

ð

WWDC Release

May 1996
© Apple Computer, Inc. 1994 - 1996

ð

I N S I D E M A C I N T O S H

Apple Events in Mac OS 8

Draft. Confidential.

 Apple Computer, Inc. 4/22/96

ð

Apple Computer, Inc.
© 1994–1996 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying, recording,
or otherwise, without prior written
permission of Apple Computer, Inc.,
except to make a backup copy of
any documentation provided on
CD-ROM.
The Apple logo is a trademark of
Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop
applications only for Apple-labeled
or Apple-licensed computers.
Every effort has been made to
ensure that the information in this
manual is accurate. Apple is not
responsible for typographical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, and
Macintosh are trademarks of Apple
Computer, Inc., registered in the
United States and other countries.
Finder and Mac are trademarks of
Apple Computer, Inc.
Simultaneously published in the
United States and Canada.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE PURCHASER,
ARE ASSUMING THE ENTIRE RISK
AS TO ITS QUALITY AND
ACCURACY.

IN NO EVENT WILL APPLE BE
LIABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS MANUAL,
even if advised of the possibility of such
damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED.
No Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion
or limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state.

Contents

Chapter 1 Introduction to the Mac OS 8 Event Model 1-1

Apple Events in Mac OS 8 1-4
Apple Event Communications Model 1-4
Apple Event Data Model 1-5

The Mac OS 8 Event Model 1-6
Apple Event Dispatchers 1-8
Handler Tables 1-9
Apple Event Handlers 1-10
Tasking Models 1-11

One Task, One Dispatcher 1-12
Multiple Tasks, Multiple Dispatchers 1-12
Multiple Tasks, One Dispatcher 1-14

Benefits of the Mac OS 8 Event Model 1-16
Using the Mac OS 8 Event Model 1-17

Manipulating Dispatchers, Handler Tables, and Handlers 1-17
Event Dispatching for Modal States 1-17

Chapter 2 Apple Event Communications Model Reference 2-1

Apple Event Communications Constants and Data Types 2-3
Apple Event Dispatchers 2-3

Dispatcher References 2-3
Dispatcher IDs 2-4

Handler Table References 2-4
Receive Modes 2-5
Constants for Use With Send Functions 2-5

Apple Event Send Options 2-5
Apple Event Send Priorities 2-6

Apple Event Handler 2-7
Apple Event Communications Functions 2-7

Creating and Manipulating Apple Event Dispatchers 2-10
Creating and Manipulating Handler Tables 2-16
iii
Draft. Apple Computer, Inc. 4/22/96

Creating, Getting, and Disposing of Handler Tables 2-16
Installing, Getting, and Removing Handlers 2-24
Pushing and Popping Handler Tables 2-29

Receiving Events 2-34
Sending Events 2-35
Application-Defined Function 2-42

Apple Event Manager Result Codes 2-44
iv
Draft. Apple Computer, Inc. 4/22/96

C H A P T E R 1

Contents

Draft.

 Apple Computer, Inc. 4/22/96

Contents

Figure 1-0HI
Listing 1-0
Table 1-0
1 Introduction to the
Mac OS 8 Event Model
Apple Events in Mac OS 8 1-4
Apple Event Communications Model 1-4
Apple Event Data Model 1-5

The Mac OS 8 Event Model 1-6
Apple Event Dispatchers 1-8
Handler Tables 1-9
Apple Event Handlers 1-10
Tasking Models 1-11

One Task, One Dispatcher 1-12
Multiple Tasks, Multiple Dispatchers 1-12
Multiple Tasks, One Dispatcher 1-14

Benefits of the Mac OS 8 Event Model 1-16
Using the Mac OS 8 Event Model 1-17

Manipulating Dispatchers, Handler Tables, and Handlers 1-17
Event Dispatching for Modal States 1-17
1-1

C H A P T E R 1

1-2 Contents

Draft. Apple Computer, Inc. 4/22/96

C H A P T E R 1

Introduction to the Mac OS 8 Event Model 1

The Mac OS 8 event model is based on the Apple events mechanism
introduced in System 7. It provides a unified interface for events throughout
the system, avoids the problems created by polling, and enhances application
responsiveness to user actions.

This chapter introduces the Mac OS 8 event model. Before you read this
chapter, you should be familiar with the book Inside Macintosh: Interapplication
Communication. An electronic copy is included with this developer release.

For descriptions of the Apple Event Manager functions you can use to take
advantage of the event model, see “Apple Event Communications Model
Reference” (page 2-3). Later developer releases will include sample code that
demonstrates their use.

For information about the way the Toolbox routes standard Apple events, see
the accompanying document Human Interface Toolbox.

Mac OS 8 supports the classic System 7 Event Manager as described in Inside
Macintosh: Macintosh Toolbox Essentials for backward compatibility only.
Supporting the Mac OS 8 event model allows you to take full advantage of the
improved performance and flexibility that Mac OS 8 makes possible.

▲ W A R N I N G

This document is preliminary and incomplete. All
information presented here is subject to change. ▲
1-3
Draft. Apple Computer, Inc. 4/22/96

C H A P T E R 1

Introduction to the Mac OS 8 Event Model

Apple Events in Mac OS 8 1

An Apple event identifies itself by event class and event ID, names its own
destination, and contains additional data structures that vary depending on the
kind of event. First introduced in System 7 to support interapplication
communication, Apple events provide the primary mechanism for
communication throughout Mac OS 8.

In addition to this standard communications model, Apple events provide a
hierarchical data format for organizing the information they convey. You use
Apple Event Manager functions to support both the communication model (for
sending and receiving Apple events) and the data model (for creating or
interpreting the data structures used to construct Apple events).

The Apple event data model and Apple event communications model form the
foundation for the Mac OS 8 event model, which defines programming
concepts and protocols used throughout the system for communication among
tasks, server programs, system services, device drivers, and other types of
software as well as communication related to the user’s interactions with your
application.

Apple Event Communications Model 1

The essence of the Mac OS 8 Apple event communication model is simple.
When any program that supports this model runs, it expresses an interest in
receiving certain Apple events. It then informs the Apple Event Manager that it
is ready to receive, and the Apple Event Manager blocks the calling task until
an event in which the program has expressed an interest arrives. This
arrangement takes maximum advantage of priority-based preemptive
scheduling, allowing other programs and tasks to receive processing time
when your program doesn’t need it.

The Mac OS 8 Apple Event Manager replaces the System 7 functions used to
dispatch, receive, and send events with entirely new functions. To take full
advantage of the Mac OS 8 communication model, you should use the new
functions. Mac OS 8 supports the System 7 functions for backward
compatibility only.
1-4 Apple Events in Mac OS 8

Draft. Apple Computer, Inc. 4/22/96

C H A P T E R 1

Introduction to the Mac OS 8 Event Model

For descriptions of the new Mac OS 8 functions and a list of the System 7
functions they replace, see “Apple Event Communications Model Reference”
(page 2-3).

Apple Event Data Model 1

In general, System 7 functions used to implement the Apple event data model—
that is, the functions used to add data to or get data from Apple events—have
not changed. You can use most of these functions in the manner described in
Inside Macintosh: Interapplication Communication.

One exception involves the way you obtain and clear the data in descriptor
records. System 7 defines the data field of a descriptor record as a handle,
requiring you to double dereference the handle and access the data directly.
Although it defines accessors for related structures, System 7 doesn’t provide
accessors for descriptor records themselves.

As in other parts of the system, all data structures defined by the Mac OS 8
Apple Event Manager are opaque—that is, you can manipulate them only with
the aid of accessor functions. Therefore, the Apple Event Manager provides
new functions for obtaining and clearing the data in descriptor records. You
should use these functions rather than accessing data in descriptor records
directly.

The Mac OS 8 Apple Event Manager also provides functions that supplement
the capabilities of the System 7 data model in the following areas:

■ Apple event streaming functions allow you to write a series of descriptor
records sequentially rather than explicitly inserting them one at a time using
AEPutNthPointer or AEPutKeyPtr.

■ Apple event subdescriptor functions allow you to examine the contents of
recursively nested descriptor records without having to copy any data or
create any new AEDesc structures.

Documentation for all these new functions will be available with later
developer releases.

Note
Standard Apple events previously defined by Apple—for
example, the Required suite of Apple events discussed in
Inside Macintosh: Interapplication Communication—are still
supported in Mac OS 8 and still play the same roles. ◆
Apple Events in Mac OS 8 1-5
Draft. Apple Computer, Inc. 4/22/96

C H A P T E R 1

Introduction to the Mac OS 8 Event Model

The Mac OS 8 Event Model 1

Mac OS 8 supports several forms of interprocess communication, including
specialized low-level communication using shared data, shared memory areas,
and the Microkernel Messaging Service as well as the higher-level Apple event
communications model. Apple events provide the most pervasive form of
interprocess communication in Mac OS 8. Applications, server programs, and
system services can all use Apple events to communicate with each other.

This section introduces the concepts you need to understand to take advantage
of the Mac OS 8 event model. In Mac OS 8, you typically implement an
application (that is, a program with a human interface) as a cooperative
program that may be supported by server programs. Every program has a
main task that may spawn additional tasks. (For more information about tasks,
cooperative programs, and server programs, see the accompanying document
Microkernel and Core System Services.) The Mac OS 8 event model provides a
unified mechanism for controlling programs and their associated tasks.

When launched, any program can call Apple Event Manager functions to
install handlers for the events that it wants to handle. After installing its
handlers, the program doesn’t use WaitNextEvent to receive events and
AEProcessAppleEvent to dispatch them. Instead, each task performs any
initialization work the task requires, then calls the Mac OS 8 function
AEReceive, which doesn’t return unless a handler generates an error or
intentionally terminates the call to AEReceive.

For the most part, both the main task and any additional tasks that it spawns
execute from inside AEReceive, which takes care of many of the operations that
are handled by a System 7 event loop. The AEReceive function blocks the calling
task until an event the program can handle arrives, at which point the Apple
Event Manager reawakens the task and dispatches the event to the appropriate
handler. This cycle of blocking then waking the task continues until the task
terminates or the application quits.

All Apple events are conveyed via the “bottleneck” of AEReceive. This avoids
the multilevel dispatching required with the classic System 7 Event Manager,
which recognizes three principal kinds of events (low-level events, operating
system events, and high-level events such as Apple events), each requiring
different treatment.
1-6 The Mac OS 8 Event Model

Draft. Apple Computer, Inc. 4/22/96

C H A P T E R 1

Introduction to the Mac OS 8 Event Model

The Mac OS 8 event model treats all events the same way. At the same time,
handlers installed for any event may translate low-level events into
higher-level events that are more meaningful to the program. It may be helpful
to think about this kind of translation or recycling of events in terms of three
broad categories (whose boundaries may blur in specific cases):

■ Low-level events, such as Mouse Down, are generated by the system in
response to the user’s manipulation of input devices. Low-level event
handlers often translate events into higher-level synthetic or semantic events
and resend the repackaged events. For example, if the user presses the
mouse button while the pointer is over the File menu, the system sends
corresponding Mouse Down event, which is resent by a Mouse Down
handler as a Mouse Down in Content event.

■ Synthetic events, such as Mouse Down in Content, mean more to most
applications than low-level events. A single synthetic event may be
produced by more than one low-level event; for example, a series of
low-level Virtual Key events might generate a single synthetic text event that
conveys a Kanji character. Synthetic event handlers can also translate events
into higher-level semantic events; for example, the application’s handler for
a Mouse Down in Content event that is followed by a Mouse Up event while
the pointer is over the Open command in the File menu translates those two
events into an Open Document event.

■ Semantic events are events such as Open Document or Quit Application
with a specific meaning for an individual application. Several different kinds
of synthetic events may be capable of generating the same semantic event.
For example, the user can generate an Open Document event by releasing
the mouse button while the Open command is selected in the File menu or
by pressing the Command key and the O key at the same time. Semantic
events may also be sent originally as semantic events, rather than cascading
up through synthetic events from an original physical event. For example, a
Get Data event is always generated by a script or another application; it is
never generated directly by the user.

When you’re creating the human interface for your application, you are
primarily concerned with synthetic events. Most synthetic events are
ultimately directed at a target within the application, such as a window or a
menu. The Mac OS 8 event model allows the system to help your application
arbitrate targets for some events while allowing you to override the default
arbitration at any point. For some examples of default event routing provided
by the system, see the accompanying document Human Interface Toolbox.
The Mac OS 8 Event Model 1-7
Draft. Apple Computer, Inc. 4/22/96

C H A P T E R 1

Introduction to the Mac OS 8 Event Model

Apple Event Dispatchers 1

To dispatch Apple events within a process, the Apple Event Manager uses one
or more Apple event dispatchers, which combine an event queue and a stack
of handler tables. Every process has a default dispatcher, and your application
may create additional dispatchers as necessary.

Figure 1-1 illustrates the way the Apple Event Manager uses an Apple event
dispatcher to dispatch an event. When an event arrives, the Apple Event
Manager wakes up the task that called AEReceive and searches the stack of
handler tables for a matching handler. An Apple event handler is identified by
the combination of the event class and event ID of the event it handles—much
the way Apple event handlers are stored in application and system handler
tables in System 7.

Figure 1-1 A handler table stack associated with an Apple event dispatcher

Incoming
event

Handler

Handler table
stack

Application
tables

Default
table
1-8 The Mac OS 8 Event Model

Draft. Apple Computer, Inc. 4/22/96

C H A P T E R 1

Introduction to the Mac OS 8 Event Model

Handler Tables 1

Each Apple event dispatcher maintains its own handler table stack, which
consists of a default handler table and one or more application handler tables.

A default handler table contains the default handlers installed by the system.
The default handlers for an application interpret standard events such as
Mouse Down or Update and if necessary route them to the appropriate panels
within a window.

Most applications need to add one or more of their own handler tables to the
handler table stack to implement each application’s unique behaviors. For
example, when a user double-clicks one of your application’s document icons
in the Finder, the Finder sends the Open Document event to your application to
request that it open the corresponding document. Therefore, every Mac OS 8
application must provide a handler for the Open Document event (in much the
same way that System 7 applications do).

You use the Apple Event Manager to install Apple event handlers in one or
more application handler tables, which you can add to or remove from the
handler table stack at any time. When the Apple Event Manager searches for an
event’s handler, it starts from the top of the stack and looks down the chain of
handler tables until it finds a match. By stacking one handler table on top of
another, you can augment or override the behavior defined by the lower table
with the behavior defined by the higher table.

If the Apple Event Manager can’t find an entry for a particular event in an
application handler table, it takes one of two actions, depending on the type of
table. You can create two kinds of Apple event handler tables:

■ Nonfiltered handler table. When a nonfiltered handler table contains no
handler for a particular event, the Apple Event Manager passes the event on
to the next handler table in the stack.

■ Filtered handler table. When a filtered handler table contains no handler for
a particular event, the Apple Event Manager immediately suspends the
event, which remains in the event queue. After the filtered table has been
removed from the handler table stack, the Apple Event Manager passes any
suspended events on to the next handler table in the order in which they
were originally received.

Nonfiltered tables are appropriate for most situations. Filtered handler tables
are useful when your application is in a modal state and you want to suspend
handling of certain events. For more information about filtered handler tables,
see “Event Dispatching for Modal States” (page 1-17).
The Mac OS 8 Event Model 1-9
Draft. Apple Computer, Inc. 4/22/96

C H A P T E R 1

Introduction to the Mac OS 8 Event Model

Apple Event Handlers 1

If the event class and event ID for a particular event is sufficient for you to
decide that your application doesn’t need to handle that event, you don’t need
to install a handler for it. For example, you don’t need to install handlers for
text events if you intend to take advantage of the default text-handling
provided by HI objects of class HIEditText.

If you need more information about an event before you can decide whether
your application needs to handle it, you must install a handler for that event.
For example, an application that supports the Get Data event for certain kinds
of data must install a handler that receives all Get Data events, including some
the application may not be able to handle.

When the Apple Event Manager finds an entry for an event in a handler table,
it passes the event to that handler. The handler must make at least two
decisions about the event:

1. Handle the event or don’t handle it. If the handler can handle the event, it
should do so, then proceed to step 2. If the handler can’t handle the event for
any reason, it should proceed directly to step 2.

2. Consume the event or pass it on. In most cases the handler simply handles
the event, returns a result code such as noErr that indicates it did so
successfully, and processing for that event stops. If the handler can’t
consume the event, it should return a result code that instructs the Apple
Event Manager what to do with the event next. For example, if the handler
returns the result code errAEEventNotHandled, the Apple Event Manager
continues its search through the handler table stack for a handler for the
event.

If the handler can’t understand the event as specified—for example, a Get Data
event requests the name of the current printer, which the application doesn’t
know anything about—returning the result code errAEEventNotHandled allows
handlers for that event in lower tables, if any are installed, a chance to handle
it. Passing on the event in this way can also be useful if the handler performs
preliminary handling only and you want to take advantage of additional
handling provided by handlers in lower tables.

If a handler understands the event but the event is impossible to handle—for
example, a Get Data event specifies the fifth paragraph in a document that only
has four paragraphs—the handler should return any appropriate nonzero
1-10 The Mac OS 8 Event Model

Draft. Apple Computer, Inc. 4/22/96

C H A P T E R 1

Introduction to the Mac OS 8 Event Model

error. Returning any result code other than errAEEventNotHandled prevents the
Apple Event Manager from continuing to search the handler table stack, and
the event dies.

Tasking Models 1

Before reading this section, you should be familiar with the accompanying
document Microkernel and Core System Services. As that document explains,
every program has a main task and may have additional tasks. Only the main
task of a cooperative program can specify the default Apple event dispatcher
when it calls AEReceive. You can associate additional tasks with other
dispatchers to take advantage of preemptive scheduling for processing that
doesn’t involve your application’s human interface.

When any task calls AEReceive, the task specifies the Apple event dispatcher
(and thus the event queue) in which it’s interested. You can associate tasks with
Apple event dispatchers in three principal ways:

■ one task and one dispatcher

■ multiple tasks and multiple dispatchers

■ multiple tasks and one dispatcher

The sections that follow introduce these tasking models.

Identifying the particular arrangement of tasks and dispatchers appropriate for
your program is a design decision. The first two models are appropriate for
both cooperative programs and server programs. The third model, which
associates multiple tasks with a single dispatcher, is intended for use by server
programs only. All three models may be combined in various ways to support
more complex relationships among tasks and dispatchers and to assign
operations to server programs. The Mac OS 8 event model makes it easy to
construct a multitasking “back end” for an application.
The Mac OS 8 Event Model 1-11
Draft. Apple Computer, Inc. 4/22/96

C H A P T E R 1

Introduction to the Mac OS 8 Event Model
One Task, One Dispatcher 1

Figure 1-2 shows the simplest case: a main task associated with the default
Apple event dispatcher associated with a process.

Figure 1-2 One task, one dispatcher

The arrangement shown in Figure 1-2 superficially resembles a System 7 event
loop in the sense that a single task is responsible for all event handling. In
Mac OS 8, the role played by the event loop in System 7 has been transferred to
AEReceive, which blocks the main task until an event for which its dispatcher
has a handler arrives.The Apple Event Manager the wakes the main task and
runs the handler.

Multiple Tasks, Multiple Dispatchers 1

A dispatcher and its handlers represent one kind of behavior or set of activities
that your application can perform. For example, you must associate an
application’s main task with a single dispatcher for all handlers that use
cooperative services, as in Figure 1-2.

It’s also possible to create additional dispatchers for one or more additional
tasks that use reentrant services only. Figure 1-3 illustrates this arrangement.
Another alternative is to create additional tasks for a single dispatcher, as
described in “Multiple Tasks, One Dispatcher” (page 1-14).

AEReceive Default process
dispatcher Handlers

Initialization

Main
task
1-12 The Mac OS 8 Event Model

Draft. Apple Computer, Inc. 4/22/96

C H A P T E R 1

Introduction to the Mac OS 8 Event Model
Figure 1-3 Multiple tasks, multiple dispatchers

You can implement the tasking model shown in Figure 1-3 in several ways. It’s
possible, for example, to route events to a particular dispatcher. All human
interface events must be routed through an application’s default process
dispatcher, but you can route other events to other dispatchers in any way you
wish.

All events are sent to the default dispatcher initially. Its handlers forward
certain events to one or more additional dispatchers. For example, a graphics
program might have a menu command that transforms an image in some way
by performing a series of calculations. The handler invoked by that command
can in turn send an Apple event to a different dispatcher associated with a
separate task that actually performs the calculations. The main task is then free
to continue responding to the user’s manipulation of the human interface
while the second task, which doesn’t involve the human interface, continues to
execute in the background.

When the second task needs to inform the user of its progress, the handler
that’s performing the calculation can send an event back to the default process

Main
task

Additional
task 1

Additional
task 2

AEReceive Additional
dispatcher 1 Handlers

AEReceive

Default process
dispatcher Handlers

Additional
dispatcher 2 Handlers

AEReceive
The Mac OS 8 Event Model 1-13
Draft. Apple Computer, Inc. 4/22/96

C H A P T E R 1

Introduction to the Mac OS 8 Event Model
dispatcher to update a progress indicator. Similarly, when the handler has
completed its calculations, it can send an event back to the default process
dispatcher to invoke the handler that actually draws the transformed image.

Because Mac OS 8 permits an application to use multiple tasks in addition to a
single main task, the graphics application in this example could actually
perform transformation calculations on several different images, starting each
calculation at a different time and performing them all concurrently. Thus, the
main task could be drawing the results of one calculation to the screen while
another task is in the middle of calculating a transformation for a second image
and still another task is just beginning to calculate a transformation for a third
image. In effect this kind of arrangement allows you to create a “server within
the application,” even though the additional tasks don’t necessarily have to be
implemented as independent server programs in their own address spaces.

Because of the way the Mac OS 8 microkernel schedules tasks in this kind of
situation, you can ensure that your application continues to be highly
responsive to user actions even while additional tasks are executing—unlike
System 7, in which background processing can seriously interfere with the
application’s responsiveness.

Multiple Tasks, One Dispatcher 1

Figure 1-4 shows multiple tasks calling AEReceive with the same dispatcher.
Each task has its own entry point and begins executing at a different time. The
tasks don’t necessarily have to be identical, but they must use the same set of
handlers provided by the dispatcher and must all be equally qualified to deal
with incoming events. All handlers in a dispatcher that is shared in this way
must be fully reentrant.
1-14 The Mac OS 8 Event Model

Draft. Apple Computer, Inc. 4/22/96

C H A P T E R 1

Introduction to the Mac OS 8 Event Model
Figure 1-4 Multiple tasks, one dispatcher

This arrangement is most useful for server programs. For example, a database
that receives requests continuously from several sources can spawn a series of
identical tasks associated with the same Apple event dispatcher. All these tasks
share the same stack of handler tables. The Apple event dispatcher pairs each
task with each incoming request and looks up the corresponding handler in the
stack of handler tables. As each task resumes execution, it can execute at the
same time, if necessary, that previously woken tasks are executing. Thus, the
database can handle a series of requests simultaneously.

The tasking model shown in Figure 1-4 is not appropriate for most cooperative
programs.

Task 1

Task 2

Task 3

AEReceive Apple event
dispatcher

Handlers

AEReceive

AEReceive
The Mac OS 8 Event Model 1-15
Draft. Apple Computer, Inc. 4/22/96

C H A P T E R 1

Introduction to the Mac OS 8 Event Model
Benefits of the Mac OS 8 Event Model 1

Supporting the Mac OS 8 event model allows you to take advantage of all the
human interface features provided by the Mac OS 8 Toolbox. The Mac OS 8
event model also provides these benefits:

■ The use of blocking rather than polling improves performance for all
applications running on the same machine and takes maximum advantage
of priority-based preemptive scheduling.

■ The use of Apple event handlers rather than event masks to distinguish
events permits a much larger name space for events. This ensures that Apple
can provide new default handlers and new behaviors with minimum impact
on existing applications and also makes it easier to create specialized events
for your own purposes.

■ The use of Apple events throughout the system simplifies the programming
you have to do to make your application scriptable and recordable.

■ Events are always sent and dispatched the same way, which simplifies the
overall Mac OS programming model.

■ You can use the Mac OS 8 event model to construct a multitasking back end
for your application.

Although Mac OS 8 supports the classic Event Manager for backward
compatibility, many new Toolbox features require the new event model, and
much of the information conveyed by Mac OS 8 Apple events is lost in the
translation to classic events.

More information about the Mac OS 8 event model will be available with later
developer releases. The best way to prepare your System 7 application for
Mac OS 8 events is to support Apple events as described in Inside Macintosh:
Interapplication Communication, including factoring your application and
making it fully scriptable and recordable.
1-16 The Mac OS 8 Event Model

Draft. Apple Computer, Inc. 4/22/96

C H A P T E R 1

Introduction to the Mac OS 8 Event Model
Using the Mac OS 8 Event Model 1

This section introduces some of the functions provided by the Apple Event
Manager that you can use to implement your application’s event handling. For
detailed descriptions of these functions, see “Apple Event Communications
Model Reference” (page 2-3).

Manipulating Dispatchers, Handler Tables, and Handlers 1

To get the default Apple event dispatcher for your application’s process, use
AEGetDefaultDispatcher. If you need to create your own dispatcher, use
AECreateEventDispatcher. Both functions return a dispatcher reference that you
can use to refer to the dispatcher when you call other functions. When you’re
finished with a dispatcher that you’ve created with AECreateEventDispatcher,
use the AEDisposeEventDispatcher function to dispose of it.

To create a handler table, use AENewHandlerTable (for a nonfiltered table) or
AENewFilterHandlerTable (for a filtered table). Both functions return a handler
table reference that you can use to refer to the table when you call other
functions. When you’re finished with a handler table, use the
AEDisposeHandlerTable function to dispose of it.

To add handlers to a handler table, use AEInstallHandler. To add a handler
table to the top of a dispatcher’s handler table stack, use
AEPushDispatcherHandlerTable; to remove it from the stack, use
AEPopDispatcherHandlerTable. To find out what handler table is currently on
top of a handler table stack, use AEGetDispatcherTopHandlerTable.

Event Dispatching for Modal States 1

Applications commonly modify the way they respond to events for short
periods of time. For example, when a user chooses a pencil tool from a palette
of tools provided by a painting program, then presses and holds the mouse
button and moves the pencil tool around in a window, the application must
track the pencil’s movement until the mouse button is released. While it’s
tracking mouse movement, the application can’t deal immediately with some
of the events it may receive, such as an Open Document event. However, it
may need to handle other events, such as Update events, right away. After the
Using the Mac OS 8 Event Model 1-17
Draft. Apple Computer, Inc. 4/22/96

C H A P T E R 1

Introduction to the Mac OS 8 Event Model
user releases the mouse button, the application needs to resume handling of
the events that arrived while the pencil tool was in use.

You can suspend events temporarily in this kind of modal situation by pushing
and popping a filtered handler table. When the modal state begins—for
example, in response to a Mouse Down in Content event—the handler for the
event calls AEPushDispatcherHandlerTable to add a filtered handler table on top
of the dispatcher’s handler table stack. The handler then calls AEReceive, which
blocks the calling task until an event with an entry in the filtered table arrives.

The call to AEReceive from the handler occurs within a previous call to
AEReceive by the application’s main task. Whenever the Apple Event Manager
encounters a filtered handler table on the handler table stack, it suspends any
incoming events that don’t have entries in that table until a call to
AEPopDispatcherHandlerTable removes it. Only the events that are relevant to
the modal state get handled, and other events wait in the dispatcher’s event
queue until the modal state ends.

In the pencil example, you could create a filtered table with handlers for the
Mouse Move, Update, and Mouse Up events. After you add this handler table
to the handler table stack, the Apple Event Manager dispatches those events to
their handlers, so the user can draw with the pencil and the screen will get
updated as the mouse moves, but all other events wait in the event queue until
the modal state ends.

The modal state ends when a handler installed in the filtered handler table—in
this example, the Mouse Up handler—returns the result code
errAEReceiveEscapeCurrent. When it receives this result code, the original
Mouse Down in Content handler’s call to AEReceive returns, the handler calls
AEPopDispatcherHandlerTable, and the Apple Event Manager dispatches the
suspended events in the order in which they were received. The calling task
continues to block on its original call to AEReceive, which passes incoming
events to the dispatcher just as it did before the modal state began.

You can also use the result code errAEReceiveEscapeCurrent to force the
highest-level call to AEReceive to return. For example, a handler for a Quit
Application event can return errAEReceiveEscapeCurrent to the main task’s
original call to AEReceive. This forces AEReceive to return, which allows the
application’s main function to return, which in turn allows the system to clean
up. Alternatively, the Quit Application handler can call ExitToShell directly.

The HI object class HIDialog automatically performs most of the operations
described here when you create a modal or movable modal dialog box. For
more information, see the accompanying document Human Interface Toolbox.
1-18 Using the Mac OS 8 Event Model

Draft. Apple Computer, Inc. 4/22/96

C H A P T E R 2

Contents

Draft. Apple Computer, Inc. 4/22/96

Contents
Figure 2-0
Listing 2-0
Table 2-0
2 Apple Event Communications
Model Reference
Apple Event Communications Constants and Data Types 2-3
Apple Event Dispatchers 2-3

Dispatcher References 2-3
Dispatcher IDs 2-4

Handler Table References 2-4
Receive Modes 2-5
Constants for Use With Send Functions 2-5

Apple Event Send Options 2-5
Apple Event Send Priorities 2-6

Apple Event Handler 2-7
Apple Event Communications Functions 2-7

Creating and Manipulating Apple Event Dispatchers 2-10
AEGetDefaultDispatcher 2-10
AECreateEventDispatcher 2-11
AEGetEventDispatcherID 2-13
AEDisposeEventDispatcher 2-14

Creating and Manipulating Handler Tables 2-16
Creating, Getting, and Disposing of Handler Tables 2-16

AENewHandlerTable 2-17
AENewFilterHandlerTable 2-18
AEGetHandlerTableRefCon 2-20
AEShareHandlerTable 2-21
AEDisposeHandlerTable 2-23

Installing, Getting, and Removing Handlers 2-24
AEInstallHandler 2-24
AEGetHandler 2-26
AERemoveHandler 2-28
2-1

C H A P T E R 2
Pushing and Popping Handler Tables 2-29
AEPushDispatcherHandlerTable 2-30
AEPopDispatcherHandlerTable 2-31
AEGetDispatcherTopHandlerTable 2-33

Receiving Events 2-34
AEReceive 2-34

Sending Events 2-35
AESendEvent 2-37
AESendEventQueueReply 2-39
AESendEventToSelf 2-41

Application-Defined Function 2-42
MyEventHandler 2-42

Apple Event Manager Result Codes 2-44
2-2 Contents

Draft. Apple Computer, Inc. 4/22/96

C H A P T E R 2
Apple Event Communications Model Reference 2

Apple Event Communications Constants and Data Types 2

This section describes constants and data types defined by the Mac OS 8 Apple
Event Manager for manipulating Apple event dispatchers and handler tables
and for receiving and sending Apple events.

For an introduction to the role of Apple events in Mac OS 8, see “Introduction
to the Mac OS 8 Event Model” (page 1-3).

Apple Event Dispatchers 2

Dispatcher references identify dispatchers within the scope of a program’s
process, and dispatcher IDs identify a program’s dispatchers to sources of
Apple events outside of its process. Dispatcher references provide maximum
efficiency within a process.

For an introduction to the role of Apple event dispatchers, see “The Mac OS 8
Event Model” (page 1-6).

Dispatcher References 2

Every task that calls the AEReceive function (page 2-34) must provide a
reference to an Apple event dispatcher as an input parameter. A reference to an
Apple event dispatcher, which must be created by AECreateEventDispatcher
(page 2-11) or AEGetDefaultDispatcher (page 2-10), identifies a particular
dispatcher within a single process.

typedef struct OpaqueAEDispatcher* AEDispatcher;

Several other Apple Event Manager functions, including
AEGetDispatcherTopHandlerTable (page 2-33), AEPushDispatcherHandlerTable
(page 2-30), and AEPopDispatcherHandlerTable (page 2-31), also take a
dispatcher reference as an input parameter.

Dispatcher references provide maximum efficiency within the scope of a single
process. To refer to a dispatcher in a manner that remains valid for any process,
you must use a dispatcher ID.
Apple Event Communications Constants and Data Types 2-3
Draft. Apple Computer, Inc. 4/22/96

C H A P T E R 2

Apple Event Communications Model Reference
Dispatcher IDs 2

If you need to identify one of your program’s dispatchers for use outside the
scope of your program, for example by a server program from which you are
requesting a service, you must use a dispatcher ID rather than a dispatcher
reference.

typedef struct OpaqueAEDispatcherID* AEDispatcherID;

For example, when you specify the address of the reply event for
AESendEventQueueReply, you must use a dispatcher ID if you want to specify a
specific dispatcher as the target of the reply event, because the dispatcher can
potentially be any dispatcher in any process.

To get a dispatcher ID for one of the dispatchers associated with your program,
you pass a dispatcher reference to the AEGetEventDispatcherID function
(page 2-13).

Handler Table References 2

The stack of Apple event handler tables provided by each Apple event
dispatcher consists of a default handler table plus additional handler tables,
such as those installed by an application.

A reference to a handler table, which is first allocated by AENewHandlerTable
(page 2-17) or AENewFilterHandlerTable (page 2-18), identifies a particular
handler table.

typedef struct OpaqueAEHandlerTable* AEHandlerTableRef;

You can use this reference with the AEInstallHandler (page 2-24),
AEPushDispatcherHandlerTable (page 2-30), and AEPopDispatcherHandlerTable
(page 2-31) functions to add handlers to the table and to add the table to or
remove it from a particular dispatcher’s handler table stack.

To get a new reference to an existing handler table, use the AEShareHandlerTable
function (page 2-21). AEShareHandlerTable increments the reference count for
the handler table and returns a new reference. When you are finished with any
reference to a handler table, call the AEDisposeHandlerTable function
(page 2-23). AEDisposeHandlerTable decrements the reference count, disposing
of the original object only when the reference count reaches 0.
2-4 Apple Event Communications Constants and Data Types

Draft. Apple Computer, Inc. 4/22/96

C H A P T E R 2

Apple Event Communications Model Reference
Receive Modes 2

When you call the AEReceive function (page 2-34), you specify in the
receiveMode parameter how long you want the call to AEReceive to last.

The enumerators for receive modes are defined by the AEReceiveMode data type.

typedef UInt32 AEReceiveMode;
enum {

kAEReceiveForever = 0x00000000,
kAEReceiveOneEvent = 0x00000001,

};

Enumerator descriptions

kAEReceiveForever Receive events until the calling task terminates, a handler
returns an error, or a handler intentionally terminates the
call to AEReceive by returning errAEReceiveEscapeCurrent.
This is the most commonly used receive mode.

kAEReceiveOneEvent Receive a single event, then return. This can be useful, for
example, for an additional task spawned by a main task to
handle a single event.

Constants for Use With Send Functions 2

Apple Event Send Options 2

The AESendEvent (page 2-37), AESendEventQueueReply (page 2-39), and
AESendEventToSelf (page 2-41) functions allow you to specify several options of
type AESendOptions when you send an event.

typedef OptionBits AESendOptions;
enum {

kAENeverInteract = 0x00000010,
kAECanInteract = 0x00000020,
kAEAlwaysInteract = 0x00000030,
kAECanSwitchLayer = 0x00000040,
kAEDontRecord = 0x00001000,
kAEDontExecute = 0x00002000

};
Apple Event Communications Constants and Data Types 2-5
Draft. Apple Computer, Inc. 4/22/96

C H A P T E R 2

Apple Event Communications Model Reference
Enumerator descriptions

The enumerators kAENeverInteract, kAECanInteract, kAEAlwaysInteract, and
kAECanSwitchLayer are supported as documented in Inside Macintosh:
Interapplication Communication for backward compatibility only. Information
about the way the Mac OS 8 Apple Event Manager handles user interaction
will be available with later developer releases. Mac OS 8 fully supports the
kAEDontRecord and kAEDontExecute options.

kAEDontRecord Your application is sending an event to itself but does not
want the event recorded. When Apple event recording is
on, the Apple Event Manager records a copy of every
event your application sends to itself except for those
events for which this option is set.

kAEDontExecute Your application is sending an Apple event to itself for
recording purposes only—that is, you want the Apple
Event Manager to send a copy of the event to the recording
process but you do not want your application actually to
receive the event.

Apple Event Send Priorities 2

The AESendEvent (page 2-37) and AESendEventQueueReply (page 2-39) functions
allow you to specify priorities of type AESendPriority when you send an event.

typedef SInt16 AESendPriority;
enum {

kAENormalPriority = 0x00000000, /* post event at back of event queue */
kAEHighPriority = 0x00000001 /* post event at front of event queue */

};

Enumerator descriptions

kAENormalPriority Post event in the normal fashion at the back of the event
queue, so it gets handled after all other pending events.

kAEHighPriority Post event at the front of the event queue, so it gets
handled before any other pending events.
2-6 Apple Event Communications Constants and Data Types

Draft. Apple Computer, Inc. 4/22/96

C H A P T E R 2

Apple Event Communications Model Reference
Apple Event Handler 2

For each Apple event you want your program to handle, you must provide an
Apple event handler. An Apple event handler performs any action requested
by the Apple event, adds parameters to the reply Apple event if appropriate,
and returns a result code.

typedef OSStatus (*AEEventHandlerProc)(
const AppleEvent *theAppleEvent,
AppleEvent *reply,
void *handlerRefcon,
AEHandlerTableRef handlerTable);

You use the AEInstallHandler function (page 2-24) to install an Apple event
handler in a handler table, and the AEPushDispatcherHandlerTable function
(page 2-30) to add a handler table to a particular dispatcher’s stack of handler
tables. For information about writing your own Apple event handlers, see
“Application-Defined Function” (page 2-42).

Apple Event Communications Functions 2

This section describes the Apple Event Manager functions you can use in
Mac OS 8 to send, receive, dispatch, and handle Apple events.

When first launched, your program creates one or more Apple event handler
tables and installs them in one or more Apple event dispatchers. The handler
tables inform the Apple Event Manager which events your program is
interested in receiving, and the handlers identified by the table entries define
your program’s responses to different kinds of events.

To manipulate Apple event dispatchers and install handler tables in them, use
the functions described in “Creating and Manipulating Apple Event
Dispatchers” (page 2-10) and “Creating and Manipulating Handler Tables”
(page 2-16).

After your program has installed its handler tables, any tasks it creates call the
AEReceive function (page 2-34), which blocks the calling task until an event
your program can handle arrives.

Before you can send an Apple event, you must create it using functions
described in Inside Macintosh: Interapplication Communication. After you have
Apple Event Communications Functions 2-7
Draft. Apple Computer, Inc. 4/22/96

C H A P T E R 2

Apple Event Communications Model Reference
created an Apple event, you can use one of the three functions described in
“Sending Events” (page 2-35) to send it.

Table 2-1 summarizes the functions described in this chapter and the System 7
functions they replace. The new functions allow you to take full advantage of
the Mac OS 8 event model.

Table 2-1 Apple event communications functions: System 7 compared with
Mac OS 8

Programming
domain System 7 functions Equivalent functions in Mac OS 8

Manipulating
system and
application
dispatch tables

System 7 uses system and
application Apple event dispatch
tables to dispatch events.

System 7 defines these functions
for creating and maintaining
system and application dispatch
tables:

AEInstallEventHandler
AEGetEventHandler
AERemoveEventHandler

Mac OS 8 uses Apple event
dispatchers and Apple event
handler tables to dispatch events.

Mac OS 8 replaces the System 7
functions related to dispatching
with these functions:

AEGetDefaultDispatcher
AECreateEventDispatcher
AEGetEventDispatcherID
AEDisposeEventDispatcher

AENewHandlerTable
AENewFilterHandlerTable
AEDisposeHandlerTable

AEInstallHandler
AERemoveHandler
AEGetHandler

AEPushDispatcherHandlerTable
AEPopDispatcherHandlerTable
AEGetDispatcherTopHandlerTable

These functions are described in
“Creating and Manipulating
Apple Event Dispatchers”
(page 2-10) and “Creating and
Manipulating Handler Tables”
(page 2-16).
2-8 Apple Event Communications Functions

Draft. Apple Computer, Inc. 4/22/96

C H A P T E R 2

Apple Event Communications Model Reference
Manipulating
special handler
dispatch tables

System 7 defines these functions
for creating and maintaining the
special handler dispatch tables:

AEInstallSpecialHandler
AEGetSpecialHandler
AERemoveSpecialHandler

These functions are used for
specialized handlers, including
object callback functions.

Mac OS 8 defines these functions
for creating and maintaining
object callback functions:

AEInstallSpecialCallback
AEGetSpecialCallback
AERemoveSpecialCallback

Documentation for these
functions will be provided with
later developer releases.

Suspending and
resuming event
handling

System 7 defines these functions
for suspending and resuming
event handling:

AESuspendTheCurrentEvent
AEResumeTheCurrentEvent
AESetTheCurrentEvent
AEGetTheCurrentEvent

Mac OS 8 supports suspension
and resumption of event handling
for specific events by means of
filtered handler tables.

Mac OS 8 replaces the System 7
functions for suspending and
resuming event handling with
AENewFilterHandlerTable and
related functions listed above for
manipulating handler tables.

Receiving and
processing
Apple events

In System 7, all events are
received by the function
WaitNextEvent, which
continuously polls the system for
new events. Apple events are
then dispatched separately by
AEProcessAppleEvent.

Mac OS 8 provides a single
“bottleneck” function, AEReceive,
that blocks the calling task until
an event in which your program is
interested arrives.

Sending Apple
events

System 7 defines the function
AESend for sending Apple events.

Mac OS 8 defines these functions
for sending Apple events:

AESendEvent
AESendEventQueueReply
AESendEventToSelf

Table 2-1 Apple event communications functions: System 7 compared with
Mac OS 8

Programming
domain System 7 functions Equivalent functions in Mac OS 8
Apple Event Communications Functions 2-9
Draft. Apple Computer, Inc. 4/22/96

C H A P T E R 2

Apple Event Communications Model Reference
Creating and Manipulating Apple Event Dispatchers 2

Every process has a default Apple event dispatcher used by the program’s
main task, and you can install additional dispatchers as necessary. You must
specify the dispatcher you want to use when you call the AEReceive function
(page 2-34).

To get a reference to the default process dispatcher, use the
AEGetDefaultDispatcher function (page 2-10). To create one or more additional
dispatchers for use by your program, use the AECreateEventDispatcher function
(page 2-11). To dispose of any dispatcher created by AECreateEventDispatcher,
use the AEDisposeEventDispatcher function (page 2-14). You cannot dispose of a
default dispatcher.

If you need to identify one of your program’s dispatchers for use by a different
program, such as a server program from which you are requesting a service,
you must use a dispatcher ID rather than a dispatcher reference. Dispatcher
references are valid only within a single process, whereas dispatcher IDs are
valid across all processes. To get a dispatcher’s ID, you pass a dispatcher
reference to the AEGetEventDispatcherID function (page 2-13).

To get a reference to the dispatcher associated with a window, use the
window’s GetEventDispatcher method. Documentation for the HI object class
HIWindow will be available with later developer releases.

Every Apple event dispatcher has a default handler table at the bottom of the
handler table stack. You can use the functions described under “Creating and
Manipulating Handler Tables” (page 2-16) to add your own handler tables to a
handler table stack.

AEGetDefaultDispatcher 2

Returns a reference to the default Apple event dispatcher associated with a
process.

AEDispatcherRef AEGetDefaultDispatcher (void);

function result A reference to the default dispatcher created automatically
when the process associated with your program was created.
For more information, see “Dispatcher References” (page 2-3).
2-10 Apple Event Communications Functions

Draft. Apple Computer, Inc. 4/22/96

C H A P T E R 2

Apple Event Communications Model Reference
DISCUSSION

Every process has a default Apple event dispatcher. The Apple Event Manager
disposes of the default dispatcher when your program terminates; you
shouldn’t attempt to dispose of it yourself.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

AEGetDefaultDispatcher cannot be called by hardware interrupt handlers or
secondary interrupt handlers.

SEE ALSO

For an overview of related functions, see “Creating and Manipulating Apple
Event Dispatchers” (page 2-10).

For an introduction to the role of dispatchers, see “Apple Event Dispatchers”
(page 1-8).

AECreateEventDispatcher 2

Creates a new Apple event dispatcher.

OSStatus AECreateEventDispatcher (
AEDispatcherRef *newDispatcher,
MemAllocatorRef allocator);

newDispatcher A pointer to a dispatcher reference. On output, the reference
identifies the new dispatcher. For more information, see
“Dispatcher References” (page 2-3).

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
Apple Event Communications Functions 2-11
Draft. Apple Computer, Inc. 4/22/96

C H A P T E R 2

Apple Event Communications Model Reference
allocator A reference to a memory allocator. A memory allocator specifies
a memory allocation policy defined by your program. If you
want the Apple Event Manager to use its default allocation
policy, pass NIL in this parameter. If you want the Apple Event
Manager to use some other allocation policy, pass a reference to
the allocator for that policy in this parameter.

function result A result code. See “Apple Event Manager Result Codes”
(page 2-44) for a list of possible result codes.

DISCUSSION

A Mac OS 8 application always has a main task and may create additional tasks
that perform specialized processing on behalf of the main task. It is usually
desirable to associate these additional tasks with additional dispatchers. This
arrangement allows an application to use additional tasks for specialized
services, such as graphics calculations or database operations, without slowing
down the application’s responsiveness from a user’s point of view.

A Mac OS 8 server program also has a main task and may create additional
tasks that perform specialized processing on behalf of the main task. Server
programs can use a variety of tasking models.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

AECreateEventDispatcher cannot be called by hardware interrupt handlers or
secondary interrupt handlers.

SEE ALSO

For an overview of related functions, see “Creating and Manipulating Apple
Event Dispatchers” (page 2-10).

For an introduction to the role of dispatchers, see “Apple Event Dispatchers”
(page 1-8).

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
2-12 Apple Event Communications Functions

Draft. Apple Computer, Inc. 4/22/96

C H A P T E R 2

Apple Event Communications Model Reference
For an introduction to Mac OS 8 tasking models and the role of Apple event
dispatchers in managing tasks, see “Tasking Models” (page 1-11).

AEGetEventDispatcherID 2

Gets the dispatcher ID that corresponds to a given dispatcher reference.

OSStatus AEGetEventDispatcherID (AEDispatcherRef dispatcher,
AEDispatcherID *globalIdentity);

dispatcher A dispatcher reference. On input, you supply the dispatcher
reference for which you want to obtain an equivalent dispatcher
ID. For more information, see “Dispatcher References”
(page 2-3).

globalIdentity
A pointer to a dispatcher ID. On output, this parameter
contains the dispatcher ID that corresponds to the dispatcher
reference passed in the dispatcher parameter. For more
information, see “Dispatcher IDs” (page 2-4).

function result A result code. See “Apple Event Manager Result Codes”
(page 2-44) for a list of possible result codes.

DISCUSSION

Dispatcher references are valid only within a single process, whereas
dispatcher IDs are valid across all processes. You must use dispatcher
references with Apple Event Manager functions to manipulate your program’s
dispatchers. Dispatcher references provide an optimized means of
identification within a single process, but they aren’t valid as targets for events
sent from other processes. If you need to identify one of your program’s
dispatchers in events sent from other processes, you must use a dispatcher ID
rather than a dispatcher reference.

For example, the main task for a database application might use the
AESendEventQueueReply function (page 2-39) to send a connection request event
to a database engine running on a different computer. The main task could
also spawn an additional task, with its own separate dispatcher, that performs
Apple Event Communications Functions 2-13
Draft. Apple Computer, Inc. 4/22/96

C H A P T E R 2

Apple Event Communications Model Reference
a database search when the database engine returns the event that establishes
the connection.

To specify the address of this additional task’s dispatcher for use by the
database engine when it returns the connection event, the main task of the
database application must first pass the dispatcher reference to
AEGetEventDispatcherID to get a dispatcher ID. Although the dispatcher
reference is valid within the database application, only the equivalent
dispatcher ID is valid for sending the event from the database engine back to
one of the original application’s dispatchers.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

AEGetEventDispatcherID cannot be called by hardware interrupt handlers or
secondary interrupt handlers.

SEE ALSO

For an overview of related functions, see “Creating and Manipulating Apple
Event Dispatchers” (page 2-10).

For an introduction to the role of dispatchers, see “Apple Event Dispatchers”
(page 1-8).

AEDisposeEventDispatcher 2

Disposes of an Apple event dispatcher previously created with
AECreateEventDispatcher.

OSStatus AEDisposeEventDispatcher (AEDispatcher deadDispatcher);

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
2-14 Apple Event Communications Functions

Draft. Apple Computer, Inc. 4/22/96

C H A P T E R 2

Apple Event Communications Model Reference
deadDispatcher
A reference to the Apple event dispatcher you want to dispose
of. For more information, see “Dispatcher References”
(page 2-3).

function result A result code. See “Apple Event Manager Result Codes”
(page 2-44) for a list of possible result codes.

DISCUSSION

You must use the AEDisposeEventDispatcher function to dispose of any
dispatcher that you create with the AECreateEventDispatcher function. Do not
use AEDisposeEventDispatcher to dispose of the default dispatcher, which the
Apple Event Manager disposes of when your program terminates.

You can only dispose of dispatchers associated with your program. Dispatcher
references for dispatchers in other processes won’t work with
AEDisposeEventDispatcher or with any other function that takes a dispatcher
reference.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

AEDisposeEventDispatcher cannot be called by hardware interrupt handlers or
secondary interrupt handlers.

SEE ALSO

For an overview of related functions, see “Creating and Manipulating Apple
Event Dispatchers” (page 2-10).

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
Apple Event Communications Functions 2-15
Draft. Apple Computer, Inc. 4/22/96

C H A P T E R 2

Apple Event Communications Model Reference
Creating and Manipulating Handler Tables 2

Creating, Getting, and Disposing of Handler Tables 2

You can create two kinds of Apple event handler tables:

■ Nonfiltered handler table. When a nonfiltered handler table contains no
handler for a particular event, the event is passed on to the next event
handler table in the handler table stack. To create a new nonfiltered handler
table, use the AENewHandlerTable function (page 2-17).

■ Filtered handler table. When a filtered table contains no handler for a
particular event, the event is immediately suspended but remains in the
event queue to be handled at a later time. To create a new filtered table, use
the AENewFilterHandlerTable function (page 2-18).

Nonfiltered tables are appropriate for most situations. Filtered handler tables
are useful when your program is in a modal state and you want to suspend
handling of certain events. For an introduction to the role of handler tables, see
“Apple Event Dispatchers” (page 1-8).

When you create any new handler table, you can associate a reference constant
with it. For example, if your program installs the same handler in more than
one handler table, you can use the handler table reference constant to identify
which handler table the handler has been invoked from. To get the reference
constant associated with a table, use the AEGetHandlerTableRefCon function
(page 2-20).

It is often convenient to share a single handler table among several dispatchers.
The Apple Event Manager provides life cycle management for handler tables.
To do so, it keeps track of references to every handler table your program
creates, incrementing the table’s reference count whenever a new reference gets
created and decrementing the count whenever a reference gets released.

To get a new reference to an existing handler table, use the AEShareHandlerTable
function (page 2-21). AEShareHandlerTable increments the reference count for
the handler table and returns a new reference. When you are finished with any
reference to a handler table, call the AEDisposeHandlerTable function
(page 2-23). AEDisposeHandlerTable decrements the reference count, disposing
of the original object only when the reference count reaches 0.
2-16 Apple Event Communications Functions

Draft. Apple Computer, Inc. 4/22/96

C H A P T E R 2

Apple Event Communications Model Reference
Every call to AENewHandlerTable, AENewFilterHandlerTable, or
AEShareHandlerTable must be matched by an equivalent call to
AEDisposeHandlerTable.

AENewHandlerTable 2

Creates an empty nonfiltered Apple event handler table.

OSStatus AENewHandlerTable (
AEHandlerTableRef *newTable
void *refCon);

newTable A pointer to a handler table reference. On output, the reference
identifies the new handler table. You can pass this reference to
the AEInstallHandler function (page 2-24) to add handlers to
the handler table.

refCon A reference constant. On input, you supply whatever reference
constant you want to associate with the table. This may consist
either of a pointer to another data structure or a simple value;
interpretation of the reference constant is entirely up to your
program.

function result A result code. See “Apple Event Manager Result Codes”
(page 2-44) for a list of possible result codes.

DISCUSSION

The AENewHandlerTable function creates a new nonfiltered handler table. The
table doesn’t contain any handlers until you add them explicitly with the
AEInstallHandler function.

When a nonfiltered table contains no handler for a particular event, or if it
contains a handler that returns errAEEventNotHandled, the Apple Event
Manager continues searching the remaining handler tables in the handler table
stack. In general, you should use nonfiltered handler tables unless your
program is in a modal state and you want to temporarily suspend events for
which the table has no handlers.
Apple Event Communications Functions 2-17
Draft. Apple Computer, Inc. 4/22/96

C H A P T E R 2

Apple Event Communications Model Reference
The handler table reference identified by the newTable parameter is exactly the
same as a shared reference obtained with the AEShareHandlerTable function
(page 2-21). That is, it is a shared reference to a handler table with a reference
count of 1, so that a subsequent call to AEDisposeHandlerTable reduces the
reference count to 0 and thus causes the Apple Event Manager to deallocate the
table.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

AENewHandlerTable cannot be called by hardware interrupt handlers or
secondary interrupt handlers.

SEE ALSO

For an overview of related functions, see “Creating, Getting, and Disposing of
Handler Tables” (page 2-16).

To add any handler table to the handler table stack associated with a particular
dispatcher, use the AEPushDispatcherHandlerTable function (page 2-30).

For an introduction to the role of handler tables, see “Apple Event Dispatchers”
(page 1-8).

AENewFilterHandlerTable 2

Creates an empty filtered Apple event handler table.

OSStatus AENewFilterHandlerTable (
AEHandlerTableRef *newTable
void *refCon);

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
2-18 Apple Event Communications Functions

Draft. Apple Computer, Inc. 4/22/96

C H A P T E R 2

Apple Event Communications Model Reference
newTable A pointer to a filtered handler table reference. On output, the
reference identifies the new filtered handler table. You can pass
this reference to the AEInstallHandler function (page 2-24) to
add handlers to the handler table.

refCon A pointer to a reference constant. On input, you supply
whatever reference constant you want to associate with the
table. This may consist either of a pointer to another data
structure or a simple value; interpretation of the reference
constant is entirely up to your program.

function result A result code. See “Apple Event Manager Result Codes”
(page 2-44) for a list of possible result codes.

DISCUSSION

The AENewFilterHandlerTable function creates a new filtered handler table. The
table doesn’t contain any handlers until you add them explicitly with the
AEInstallHandler function.

When a filtered table contains no handler for a particular event, the event is
immediately suspended but remains in the event queue to be handled at a later
time. Filtered handler tables are useful when your program is in a modal state
and you want to suspend temporarily events for which the table has no
handlers.

The handler table reference identified by the newTable parameter is exactly the
same as a shared reference obtained with the AEShareHandlerTable function
(page 2-21). That is, it is a shared reference to a filtered handler table with a
reference count of 1, so that a subsequent call to AEDisposeHandlerTable reduces
the reference count to 0 and thus causes the Apple Event Manager to deallocate
the table.

EXECUTION ENVIRONMENT

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
Apple Event Communications Functions 2-19
Draft. Apple Computer, Inc. 4/22/96

C H A P T E R 2

Apple Event Communications Model Reference
CALLING RESTRICTIONS

AENewFilterHandlerTable cannot be called by hardware interrupt handlers or
secondary interrupt handlers.

SEE ALSO

For an overview of related functions, see “Creating, Getting, and Disposing of
Handler Tables” (page 2-16).

To add handlers to any handler table, use the AEInstallHandler function
(page 2-24).

To add any handler table to the handler table stack associated with a particular
dispatcher, use the AEPushDispatcherHandlerTable function (page 2-30).

For an introduction to filtered handler tables and modal states, see “Event
Dispatching for Modal States” (page 1-17).

AEGetHandlerTableRefCon 2

Gets a handler table’s reference constant.

OSStatus AEGetHandlerTableRefCon(
AEHandlerTableRef table,
void **refCon);

table A reference to the handler table whose reference constant you
want to identify. For more information, see “Handler Table
References” (page 2-4).

refCon A pointer to a reference constant. On output, the reference
constant is the one that was associated with the handler table
when it was created.

function result A result code. See “Apple Event Manager Result Codes”
(page 2-44) for a list of possible result codes.
2-20 Apple Event Communications Functions

Draft. Apple Computer, Inc. 4/22/96

C H A P T E R 2

Apple Event Communications Model Reference
DISCUSSION

When you create any new handler table, you can associate a reference constant
with it for use by your program. For example, if your program installs the same
handler in more than one handler table, you can use the handler table reference
constant to identify which handler table the handler has been invoked from.

An Apple event handler always receives, as one of its parameters, a handler
table reference for the table from which it was dispatched. To obtain the
reference constant associated with that table, the handler should pass the
handler table reference to AEGetHandlerTableRefCon.

CALLING RESTRICTIONS

AEGetHandlerTableRefCon cannot be called by hardware interrupt handlers or
secondary interrupt handlers.

EXECUTION ENVIRONMENT

SEE ALSO

For an overview of related functions, see “Creating, Getting, and Disposing of
Handler Tables” (page 2-16).

AEShareHandlerTable 2

Creates a handler table reference for a handler table that already exists.

OSStatus AEShareHandlerTable(
AEHandlerTableRef table,
void *newRefcon,
AEHandlerTableRef *newSharedReference);

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
Apple Event Communications Functions 2-21
Draft. Apple Computer, Inc. 4/22/96

C H A P T E R 2

Apple Event Communications Model Reference
table A reference to a handler table you want to share among several
handler table stacks.

newRefcon A reference constant. On input, you supply whatever reference
constant you want to associate with the shared handler table
reference. Each new reference to the same original table has a
unique reference constant. This may consist either of a pointer
to another data structure or a simple value; interpretation of the
reference constant is entirely up to your program.

newSharedReference
A pointer to a handler table reference. On output, the reference
is unique to the shared table identified by the table parameter.

function result A result code. See “Apple Event Manager Result Codes”
(page 2-44) for a list of possible result codes.

DISCUSSION

In some situations, it may be convenient to install a single handler table in
multiple dispatchers. For example, this can facilitate dispatching within an
application or, in a server program, the simultaneous execution of identical
tasks, such as calculating image transformations. To share a handler table in
this way among multiple dispatchers, you use a handler table reference created
by AEShareHandlerTable.

AEShareHandlerTable creates a new handler table reference (with a unique
reference constant) to an existing handler table. The Apple Event Manager
increases its reference count for each new reference to the same table. When
such a reference is passed to AEDisposeHandlerTable, the Apple Event Manager
decreases the reference count. When this count reaches 0, the Apple Event
Manager deallocates the original handler table.

EXECUTION ENVIRONMENT

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
2-22 Apple Event Communications Functions

Draft. Apple Computer, Inc. 4/22/96

C H A P T E R 2

Apple Event Communications Model Reference
CALLING RESTRICTIONS

AEShareHandlerTable cannot be called by hardware interrupt handlers or
secondary interrupt handlers.

SEE ALSO

For an overview of related functions, see “Creating, Getting, and Disposing of
Handler Tables” (page 2-16).

AEDisposeHandlerTable 2

Decrements the reference count for an Apple event handler table and, if the
count reaches 0, disposes of the table.

OSStatus AEDisposeHandlerTable (AEHandlerTableRef table);

table A reference to the handler table you want to dispose of. For
more information, see “Handler Table References” (page 2-4).

function result A result code. See “Apple Event Manager Result Codes”
(page 2-44) for a list of possible result codes.

DISCUSSION

You typically use AEDisposeHandlerTable to decrement a handler table’s
reference count right after using AEPopDispatcherHandlerTable (page 2-31) to
remove it from a handler table stack. Do not pass a handler table that’s still part
of a handler table stack to AEDisposeHandlerTable.

EXECUTION ENVIRONMENT

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
Apple Event Communications Functions 2-23
Draft. Apple Computer, Inc. 4/22/96

C H A P T E R 2

Apple Event Communications Model Reference
CALLING RESTRICTIONS

AEDisposeHandlerTable cannot be called by hardware interrupt handlers or
secondary interrupt handlers.

SEE ALSO

For an overview of related functions, see “Creating, Getting, and Disposing of
Handler Tables” (page 2-16).

Installing, Getting, and Removing Handlers 2

Once you’ve created an Apple event handler table, you call the
AEInstallHandler function (page 2-24) repeatedly to install entries in the table.

To get a pointer to the handler for a particular entry, use the AEGetHandler
function (page 2-26). To remove a handler, use the AERemoveHandler function
(page 2-28).

When you’ve finished installing handlers in a handler table, you can add it to a
dispatcher’s handler table stack. For details, see “Pushing and Popping
Handler Tables” (page 2-29).

IMPORTANT

Modifying the entries in a handler table after the table has
been added to a handler table stack degrades performance
and should be avoided. Whenever possible, you should
manipulate a handler table before you add it to or after
you have removed it from a handler table stack. ▲

AEInstallHandler 2

Installs an entry for an Apple event handler in a handler table.

OSStatus AEInstallHandler (
AEHandlerTableRef table,
AEEventClass handlerClass,
AEEventID handlerID,
AEEventHandlerProc handler,
void *handlerRefcon);
2-24 Apple Event Communications Functions

Draft. Apple Computer, Inc. 4/22/96

C H A P T E R 2

Apple Event Communications Model Reference
table A reference to the handler table in which you want to install an
entry. For more information, see “Handler Table References”
(page 2-4).

handlerClass The event class for the Apple event or events to be dispatched
for this entry.

handlerID The event ID of events handled by the handler.

handler A pointer to the handler for this table entry.

handlerRefcon A reference constant. On input, you supply whatever reference
constant you want to associate with the handler. This may
consist either of a pointer to another data structure or a simple
value; interpretation of the reference constant is entirely up to
your program.

function result A result code. See “Apple Event Manager Result Codes”
(page 2-44) for a list of possible result codes.

DISCUSSION

Once you’ve created an Apple event handler table, you call the
AEInstallHandler function repeatedly to install entries in the table.

The AEInstallHandler function creates an entry with the specified event class
and event ID in the handler table specified by the table parameter for the
handler specified by the handler parameter. If you use the same handler for
several different kinds of events, you should install a separate entry for each
event class and event ID.

If the handler table already contains an entry for the specified handlerClass and
handlerID, AEInstallHandler overrides the existing handler with the one
specified by the handler parameter. You can use AERemoveHandler to remove it
explicitly before you install a new handler with AEInstallHandler.

IMPORTANT

Although Mac OS 8 supports the use of typeWildCard as
discussed in Inside Macintosh: Interapplication
Communication to install a single handler for multiple event
classes or event IDs, this strategy degrades performance
and should be avoided. ▲
Apple Event Communications Functions 2-25
Draft. Apple Computer, Inc. 4/22/96

C H A P T E R 2

Apple Event Communications Model Reference
EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

AEInstallHandler cannot be called by hardware interrupt handlers or
secondary interrupt handlers.

SEE ALSO

To create a handler table, use the AENewHandlerTable function (page 2-17) or the
AENewFilterHandlerTable function (page 2-18).

To get a reference to the handler table that is currently the topmost handler
table for a particular dispatcher, use the AEGetDispatcherTopHandlerTable
function (page 2-33).

AEGetHandler 2

Gets the handler and reference constant from a handler table for a specified
event class and event ID.

OSStatus AEGetHandler (
AEHandlerTableRef table,
AEEventClass handlerClass,
AEEventID handlerID,
AEEventHandlerProc *handler,
void **handlerRefcon);

table A reference to the handler table from which you want to
retrieve a handler. For more information, see “Handler Table
References” (page 2-4).

handlerClass The event class for the Apple event or events dispatched to the
handler you want to retrieve.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
2-26 Apple Event Communications Functions

Draft. Apple Computer, Inc. 4/22/96

C H A P T E R 2

Apple Event Communications Model Reference
handlerID The event ID of events handled by the handler you want to
retrieve.

handler A pointer to an Apple event handler. On output, the pointer
identifies the handler for the specified handlerClass and
handlerId parameters.

handlerRefcon A pointer to a reference constant. On output, the reference
constant is the same one the Apple Event Manager passes to the
handler each time the handler is called.

function result A result code. See “Apple Event Manager Result Codes”
(page 2-44) for a list of possible result codes.

DISCUSSION

The AEGetHandler function allows your program to examine the handler
currently installed in a specified handler table for any event class and event ID.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

AEGetHandler cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

To remove a handler, use the AERemoveHandler function (page 2-28).

To install a handler, use the AEInstallHandler function (page 2-24).

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
Apple Event Communications Functions 2-27
Draft. Apple Computer, Inc. 4/22/96

C H A P T E R 2

Apple Event Communications Model Reference
AERemoveHandler 2

Removes the handler for a specified event class and event ID from a handler
table.

OSStatus AERemoveHandler (
AEHandlerTableRef table,
AEEventClass handlerClass,
AEEventID handlerID,
AEEventHandlerProc handler);

table A reference to the handler table from which you want to
remove a handler. For more information, see “Handler Table
References” (page 2-4)

handlerClass The event class for the Apple event or events dispatched to the
handler you want to remove.

handlerID The event ID of events handled by the handler you want to
remove.

handler A pointer to an Apple event handler. On output, the pointer
identifies the handler for the specified handlerClass and
handlerID parameters.

function result A result code. See “Apple Event Manager Result Codes”
(page 2-44) for a list of possible result codes.

DISCUSSION

You can use AERemoveHandler to remove an existing entry in a handler table
before you use AEInstallHandler to install a new handler for the same event
class and event ID.

EXECUTION ENVIRONMENT

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
2-28 Apple Event Communications Functions

Draft. Apple Computer, Inc. 4/22/96

C H A P T E R 2

Apple Event Communications Model Reference
CALLING RESTRICTIONS

AERemoveHandler cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

To install a handler, use the AEInstallHandler function (page 2-24).

Pushing and Popping Handler Tables 2

Most programs need to add one or more of their own handler tables to the
handler table stack to implement unique behaviors. After you’ve created a
handler table and installed handler entries in it, you use the
AEPushDispatcherHandlerTable function (page 2-30) to add the handler table to
a dispatcher’s stack of handler tables. By stacking one handler table on top of
another, you can augment or override the behavior defined by the lower table
with the behavior defined by the higher table.

When you no longer want the behavior defined by the table that is currently
topmost in the handler stack, you use the AEPopDispatcherHandlerTable
function (page 2-31) to remove it. This ability to push and pop handler tables
allows you to tailor your program’s behavior to different circumstances,
including various kinds of modal states.

For an introduction to filtered handler tables and modal states, see “Event
Dispatching for Modal States” (page 1-17).

To determine the topmost handler table in a dispatcher’s handler table stack—
that is, the table the dispatcher checks first for handlers—use the
AEGetDispatcherTopHandlerTable function (page 2-33).

IMPORTANT

Modifying the entries in a handler table after the table has
been added to a handler table stack degrades performance
and should be avoided. Whenever possible, you should
manipulate a handler table before you add it to or after
you have removed it from a handler table stack. ▲
Apple Event Communications Functions 2-29
Draft. Apple Computer, Inc. 4/22/96

C H A P T E R 2

Apple Event Communications Model Reference
AEPushDispatcherHandlerTable 2

Adds a handler table to the top of a dispatcher’s handler table stack.

OSStatus AEPushDispatcherHandlerTable (
AEDispatcherRef dispatcher,
AEHandlerTableRef table);

dispatcher A reference to the dispatcher to which you want to add the
handler table specified by the table parameter. For more
information, see “Dispatcher References” (page 2-3).

table A reference to the handler table to be added to the dispatcher
specified by the dispatcher parameter. For more information,
see “Handler Table References” (page 2-4).

function result A result code. See “Apple Event Manager Result Codes”
(page 2-44) for a list of possible result codes.

DISCUSSION

You use the AEPushDispatcherHandlerTable function to add handler tables to a
specified dispatcher’s handler table stack. When the Apple Event Manager
searches for an event handler, it starts from the top of the stack and looks down
the chain of handler tables until it finds a match. Thus, as handler tables stack
up, their handlers augment or override the behavior defined by handlers in the
tables below them.

You can call AEPushDispatcherHandlerTable as many times as necessary, but
each call must be matched eventually by a call to AEPopDispatcherHandlerTable.

You can suspend events temporarily to enforce a modal state by pushing a
filtered handler table, and you can stop suspending events by popping the
table. When the modal state begins, the handler for the event that triggers the
modal state calls AEPushDispatcherHandlerTable to add a filtered handler table
on top of the dispatcher’s handler table stack. The handler then calls AEReceive,
which blocks the calling task until an event with an entry in the filtered table
arrives.

The call to AEReceive from the handler occurs within a previous call to
AEReceive by the program’s main task. When the Apple Event Manager
encounters a filtered handler table, it suspends any incoming events that don’t
have entries in that table. When call to AEPopDispatcherHandlerTable removes
2-30 Apple Event Communications Functions

Draft. Apple Computer, Inc. 4/22/96

C H A P T E R 2

Apple Event Communications Model Reference
the table, the Apple Event Manager dispatches the suspended events in the
order in which they were received.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

AEPushDispatcherHandlerTable cannot be called by hardware interrupt handlers
or secondary interrupt handlers.

SEE ALSO

To pop a handler table that you have added to a handler stack with the
AEPushDispatcherHandlerTable function, use AEPopDispatcherHandlerTable
(page 2-31).

For more information about using AEPushDispatcherHandlerTable and
AEPopDispatcherHandlerTable, see “Event Dispatching for Modal States”
(page 1-17).

AEPopDispatcherHandlerTable 2

Removes the topmost handler table from a dispatcher’s handler table stack.

OSStatus AEPopDispatcherHandlerTable (
AEDispatcher dispatcher,
AEHandlerTableRef *table);

dispatcher A reference to the dispatcher whose topmost handler table you
want to remove. For more information, see “Dispatcher
References” (page 2-3)

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
Apple Event Communications Functions 2-31
Draft. Apple Computer, Inc. 4/22/96

C H A P T E R 2

Apple Event Communications Model Reference
table A pointer to a handler table reference. On output, the reference
identifies the removed handler table. If you no longer need the
removed handler table, pass this reference to the
AEDisposeHandlerTable function (page 2-23) to dispose of the
table.

function result A result code. See “Apple Event Manager Result Codes”
(page 2-44) for a list of possible result codes.

DISCUSSION

You use the AEPopDispatcherHandlerTable function to remove handler tables
added to a dispatcher’s stack with AEPushDispatcherHandlerTable. Every call to
AEPushDispatcherHandlerTable (page 2-30) must eventually be matched by a
separate call to AEPopDispatcherHandlerTable.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

AEPopDispatcherHandlerTable cannot be called by hardware interrupt handlers
or secondary interrupt handlers.

SEE ALSO

To dispose of a handler table that you no longer need, use the
AEDisposeHandlerTable function (page 2-23).

For more information about using AEPushDispatcherHandlerTable and
AEPopDispatcherHandlerTable, see “Event Dispatching for Modal States”
(page 1-17).

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
2-32 Apple Event Communications Functions

Draft. Apple Computer, Inc. 4/22/96

C H A P T E R 2

Apple Event Communications Model Reference
AEGetDispatcherTopHandlerTable 2

Gets a reference to the topmost handler table in a dispatcher’s handler table
stack.

OSStatus AEGetDispatcherTopHandlerTable(
AEDispatcherRef dispatcher,
AEHandlerTableRef *table);

dispatcher A reference to the dispatcher whose topmost handler table you
want to get a reference to. For more information, see
“Dispatcher References” (page 2-3).

table A pointer to a handler table reference. On output, the reference
identifies the topmost handler table in the dispatcher identified
by the dispatcher parameter. You can pass this reference to the
AEInstallHandler function (page 2-24) to install additional
entries in the handler table.

function result A result code. See “Apple Event Manager Result Codes”
(page 2-44) for a list of possible result codes.

DISCUSSION

The AEGetDispatcherTopHandlerTable function is useful whenever you need to
determine the topmost handler table in a dispatcher’s handler table stack.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

AEGetDispatcherTopHandlerTable cannot be called by hardware interrupt
handlers or secondary interrupt handlers.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
Apple Event Communications Functions 2-33
Draft. Apple Computer, Inc. 4/22/96

C H A P T E R 2

Apple Event Communications Model Reference
SEE ALSO

For an overview of related functions, see “Pushing and Popping Handler
Tables” (page 2-29).

Receiving Events 2

AEReceive 2

Blocks the calling task and dispatches incoming events.

OSStatus AEReceive (
AEDispatcher waitDispatcher,
AEReceiveMode receiveMode);

waitDispatcher
A reference to the dispatcher—and thus the event queue—in
which the calling task is interested. For more information, see
“Dispatcher References” (page 2-3).

receiveMode A receive mode indicating how long this call to AEReceive
should continue receiving events. You identify the receive mode
with one of the values defined in the AEReceiveMode
enumeration (page 2-5).

function result A result code. See “Apple Event Manager Result Codes”
(page 2-44) for a list of possible result codes.

DISCUSSION

The AEReceive function blocks the calling task until an event the program can
handle arrives, then reawakens the task and uses the dispatcher specified in the
waitDispatcher parameter to dispatch the event to the appropriate handler.
This cycle of blocking and then waking the task continues until the task
terminates a handler generates an error, or a handler returns
errAEReceiveEscapeCurrent.

All events in Mac OS 8 are conveyed via the “bottleneck” of the AEReceive
function, which replaces the WaitNextEvent function used in earlier versions of
2-34 Apple Event Communications Functions

Draft. Apple Computer, Inc. 4/22/96

C H A P T E R 2

Apple Event Communications Model Reference
the Mac OS. Except for any initialization work required and the execution of
handlers, the calling task generally executes from within AEReceive.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

AEReceive cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

For an overview of the role of AEReceive, see “The Mac OS 8 Event Model”
(page 1-6).

Sending Events 2

Before you can send an Apple event, you must first create the event and add
the appropriate parameters and attributes. To do so, you use both functions
described in Inside Macintosh: Interapplication Communication and new functions
provided by Mac OS 8.

Note
In System 7, the construction of large, hierarchical events
requires users to construct every branch of the hierarchy
explicitly, recopying each subbranch at each step. The
Mac OS 8 Apple Event Manager includes additional
streaming functions that allow you to write a series of
descriptor records sequentially rather than explicitly
inserting them one at a time using AEPutNthPointer or
AEPutKeyPtr. Documentation for these functions will be
available with later developer releases. ◆

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
Apple Event Communications Functions 2-35
Draft. Apple Computer, Inc. 4/22/96

C H A P T E R 2

Apple Event Communications Model Reference
Once you have created an Apple event, you must use one of the new functions
defined by Mac OS 8 to send it. Each function is optimized for a different
purpose:

■ AESendEvent blocks the calling task until the function returns with the reply
event (if you provide one). In Mac OS 8, you create the original reply event
in the manner described in Inside Macintosh: Interapplication Communication
or by using the Mac OS 8 function AECreateReplyAppleEvent. You can also
specify NIL for the reply, in which case AESendEvent returns immediately
after sending the event successfully.

■ AESendEventQueueReply allows the calling task to keep running, receiving
other events as usual from the event queue associated with its dispatcher.
The Apple Event Manager creates the reply event, which may return via the
original task’s dispatcher or potentially via some other dispatcher.

■ AESendEventToSelf sends an event directly to the handler table stack for one
of your program’s dispatchers, bypassing the event queue altogether. In
Mac OS 8, you create the original reply event in the manner described in
Inside Macintosh: Interapplication Communication or by using the Mac OS 8
function AECreateReplyAppleEvent.

■ AESendDelayed sends the event at some later time. The calling task uses
AESendDelayed to send periodic events, such as an event that blinks a cursor,
or to delay the sending of an event until a single specified time. Information
about this function will be provided with later developer releases.

IMPORTANT

Remote addresses, including the use of typeSessionID and
typeTargetID to specify target addresses, will be supported
in future developer releases. You can specify a local
address with an address descriptor record of type
typeDispatcherID, typeProcessSerialNumber,
typeKernelProcessID, or typeApplSignature. ▲
2-36 Apple Event Communications Functions

Draft. Apple Computer, Inc. 4/22/96

C H A P T E R 2

Apple Event Communications Model Reference
AESendEvent 2

Sends an Apple event and blocks the calling task until the function returns with
the reply event or, if the reply is specified as NIL

OSStatus AESendEvent(
const AppleEvent *theAppleEvent,
AppleEvent *reply,
AESendOptions sendOpts,
AESendPriority sendPriority,
Duration timeOutDuration);

theAppleEvent A pointer to the Apple event to be sent.

reply A pointer to a reply Apple event. On input, you must provide
the reply event or specify NIL. You can use the new Mac OS 8
function AECreateReplyAppleEvent to preallocate the reply
event. If you don’t want a reply, specify NIL. On output, the
reply event, if any, contains information provided by the
recipient. Your program is responsible for using AEDisposeDesc
to dispose of the descriptor record returned in the reply
parameter.

sendOpts The send options for the Apple event. You identify the send
options you want with the values defined in the AESendOptions
enumeration (page 2-5). The send options determine whether
and how the recipient of the event can interact with the user,
whether such interaction can involve a layer switch, and
whether the event should be recorded.

sendPriority The send priority for the Apple event. You identify the event’s
send priority with one of the values defined in the
AESendPriority enumeration (page 2-6). For events originally
generated by the user, the send priority determines whether the
Apple Event Manager places the Apple event at the back
(indicated by kAENormalPriority) or the front (indicated by
kAEHighPriority) of the dispatcher’s event queue. Note,
however, that events sent by the system may still have a higher
priority than other events sent with a send priority of
kAEHighPriority.
Apple Event Communications Functions 2-37
Draft. Apple Computer, Inc. 4/22/96

C H A P T E R 2

Apple Event Communications Model Reference
timeOutDuration
A value of type Duration specifying the length of time the
sender is willing to wait for the reply from the recipient before
timing out; for example, kDurationForever or kDurationMinute.
(The microkernel defines these and other duration values for
use throughout Mac OS 8.)

function result If the Apple Event Manager cannot find a handler for an Apple
event with the aid of the dispatcher to which the event is
addressed, AESendEvent returns the result code
errAEEventNotHandled. If the Apple event is successfully
handled, AESendEvent returns noErr.

DESCRIPTION

Use AESendEvent either to send events that don’t require a reply or to send
events whose reply must be received by the calling task before it can continue
executing.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

AESendEvent cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

For an overview of related functions, see “Sending Events” (page 2-35).

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
2-38 Apple Event Communications Functions

Draft. Apple Computer, Inc. 4/22/96

C H A P T E R 2

Apple Event Communications Model Reference
AESendEventQueueReply 2

Sends an Apple event and returns a reply event in the event queue associated
with a specified dispatcher or with the default dispatcher for a specified
process.

OSStatus AESendEventQueueReply(
const AppleEvent *theAppleEvent,
const AEAddressDesc *replyAddress,
AESendOptions sendOpts,
AESendPriority sendPriority);

theAppleEvent A pointer to the Apple event to be sent.

replyAddress A pointer to an address descriptor record. On input, you
provide a descriptor record of type typeDispatcherID,
typeProcessSerialNumber, typeKernelProcessID, or
typeApplSignature. Use this descriptor record to identify the
target of the reply event, which can be any local dispatcher. To
get a dispatcher ID for one of your program’s dispatchers, you
pass a dispatcher reference to AEGetEventDispatcherID
(page 2-13). If you use a process serial number, kernel process
ID, or application signature, the event is routed to the default
dispatcher for the specified program’s process.

sendOpts The send options for the Apple event. You identify the options
you want with the values defined in the AESendOptions
enumeration (page 2-5). The send options determine whether
and how the recipient of the event can interact with the user,
whether such interaction can involve a layer switch, and
whether the event should be recorded.

sendPriority The send priority for the Apple event. You identify the event’s
send priority with one of the values defined in the
AESendPriority enumeration (page 2-6). For events originally
generated by the user, the send priority determines whether the
Apple Event Manager places the Apple event at the back
(indicated by kAENormalPriority) or the front (indicated by
kAEHighPriority) of the dispatcher’s event queue. Note,
however, that events sent by the system may still have a higher
priority than other events sent with a send priority of
kAEHighPriority.
Apple Event Communications Functions 2-39
Draft. Apple Computer, Inc. 4/22/96

C H A P T E R 2

Apple Event Communications Model Reference
function result A result code. If the Apple event is successfully sent to the
target, AESendEventQueueReply returns noErr. See “Apple Event
Manager Result Codes” (page 2-44) for a list of other possible
result codes.

DESCRIPTION

AESendEventQueueReply allows the calling task to keep running, receiving other
events as usual from the event queue associated with its dispatcher. The Apple
Event Manager creates the reply event, which may return via the original
tasks’s dispatcher or potentially via some other dispatcher specified by the
replyAddress parameter.

Remote addresses for Apple events, including the use of typeSessionID and
typeTargetID to specify target addresses, will be supported in later developer
releases.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

AESendEventQueueReply cannot be called by hardware interrupt handlers or
secondary interrupt handlers.

SEE ALSO

For an overview of related functions, see “Sending Events” (page 2-35).

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
2-40 Apple Event Communications Functions

Draft. Apple Computer, Inc. 4/22/96

C H A P T E R 2

Apple Event Communications Model Reference
AESendEventToSelf 2

Sends an event directly to the handler table stack for one of your program’s
dispatchers, bypassing the event queue altogether.

OSStatus AESendEventToSelf(
const AppleEvent *theAppleEvent,
const AppleEvent *reply,
AEDispatcherRef whichDispatcher,
AESendOptions sendOpts);

theAppleEvent A pointer to the Apple event to be sent. The address of the
target is ignored.

reply A pointer to a reply Apple event. On input, you must provide
the reply event. You can use the Mac OS 8 function
AECreateReplyAppleEvent to preallocate the reply event. If you
don’t want a reply, specify NIL or a null Apple event. On
output, the reply event, if any, contains information provided
by the recipient. Your program is responsible for using
AEDisposeDesc to dispose of the descriptor record returned in
the reply parameter.

whichDispatcher
A reference to the dispatcher you want to receive the event.

sendOpts The send options for the Apple event. You identify the send
options you want with the values defined in the AESendOptions
enumeration (page 2-5). The send options determine whether
and how the recipient of the event can interact with the user,
whether such interaction can involve a layer switch, and
whether the event should be recorded.

function result A result code. If the Apple Event Manager cannot find a
handler for an Apple event with the aid of the dispatcher to
which the event is addressed, AESendEventToSelf returns the
result code errAEEventNotHandled. If the Apple event is
successfully handled, AESendEventToSelf returns noErr. See
“Apple Event Manager Result Codes” (page 2-44) for a list of
possible result codes.
Apple Event Communications Functions 2-41
Draft. Apple Computer, Inc. 4/22/96

C H A P T E R 2

Apple Event Communications Model Reference
DESCRIPTION

AESendEventToSelf provides the fastest way to send an event to one of your
program’s dispatchers.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

AESendEventToSelf cannot be called by hardware interrupt handlers or
secondary interrupt handlers.

SEE ALSO

For an overview of related functions, see “Sending Events” (page 2-35).

Application-Defined Function 2

MyEventHandler 2

Handles a specified Apple event.

OSStatus MyEventHandler (
const AppleEvent *theAppleEvent,
AppleEvent *reply,
void *handlerRefcon,
AEHandlerTableRef handlerTable);

theAppleEvent A pointer to an Apple event. On input, this is the event to be
handled.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No
2-42 Apple Event Communications Functions

Draft. Apple Computer, Inc. 4/22/96

C H A P T E R 2

Apple Event Communications Model Reference
reply A pointer to a reply Apple event. On input, this is an empty
reply event. On output, your program can add any parameters
that might be useful to the Apple event’s sender.

handlerRefcon The reference constant stored in the dispatcher for the event’s
class and ID.

handlerTable A reference to the handler table in which the handler is
installed.

function result A result code. Your handler should always set its function
result to noErr if it successfully handles the Apple event.
If an error occurs, your handlers should return either
errAEEventNotHandled or some other nonzero result code. If the
error occurs because your handler cannot understand the event,
return errAEEventNotHandled, in case a handler in the next
handler table in the dispatcher’s handler table stack can handle
it. If the error occurs because the event is impossible to handle
as specified, return the result code returned by whatever
function caused the failure, or whatever other result code is
appropriate.

DISCUSSION

Your handler uses both functions described in Inside Macintosh: Interapplication
Communication and new subdescriptor functions provided by Mac OS 8 to
extract parameters and attributes from the Apple event and perform any
processing required. An Apple event handler should extract any parameters
and attributes from the Apple event, perform the requested action, and add
parameters to the reply Apple event if appropriate. If any of the parameters
include object specifier records, the handler should call AEResolve to resolve
them—that is, to locate what they describe.

If your handler cannot understand the event, it should return
errAEEventNotHandled. If the event is impossible to handle as specified, your
handler should return the result code returned by whatever function caused
the failure, or whatever other result code is appropriate.

For example, suppose your program receives a Get Data event that requests the
name of the current printer, and your program cannot handle such an event. In
this situation, you should return errAEEventNotHandled in case a handler in the
next table in the dispatcher’s handler table stack can handle it. This strategy
Apple Event Communications Functions 2-43
Draft. Apple Computer, Inc. 4/22/96

C H A P T E R 2

Apple Event Communications Model Reference
allows your program to take advantage of the default handlers provided by the
system.

However, if your program cannot handle a Get Data event that requests the
fifth paragraph in a document because the document contains only four
paragraphs, you should return some other nonzero result code, because further
attempts to handle the event are pointless.

EXECUTION ENVIRONMENT

Apple Event Manager Result Codes 2

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

noErr 0 No error

paramErr –50 Parameter error (for example, value of handler
pointer is NIL or odd)

MemFullErr –108 Not enough room in heap zone

userCanceledErr –128 User canceled an operation

procNotFound –600 No eligible process with specified process serial
number

errAECoercionFail –1700 Data could not be coerced to the requested
descriptor type

errAEDescNotFound –1701 Descriptor record was not found

errAECorruptData –1702 Data in an Apple event could not be read

errAEWrongDataType –1703 Wrong descriptor type

errAENotAEDesc –1704 Not a valid descriptor record

errAEBadListItem –1705 Operation involving a list item failed

errAENewerVersion –1706 Need a newer version of the Apple Event Manager

errAENotAppleEvent –1707 Event is not an Apple event

errAEEventNotHandled –1708 Event wasn’t handled by an Apple event handler
2-44 Apple Event Manager Result Codes

Draft. Apple Computer, Inc. 4/22/96

C H A P T E R 2

Apple Event Communications Model Reference
errAEReplyNotValid –1709 AEResetTimer was passed an invalid reply

errAEUnknownSendMode –1710 Invalid sending mode was passed

errAEWaitCanceled –1711 User canceled out of wait loop for reply or receipt

errAETimeout –1712 Apple event timed out

errAENoUserInteraction –1713 No user interaction allowed

errAENotASpecialFunction –1714 The keyword is not valid for a special function

errAEParamMissed –1715 Handler cannot understand a parameter the client
considers required

errAEUnknownAddressType –1716 Unknown Apple event address type

errAEHandlerNotFound –1717 No handler found for an Apple event or a coercion,
or no object callback function found

errAEReplyNotArrived –1718 Reply has not yet arrived

errAEIllegalIndex –1719 Not a valid list index

errAEImpossibleRange –1720 The range is not valid because it is impossible for a
range to include the first and last objects that were
specified; an example is a range in which the offset
of the first object is greater than the offset of the last
object

errAEWrongNumberArgs –1721 The number of operands provided for the kAENot
logical operator is not 1

errAEAccessorNotFound –1723 There is no object accessor function for the
specified object class and token descriptor type

errAENoSuchLogical –1725 The logical operator in a logical descriptor record is
not kAEAnd, kAEOr, or kAENot

errAEBadTestKey –1726 The descriptor record in a test key is neither a
comparison descriptor record nor a logical
descriptor record

errAENotAnObjectSpec –1727 The objSpecifier parameter of AEResolve is not an
object specifier record

errAENoSuchObject –1728 A runtime resolution error: for example, object
specifier record asked for the third element, but
there are only two

errAENegativeCount –1729 Object-counting function returned negative value

errAEEmptyListContainer –1730 The container for an Apple event object is specified
by an empty list
Apple Event Manager Result Codes 2-45
Draft. Apple Computer, Inc. 4/22/96

C H A P T E R 2

Apple Event Communications Model Reference
errAEUnknownObjectType –1731 Descriptor type of token returned by AEResolve is
not known

errAERecordingIsAlreadyOn –1732 Attempt to turn recording on when it is already on

errAEReceiveEscapeCurrent –1734 Force only the current call to AEReceive to return

errAEEventFiltered –1735 Event has been filtered and should not be
propagated

errAEStreamBadNesting –1737 Nesting violation while streaming

errAEStreamAlreadyConverted –1738 Attempt to convert a stream that has already been
converted

errAEDescIsNull –1739 Attempt to perform an invalid operation on a null
descriptor record
2-46 Apple Event Manager Result Codes

Draft. Apple Computer, Inc. 4/22/96

	Apple Events in Mac OS 8
	Contents
	Introduction to the Mac�OS�8 Event Model
	Apple Events in Mac�OS�8
	Apple Event Communications Model
	Apple Event Data Model

	The Mac�OS�8 Event Model
	Apple Event Dispatchers
	Handler Tables
	Apple Event Handlers
	Tasking Models
	One Task, One Dispatcher
	Multiple Tasks, Multiple Dispatchers
	Multiple Tasks, One Dispatcher

	Benefits of the Mac�OS�8 Event Model

	Using the Mac�OS�8 Event Model
	Manipulating Dispatchers, Handler Tables, and Hand...
	Event Dispatching for Modal States

	Apple Event Communications Model Reference
	Apple Event Communications Constants and Data Type...
	Apple Event Dispatchers
	Dispatcher References
	Dispatcher IDs

	Handler Table References
	Receive Modes
	Constants for Use With Send Functions
	Apple Event Send Options
	Apple Event Send Priorities

	Apple Event Handler

	Apple Event Communications Functions
	Creating and Manipulating Apple Event Dispatchers
	Creating and Manipulating Handler Tables
	Creating, Getting, and Disposing of Handler Tables...
	Installing, Getting, and Removing Handlers
	Pushing and Popping Handler Tables

	Receiving Events
	Sending Events
	Application-Defined Function

	Apple Event Manager Result Codes

