssue23 September 1995

QuickDraw 3D : —_— /\ ‘ '

Marker Point Line Polyline Triangle Simple polygon

AR R

General polygon Trigrid Mesh NURB curve NURB patch

Figure 8. QuickDraw 3D geometries supplied in version 1.0

* A general polygon object is a planar geometry that may contain holes, be
concave, and consist of one or more contours.

* A trigrid object is a grid whose surface consists of multiple triangles that
share edges and vertices.

* A box object is a three-dimensional rectangular object.

* A mesh object is a collection of vertices, faces, and edges that represent a
topological polyhedron. It’s sometimes referred to as a winged-edge
structure.

* A NURB curve object is a curve described by a NURB equation.

* A NURB patch object is a three-dimensional surface described by a NURB
equation.

NURB stands for nonuniform rational B-spline. A B-spline is a parametric curve

(a curve defined by coordinates derived from functions sharing a common parameter)
whose shape is determined by a series of control points whose influence is described
by basis functions.®

SIMPLE GEOMETRIES

Let’s start with some simple geometries first: lines, polylines, triangles, simple polygons,
and general polygons. In essence, these are the building blocks for QuickDraw 3D.
You can use combinations of these to construct your model, or you can use some of
the composite geometries, such as meshes and trigrids (described later).

Line and polyline objects. Lines are defined by two noncoincident points. If you
want to have multiple line segments, you can use polylines (see Listing 7). In
polylines, every vertex after the first one defines a new line. You can attach attributes
at the geometry level or at the vertex level (which is useful for having multicolored
lines, but remember that you need to use per-vertex interpolation when rendering in
order for the multiple colors to apply).

Triangle objects. Triangles are the most basic of the planar geometries in
QuickDraw 3D. Triangles are defined by three noncolinear, noncoincident vertices.

THE BASICS OF QUICKDRAW 3D GEOMETRIES

43

44 develop lIssue23 September 1995

Listing 7. Creating a polyline

TQ3ColorRGB polyLineColor;
TQ3PolyLineData polyLineData;
TQ3GeometryObject polyLineObject;

static TQ3Vertex3D points[4] = {
{{-1.0, -0.5, -0.25 }, NULL }, // first vertex
{ {-0.5, 1.5, 0.45 }, NULL }, // second vertex
{{ 0.0, 0.0, 0.0 }, NULL }, // third vertex
{{ 1.5, 1.5, 1.0 }, NULL } // fourth vertex
bi

// The polyline has four vertices.
polyLineData.numVertices = 4;
polyLineData.vertices = points;

// Add a color to the line as a whole.

polyLineData.polyLineAttributeSet = Q3AttributeSet New();

03ColorRGB_Set (&polyLineColor, 0.4, 0.2, 0.9);

AttributeSet AddDiffuseColor(polyLineData.polyLineAttributesSet,
&polyLineColor);

// Create the polyline.
polyLineObject = Q3PolyLine New(&polyLineData);

Q30bject Dispose(polyLineData.polyLineAttributeSet);

In Listing 8, we set a color attribute for the entire geometry and for the individual
vertices. When you draw the triangle with flat interpolation, the geometry color is
used; when you draw it with per-vertex interpolation, however, the vertex attributes
take precedence and you can see a color ramp on the triangle (see Figure 8, where the
color ramp is approximated in grayscale).

Simple polygon and general polygon objects. Simple polygons and general
polygons are planar objects with multiple vertices. Simple polygons must be convex,
but general polygons can be either convex or concave. In addition, general polygons
can be self-intersecting and have multiple contours.

As was shown in Figure 8, a general polygon can have a “hole” in it, but a simple
polygon never does. This is the primary difference between the two geometries.
Processing general polygons takes more time than processing simple polygons, so we
advise you to use simple polygons whenever possible.

If the geometry you're creating is convex, you should use simple polygons to achieve
better performance. If your polygons always have three vertices, however, you should
opt for triangles. If you don’t know what your geometry looks like (for example, it’s
being built by the user on the fly and you don’t want to check the points), use general
polygons and set the complexity flag to kQ3 GeneralPolygonShapeHintComplex (see
Listing 9). Renderers look at this flag as a hint on how to process the general polygon.

GETTING FANCY
There’s nothing wrong with using only simple geometries, as described above. You
can build any complex object just with triangles, but from a performance point of

Listing 8. Creating a triangle in a group

TQ3ColorRGB triangleColor;
TQ3GroupObject model;
TQ3TriangleData triangleData;

TQ3GeometryObject triangleObject;
static TQ3Vertex3D vertices[3] = {{ { -1.0, -0.5, -0.25 }, NULL },
{{ 0.0, 0.0, 0.0 }, NULL },
{ { -0.5, 1.5, 0.45 }, NULL }};

triangleData.vertices[0] = vertices[0];
triangleData.vertices[1l] = vertices[1l];
triangleData.vertices[2] = vertices[2];

triangleData.triangleAttributeSet = Q3AttributeSet New();

03ColorRGB_Set (&triangleColor, 0.8, 0.5, 0.2);

AttributeSet AddDiffuseColor(triangleData.triangleAttributesSet,
&triangleColor);

triangleData.vertices[0].attributeSet = Q3AttributeSet New();

triangleData.vertices[l].attributeSet = Q3AttributeSet New();

triangleData.vertices[2].attributeSet = Q3AttributeSet New();

03ColorRGB_Set (&triangleColor, 1.0, 0.0, 0.0);

AttributeSet AddDiffuseColor(triangleData.vertices[0].attributeSet,
&triangleColor);

03ColorRGB_Set (&triangleColor, 0.0, 1.0, 0.0);
AttributeSet AddDiffuseColor(triangleData.vertices[l].attributeSet,
&triangleColor);

03ColorRGB_Set (&triangleColor, 0.0, 0.0, 1.0);
AttributeSet AddDiffuseColor(triangleData.vertices[2].attributeSet,
&triangleColor);

// Create the triangle and group.

triangleObject = Q3Triangle New(&triangleData);

model = Q30rderedDisplayGroup New();

if (triangleObject != NULL) {
Q3Group_AddObject(model, triangleObject);
Q30bject Dispose(triangleObject);

Q30bject Dispose(triangleData.vertices[0].attributeSet);
030bject Dispose(triangleData.vertices[l].attributeSet);
030bject Dispose(triangleData.vertices[2].attributeSet);
030bject Dispose(triangleData.triangleAttributesSet);

view that’s not always the best thing to do. When your object is made up of faces that
share vertices, it’s a good idea to use a representation that allows the graphics system
to reuse the vertex information (such as lighting calculations) for the shared vertices.

With a box, for example, each vertex is shared by three faces, where each face is made

up of two triangles. If we draw the box as a bunch of triangles, QuickDraw 3D would
have to perform the same lighting calculations on each vertex up to six times. If, on

THE BASICS OF QUICKDRAW 3D GEOMETRIES 4.5

Listing 9. Creating polygons

TQ3PolygonData polygonData;
TQ3GeneralPolygonData genPolyData;
TQ3GeometryObject polygonObject, generalPolygonObject;

TQ3GeneralPolygonContourData contours[2];
TQ3ColorRGB color;

static TQ3Vertex3D polyVertices[4] = {

{{-1.0, 1.0, 0.0 }, NULL },
{{-1.0, -1.0, 0.0 }, NULL },
{{ 1.0, -1.0, 0.0 }, NULL },
{{ 1.0, 1.0, 0.0 }, NULL }

}I

genPolyHoleVertices[4] = {
{{-0.5, 0.5, 0.0 }, NULL },
{{-0.5, -0.5, 0.0 }, NULL },
{{ 0.5, -0.5, 0.0 }, NULL },
{{ 0.5, 0.5, 0.0 }, NULL }

bi

polygonData.numVertices = 4; polygonData.vertices = polyVertices;
polygonData.polygonAttributeSet = NULL;
polygonObject = Q3Polygon New(&polygonData);

contours[0].numVertices = 4; contours[0].vertices = polyVertices;
contours[l].numVertices = 4; contours[l].vertices = genPolyHoleVertices;
genPolyData.numContours = 2; genPolyData.contours = contours;
genPolyData.shapeHint = kQ3GeneralPolygonShapeHintComplex;
genPolyData.generalPolygonAttributeSet = Q3AttributeSet New();
Q3ColorRGB_Set(&color, 1.0, 1.0, 1.0);
AttributeSet AddDiffuseColor(genPolyData.generalPolygonAttributeSet,
&color);

polyVertices[1l].attributeSet = Q3AttributeSet New();
polyVertices[2].attributeSet = Q3AttributeSet New();
Q3ColorRGB_Set(&color, 0.0, 0.0, 1.0);

AttributeSet AddDiffuseColor(polyVertices[l].attributeSet, &color);
Q3ColorRGB_Set(&color, 0.0, 1.0, 1.0);

AttributeSet AddDiffuseColor(polyVertices[2].attributeSet, &color);

genPolyHoleVertices[0].attributeSet = Q3AttributeSet New();
genPolyHoleVertices[2].attributeSet = Q3AttributeSet New();
Q3ColorRGB_Set(&color, 1.0, 0.0, 1.0);

AttributeSet AddDiffuseColor(genPolyHoleVertices[0].attributeSet, &color);
Q3ColorRGB_Set(&color, 1.0, 1.0, 0.0);

AttributeSet AddDiffuseColor(genPolyHoleVertices[2].attributeSet, &color);

generalPolygonObject = Q3GeneralPolygon New(&genPolyData);
Q30bject Dispose(genPolyData.generalPolygonAttributesSet);
Q30bject Dispose
Q30bject_Dispose
Q30bject_Dispose
Q30bject Dispose

polyVertices[1l].attributeSet);
polyVertices[2].attributeSet);
genPolyHoleVertices[0].attributeSet);

—_ —_~ —~ —~

genPolyHoleVertices[2].attributeSet);

46 develop Issue23 September 1995

the other hand, we represent the box as a box primitive or mesh object, the lighting

calculations are performed only once per vertex. (However, if you attach vertex colors

or face attributes, such as normals or colors, the calculations need to be performed
more often.)

Here we show how to use two composite geometries — trigrid and mesh objects —

as well as UV parameterization, which you may need to supply if you want to apply a

texture to a trigrid or mesh.

Trigrid objects. Trigrids are a collection of triangles that share vertices. We create a

trigid in Listing 10.

Listing 10. Creating a trigrid

TQ3ColorRGB triGridColor;
TQ3GroupObject model;
TQ3TriGridData triGridData;
TQ3GeometryObject triGridObject;
unsigned long numFacets, 1i;

static TQ3Vertex3D vertices[12] = {{ { -1.0, -1.0, 0.0 }, NULL },
... // 10 more lines of vertex data
{{ 0.7, 1.0, 0.5}, NULL }};

triGridData.numRows = 3; triGridData.numColumns = 4;

triGridData.vertices = vertices;

triGridData.triGridAttributeSet = Q3AttributeSet New();

03ColorRGB_Set(&triGridColor, 0.8, 0.7, 0.3);

AttributeSet AddDiffuseColor(triGridData.triGridAttributeSet,
&triGridColor);

numFacets = (triGridData.numRows - 1) * (triGridData.numColumns - 1)
* 2,

triGridData.facetAttributeSet =
malloc(numFacets * sizeof(TQ3AttributeSet));

for (i = 0; i < numFacets; i++) {
triGridData.facetAttributeSet[i] = NULL;

}

03ColorRGB_Set(&triGridColor, 1.0, 0.0, 0.5);

triGridData.facetAttributeSet[5] = Q3AttributeSet New();

AttributeSet AddDiffuseColor(triGridData.facetAttributeSet([5],
&triGridColor);

triGridObject = Q3TriGrid New(&triGridData);

UV parameterization. Texturing allows you to have more realistic looking models.

For texturing to work, the geometry must have UV parameters on its vertices, which
may have to be supplied by you. The UV parameters are two floating-point values
(U and V) that correlate a location on the geometry to a point in the picture of the
texture (see Figure 9).

The convention for QuickDraw 3D is to start the UV parameters at 0.0,0.0 at the

bottom left, with U increasing toward the right and V increasing upward. You supply

the UV parameterization as a collection of vertex attributes.

THE BASICS OF QUICKDRAW 3D GEOMETRIES 4.7

1.0,1.0

1.0,0.5

O
0.0,0.0

O
1.0,0.0

0,0
Figure 9. UV parameters on a trigrid’s vertices for texture mapping

Once a UV parameterization has been applied to a surface’s vertices, the surface can
be texture mapped. There are several steps to texturing surfaces with QuickDraw 3D.
In general, you’ll already have a texture stored in a pixel map somewhere. What you
need to do is create a texture shader (of type TQ3TextureObject) and add it into your
display group before you add the geometry you want to shade.

Listing 11 is a general-purpose routine for adding a texture shader to a group. It’s
interesting for a number of reasons: it shows how to search a group for particular
objects (in this case, an existing shader that it will replace), how to edit items within a
group, and how to add new items.

Listing 11. Routine to texture-map an object

TQ3Status AddTextureToGroup(TQ3GroupObject theGroup, TQ3StoragePixmap *textureImage)
{

TQ3TextureObject textureObject;

TQ3GroupPosition position;

TQ30bject firstObject;

// Create a texture object.
textureObject = Q3PixmapTexture_New(textureImage);
if (textureObject) ({
if (Q30bject IsType(theGroup, kQ3GroupTypeDisplay) == kQ3True) {
// If the group is a display group...
Q3Group GetFirstPosition(theGroup, &position);
Q3Group_GetPositionObject(theGroup, position, &firstObject);
if (Q30bject IsType(firstObject, kQ3surfaceShaderTypeTexture) == kQ3True) {
TQ3TextureObject oldTextureObject;
TQ3StoragePixmap oldTextureImage;
// Replace existing texture by new one.
Q3TextureShader GetTexture(firstObject, &oldTextureObject);
Q3PixmapTexture GetPixmap(oldTextureObject, &oldTextureImage);
030bject Dispose(oldTextureObject);
Q3TextureShader SetTexture(firstObject, textureObject);
030bject Dispose(textureObject);

(continued on next page)

A48 develop lIssue23 September 1995

Listing 11. Routine to texture-map an object (continued)

} else {

TQ3ShaderObject textureShader;

// Create texture shader and add it to group.

textureShader = Q3TextureShader_ New(textureObject);

if (textureShader) ({
Q30bject Dispose(textureObject);
Q3Group AddObjectBefore(theGroup, position, textureShader);
Q30bject Dispose(textureShader);

} else
return (kQ3Failure);

}
030bject Dispose(firstObject);
} else if (Q30bject IsType(theGroup, kQ3DisplayGroupTypeOrdered) == kQ3True) {

// If the group is an ordered display group...
TQ3ShaderObject textureShader;
03Group_GetFirstPositionOfType(theGroup, kQ3ShapeTypeShader, &position);
if (position) {
03Group_GetPositionObject(theGroup, position, &firstObject);
if (Q30bject IsType(firstObject, kQ3SurfaceShaderTypeTexture) == kQ3True) {
TQ3TextureObject oldTextureObject;
TQ3StoragePixmap oldTextureImage;
// Replace existing texture by new one.
Q3TextureShader GetTexture(firstObject, &oldTextureObject);
Q3PixmapTexture GetPixmap(oldTextureObject, &oldTexturelImage);
Q30bject Dispose(oldTextureObject);
Q3TextureShader_ SetTexture(firstObject, textureObject);
Q30bject Dispose(textureObject);
} else {
// Create texture shader and add it to group.
textureShader = Q3TextureShader New(textureObject);
if (textureShader) ({
Q30bject Dispose(textureObject);
03Group_SetPositionObject(theGroup, position, textureShader);
Q30bject Dispose(textureShader);
} else
return (kQ3Failure);
}
} else {
// Create texture shader and add it to group.
textureShader = Q3TextureShader New(textureObject);
if (textureShader) ({
Q30bject Dispose(textureObject);
03Group_AddObject(theGroup, textureShader);
Q30bject Dispose(textureShader);
} else
return (kQ3Failure);

}
}
return (kQ3Success);
} else // 1f pixmap shader not created...

return (kQ3Failure);

THE BASICS OF QUICKDRAW 3D GEOMETRIES 4 ©

Mesh objects. Listing 12 shows the key components needed to create a simple mesh
geometry. We create a mesh consisting of two faces, with one of them having a hole.
We also add UV parameters to the vertices so that we can texture-map the mesh.
Figure 10 shows the texture map and the resulting textured mesh.

Listing 12. Creating a mesh

TQ3GroupObject BuildMesh(void)
{
TQ3ColorRGB meshColor;
TQ3GroupObject model;
TQ3Vertex3D vertices[9] = {
{{-0.5, 0.5, 0.0}, NULL },
{{ 0.0, -0.5, 0.3}, NULL },
0.5, 0.5, 0.0 }, NULL },
-0.4, 0.2, 0.0 }, NULL },

{ -0.5, -0.5, 0.0 }, NULL },
{ 0.5, -0.5, 0.0 }, NULL },
{ 0.0, 0.5, 0.3}, NULL },
{ 0.0, 0.0, 0.0 }, NULL }

Amm s

}i

TQ3Param2D verticesUV[9] = {
{0.0, 1.0}, { 0.0, 0.0}, { 0.5, 0.0 },
{1.0, 0.0}, { 1.0, 1.0}, { 0.5, 1.0 },
{0.1, 0.8}, {0.5, 0.5}, {0.1, 0.

-
-~

}i

TQ3MeshVertex meshVertices[9];
TQ3GeometryObject meshObject;
TQ3MeshFace meshFace;
TQ3AttributeSet faceAttributes;
unsigned long i;

meshObject = Q3Mesh New();

Q3Mesh DelayUpdates(meshObject);

for (i =0; 1 < 9; i++) {
TQ3AttributeSet vertexASet;
meshVertices[i] = Q3Mesh VertexNew(meshObject, &vertices[i]);
vertexASet = Q3AttributeSet New();
AttributeSet AddSurfaceUV(vertexASet, &verticesUV[i]);
Q3Mesh_SetVertexAttributeSet(meshObject, meshVertices[i],

vertexASet);

Q30bject Dispose(vertexASet);

}

faceAttributes = Q3AttributeSet New();

Q3ColorRGB_Set (&meshColor, 0.3, 0.9, 0.5);

AttributeSet AddDiffuseColor(faceAttributes, &meshColor);

meshFace = Q3Mesh FaceNew(meshObject, 6, meshVertices,
faceAttributes);

03Mesh FaceToContour (meshObject, meshFace, Q3Mesh FaceNew(meshObject,
3, &meshVertices[6], NULL));

03Mesh ResumeUpdates (meshObject);

model = Q30rderedDisplayGroup New();

03Group AddObject(model, meshObject);

030bject Dispose(faceAttributes);

030bject Dispose(meshObject);

return (model);

50 develop Isue23 September 1995

Texture map Mesh with texture map applied
Figure 10. Texture map applied to a mesh

Q3Mesh_DelayUpdates and Q3Mesh_ResumeUpdates, used in Listing 12, are two
very important routines. Mesh objects can often contain hundreds and even
thousands of vertices. When you’re building a complex model, we advise that you
turn off updates to the internal ordering of the mesh data, so that building the mesh
takes as little time as possible. The difference between doing this and not doing this
can be, in the case of a complex model containing 3000 polygons, several minutes
when Q3Mesh_DelayUpdates is not called, compared with 3 seconds when it is
called (on a mid-level computer).

WHAT DO YOU WANT TO BUILD TODAY?

We hope that the hints in this article will save you some time and help you in your

development process. We’ve been pleasantly surprised by some of the applications in
which developers have been putting QuickDraw 3D to use; for example, a European

developer used QuickDraw 3D to produce 3D representations of his code profiler

application’s data. Learning the basics of QuickDraw 3D’s geometries is the first step

toward mining the rich seam of functionality that QuickDraw 3D offers.

Thanks to our technical reviewers Tom Dowdy,
Tim Monroe, and Philip Schneider.®

THE BASICS OF QUICKDRAW 3D GEOMETRIES

31

BALANCE OF
POWER

Power Macintosh:
The Next
Generation

DAVE EVANS

The Power Macintosh computer just keeps moving
forward. The latest generation brings greatly improved
performance and adds the PCI expansion bus and the
PowerPC 603 and 604 processors. Software changes
that improve performance include the following:

* an improved 680x0 emulator

® anative Resource Manager

* native networking (Open Transport)
* native device drivers

* an improved Memory Manager

I'll describe these new features and discuss how you can
maintain compatibility with the new Power Macintosh
computers and with future changes to the Mac OS.

THE IMPROVED EMULATOR

First delivered with the Power Macintosh 9500
computer, the new emulator improves on the original
in one key way: it actually recompiles 680x0 code into
native PowerPC code. Since large portions of the Mac
OS are still in 680x0 code, this new emulator speeds up
most common operations and offers significant
improvements for 680x0 code with tight loops.

Recompiling doesn’t mean converting 680x0
instructions one for one into PowerPC instructions.
Fully emulating a 680x0 instruction still takes a few
PowerPC instructions. But recompiled code is more
efficient and optimized. The original emulator had to
decipher each instruction every time it was executed,
but recompiled code from the new emulator is analyzed
once and then executed many times.

Because it takes extra time to recompile code, the
emulator doesn’t immediately translate all 680x0 code.
It operates just like its predecessor until it encounters a
loop or similar repetition. Then, instead of emulating
the same code repeatedly, it translates the instructions
into native code and caches the result. Subsequent calls
to that code simply execute the native translation,
greatly improving performance.

The cache of translated 680x0 code must stay coherent
with memory, much like the caches on the Motorola
68040 processor. Therefore, whenever your software
modifies code or changes application jump tables, you
should flush the instruction cache. (See the Macintosh
"Technical Note “Cache as Cache Can” (HW 6) for a
more detailed description of cases where flushing the
instruction cache is necessary.) In the past you could
call Gestalt and check the processor type to flush only
on a 68040. Since the new emulator supports only the
68020 instruction set — and Gestalt will indicate that a
68020 is installed — you should now flush any time you
modify code or change jump tables.

The best way to flush 680x0 code in the cache is with
FlushCodeCacheRange, which flushes only the invalid
portion of the emulator’s cache. FlushInstructionCache
also works but can degrade performance by wastefully
purging recompiled code that’s still valid. These
routines are documented in Inside Macintosh: Memory.
The C prototype for FlushCodeCacheRange is as

follows:

OSErr FlushCodeCacheRange(void *address,
unsigned long count);

In 680x0 assembly, you would use

MyFlushCodeCacheRange Proc
; On entry A0 = address, DO = # of bytes
; Trashes A0, Al, DO. Result in DO, Z bit set.

.
!

movea.l D0,Al ; # bytes in Al
moveq #$9,D0 ; selector
_HWPriv ; A098

tst.w DO ; result == noErr
rts

OTHER SOFTWARE CHANGES
The first Power Macintosh computer ported critical
portions of the Macintosh Toolbox to native PowerPC

DAVE EVANS and fellow Apple engineer Rus Maxham rode
2000 miles on their motorcycles this summer. They journeyed
through the lush Central Valley of California, the blistering heat of
the southern Arizona deserts, and the neon glitz of Las Vegas.

52 develop lIssue23 September 1995

Along the way they enjoyed the camaraderie of fellow bikers and
were rescued in their hour of need by a sympathetic motorcycling
couple who housed them as Rus rebuilt his BMW's rear drive
assembly.®

code. Ultimately we’ll take all of the Mac OS native,
but for now we’ve focused on areas that most increase
overall performance. So, starting with the Power
Macintosh 9500, we’ve added a native Resource
Manager, the native Open Transport networking stack,
and native device drivers. I'll discuss each of these in
turn and then mention improvements to the Modern
Memory Manager.

Even though many calls to the Resource Manager are
bound by 17O bottlenecks, porting the Resource
Manager to native PowerPC code still substantially
improves performance. Often to complete a request the
Resource Manager need only look up existing
information and return it, and even if file I/O is
required the data is often in the system disk cache. For
these reasons, many Resource Manager calls will
execute much faster on the new machines.

Native Open Transport networking provides a stream-
based interface for networking that’s independent of
the network protocol. You can now implement a variety
of network solutions without concerning yourself with
protocol details. Documentation on Open Transport is
provided on this issue’s CD.

Native device drivers provide both a performance
improvement and an improved system programming
interface (SPI). This SPI is available with all PCI-based
Macintosh computers, starting with the Power
Macintosh 9500. For more information on these
drivers, see the article] “Creating PCI Device Drivers”|
in develop Issue 22 and Designing PCI Cards and Drivers
for Power Macintosh Computers, available from APDA.

Although not new, the native Modern Memory
Manager has been improved in two important ways:

* Many of the routines are now implemented as “fat”
binaries instead of all native code. When your 680x0
code calls the Memory Manager, it will now execute
680x0-based routines, eliminating the Mixed Mode
environment switch once needed to call the native
routines. Reducing the number of these switches can
measurably improve performance.

¢ The bus error handlers have been removed,
significantly increasing the performance of many of
the simple Memory Manager calls and allowing a
number of the calls to be made into fat traps. Bugs
discovered during the process of removing the
handlers have been fixed.

Handles passed to the Memory Manager now go
through a rigorous check before they can affect other
Memory Manager data structures; however, without

the nearly foolproof bus error handling, it’s a little
more likely that you’ll pass an invalid address and crash.
If you crash in the MemoryMgr code fragment while
testing on the new Power Macintosh computers, you
probably passed an invalid pointer or handle. You can
use the Debugging Modern Memory Manager to
aggressively catch these application errors.

Note also that the bus error handlers would allow
system (and even application) heaps to become
corrupted, deteriorating the overall user experience
without causing the machine to crash. This is much less
likely to happen now, but if structures do get corrupted
other than by the Memory Manager, a system crash
will result.

Also available starting with the latest Power Macintosh
machines is support for very large hard disk volumes.
In the past, only 2-gigabyte volumes were allowed; then
with System 7.5 we relaxed that restriction to 4-gigabyte
volumes. But many of you were still hungry for more,
so now we allow up to 2 terabytes (that’s 2000 gigabytes)
of file system address space per volume. Unless you’re
developing utilities and drivers compatible with the
new volume sizes, though, you really don’t need to pay
attention to the new large-volume support, because the
API remains unchanged. The only time an application
might want to take advantage of the new support is
when it wants to know before attempting to save to
disk whether there’s enough free space on the volume.
Even in this case, the application won’t be able to save a
file bigger than the existing limit of 2 GB, and the old
version of GetVInfo will return values that are “high-
water marked” at 2 GB for compatibility reasons, even
if more space is available.

If you really do want to know how much space is
available, you can do so through an extension to the
File Manager API. We extended the API because the
existing 32-bit size information was too small to
address volumes and files larger than 4 GB. You’ll use
the following new routine to get 64-bit sizes:

pascal OSErr PBXGetVolInfo(XVolumeParam
paramBlock, Boolean async);

"This routine takes an extended VolumeParam
structure, named XVolumeParam, which you’ll find
declared in an updated Files.h interface file on the CD.
Before using this routine, be sure to call Gestalt with
the gestaltFSAttr selector; if the response parameter
has the gestaltFSSupports2 TBVolumes bit set, the new
routine is available. Note that there are also extended
Read and Write calls for drivers that want to support
volumes larger than 4 GB.

BALANCE OF POWER: POWER MACINTOSH NEXT GENERATION 53

PCl AND NUBUS

Starting with the PCI-based Power Macintosh
computers, support for the NuBus™-specific Slot
Manager goes away. Some applications used to call the
Slot Manager directly to get video and other device
information. This will no longer work, so we’ve
provided better methods: the Display Manager API has
been extended for all the video device information
you’ll need, and the new Name Registry API will give
you device information independent of the specific
expansion bus implementation.

One example of the improved Display Manager API is
the way you get display modes for video devices. With
the Slot Manager this took a lot of code, but the

Display Manager gives you one encompassing routine:

pascal OSErr DMNewDisplayModeList(
GDHandle theGDevice,
unsigned long reserved,
unsigned long *modeCount,
DMListType *theDisplayModeList,
unsigned long modeListFlags);

With this and other new Display Manager routines,
you can avoid the Slot Manager altogether when
gathering display information. But if you must access
other device information, you can use the bus-neutral
Name Registry, which manages a tree of device objects
that you can access as a linked list. Look for the new
header files (Displays.h and NameRegistry.h) on this
issue’s CD.

MAINTAINING COMPATIBILITY

As Apple improves the Mac OS, compatibility with the
documented APIs and SPIs is ensured — but don’t
assume that if your application runs fine on existing
machines, it will continue to do so in the future. We
can’t ensure complete compatibility if application code
makes invalid assumptions or uses unsupported parts of
the Mac OS. There are some things you can do to help
ensure that your applications will run on future
versions of the Mac OS.

First, use only the officially documented APIs. For
example, don’t assume that the Z status bit will be set
correctly on exit from a trap unless it’s documented. As
we take more traps native, the 680x0 status register
becomes irrelevant and such checks break. Here’s an
example of 680x0 code that now breaks because it
assumes the Z status bit will be set by GetlResource:

move.l #'DAVE' ,-(sp)
clr.w -(sp)
_GetlResource

beq.s error ; BAD!

You also shouldn’t expect results in registers if the trap
isn’t documented to return them there. It’s true that
some traps used to accidentally exit with useful data in
register DO or AQ, but if that’s not documented as part
of the APT it won’t be supported in the future.

Second, test your software using EvenBetterBusError,
the Debugging Modern Memory Manager, and any
other debugging tools that are appropriate (look in the
Testing & Debugging folder on the CD). Stress-testing
your software with these tools will catch many errors
that otherwise would go unnoticed. EvenBetterBusError
catches most stray references to nil, such as writing to
location 0 or using nil pointers and handles. The
Debugging Modern Memory Manager catches those
occasions when you damage a heap or pass invalid
addresses.

Finally, as I’ve said in previous columns, don’t use
RS/6000 POWER instructions in your native code.
Although the PowerPC 601 processor supports many
of them, the new 603 and 604 processors do not. We've
made an attempt to emulate the POWER instructions
in software for these new processors, but this emulation
is very expensive. When a 603 or 604 encounters one
of these now-illegal instructions, it stops everything
and calls our new illegal-instruction handler, which
recognizes the instruction that was used and attempts
to use a valid one instead. This operation is very time
consuming; if your performance-critical code includes
POWER instructions, you'll see a severe slowdown. As
described in [this column in develop Issue 21|, you should
use the DumpXCOFF tool to check your code for any
POWER instructions.

NEW DIRECTIONS

Apple will continue to take advantage of RISC
technology and will both improve existing performance
and add new functionality. Make sure your code uses
documented interfaces so that it will stay compatible
and run on future generations of the Power Macintosh.
And be sure to check out Open Transport and PCI
device drivers — they’re exciting new directions that
will take you closer to the next generation of the Mac

OS today.

Thanks to Bill Knott, Eric Traut, and Jack Valois for reviewing this

column.®

54 develop lIssue23 September 1995

Special thanks to Randy and Peggy Marlatt of Flagstaff,

Arizona, for road support.®

Implementing Shared Internet Preferences
With Internet Config

Having to enter the same Internet preferences, such as e-mail address and
news server, into multiple applications is bothersome not just for users, but
also for developers who must create the user interface associated with
them. The Internet Configuration System (IC) provides a simple user
application for setting preferences, and an API for getting the preferences
from a database that's shaved by all applications. It’s easy to add 1C
support to your application and take advantage of the flexibility gained
by 1C’s use of the Component Manager — a valuable technique in itself.

Preferences, like nuclear weapons, proliferate. At times it seems that the major
developers are engaged in a “preferences race,” where each one tries to gain the
upper hand by adding a dozen new preferences in each new release. Like the arms
race, the preferences race is obviously counterproductive, even dangerous, and yet no
one knows how to stop it.

Some of the worst offenders are Internet-related applications. How many times have
you had to enter your e-mail address into a configuration window? And what about
your preferred type and creator for JPEG files? Doesn’t this just seem like a waste of
your time? The Internet Configuration System, or Internet Config for short, spares
everyone this trouble. And it spares developers the complexities of implementing
these preferences in each application.

o "4
QUINN “THE ESKIMO! This article takes you inside Internet Config. Take a good look at the design: IC

implements its shared library as a component, and uses switch glue to provide a
default implementation if the component is absent. Using the Component Manager
to implement shared libraries is a helpful technique not just for IC, but for other
APIs as well. Note too that Internet Config is useful for more than its name implies.
For example, the extension-to-file-type mapping database is useful for any program
that deals with “foreign” file systems. Indeed, IC is a perfectly valid mechanism for
storing private preferences that have nothing to do with the Internet.

Although IC is intended as an abstract API, all its source code is placed in the public
domain — a condition of its development. This lets me illustrate the text with

QUINN “THE ESKIMO!” (quinn@cs.uwa.edu.au) programs for fun. The Internet Configuration

has a first name but, when asked about it, his System is a product of these misspent recreational
usual response is “I could tell you but then I'd hours. Quinn writes in Pascal using a Dvorak
have to kill you!” He programs for a living with keyboard on a Macintosh Duo that he carries

the Department of Computer Science at the around on his bicycle, and he’s still trying to

University of Western Australia, but on weekends figure out how to use this minority status to his
he gets together with Pefer N. Lewis and economic advantage. ®

IMPLEMENTING SHARED INTERNET PREFERENCES WITH INTERNET CONFIG 55

56 develop lsue23 September 1995

snippets from the actual implementation and gives you full access to the source
code. Both the IC user’s kit and the IC developer’s kit, which contain code and
documentation, are included on this issue’s CD. Note that Internet Config was
developed independently and is not supported by Apple.

The latest versions of the kits are always available from the fip sites
ftp://ftp.share.com/pub/internet-configuration/ and ftp://redback.cs.uwa.edu.au/
Others/Quinn/Config/. In addition, the user kit is available from UMich and
Info-Mac mirrors around the world.®

As with any new piece of software intended to be widely adopted, Internet Config
needs developer support in order to be successful. I hope this article raises the
awareness of IC in the developer community and prompts some of you to support it.

INTERNET CONFIG FROM THE OUTSIDE

Before going inside Internet Config, it’s important to know how the system works as
a whole. The best way to do this is to get a copy of the Internet Config application
and run it (there’s a copy on this issue’s CD), but if you’re too relaxed to do that right
now, keep reading for a description of the basics. We'll look at IC first from the user’s
perspective and then from the programmer’s point of view.

THE USER’S PERSPECTIVE

"To the user, Internet Config is a proper Macintosh application. It supports the
standard menu commands New, Open, Save, Save As, and so on. The only difference
is that the files it operates on are preferences files. Figure 1 shows Internet Config
and its related files.

& <

Internet Config IC-aware applications

Internet Config Extension

!

Internet Preferences

Figure 1. Internet Config and its related files — what the user sees

The first time the Internet Config application is run, it installs the Internet Config
Extension into the Extensions folder and creates a new, blank Internet Preferences
file in the Preferences folder. It then displays the main window, shown in Figure 2,
which allows the user to edit the preferences.

Each of the buttons in the main window displays another window containing a group
of related preferences. For example, the Personal button brings up the window shown

sS[I=—— Internet Preferences §_|

5= 3 e

Perzonal Ernail File Transfer
= A B
Other Services Fonts File Types Helpers

Figure 2. The Internet Config application’s main window

SI=——"—"r——————— Personal gl

Real Name: |I1uinn “The Eskimo!" |

Organisation: |I]epartment of Computer S5cience, University of |

Quote String: |> |

Signature:
Ouirn "The Eskimo!” "Ah, so that's the secret,

if only Captain Bipto had known. "
Plan:

Figure 3. The Personal preferences window

in Figure 3. The user enters preferences into each of these windows and then quits
and saves the preferences.

From this point on, the user never has to enter those preferences again. Any IC-
aware program the user runs simply accesses the preferred settings without requiring
them to be reentered. This makes the user very happy (we presume).

Users can even run IC-aware applications “out of the box” — they don’t have to
run Internet Config first. If the Internet Config Extension isn’t installed, IC-aware
client applications access the Internet Preferences file directly instead of through
the extension (as shown by the black arrows in Figure 1). The way this is done is
described later in the section “The Inner Workings of an API Routine.”

THE PROGRAMMER’S PERSPECTIVE

To programmers, Internet Config consists of a set of interface files that define the
API, and a library to be statically linked to their programs. IC can be used from all
of the common Macintosh development environments: MPW, THINK, and
Metrowerks; Pascal and C; and 680x0 and PowerPC. The examples in this article,
like IC itself, were written in THINK Pascal.

IMPLEMENTING SHARED INTERNET PREFERENCES WITH INTERNET CONFIG

37

58 develop Isue23 September 1995

What's in an IC preference. Before getting to the details of the API, you need to
know more about IC preferences. In IC, a preference is an item of information that’s
useful to the client application program. Each preference has three components: its
key, its data, and its attributes.

® The key is a Str255 that identifies the preference. You can use the key to
fetch the data and attributes.

® The data is an untyped sequence of bytes that represents the value of the
preference. The data’s structure is determined by the client program. The
structures of the common preferences are defined in the IC programming
documentation.

* The attributes represent information about the preference that’s
supplementary to the preference data, such as whether the preference is
read/write or read-only.

In the e-mail address preference, for example, the key is the string “Email”. If you
pass this string into IC, it returns the preference’s data and attributes. By convention,
the data for the key “Email” is interpreted as a Pascal string containing the user’s
preferred e-mail address.

IC’s core API routines. Internet Config has the following core API routines.
Although the APT has a lot more depth, these four routines are all you need to
program with IC.

FUNCTION ICStart (VAR inst: ICInstance; creator: OSType): ICError;
FUNCTION ICStop (inst: ICInstance): ICError;

FUNCTION ICFindConfigFile (inst: ICInstance; count: Integer;
folders: ICDirSpecArrayPtr): ICError;

FUNCTION ICGetPref (inst: ICInstance; key: Str255; VAR attr: ICAttr;
buf: Ptr; VAR size: LongInt): ICError;

The ICStart routine is always called first. Here you pass in your application’s creator
code so that future versions of IC can support application-dependent preferences.
ICStart returns a value of type ICInstance; this is an opaque type that must be passed
to every other API call. ICStop is called at the termination of your application to
dispose of the ICInstance you obtained with ICStart.

ICFindConfigFile is called immediately after ICStart. IC uses this routine to support
applications with double-clickable user configuration files, a common phenomenon
among Internet applications. If you need to support these files, see the IC
programming documentation; otherwise, just pass in 0 for the count parameter and
nil for the folders parameter.

The ICGetPref routine takes a preference key and returns the preference’s attributes
in attr and its data in the buffer pointed to by buf. The maximum size of the buffer is
passed in as size, which is adjusted to the actual number of bytes of preference data.

The simplest example. The program in Listing 1 demonstrates the simplest
possible use of IC technology. All it does is write the user’s e-mail address to the
standard output. This program calls the four core API routines: it begins by calling
ICStart and terminates with an ICStop call; it calls ICFindConfigFile with the default
parameters and uses ICGetPref to fetch the value of a specific preference — in this
case the user’s e-mail address.

Listing 1. The simplest IC-aware program

PROGRAM ICEmailAddress;
{ The simplest IC-aware program. It simply outputs the user's }
{ preferred e-mail address. }

USES
ICTypes, ICAPI, ICKeys; { standard IC interfaces }

VAR
instance: ICInstance; { opaque reference to IC session }
str: Str255; { buffer to read e-mail address into }
str_size: LongInt; { size of above buffer }
junk: ICError; { place to throw away error results }
junk attr: ICAttr; { place to throw away attributes }

BEGIN
{ Start IC. }
IF ICStart(instance, '????') = noErr THEN BEGIN

{ Specify a database, in this case the default one. }
IF ICFindConfigFile(instance, 0, NIL) = noErr THEN BEGIN
{ Read the real name preferences. }
str_size := sizeof(str); { 256 bytes -- a similar construct }
{ wouldn't work in C }
IF ICGetPref(instance, kICEmail, junk attr, @str, str size)
= noErr THEN BEGIN
writeln(str);
END; { IF }
END; { IF }
{ Shut down IC. }
junk := ICStop(instance);
END; { IF }
END. { ICEmailAddress }

INSIDE INTERNET CONFIG

The IC API just described is really all you need to know to make your program IC-
aware; now we’ll get into the guts of Internet Config to see how it achieves its magic.
We’ll look first at its underlying design and then at how its internal structures work
together.

THE IC DESIGN: A SIMPLE, EXPANDABLE SYSTEM

The design requirements for Internet Config evolved during early discussions of
what an Internet configuration system might look like (see “How Internet Config
Came to Be”). These requirements guided the development process and form the
basic structure of Internet Config — an efficient, expandable system that’s easy to use
and easy to support.

Internet Config can accept sweeping changes while maintaining API compatibility,
and it allows for patches to support future extensions and bug fixes. We couldn’t
achieve such expandability with a simple shared preferences implementation, and the
consequent loss of simplicity caused a lot of debate during the development process.

The need for simplicity was implicit from the beginning. To add support for Internet
Conlfig, application developers have to revise their code. Developers tend to be lazy

IMPLEMENTING SHARED INTERNET PREFERENCES WITH INTERNET CONFIG

59

HOW INTERNET CONFIG CAME TO BE

Designing Internet Config was a complicated business. After a week or two of thrashing out the requirements,

The process began in March 1994 with a discussion on Peter N. Lewis, Marcus Jager, and | proposed the first

the Usenet newsgroup comp.sys.mac.comm. Many API. A few weeks later we shipped the first implementation

people thought simplifying Internet configuration was a of the Internet Config Extension.

good idea, but few agreed how best to achieve the goal,

or indeed what the goal was. The problem IC solves is actually quite simple, so it didn’t
take long to implement the design. As usual, however, it

We set up a mailing list o swap ideas, and discussion took some time to go from a working implementation to

continued apace for weeks. One of the biggest issues was a final product — we shipped Internet Config 1.0 in

the disparity between the problems we wanted to solve December 1994. Though we've made minor additions

and the ones we could solve given our limited resources. and changes, the initial design survives to this day.

— hey, I mean that as a compliment — and generally prefer simple systems to
complicated ones. Developer support is critical for success, so we kept the system
simple. Still, it isn’t so simple as to compromise the need for expandability.

As we’ve already seen, IC has several other interesting design features. The API
supports applications with double-clickable user configuration files. The Internet
Conlfig user application accesses all the Internet preferences through the API, and is
thereby isolated from the implementation details. IC-aware applications work even if
the Internet Config Extension isn’t installed. We even included support for System 6
(much as we resented it).

IC’S INTERNAL STRUCTURES
As you can see in Figure 4, the Internet Config application and IC-aware client
programs have very similar internal structures. In fact, except for a few artifacts

Internet Config application IC-aware applications
Application code Client program
Switch glue Switch glue

Link-in

implementation

Link-in

implementation

Component glue

Component glue

1

Internet Config component

Component wrapper

Component “smarts”

Link-in implementation

Internet Preferences file Y Y

Standard resource file

Figure 4. Inside the Internet Config entities — what the programmer sees

60 develop lIssue23 September 1995

caused by implementing “safe saving,” the Internet Config application uses the
standard API to modify the Internet Preferences file. The Internet Config component,
which the user sees as the Internet Config Extension, is basically a shared library of
routines implemented as a component (see “The IC Component and Shared
Libraries on the Macintosh”).

The switch glue is a common interface that applications use to call IC. This glue
decides whether the Internet Config component is available and, if it is, routes all
calls through to it. If the component isn’t present, the calls are routed through to the
link-in implementation, which then does the work.

This switching mechanism satisfies two design requirements. It allows the API to be
patched by replacing or overriding the Internet Config component. It also allows IC-
aware programs to work even if the component isn’t installed; they simply fall back to
using the link-in implementation.

THE INNER WORKINGS OF AN API ROUTINE

Now we’ll look more closely at how the Start and GetPref routines are implemented
in each part of the Internet Config system. We'll trace these two calls from the top
level, where they’re called by the client program, all the way down to the link-in
implementation, where the real action takes place.

"This section is quite technical; if you’re not interested in the implementation details,
you might want to just skim through it. Many of the details are provided for
illustrative purposes only. Take heed! If you write client programs that rely on these
details, they will break in future revisions of IC. The public interface to IC is defined in
the IC programming documentation.

We'll start with the switch glue and proceed through the standard call path. On the
way we’ll examine the component glue, wrapper, and “smarts,” and finally, the link-in
implementation. The path is convoluted but rewards you with both data and code
abstraction.

Start and GetPref appear in each part of the system, and each appearance has a
specific purpose, as we’ll see in a moment. To keep things straight, various instances

THE IC COMPONENT AND SHARED LIBRARIES ON THE MACINTOSH

These days life is a litfle better. ASLM now works on the
PowerPC platform, CFM is being ported to the 680x0
platform, SOM is imminent, and Apple has issued a clear
statement of direction on shared libraries, centered on
CFM.

When we started writing IC we knew we’d need a shared

The Internet Config component is essentially a shared
library of routines. So why implement it as a component?
The answer lies in the confused state of shared libraries
on the Macintosh.

library. The problem was not that the system didn’t have a
shared library mechanism, but that it had too many. At
the time there were four Apple shared library solutions,
each with its unique drawbacks: the Component Manager
wasn't a “real” shared library system; the Apple Shared
Library Manager (ASLM) had limited availability and
lacked PowerPC support and developer tools; the Code
Fragment Manager (CFM) lacked 680x0 support; and the
System Obiject Model (SOM) lacked any availability.

But statements of direction don't solve problems — they
just clear up confusion. The shared library problem
persists. When | was writing this article someone asked
me for advice about which shared library mechanism to
use. My recommendation today is the same as at the start
of the IC project: use the Component Manager. It's still the
only solution that has the developer tools, has 680x0 and
PowerPC support, and is already installed on most users'’
machines.

IMPLEMENTING SHARED INTERNET PREFERENCES WITH INTERNET CONFIG 6]

of the same routine are prefixed to denote which part of the system they’re in. The
prefixes are listed in Table 1, which shows the various specifications for the GetPref
routine as an example. (Note that these specifications vary only in the name’s prefix
and the type of the first parameter. The “R” in the ICR prefix indicates that these
routines actually use the Resource Manager to modify the preferences; all the other
routines are glue.)

Table 1. Routine name prefixes

Prefix Part of System First Parameter GetPref Specification

IC Standard API IClnstance FUNCTION ICGetPref (inst: ICInstance; key: Str255;
(switch glue) VAR attr: ICAttr; buf: Pir; VAR size: Longlnt): ICError;

ICC Component API Componentinstance FUNCTION ICCGetPref (inst: Componentlnstance; key: Str255;
(component glue) VAR attr: ICAttr; buf: Ptr; VAR size: Longlnt): ICError;

ICCI Component internal globalsHandle FUNCTION ICCIGetPref (inst: globalsHandle; key: Str255;

VAR attr: ICAttr; buf: Ptr; VAR size: Longlnt): ICError;
ICR Link-in implementation VAR ICRRecord FUNCTION ICRGetPref (var inst: ICRRecord; key: Str255;

62 develop lssue23 Seplember 1995

VAR attr: ICAttr; buf: Pir; VAR size: Longlnt): ICError;

THE SWITCH GLUE

The switch glue relies on ICRRecord, the central data structure of IC, shown in
Listing 2. The first field of ICRRecord, instance, is a ComponentInstance, which
normally holds the connection to the Internet Config component. If the component
is installed, the instance field holds the connection to it; the rest of the fields are
ignored because the component has a separate ICRRecord in its global variables. If
the component isn’t installed, the instance field is nil, and the link-in implementation
uses the rest of the fields to hold the necessary state (as we’ll see later).

Listing 2. ICRRecord

TYPE
ICRRecord = RECORD
{ This entire record is completely private to the }
{ implementation!!! Your code will break if you depend }
{ on the details here. You have been warned. }
instance: ComponentInstance;
{ nil if no component available; if not nil, }
{ then rest of record is junk }
{ other fields to be discussed later }
END;
ICRRecordPtr = “ICRRecord;

The switch glue for the application’s Start routine, ICStart, is shown in Listing 3.
The first thing ICStart does is attempt to allocate an ICRRecord; if it succeeds, it
then tries to open a connection to the component with the component glue routine
ICCStart. ICCStart either succeeds, setting the internal instance field to the
connection to the component, or fails and returns an error. If ICCStart returns an
error, ICStart falls back to using the link-in implementation by calling ICRStart. If
ICRStart fails, Internet Config fails to start up; ICStart setsinst to nil and returns
an error.

Listing 3. The switch glue for Start

FUNCTION ICStart (VAR inst: ICInstance; creator: OSType): ICError;

VAR
err: ICError;
BEGIN
inst := NewPtr(sizeof (ICRRecord));
err := MemError;
IF err = noErr THEN BEGIN
err := ICCStart(ICRRecordPtr(inst)”.instance, creator);

IF err <> noErr THEN BEGIN
err := ICRStart(ICRRecordPtr(inst)”, creator);
END; { IF }
IF err <> noErr THEN BEGIN
DisposePtr(inst);
inst := NIL;
END; { IF }
END; { IF }
ICStart := err;
END; { ICStart }

Listing 4. The switch glue for GetPref

FUNCTION ICGetPref (inst: ICInstance; key: Str255; VAR attr: ICAttr;
buf: Ptr; VAR size: LongInt): ICError;
BEGIN
IF ICRRecordPtr(inst)”.instance <> NIL THEN BEGIN
ICGetPref := ICCGetPref(ICRRecordPtr(inst)”.instance,
key, attr, buf, size);
END
ELSE BEGIN
ICGetPref := ICRGetPref(ICRRecordPtr(inst)”, key, attr, buf, size);
END; { IF }
END; { ICGetPref }

The switch glue for GetPref, and all the other API routines for that matter, is very
simple. All it does is consult the internal instance field to determine whether ICStart
successfully connected to the component. If so, it calls through to the component
glue routine ICCGetPref; otherwise, it calls through to the link-in implementation
routine ICRGetPref. This is shown in Listing 4.

The switch glue implementations of both Start and GetPref do a lot of casting
between ICInstance and ICRRecordPtr, because the ICRRecordPtr type describes
details of the implementation that shouldn’t “leak out” to the client’s view of IC. The
client programs know only of ICInstance, which is an opaque type. The explicit casts
could have been avoided with some preprocessor tricks, but we decided to include
them longhand for clarity.

THE COMPONENT GLUE

The component glue calls the Internet Config component. In the component glue
for the Start routine, shown in Listing 5, Internet Config attempts to connect to the
IC component by calling the Component Manager routine OpenDefaultComponent.

IMPLEMENTING SHARED INTERNET PREFERENCES WITH INTERNET CONFIG

63

64 develop lssue23 September 1995

Listing 5. The component glue for Start

FUNCTION ICCStartComponent (inst: ComponentInstance; creator: OSType):

ICError;

INLINE { standard Component Manager glue }
$2F3C, $04, $0, { move.l #$0004_0000,-(sp) }
$7000, { moveq.l #0,d0 }
$A82A; { _ComponentDispatch }

FUNCTION ICCStart (VAR inst: ComponentInstance; creator: OSType):
ICError;
VAR
err, junk: ICError;
response: LongInt;
BEGIN
inst := NIL;
IF Gestalt(gestaltComponentMgr, response) = noErr THEN BEGIN
inst := OpenDefaultComponent(internetConfigurationComponentType,
internetConfigurationComponentSubType);
END; { IF }
IF inst = NIL THEN BEGIN
err := badComponentInstance;
END
ELSE BEGIN
err := ICCStartComponent(inst, creator);
IF err <> noErr THEN BEGIN
junk := CloseComponent(inst);
inst := NIL;
END; { IF }
END; { IF }
ICCStart := err;
END; { ICCStart }

If the Internet Config component isn’t installed or can’t be opened for any other
reason, the routine sets inst to nil and fails with a badComponentInstance error.
Remember that the calling code, ICStart, will notice this error code and fall back to
the link-in implementation, as shown in Listing 4.

If the routine successfully opens a connection to the Internet Config component, it
calls the ICCStartComponent routine, which is standard Component Manager glue
that calls the component’s initialization routine.

The component glue version of GetPref is a lot simpler. It’s just a standard piece of
Component Manager glue, as shown in Listing 6. The inline instructions of the
component glue for GetPref translate into the piece of assembly code shown in
Listing 7.

You can read more about the Component Manager and its dispatch mechanism in
Inside Macintosh: More Macintosh Toolbox.

Calling components from PowerPC code is not described in this article or in
Inside Macintosh: More Macintosh Toolbox. You can find out how to do this by
reading the Macintosh Technical Note “Component Manager Version 3.0” (QT 5).°

Listing 6. The component glue for GetPref

FUNCTION ICCGetPref (inst: ComponentInstance; key: Str255;
VAR attr: ICAttr; buf: Ptr;
VAR size: LongInt): ICError;

INLINE { standard Component Manager glue }
$2F3C, $10, $6, { move.l #$0010_0006,-(sp) }
$7000, { moveq.l #0,d0 }
$A82A; { _ComponentDispatch }

move.l #$0010_0006,-(sp) ;
moveq.l #0,d0 i

_ComponentDispatch :

Listing 7. Disassembling the component glue

push the routine selector (6) and the
number of bytes of parameters (16)
_ComponentDispatch routine selector to
call a component function

call the component through the Component
Manager

THE COMPONENT WRAPPER

Now let’s look inside the Internet Config component at the component wrapper
(Listing 8). The component wrapper’s basic function is to dispatch all of the IC
component’s routines based on the selector in params.what; it uses a big CASE
statement to determine the routine’s address and then calls the routine with the
Component Manager function CallComponentFunctionWithStorage. The
Component Manager is smart enough to sort out the parameters at this stage.

Most of the API routines are immediately dispatched by the component wrapper to
an internal routine that simply calls the link-in implementation to do the work. For
example, the ICCIGetPref routine, shown in Listing 9, calls through to ICRGetPref,

changing only the first parameter.

VAR
proc: ProcPtr;
St SignedByte;
BEGIN
proc := NIL;
CASE params.what OF

kICCStart:
proc := @ICCIStart;

Listing 8. Sections of IC’s component wrapper

FUNCTION Main (VAR params: ComponentParameters; storage: Handle):
ComponentResult;

{ Inside Macintosh has params as a value parameter when it should be }

{ a VAR parameter. Don't make this mistake. }

{ Dispatch the routines required by the Component Manager. }
{ routines omitted for brevity }
{ Dispatch the routines that make up the IC API. }

(continued on next page)

IMPLEMENTING SHARED INTERNET PREFERENCES WITH INTERNET CONFIG 65

66 develop lssue23 September 1995

Listing 8. Sections of IC’s component wrapper (continued)

kICCGetPref:
proc := @ICCIGetPref;
... { remaining IC API routines omitted for brevity }
OTHERWISE
Main := badComponentSelector;
END; { case }
IF proc <> NIL THEN BEGIN
IF storage <> NIL THEN BEGIN
s := HGetState(storage);
HLock(storage);
END; { IF }
Main := CallComponentFunctionWithStorage(storage, params, proc);
IF (storage <> NIL) AND
(params.what <> kComponentCloseSelect) THEN BEGIN
HSetState(storage, s);
END; { IF }
END; { IF }
END; { Main }

Listing 9. The component wrapper for GetPref

FUNCTION ICCIGetPref (globals: globalsHandle; key: Str255; VAR attr:
ICAttr; buf: Ptr; VAR size: LongInt): ICError;
BEGIN
ICCIGetPref := ICRGetPref(globals”".inst, key, attr, buf, size);
END; { ICCIGetPref }

So you can see that there are two ways to call ICRGetPref, either from the
component’s internal routine ICCIGetPref or from the switch glue’s ICGetPref. This
is consistent with the design outlined in Figure 4. Of course, these routines call two
different copies of the code, one linked into the program and one linked into the
component.

THE COMPONENT “SMARTS”

The component “smarts” are wedged between the component wrapper and the link-in
implementation. Most component wrapper routines don’t have smarts; they call straight
through to the link-in implementation. Adding smarts to a routine allows it to work
better than its link-in cousin without the need to maintain two versions of the routine.

A good example of a smart routine is the component wrapper version of the Start
routine, ICCIStart (Listing 10). This fixes a potential localization problem associated
with the link-in implementation with a clever sleight of hand. ICCIStart is basically
the same as ICCIGetPref in that it immediately calls through to its link-in
implementation equivalent. But then it does something tricky: the component calls
itself to get the default filename for the Internet Preferences file. For the gory details
of why this is “smart,” see “Smart Components for Smart People.”

One thing to note is that when ICCIStart calls the component to get the default
filename, it doesn’t do so directly, but instead uses the component glue to call its
current_target global variable. Targeting is cool Component Manager technology

Listing 10. A smart component wrapper

FUNCTION ICCIStart (globals: globalsHandle; creator: OSType): ICError;
{ Handle the start request, which is basically a replacement for the }
{ open because we need another parameter, the calling application's }
{ creator code. }

VAR
err: OSErr;
BEGIN
err := ICRStart(globals””.inst, creator);
IF err = noErr THEN BEGIN
err := ICCDefaultFileName(globals”".current target,
globals””.inst.default filename);
END; { IF }
ICCIStart := err;
END; { ICCIStart }

that allows you to write override components (more on this later in “Override
Components”).

With each new version of Internet Config, the component implementation gets
smarter than the link-in implementation. Component smarts are used in IC 1.0 to
improve ease of localization; in IC 1.1, they’re also used to improve targetability. In a
future version of IC, component smarts may be used to implement a preference
cache.

THE LINK-IN IMPLEMENTATION

It may be hard to imagine, but everything you've seen so far is glue. The code that
does the real work in IC is the link-in implementation. The link-in implementation
sees a different view of the ICRRecord, one that contains enough fields to store all
the data that the implementation requires. This extended view of the ICRRecord is
shown in Listing 11.

The instance field is still there but the link-in implementation ignores it. It’s the
subsequent fields that are of interest. Most of them are easy to understand with the
help of their comments.

SMART COMPONENTS FOR SMART PEOPLE

Because Internet Config needs to know the default this would force all of our developers to add resources to

filename of the Internet Preferences file when it creates a
new preferences file, and because all filenames should be
stored in resources so that they can be localized, the
default filename should be stored in a resource. This
approach is fine for the component, which can get at its
resource file with OpenComponentResFile, but doesn't
work for the link-in implementation since it can be linked
in to a variety of applications.

We considered working around this by requiring all
applications to add a resource specifying the name, but

their applications, and the resource ID might clash with
their existing resources. The biggest disadvantage,
however, is that IC clients are not necessarily applications
and may not even have resource files associated with
them.

So we solved this problem by making the component
version of IC smarter than the link-in version. The link-in
version sets default_filename to “Internet Preferences” and
leaves it at that, while the component version calls itself to
get the correct filename from the resource file.

IMPLEMENTING SHARED INTERNET PREFERENCES WITH INTERNET CONFIG 67

68 develop lssue23 Seplember 1995

Listing 11. The full ICRRecord in the link-in implementation

TYPE
ICRRecord = RECORD

{ This entire record is completely private to the }

{ implementation!!! Your code will break if you depend }

{ on the details here. You have been warned. }

instance: ComponentInstance;
{ nil if no component available; if not nil, then rest }
{ of record is junk }

have_config file: Boolean;
{ determines whether any file specification calls, that }

{ is, ICFindConfigFile or ICSpecifyConfigFile, have been }

{ made yet; determines whether the next field is valid }
config file: FSSpec;
{ our chosen database file }
config refnum: Integer;
{ a place to store the resource refnum }
perm: ICPerm;
{ the permissions the user opened the file with }
inside_begin: Boolean;
{ determines if config refnum is valid }
default filename: Str63;
{ the default IC filename }
END;
ICRRecordPtr = "“ICRRecord;

The link-in implementation for the Start routine initializes the remaining
ICRRecord fields, as shown in Listing 12.

Listing 12. The link-in implementation for Start

FUNCTION ICRStart (VAR inst: ICRRecord; creator: OSType): ICError;
VAR
junk: ICError;

BEGIN
inst.have _config file := false;
inst.config file.vRefNum := 0;

inst.config file.parID := 0;

inst.config file.name :
inst.config refnum := 0;
inst.perm := icNoPerm;
junk := ICRDefaultFileName(inst, inst.default filename);
ICRStart := noErr;

END; { ICRStart }

FUNCTION ICRDefaultFileName (VAR inst: ICRRecord; VAR name: Str63):
ICError;
BEGIN
name := ICdefault file name;
ICRDefaultFileName := noErr;
END; { ICRDefaultFileName }

Finally, there’s the link-in implementation for GetPref, portions of which are shown
in Listing 13. The actual implementation is a bit long, so the listing leaves out a lot
of messing around with resources, bytes, pointers, attributes, and so on. The basic
operation of the routine is simple, however: it checks its parameters, opens the
preferences file (by calling ICRForcelnside), gets the preference, closes the
preferences file, and returns.

Listing 13. The link-in implementation for GetPref

FUNCTION ICRGetPref (VAR inst: ICRRecord; key: Str255; VAR attr: ICAttr;
buf: Ptr; VAR size: LongInt): ICError;

VAR
err, err2: ICError;
max_size, true_size: LongInt;
old refnum: Integer;
prefh: Handle;
force_info: Boolean;

BEGIN
max_size := size;
size := 0;

attr := ICattr_no_change;
prefh := NIL;
err := ICRForceInside(inst, icReadOnlyPerm, force_info);
IF (err = noErr) AND (inst.config refnum = 0) THEN BEGIN
err := icPrefNotFoundErr;
END; { IF }
IF (err = noErr) AND ((key = '') OR
((max_size < 0) AND (buf <> nil))) THEN BEGIN
err := paramErr;
END; { IF }
IF err = noErr THEN BEGIN
old refnum := CurResFile;
UseResFile(inst.config refnum);
err := ResError;
IF err = noErr THEN BEGIN
e { lots of resource hacking here }
UseResFile(old_refnum);
END; { IF }
END; { IF }
IF prefh <> NIL THEN BEGIN
ReleaseResource(prefh);
END; { IF }
err2 := ICRReleaseInside(inst, force_info);
IF err = noErr THEN BEGIN
err := err2;
END; { IF }
ICRGetPref := err;
END; { ICRGetPref }

TOWARD THE FUTURE

The future . . . where Macintosh applications glide along the information
superhighway, seamlessly perceiving the user’s every preference. You’d better hope
your applications are IC aware!

IMPLEMENTING SHARED INTERNET PREFERENCES WITH INTERNET CONFIG 69

70 develop Isue23 September 1995

Internet Config is a very flexible system that can expand in several dimensions.
Indeed, some are already being explored — in particular, the use of components to
maintain and extend the system. And we’re looking forward to seeing IC extended in
ways we never anticipated.

OVERRIDE COMPONENTS

One of the coolest features of the Component Manager is targeting — one
component can capture another and override it. This effectively prevents external
programs from using the captured component, while still allowing it to be called by
the override component. Very much like inheritance in object-oriented design, this
technology lets you write a very simple component that captures the Internet Config
component so that you can patch just one routine. For example, the Internet Config
RandomSignature extension overrides the ICGetPref routine. If an IC client requests
the signature preference, the extension randomly chooses one from a collection of
signatures.

The possibilities for override components are endless. Let’s say your organization
wants to preconfigure all news clients to access a central news server. You can do this
by writing a simple override component that watches for programs getting the
NNTPHost preference and returns a fixed read-only preference value. This way, all
IC-aware news readers use the correct host but can’t change it. As we say in the
system software business, it’s a wonderful third-party developer opportunity.

TOTAL BODY SWAP

Because all client programs call Internet Config through a well-defined API, it’s
possible to write a replacement for IC and gain complete control of the system.
Imagine that you’re tired of having the same preferences in all your IC-aware
applications. You can change them by writing a replacement that conforms to the
existing API. First, replace the Internet Config component with a smarter one that’s
capable of storing a set of preferences for each application and returning the right
preferences to the right application. Then replace the Internet Config application
with a much more sophisticated application that can manage multiple sets of
preferences, and your job is done. All IC-aware programs will automatically benefit
without recompilation.

Or suppose you want to store your user preferences on a central server and access
them through some network protocol. Again, IC lets you do it. You could replace the
Internet Config component with a network-aware one, and establish the user’s
identity in some way, perhaps by requiring the user to log on before using any IC-
aware programs. You could then choose to use either a Macintosh application to
administer the server or tools from the server’s native environment.

STAYING CURRENT

No program is ever finished, nor is any program ever 100% bug free. Internet Config
is getting better all the time, and you can update to the newest, improved version
with a minimum of fuss. When the application detects that its version of the Internet
Conlfig Extension is out of date, it simply installs the new one. Because all IC-aware
programs are dynamically linked to the component contained within this extension,
they automatically receive the update without having to be recompiled.

By the time you read this article, IC 1.1 should be released and busily updating old
versions of the Internet Config Extension around the globe. IC 1.1 offers many
improvements and bug fixes, including an extended API and a shell for writing
override components easily. Share and enjoy!

RECOMMENDED READING

If you want to find out more about Internet Config itself, the following documents may
be of inferest:

Here's where you can find out more about components, the technology Internet
Config is based on:

¢ [“Managing Component Registration” by Gary Woodcock, develop Issue 15. |

Finally, if you're interested in the mindset of Internet Config’s authors, you can do no
better than to read the following:

“Using the Internet Configuration System” by Quinn, MacTech Magazine, April
1995.

Internet Configuration System: User Documentation and Internet Configuration
System: Programming Documentation by Quinn, in the IC User’s Kit and IC
Developer's Kit, respectively (1994). These kits are provided on this issue’s CD.

“Internet Config FAQ” by Quinn (1994-1995). Available from the ftp site
ftp:/ /redback.cs.uwa.edu.au/Others/Quinn/Config/IC_FAQ.txt.

Inside Macintosh: More Macintosh Toolbox (Addison-Wesley, 1993).
Macintosh Technical Note “Component Manager Version 3.0” (QT 5).

“Be Our Guest: Components and C++ Classes Compared” by David Van Brink,
develop Issue 12.

“Inside QuickTime and Component-Based Managers” by Bill Guschwan, develop
Issue 13.

“Somewhere in QuickTime: Derived Media Handlers” by John Wang, develop
Issue 14.

He Died With a Felafel in His Hand by John Birmingham (The Yellow Press, 1994).

The UNIX-HATERS Handbook by Simson Garfinkel, Daniel Weise, and Steven
Strassmann (IDG Books, 1994).

http://www.cm.cf.ac.uk/Movies/

Thanks to our technical reviewers Peter Hoddie, The Internet Config mailing list is

Peter N. Lewis, Jim Reekes, and Greg Robbins. dedicated to discussing the technical details of
Infernet Config is a joint development by Peter N. Internet Config. You can subscribe by sending
Lewis and Quinn, with design input from Marcus ~ mail to listserv@list.peter.com.au with the body of
Jager. We'd like to thank all of those on the the message containing “subscribe config Your
Internet Config mailing list and the developers Real Name.”®

who are supporting the system.®

IMPLEMENTING SHARED INTERNET PREFERENCES WITH INTERNET CONFIG

71

MPW TIPS AND
TRICKS

Customizing
Source Control
With SourceServer

&

TIM MARONEY

When two engineers on a team edit the same source
file at the same time, the resulting chaos can be terrible
to behold. Source control was invented to mitigate the
problem. Most Macintosh programmers are familiar
with the MPW Shell’s Check In and Check Out
dialogs, and with its Projector commands. The next
frontier of custom source control involves SourceServer,
a nearly faceless application that implements most of
the Projector commands. MPW scripts are easy to
write, but they’re no match for the power, speed, and
friendliness of compiled software. SourceServer exports
Projector commands as Apple events, allowing source
control from compiled software without launching the
MPW Shell in all its pomp and splendor.

Popular third-party development environments often
send Apple events to SourceServer for integrated source
control. You can also use SourceServer to customize
Projector beyond what you might have thought possible.
For instance, you can drag source control, kicking and
screaming, into the modern world of user experience
with drop-on applications. In this column, I'll show you
how to check a file in or out with a simple drag and
drop, and how to use SourceServer for other things as
well. The sample code is provided on this issue’s CD;
SourceServer is distributed, with documentation, on
the MPW Pro and E. T.O. CDs (available from APDA)
and with third-party development systems.

APPLE EVENTS FOR SOURCESERVER
Apple events have many faces, but they’re primarily a
way of communicating between different applications.

Each Apple event encapsulates a message as a command
with any number of input parameters; the receiver of
the message may return any number of result parameters
to the sender. The most basic unit of data is the Apple
event descriptor, which consists of a type code and a data
handle. Apple events are built out of descriptors and are
themselves special kinds of complex descriptors.

For an excellent introduction to Apple events, see

|“Scripting the Finder From Your Application”|by Greg Anderson

in develop Issue 20.°

SourceServer’s commands are represented as descriptor
lists. Its Apple events are exact duplicates of the MPW
Shell’s Projector commands, but to avoid the overhead
of a full command parser, both the command name and
each argument are descriptors in the descriptor list.
This saves you the trouble of putting quotes and
escapes into arguments that might contain spaces or
other special characters. The downside is that you have
to expand arguments yourself: you can’t pass in MPW
wildcard characters, backquoted commands for
expansion, or other special constructs.

Creating descriptor lists may sound harder than writing
MPW scripts, but that’s only because it is. I've provided
some utility routines to ease the way, though. Listing 1
shows the utilities and illustrates how to make a
command to check out a file for modification. As
illustrated in the CheckOut routine in this listing, you
call the CreateCommand routine first and then use the
AddXArg routines to add arguments.

Some of the utilities take Pascal strings, while others
take C strings, which could well be considered bad
programming practice. I chose this dubious method not
because I'm on drugs, but because Pascal strings and C
strings are used in different ways. SourceServer’s text
descriptors are C strings; when passed to these utilities
as string constants, they shouldn’t be converted from
Pascal format in place, since some compilers put
constants in read-only areas. If you’re internationally
savvy, you may have another objection: string constants
themselves are bad practice. However, for better or
worse, MPW scripts and tools are not internationalized.
Just like aliens in Star Tiek, all MPW programmers are
assumed to speak English.

TIM MARONEY wrote TOPS Terminal and BackDrop, and has
been a major contributor to TOPS for Macintosh, FaxPro, and
Cachet. He has also contributed to Fiery, the Disney Screen Saver,
Ofoto, Colortron, and the Usenet Mac Programmer’s Guide. Tim
learned computer networking while working on the Andrew and
MaclP projects at Carnegie Mellon and studied compiler design in
graduate school at Chapel Hill. He has written for all three major

72 develop lIsue23 September 1995

operating systems and a few minor ones. On the Macintosh, Tim's
code has included applications, INITs, control panels, HyperCard
stacks, XCMDs, shared libraries, trap patches, plug-ins, scripts,
and things more difficult to characterize. Tim is currently doing
contract work at Apple, and is available for parties and special
events at a nominal cost.®

Listing 1. Creating SourceServer commands

OSErr CreateCommand(AEDesc *command, CString commandText)
/* Begin a new SourceServer command; name of command is in commandText. */
{

OSErr err = AECreateList(NULL, 0, false, command);

if (err != noErr) return err;

err = AddCStringArg(command, commandText);

if (err != noErr) (void) AEDisposeDesc(command);

return err;

OSErr AddCommentArg(AEDesc *command, StringPtr comment)
/* Add a "-cs comment" argument to a SourceServer command. */

{
OSErr err;
if (comment[0] == 0) return noErr;
err = AddCStringArg(command, "-cs");
if (err != noErr) return err;
err = AddPStringArg(command, comment);
return err;

}

/* Other SourceServer argument utilities */

OSErr AddDirArg(AEDesc *command, short vRefNum, long folderID);
OSErr AddProjectArg(AEDesc *command, StringPtr projectName);
OSErr AddUserArg(AEDesc *command, StringPtr userName);

OSErr AddFullNameArg(AEDesc *command, FSSpec *file);

OSErr AddPStringArg(AEDesc *command, StringPtr string);

OSErr AddCStringArg(AEDesc *command, CString string);

OSErr CheckOut(FSSpec *file, StringPtr userName, StringPtr projectName, StringPtr comment)
/* Create a "Check Out Modifiable" command for SourceServer: */
/* CheckOut -m -cs <comment> -d <dir> -project <project> -u <user> <file> */
{
OSErr err;
AEDesc command;
CStringHandle output = NULL, diagnostic = NULL;

err = CreateCommand(&command, "CheckOut");
if (err != noErr) return err;
err = AddCStringArg(&command, "-m");

if (err == noErr) err = AddCommentArg(&command, comment);

if (err == noErr) err = AddDirArg(&command, file->vRefNum, file->parID);

if (err == noErr) err = AddProjectArg(&command, projectName);

if (err == noErr) err = AddUserArg(&command, userName);

if (err == noErr) err = AddPStringArg(&command, file->name);

if (err == noErr) err = SourceServerCommand(&command, &output, &diagnostic);

(void) AEDisposeDesc (&command);

/* Display output or diagnostic text as desired. */

if (output != NULL) DisposeHandle((Handle) output);

if (diagnostic != NULL) DisposeHandle((Handle) diagnostic);
return err;

MPW TIPS AND TRICKS: CUSTOMIZING SOURCE CONTROL WITH SOURCESERVER 73

While on the subject of programming practice, I must
gently reprimand SourceServer for its approach to Apple
events, in which script commands are simulated through
a single 'cmnd' event. SourceServer’ idiosyncratic
convention dates from the earliest days of Apple events,
and modern guidelines discourage this type of design.
An application implementing its own Apple events
should designate a different command code for each
operation, treating arguments as keyword parameters.

Listing 2 shows how to send an Apple event to
SourceServer. It’s first necessary to find and perhaps
launch the SourceServer application. The snippet
called Signature ToApp (by Jens Alfke) on this issue’s
CD accomplishes this with a single function call.

Simply pass in the creator code of SourceServer, which
is 'MPSP".

The event must be created before it can be sent. For
SourceServer, there’s a single parameter, named
keyDirectObject, which is the descriptor list containing
the command. After sending the event, you must
extract the results. The results of an Apple event are
returned as keyword parameters in a reply descriptor.
First there’s the standard keyErrorNumber parameter,
which returns an error code if delivery failed.
SourceServer returns three other parameters: The 'stat’
parameter contains a second error code; if it’s nonzero,
SourceServer tried to execute the command and failed.
When there’s an error, there will be diagnostic output
in the 'diag" parameter, a handle containing text from
the MPW diagnostic (error) channel. Finally, there’s
standard output — a handle specified by keyDirectObject
— which contains explanatory text.

PROJECTDRAG — DRAG AND DROP SOURCE
CONTROL

The Macintosh has always had a drag and drop user
experience, but the true power and generality of
dragging has been widely recognized only recently.
The drag paradigm can even be used for source
control. To turn Projector into a drag-savvy system,
I’ve written a set of utilities called ProjectDrag (source
code and documentation are provided on this issue’s
CD). You simply drag and drop icons onto the
following miniapplications that make up ProjectDrag,
and the corresponding function is performed:

® Check In and Check Out, for checking files in and out
* ModifyReadOnly, for editing a file without checking

it out

¢ Update, for bringing a file or folder up to date, as
well as canceling checkouts and modify-read-only
changes

* ProjectDrag Setup, for configuring the system

74 develop lssue23 September 1995

These utilities are based on a drop-on application
framework called DropShell (written by Leonard
Rosenthol and Stephan Somogyi), also on the CD.
When a file is dropped onto an application, the
application receives an Open Documents ('odoc’)
event. DropShell takes care of the rigmarole of
receiving this and other required Apple events. The
ProjectDrag miniapplications pull the file specifications
out of 'odoc' events and create SourceServer
commands that operate on the files and folders that
were dropped on their icons.

DropShell is also available on the Internet at
ftp:/ /ftp.hawaii.edu/pub/mac/info-mac/Development/src/
and at other Info-Mac mirror sites. ®

Some setup is required. ProjectDrag needs to know the
locations of Projector databases. It maps between
project names and Projector database files by keeping
aliases to database folders in its Preferences folder. To
start using a project, simply drag its ProjectorDB file or
the enclosing folder onto ProjectDrag Setup. Projector
also needs to know your user name, and your initials or
a nickname are used in change comments at the start of
files. These are stored in a text file in the Preferences
folder. ProjectDrag asks you for this information if it
can’t find it, or you can launch ProjectDrag Setup and
give the Set User Name command.

ProjectDrag is scriptable, unlike SourceServer and the
MPW Shell. The miniapplications have an Apple event
terminology resource (‘aete') to advertise their events
to scripting systems. This allows you to add source
control commands to any application that lets you add
AppleScript scripts to its menus.

ProjectDrag is able to run remotely over a network.
This circumvents a limitation of SourceServer, which
can only be driven locally. ProjectDrag can receive
remote Apple events and then drive a copy of
SourceServer that’s local to it. Among other uses, this
could support an accelerator for Apple Remote Access.
Checking a file in or out over ARA takes a few minutes,
which is fine, especially for those who find tedium
particularly enjoyable. Copying files is faster. With
local AppleScript front ends for remote ProjectDrag
miniapplications, you could copy files to and from a
remote “shadow folder” and initiate SourceServer
commands at the remote location, where they would
execute over a fast network such as Ethernet.

I like to think that I can solve user interface problems
in my sleep. When I was writing ProjectDrag, I had a
dream of a better user experience. Instead of
miniapplications, ProjectDrag would be a magical
system extension that would put a single small icon at

Listing 2. Sending commands to SourceServer

OSErr SourceServerCommand(AEDesc *command, CStringHandle *output, CStringHandle *diagnostic)

{

AppleEvent aeEvent;

AERecord aeReply;

AEDesc sourceServerAddress, paramDesc;

ProcessSerialNumber sourceServerProcess;

FSSpec appSpec; /* SignatureToApp requires this due to a minor bug */
long theLong, theSize;

DescType theType;

OSErr err;

*output = *diagnostic = NULL; /* default replies */

/* Find the SourceServer process and make a descriptor for its process ID. */
err = SignatureToApp('MPSP', NULL, &sourceServerProcess, &appSpec, NULL,
Sig2App LaunchApplication, launchContinue + launchDontSwitch);
if (err != noErr) return err;
err = AECreateDesc(typeProcessSerialNumber, (Ptr) &sourceServerProcess,
sizeof (ProcessSerialNumber), &sourceServerAddress);
if (err != noErr) return err;

/* Create and send the SourceServer Apple event. */
err = AECreateAppleEvent('MPSP', 'cmnd', &sourceServerAddress, kAutoGenerateReturnID,
kAnyTransactionID, &aeEvent);

(void) AEDisposeDesc(&sourceServerAddress); /* done with the address descriptor */

if (err != noErr) return err;

err = AEPutParamDesc (&aeEvent, keyDirectObject, command); /* add the command */

if (err != noErr) { (void) AEDisposeDesc(&aeEvent); return err; }

err = AESend(&aeEvent, &aeReply, kAEWaitReply + kAENeverInteract, kAENormalPriority,
kNoTimeOut, NULL, NULL);

(void) AEDisposeDesc(&aeEvent); /* done with the Apple event */

if (err != noErr) return err;

/* Check for an error return in the keyErrorNumber parameter. */
err = AEGetParamPtr (&aeReply, keyErrorNumber, typeInteger, &theType, &theLong,
sizeof(long), &theSize);
if (err == noErr && (err = thelLong) == noErr) {
/* Get the standard output from the keyDirectObject parameter. */
err = AEGetParamDesc(&aeReply, keyDirectObject, typeChar, ¶mDesc);
if (err == noErr) *output = (CStringHandle) paramDesc.dataHandle;
/* Get the diagnostic output from the 'diag' parameter. */
err = AEGetParamDesc (&aeReply, 'diag', typeChar, ¶mDesc);
if (err == noErr) *diagnostic = (CStringHandle) paramDesc.dataHandle;
/* Get the MPW status from the 'stat' parameter -- it becomes our error return. */
err = AEGetParamPtr(&aeReply, 'stat', typeInteger, &theType, &thelong,
sizeof(long), &theSize);

if (err == noErr) err = thelong;
}
(void) AEDisposeDesc (&aeReply); /* done with the reply descriptor */
return err;

MPW TIPS AND TRICKS: CUSTOMIZING SOURCE CONTROL WITH SOURCESERVER 75

some convenient place on the screen. When you
dragged a file onto this icon, it would pop open into a
temporary window and show you icons for the various
options. Dreams are great for creativity, but it’s easier
to weigh alternatives when you’re awake. After I woke
up, I realized that miniapplications will be able to do
the same thing.

Here’s how: In Copland, the next generation of the Mac
OS, the Finder will spring-load folders so that they
open automatically when you drag onto them. It will
also let you stash commonly used folders at the bottom
of the screen, where they appear as short title bars. Drag
the ProjectDrag folder to the bottom of the screen and
you're set! Since the Finder will be providing my dream
interface, there’s no point in a lot of trap patching and
extensibility infrastructure to accomplish the same thing.

Copland will bring another user experience benefit to
ProjectDrag: it’s planned that document windows will
have a draggable file icon in their title bar, so you’ll be
able to use ProjectDrag on an open document by
dragging the icon from its window.

YOU TAKE IT FROM HERE

You can create programs that use SourceServer for
many other tasks. On cross-platform projects, Projector
is sometimes used to control both platforms’ source
folders. This can lead to baroque and error-prone
processes. With SourceServer, you can create front
ends that do the right thing. They could copy to remote
folders over a network, or lock read-only files since the
other platform doesn’t see Projector’s 'ckid' resources.

Quality is an interesting area for source control
applications. A quality tool could query Projector
databases for the frequency and scope of changes at
various stages of the project, correlating them with bug
tracking to develop project metrics. Along similar lines,
a tool could measure the change rate of various files to
assist in what the quality gods refer to as root-cause
analysis.

SourceServer is much more than a way for development
systems to provide integrated source control. It’s great
for structuring your internal development process as
well!

Thanks to Greg Anderson, Arno Gourdol, and B. Winston
Hendrickson for reviewing this column.®

Special thanks to Jens Alfke, Jon Pugh, Leonard Rosenthol, and
Stephan Somogyi.®

Want to show off your cool code?

Do you have code that solves a problem other Macintosh
developers might be having? Why not show it off by writing
about it in develop? We’re always looking for people who might be
interested in submitting an article or a column. If you’d like to
spotlight and distribute your code to thousands of developers of
Apple products, here’s your opportunity.

If you're a lot better at writing code than writing articles, don’t
worry. An editor will work with you. The result will be something
you’ll be proud to show your colleagues (and your Mom).

&P
Qe
T&:IER

YOUR NAME HERE

So don’t just sit on those great ideas; feel the thrill of seeing them
published in develop!

For Author’s Guidelines, editorial schedule, and information
on our incentive program, send a message to DEVELOP on
AppleLink, develop@applelink.apple.com on the Internet, or
Caroline Rose, Apple Computer, Inc., 1 Infinite Loop, M/S
303-4DP, Cupertino, CA 95014.

76 develop lIsve23 September 1995

Multipane Dialogs

NORMAN FRANKE

As applications grow in power and complexity, so does the tendency to
present users with numerous cluttered dialog boxes. To simplify the user
interface, developers are moving increasingly to dialogs with multiple
panes. This article describes how to implement multipane dialogs that
users navigate by clicking in a scrolling list of icons.

Dialog boxes with multiple panes (“pages” of controls) are an increasingly popular
element of the Macintosh user interface. Like simple dialogs, multipane dialogs can
be presented when users need to indicate preferences, set attributes of text or graphic
objects, or give specifications for complex operations such as searches or formatting,
among other things. By grouping related options and providing a single point of
interaction for manipulating them, multipane dialogs simplify life for the user and the
developer.

Five different kinds of controls for navigating multipane dialogs are in general use:
the scrolling list of icons, the pop-up menu, index tabs (simulating the look of tabs on
the tops of file folders in a file cabinet), Next/Previous buttons, and icon button sets.
Although there aren’t any hard-and-fast rules about when you should use one over
another, these considerations (suggested by Elizabeth Moller of Apple’s Human
Interface Design Center) generally apply:

* Novice users have trouble with pop-up menus, so choose a different kind of
control if your target audience includes large numbers of these users.

* Index tabs work well for small numbers of panes, but they may not work well
when the tabs start overlapping or the number of panes is variable.

* Next/Previous buttons are a good choice when there’s more than one
mandatory pane. They make it easy for users to step through mandatory and
optional panes in sequence.

The sample application MPDialogs on this issue’s CD demonstrates the use of a
multipane preferences dialog navigated by clicking in a scrolling list of icons, similar
to the Control Panel in System 6 and print dialogs in QuickDraw GX. After
describing the user interface presented by this sample program, I'll go into the details
of how to implement a similar multipane dialog in your own application. Source code
for the routines I'll discuss is also included on the CD. This code requires System 7
and is compatible with both black-and-white and color displays.

NORMAN FRANKE misses the large electrical large national laboratory in northern California.

storms and green things of his native Pennsylvania, ~ Now working on an M.S. in computer science at

but not the humidity. He's using the B.S. in Stanford, he enjoys writing sound manipulation
computer science he earned from Carnegie software for his Macintosh and watching classic
Mellon as he writes Macintosh software for a and action/adventure movies in his spare time.®

MULTIPANE DIALOGS

77

WHAT THE USER INTERFACE LOOKS LIKE

"To experience how multipane dialogs work, run the sample program MPDialogs. When
you choose Preferences from the File menu, you'll be presented with the interface
shown in Figure 1. This is a good illustration of the elements of a multipane dialog.

Preferences

’ ki] Encrypt Communications N
L | [] Universal Translator

Pane
Mode: | Subspace w| confrols

Frequency: MHz

Defense —
FPower
L | |Use Defaults Revert Pane-local
- buttons
Cancel Global
buttons
Icon list

Figure 1. The Communications pane of the sample multipane dialog

The long vertical rectangle on the left side of the dialog box contains the pane
selection icon list. Each icon in this scrolling list has a one-word label under it for
identification and represents one pane of the dialog, which is displayed when the user
clicks the icon. If you click the Defense icon, for instance, you’ll see the pane shown
in Figure 2. The arrow and tab keys on the keyboard can also be used to change the
pane selection; however, if the current pane contains multiple editable text fields, the
tab key will work as in a normal dialog and move the cursor to the next text field.

Preferences

i[> ks [JEnable Photon Torpedos
fﬂﬂ' [J Enable Self-Destruct
Cornri. [seif-fiastrant

- Shields:
. @ Off
1 0n
{_ High Power

Use Defaults Franpranry

Figure 2. The Defense pane of the sample multipane dialog

78 develop Issue23 September 1995

The bottom portion of the dialog below the line contains two buttons that act on the
dialog as a whole: Cancel and OK. The OK button accepts the settings and Cancel
aborts all changes and closes the dialog. The two buttons above the line act only on
the current pane and are optional: Revert restores the control values in the current
pane to what they were when that pane was last opened, and Use Defaults resets the
control values in that pane to factory defaults.

The large region above the buttons is where the pane’s controls are placed. The
sample code supplied on the CD handles actions for checkboxes, radio button groups,
and pop-up menus. Command-key equivalents can be used to toggle checkboxes and
radio buttons, in addition to the standard keyboard equivalents for OK (Return/Enter)
and Cancel (Escape/Command-period). After experimenting with making changes to
the control values in the sample program, you can choose Display from the File menu
to see the results of your changes.

A couple of custom capabilities can be added to a pane through optional procedures:

¢ taking special action such as dimming or undimming other controls when
items are clicked

* performing data validation such that if validation fails, the user isn’t
permitted to change panes or exit the dialog with the OK button

These two capabilities are demonstrated in the sample multipane dialog. When you
click the Enable Self-Destruct checkbox in the Defense pane, the Self-Destruct
checkbox is undimmed. When you enter nondigits in the editable text field in the

Communications pane, data validation fails and you’re unable to change panes or
click OK.

Note that multipane dialogs, like simple dialogs, can take one of three forms:

¢ standard modal dialog — a dialog that has a border around it and no title bar,
that can’t be moved around on the screen, and that stays frontmost as long as
it’s open

* movable modal dialog — a dialog that has a border around it and a title bar,
that can be moved around on the screen, and that stays frontmost as long as
it’s open and the application is frontmost

* modeless dialog — a dialog that looks and behaves like a normal document
window with a title bar and a close box, and that isn’t always frontmost

The sample program displays a movable modal dialog, but the code provided
supports all three forms.

That’s all there is to the interface. For some words of wisdom about things to take
into account as you design your own multipane dialogs, see “Tips for Designing
Multipane Dialogs.” Now we’ll move along to the details of how to incorporate the
multipane dialog routines on the CD into your own application: the resources you
need to define, the calls to make to the main routines to open the dialog and handle
events, and the customizing you can do with optional procedures.

DEFINING NEEDED RESOURCES

The first step in incorporating the multipane dialog routines is to define the custom
resources the code needs. You’ll find ResEdit TMPL templates for all the needed
resources on the CD. You can put these in the ResEdit Preferences file to make them
available at all times or leave them in the application you’re editing.

MULTIPANE DIALOGS

79

A multipane dialog is appropriate only when the panes
you're presenting are obviously related to one another in
some way. With that caveat in mind, here are some
suggestions for making your multipane dialogs easy to
understand and use:

* Provide a sentence or title to help clarify your intent.
For example, you might precede a scrolling list of
icons in a preferences dialog with a sentence like
“Select items from this list fo set your SurfWriter
preferences.”

e |f you use an icon list, label the icons in your list to
help users recognize them.

e Visually separate buttons that apply only to the current
pane from those that work on all panes (like OK and
Cancel in a modal dialog).

e Don't change the size of the dialog or window as the
user navigates from pane to pane. Pick a size that
accommodates the pane with the most controls.

e Design the dialog so that changing the settings in one
pane doesn’t change the settings in another. For

TIPS FOR DESIGNING MULTIPANE DIALOGS
BY ELIZABETH MOLLER OF APPLE’S HUMAN INTERFACE DESIGN CENTER

example, clicking a checkbox in one pane shouldn’t
disable a checkbox in another pane, because the user
won't see the latter action occur and thus won't
understand the cause and effect.

Be consistent in your use of controls. If you use a
particular type of control to mean “choose a setting,”
for instance, don't use the same type of control to
mean “navigate between panes” in the same dialog.
Users should be able to easily distinguish controls that
navigate through multiple panes from controls that
make choices in the dialog.

Order the panes from mandatory to optional, by
frequency of use, from general to specific, or, when no
other order is apparent, alphabetically. If there are
mandatory fields and controls, be sure to put them in
the first pane or step the user through mandatory
panes before optional ones.

When the dialog is closed, remember the pane that
was last used, unless there are mandatory controls in a
pane. If there is a mandatory pane, it should always
be displayed when the dialog reopens.

The first resource that needs to be created is the main DLOG and its associated
DITL, which will form the basis for the dialog. A sample is provided in the file
MPDialogs Resources that you can simply copy into a new project’s resource file.
The DITL should include six items, numbered as follows:

1. OK button
. Cancel button

. Revert button

Use Defaults button

a user item that defines the icon list rectangle

N

a hidden static text field for default Command-key equivalents

The Revert and Use Defaults buttons can be moved offscreen to make either of them
unavailable. (Alternatively, the buttons can be removed and the control#defines in
the main header file, MPDialogs.h, can be changed to reflect the new numbering.)
"The icon list is always displayed vertically, and the rectangle doesn’t include the scroll
bar. The sample application provides the standard Command-key equivalents for OK
and Cancel. The standard equivalents for OK are handled in the code; those for
Cancel are handled by means of the hidden static text field, which defines default
Command-key equivalents for the rest of the controls in the dialog as well.

A DITL needs to be created for each pane. The first item is a hidden static text field
that defines Command-key equivalents for the items in the pane; this is in addition to
the default list in the main DITL. See “Code for Dialog Command-Key Equivalents”
for details of the syntax.

80 develop Issue23 September 1995

The items are numbered local to each DITL, so that, for example, the first control
would be item 2. All user items in the DITL are set to the DrawGray procedure,
which outlines the item’s rectangle with either the gray color or a stippled gray
pattern, depending on the user’s monitor.

Next, a DTL# resource should be created with the same resource ID as the main
DLOG resource. It contains a list of the resource IDs of the DITLs that comprise a
specific multipane dialog and the text displayed under each icon in the list. Then the
icon groups are created; they have the same resource ID as the DITL to which they
correspond. Small versions of the icons aren’t needed, but color versions should be
created for display on color-capable Macintosh computers.

Optional DGRP resources can be created for specifying radio button groups. The
resource ID is the same as that of the corresponding pane’s DITL. Each DGRP can
contain multiple groups per pane, if desired; however, a particular radio button
should only be used in a single group. Like the per-pane Command-key equivalent
strings, items are numbered local to the DITL.

You should also copy the following:

¢ the pseudo-CDEF with resource ID 251, which provides support for using
the icon list as a control (in the file MPDialogs Resources)

¢ the LDEF with resource ID 130, which implements the icon list definition
for the List Manager (in the file Icon LDEF in the LDEF folder)

¢ optionally, the 'hdlg' resource and corresponding STR# resource for Balloon
Help support (in the file MPDialogs Resources)

You can add Balloon Help to a multipane dialog by adding two help items to the
individual DITL resources that make up each pane. One is for the controls in the

CODE FOR DIALOG COMMAND-KEY EQUIVALENTS

The Command-key equivalent code | provide in the sample
uses a modified version of KeyEquivFilter, a routine in
Utilities.c, which is part of DTS Lib on the CD. It takes
these two additional parameters:

® The ID of the static text item that contains the mappings.
My dialog code calls this routine twice, once for the
bottom buttons and a second time for the items in the
pane.

¢ An offset to add to the item numbers when a hit
occurs. This allows the code to use relative item
numbering for easier specification of Command-key
equivalents in panes.

The static text item is an item-match string that follows the
general format =cxxyyzz or ccxxyyzz. The =c matches the
character ¢, and cc matches the character by its ASCII
value. The next number, xx (a flag byte with the bits set to
specify the modifier keys you're checking for), is logically
ANDed with the modifier flags from the key-down event
and compared to yy (a flag byte with the bits set to

specify the values of the modifier keys — for example,
you can force the Control key to be up). If this comparison
is true and if the character ¢ matches the character the
user typed, the item zz is returned as being hit.

Each item-maich string is eight characters long and is
separated from other such strings that follow by a comma.
The numbers in the strings are hexadecimal and case is
significant for character matches.

For example, the hidden static text field that's checked for
each pane in the sample application is

=.190102,1B190102,1B190002

The first item-match string checks for a period and for
the Control, Option, and Command keys. If only the
Command key has been pressed, item 2 is returned as
being hit. Similarly, the next item-match string handles
Command-Escape (Escape is 1B) and the last item-match
string handles Escape by itself.

MULTIPANE DIALOGS 8

82 develop Isue23 Seplember 1995

main DITL and uses an 'hdlg' resource and an STR# resource with the same ID.
The second help item is an 'hdlg' resource for each pane’s DITL; it should start at
item 8 for the first control in the pane. See the file MPDialogs.p.rsrc on the CD for a
sample 'hdlg' resource for the first pane.

CALLING THE MAIN ROUTINES

Now we’ll review the calls your application needs to make to the main routines in
order to open and close the multipane dialog, handle events, and access the values of
the controls in the dialog. But first, let’s look at the data your application needs to
maintain.

POINTERS AND HANDLES

Your application must maintain a DialogPtr for each dialog used. You also need to
declare a handle for storing the returned settings. Passing a pointer to NULL causes
the code to allocate a new handle and return it to the caller; otherwise, a handle to an
existing record must be provided. For a preferences dialog, this data should be
maintained in the application’s preferences file in the Preferences folder.

Implementing preferences files is discussed in the article|"The Right Way to
[Implement Preferences Files"]in develop lssue 18.°

"The sample code internally allocates an MPDHAdI for each open multipane dialog for
storing state information. The handle is stored in the refCon of the dialog.

OPENING, HANDLING EVENTS, AND CLOSING

Your application should call OpenMPDialog for each desired multipane dialog,
taking any actions necessary when a dialog is opened, such as disabling menus. This
call is passed the resource ID of the DLOG for the dialog, a reference to the handle
that stores the returned settings, and four optional parameters, which are described
later.

Here’s an example:

DialogPtr prefDlog = NULL;
Handle thePrefs = NULL;

prefDlog = OpenMPDialog(kPrefDLOG, NULL, NULL, NULL, NULL, &thePrefs);
if (prefDlog) SetMenusBusy(); // If NULL, the dialog couldn't be opened.

The main event loop should call DoMPDialogEvent after each event is returned
from WaitNextEvent. If DoMPDialogEvent returns true, the multipane dialog
routines have handled the event; your application should inspect the DialogPtr to
determine whether the dialog has been closed, so that the application can recover
from the dialog state. A return value of false indicates that your application should
process the event as it would normally. For example:

if (DoMPDialogEvent (&prefDlog, &mainEventRec)) {
// A NULL DialogPtr means the dialog has been closed.
if (!prefDlog)
SetMenusIdle();
} else {
// Process the event as usual.

"To dispose of the dialog without user interaction, your application can call
CloseMPDialog:

CloseMPDialog(prefDlog);

After the dialog has been closed, it’s the application’s responsibility to dispose of or
save the data handle created with the call to OpenMPDialog. The code I've provided
assumes this handle is maintained by the application after creation.

ACCESSING CONTROL VALUES
The following two routines are provided for accessing the control values stored in the
data handle:

* GetMPDItem retrieves the value of the control corresponding to the pane
and item specified and stores it in a buffer.

e SetMPDItem stores in the handle a value retrieved from a buffer.

Both of these routines assume that the caller knows the length and type of the
control’s data representation. Items are numbered differently from in the DITL
resource — only items that have a value are included, and the values for radio button
groups come after those for all other controls in the data. The values of checkboxes,
enabled buttons in radio button groups, and pop-up menus are stored as 16-bit
integers. Return codes are defined in the header file. Errors are returned for invalid
pane and item numbers and buffer lengths.

The routines are declared as follows:

short GetMPDItem(Handle theData, short pane, short item, Ptr ptr, short len)

short SetMPDItem(Handle theData, short pane, short item, Ptr ptr, short len)

The sample application, in the code for DialogDisplay, provides a basic example of
the use of these routines to display the current settings of the controls in the
previously closed dialog.

Normally, these routines should be sufficient to access the data in the handle.
However, those applications for which it would be more efficient to manipulate the
handle directly can use the following format:

Last Open Pane

Offset to Pane 1, Offset to Pane 2, ..., Offset to Pane n, NULL

(Pane 1) Length of Item 1, Data for Item 1, ..., Length of Item m, Data
for Item m, NULL

(Pane n) Length of Item 1, Data for Item 1, ..., Length of Item m, Data
for Item m, NULL

The Last Open Pane and the Offset to Pane fields are all long integers and the
Length of Item fields are all short integers. The Length of Item value doesn’t include
the length of itself; to get to the next field you would add

Length of Item + sizeof(short)

to the pointer. The Last Open Pane field allows the multipane dialog code to display
the dialog with the last pane the user had open as the current pane.

MULTIPANE DIALOGS

83

84 develop Isve23 Seplember 1995

That’s all you need to know to make basic use of my multipane dialog code. But you
can also go a step further: you can customize certain aspects of a multipane dialog by
using the four optional parameters to OpenMPDialog mentioned above.

CUSTOMIZING WITH OPTIONAL PROCEDURES

The second through fifth parameters to OpenMPDialog can indicate action
procedures that customize dialog behavior by responding to certain events. A value of
NULL for any of these parameters tells the application to use the default behavior.
"To provide custom behavior, you would pass a universal procedure pointer instead of
NULL. The procedures can also be changed dynamically, with the InstallAction
routine.

The action procedures and the default actions are as follows:

® The Set Defaults action procedure (parameter 2) provides factory defaults
for controls. The default action is to set them to 0.

® The Click action procedure (parameter 3) enables you to customize the
actions resulting from clicking a control, such as dimming or undimming
other controls or performing data validation. The default action is to toggle
checkboxes and handle radio buttons via the Radio Group action procedure.

¢ The Edit action procedure (parameter 4) enables special handling of editable
text fields, such as converting the string to an integer. The default action is
to store the entire string as a Str255.

* The Radio Group action procedure (parameter 5) enables you to customize
the behavior of radio button groups, such as how the values are stored. The
default action is to store the value as the index number of the radio button
that’s enabled in the group; the default value is 1 (the first radio button in the

group).

All the action procedure pointers are declared as UniversalProcPtrs for compatibility
in case of PowerPC compilation, so they must be allocated before use. The sample
program does this by declaring a UniversalProcPtr for each desired action procedure.
For example, the one for the Click action procedure is declared as follows:

ClickActionUPP myClickAction = NULL;
It’s initialized in the main routine of the application like this:
myClickAction = NewClickActionProc(MyClickAction);

Depending on what you want to do in the action procedures, you may need to make
use of the MPDHAI stored in the dialog’s refCon, mentioned earlier. This is a handle
to an MPDRec (shown in Listing 1), which is the main data structure used by the
multipane dialog code for state information. None of the elements of this structure
should be modified by user code. The four UPP fields can be manipulated via calls to
InstallAction and RemoveAction.

The baseltems field will be the most useful in the action procedures. It holds the
item number of the first item in the pane, which is the hidden static text item used for
Command-key equivalents. Thus, if dataH is of type MPDHJI, the index of the first
real control (the second DITL entry) in the pane will be (*dataH)->baseltems + 1.

Now let’s take a closer look at each of the action procedures.

Listing 1. The MPDRec structure

typedef struct MPDRec {

short numPanes; // Number of panes in the dialog

short currentPane; // Current pane being displayed

short baseItems; // Item number of first item in panes
short *panelDs; // List of IDs for the pane's DITLs
short paneDirty; // Whether Revert should be enabled
RadioGroupPt radio; // Linked list of radio button groups
Handle theData; // Actual storage for dialog values
Handle tmpData; // Temporary storage for dialog values
Handle *IconHandles; // List of icon suites

ListHandle theList; // List Manager list for the icon list

ClickActionUPP ClickAction; // Action procedures
EditActionUPP EditAction;
GroupActionUPP GroupAction;
DefActionUPP DefAction;
} MPDRec, *MPDPtr, *+*MPDHAl;

THE SET DEFAULTS ACTION PROCEDURE

The Set Defaults action procedure provides factory defaults for checkboxes and other
controls, except for radio button groups (handled in the Radio Group action
procedure). It’s called with a pointer to — and the length of — a buffer holding the
internal representation of the value of a single control corresponding to a specific
pane and item number. You can call DefaultAction to take the default action for items
your code doesn’t handle.

The procedure is declared like this:

void MySetDefAction(Ptr theData, short len, short iType, short pane,
short item)

The Set Defaults action procedure’s defaults for radio buttons apply only to those
that aren’t part of a radio button group. But using single radio buttons is definitely
not advised; all radio buttons should be in groups to be consistent with the Macintosh
Human Interface Guidelines.

THE CLICK ACTION PROCEDURE

The Click action procedure enables you to customize the actions resulting from
clicking a control. For instance, this procedure can handle dimming or undimming
other items when certain controls are clicked. It can also provide validation for
control settings when the user tries to change the pane or click OK, to ensure that
the entered settings make sense.

The procedure receives a DialogPtr and the pane and item numbers. It’s declared as
follows:

short MyClickAction(short mType, DialogPtr dlog, short pane, short item)
The mType parameter specifies the message to process when the action procedure is
called. The procedure is called with a kInitAction message right after the control is

set when the pane is first displayed; this gives you an opportunity to set up the initial
state of the dialog. The procedure is called with a kClickAction message after the user

MULTIPANE DIALOGS

85

86 develop Issue23 September 1995

has released the mouse button in a control. A kValidateAction message is received for
data validation; it’s the responsibility of the Click action procedure to put up an alert
to notify the user if a setting is unacceptable.

Listing 2 is a Click action procedure from the sample application that undims the
third checkbox in the Defense pane (Self-Destruct) if the second checkbox (Enable
Self-Destruct) is checked. It also ensures that the editable text field in the
Communications pane contains only digits; if this field contains nondigits, the
validation fails and the user can’t change panes or click OK.

The default Click action procedure, DefaultClickAction, calls the Radio Group
action procedure to handle buttons in a radio button group; thus, actions in response
to a click in a radio button group should be handled there. Call DefaultClickAction
to inherit default functionality for controls not handled in your customization
procedure.

Listing 2. A sample Click action procedure

short MyClickAction(short mType, DialogPtr dlog, short pane, short item)
{

MPDHA1 dataH;

short iType, val = 0;

Rect iRect;

Handle iHandle;

// Obtain multipane dialog state record.
dataH = (MPDHdl) GetWRefCon(dlog);

// Handle the second item validation.
if (mType == kvalidateAction) {
// validation fails if nondigits are in the field.
if (pane == kCommPane &&
item == kFrequency + (*dataH)->baseItems) {
GetDialogItem(dlog, item, &iType, &iHandle, &iRect);
GetDialogItemText(iHandle, theStr);
val = VerifyDigits(theStr);
if (val)
StopAlert (ALERT Invalid, NULL);
}
// BAll other items validate OK.
return val;

// If this isn't the second checkbox, handle things the default way.
if (pane != kMiscellaneousPane ||
item != kEnableSelfDestruct + (*dataH)->baselItems)
return (DefaultClickAction(mType, dlog, pane, item));

// Initialize and Click messages are handled almost the same.
// Dim the third checkbox based on the value of the second.
GetDialogItem(dlog, item, &iType, &iHandle, &iRect);

val = GetControlValue((ControlHandle) iHandle);

(continued on next page)

Listing 2. A sample Click action procedure (continued)

switch (mType) {

// Toggle the item in response to the user click.

case kClickAction:
val = l!val;
SetControlvValue((ControlHandle) iHandle, val);
// Fall through!

// In either case, enable/disable next checkbox.

case kInitAction:
AbleDItem(dlog, kSelfDestruct + (*dataH)->baseltems, val);
break;

// Initialize and Click messages should never fail.
return 0;

THE EDIT ACTION PROCEDURE

The Edit action procedure enables special handling of editable text fields. A common
implementation is to store the field’s string as a long integer, converting the string
value to and from this form as needed.

"This procedure receives a pointer to a buffer for storage of the control’s internal
value, a handle to the control, and the pane and item numbers; it returns the length
of the space required for the text field. The first parameter is a message that informs
the procedure whether to calculate the storage size for this field, initialize the value,
or copy the value to or from the field.

The procedure is declared as follows:

short MyEditAction(short mType, Ptr hPtr, Handle iHandle, short pane,
short item)

The kCalcAction message requests the amount of storage required for the
representation of the field value in memory. The klnitAction message requests that
the value of the field be initialized. The kP2 TAction message requests that the code
retrieve the value of the field and store it in memory (in other words, that the
permanent storage value be transferred to the temporary storage area — P2 is
shorthand for “permanent to temporary”). Conversely, the KT2PAction message
(“temporary to permanent”) requests that the code set the field to the value indicated
by the representation in memory. Default behavior can be maintained by calling
DefaultEditAction, if desired.

Listing 3 is an Edit action procedure from our sample application. Normally, the
procedure should check the item and pane numbers to distinguish between different
text fields, but the sample application has only one such field.

THE RADIO GROUP ACTION PROCEDURE
To simplify using radio button groups, a single value is stored for the entire group.
This value is the relative item number of the enabled button in the group. For

example, the value of a group of three radio buttons with the second one enabled
would be 2.

MULTIPANE DIALOGS

87

88 develop Issue23 September 1995

Listing 3. A sample Edit action procedure
short MyEditAction(short mType, Ptr hPtr, Handle iHandle, short pane,
short item)
{
short ret = 0;
long val;
Str255 textStr;
Assert(hPtr != NULL);
switch (mType) {
case kP2TAction: // Save value of control.
GetItemDialogText (iHandle, textStr);
StringToNum(textStr, &val);
*(long *) hPtr = val;
ret = sizeof(long);
break;
case kT2PAction: // Set value of control.
val = *(long *) hPtr;
NumToString(val, textStr);
SetIText(iHandle, textStr);
ret = sizeof(long);
break;
case kInitAction: // Initialize value.
*(long *) hPtr = 0;
ret = sizeof(long);
break;
case kCalcAction: // How much storage do we need for this?
ret = sizeof(long);
break;
}
return ret;
}

In the sample program, radio button groups are stored in a linked list starting from
the radio field of the MPDRec structure. The RadioGroup structure is defined as
shown in Listing 4.

Listing 4. The RadioGroup structure

typedef struct RadioGroup {
struct RadioGroup *next;
short pane;
short num;
short items[1];

} RadioGroup, *RadioGroupPtr;

The next field points to the next radio button group, to enable traversing the linked
list of groups. The pane field is the pane number this group belongs to. The num
field holds the number of items that make up this radio button group. The relative
item numbers of these radio buttons are stored in the items array.

The Radio Group action procedure enables you to customize the behavior of radio
button groups. For instance, an application could choose to store radio button group
values differently from the default or handle dimming or undimming of items in
response to the user’s actions. The Radio Group action procedure receives the same
messages as the Edit action procedure. It returns the length of the space required for
the radio button group’s internal storage; the default is four bytes per group, two for
the number of radio buttons and two for the value as a short integer.

Like the Edit action procedure, the Radio Group action procedure is called with the
kInitAction and kCalcAction messages. However, these messages occur before the
dialog is opened, so the DialogPtr will be NULL at that time. The procedure is
declared like this:

short MyGroupAction(short mType, RadioGroupPtr group, Handle dataH,
DialogPtr dlog, Ptr hPtr, short pane, short item)

Note that in response to the klnitAction message, the action procedure is expected to
store the number of radio buttons in the group in the first two bytes of the internal
storage. Here’s an example from the default Radio Group action procedure (dataH is
of type MPDHdI):

for (i = 0; i < group->num; i++) {
if (GetCheckOrRadio(dlog, group->items[i] + (*dataH)->baseIltems - 1))
*(short *) hPtr = i + 1;
}

"To obtain the actual item number for the control in the dialog, you just add
(*dataH)->baseItems - 1

to the relative number stored in the items array, as shown in the above code. As
mentioned earlier, the baseltems field of dataH is the number of the first pane-
specific item in the dialog.

NOW WHAT?

The code that accompanies this article on this issue’s CD provides an easy-to-
implement method for adding icon-selected multipane dialogs to any application.
(The routines for managing radio button groups could be extracted without much
difficulty and used elsewhere.) The sample program also provides an example of using
the AppendDITL and ShortenDITL routines. So experiment with the sample
application and then try out multipane dialogs as a way of simplifying the user
interface in your own application.

Thanks to our technical reviewers Tim Craycroft, Thanks also to Eric Soldan for ListControl and
Nitin Ganatra, C. K. Haun, and Elizabeth Moller. KeyEquivFilter from DTS Lib.®

MULTIPANE DIALOGS

89

ACCORDING TO
SCRIPT

Thinking About
Dictionaries

CAL SIMONE

I’ve been thinking lately about the purpose of this
column, which debuted in the previous issue of develop.
Permit me to take a moment to say something about
that before I get down to some tips about dictionaries.

During the first couple of years after the birth of the
Macintosh, there was a period of chaos, when
application developers were figuring out how to extend
the basic user interface. For example, some of the most
commonly used menu commands appeared in different
locations in various applications, and, more important,
keyboard shortcuts varied or sometimes weren’t present
at all. After a while, though, things settled down and
almost everyone adopted the standards that were
eventually documented in the Macintosh Human
Interface Guidelines.

AppleScript is the alternate user interface to your
application. Now that AppleScript has been available
for two years, it’s time to move out of the “free-for-all”
and develop the same consistency we’ve all come to
enjoy and expect from the Macintosh experience.
That’s what this column (and the work I do in the
AppleScript development community) is all about —
encouraging consistency. The tips I offer here reflect
undocumented conventions followed by many
developers I've worked with, as well as my own
thinking about scriptability. Until the time when
standards are documented in a “Macintosh Human
Scriptability Guidelines,” I encourage you to adopt the
techniques suggested here.

Though I've said it before, I'll say it one more time:
adopting the object model is the single most important

factor contributing to consistency in the AppleScript
language across applications of different types. One
developer I know resists using the object model year
after year, arguing that it “isn’t appropriate for
everything.” But the fact is that the object model

has been successfully applied to a whole range of
applications. Every major C++ framework now supports
it or has add-ons to support it, and up-and-coming
languages will support it. Even if your application has
only one object (such as the dictionary of a small
paging program I've seen), just do it!

ORGANIZING YOUR DICTIONARY

So far in the scripting world, various developers have
used different schemes in their dictionaries for
organizing the events in a suite, the parameters in an
event, the properties in an object, and so forth. Some
organize them according to their function, others
order them alphabetically, and still others don’t seem
to have any scheme whatsoever (probably because
scripting support was added a bit at a time or as an
afterthought). For the sake of consistency across
different scriptable applications, using some standard
scheme is preferable.

If you’re including an entire standard suite (such as
the Core suite) from AppleScript’s system dictionary
(listed in the Rez files named English Terminology.r,
French'Terminology.r, and so on) and then overriding
or extending the suite to add your own terms, make
sure that your overrides appear in the same order as
they do in the system dictionary and that extensions
come after all the overrides. If you’re implementing
your own terminology, either as extensions to existing
suites or in your own suites, organize it as described in
the following paragraphs.

When you’re adding new terms to a previously created
dictionary (for example, when upgrading your
application to provide deeper scripting support),
remember to insert the new terms according to the
same scheme or schemes you originally implemented.
It’s a good idea to keep some notes in your internal
design documents describing the ordering schemes
you used, so that you can be consistent with your
earlier work (unless you’re redoing your scripting
implementation from scratch — for instance, when
you’re converting from an old non—object model
implementation to the object model).

CAL SIMONE (AppleLink MAIN.EVENT) works way too hard at
Main Event Software in Washington DC. He took his last summer
vacation five years ago; it's been so long, he's forgotten what a

vacation is like, and he can’t imagine where he’d go. He's been
to beautiful mountainous places like Colorado, Alaska, British

O0 develop lssue23 September 1995

Columbia, and Switzerland, and to a few islands like Saint
Thomas and the Bahamas. Cal would really like to hear your
suggestions on possible future topics for this column, as well as
your ideas for good vacation spots.®

Suites. So that your dictionary is consistent with
dictionaries in other applications, include the standard
Registry suites first (Required suite first, then the Core
suite, then any other Registry suites). Then include any
custom suites you create.

Events. Order commands that correspond to events in
one of four ways: by likelihood of use, according to
function, chronologically, or alphabetically. The method
you choose will depend on how your application is used
and the nature of your users. As an example of each of
these schemes, I’ll show how some of the Core suite
verbs might be organized.

If certain commands are to be used more frequently
than others, order them according to likelihood of use.
Present those commands that will be used most
frequently at the beginning and those seldom used at
the end:

get (more of these than anything else)
set (quite a few of these, t00)

count (a fair amount of counting)

make (sometimes new objects are created)
open (sometimes they’re opened)

close (and closed)

print (printing isn’t done as frequently)
delete (neither is deleting)

quit (quitting is done only occasionally)

If your users will logically group the operations, use an
ordering according to function. Group together
commands that are related in some way:

make (make and delete)
delete
open
close
set (set and get)
get
count
print
quit

(open and close)

(the rest are unrelated)

If the commands are normally used in a certain order,
choose a chronological ordering. First present the
commands that will be used first, followed by the
commands that will be used later:

make (this often comes first)

open (or else opening comes first)
set (then setting properties)

get (and later getting properties)
count (counting comes in the middle)
print (printing happens later)

close (then comes closing)

delete
quit

(deleting is near the end)
(last, we bail out)

If the commands aren’t going to be used in any
particular order, or you don’t know what that order is
likely to be, and there’s no logical grouping, list the
commands alphabetically, as the Core suite does.
Although alphabetical order isn’t as helpful as the other
schemes, script writers will at least be able to find
commands more easily in your application’s dictionary.

Parameters. Make an effort to list parameters in
an order that encourages the writing of natural,
grammatically correct sentences for commands. For
example:

make new <type class>

[at <location reference>]
[with data <anything>]
[with properties <record>]

If the order of an event’s parameters doesn’t matter as
far as sentence style is concerned, order them
according to the frequency of likely use.

<reference>
saving <yes|no|ask>
saving in <file specification>

close

Obiject classes and properties. I'd suggest placing
the outermost objects in your containment hierarchy
first, objects contained in the outermost objects next,
and objects that don’t contain any other objects last.
Remember that every object class representing an
actual object must be listed as an element of some other
object, eventually leading back to the application class
(the null container). Primitive class definitions and
record definitions (which aren’t part of the containment
hierarchy) and abstract classes (which aren’t instantiable
objects but are used to hold lists of inherited properties)
should be placed in the Type Definitions or Type
Names suite, and clearly labeled as a record definition
or abstract class. (See my article,|[“Designing a
[Scripting Implementation,”|in develop Issue 21.)

Properties of objects can be ordered according to one
of the schemes described above for events.

WHEN YOU ALLOW MULTIPLE VALUE TYPES
Occasionally in your dictionary you might need to
specify a parameter or property for which any of several
types is acceptable. Using the wild card ("***") as the
type of a parameter or property tells your user that
you’ll accept anything (or at least a wide variety of
mixed types). Don’t do this to be lazy or to finish your
dictionary quickly; do it only if you mean it. If you

ACCORDING TO SCRIPT: THINKING ABOUT DICTIONARIES

91

accept only one type, explicitly indicate so. If you allow
two different types, you can either create a compound
“type” or use identical keyword entries.

Defining a compound “type.” One way of handling
cases where you can accept two different value types for
a parameter or property is to make up a new “type” to
represent a combination of acceptable types in your
dictionary. This isn’t a real type that you’d have to
check for or deal with in your application’s code, but
instead just serves to indicate in your dictionary that
your application will handle eizher type. This works
particularly well when the value types are simple. For
example:

class reference or string: Either a reference or
a name can be used.

You can use your new “type” in a parameter or property
definition as follows:

class connection
properties:
window <reference or string> -- the
connection’s window can be referred to
either by a reference or by its name

"To define a new type, make a new object class and place
itin the Type Names suite (see my article in Issue 21).

Using identical keyword entries. You can also use
multiple entries with identical keywords to specify
alternative ways of filling in a parameter or property
value. This works well when the value types are
complex or are highly dissimilar. For example, the
display dialog command has two with icon listings,
one for specifying the icon by its resource name or ID
and the other for displaying the stop, note, or caution
icon:

display dialog <anything> -- title of dialog
... other parameters
[with icon <anything>] -- name or id of the

icon to display
[with icon <stop|note|caution>] -- or display
one of these system icons

Note the use of “or” in the second entry’s comment:
make sure you use the same 4-byte ID for both
parameter entries.

Although you could have many entries to show every
possible individual type that a parameter or property
takes, this might become confusing to the user. So I'd
recommend that you use this sparingly, and when you
do use it, try to limit the number of similar entries to 2.

02 develop Issue23 September 1995

MAKING USE OF THE COMMENT AREA

You can use the comment area (available for each suite,
event, parameter, class, and property entry) to help
clarify how your vocabulary is to be used. Since your
dictionary is often the initial “window” through which
a user looks to figure out what to do, descriptive
comments can make the user’s task a lot easier. And
remember that your users aren’t necessarily
programmers, so you should avoid terms like FSSpec
in your comments. I'll give some examples to show
you what [mean.

* For Boolean parameters and properties, if there are
two possible states, include a description of the true
and false conditions, such as “true if the script will
modify the original images, false if the images will
be left alone.”

* If the possible states are on and off, you need only
include the true condition (“If true, then screen
refresh is turned on”) or ask a question (“Is the
window zoomed?”).

* For enumerations, include a general description of
what the parameter or property represents; the
individual enumerators should be self-explanatory.
For example, “yesInolask -- Specifies whether or
not changes should be saved before closing.”

* Don’t use the comment field to explain a set of
possible numeric values when an enumeration (with
descriptive enumerators) is better. Instead of
“O=read, 1=unread, ...” use “read lunread|...”

* For compound “types,” describe the parameter or
property, as well as the choices for value types listed:
“the connection’s window (either a reference or
name can be used).”

* For “anything” (unless you actually allow any type
the user can think of), describe which specific types
you allow: “[... descriptive info] (a string, file
reference, alias, or list is allowed).”

* Ifyou allow either a single item or a list, indicate so:
“the file or list of files to open.”

* If the parameter or property has a default value
(used when the user doesn’t include an optional
parameter or set the property), mention it (this
applies to values of any type): “replacing yes|nolask
-- Replace the file if it exists? (defaults to ask).”

Keep in mind that if you include an entire standard
suite (such as the Core or Text suite), your own
comments should reflect the style of the comments in
that suite. See the Scriptable Text Editor’s dictionary as
an example of fairly good comment style; it shows the
standard versions of the Required, Core, and Text
suites and adds some of its own terminology.

A COUPLE MORE DICTIONARY TIPS
While I'm on the subject of dictionaries, here are a
couple of extra tidbits.

Use only letters and numbers for terms in dictionaries.
Don’t use a hyphen (-), a slash (/), or any other
nonalphanumeric characters in your dictionary entries.
For example, if you use Swiss-German, AppleScript
will treat it as Swiss - German (subtraction), which is
not what you want; if you use Read/write, it will be
treated as Read / write (division). Note that
Read/write is in the standard Table suite, but it won’t
compile properly.

All terms must start with letters. Using 9600 as an
enumerator won’t work; you would have to use
something like baud9600.

Finally, pick names for your terms that are descriptive
for a user, especially a nonprogrammer. If you pick a
term like x, users won’t be allowed to use x as a variable
name in their scripts. For instance, instead of “x <small

integer> -- the x coordinate” use “horizontal coordinate
<small integer> -- the x coordinate.”

IT’S YOUR THING

Unlike writing code, designing a scripting vocabulary
isn’t an exact science. It’s up to you to decide in what
manner (and how effectively) humans will interact with
this new interface. Applying “programming language”
concepts and standards won’t always work. You need to
keep an eye toward the human aspects of the AppleScript
language and to work out a scheme that reflects careful
attention to your users.

You may occasionally see guidelines here that aren’t
completely clear-cut or that even conflict with each
other, and every so often I’ll adjust what I've said in

an earlier column. This is the nature of an evolving
language. If you’re not completely at home with this,
seek out an expert in scriptability design for advice.
But remember, vocabulary design is by nature as much
art as science.

Thanks to Sue Dumont and C. K. Haun for reviewing this column.®

Drop us a line and let us know what you think.

Send editorial suggestions or comments
to AppleLink DEVELOP or to:

Caroline Rose

Apple Computer, Inc.

1 Infinite Loop, M/S 303-4DP
Cupertino, CA 95014

AppleLink: CROSE

Internet: crose@applelink.apple.com
Fax: (408)974-6395

How’re we doing?

If you have questions, suggestions, or even gripes about develop, please don’t keep them to yourself.

Send technical questions about develop
to:

Dave Johnson

Apple Computer, Inc.

1 Infinite Loop, M/S 303-4DP
Cupertino, CA 95014
AppleLink: JOHNSON.DK
Internet: dkj@apple.com
CompuServe: 75300,715

Fax: (408)974-6395

Please direct all subscription-related queries to develop, P.O. Box 319, Buffalo, NY 14207-0319 or
AppleLink APDA (on the Internet, apda@applelink.apple.com). You can also call 1-800-282-2732
in the U.S., 1-800-637-0029 in Canada, or (716) 871-6555 from all other locations.

[

ACCORDING TO SCRIPT: THINKING ABOUT DICTIONARIES

93

Document Synchronization and Other Human
Interface Issues

MARK H. LINTON

04 develop Issue23 September 1995

One of the things the Finder does best is maintain the illusion that an
icon and its window represent a single object. Using the routines
described in this article, your application can belp maintain that
illusion. You can ensure that when the user renames an open document,
the change is reflected in the document window’s title. You can also
gracefully bandle problems that may arise if the document file is moved.
Other improvements that make your application’s interface more
consistent with the Finder’s include preventing a second window from
opening when an open document’s icon is double-clicked and adding a
pop-up navigation menu to the document window'’s title bar.

To rename a folder or file in the Finder, you click the icon name, type a new name,
and press Return. For folders, if the window is open, the change is reflected right
away in the window’s title bar. But for files, if the document is open in your
application, its window may not reflect the name change. Try this little experiment:
Create a document in your application and save it. Switch to the Finder, find your
document, and change its name. What did your application do? If it’s like most
applications, nothing happened: the document window has the same name as before.
Go ahead and try to use Save As to give the file the same name you gave it in the
Finder. You probably get an error message. Now try to save the document under the
original name. Do you still get an error message? Quit your application and read on
for a way out of this frustration.

The only convenient way for a user to rename a document is with the Finder. (The
Save As command doesn’t rename a document; it creates a copy of the document
with a new name.) As you’ve just seen, name changes made in the Finder aren’t
automatically reflected in an open document window. Another change that’s often
not picked up by the application is when the user moves the document to a different
folder. The code in this article helps synchronize your application’s documents with
their corresponding files, so that a document will respond to changes made outside
the application to its file’s name or location.

This article also describes how to prevent a duplicate window from being opened if
the user opens an already open document in the Finder and how to add a pop-up
menu to the document title bar to help the user determine where the file is stored. All

MARK H. LINTON (mhl@hrb.com) lives in job as senior engineer at HRB Systems, he can be
Centre Hall, Pennsylvania, with his wife Gretchen. found in his log cabin at the base of Mount
When he isn't jetting around the globe or meeting Nittany playing with his Macintosh. ®

with some high government officials as part of his

the code for implementing these features is provided on this issue’s CD, along with a
sample application that illustrates its use.

DOCUMENT SYNCHRONIZATION

"The Electronic Guide to Macintosh Human Interface Design says that applications should
“match the window title to the filename.” Specifically, when a user changes the
document name in the Finder, you should update all references to the title. The guide
also refers to the Macintosh Human Interface Guidelines, page 143, where it says, “The
document and its corresponding window name must match at all times.”

When I first started looking at the problem of document synchronization, I assumed
that the animated example in the Electronic Guide to Macintosh Human Interface Design
was the way to go. In this animation, the application checks for a name change when
it receives a resume event. However, I became uncomfortable with this approach,
because it would cause a delay between the user’s changing the name of the document
in the Finder and the application’s updating the window title. Using a resume event
relies on a separate action by the user, namely, bringing the application to the
foreground. This seemed nonintuitive and didn’t support the illusion that a window
and its icon represent a single object. Also, it’s possible that with Apple events and
AppleScript an application could be launched, do some work, and quit without ever
being frontmost — that is, without ever receiving a resume event.

The truth is that these days, with multiple applications running at the same time,
with networked, shared disks everywhere, and with applications and scripts pulling
the puppet strings as often as users, a file’s name or location may change at any time,
whether the application is in the foreground or the background. A script might move
or rename a file or, if the file is on a shared volume, another user on the network
could move or rename it or even put the file in the Trash — all behind the
application’s back. The only solution I found under the current system software was
to regularly look at the file to see if its name or location has changed. In other words,
the application has to poll for changes.

Polling is generally a bad idea, but there are cases when it’s the only reasonable way
to accomplish a task, and this is one of them. However, I tried to keep the polling
very “lightweight” and low impact by using the following guidelines:

* An application shouldn’t poll any more often than it absolutely needs to.
Waking up an application causes a context switch, and context switches take
a significant amount of time. Forcing the system to wake up an application
every few ticks just so that it can look for file changes would be a bad idea,
especially when the application is in the background. Instead, the application
should poll only when an event has already been received — that is, when
the application is awake. Set your WaitNextEvent sleep time appropriately,
and wait at least a second or two between “peeks.” (The Finder, for instance,
polls for disk changes every five seconds or so.)

* Avoid any polling that causes disk or network access; if at all possible,
examine only information that’s in RAM on the local machine. Network
access in particular can be a real drain on performance.

The sample code follows this advice, doing everything it can to be unobtrusive.

It polls for file changes only once every second while in the foreground. In the
background, the application’s WaitNextEvent sleep time is set to ten seconds, so it
only wakes up — and thus polls — every ten seconds if nothing else is going on.
"To detect changes to files, I chose to examine the volume modification date of the
volume containing the file, since this information is always available in local RAM,

DOCUMENT SYNCHRONIZATION AND OTHER HUMAN INTERFACE ISSUES

95

96 develop Issue23 September 1995

even for a shared volume. If that date changes, I look deeper to see if the change is
one I'm interested in. As you dip into the code, you’ll see the details.

| use the file reference number fo track files because it survives changes in

the name and parent directory. However, this requires that the files be kept open. If
you can't keep your files open, you might want to look at John Norstad's excellent
NewsWatcher application, which uses alias records to synchronize files. NewsWatcher
is on this issue’s CD; its official source can be found at ftp://ftp.acns.nwu.edu/pub/
newswatcher/.*®

Friendly as it is, this polling solution is appropriate only for the current system
software; future system software versions (such as Copland, the next generation of the
Mac OS) will provide a much better way to detect changes. Your application will be
able to subscribe to notification of changes that it’s interested in. In fact, polling the
current file system structures will be unfriendly behavior under Copland, which will
have demand-paged virtual memory and a completely new file system. For this
reason, the sample code is designed to work only under System 7. You’ll be able to
easily retrofit the code to run under Copland once the details of the correct way to
detect file changes have been worked out.

THE HEART OF THE MATTER

Every Macintosh programmer eventually comes to grips with how to keep track of all
the information associated with a document. I use a structure called adocument list
and I have a set of routines that support it. The document list reverses some common
assumptions used by developers. Developers often use the window list to track their
windows and attach their document data to it, but this limits Apple’s ability to
redefine the window list. My recommendation is to create a document list (almost
identical to the window list) containing the document data and attach the windows to
it. In this way, the actual structure of the window list is not a concern. You'll find my
implementation of the document list and its supporting routines on this issue’s CD.

While the code presented here is specific to my implementation, you can easily
generalize it as needed. The code below shows how your application might call
DSSyncWindowsWithFiles, a routine that keeps your documents synchronized with
the Finder by checking for and handling changes made outside the application to file
names or locations. Call the routine from within your main event loop when you
receive an event (including null events). Note that error checking has been removed
from the code shown in the article, but it does appear on the CD.

while (!done) ({
gotEvent = WaitNextEvent(everyEvent, &theEvent, gSleepTime,
theCursorRegion);
if (gotEvent)
DoEvent (&theEvent);
DSSyncWindowsWithFiles (kDontForceSynchronization);

"This minor change does most of the work for your application. The machinery that
makes it happen lies within DSSyncWindowsWithFiles (see Listing 1). This routine
first checks to make sure that enough time has passed since the last check for changes.
If so, or if the caller requested immediate synchronization, it iterates through each of
the windows registered in the document list, calling DSSyncWindowWithFile to
process each of these windows.

DSSyncWindowWithFile, shown in Listing 2, begins by getting the file reference
number for the window from the document list. If it’s appropriate to continue

Listing 1. DSSyncWindowsWithFiles
#define kCheckTicks 60

pascal void DSSyncWindowsWithFiles(Boolean forceSync)
{

WindowPtr theWindow;

static long theTicksOfLastCheck = 0;

long theTicks;

theTicks = TickCount();
if (theTicks > (theTicksOfLastCheck + kCheckTicks) || forceSync) {
theTicksOfLastCheck = theTicks;
for (theWindow = DSFirstWindow(); theWindow != nil;
theWindow = DSNextWindow(theWindow)) {
DSSyncWindowWithFile(theWindow);

Listing 2. DSSyncWindowWithFile

pascal void DSSyncWindowWithFile(WindowPtr aWindow)

{
short theFRefNum;

DSGetWindowDFRefNum(aWindow, &theFRefNum);

if (DoSyncChecks(theFRefNum, aWindow)) {
HandleNameChange (theFRefNum, aWindow);
HandleDirectoryChange(theFRefNum, aWindow);
HandleMoveToTrash(theFRefNum, aWindow);

(DoSyncChecks returns true), DSSyncWindowWithFile calls three other routines to
handle name changes, changes that move the file to a different folder, and changes
that move the file to the Trash.

THE CHECKPOINT

The DoSyncChecks routine (Listing 3) checks for changes to the volume that the
file is on. If the volume has been modified, DoSyncChecks returns true to
DSSyncWindowWithFile, which consequently calls the next three routines —
HandleNameChange, HandleDirectoryChange, and HandleMove ToTrash.

A FILE BY ANY OTHER NAME

After determining that the volume containing the file has been modified,
DSSyncWindowWithFile calls HandleNameChange (Listing 4). This simple routine
compares the names of the window and the file; if they’re not exactly the same, it
updates the window to reflect the new filename. A minimal implementation of
document synchronization might include only this routine.

DOCUMENT SYNCHRONIZATION AND OTHER HUMAN INTERFACE ISSUES

97

98 develop Issue23 September 1995

Listing 3. DoSyncChecks

static Boolean DoSyncChecks(short aRefNum, WindowPtr aWindow)

{
Boolean doCheck = false;
unsigned long theLastDate, theDate;
short theVRefNum;

if (aRefNum != 0) {
DSGetWindowFileVRefNum(aWindow, &theVRefNum);
GetVolumeModDate (theVRefNum, &theDate);
DSGetWindowVLsBkUp(aWindow, &theLastDate);
if (theLastDate != theDate) {
DSSetWindowVLsBkUp(aWindow, theDate);
doCheck = true;

}

return doCheck;

Listing 4. HandleNameChange

void HandleNameChange(short aFRefNum, WindowPtr aWindow)

{
Str255 theTitle, theName;

GetWTitle(aWindow, theTitle);

GetNameOfReferencedFile (aFRefNum, theName);

if (!EqualString(theTitle, theName, true, true))
SetWTitle(aWindow, theName);

Have you been wondering where the magical file management calls that
DoSyncChecks and HandleNameChange use come from — for example,
GefVolumeModDate and GetNameOfReferencedFile2 See the file EvenMoreFiles.c on the
CD for details. This is my fribute to Jim Luther’s excellent MoreFiles collection. Whenever
| need a routine that's not in the standard header, | write it and add it to the collection.
Someday we'll be up to SonOfMoreFiles and NightOfThelivingMorefFiles. ®

MOVING TO A NEW NEIGHBORHOOD

After checking, and possibly synchronizing, the filename, DSSyncWindowWithFile
calls HandleDirectoryChange (Listing 5) to see whether the file has been moved.
"This routine starts out by comparing the old parent directory to the new parent
directory. If they’re not the same, the file has been moved and the routine stores the
file’s new parent directory for later use by the application. It’s possible that the file
was moved to a parent for which the user doesn’t have access privileges. In that case, a
later Save will fail and revert to a Save As.

GETTING TRASHED

Finally, DSSyncWindowWithFile calls HandleMoveToTrash (Listing 6) to see if the
file is in the Trash. If it is, HandleMoveToTrash gets the FSSpec corresponding to
the file reference number, which will be needed later. If the application is running in

Listing 5. HandleDirectoryChange

void HandleDirectoryChange(short aFRefNum, WindowPtr aWindow)

{
long theOldParID, theNewParlID;

DSGetWindowFileParID(aWindow, &theOldParID);

GetFileParID(aFRefNum, &theNewParlID);

if (theOldParID != theNewParID)
DSSetWindowFileParID(aWindow, theNewParID);

Listing 6. HandleMoveToTrash

static void HandleMoveToTrash(short aFRefNum, WindowPtr aWindow,
Boolean *inTrashCan)

{
FSSpec theFile;
Boolean inBackground;
short theResponse;

EventRecord theEvent;

FileInTrashCan(aFRefNum, inTrashCan);
if (*inTrashCan)
GetFileSpec(aFRefNum, &theFile);
if ((aFRefNum != 0) && *inTrashCan) {
if (DSIsWindowDirty(aWindow)) {
InBackground(&inBackground);
if (inBackground) ({
DSNotify();
do {
InBackground(&inBackground);

if (WaitNextEvent(everyEvent, &theEvent, gSleepTime, nil))

DoEvent (&theEvent);
FileInTrashCan(aFRefNum, inTrashCan);

} while (inBackground && *inTrashCan);
DSRemoveNotice();

}

if (*inTrashCan) {
ParamText (theFile.name, "\p", "\p", "\p");
theResponse = Alert(rCloseAlert, nil);
switch (theResponse) {

case kSave:
DoSave (aWindow) ;
/* Fall through */

case kDontSave:
ZoomWindowToTrash (aWindow) ;
DoCloseCommand (aWindow) ;
break;

(continued on next page)

DOCUMENT SYNCHRONIZATION AND OTHER HUMAN INTERFACE ISSUES 99

1 oo develop Issue23 September 1995

Listing 6. HandleMoveToTrash (continued)

case kPutAway:
DSAESendFinderFS (kAEFinderSuite, kAEPutAway, &theFile);
*inTrashCan = false;
break;

}
} else /* Window is clean; just close it */
DoCloseCommand (aWindow) ;

the background, and there are unsaved changes to the document, the routine notifies
the user (with the Notification Manager) that the application needs assistance. While
waiting for the user to respond to the request for assistance, HandleMoveToTrash
handles events normally and also checks to see whether the user has moved the
document back out of the Trash. After all, there’s no sense in asking the user what to
do about a file in the Trash if it’s no longer there. If the user responds to the request,
or moves the file out of the Trash while the application is still in the background,
HandleMoveToTrash removes the notification. If the file is still in the Trash when
the application becomes frontmost, an alert appears asking the user what to do.

Now if this were the Finder, there would be no question of what to do in this
situation. When the user drags the icon for a folder to the Trash, the folder is
essentially gone, so the associated window doesn’t remain on the desktop. In the
application world, life is a little more problematic. What happens if there are unsaved
changes in the document? If the application blindly closes the document when the
user drags the icon to the Trash, data could be lost. This would be a Bad Thing.

My mother always told me, “When in doubt, ask.” So if there are unsaved changes to
the file, an alert gives the user three choices: Don’t Save, Remove From Trash, and
Save. The Save and Don’t Save options are simple: each closes the window as
expected. Remove From Trash is a little tricky and takes advantage of the Scriptable
Finder and Apple events.

The Remove From Trash case is similar to the Finder situation in which the user
decides not to throw the document in the Trash and chooses Put Away from the File
menu. HandleMoveToTrash handles this change of mind the same way the Finder
handles it with Put Away: it sends the Finder a Put Away Apple event specifying the
file in question as the target. (If the Scriptable Finder isn’t available, the same action
can be simulated manually; see the code on the CD for details.)

HOW CAN YOU BE IN TWO PLACES AT ONCE?

That’s all there is to document synchronization. Now let’s take a look at some other
ways you can make your application’s interface more consistent with the Finder’s.

Many applications create a new window when an already open document is opened
again in the Finder. But if the Finder were to open a second copy of a folder when
you double-click the icon of a folder that’s already open, wouldn’t you be surprised?
One of the guiding principles of human interface design is consistency; if your
application doesn’t perform the same action as the Finder (in this case, bring an
already open window to the front), the user must learn and remember what will

happen in each particular situation. This detracts from the user’s happiness with your
application.

Making your application notice that the document is already open is easy if you’re
using the document list. The following code would appear where you normally call
your open-file routine. When the application receives an event to open a file, it
checks to see if the file is already registered in the document list. If it’s registered, the
application simply brings it to the front instead of opening it again.

if (DSFileInDocumentList(aFile, &theWindow))
SelectWindow(theWindow);

else
DoOpenFile(aFile);

POP-UP NAVIGATION

A nifty feature introduced with the System 7 Finder is the pop-up menu in the title
bar that allows the user to determine the location of an open folder and to navigate
the file system without having to resort to browsing (see Figure 1). The user simply
holds down the Command key and presses on the window title to see the menu. The
computer knows where your document is; it just needs a good way to present the
information. If you have Metrowerks CodeWarrior, you’ll find that it does something
similar to the System 7 Finder. Your application can provide the same interface.

== = Titles Folder —=D15|

Oiternz | Documents £.9 ME available
— Moof @ |43
Garmne Titles Fall ‘95 Front list @
] B

Figure 1. The Finder's pop-up navigation menu

"To provide a pop-up navigation menu for your document windows, replace the
existing call to FindWindow in your mouse-down event handler with a call to the
DSFindWindow routine. DSFindWindow is simply a wrapper for the Window
Manager’s FindWindow routine. If FindWindow returns inDrag, DSFindWindow
does some additional checking to determine whether the window is frontmost, the
Command key is down, and the mouse is in the window title area. If the mouse-down
event meets these conditions, DSFindWindow calls DSPopUpNavigation, which
implements the menu and returns inDesk as the window part, telling the application
to ignore the click.

Note that DSPopUpNavigation makes an assumption about the location of the
window’ title that may not be true for nonstandard window types or in future
versions of the system software. In such cases the pop-up menu will still work fine,
though it may not be cosmetically correct. This is another area of the code that
should be revisited when Copland becomes available.

CONSISTENCY PAYS OFF

Consistency is one of the key principles that make using the Macintosh the wonderful
experience that it is. If your program responds to the user’s actions in the same way
that the Finder does — in particular, maintaining the illusion that an icon and its
window represent a single object — your users can explore your application with

DOCUMENT SYNCHRONIZATION AND OTHER HUMAN INTERFACE ISSUES

101

1 02 develop Issue23 September 1995

skills they’ve already acquired. The techniques presented here show how to provide

that extra measure of consistency with the Finder that keeps the Macintosh interface
clean, consistent, and seamless. They’re not too hard to implement, they’re fun, and
they just happen to be useful!

RECOMMENDED READING

¢ Flectronic Guide to Human Interface Design (Addison-Wesley, 1994). This CD
(available from APDA) combines the Macintosh Human Interface Guidelines and
its companion CD, Making It Macintosh, into one easy-to-swallow capsule. Take
one every night before going to bed, and wake up with a more consistent user
inferface.

® Macintosh Human Interface Guidelines, (Addison-Wesley, 1993). Available
separately from APDA in book form.

¢ Polya, G., How to Solve It (Princeton University Press, 1945). This book explains a
logical approach to problem solving. Very simply, the approach is: understand the
problem, compare it to a related problem that has been solved before to arrive at
a plan, carry out the plan, and examine the solution. That's what I've done with
the subject of this article.

Thanks to our technical reviewers Jens Alfke,
Greg Anderson, Arno Gourdol, Bill Keenan, Jim
Luther, and Elizabeth Moller.®

Q How do I create a menu with an icon as its title?

A Set the menu title to 0x05 01handle, where handle is the result of calling
GetlconSuite. An example snippet of code follows; this code assumes that the
menu title is already five bytes long.

void ChangeToIconMenu()

{

M M t h Handle theIconSuite = nil;
uCIn os MenuHandle menuHandle;

Q & A GetIconSuite(&theIconSuite, cIcon, svAllSmallData);
if (theIconSuite) ({

menuHandle = GetMenuHandle(mIcon);

if (menuHandle) {
// Second byte must be 1, followed by the icon suite handle.
(**menuHandle) .menuData[l] = 0x01;
*((long *)&((**menuHandle).menuData[2])) = (long)theIconSuite;
// Update display (typically you do this on startup).
DeleteMenu(mIcon);
InsertMenu(menuHandle, 0);
InvalMenuBar();

Q We’re drawing palette icons with a loop that consists basically of the following:

GetIcon...
HLock...
CopyBits...
ReleaseResource...

Our native PowerPC version seems to draw these icons a lot more slowly than even our
680x0 version running under emulation, which suggests a Mixed Mode Manager
slowdown. Which of these routines are currently native on the PowerPC? Getlcon and
ReleaseResource together seem to take over 90% of the time.

A s you suspected, the Resource Manager calls you’re using aren’t native, and
they generally call File Manager routines, which aren’t native either. But be
careful: what’s native and what isn’t is changing over time, and you shouldn’t
design your application based on today’s assumptions.

That said, relying on the Resource Manager to be fast is generally not a good
idea, native or not. One approach is to “cache” the icons, making sure they’re in
RAM at all times. (In general, you should do this for any user interface element
that will be redrawn repeatedly while your application is open.) You can load
your icons as one of the first few operations in your initialization code, just after
calling MaxApplZone (possibly moving them high and locking them, since you
don’t want them to move during a CopyBits operation). This technique yields
very good performance on the redraws that the palette needs, in exchange for a
few kilobytes of memory. Don’t forget to mark the resources as nonpurgeable.

Even better, if it will suit your purposes, would be to use the Icon Utilities to
retrieve and draw your icons (as documented in Inside Macintosh: More Macintosh

MACINTOsHQ & A 103

Toolbox) and to build an icon cache. Using the Icon Ultilities helps your
application do the right thing for different screen depths. Also, the icon-
drawing routines have been optimized to perform well under a variety of
conditions.

How can we detect that our application is already running and bring it to the front?

> 0

Simply iterate through the currently running processes with GetNextProcess,
calling GetProcessInformation for each one and comparing its process signature
with your application’s (for an example, see the article|“Scripting the Finder |
[From Your Application”in develop Tssue 20, page 67, Listing 1). If your
application is running, call SetFrontProcess to bring it to the front.

Q WindowShade is causing a problem for our application, which saves the window position
and size when it saves a document to disk. If our application’s windows are “rolled up”
with WindowShade, its windows appear to have zero beight. Is there any way to
determine whether a window is rolled up? If so, can we determine its true size and the
global coordinates of the top left corner of the content region, so that we can restore and
reposition the window when the document is reloaded from disk?

A When WindowShade “rolls up” a window, it hides the content region of the
window. You can tell a window is rolled up when its content region is set to an
empty region and its structure region is modified to equal the new “shaded”
window outline. WindowShade doesn’t do anything with the graphics port,
though, so if you need to store the window’s dimensions before closing it, use
the window’s portRect.

With regard to the window’s position, WindowShade modifies the bottom
coordinates of the structure and content regions of the window, but the top, left,
and right coordinates are not changed. These are global coordinates, so you can
use the top and left coordinates to track and save the global position of the
window on the screen regardless of whether the window is rolled up.

Q Sormetimes balloons won’t show up when I call HMShowBalloon; I get a paramErr
(-50) instead. The bmmHelp'Type is kbmmTEHandle. HMShowBalloon calls
TextWidth on the h'lext of my TEHandle (the result of which is 1511, the width of
338 characters), then multiplies that by the lineHeight (12), yielding 18132. It then
compares this to 17000, doesn’t like the vesult, puts -50 into a register, and backs out of
everything it bas done previously. What’s the Help Manager doing?

A The Help Manager checks against 17000 to ensure that the Balloon Help
window will always be smaller than a previously determined maximum size.
Currently, you’re limited to roughly the same number of characters with a
styled TEHandle as you are with a Pascal string: 255 characters.

Keep your help messages small by using clear, concise phrases. If you absolutely
need more text in a balloon, you can create a picture of it and use khmmPict or
khmmPictHandle to specify it for your help message. This is not recommended,
however; “picture text” has the disadvantage of being difficult to edit or
translate to other languages.

Q Is there any way I can stop LClick from highlighting more cells when the user drags the
cursor outside the list’s rView area? My program allows users to select more than one

104 develop Issue23 September 1995

item from a list and then drag and drop these selected items into another list. But I run
into a problem with the LClick function: when I drag these items outside the list’s
rView area, it still highlights other cells. What can I do?

If you want to use LClick and not change the highlighting of cells when the
cursor leaves the rView of the list, you should install a click-loop procedure that
tracks the mouse. When the mouse is outside your list’s rectangle, return false
to tell the List Manager that the current click should be aborted. It turns out
that this is a nice way to start a drag as well, since you know that the mouse has
left the rectangle. It might look like this:

GetMouse(&localPt);
if (PtInRect(localPt, &(*list)->rView) == false)
return false; // We're out of the list.
else
return true;

I'm developing a Color QuickDraw printer driver and want to match colors using
ColorSync 1.0.5 with a custor CMM. I was told that for efficiency I should manually
match colors inside my Stdxxx bottlenecks, instead of calling DrawMatchedPicture. Is
this really more efficient? Why?

Surprising as it may be, it is more efficient for printer drivers to manually match
colors inside Stdxxx bottlenecks than to call DrawMatchedPicture. This is
because ColorSync 1.0°s DrawMatchedPicture doesn’t use bottlenecks as you
expected. It does install a bottleneck routine that intercepts picture comments
(so that it can watch the embedded profiles go by), but it doesn’t do the actual
matching in bottleneck routines. Instead, it installs a color search procedure in
the current GDevice. Inside the search procedure, each color is matched one at
a time.

While this implementation has some advantages, it’s painfully slow on PixMaps,
because even if the PixMap contains only 16 colors, each pixel is matched
individually. This has been changed in ColorSync 2.0. To boost performance,
PixMaps (which are, after all, quite common) are now matched in the
bottlenecks instead of with a color search procedure. (See the Print Hints
column in this issue of develop for more on ColorSync 2.0.)

I need to add some PostScript comments to the beginning of the PostScript files
generated by the LaserWriter GX driver. On page 4-119 of Inside Macintosh:
QuickDraw GX Printing Extensions and Drivers, it says that you can override the
GXPostScriptDoDocumentHeader message to do this. I wrote a QuickDraw GX
printing extension to implement this, assuming that all I bad to do was to override the
GXPostScriptDoDocumentHeader message and buffer the desirved data with
Send_GXBufferData. Here’s an example of my code:

OSErr NewPostScriptDoDocumentHeader (gxPostScriptImageDataHdl hImageData)

{
OSErr theStatus = noErr;
char dataBuffer[256];
long bufferLen;

strcpy(dataBuffer, "$$DAVE'S TEST DATA");
bufferLen = strlen(dataBuffer);

MACINTOSH Q & A

105

106 develop Issue23 September 1995

theStatus = Send_GXBufferData((Ptr) dataBuffer, bufferLen,
gxNoBufferOptions);
if (theStatus != noErr)
return theStatus;
theStatus = Forward GXPostScriptDoDocumentHeader (hImageData);
return theStatus;

Unfortunately, this causes a bus ervor when Send_GXBufferData is called, even if 1
put Send_GXBufferData after the call to Forward_GXPostScriptDoDocumentHeader:
Why doesn’t this work?

The override in your extension is basically correct, but the order of your code
needs to be slightly different:

// Note that the string is terminated with a return character:
#define kTestStr "$%DAVE'S TEST DATA\n"

OSErr NewPostScriptDoDocumentHeader (gxPostScriptImageDataHdl hImageData)
{

OSErr theStatus = noErr;

char dataBuffer([256];

long bufferlLen;

thestatus = Forward GXPostScriptDoDocumentHeader (hImageData);
if (theStatus != noErr)
return theStatus;

// Note that we do (sizeof(...) - 1) below to strip off the C string
// null terminator for the string defined.

theStatus = Send GXBufferData(kTestStr, (sizeof(kTestStr) - 1, 0);
return theStatus;

Make sure that the string is terminated with a return character. If you’re using a
#define to allocate static space for the string (which is not recommended),
remember that it allocates the string plus a null terminator; sizeof then returns
the size of the string, so you need to subtract 1 from the total. This string
should come from a resource or a file.

If you want to add to the header from an application (to avoid writing the
extension), you can add an item of type 'post’ to the job collection, using the tag
gxPrintingTagID. If the first character of this item is a % character, it will
appear in the job header.

Our application bas multiple QuickDraw GX shapes layered on top of each other. The
bottom object is a graphic, and the objects on top of it are text shapes. The text objects are
transparvent, permitting the underlying graphic to show through. Ave there functions in
QuickDraw GX to facilitate refreshing the background shapes when charvacters arve
deleted in the text layout shapes above it? We need to refresh the graphic with minimal
[flicker and want to avoid resorting to the standard CopyBits routing.

QuickDraw GX doesn’t have any direct functions to facilitate refreshing or
redrawing only a portion of a shape covered by another shape. However, there
are a few methods that can be used in conjunction with various QuickDraw GX

and QuickDraw calls to accomplish your goals. Here are three approaches that
might work for you:

* Asyou know, you can have QuickDraw GX draw directly into a GWorld,
and use CopyBits to update the appropriate area. This approach is good if
you need to draw QuickDraw and QuickDraw GX objects in the same
window.

¢ [Ifyou merge multiple shapes into a QuickDraw GX picture, you can use the
picture’s clip shape to update the area in question. Make your graphic shape
the bottom shape in the picture’s hierarchy. This forces QuickDraw GX to
draw the graphic as the first shape, with the other shapes drawn on top.
QuickDraw GX pictures are smart, in the sense that they respect the clip
shapes associated with the picture and all of the shapes contained within the
picture.

"To update the smallest possible area, convert the QuickDraw update region
to a QuickDraw GX path. Then get the current clip shape of the picture
with GXGetShapeClip, and save it for later restoring. Use the path as the
“new” clip shape of the picture and draw. Finally, restore the picture’s clip
shape.

¢ Create a QuickDraw GX offscreen bitmap to perform flicker-free updating
in a manner similar to using CopyBits. This method, though, is based
completely on QuickDraw GX. When updating the screen, clip your
drawing to the area you want to update. For an example, see the “3 circles -
hit testing” sample that ships with QuickDraw GX.

DPm using a layout shape to represent an avea for editable text that will bave a fixed
position, style, font, size, and width. This layout shape bas some default text that the
user is prompted to change (text content only, no other attributes). Each time text is
added (the new text replaces the previous text string), the user interface code checks
whether the size of the new string goes beyond the defined width. I do this by comparing
the width of the local bounds with the width given within the layout shape geometry. In
all cases, the justification setting is 0, but the flush setting varies (left/0, center/0.5,
right/1.0).

Sometimes the width of the local bounds reaches a point where it’s wider than the width
defined by the shape; in other cases, it approaches the width but never reaches or
surpasses it. In this situation, the text is updated and begins to compress itself within the
defined width. How can I allow text to be entered till the width is reached, but not
compressed?

The problem you describe was fixed in QuickDraw GX 1.1.1 with a new API
call:

Fixed GXGetLayoutJustificationGap (gxShape layout);

This function returns information that was always generated during layout’s
justification processing but was never made publicly visible before. It represents
the signed difference between the specified width for the layout and the
measured (unjustified) width.

By setting a width in the layout options, but leaving the justification factor at 0,
you can keep adding text until the results of the GXGetLayoutJustificationGap
call changes sign from positive to negative. At that point, the text starts to
compress, so you should prohibit new text entry. It’s a very fast call (since its

MACINTOSH Q & A

107

108 develop lIssue23 September 1995

A

result is cached as part of the layout process anyway), so calling it on every
typed character shouldn’t slow things down at all.

Some examples may help clarify the use of this call: Suppose you create a layout
with the width field of the gxLayoutOptions set to 500 points and the
justification factor set to fractl (full justification). If the unjustified width of the
layout is only 450 points, GXGetLayoutJustificationGap returns +50 points; if
the unjustified width is 525 points, this function returns -25 points. A positive
value means the line will be typographically stretched to fill the specified width,
while a negative value means the line will be typographically condensed.

Note that the justification factor in the gxLayoutOptions doesn’t have to be
fractl in order for this function to return useful results. For instance, if you set
a width value but leave the justification factor at 0, the line will not be justified
unless its unjustified width exceeds the specified width. In this case, layout will
typographically shrink the line. A client program that wants to determine when
the end of a line is reached (for line-breaking purposes) can call this function
after every character is added (as the user types, for example); as soon as the
value becomes negative, the client knows that the margin has been reached.

There are three options on the General panel of the QuickDraw GX Print dialog —
Collate Copies, Paper Feed, and Quality — that we would like to move to one of our
own panels. We bave solutions that differ from the default ones, and we want to rename
these solutions and associate them with our printer. How can I eliminate those options

from the General panel?

There’s no mechanism in QuickDraw GX to remove panel items from the
standard Print panels, except for the Quality item. The Quality collection item
(gxQuality'Tag = 'qual’), whose structure is defined in PrintingManager.h, has a
Boolean field called disableQuality. To eliminate the Quality item from the
panel, specify true for the disableQuality field in your driver. Although you
cannot remove the other items, you can disable them (dim them in the panel)
by getting the collection item and setting the locked attribute with
SetCollectionltemInfo.

Do I need to call GXCloneColorProfile before calling GXConvertColor? Since the color
passed into GXConvertColor by ColorSync is destroyed, should the color profile passed in
as part of the color be disposed of? If not, isn’t that a memory leak?

Calling GXCloneColorProfile isn’t necessary, and it would require additional
work that doesn’t need to be done. The gxColor structure is a public data
structure, not an object: the application, not QuickDraw GX, handles adding
and maintaining references to objects with respect to gxColors (and gxBitmaps).
QuickDraw GX maintains owner counts when the profile is attached to another
QuickDraw GX object (using GXNewBitmap, GXSetInkColor, and so on).
This is not a memory leak.

For example, consider this scenario: When an application gets a shape’s color,
the ink’s profile has two owners — the shape and the application. Therefore, the
application can reference the profile in gxColor structures, even if the shape is
disposed of. Once the application calls GXDisposeColorProfile, the reference is
no longer valid. Cloning the color profile does nothing except to require that
GXDisposeColorProfile be called afterward. As a result, all that happens is that
time is wasted as the owner count goes from a positive number to that number
plus 1, and then back down.

Q Does QuickDraw GX send the GXDoesPaperFit message when Im setting up input

A

tray dialogs, or is the driver supposed to do this? If QuickDraw GX doesn’t, it’s possible
for users to request completely invalid paper sizes, which can violently crash most raster
drivers.

QuickDraw GX sends the GXDoesPaperFit message in the default
implementation of the input trays dialog to constrain the configuration options,
and drivers that perform their own input trays dialog should do the same. A
driver should override this message if it needs other than the default logic,
which responds that everything fits.

The packing buffer size specified in the 'rpck’ resource is set to the expected
maximum size needed. Unfortunately, this is far smaller than what’s needed
when handling larger than expected paper sizes. To work around this, you can
set the packing buffer size so that it can accommodate the largest paper size the
printer can use.

Dve been experimenting to see what bappens when a print job is canceled part of the
way through. If I cancel when GXOpenConnection and GXStartSendPage have
both completed successfully, I get unexpected GXCleanupOpenConnection and
GXCleanupStartSendPage messages. If I cancel at another point in the job (for
example, during rendering via the Remove button in the desktop printer status
window), GXCleanupStartSendPage and GXCleanupOpenConnection messages
are passed through after ImageDocument exits. This behavior seems very odd, and
it doesn’t appear to be discussed anywhere in the documentation. Shouldn’t
GXCleanupOpenConnection and GXCleanupStartSendPage be called only if their

respective routines return an evrors

The unexpected GXCleanupOpenConnection and GXCleanupStartSendPage
messages are coming from the default implementations of ImageJob and
ImagePage. The ImageJob code calls Send_GXSetupImageData, and if

an error occurs, it sends GXCleanupOpenConnection. ImagePage calls
Send_GXRenderPage and sends GXCleanupStartSendPage if an error occurs.
If GXStartSendPage or GXOpenConnection doesn’t complete successfully, the
respective cleanup calls are not sent. Although the documentation states
otherwise, this behavior is correct.

Is the layout of the PostScript printer preferences ('pdip’) resource documented correctly
in Inside Macintosh: QuickDraw GX Printing Extensions and Drivers?

No. There’s a bug in the documentation for the 'pdip' resource on page 6-88 of
Inside Macintosh: QuickDraw GX Printing Extensions and Drivers. The render

options field is in fact a long word. The resource is defined correctly in the
interfaces (PrintingRezTypes.r) and in the MPW 411 files for QuickDraw GX.

Is there a simple way to detach a QuickTime movie from its original file? I'm trying to
place a copy of a QuickTime movie in my application’s vesource fork.

See[John Wang’s QuickTime columnl|in develop Issue 17. You can use the
technique presented in that column to extract a movie and put it into the
resource fork of a different file. You’ll find the column and the accompanying
sample code, MultipleMovies, on this issue’s CD.

MACINTOSH Q & A

109

110 develop lIssue23 September 1995

Q How can I determine whether QuickTime 2.0’s MIDI music function is available and

A

whether the larger set of 41 instruments is available? If the MIDI function is available,
we need to add code to enable the music portion of our game.

The QuickTime Music Architecture became available in QuickTime 2.0 (as
described in David Van Brink’ article in this issue of develop), so checking the
QuickTime version in a Gestalt call (selector gestaltQuickTimeVersion) will tell
you if the MIDI function is present.

When the QuickTime Musical Instruments Extension is installed in your
System Folder, it gives you the musical instruments supported by Apple. This
extension is actually a component. If you need to know whether the instruments
are present, call FindNextComponent, searching for a component that has a
type of 'inst' and a subtype of 'ss . Here’s a code snippet:

pascal Boolean AreQuickTimeMusicInstrumentsPresent(void)

{

ComponentDescription acD;

aCD.componentType = 'inst';
aCD.componentSubType = 'ss ';
aCD.componentManufacturer = 'appl';

if (FindNextComponent ((Component)0, &aCD) != NULL)
return true;

else
return false;

Are there any known compatibility problems between QuickTime 2.0 and QuickTime
for Windows? Pm creating a dual-platform application and want to use QuickTime 2.0
for the video. Is there anything that I should avoid on either platform, or anything I
should watch out for?

In most cases, you don’t have to be concerned about using the same movie for
playback on both platforms, as long as the movie is in a flattened format and in
a single-fork file. To be sure your movie files are single-fork files, select “Make
cross-platform” in the MoviePlayer application when saving your movies (or do
something analogous in other applications that produce cross-platform movies).

QuickTime supports sound, video, text, music (MIDI), and MPEG tracks under
both Windows and the Mac OS. One difference between the two versions is
that you can have only one of each track open under Windows (except for the
number of sound tracks; starting with QuickTime for Windows 2.0.1, you can
enable/disable multiple sound tracks).

The biggest difference between the two versions is the API: QuickTime for
Windows 2.0 doesn’t support all the API calls available under the Mac OS.
Nearly all of the movie controller APIs are supported, as well as many of the
basic calls, but the calls to create manipulable movie tracks are missing. You
can’t create specific media handlers with QuickTime for Windows 2.0, but you
can write data handlers and codecs for the Windows environment.

While working with QuickTime for Windows, you’ll have to keep track of all
the possible configuration issues that users might encounter. We distribute

README files with the latest information about compatibility and
configurations (video/sound cards, drivers, and so on).

For additional information, the Mac OS Software Developer’s Kit includes
detailed documentation regarding API and architecture issues concerning
QuickTime and QuickTime for Windows. Also see How to Digitize Video by
Weiskamp and Johnson (Wiley Press) for another good source of information
regarding the practical issues of both QuickTime and AVI movie creation.
Although this book is a bit out of date in the details (it was written to cover
QuickTime 1.6.1 and QuickTime for Windows 1.1.1), much of it is still valid.

Q Can we use a different A5 world with QuickTime? Our plug-in architecture uses A5
for global access, but we allow the A5 world to move. QuickTime doesn’t seem to be able
to deal with this, and it doesn’t realize that EnterMovies was called once the A5 world
moves. We currently work around this by locking down our A5 world, but we would
rather not do this. If we need to keep doing this, is locking down the A5 world an
adequate fix, and can you recommend another solution?

A You can use a different A5 world with QuickTime, but whatever A5 world you
use, you’ll have to lock it down. QuickTime allocates a new set of state variables
for each A5 world that’s active when EnterMovies is called. However, since
QuickTime uses A5 to identify each QuickTime client, if AS changes (your A5
world moves), QuickTime won’t recognize that you've called EnterMovies for
that client.

How do I determine the correct time values to pass to GetMoviePict to get all the
sequential frames of a QuickTime movie?

A The best way to determine the correct time to pass to get movie frames is to call
the GetMovieNextInteresting Time routine repeatedly. The first time you call
GetMovieNextInteresting Time, its flags parameter should have a value of
nextTimeMediaSample + nextTimeEdgeOK to get the first frame. For
subsequent calls, the value of flags should be nextTimeMediaSample, and the
whichMediaTypes parameter should be VisualMediaCharacteristic ('eyes') to
include only tracks with visual information.

Q I noticed that certain commercial candies bave no taste when they initially hit my
tongue. It’s only after I start sucking them that the flavor appears. I think there’s some
sort of coating on them. What is it? Is it barmful?

Also, what is it that creates that beautiful high gloss I get with my car wax and floor
wax? 1 just love the way it shines after a good bard buffing.

A Carnauba wax is the answer, in both cases. It’s a hard wax obtained from the
leaves of a Brazilian palm tree (Copernicia prunifera), and is used a lot in polishes
of all types. It really does buff up beautifully, doesn’t it? It also is completely
tasteless and nontoxic, and makes a dandy confectioner’s glaze, used to keep the
candy from sticking to itself.

These answers are supplied by the Have more questions? See the new
technical gurus in Apple’s Developer Support Macintosh Technical Q&As on this issue’s CD.
Center.® (Older Q&As can be found in the Macintosh

Q&A Technical Notes on the CD.)®

maciNnTosHa &A 111

THE VETERAN
NEOPHYTE

A Feel for the
Thing

DAVE JOHNSON

T used to think there was no room for mystery in the
world of computers. I didn’t think there was any use for
fudge factors or rules of thumb or hunches in the clean,
exact, hermetically sealed bubble of logic we all spend
so much time diddling and poking. That stuff belongs
to “real world” engineering, not software engineering,
right? Software is always bounded and orderly, always
understood completely from top to bottom, with no
dangling ends, no frayed edges, and no baling wire and
duct tape holding things together. There’s never a need
for vague, hand-waving explanations of how it all
works, because we know how it works.

That’s what I used to think. I'm not so sure anymore.

Ultimately, of course, the operation of computers is
deterministic and absolutely predictable. There’s
guaranteed to be a complete explanation for any event
on the computer; the search for an answer will always
find one. It’s like playing Go Fish with a deck of cards
that contains only threes — “Got any threes?” “Yep.”
“Got any threes?” “Yep.” “Got any threes?” “Yep.”
The answer itself, of course, may be convoluted and
difficult, and is often way too much trouble to actually
track down (“Have you tried rebooting?”), but it’s
always there. The world inside computers has a
definite, impermeable bottom, like a swimming pool.

The real world, on the other hand, is more like being out
in the middle of the ocean: the bottom is nowhere in
sight, and in fact is so far away that it may as well not
exist at all. Trying to completely explain things in the real
world is generally an exercise in futility, though one
that humans seem to have a capacious appetite for (that’s
what science is all about, after all). The real world is so
vast and complex that our explanations are never really
complete. The answers always lead to more questions,

and the edges of our knowledge remain frayed and
ragged and crumbling, even though the center may
have a seemingly solid, well supported integrity.

The thing that got me thinking about all this is
boomerangs. I've been learning to throw boomerangs
lately, and it’s extremely satisfying — and somehow
endlessly novel — to throw something away from
yourself as hard as you can, and have it return several
seconds later, hovering gently down into your waiting
hands like a bird coming home to roost. (Such a perfect
flight, of course, is a rare thing for a novice like me.
More often, if the boomerang comes anywhere near
me, it’s slicing past at a frightening rate of speed while I
cringe, covering my head.) While I’'ve been learning to
throw boomerangs, I've also been trying to watch
myself learn to throw boomerangs — sort of meta-
boomeranging — and I noticed that a complete
explanation of what was happening was not only absent,
but completely unnecessary: I don’t need to know how
boomerangs work to learn to throw them well.

Boomerang throwing is one of those real-world
activities — there are many of them — that are governed
by rules of thumb, by approximation and estimation,
and by “feel.” There are lots of variables involved in
producing a good boomerang flight, and they’re all sort
of woven together, interconnected and interdependent.
The direction of the throw, the angle of the boomerang
as it leaves your hand, the forward power of the throw,
and the amount of spin all contribute to the flight
characteristics, but the way they combine and interact
is complex and nonobvious. How’s a poor, bewildered
boomerang neophyte to make any sense of it all?

Well, the only way to learn to throw boomerangs is to
get yourself a decent boomerang (very important!),
read a little about it or get a lesson from someone, and
then just get out there and start throwing. You need to
experience it; you need to feel the smooth, flat weight
of the thing, notice the way it slices the wind as it leaves
your hand, and watch as it spins and swoops. Every
throw you make adds to a growing store of knowledge
about boomerang behavior. Slowly, you begin to sense
the structure of the rules that govern the flight of the
boomerang, to get a feel for it, to gain some control. But
no matter how long you work at it, there’s always more
you can learn about boomerangs. Boomerang throwing,
like most things in the real world, has no bottom.

But even though things in the real world are webby,
tangled, and complex, with no real bottom and no real

DAVE JOHNSON has an everlengthening list of life goals, things
that he'd like to accomplish or experience before leaving this mortal
coil. Some recent additions include making marshmallows from

112 develop lIsue23 September 1995

scratch, milking a cow, and hugging a fullgrown bear. (Is bear
breath better than dog breath? There's only one way to find out!) If
you have a cow or bear Dave could visit, please let him know.®

center, and even though complete understanding is out
of our reach, that doesn’t stop us from getting things
done. Even though we may not understand exactly
what’s going on when we throw a boomerang, we can
learn to throw them anyway, and can actually learn to
throw them with incredible skill. Scientists don’t have a
complete understanding of fluid mechanics, but we can
still design hydraulic lifts that lift, toilets that flush, and
airplanes that fly.

Though it seemed profound when I first thought of it
that way, it really isn’t anything remarkable at all. It’s
the stuff our everyday sensory world is made of. It’s our
standard, animal mode of operation. We depend
heavily on trial and error, on finding and keeping
strategies that work. We invent myths and superstitions
to explain things we don’t understand, we guess, we
fake it, we operate by feel. And it works just fine.

But we don’t need that sort of thing in the clean,
deterministic world of computers, right? If we know
the answer is within our reach, then why gloss over it?
There’s one very good reason: it’s gotten to the point
where it’s often really hard to reach the answer.
Computers have become so complex that finding the real
answer is often a Herculean feat requiring great effort
and stamina. The things that we’re “growing” in the
machine are getting very deep and webby and complex,
just like things in the real world. That nice smooth
bottom we all know and love is getting pretty remote
and hard to see, and in fact trying to keep it in sight
often holds us back.

The truth is, we need fakery, or myth, or something
similar, to avoid being hopelessly mired in complexity,
and to let us feel cozy even in the face of something too
deep to comfortably understand. The idea that an icon
in the Finder, a document window in an application,
and a file on the hard disk are all “the same thing” is a
fiction, an illusion created from smoke and mirrors,
and one that users don’t even think about anymore
(unless, of course, an application screws up the illusion;
see Mark Linton’s article in this issue for some code to
help you avoid such a faux pas). But it’s precisely that
kind of myth and abstraction that lets people ignore all
the underlying complexity and just go about their
everyday business. Without that kind of trickery most
people would be lost.

Humans have a deep need for some sort of explanation,
and we’ll often ignore aspects of a situation, or even
make stuff up out of thin air, if it helps us to find an

“answer.” Remember the frictionless inclined planes
and perfect vacuums of college physics? Without that
kind of glossing over of details, we’d have been helpless.
(A college housemate of mine and I used to joke about
running a college physics stockroom: boxes of
frictionless, massless pulleys on the shelves; gallon jugs
of zero-viscosity liquid at our feet; coils of infinite and
semi-infinite wires hanging neatly on the pegboard wall.
Those wires have no thickness or mass, thank goodness,
or the storage requirements would be prohibitive.) This
need for explanation is what has led us to science, and
to religion, and to superstition. These are not the same
thing, of course, but they can all serve the same purpose:
a soothing, protective balm on the raw edges of our
incomplete knowledge. They give us a ground to stand
on, a rail to hold on to, as we totter along in the
darkness, going who knows where, hoping the batteries
will hold out long enough to get an answer.

Now that I think about it, I'm happiest with a generous
helping of myth and fiction stirred into my computing.
It can help make the computer — which, let’s face it, is
essentially a gritty, sharp-edged, and hostile machine —
feel more rounded and friendly. It can provide a useful
disguise, like a plastic nose and glasses on something
seething and alien, making it recognizable, familiar, even
comforting and amusing. If it’s done well, it can even let
me learn to use a computer in much the same way I learn
to throw a boomerang: by picking it up and trying it, by
mucking around and getting a feel for it, by discovery.

Maybe best of all, it lets computers keep a little of their
mystery. The mystery and magic of the Macintosh are
why many of us are programmers, after all. Mysterious
things, things that don’t have clean and obvious
boundaries, are inevitably more interesting and more
fun. There’s no denying that computers have a dull,
featureless, dreary bottom. But in the other direction
there seems to be no boundary; the top, if there is one,
is as far away as the sky. So yes, I think there’s plenty of
room for mystery in the world of computing. Plenty of
room indeed.

RECOMMENDED READING

® Many Happy Returns: The Art and Sport of
Boomeranging by Benjamin Ruhe (Viking, 1977).

® How to Hide Almost Anything by David Krotz
(William Morrow and Company, 1975).

Thanks to Lorraine Anderson, Jeff Barbose, Brian Hamlin, Mark
“The Red” Harlan, Bo3b Johnson, Lisa Jongewaard, and Ned van
Alstyne for their always enlightening review comments.®

Dave welcomes feedback on his musings. He can be reached
at JOHNSON.DK on Applelink, dkj@apple.com on the Internet, or
75300,715 on CompuServe.®

THE VETERAN NEOPHYTE: A FEEL FOR THE THING

113

Newton
Q&A:

Ask the
Llama

114 develop lIsue23 September 1995

Q

A

> 0

Q

1 have a program that communicates with the desktop. Part of the information sent is
real numbers. I've found functions to stuff almost every other type of data into a binary
object except real numbers. How do I do that?

You have two choices. First, you could just print the real number as a string
(using SPrintObject), send the string, and convert it back on the other side.
Clearly this isn’t a good idea if you want to maintain a high degree of precision.
The other choice is to construct the correct type of binary object for the target
desktop machine. In other words, take the Newton real representation and
convert it into, say, IEEE floating point. Then you can use BinaryMunger to
stuff the binary object into whatever packet of data you’re constructing.

Note that Newton uses SANE representation for real numbers that are in the
representable range. However, the representation of exceptions (such as NAN
and infinity) are different and undocumented. At this time you should avoid
converting these types of real numbers.

Can you give me a short and clear description of the different types of Newton memory?

There are three important “pools” of so-called internal memory, each with
different tradeoffs.

The NewtonScript heap (about 90K to 96K on current devices) is where all the
runtime data from NewtonScript lives. Any result from the Clone family of calls
will take up NewtonScript heap space. The view frame made at run time from
your application templates will take up this heap space. NewtonScript heap
space is very precious, so you should try to use as little of it as possible,
especially when your application’s base view isn’t open.

The user store (192K in the MessagePad 100, larger on other devices) is where
application packages stored internally live, and where soups are located. The
entries in the soups are located in this space. While not quite as precious as the
NewtonScript heap, this space can certainly run out. This is the space that’s
“extended” when a RAM PCMCIA card is inserted.

There is also some system heap space, which is used for, well, everything else.
The viewCODbjects and drawing objects live here. Recognition uses memory
from here. You can run out of this space (in which case you get the Cancel/Restart
dialog) but it’s less of a programming issue.

1 bave an application that uses a protoRol[Browser. When I expand the items, they bave
lines separating them. I can’t seem to get rid of them. Is this a bug?

What you're seeing is part of the default definition of a protoRollltem. It
includes a 1-pixel border. You can remove that border by modifying the
viewFormat of your rollltems. In addition, you may want to set the fill to white.

DI'm using a protoRoll (not protoRollBrowser) in my application. But it never shows up.
What’s the problem?

The llama is the unofficial mascot of Developer ~ NewtonMail DRLLAMA or Applelink DR.LLAMA.
Technical Support in Apple’s Newton Systems The first time we use a question from you, we'll

Group. Send your Newton-related questions to send you a Tshirt.®

A Youneed o give it a viewFlags slot and make sure the Visible bit is checked.
The default is Application and Clipping, but this won’t make the protoRoll
visible if it’s included inside another view.

Q 1 have a text view that the user can use to enter text. I wanted to extend a selection.
I knew the insertion caret was at the end of the selection, so I called SetHilite(newPoint,
newPoint, nil), where newPoint is the new position for the selection extension, but I got
no highlight. What'’s going wrong?

A The behavior is actually perfectly correct. There’s a not quite obvious
interaction between the caret and SetHilite. As shown in the table below, how
SetHilite behaves depends on four things: the start and end character positions
(the first two arguments) being equal, the value of unique (the third argument),
the presence of a previously highlighted selection, and the presence of the caret.
Note that the following explanation refers to the case of a single paragraph view,
in which there can be only one selection; if there are multiple paragraph views,
it’s possible (with unique nil) to have multiple discontiguous selections.

Highlight and unique =~ When start = end When start <> end

No previous highlight, If there's a caret, move caret; Create new highlight from start
unique true or nil otherwise, no effect to end

Previous highlight, Clear highlight and, if there's Create new highlight from start
unique true a caret, move caret to end (remove old highlight)
Previous highlight, Extend highlight to include Extend highlight fo include
unique nil start/end start/end

Q I have an application that uses ADSP to connect to a server on the desktop. I want the
server to handle multiple Newtons connected simultaneously. Unfortunately, if a
connection fails after it’s opened, the server doesn’t seem to be able to identify it as a new
connection when the Newton reconnects. This causes problems in the server’s ability to
bandle multiple connections. Can you help?

A We'll assume that the Newton tries to reconnect shortly after losing the
connection. In that case, the Newton doesn’t generate a new connection ID, so
your server probably acts as if the connection didn’t close, while the Newton is
acting as if it’s establishing a new connection. Currently the only solution is to
force the Newton to wait three minutes after an improper disconnect before
trying to reconnect.

Q I bave a communications program that always sends a string of the same size to the
desktop. The string is quite large, and I would like to preallocate it and fill it with a
particular value. What’s the best way to do this?

A Aswithall things in programming, the answer is a tradeoff between space and
time. Let’s assume that you want a string of 2K characters filled with the
character A, and that you control the contents of the string (that is, if you get
user input, you make sure the input is a string). The first option is to allocate
the string at compile time. Note that you shouldn’t allocate your string constant
with a double-quoted string ("a string"), since typing 2K (less the terminator)
characters is monotonous and error prone. The way to allocate the string is with
the following SetLength trick:

NEWTON Q & A: ASK THE LLAMA

115

116 develop lIsve23 September 1995

> 0

constant kNumberOfUnicodeCharsForString := 2048; // 2K chars
DefConst('kMyBigString, call func()
begin
// SetLength uses bytes; Unicode chars are 2 bytes each
local aStr := SetLength("",
2 * kNumberOfUnicodeCharsForString + 2);
// initialize the string
for i := 0 to klKUnicodeChars - 1 do
astr[i] := $A;
return aStr;
end with ());

At run time you can clone kMyBigString and do what you need to fill it with
characters. Note that the object is not a string; you would need to use StuffByte
to put in individual characters.

The advantage of this method is that it’s very fast: it averages less than one tick
(60th of a second) for the clone. The disadvantage is that it puts a 4K object in
your package (Unicode strings are two bytes per character). If you can’t afford

the 4K in your package, you need to generate the string at run time. Using the
above code at run time averages 52 ticks.

Another possible runtime method is to use smart strings, which allow you to
preallocate strings and concatenate them in a more efficient way. The first
attempt at doing this seems to be inefficient, at an average of 175 ticks:

// defined constant somewhere in your project
constant kNumberOfUnicodeCharsForString := 2048;

local s := SmartStart(2 * kNumberOfUnicodeCharsForString + 2);
local 1 := 0;
for i := 1 to kNumberOfUnicodeCharsForString do
1 := SmartConcat(s, 1, "A");
SmartStop(s, 1);

However, simply concatenating two characters at a time reduces the average to
88 ticks; four characters reduces it to 44; and so on. A lesson here is that testing
and measurement are your friends.

I’d like to train my dog to code in NewtonScript. How can I do that?

I'm afraid the prospect isn’t promising. Dr. J. L. Fredericks at SITAP (Stanford
Institute for Training Animal Programmers) has been trying for ten years to
train different animal species to program computers. Although he’s had some
success training dogs to do simple programs, he says, “Anything more than a
simple statement is beyond them. No loops, no conditionals.” Besides which,
paws don’t work well for moving mice. For Newton programming the best he
has been able to achieve is training a rat to reset the Newton on command. As
Dr. Fredericks says, “Never underestimate the usefulness of a ratset.”

Thanks to our Newton Partners for the questions Have more questions? Take a look at

used in this column, and to jXopher Bell, Bob Newton Developer Info on Applelink.®
Ebert, David Fedor, Neil Rhodes, Jim Schram,
Maurice Sharp, and Bruce Thompson for the

answers. Thanks especially to Bob Ebert for the

Newton memory description.®

KON & BAL'S PUZZLE PAGE

Video Nightmare

See if you can solve this programming puzzle, presented in the form of
a dialog between a pseudo KON (lan Hendry) and BAL (Eric
Anderson). The dialog gives clues to belp you. Keep guessing until

you're done; your score is the number to the left of the clue that gave

you the correct answer. Even if you never run into the particular

problems being solved here, you’ll learn some valuable debugging

techniques that will belp you solve your own programming

conundrums. And youw’ll also learn interesting Macintosh trivia.

BAL
pattern.
KON
Next.
BAL
KON
IAN HENDRY AND ERIC to spruce up the system?
ANDERSON
BAL
I’m not happy about it.
KON
BAL
KON

I’'ve got one for you, KON: I just updated to System 7.5 on my
8100/80 AV. Everything seemed OK for a while. I was comparing
Scenery Animator to Vistapro and I noticed that my cool new desktop
pattern had disappeared. It was there when I booted, but just as the
Finder was coming up, the desktop changed to a black-and-white

That’s easy. Go back to System 7.1 and the world will be fine again.
Hey, 7.5 is the source of much wonderment. It’s really a lot of fun!

I don’t know that much about 7.5. Metrowerks and THINK C seem to
run fine on 7.1. Is this part of that new puzzle CDEV that was added

Quit trying to change the subject. My desktop pattern went away and

Hmm. Did you change anything on your machine?
I turned on VM for the memory-hungry rendering stuff.
So turn off VM and see if the problem goes away.

IAN HENDRY (Applelink HENDRY; Internet
hendry@apple.com) gets paid by Apple to work
on video stuff. His hobbies include shipping
products and collecting new Engineering
managers. He can be found skipping meetings to
play Ultimate and working all hours to make up
for it. lan’s going to be a dad soon, and though
he has been in rigorous sleep-deprivation training
for years, he’s hoping (but still not certain) that
he's ready for what he’s gotten himself into.®

ERIC ANDERSON (Applelink ERIC3) skipped
out on the OS Services group at Apple to get
away from the chore of working on VM and the
Thread Manager. Now he works as lan’s evil twin
on video-related Mac OS issues — and he gets
bugs assigned to him that state, “When using a
multisync monitor with my threaded test app while
VM is on, this funny thing happens.” Seeing that
there’s no escape, Eric wants more than ever to
move to Hawaii and build boats. ®

KON & BAL’'S PUZZLE PAGE: VIDEO NIGHTMARE

117

118 develop lIssue23 September 1995

BAL

KON

100 BAL

KON

BAL

KON

95 BAL

KON

90 BAL

KON

85 BAL

KON
BAL

KON

BAL
KON

BAL

KON

80 BAL

Wow, that worked great. Now all I have to do is buy $1800 worth of
tariff-enhanced RAM so I can render my flyby of the Pentagon.

I won’t ask what you’re up to these days. My recent stock dealings have
left me low on bail money. Did you try it on 7.1.27

It didn’t happen on straight 7.1.2, but I installed System Update 3.0
and it happened. VM must have changed in this update.

Sounds like a VM problem all right. Paste the older VM resources into
the new system. (I love component software.)

The problem is still there. Does this let VM off the hook?

VM is never off the hook, but if your only problem is that the desktop
pattern is black and white, maybe you should stop whining and do
your work.

No, this is more serious. I opened the Monitors control panel and
there was no depth list and no monitor tile in the rearrange section.

Well, this should be pretty straightforward. Does it happen every
time?

No such luck. This one is really evil. I've been trying to get a
reproducible case for days. Sometimes it happens right away,
sometimes it goes away for hours. Once it starts happening, it seems to
keep happening across restarts. It doesn’t happen as reliably across
shutdowns. It seems to happen more in millions of colors but will
happen at other depths too. Switching the display back and forth
between a 13-inch and a multiple-scan display sometimes causes the
problem to show up. Changing VM and RAM disk settings seems to
affect the reproducibility.

Cool! The random bugs are always the most fun. Let’s get our trusty
MacsBug and see if we can find where it’s going bad. Look at the video
driver and GDevice.

When I try to enter MacsBug, the mouse freezes but MacsBug doesn’t
come up.

Dang, I hate it when the tools don’t work.

Perhaps we should devote this column to model rocketry and video
games instead.

Now there’s a thought. If I type Command-G, does the mouse
unfreeze, or do I have to reboot?

The machine comes back when you hit Command-G.
So MacsBug is there; you just can’t see it. I'll use log foo to dump the
output to a file named foo, followed by

dm @@thegdevice gdevice

Then I'll use drvr to see if the video driver is alive.

Nice log trick, KON! The GDevice is fine, and the driver looks as if
it’s loaded and active.

Drivers and VM sometimes don’t get along. Maybe the driver is doing
something wrong. Did you try other video cards?

It seems to happen only on Power Macintosh AV models.

75

70

65

KON

BAL

KON
BAL

KON

BAL
KON

BAL

KON

BAL

KON

BAL
KON

BAL

KON

BAL
KON

It’s the nasty “fungus” problem from Issue 17 all over again, or maybe
your card has gone bad.

Well, 'm pretty sure there was no “fungus” around when the AV card
was developed, so it’s probably not that. Besides, we’re sticking to
production software in this column from now on. Anyway, I thought it
might be my card, too, so I borrowed your card. Thanks for the loaner.
I turned on VM and it worked like a champ . . . for a while. Now I’ve
got the same problem again.

You killed my card?

Admittedly, it’s a computer that can do anything. But for the purposes
of this column, that idea is pretty far-fetched.

Here’s what might be happening: Early in the boot process, VM isn’t
present. For each card, the system calls the card’s Primarylnit code and
creates a GDevice. When VM loads, it changes the logical address
mappings. When the driver is called again, it assumes a one-to-one
logical-to-physical mapping of RAM, so the card starts responding to
bogus address cycles. This confuses the card’s bus translator, and . . .

Whatever. Any other stabs in the dark? Lose five points and try again.

OK. Perhaps there are subtle timing variations when VM is present,
and the video card might have borderline hardware that’s affected by
these timing dependencies. Or maybe the card’s controller gets into a
state where it no longer responds to its address space.

You're getting desperate. It’s not a hardware problem. The declaration
ROM is there and everything looks fine. You can’t blame this on the
hardware. Let’s once again follow the software decision tree.

Yeah, you’re probably right. Now that I think about it, those ideas
seem really out there.

So what you’re telling me is that the desktop pattern is black and
white, MacsBug isn’t working, and the Monitors control panel doesn’t
show depths or a monitor tile. Let’s find out when MacsBug stops
working.

When the machine boots, MacsBug is working, but by the time you
get to the Finder, it’s gone. It seems to vanish early in the boot
process.

See if you get to the first Display Manager call with an atb
DisplayDispatch or atb ABEB.

OK. MacsBug is still alive.
I'll set a breakpoint just after the first Display Manager call and then
go.

Yep. There doesn’t seem to be a problem now. But the weird thing is,
if you trace over the Display Manager call and then type go, MacsBug
will eventually go away.

Wacky. Sounds like a Display Manager bug.
Earlier you said it was a VM bug.

Both have been convicted criminals in the past, so you can’t blame me
for thinking they’re suspects. I'll bet you a buck it turns out to be
neither! Do an atb on the Display Manager call and trace from there
until MacsBug goes away; it shouldn’t take too long.

KON & BAL’'S PUZZLE PAGE: VIDEO NIGHTMARE

119

60

55

50

45

40

35

30

120 develop lIssue23 September 1995

BAL
KON

BAL

KON
BAL

KON

BAL

KON

BAL

KON

BAL
KON

BAL
KON
BAL

KON

BAL

Sorry, MacsBug never goes away. The problem isn’t reproduced.

So what you’re telling me is that if I trace over the Display Manager
call and then go, I can’t get into MacsBug after ’'m done booting. But
if I keep tracing, the machine boots fine and MacsBug is always
available.

That’s right. Let me help you along a little bit. There’s an
SSecondarylnit call (which runs Secondarylnit code for the video
cards) just a few 680x0 instructions after the first Display Manager
call. Does that help at all?

What happens if we do an atb on SSecondarylInit?

I can’t reproduce the problem. If I set a breakpoint just after the
Display Manager call and go, the problem disappears. If I do an atb on
the Display Manager call, and either go from there or trace over it and
go, the problem happens. If I trace over it for a few instructions and
go, the problem doesn’t happen.

So, what are the “few” instructions? It looks like they’re the ones
whacking the video driver.

No, they’re just a few MOVE instructions to innocuous RAM
locations — nothing that should touch video.

What does this Display Manager call do? Could it be hosing anything
in the slots?

I don’t think so. I used MacsBug to skip it entirely and the problem
still happens.

This isn’t getting us anywhere. Maybe the desktop pattern problem
has some better clues. The General Controls control panel in System
7.5 has an INIT resource that calls HasDepth to decide whether to use
the color pattern. It then sets a PRAM bit to remember whether to use
a color pattern across restarts. When the desktop pattern is black and
white, I'll use the log trick to find out what the HasDepth call is
returning.

It returns an error.

Aha! Since HasDepth returns an error, the INIT resource thinks it’s

on a display that can support only one bit per pixel (black and white),
so it disables the color desktop pattern and resets the PRAM bit; the

color desktop pattern is now gone forever.

OK.
Let’s trace HasDepth and find out what’s wrong.

It looks as if the Slot Manager returns the correct values for the active
functional sResource of the card but fails to find the depth. It returns
-316, an smInitStatVErr. According to Errors.h, this error indicates
that the silnitStatusV field was “negative after primary or secondary
init.” This means the card’s PrimaryInit or Secondarylnit code
returned an error.

We can bet it’s not Primarylnit, because the GDevice is good. If the
error had happened in Primarylnit, QuickDraw would have gotten an
smInitStatVErr when it called the Slot Manager to build the GDevice.

You're finally making some progress!

25

20

15

KON

BAL

KON

BAL

KON

BAL
KON

BAL

KON
BAL

KON

BAL

KON
BAL

MacsBug also makes Slot Manager calls (when it tries to switch
depths), which explains why it fails. That means the problem must be
with the SSecondarylnit call. Once the Slot Manager gets this error,
most Slot Manager calls return errors.

But this doesn’t explain what’s causing the Slot Manager to fail to
begin with, or why the problem goes away every time we get close to
it with MacsBug.

Maybe we should try this with a BootBug card. Can you still get one?

Maybe, but we’re doing pretty well here. Let’s keep going a little
longer.

Let’s try to figure it out by brute logic. What does the Secondarylnit
code look like on this card?

MOVE.L A0,A0.

That’s it? Two bytes? No RTS? Cool! A bug in the AV card ROM!
Does this mean we all get new cards with the new 2.0 ROM? Maybe
they can simplify that complicated Monitors control panel Options
dialog at the same time. How does it boot at all?

Good question. Designing Cards and Drivers for the Macintosh Family
says that the Secondarylnit entry on a video card is an SExecBlock,
which is a header followed by actual code. The Slot Manager validates
the header before it executes the code. The first byte of an SExecBlock
is the revision number, and the Slot Manager checks for a revision byte
of 0x02. Since MOVE.L A0,A0 is 0x2048 in hex, the first byte of the
AV card’s Secondarylnit entry is 0x20, which is a bogus entry, and the
Slot Manager will never try to execute the Secondarylnit code.

So it’s pretty lame, but it should work, right?

Yes. Remember, we added Secondarylnit to the boot process because
some machines didn’t have 32-bit QuickDraw in ROM. On a machine
without 32-bit QuickDraw in ROM, video cards have to disable their
functional sResources with direct bit depths (16 and 32) in their
Primarylnit code, because the Primarylnit code runs before the disk
is up and the cards can’t tell if the system has 32-bit QuickDraw
installed. Secondarylnit was added to give these cards a chance to
reenable those direct depths after 32-bit QuickDraw was loaded from
disk. Power Macs obviously have 32-bit QuickDraw in ROM, and this
card only runs on a Power Mac, so it doesn’t need Secondarylnit.

Let’s walk through the SSecondarylnit call and see what it does. Why
does VM make a difference? And why is MacsBug causing the problem
to go away if you set breakpoints?

You're just full of questions, aren’t you? You’re supposed to be giving
the answers!

Let’s walk through SSecondaryInit.

For each card, it looks for a Secondarylnit entry in the card’s ROM.
The entry contains a header followed by the Secondarylnit code. If
there’s no Secondarylnit entry on the card, SSecondarylnit bails out
early. If there is a Secondarylnit on the card, the Slot Manager tries to
execute it with SExec and then checks the status from the SExec call.
If the status is negative (an error), the Slot Manager marks the slot
with that evil -316 error, and the slot is bad from there on out.

KON & BAL’'S PUZZLE PAGE: VIDEO NIGHTMARE

121

122 develop lIsue23 September 1995

KON
10 BAL

KON

5 BAL

KON

BAL

KON
BAL
KON

So who is responsible for setting the error?

The code executed by SExec, in this case the Secondarylnit code,
should set the status error. If the header is bad, the code never gets run
and the status never gets set.

Let me guess: the boot code never initializes the status before calling
SExec.

Yep. And it’s allocated on the stack as a local variable, which means
that the status is set to whatever garbage is left on the stack. At this
point in the boot process you’re still in supervisor mode, so MacsBug
is sharing your stack. When MacsBug is used, it pushes stuff onto the
stack and then pops it off when it leaves (changing the garbage below
the stack in the process). That’s why setting breakpoints and tracing
mask the problem. BootBug also uses the stack, so it too would have
interfered with the bug.

Between the first Display Manager call and the SSecondarylnit, the
system allocates stack space for the SPBlock parameter for the
SSecondarylnit call. After the SPBlock is allocated, the stack pointer
is very close to where the local variables for SSecondarylnit will be
allocated. At this point MacsBug’s stack usage will affect those never-
initialized local variables.

"This is something else to add to your list of gotchas for MacsBug: If
you’re in supervisor mode (as you are at this point in the boot process)
and you set breakpoints, MacsBug is sharing your stack, and its use of
the stack may affect uninitialized variables. Later in the boot process,
VM switches the machine to user mode; from then on, MacsBug and
applications use different stacks and MacsBug will not interfere with
uninitialized variables on the stack.

The garbage that VM leaves on the stack (sometimes) happens to be
negative. When the boot code gets to Secondarylnit and allocates
variables on the stack, it happens to use an area of the stack affected
by VM.

Well, I never turn VM on, so I'm always in supervisor mode, and
MacsBug always shares my stack. But now I’ve finally found a good use
for VM: turn it on when I have a bug that’s hard to reproduce when
MacsBug gets involved, and see if it becomes reproducible.

That'll slow your machine down.
Nasty.
Yeah.

SCORING

75-100 Excellent; you probably have a video-in jack built right into your head.

50-70 Maybe we should be working for you.
25-45 Maybe you should be working for us.
5-20 Maybe you should stick to television.®

Thanks to Rich Collyer, Kent Miller, Mike Puckett, John Yen, KON (Konstantin Othmer), and BAL

(Bruce Leak) for reviewing this column.®

INDEX

For a cumulative index to all issues of
develop, see this issue’s CD.*®

"t wild card, in scripting
dictionaries

A

A5 world, with QuickTime
(Macintosh Q & A)

‘abst’ device profile type
(ColorSync)

“According to Script” (Simone),

thinking about dictionaries
0 0

AddXArg (MPW)

ambient coefficient attribute type
(QuickDraw

Anderson, Eric

Apple event descriptor

Apple events, for SourceServer
AppleScript

overriding standard suites

ARA (Apple Remote Access),
ProjectDrag and
attributes (of preferences), IC and

Attribute Set class (QuickDraw
3D)

“Balance of Power” (Evans),
Power Macintosh: The Next
Generation

Balloon Help

Macintosh Q & A
in multipane dialogs ¥
baseltems field (multipane
dialogs) 89

“Basics of QuickDraw 3D
Geometries, The” (Thompson
and Fernicola)

binﬁobjects, Newton Q & A
114

box objects (QuickDraw 3D)
B-splines (QuickDraw 3D)
BuildTuneHeader (QTMA)
BuildTuneSequence (QTMA)

C

CallComponentFunctionWith-
Storage (Component Manager),
IC and

Cancel button, in multipane
dialogs

CheckIn (MPW)

CheckOut (MPW) 72|74

Click action procedure (multipane
dialogs)

CloseMPDialog (multipane
dialogs)

CM2Header

CMAppleProfileHeader

CMCopyProfile

CMFlattenProfile

CMGetProfileElement

CMGetProfileHeader

CMGetPS2ColorRendering

CMGetPS2ColorSpace

CMGetSystemProfile [27]

CMHeader

CMM. See color management
module

CMNewProfile

CMNewProfileSearch

CMOpenProfile

CMProfileLocation [26-p7

CMProfileRef [27, 27]

CMProfileSearch

CMSearchGetIndProfile

CMSearchRecord [27]

CMUnflattenProfile [27

CMValidateProfile |27

color management, with
ColorSync 2.0

color management module
(CMM) (ColorSync)

Color QuickDraw

ColorSync and

printer drivers (Macintosh
Qé&A
ColorSync 2.0 2558

API naming convention

color worlds

device profiles [257

PostScript code generation

printing with [28

QuickDraw-specific
matching

color worlds (ColorSync)

component glue (Internet Config)
disassembling
for ICGetPref [64-}5
for ICStart 5344

Componentlnstance (Internet

Conlfig)

Component Manager

implementing shared
libraries
targeting m ﬂ m
component “smarts” (Internet
Config)
component wrapper (Internet
Config) [o540¢
ConvertFile ToMovieFile (Movie
Toolbox)
Copland, ProjectDrag and /4]
CreateCommand (MPW)
CWCheckBitmap
CWCheckColors
CWConcatColorWorld
CWMatchPixMap

D

data (of preferences), IC and
data byte (MIDI)
Debugging Modern Memory

Manager, Power Macintosh and

DefaultAction (multipane dialogs)

DefaultClickAction (multipane
dialogs)

DefaultEditAction (multipane
dialogs)

Delay (QTMA)

descriptor (Apple event)

desptor lists (SourceServer)
/

desktop pattern, KON & BAL
puzzle

device drivers, Power Macintosh
and |53

device profiles (ColorSync)

accessing
accessing elements
embedding
header structure

colexity flag (QuickDraw 3D)

INDEX 123

location structure

profile types
quality flag bits |26,
reference structure |2
rendering intents [26, m
searching
DGRP resources, for multipane
dialogs
'diag’ parameter (SourceServer)
DiDisplay (multipane dialogs)
83
dialogs, multipane [77-489
dictionaries (scripting) 90—
adding new terms |90
comment area
defining a compound “type”
idecal keyword entries in
92

multiple value types in
p1 P2

object classes and properties
in
ordering commands in o 1]
ordering parameters in
syntax of terms
diffuse color attribute type
(QuickDraw 3D)
disﬁQuality (Macintosh Q & A)
108
display groups (QuickDraw
Display Manager
KON & BAL puzzle
Power Macintosh and
Displays.h header file
DITL resource, for multipane
dialogs
DLOG resource, for multipane
dialogs [80)
document lists, document
synchronization and
document synchronization
“Document Synchronization and
Other Human Interface Issues”

(Linton)
document windows, preventing

duplication of
DoMPDialogEvent (multipane

dialogs)
DoSyncChecks, document

synchronization and

124 develop lIsue23 September 1995

drag and drop source control

DrawGray procedure, in
multipane dialogs

DrawMatchedPicture, Macintosh
Q&A

DropShell, ProjectDrag and

DSFindWindow, document
synchronization and

DSPopUpNavigation, document
synchronization and

DSSyncWindowsWithFiles,
document synchronization and

DSSyncWindowWithFile,
document synchronization and

DTL# resource, for multipane
dialogs

DumpXCOFF tool

‘eat ' component (QuickTime)
editable text fields, in multipane

dialogs

Edit action procedure (multipane
dinlogy

EPS file format, and the ICC
profile format

Evans, Dave
EvenBetterBusError, Power

Macintosh and
EvenMoreFiles.c file {98
F

factory defaults, for multipane
dialogs

Fernicola, Pablo

file reference number, tracking
files with

Files.h interface file

FindNextComponent, Macintosh
Q&A

Find-VVindow (Window Manager)
101

floating windows

FlushCodeCacheRange (Power
Macintosh)

FlushlnstructionCache (Power
Macintosh)

FMS (Free MIDI System) [¢]

Franke, Norman

G

gamuts (ColorSync)
checking

general event (QTMA
General MIDI (GM) |7-B|
table of GM instruments
General MIDI component
QTMA) [
general polygon objects
(QuickDraw[3D)| [43 [la4 J4¢|
geometries (QuickDraw|[3D),
30451

class hierarch
composite m
texturing /9]
See also QuickDraw 3D
GetlconSuite (Macintosh Q & A)
GetMovieNextInteresting Time,
Macintosh Q & A
Ge%oviePict, Macintosh Q & A
111
GetMPDItem (multipane dialogs)
GetNextProcess (Macintosh
Q&4
GetProcessInformation
(Macintosh Q & A)
GetVolInfo, Power Macintosh and
gmNumber field
(ToneDescription) (QTMA)
Group class (QuickDraw 3D)
GXCleanupOpenConnection,
Macintosh Q & A
GXCleanupStartSend,

Macintosh Q & A
GXCloneColorProfile, Macintosh

Q&A
GXDisposeColorProfile

Macintosh Q & A

GXDoesPaperFit, Macintosh
Q&A

GXGetLayoutJustificationGap
Macintosh Q & A

gxLayoutOptions, Macintosh
Q&A

GXOpenConnection, Macintosh
Q&A

GXPostScriptDoDocumentHeader,
Macintosh Q & A

GXStartSendPage, Macintosh
Q&A

H

HandleDirectoryChange,
document synchronization and
E

HandleMoveToTrash, document

synchronization and

HandleNameChange, document
synchronization and

Hayward, David

'hdlg' resource, for multipane
dialogs

Hendry, Ian

hidden static text fields, in

multipane dialogs
HMShowBalloon (Macintosh
Q&4
hyphens (-), in scripting
dictionaries

IC. See Internet Config

ICCGetPref

ICCIGetPref |65-§6

ICCI prefix (Internet Config)

ICCIStart

ICC prefix (Internet Config)

ICC profile format, ColorSync 2.0

and [25-p¢|

ICCStart

1C developers kit |5—6|

ICFindConfigFile |58,{59

ICGetPref |58 |59 [lb 1462
component glue for [64-45]

link-in implementation for

[l

overriding

switch lueE‘ @
IClInstance
Icon Utlities (Macintosh Q & A)
IC prefix (Internet Config)
ICRForcelnside [69
ICRGetPref [63 Jo5¢]
ICR prefix (Internet Config)
ICRRecord
ICRRecordPtr
ICRStart

ICStart ES,hS‘?,”é]EQl

component glue for [63-4]

link-in implementation for

switch glue for
ICStop [58,]59

IC user’s kit

illegal-instruction handler, Power
Macintosh and
ImageJob, Macintosh Q & A [109
ImagePage, Macintosh Q & A {109
immediate mode rendering
(QuickDraw 3D) [31-B2]
translate transforms
versus retained mode
“Implementing Shared Internet
Preferences With Internet
Config” (Quinn)
index tabs, in multipane dialogs
information group (QuickDraw
3D)
InstallAction (multipane dialogs)
instruction cache (Power
Macintosh), flushing
instrumentName field

%neDescription) (QTMA)

instrumentNumber field

%neDescription) (QTMA)

instrument picker utility (QTMA)
International Color Consortium
(ICC). See ICC profile format
International Color Consortium
Profile Format Specification
Internet Config (IC) /1]
development history [60)
IC preferences
internal structure |60 1|
link-in implementation
main window
override components
routine name prefixes
and shared libraries [61
switch glue
updating |70
See also Internet Config

component
Internet Config component

component glue 5]

component “smarts” {66

component wrapper oJe)

and shared libraries
Internet Config Extension [56,

replacing

Internet Configuration System
(IC). See Internet Config

Internet preferences, shared

5]
Internet Preferences file 57,
f 1671

default filename o

I/0O proxy display groups
(QuickDraw 3D)

J
Johnson, Dave m

K

keyDirectObject (SourceServer)
keyErrorNumber (SourceServer)

keys (of preferences), IC and
kGeneralEventNoteRequest
(QTMA)
kMusicPacketPortFound (QTMA)
kMusicPacketPortLost (QTMA)
“KON & BALs Puzzle Page”
(Hendry and Anderson), Video
Nightmare
kQ3GeneralPolygonShapeHint-
&l)mplex (QuickDraw 3D)

L
LaserWriter 8.3 driver, ColorSync

and

layout shapes, for editable text

(Macintosh Q & A)
LClick (Macintosh Q & A)

light group (QuickDraw 3D)

line objects (QuickDraw 3D)

'link' device profile type
(ColorSync)

link-in implementation (Internet
Config)

Linton, Mark H. |94

local coordinates (QuickDraw 3D)

local-to-world matrix (QuickDraw

M

Macintosh Q & A @1 11
marker event (QTMA) |15
marker objects (QuickDraw 3D)
Maroney, Tim

INbEx 125

matrix transform (QuickDraw 3D)

media samples (QuickTime)

Memory Manager, Power
Macintosh and

mesh objects (QuickDraw 3D)

MIDI (Musical Instrument Digital
Interface)

converting SMF files to
QuickTime movies [19-p 1}

default MIDI input

MIDI packet structure

parsing MIDI messages
beg

reading input from MIDI
devices [21p4

release velocity D3|

system-exclusive messages
MIDI connector
MIDI Manager
'mntr' device profile type
(ColorSync)
modeless dialog, as multipane
dialog
models (QuickDraw 3D)
Modern Memory Manager, Power
Macintosh and
ModifyReadOnly (ProjectDrag)
Moller, Elizabeth [77,[80]
movable modal dialog, as
multipane dialog
MHdl (multipane dialogs)
84

MPDialogs sample application
80

MIERec (multipane dialogs)
'"MPSP' (SourceServer)
MPW (Macintosh Programmer’s

Workshop), customizing source
control
“MPW Tips and Tricks”
(Maroney), Customizing
Source Control With
SourceServer m
multipane dialogs [/7489

accessing control values
B4
action procedures B9

closing

controls for navigating
custom capabilities
customizing ﬁ

defining resources for

126 develop lIssue23 September 1995

handling events
opening
pointers and handles

tips for designing |80
user interface |i§—

“Multipane Dialogs” (Franke)
music, adding with QTMA [5-p4|
music components (QTMA) |4}
“Music the Easy Way: The
QuickTime Music Architecture”

(Van Brink)

N

NALoseDefaultMIDIInput
(QTMA)

Name Registry, Power Macintosh
and

NameRegistry.h header file

NANewNoteChannel (QTMA)

NAPickInstrument (QTMA)

NAPIayNote (QTMA)

NASetController (QTMA)

N

NASetDefaultMIDIInput
(QTMA)
NAStuffToneDescription
(QTMA)
NAUseDefaultMIDIInput
(QTMA)
NCMBeginMatching

NCMDrawMatchedPicture

NCMUseProfile

NCMUseProfileComment [27

NewsWatcher application [9¢]

Nn memory (Newton Q & A)
114

Newton Q & A: Ask the Llama
1144116

Next/Previous buttons, in
multipane dialogs
NNTPHost preference (Internet
Conlfig)
nonuniform rational B-spline. See
B-splines; NURB curve objects;
NURB patch objects
note allocator component
QT™MA) [
note-playing code |8
pitch parameter |8_, 12
playing notes with [6]14)
using controllers |12-]14

velocity parameter |8,]12,
23 .

note channel (QTMA) |67
note event (QTMA)

note-off event (MIDI)
note-on event (MIDI)
note-playing code (QTMA)
NoteRequest structure (QTMA)
polyphony field
note request event (QTMA)
NURSB curve objects (QuickDraw
3D)
NURSB patch objects (QuickDraw

3D) el

o
Object class (QuickDraw 3D

object model (AppleScript) [20
'odoc’ events, ProjectDrag and
OK button, in multipane dialogs
OMS (Open Music System) [5][4
OComponentResFile, IC and
67
OpenDefaultComponent
(Component Manager)
IC and
QTMA and El
OpenMPDialog (multipane
dialogs) @
Open Transport networking
Power Macintosh and
ordered display groups
(QuickDraw 3D)
override components (Internet

Config)

P
palette icons (Macintosh Q & A)

pan controller (QTMA)

PasteHandleIntoMovie (Movie
Toolbox)

'pdesource, Macintosh Q & A
109

PICT file format
ColorSyncand
and the ICC profile format

pitch bend controller (QTMA)

polling, document synchronization

and

polygon objects QuickDraw
HEnE

polyline objects (QuickDraw

pop-up menus, in multipane
dialogs [/7]
pop-up navigation menus

PostScript code, ColorSync 2.0
and
PostScript comments, Macintosh
Q&A |1 05:|1 Oél
Power Macintosh |52-f54
680x0 emulator |52
Display Manager |5
hard disk support [53
illegal-instruction handler @
Modern Memory Manager
Name Registry
native device drivers
native Open Transport
networking
PClI-based

Resource Manager
Slot Manager

Z status bit

PowerPC code
calling components from
recompiling 680x0 code into

preferences, Internet Config

printer drivers
Color QuickDraw
ColorSync-savvy
“Print Hints” (Hayward), syncing
up with ColorSync 2.0 @
printing, with ColorSync 2.0 |
print objects (QuickDraw 3D)

ProjectDrag, SourceServer and
ProjectDrag Setup
Pr?'élctor commands (MPW)

ProjectDrag and

protoRollltem, Newton Q & A

'prtr’ device profile type
(ColorSync)

Q

Q3Exit
Q3Group_AddObject
Q3Group_New
Q3Mesh_DelayUpdates
Q3Mesh_ResumeUpdates
Q3Object_Dispose
Q3Object_Submit [32
Q3Pop_Submit 40
Q3Push_Submit [40)
Q3Shared_GetReference
Q3View_EndRendering .
Q3View_EndWriting
Q3View_StartRendering

Q3View_StartWriting
QD3DTransform.h file
(QuickDraw 3D)
QD3DView.h file (QuickDraw
3D)
QTMA (QuickTime Music
Architecture)
basic components of |4
building tunes
instrument picker utility

Macintosh Q & A
MIDI and |5-p |7
playing tunes |l 8—
and QuickTime movies
al
reading input from MIDI
devices [21-p4]
using controllers
See also note allocator
component; tune player
component
quality flag bits (ColorSync)
QuickDraw 3D
attributes |ZO:|22|

building geometries |42
class hierarch 1)

geometries m
groups 37138
reference counts 35434
renderin 33
scenes @
submitting
texture-mapping objects
transforms
QuickDraw GX
ColorSync and

layered shapes (Macintosh
Q&A) 106

removing panel items
(Macintosh Q & A)
QuickTime 2.0, compatibility with
QuickTime for Windows
(Macintosh Q & A)
QuickTime 2.1, QTMA and
QuickTimeComponents.h file
(QTMA)
QuickTime movies

creating music tracks

detaching from files

(Macintosh Q & A)

getting sequential frames
(Macintosh Q & A)
QuickTime Musical Instruments
Extension

QuickTime Music Architecture.
See QTMA

QuickTime Music control panel
D1)

QuickTime for Windows,
compatibility with QuickTime

2.0 (Macintosh Q & A)

Quinn “The Eskimo!”
R

radio button groups, in multipane
dialogs

RadioGroup structure (multipane
dialogs)

Radio Group action procedure
(multipane dialogs)

RandomSignature (Internet
Config) @l

reak, QTMA and
-3 D

real numbers, Newton Q & A

reference counts (QuickDraw 3D)
&

Registry suites (AppleScript),
scripting dictionaries and |91
ReveAction (multipane dialogs)

84
Remove From Trash option,
ument synchronization and
0
renaming documents |94, 100

rendering (QuickDraw 3D)

p1 B3
B 1o 41

immediate mode

retained mode

rendering intents (ColorSync)

ResEdit TMPL templates, for
multipane dialogs
Resource Manager
Macintosh Q & A @
Power Macintosh and

rest event (QTMA)

retained mode rendering
(QuickDraw 3D)

versus immediate mode

Revert button, in multipane
dialogs

RS/6000 POWER instructions,
Power Macintosh and

S
scenes (QuickDraw 3D)

'senr’ device profile type

(ColorSync)

iNbEx 127

Send_GXBufferData, Macintosh
Q&A

server connections (Newton
Q&A)

Set Defaults action procedure
(multipane dialogs)

SetFrontProcess (Macintosh
Q&A)

SetHilite, Newton Q & A

SetLength, Newton Q & A

SetMPDItem (multipane dialogs)
Shared class (QuickDraw 3D)
354
shared libraries, IC component
and
Signature ToApp (SourceServer) @
Simone, Cal
simple polygon objects
(QuickDraw 3D)
680x0 emulator (Power
Macintosh)
slashes (/), in scripting dictionaries
Slot Manager
KON & BAL puzzle
Power Macintosh and
smart strings (Newton Q & A)
SMF files. See Standard MIDI
Files
software synthesizer component
@QTMA) [
source control
customizing with

SourceServer ﬁ
drag and drop /4|

SourceServer
Apple events for [72-4/4]
creating commands
customizing source control

/2
descriptor lists |7_2||ﬁ|
sending commands to
'spac’ device profile type
(ColorSync)
specular color attribute type
(QuickDraw 3D)
specular control attribute type
(QuickDraw 3D)
SPI (system programming
interface), Power Macintosh

and

SSecondaryInit, KON & BAL
puzzle

128 develop lIssue23 September 1995

StandardGetFile, QTMA and
Standard MIDI files (SMF),

converting to QuickTime
movies
standard modal dialog, as
multipane dialog
standard output handle
(SourceServer)
'stat’ parameter (SourceServer)
status byte (MIDI)]
strings, allocating (Newton
Q&A) [l15]ie
_StuffGeneralEvent macro
(QTMA)
_SaffNoteEvent macro (QTMA)
_SwuffRestEvent macro (QTMA)
_StuffXNoteEvent macro
(QTMA)
Submit functions (QuickDraw 3D)
submitting (QuickDraw 3D)
surface UV attribute type
(QuickDraw 3D)
switch glue (Internet Config)
|
for ICGetPref |63
for ICStart @
synthesizerName field
(ToneDescription) (QTMA) [7]

synthesizer Type field
(ToneDescription) (QTMA) [7]

T
targeting (Component Manager)
Tndle (Macintosh Q & A)
104
text descriptors (SourceServer)
texture-mapping objects
(QuickDraw 3D)
texture shader attribute type
(QuickDraw 3D
Thompson, Nick
TTFF file format
ColorSync 2.0 and
ane ICC profile format
26
“Tips for Designing Multipane
Dialogs” (Moller)
"ToneDescription structure
(QTMA)
Transform class (QuickDraw 3D)

translate transform objects
(QuickDraw 3D), creating

translate transforms (QuickDraw
3D), in immediate mode

triangle objects (QuickDraw 3D)
trigrid objects (QuickDraw 3D)

tune-building code (QTMA)
tune header (QTMA)

tune player component (QTMA)
building tunes
playing tunes D 1)
tune-building code
tune sequence (QTMA)

U

UniversalProcPtr, in multipane
dialogs

Update (ProjectDrag)

Use Defaults button, in multipane
dialogs

user interface, for multipane
dialogs

UV parameters (QuickDraw 3D)

v

Van Brink, David
“Veteran Neophyte, The”

ohnson), A Feel for the Thing

View class (QuickDraw 3D) [36-57]
viewFlags slot, Newton Q & A
VM, KON & BAL puzzle

volume controller (QTMA)
wW

WiaitNextEvent, document
synchronization and

WwShade (Macintosh Q & A)
104

world coordinates (QuickDraw
3D)

X

XVolumeParam, Power Macintosh
and

y 4

Z status bit, Power Macintosh and

Plug

n
and

Savel

Receive 4 issues of
develop for only $30.
That's 25% off the cover
price! And every issue
comes with the develop
Bookmark CD containing
all develop source code.

FREE CD
with each
issue!

Technical JournulI

Apple

The

develo

[

) _
Q.
)
o
>
o
-

SUBSCRIBE TO A WINNER!

Apple Computer’s award-winning quarterly technical journal, develop,
and the develop Bookmark CD give you techniques and code to reduce
your development time and enhance your programming savvy.

O YES! Please send me a one-year (4 issues) subscription todevelop for only $30.
That’s 25% off the cover price!
[0 payment enclosed.

Phone: 1-800-282-2732 (in U.S.) 1-800-637-0029 (m Canada) g’
(716) 871-6555 (elsewhere) Fax: (716) 871-6511 n
AppleLink: APDA Internet: apda@applelink.apple.com

NAME

COMPANY/INSTITUTION

ADDRESS

cITYy STATE 1P

COUNTRY PHONE

Please allow 6-8 weeks for delivery. U.S. subscription price is $30 for 4 issues and 4 CDs. All other countries $50. For Canadian
orders, price includes GST (R100236199). Make check payable to Apple Computer, Inc., in exact amount, in U.S. dollars.

REDUCE YOUR DEVELOPMENT TIME!
Apple Computer’s award-winning quarterly technical journal, develop,
and the develop Bookmark CD give you techniques and code to reduce
your development time and enhance your programming savvy.

[0 YES! Please send me a one-year (4 issues) subscription todevelop for only $30.
That’s 25% off the cover price!
[0 payment enclosed.

o
[}
Phone: 1-800-282-2732 (in U.S.) 1-800-637-0029 (m Canada) g
[}
(716) 871-6555 (elsewhere) Fax: (716) 871-6511
AppleLink: APDA Internet: apda®applelink.apple.com
NAME

COMPANY/INSTITUTION

ADDRESS
cITYy STATE 1P
COUNTRY PHONE

Please allow 6-8 weeks for delivery. U.S. subscription price is $30 for 4 issues and 4 CDs. All other countries $50. For Canadian
orders, price includes GST (R100236199). Make check payable to Apple Computer, Inc., in exact amount, in U.S. dollars.

ENHANCE YOUR PROGRAMMING SAVVY!
Apple Computer’s award-winning quarterly technical journal, develop,
and the develop Bookmark CD give you techniques and code to reduce
your development time and enhance your programming savvy.

[YES! please send me a one-year (4 issues) subscription to develop for only $30.
That’s 25% off the cover price!

[J payment enclosed.

Phone: 1-800-282-2732 (in U.S.) 1-800-637-0029 (m Canada)
(716) 871-6555 (elsewhere) Fax: (716) 871-6511
AppleLink: APDA Internet: apda@applelink.apple.com

B995B3

NAME

COMPANY/INSTITUTION

ADDRESS

cITY STATE rand

COUNTRY PHONE

Please allow 6-8 weeks for delivery. U.S. subscription price is $30 for 4 issues and 4 CDs. All other countries $50. For Canadian
orders, price includes GST (R100236199). Make check payable to Apple Computer, Inc., in exact amount, in U.S. dollars.

J

P &

develop

Apple Computer, Inc.

P.O. Box 319

Buffalo, NY 14207-0319 U.S.A.

cal Journ

chni

The Apple

(o
0
5
0
-5

P @

develop

Apple Computer, Inc.

P.O. Box 319

Buffalo, NY 14207-0319 U.S.A.

The Apple Technical Journal

develo

RESOURCES

Apple provides a wealth of information,
products, and services to assist
developers. APDA, Apple’s source for
developer tools, and Apple Developer
University are open to anyone who
wants access to development tools and
instruction. Developers may access
additional information and services

through Apple’s Developer Programs.

APDA offers worldwide access to
development tools, resources,
training products, and information
for anyone interested in developing
applications on Apple platforms.
Customers periodically receive the
Apple Developer Tools Catalog
featuring hundreds of Apple and
third-party development products.
There are no membership fees.
APDA offers convenient payment
and shipping options, including site
licensing.

Apple Developer University

(DU) provides courses to get you
started programming on Apple
platforms and Mac OS—compatible
hardware, as well as advanced, in-
depth training on new technologies
such as QuickTime VR, QuickDraw
3D, OpenDoc, Apple Guide, and
Newton. In addition to classroom
training, multimedia self-paced
courses and low-cost mini-course
tutorials are available through APDA.

The Macintosh Associates
Program is a low-cost self-support
program that provides information
on new technologies and discounts
on equipment. It’s the primary
program for Macintosh developers
who don’t need programming-level
technical support from Apple.

The Macintosh Associates Plus
Program In addition to technical
information and discounts on
equipment, this program enables
Macintosh developers to have up to

ten programming-level technical
support questions answered (via
e-mail) per year. It also includes a
subscription to the Mac OS Software
Developer’s Kit.

The Macintosh Partners Program
is for Macintosh developers who
need unlimited programming-level
technical support (via e-mail). It also
includes technology seeding, a
subscription to the Mac OS Software
Developer’s Kit, and more.

The Newton Associates Program
is a low-cost self-support program
for Newton developers who don’t
need programming-level technical
support from Apple.

The Newton Associates Plus
Program enables Newton developers
to have up to ten programming-
level technical support questions
answered (via e-mail) per year.

The Newton Pariners Program
offers Newton developers unlimited
programming-level technical
support (via e-mail) as well as
hardware purchasing privileges and
marketing opportunities.

The Apple Multimedia Program
is designed for developers interested
in the emerging multimedia market.
Program features include a quarterly
mailing, discounts on third-party
products, training, and events.

APDA To order products or receive a
complimentary catalog, call 1-800-282-
2732 in the U.S., 1-800-637-0029 in
Canada, (716)871-6555 internationally, or
(716)871-6511 for fax. You can also order
electronically (Applelink APDA; Internet
apda@applelink.apple.com; America Online
APDAorder; or CompuServe 76666,2405)
or write APDA, Apple Computer, Inc., P.O.
Box 319, Buffalo, NY 14207-0319.

Apple Developer University (DU)
Course descriptions and schedules can be
found in the Developer Services areas on
Applelink (Developer Support), eWorld
(Apple Customer Center), and the Internet
(World Wide Web at http://www.apple.com).
Or call (408)974-4897, fax (408)974-
0544, Applelink DEVUNLIV, or write to DU
at Apple Computer, Inc., 1 Infinite Loop,
M/S 305-1TU, Cupertino, CA 95014.

Apple Developer Programs Call the
Developer Support Center at (408)974-
4897, Applelink DEVSUPPORT, or write

1 Infinite Loop, M/S 303-2T, Cupertino, CA
95014, for information or an application
form. Developers outside the U.S. and
Canada should instead contact the Apple
office in their country for information about
developer programs.

	Inside this Issue
	EDITOR’S NOTE
	LETTERS
	Music the Easy Way: The QuickTime Music Architecture
	QTMA IN CONTEXT — A LOOK AT MUSIC AND MIDI SUPPORT ON THE MACINTOSH
	QTMA’S BASIC COMPONENTS
	PLAYING NOTES WITH THE NOTE ALLOCATOR
	BUILDING A TUNE
	PLAYING A TUNE WITH THE TUNE PLAYER
	PLAYING PRESCORED MUSIC IN A QUICKTIME MOVIE
	READING INPUT FROM A MIDI DEVICE
	GIVE QTMA A TRY

	PRINT HINTS: Syncing Up With ColorSync 2.0
	WHAT IS COLORSYNC 2.0?
	DEVICE PROFILES
	COLOR WORLDS
	COLORSYNC 2.0 ROUTINES
	BECOMING COLORSYNC-AWARE
	PRINTING WITH COLORSYNC
	WHAT ELSE A COLORSYNC-SAVVY APPLICATION CAN DO
	WHERE TO GO FOR MORE

	Back Issues: If you’re missing something
	The Basics of QuickDraw 3D Geometries
	A WORD ABOUT RENDERING AND SUBMITTING
	QUICKDRAW 3D CLASS HIERARCHY
	BUILDING GEOMETRIES
	WHAT DO YOU WANT TO BUILD TODAY?

	BALANCE OF POWER: Power Macintosh: The Next Generation
	THE IMPROVED EMULATOR
	OTHER SOFTWARE CHANGES
	PCI AND NUBUS
	MAINTAINING COMPATIBILITY
	NEW DIRECTIONS

	Implementing Shared Internet Preferences With Internet Config
	INTERNET CONFIG FROM THE OUTSIDE
	INSIDE INTERNET CONFIG
	HOW INTERNET CONFIG CAME TO BE
	THE INNER WORKINGS OF AN API ROUTINE
	THE IC COMPONENT AND SHARED LIBRARIES ON THE MACINTOSH
	SMART COMPONENTS FOR SMART PEOPLE
	TOWARD THE FUTURE
	STAYING CURRENT
	RECOMMENDED READING

	MPW TIPS AND TRICKS: Customizing Source Control With SourceServer
	APPLE EVENTS FOR SOURCESERVER
	PROJECTDRAG — DRAG AND DROP SOURCE CONTROL
	YOU TAKE IT FROM HERE

	Multipane Dialogs
	WHAT THE USER INTERFACE LOOKS LIKE
	DEFINING NEEDED RESOURCES
	TIPS FOR DESIGNING MULTIPANE DIALOGS
	CODE FOR DIALOG COMMAND-KEY EQUIVALENTS
	CALLING THE MAIN ROUTINES
	CUSTOMIZING WITH OPTIONAL PROCEDURES
	NOW WHAT?

	ACCORDING TO SCRIPT: Thinking About Dictionaries
	ORGANIZING YOUR DICTIONARY
	WHEN YOU ALLOW MULTIPLE VALUE TYPES
	MAKING USE OF THE COMMENT AREA
	A COUPLE MORE DICTIONARY TIPS

	Document Synchronization and Other Human Interface Issues
	DOCUMENT SYNCHRONIZATION
	HOW CAN YOU BE IN TWO PLACES AT ONCE?
	POP-UP NAVIGATION
	CONSISTENCY PAYS OFF
	RECOMMENDED READING

	Macintosh Q&A
	THE VETERAN NEOPHYTE
	Newton Q&A: Ask the Llama
	KON & BAL’S PUZZLE PAGE: Video Nightmare
	INDEX
	RESOURCES
	How to Order

