
d e v e l o p
T h e A p p l e T e c h n i c a l J o u r n a l

CD-ROM: THE
CUTTING EDGE

THE INS AND OUTS
OF ISO 9660 AND
HIGH SIERRA

HOW TO CREATE A
MIXED-PARTITION
CD-ROM

MACINTOSH Q & A

APPLE II Q & A

DEVELOPER
ESSENTIALS: ISSUE 3

ACCESSING CD-ROM
AUDIO TRACKS

SURF’S UP: CATCH
THE COMM
TOOLBOX WAVE

MACINTOSH
DISPLAY CARD
8•24 GC

MEET PRGENERAL

ð ®

Issue 3 July 1990

© 1990 Apple Computer, Inc. All rights reserved.

Apple, the Apple logo, AppleCD SC, AppleShare, HyperCard, ImageWriter, LaserWriter, MacApp,

Macintosh, MPW, and ProDOS are registered trademarks of Apple Computer, Inc. QuickDraw is a

trademark of Apple Computer, Inc. NuBus is a trademark of Texas Instruments. UNIX is a registered

trademark of AT&T.

E D I T O R I A L

Editor in Chief’s Clothing Louella Pizzuti

Chief Engineer Dave Johnson

Managing Editor Carol Westberg

Developmental Editors Lorraine Anderson,

Ann Cullen

Copyeditors Toni Haskell, Caroline Sloan

Editorial Assistant Lenore Zelony

Indexer Ira Kleinberg

Manager, Developer Press David Krathwohl

A R T & P R O D U C T I O N

Design/Art Direction Joss Parsey

Technical Illustration J. Goldstein

Production Bruce Potterton

Printing Craftsman Press

Film Preparation FilmCraft

Photographer Ralph Portillo

Animation Hal Rucker

Circulation Management Dee Kiamy

Online Production Cassi Carpenter

R E V I E W B O A R D

Pete “Luke” Alexander

Tim “Sweetpea” Enwall

Larry “Cat Couch” Rosenstein

Andy “The Shebanator” Shebanow

S P E C I A L T H A N K S

Mark Baumwell

Jim Luther

Cleo Huggins created the cover
illustration in PixelPaint. Special
thanks to Charlie’s turtle Rodney
for modeling.

d e v e l o p, The Apple Technical
Journal, is a quarterly publication of
Developer Press.

CD-ROM: The Cutting Edge by Mark B. Johnson How you can take best
advantage of CD-ROM technology and what the trade-offs are. 262

The Ins and Outs of ISO 9660 and High Sierra by Brian Bechtel The
two standard file formats for CD-ROM discs, how they relate to the Macintosh’s native
file format, and how to implement them. 272

How to Create a Mixed-Partition CD-ROM by Llew Roberts Step-by-step
instructions on how to mix ProDOS and HFS partitions on a hard disk for pressing as a
CD-ROM, plus why you might want to do so. 288

Macintosh Q & A Answers from the Macintosh DTS group. 299

Apple II Q & A Answers from the Apple II DTS group. 302

Developer Essentials: Issue 3 d e v e l o p, the disc is now part of Developer
Essentials, a new disc containing essential tools for developers. 304

Accessing CD-ROM Audio Tracks From Your Application by Eric Mueller
The calls to use if you want to access CD-ROM audio tracks from your Apple II
application, the layout of a CD-ROM audio track, and more. 306

Surf’s Up: Catch the Comm Toolbox Wave by Rob Berkowitz and
Alex Kazim An introduction to three Communications Toolbox managers,
illustrated by a look at a simple terminal emulation package called Surfer. 317

Macintosh Display Card 8•24 GC: The Naked Truth by Guillermo Ortiz
How to take advantage of the new card and its software and what to do if you haven’t
already invested in offscreen calls. 332

Meet PrGeneral, the Trap That Makes the Most of the Printing
Manager by Pete ”Luke“ Alexander How to use the five opcodes available in
order to enhance the power of the Printing Manager and solve special problems. 348

Index 363

CONTENTS

CONTENTS July 1990

257

LOUELLA PIZZUTI

d e v e l o p July 1990

258
Dear Readers,

By now, I’m tiptoeing through the bulb fields of Holland and painting like a fiend
(note the backpack and the tulips in the photo). But because of Carol, Dave, the
review board, the technical reviewers, this issue’s authors, and Lenore directing a
host of others, you are holding the third issue of d e v e l o p.

Carol “Editor in Louella’s Clothing” Westberg is the managing editor of d e v e l o p
while I’m out on my much-needed sabbatical; she’s the one who’s making sure that the
articles say what we want to say (and hopefully what you want to hear) in a way that
we’d like to say it. Dave “if you can hold it, I can juggle it” Johnson joined us in our
d e v e l o p adventures just two short weeks before I took off. As our staff engineer,
the technical buck stops with him. He makes sure that all of the code is fully tested and
that technical disagreements end in decisions, not fist fights. The review board is a
group of talented, thorough, dedicated, and vocal Apple engineers who ride herd on
the rest of us. Together, Andy Shebanow, Pete Alexander, Tim Enwall, and Larry
Rosenstein steer d e v e l o p (and the articles within each issue) in the right direction.

The review board guides us on the content, but when it comes to covers, Cleo
(see the pages describing the Developer Essentials disc for her bio) and I go wild. So,
why a tortoise? Well, this issue’s theme is CD-ROM and when confronted with
CD-ROMs, many people first think “slow!” It’s true, that compared with a hard
disk, a CD-ROM disc can seem to move like molasses on a winter morning. Or like
a tortoise in a race with a hare. Hmmm, how did that fable go? Seems to me that
everyone expected the hare to win hands (or feet) down. But initial impressions
notwithstanding, the tortoise took off and came out the clear winner. The same
applies to CD-ROM; slower than a hard disk, sure, but faster by far than a human.
In the end, the information and the space are well worth the wait.

Take a look at the CD-ROM articles and figure out how you, like the tortoise,
can end up a technological winner.

Louella Pizzuti
Editor
LOUELLA PIZZUTI is a career woman in shorts
who freely admits that her favorite joke isn’t
funny. Her favorite part of working at Apple is the
texture, and her favorite place to be is outside.

Inside or outside, her favorite color’s yellow (the
color of madness) and her favorite painter’s Vince.

She likes to play: in the mud (usually planting
flowers); on the soccer field; in the weeds

(it’s easier than pulling them); but never, ever
with words.

She’s got her lemon tree (finally) and the
convertible is next. We’re all wondering what will
happen to the flowers in the bed of her truck. •

K

N

O

Q

V

Z

h

p
u

W

u

k

iX
LETTERS
B

b

F

l

m
i

L

Y

r

A a

C c

D

W

j

k
o

r

s

v

y

k

h

Z

BZ

l

I just wanted to let you know that I
have found both issues of d e v e l o p
to be extremely useful. You do an
excellent job in picking up where Inside
Macintosh leaves off. I hope Apple
continues to publish d e v e l o p for
a long time.

— Paul Higinbotham

Of all the technical journals I receive
about the Macintosh, Digital VAX, and
computing in general, all pale in
comparison to your d e v e l o p.
Please send me a copy.

—Steve Salika

In your last issue, Curt Bianchi tells me
to beware of how the Memory Manager
grabs my Pascal object’s handles. Then,
in another article, Richard Clark tells
me that the Memory Manager has a
secret life and that I should be careful
when I pass it pointers. My question is,
should I ask the Memory Manager to
take a blood test before we get serious?

—Concerned in Palo Alto

Although you are right to be cautious about
getting serious with the Memory Manager,
there is really no need for a blood test. The
very articles that you mention present clear
guidelines for having safe yet fulfilling, uh,
“interactions” with the Memory Manager.
These guidelines, judiciously and
conscientiously (and enthusiastically!)
followed, provide all the protection you
will need.

—Dave Johnson
 d

G
J

n

E

T
o

qo

COMMENTS
We welcome timely letters to the editor, especially
from readers wishing to react to articles that we
publish in develop. Letters should be addressed to
Louella Pizzuti, 20525 Mariani Ave., M/S 75-3B,
Cupertino, CA 95014 (AppleLink Pizzuti1). All
letters should include name and company name
as well as address and phone number. Letters may
be excerpted or edited for clarity and space.

S
U
j
s

d
A
P
M
A

I

M P

U

X

Y

g

i

q

t

w

x

z

t

B

Ts

s

s

t

v

Y

i

After using both on-line
documentation and hard copy for a
while, I prefer hard copy. It is easier to
read, and more immediate. I like the
concept of having complex and
interrelated documentation on-line
with cross referencing a click away.
When you obtain instant response
time, on-line documentation will
be invaluable.

—Thomas Bernard

STEPS FORWARD
Thanks for all the fantastic work on
d e v e l o p —I love it, and being
an American abandoned in England,
it is one of the most informative
journals I get over here. I do have a
couple of gripes (read, “winges” in
England) about the software used to
display the articles.

The control panel windoid is a
complete pain—it doesn’t fit on a
13-inch monitor without obscuring the
text window unless you move it halfway
off the screen, so you have to be
continually moving the panel around
the screen. I then decided to print out
some of the articles, but that isn’t much
easier, because you either have to know
the page where each article begins, or
navigate there one page at a time.

It would be nice to see a control panel
which is vertically oriented so that it
can fit along with the text window on a
13-inch screen, and to also include a
button which jumps to the next
article—moving to the first and last
pages is not really that useful. I think it
would also be much more useful if the
H

E
RS

t

F

Y

u
y

I LETTERS July 1990

259
UBSCRIPTION INFORMATION
se the order form on the last page of the

ournal. Please address all subscription (and
ubscription-related) inquiries to

 e v e l o p
pple Computer, Inc.

.O. Box 531
t. Morris, IL 61054 U.S.A.
ppleLink Address: DEV.SUBS

B

b

F J

K

N

O

Q

V

Z

h

l

m

p
u

v

i

W

L

Y

u

r

k

X

d e v e l o p July 1990

260
A a

C c

W

j

k
o

r

s

y

k

h

Z

BZ

l

text for each page fit in a window rather
than having to scroll each window as
well as forward each page.
.
—David L’Heureux

As you know, we’re entering an era in
the Macintosh world that revolves around
electronic publishing. Many of the
standards and interfaces that are so well
defined in the Macintosh desktop metaphor
don’t exist when you’re creating interactive
electronic magazines (Hyperzines).
Developer Essentials is a living
document. It will continually grow and
change as we begin to determine what
works (and what doesn’t)—things like how
you use sound, how and when you should
animate an icon, what’s the best use of
color, where is the best place within the
virtual magazine metaphor to put a
control panel windoid and have it not be a
complete pain. Ya know, things like that.

The reason we’ve put the automatic
feedback capabilities into d e v e l o p is
to get your ideas, criticisms, and thoughts.
We don’t have all the answers and will be
experimenting with new ways of
representing data. We hope to have more
defined and stable human interface
standards regarding the use of electronic
media like CD-ROM in the near future.
In the meantime, look for experimentation,
a few mistakes, and some very open minds
looking to you for feedback and suggestions
here at Apple.

—Scott Converse
Electronic Media Group Manager
D

d

G

n

E

T
o

qo
I

M P

U

X

Y

g

i

q

t

w

x

z

t

B

Ts

s

is

t

v

Y

i

Issue 2 of d e v e l o p is great.
The articles are fun, informative, and
well written. I think you are off to a
great start.

But I must strenuously object to your
rampant waste of paper for the sake of
“design.” Almost every page has at
least 25 percent white space; many
have more. I don’t know if you have an
aversion to trees or just a lack of
concern for our children, but your
choice in this matter does not reflect
Apple’s generally ecological view.
Apple is a leader in reducing waste in
manufacturing, but you insist on
creating waste in your magazine.

Please, please take a look at
redesigning your pages for future
issues. Apple’s publications are often
very well designed, but yours is the
only one that screams “paper waste”
on every page. It is an easy step that
will help the whole world.

—Paul Hoffman

I’m looking into using recycled paper for
d e v e l o p (in fact, it started out as a
requirement for the first issue), but I’ve
run into conflicting information. I recycle
my paper (both here at work and at home)
and am actively looking for ways to help
d e v e l o p fit into the ecological
scheme of things. Our printer recycles all
of the waste (generated from printer
make-ready, and overages), and the paper
we print on, like most paper these days, has
a recycled component. Some people I’ve
spoken to advocate recycled paper as the
answer to all of our problems; others
contend that the chemicals used to de-ink
the paper damage the environment more
H

E
RS

t

F

Y

u
y

I

d I

P

U

g

i

p q

t

w

x

z

B

Ts

s

is

t

v

Y

i

A

B

b
D

K

N

Q

V

W

Z

h

l

m

u
v

k

i

W

Y

k

ZXthan they help to save it. If you’ve got ideas
about whom I could talk to to hear the
real scoop on recycled paper (from
environmental impact to lasting
qualities), I’d love to hear them.

Meanwhile the page design is intended to
leave room for notes (which many
developers have told me they make), and
for readability. The column widths must
allow for full-page width code listings but
must also work with readable line lengths.
I’m sorry that it screams paper waste to
you, and I will talk to our designer about
ways in which we might adapt the design.

—Louella Pizzuti

STEPS BACK
When we find technical errors in
previous issues of d e v e l o p (or
when you point them out to us), we
make corrections in the text and code
for the current Developer Essentials disc.
You can also find corrections in this
section of the journal.

So far, we want to let you know about
these changes:

On page 75, the abstract should read
“Through the Slot Manager system
software, the Macintosh can read the
declaration ROMs in NuBus slots and
processor slots, like those in the
Macintosh SE/30. This article tells you
what you must know about NuBus
addressing and the structure of correct
declaration ROMs to successfully
debug the ROM. It walks you through
the structure of an example declaration
ROM and gives common errors and
strategies for debugging declaration
ROMs.”
F J

O

n

L
E

o
u

r

a

C c
M

X

Y

j

k
o

r

s

y

h

t
Z

B

l

On page 91, “Assuming the board is in
slot $B, the above format block
(residing on byte lane 3)” should be
byte lane 0.

On page 149, the procedure
MyVScrollCallback appears
twice. The second one should have
been MyHScrollCallback, as
indicated in the comments. Thanks to
Sam Roberts for pointing this one out.
For those of you who didn’t even
notice, shame on you.

There was a pair of bugs in the “Heap
Demo” source code distributed with
Issue 2 of develop, one of which prevented
the source code from compiling. The
Developer Essentials disc contains a
corrected version (HeapDemo 1.3.4)
In order to compile the old code, you should
remove the reference to “UMonitor” at the
start of HeapDemo.p. The UMonitor unit
is a debugging tool that was used during
the final checkout of the Heap Demo, and
though I removed the calls to its code, I
forgot to remove the USES reference.

The other bug was in the menu enabling
logic. With the bug, you could crash the
program by closing the memory window,
and deleting all blocks. The menu enabling
logic has been changed to fix this problem.
Thanks to the diligent readers who pointed
out these problems. I’ll make sure you have
more articles to nit-pick in the future!

—Richard Clark
G

HT
E

RS

t

q
F

Y

u
y

o

I LETTERS July 1990

261

MARK B

d e v e l o

262
CD-ROM:

THE

CUTTING

EDGE
. JOHNSON

 p July 1990
Just as applications changed when hard disks became widely available,
they are beginning to change again to take advantage of the newest
storage technology to go mainstream: CD-ROM. The acronym, which
stands for Compact Disc—Read Only Memory, doesn’t begin to tell
how the technology can liberate your applications from the currently
established limitations of magnetic media. This article discusses the ups
and downs of CD-ROM and looks at simple and creative ways
developers can take advantage of this new medium.

With its advantages over traditional magnetic media, CD-ROM can help you
establish a real difference between your products and those of your competitors.
It can enable you to produce ground-breaking applications at an affordable cost,
unconstrained by disk space limitations. Although it does have its own limitations,
its advantages and the possibilities they offer should be enough to convince you to
make the investment in this competitive weapon.

THE CD-ROM EDGE
CD-ROM puts traditional magnetic media to shame in more ways than one. Beyond
the obvious advantages of high capacity and low cost, no magnetic media can match
CD-ROM in the areas of versatility, durability, portability, and interchangeability.

Capacity. Optical encoding of digital data enables storage of up to 660 MB of
information on a single 120-mm CD-ROM disc. It would take more than 800 floppy
disks to hold the same amount of information. Although some recording techniques
limit CD-ROM discs to 550 MB, even a disc with this lower limit holds more
information than hundreds of floppy disks.

Economy. You would think that with its capacity and durability, CD-ROM would be
quite expensive. On the contrary, when you need to distribute at least 10 MB of data
MARK B. JOHNSON (emphasis on the “B”)
has been driving people crazy at Apple and DTS
for two years. This Hoosier native came here from
Notre Dame, where he spent three and a half
years in the snow, getting for his trouble only a
1986 B.A. in French and computer applications
(a CS/MIS sort of thing) with a concentration in
philosophy. However, he liked the seasons there

(and the White Castle hamburgers) so much that
he convinced them to let him stay and slave for
another three years doing Apple support and
development in user services. Mark does a lot of
the “unofficial” projects in DTS. He has had a
hand in Phil & Dave’s Excellent CD™, SpInside

to 100 or more people, CD-ROM is a very cost-effective medium. Large numbers of
discs (over 1,000 units) can be produced for near two dollars per disc, almost as low a
cost as for producing a standard 800K floppy disk.

Versatility. A CD-ROM disc can contain both digital data and high-quality digital
audio tracks (usually copied directly from a digital audio tape). Thus, this technology
opens the door to new combinations of data and sound on a single medium. See Eric
Mueller’s article “Accessing CD-ROM Audio Tracks From Your Application” in this
issue for insight into how such things are done.

Durability. Because CD-ROM is a read-only medium, a disc has a high degree of
data integrity once it is pressed. Users cannot erase or overwrite the data, nor can
they accidentally infect the disc with the latest virus. CD-ROM discs are mostly
comprised of, and completely coated by, durable plastic. This construction,
combined with the fact that the data encoding method used today provides its own
error correction, makes CD-ROM a highly stable and durable medium, resistant to
the handling and magnetic damage that commonly affect other types of media. (To
prove this point a few years ago, an Apple engineer buried some CD-ROM discs in
his cat’s litter box for a week. He then wiped the discs clean and successfully read all
the data from them.)

Portability. Another advantage of optical technology is its portability. Unlike most
sealed hard disk platters, CD-ROM discs can be removed from a CD-ROM drive.
This feature gives the user a virtually unlimited amount of storage space without
locking him or her into a single type of information from minute to minute.

Interchangeability. Any CD-ROM player can read any CD-ROM disc at the bit
level, since all CD-ROM discs, whether they contain data, audio, or both, share a
common physical format. To go one step farther, developers can use a standard file
system format to enable users to access a disc on a variety of hardware configurations
under several different operating systems. Brian Bechtel’s article “The Ins and Outs
of ISO 9660 and High Sierra” in this issue explores the two standard file system
formats. Developers can also mix partitions on a disc so that it can be read by both
the Macintosh® operating system and ProDOS®, as explained in Llew Roberts’s
article “How to Create a Mixed-Partition CD-ROM” in this issue.

SO WHAT’S THE CATCH?
All this for one low price? There must be a catch. Not exactly. Some minor
limitations, yes—in the areas of speed, inability to write on the medium, and cost
of a CD-ROM drive—but no show-stoppers.

Speed. Due to the mass of the optical read head and the data encoding methods
used, reading from a CD-ROM disc is slower than reading from a good hard disk,
but still faster than reading from a floppy. The speed of reading from disc, which is
CD-ROM: THE CUTTING EDGE July 1990

263
Macintosh, and the Apple FTP Internet site. He
also stays up nights figuring out how to best hide
Technical Note #31.

In his rare moments away from the office, he
loves watching Notre Dame beat USC in football,
participating in a variety of sports, collecting

French wine, playing in his recently rediscovered
kitchen, and working on and driving fast cars
(very useful, since he is rumored to own a 1975
Bricklin SV-1). Mark claims to be addicted to
adrenaline and electronic mail, but from the 550
(and counting) Coke cans stacked in his office
window, we know what his real addictions are. •

d e v e l o p July1990

264
150K per second, is sufficient for just about anything but uncompressed, full-motion
color video, but any application that requires a lot of disc access (for example,
HyperCard) suffers some performance degradation if run directly from CD-ROM
instead of from a hard disk. Of course, if you are just using CD-ROM as a means of
distributing your software, then speed really is not a problem since users are most
likely going to copy your software to their hard disks or file servers to use. But even
in cases where speed does matter, there are things you can do to address this
concern; see the sidebar “Maximizing CD-ROM Speed.”
If you are writing CD-ROM-based software, there are
many steps you can take to ensure the maximum
possible speed from your product.

First, organize your files in a way that makes it easy for
both the user and the Finder to work. Avoid burying
important files six or seven folders from the root level of
the file system, and conversely, avoid putting 1,000 files
into a single folder or at the root level. Once you have
the master hard disk organized, look for opportunities
to precompute and store information to speed up your
application. Take advantage of the 660 MB of space at
your disposal—it is less expensive than CPU cycles for
your users.

Take full advantage of the static nature of CD-ROM; if
it helps, use absolute filenames in your applications
or HyperCard stacks if they are to be run only on the
disc. However, note that if you decide to use absolute
filenames, you should provide a mechanism such as a
preferences file in the user’s Preferences folder to enable
users to change the location of your applications and
data. One method for doing this is hard-coding only
default pathnames and prompting the user (saving the
resulting choices to a preferences file) if the files the user
needs are not found in the default locations.

The best method for gaining speed on the CD-ROM is to
thoroughly test the entire contents on different machine

MAXIMIZING CD-ROM SPEED
configurations until you find the optimal configuration.
Then go back and test it again to make sure you have
not missed anything. Different layouts, default memory
configurations, and pathnames can produce different
results, especially for HyperCard® stacks. If possible, test
the hard disk as a locked volume on a file server or on a
CD-ROM simulator (usually available at your local disc
mastering company); these tests give a more accurate
reflection of how the final CD-ROM should perform than
testing on a locally connected hard disk.

Finally, before you master the CD-ROM, optimize the
hard disk that you will use for the mastering process.
You can either use a third-party optimization program
(be sure to back up your disk first) or even better, copy
the entire contents to a freshly formatted hard disk. This
process guarantees that your files are written (and will
be read) contiguously on the disk and also rebuilds the
desktop resource file or desktop database files that the
Finder needs. When you finish this process, unmount the
hard disk and use a disk editor to zero the boot blocks
on the hard disk. This final process speeds the time it
takes the CD-ROM to mount and also ensures that it is
not mistaken for a boot volume.

If you do these things, you will have done everything
you can to make your CD-ROM product as fast as
possible.

Inability to write. The read-only feature that makes CD-ROM so durable is
considered by some to be a disadvantage to this technology. Since you cannot
erase or overwrite CD-ROM, it is not a replacement for magnetic media.
Optical technologies that allow writing as well as reading are coming to the
market—including read-only and erasable-optical discs, laser videodiscs, and
WORM (write once, read many) discs—but none of these can currently match the
cost-effectiveness of CD-ROM for electronic publishing and distribution.

Cost of a drive. Although Apple recently cut the price of the AppleCD SC to be
comparable to that of an average-sized hard disk, many developers still consider the
cost prohibitive for the mainstream user, and therefore do not consider a CD-ROM
drive a mainstream peripheral. It is true that today’s installed base of CD-ROM
drives is small, but it is beginning to grow at a faster rate as more and more new
titles appear on the market. Here we have the familiar chicken-or-egg problem:
developers want to wait for the installed base to reach a certain point before they
develop for CD-ROM, and users want to wait for the number of useful CD-ROM
products to reach a certain point before they buy a CD-ROM drive.

Still, the fact is that it may only take a single blockbuster CD-ROM to motivate
many people to buy. For example, when Apple’s Developer Technical Support group
produced the original Phil & Dave’s Excellent CD (now a collector’s item), many
developers found it reason enough to buy a CD-ROM drive. If your product is good
enough, people will purchase the necessary hardware to use it. And remember that
competition is forcing the cost of CD-ROM drives and discs ever downward, so you
can bet that by the time you get your product to market, price will be less of a
limiting factor than it is now.

A WORLD OF POSSIBILITIES
Thanks to its advantages over other technologies and despite its minor limitations,
CD-ROM opens up a world of new possibilities to the developer. CD-ROM is
especially suited to

• distributing large products
• creating new or enhanced versions of products
• distributing application environments
• enabling collaborative products
• distributing information products
• enabling interactive media products
• enabling user interaction in a learning environment

We’ll look at some examples of each of these kinds of uses.

As we look at these examples, keep in mind that although building a CD-ROM is
essentially as easy as cloning a hard disk, building in a look and feel that takes full
CD-ROM: THE CUTTING EDGE July 1990

265

d e v e l o p July 1990

266
advantage of the medium is a more challenging task. You must pay attention to
simple things like data organization and window size and position on the disc. If
a CD-ROM is not well organized, your user might as well be dealing with 825
individual floppy disks. Ideally, you want to present a consistent interface and make
it as visually appealing as possible to the user.

DISTRIBUTING LARGE PRODUCTS
The simplest way to use CD-ROM is as a distribution medium for relatively large
and complex software products. Development system environments and other
comprehensive products like them are perfect candidates for CD-ROM distribution.
With the increased disk space, you can include several different preconfigured
versions that a user need only copy to a hard disk without going through a
complicated installation procedure.

If your product requires a specific version of Apple’s system software, you can license
the software from Apple Software Licensing (20525 Mariani Avenue, M/S 38-I,
Cupertino, CA 95014, 408/974-4667) and include it on the CD-ROM to make sure
your users have everything they need to run your product when they acquire it.

For Apple, products like MPW®, MacApp®, and System Software 7.0 are great
candidates for CD-ROM distribution, but the real win with CD-ROM technology
is to create products that you may not have even thought possible prior to the
availability of this medium.

CREATING NEW OR ENHANCED VERSIONS OF PRODUCTS
CD-ROM gives developers the opportunity to produce new or enhanced versions of
their products that just would not be feasible with floppy disk-based distribution.
These enhancements can include expanded help systems (since basic on-line help
should already be in every good application), full-blown tutorials that use graphics,
sound, and animation to provide users with a rich learning environment, advanced
technical or support information, and any other supplemental components that add
value to the original product. Developers can even include past versions of the
product to facilitate upgrade compatibility and file exchange.

Highlighted Data’s new electronic version of the Merriam-Webster’s Ninth New
Collegiate Dictionary would not have been possible without CD-ROM technology. It
features digitally recorded pronunciations of more than 160,000 entry words, as well
as the full text and graphics of the print edition.

The Manhole CD-ROM by Mediagenic, the industry’s first CD-ROM entertainment
product for the Macintosh, is a great example of an enhanced product. It was
developed from the popular HyperCard-based fantasy adventure. On the CD-ROM,
enhanced graphics and animation combine with original music to bring the
characters of this adventure to life.

DISTRIBUTING APPLICATION ENVIRONMENTS
Some developers are taking advantage of CD-ROM to produce and distribute
“complete” application environments for business and other uses. The concept
behind an application environment is simple: combine several individual products
that complement each other, in a way that appears seamless to the user. The
resulting savings on packaging and distribution costs can be passed along to users.

With the data encryption techniques already available for CD-ROM, you can
include your entire line of software on a single CD-ROM and distribute it with
different decryption keys. When a user decides to add another component, he or
she purchases the key to decrypt another application from the same CD-ROM.

To date, the best-known example of an application environment is the Microsoft
Office. Microsoft bundles their four most popular business applications—Word, Excel,
PowerPoint, and Mail—on a CD-ROM with on-line documentation, HyperCard-
based navigational tools, popular templates and clip art, and several third-party
applications that add even more value to the suite of applications.

ENABLING COLLABORATIVE PRODUCTS
A related area with a great deal of potential for CD-ROM is cooperative or
collaborative works put together by multiple developers or a publisher and several
developers. The idea is for a publisher or group of developers to combine several
related applications, texts, graphic images, sounds, or animations into a user
environment that the individual developers would not have considered producing, or
could not have produced, individually. This approach can work especially well for
smaller developers who cannot lavish money on product packaging and promotion.
Collaborative works also have a great deal of potential for users, since they get the
combined efforts of several developers who have worked together on a single product.

DISTRIBUTING INFORMATION PRODUCTS
Information products are natural candidates for distribution on CD-ROM, as this
technology very easily lends itself to storing immense libraries of information that can
be indexed, cross-referenced, and searched electronically. The data in these libraries
can be text, sound, graphics, animation, or anything else you happen to fancy.

Apple is seriously investigating producing a CD-ROM of its entire technical library
for developers, including the Technical Notes series, Inside Macintosh, and MacApp
documentation. The Developer Essentials disc is just the tip of the proverbial iceberg;
see Corey Vian’s sidebar for details. OCLC (On-Line Computer Library
Corporation) publishes an entire line of CD-ROMs for use in libraries around the
world. The MacroMind CD-ROM by MacroMind, Inc., includes over 100 megabytes
of VideoWorks and MacroMind Director animations, guided tours, and clip art.
These are all first-generation examples of the use of CD-ROM to distribute
information products.
CD-ROM: THE CUTTING EDGE July 1990

267

d e v e l o p July 1990

268
Developers have just begun to scratch the surface of what is possible when a local
CD-ROM archive is combined with up-to-date on-line data, a combination that
offers users both the storage advantage of CD-ROM and the timeliness that only an
on-line system can offer. The normally high cost and slow speed of on-line system
searching is negated by the presence of the local CD-ROM archives. The “AppleLink
Offline” stack produced by DTS, currently distributed to Apple Partners and
Associates, is a good prototype of this combination.

Beyond these archives, or knowledgebases, there is also great potential for
combination CD-ROM and on-line applications where large amounts of data could
be stored locally on CD-ROM and the code for interacting with other on-line users
and accessing the data on the CD-ROM could be stored on an on-line system.
by Corey Vian, Apple Developer Press

Electronic publishing is relatively unexplored territory
and so invites both innovation and disaster. When
we decided to take d e v e l o p electronic, we
knew we would see a little of each. Initially we thought
that the electronic version should precisely match the
printed version. Our reasons for wanting to maintain
parallelism between the printed and electronic version
had to do with spatial orientation and translation
efficiency.

Some of us remember the location of the content we
have read. We remember that a reference was on the
lower-right portion of a left-hand page near the end
of the magazine, for example. If we read it first in the
printed version and later want to find it in the electronic
version, this spatial parallelism makes switching media
much easier.

The idea of taking a printed magazine—of any format—
and making a page-by-page translation into electronic
form is attractive in that it generalizes the process of
translation and eliminates some production time by
reusing work already done on the printed version. We
imagined that any publication could be translated into
electronic form using a standard, nearly automatic
conversion process.

INSIDE AN ELECTRONIC d e v e l o p
How We’ve Done It. We created the first issue of
d e v e l o p by printing PageMaker documents to
glue files, converting the glue files to PICT files, and
pasting them into SuperCard. We ran into numerous
problems because the PICT files were being interpreted
differently at each step. Some PICT interpreters make a
single object out of an entire line of text, while others
make individual objects out of each word in an attempt
to preserve spacing when fonts are changed. If the
original font used in the PICT is not available, a
substitute font is used. We copied the text for each page
into an invisible field in its corresponding card so that
when you searched for text, you were taken to the
appropriate card. The drawback was that we could not
highlight the text once found, since it was embedded in
the PICT.

We explored the possibility of writing XCMDs that
would actually search a PICT file and highlight the found
string, which seemed doable but only addressed a small
part of the problem. Neither the process nor product
for the first issue were turning out quite as we had
envisioned. It was too slow, it displayed its pages
without respect for the size of the screen it was being
viewed on, PICT files were misinterpreted in the
translation process, and the pages were difficult to read
overall. After all, they were designed to be printed at

1200 dpi. Basically, the publication showed no respect
for the medium it was being translated into. So we
decided to take a step back and reevaluate our
approach. With deadlines looming, we agreed on a
slightly improved interim remedy and began the process
of designing a more elegant, long-term solution.

For the second issue, we scrapped the full-page PICT
approach. Instead, we copied the text into SuperCard
fields, copied the pictures individually, restyled the text,
and then placed the pictures to approximate the layout
of the journal. This was surprisingly easy and took only
a day or two. It also gave us more readable text and
the ability to search and highlight the actual text you
were reading. We still included full-page PICTs
elsewhere in the application, used for printing.

For the third issue, we have reformatted the previous
issues in this same way and included them all in one file
so that all articles are directly accessible from a single
application. We will handle subsequent issues this way
until we have worked out a design that better addresses
key problems inherent in electronic publishing.

Where We’re Headed. As with life, one of the
most basic problems associated with an electronic
publication is the unknown. When we distribute a
printed publication, the content, presentation hardware,
and interface are all bundled together under our control.
With electronic publications, there are many variables
over which we have little or no control—primarily screen
size, resolution, and color limitations, as well as
processing speed. This places severe restrictions on
the design process.

Should we design for the lowest common denominator
and flush innovation down the toilet? Should we design
for the average platform and irritate many subscribers?
Or can we design a presentation that will work well in
the various environments and still let us exploit the
extraordinary capabilities of the computer? After all, we
could simply put all the articles up on AppleLink and call
it a day. The challenge is to develop a standardizable
framework that will work for users and have a minimal
impact on creative options.

Most media have arrived at some consistent format.
Some constraints are put in place to provide context and
a familiar, and therefore comfortable, entry into the
content, like the frame around a painting, the form of a
musical fugue, or the size of a magazine as compared,
say, to a dictionary. Yet within those constraints,
substantial creativity is possible. A balance can be struck
between the need for consistency and the need for
creativity. We are struggling to find this balance in the
realm of electronic publications, but the rich and rapidly
changing nature of the medium resists our efforts.

What We’ve Learned. We’ve learned that page-
for-page translation is probably not a good idea.
Formatting that is left- or right-handed makes no sense
on a screen that displays a single page at a time—if
that. Using scroll bars to push an image around in
order to see the whole thing is at best a work-around.
Magazine print is too small to be viewed at 72 dpi
without enlarging. A solution that takes full advantage
of, yet respects the limitations of, the electronic
environment will feel far more natural than trying to
dress a print man in a cathode-ray suit.

It is a mistake to think of the printed version of
d e v e l o p as the basic product to be recast in an
electronic form. d e v e l o p, or any other publication,
is not essentially a collection of printed pages. Rather, it
is a specific domain of information, knowledge if you
like, that can be conveyed by a variety of media.
Effective use of the electronic environment demands a
fresh look at what publishing can be.
CD-ROM: THE CUTTING EDGE July 1990

269

d e v e l o p July 1990

270
ENABLING INTERACTIVE MEDIA PRODUCTS
Because CD-ROM stores all of its information in digital format, it’s an excellent
medium for combining text, graphic images, sound, animation, and any other type of
data for interactive media. The only real limitation is retrieval speed from the disc,
and at 150K per second, CD-ROM is fast enough for just about anything but
uncompressed, full-motion color video.

To date the largest uses of interactive media on CD-ROM have involved
HyperCard, which has proven worthy of the task. With HyperCard 2.0, it is even
easier to author stacks that combine sound, color graphics, animation, and related
data for use on CD-ROM; and the new features of HyperCard 2.0 stacks are no
longer limited by disk space.

Audio Notes #1: “The Magic Flute,” produced by Warner New Media, is an excellent
example of interactive media on CD-ROM. This product, the first in a Music
Discovery series, fills three CD-ROM discs with both HyperCard stacks and
CD-ROM audio content on Mozart’s The Magic Flute. Roger Englander, the
television producer of Bernstein’s Young People’s Concerts, provides music
commentary to go with the original German libretto and the English translation. In
addition, this CD-ROM set includes newly recorded sidebars about the music, the
symbolism, and opera forms.

Ludwig Van Beethoven, Symphony No. 9, another example of interactive media, is a
part of the Voyager CD Companion Series from the Voyager Company. This
product by Robert Winter is a commercially produced audio CD-ROM with
accompanying floppy disks of data and HyperCard stacks. These stacks not only
teach the user about Beethoven and the symphony itself, but also about music theory
in general.

ENABLING USER INTERACTION IN A LEARNING ENVIRONMENT
Imagine a CD-ROM about film that enables you to direct your own scenes with
different camera angles and effects; or a CD-ROM that guides you through the city
of your choice as it looked or will look at a specified time period; or a CD-ROM
that gives you the complete works of French mathematician and philosopher Blaise
Pascal in both French and English (or any other language) with pictures of his
surroundings at the time of his writings; timelines of the major events during his life;
excerpts from popular music, literature, and architecture of the period; and critiques
and comments from his contemporaries.

Although it may have the greatest potential for both instructional and general use,
the area of “user views” is one of the least developed at this time. The idea of a user
view is that the developer provides the user with an environment in which he or she
is guided by interactive tutorials and interpretive simulations through the data, and
then enables the user to build his or her own “views” of the same data. At any time

the user can switch between the different types of available data and the selected
view. CD-ROM is the ideal medium for this type of thing, since it can contain texts,
graphic images, sounds, statistics, timelines, and animations.

WHAT NOW?
This article has given you a few ideas to get you started thinking about how you can
best benefit from CD-ROM technology, and you can probably think of many more.
The point is that CD-ROM opens a lot of doors and removes a lot of assumed
barriers to product development. This technology offers you a rare opportunity to
let your imagination run wild; however, what you choose to do with it is up to you.
CD-ROM: THE CUTTING EDGE July 1990

271
For More Information
Sources used in this article were CD-ROM and
the Macintosh Computer by Brian Bechtel (on the
accompanying Developer Essentials disc), and
Gregg Williams’s article “The Big Advantages of
CD-ROM” in Apple Direct, December 1989.

For a good overview of CD-ROM, read the
AppleCD SC Developers Guide, available from

APDA. In addition, there is a magazine called
CD-ROM EndUser, available from DDRI, 510
North Washington Street, Suite 401, Falls
Church, Virginia 22046.

Thanks to Our Technical Reviewers:
Andy Poggio, Llew Roberts

B
D

d

272
THE INS AND

OUTS OF

ISO 9660

AND HIGH

SIERRA
RIAN BECHTEL WITH HIS
AUGHTER MEG

 e v e l o p July 1990
Any CD-ROM can be read at the bit level by any CD-ROM player,
thanks to the existence of standards for the physical format of such discs.
Having this physical format in common is nice, but it’s not enough. We
also need to be able to find specific files on a CD, no matter which
operating system we are using; we need a standard file system format.
High Sierra and its international equivalent ISO 9660 are standards
that define a file system usable under a variety of operating systems.
This article explores these standards and their implementation on the
Macintosh, and discusses a simple program you’ll find on the
accompanying Developer Essentials disc to convert Macintosh files
to ISO 9660 format.

A file system organizes data logically on a CD. Different operating systems use
different file systems to organize data, and thus a CD formatted with a native file
system can only be read by one particular operating system. To overcome this
obvious limit to the usefulness of CD-ROM as a storage and distribution medium,
the industry has established standards for a file system that can be used under a
variety of operating systems. The ISO 9660 standard and its predecessor High Sierra
define a file system carefully attuned to CD-ROM characteristics.

In particular, because CDs have a relatively slow seek time and a high capacity, these
standards make trade-offs that reduce the number of seeks needed to read a file, at
the expense of space efficiency. And because CDs are read-only, concerns like space
allocation, file deletion, and the like are not addressed in the standards. The
standards apply only to the data track of a CD-ROM, not to audio tracks; and they
do not apply to any media other than CD-ROM, such as erasable-optical drives.
BRIAN BECHTEL works in the Advanced
Technology Group, where he applies to his
everyday life Wernher Von Braun’s slogan,
“Research is what I do when I don’t know what
I’m doing.” His title of Witzelsuchter is derived
from an obscure medical condition (usually
caused by brain lesions) in which the patient
takes an intense interest in telling long, pointless
stories and jokes. People who know him say this

title is appropriate. Brian claims the lesions
resulted from nine months of studying the ISO
9660 and High Sierra standards documents. He
also wrote the HyperCard CD Audio Toolkit. He
graduated from Occidental College with an A.B.
in math. Meg, his daughter, attends the Apple
Child Care Center. His favorite food is chocolate,

The standards do not favor any particular computer architecture. All significant
multibyte numbers are recorded twice, once with the most significant byte first (msb
order, used by Intel processors such as those in MS-DOS compatible computers)
and once with the least significant byte first (lsb order, used by Motorola
microprocessors such as those in the Macintosh). This enables easy implementation
under a variety of operating systems, such as the Macintosh operating system, Apple
II ProDOS 16 or GS/OS, MS-DOS, VMS, and the UNIX operating system. Let’s
look now at how the two standards developed.

ISO 9660 AND HIGH SIERRA: SOME HISTORY
A group of industry representatives met at Del Webb’s High Sierra Hotel and
Casino at Lake Tahoe, Nevada, in late 1985 to see if companies could cooperate in
developing a common file system format for CD-ROM. The result of this series of
meetings was the High Sierra format. This format is fully specified by the May 28,
1986 Working Paper for Information Processing—Volume and File Structure of Compact
Read-Only Optical Discs for Information Interchange. For obvious reasons, this is known
as the High Sierra paper.

The world at large then wanted to adopt an equivalent standard. The International
Organization for Standardization pushed High Sierra through its standardization
process, resulting in the international standard known as ISO 9660. (The
organization is called the International Organization for Standardization, but the
standard is ISO 9660.) This standard is described in the paper ISO 9660—Volume
and File Structure of CD-ROM for Information Interchange, known in the CD-ROM
trade as the ISO standard.

Apple’s Macintosh operating system and GS/OS, plus Microsoft’s operating system
MS-DOS, support both the ISO 9660 standard and the older High Sierra format.

ISO 9660 is the wave of the future—many existing CD-ROMs use the High Sierra
format, but everyone is changing over to the ISO 9660 standard, and most if not all
future discs will be in ISO 9660 format rather than High Sierra format. In the
meantime, because “ISO 9660” doesn’t roll off the tongue quite as nicely as “High
Sierra,” many people in the industry say “High Sierra” when they really mean “ISO
9660” or “whatever that damn format is that my CD-ROM is supposed to be in.” In
this article, I do not use the terms interchangeably, but explicitly state which format
I’m referring to. But for practical purposes, what I say about one format also applies
to the other, with the exceptions I note.

HOW THE FORMATS ARE IMPLEMENTED
ON THE MACINTOSH
The Macintosh supports both ISO 9660 and High Sierra through the use of a
feature in the Macintosh file system called the external file system hook. This is a
THE INS AND OUTS OF ISO 9660 AND HIGH SIERRA July 1990

273
as is his favorite color. He says he plays lousy
acoustic guitar and roots for the LA Dodgers. His
identical twin, Bradley, manages technical
support at some other Silicon Valley company. •

d e v e l o p July 1990

274
low-memory global that contains a pointer to an external file system handler to
which multiple handlers are daisy-chained. To support ISO 9660 and High Sierra,
Apple has written a new set of routines, contained in a file called Foreign File
Access. This file, combined with the files High Sierra File Access and ISO 9660 File
Access, provides complete support for the standard formats.

Because the ISO 9660 and High Sierra formats are supported via Foreign File Access
instead of software that’s part of a device driver, you can use any media to create a
standard-format volume. In actual use, ISO 9660 and High Sierra only make sense on
a CD-ROM; but you can create a test volume using any floppy or hard disk.

A LOOK AT THE FORMATS
The ISO 9660 standard and the older High Sierra format define each CD-ROM
as a volume. Volumes can contain standard file structures, coded character set file
structures for character encoding other than ASCII, or boot records. Boot records can
contain either data or program code that may be needed by systems or applications.
ISO 9660 and High Sierra specify

• how to describe an arbitrary location on the volume—the logical
format of the volume;

• how to format and what to include in the descriptive information
contained by each volume about itself—the volume descriptors;

• how to format and what to include in the path table, which is an
easy way to get to any directory on the volume;

• how to format and what to include in the file directories and the
directory records, which contain basic information about the files on
the volume such as the filename, file size, file location, and so forth.

The discussion that follows is a reasonably technical description of the standards in
each of these areas; it is not the definitive description. For the one true, proper
definition of the standards, read the original specifications.

THE LOGICAL FORMAT
CD-ROMs are laid out in 2048-byte physical sectors. This physical layout is defined
in a standard published by Philips and Sony known as the Yellow Book, and is
independent of the type of volume formatting used. Under ISO 9660 and High
Sierra, the CD is also laid out in 2048-byte logical sectors. Both formats also have the
concept of a logical block, which is the smallest chunk of file data. A logical block can
be 512, 1024, or 2048 bytes. In general, file access information is laid out in sector-
sized units, while actual file data is laid out in block-sized units. On most CDs, the
block size is the same as the sector size at 2048 bytes, so this distinction isn’t
important. Figure 1 shows the layout of a volume in ISO 9660 or High Sierra format.
If you’re really interested in the standards, you
should get copies of the full specifications. You
can get the May 28, 1986, High Sierra
specification from

National Institute of Standards and Technology
Administration 101
Library E-106
Gaithersburg, MD 20899

You can get the ISO 9660 specification from any
of the following:

American National Standards Institute
1430 Broadway
New York, NY 10018
Sales Department: 212/642-4900

Figure 1
A Volume in ISO 9660 or High Sierra Format

Primary volume descriptor

Secondary volume descriptor(s)
optional

Partition descriptor(s)

Undefined by either the High Sierra
or ISO 9660 standard

Path table

Root directory
directory record for root

directory record for parent (i.e., root)
directory record for first file or directory

…
directory record for last file or directory

Subdirectory
directory record for this directory

directory record for parent
directory record for first file or directory

…
directory record for last file or directory

File contents
undefined by either High Sierra or ISO 9660;

left to the imagination of the reader

four copies possible in High Sierra

Sector 0

Sector 16

optional

Boot descriptor(s)
optional

Volume descriptor terminator

If directory

If file

Physical start
of the CD-ROM

two copies possible in ISO 9660
THE INS AND OUTS OF ISO 9660 AND HIGH SIERRA July 1990

275
ECMA Headquarters
Rue du Rhone 114
CH-1204
Geneva, Switzerland

Global Engineering Documents
800/854-7175 or 714/261-1455

d e v e l o p July 1990

276
THE VOLUME DESCRIPTORS
Information about the volume itself is contained in an array of 2048-byte entries,
beginning at logical sector 16 on the disc, as shown in Figure 1. These are the
volume descriptors. There are five types of volume descriptors: the primary volume
descriptor, the secondary volume descriptor, the boot descriptor, the partition
descriptor, and the volume descriptor terminator. Every volume descriptor is 2048
bytes long (one sector). The first descriptor in the array is always a primary volume
descriptor, and the last descriptor always a volume descriptor terminator. The other
three volume descriptor types are optional. The boot descriptor and the partition
descriptor aren’t supported by the Macintosh, because the Macintosh boot code
looks at the beginning of the disk for boot tracks, not at sector 16.

Each volume has one and only one primary volume descriptor. This descriptor consists
of the volume name, some publishing information, and offsets to the path table and
root directory. The primary volume descriptor also contains a copy of the root
directory entry (to minimize the number of seeks necessary to find out information
about a disc). In the directory structure pointed to by the primary volume descriptor,
filenames can consist of the uppercase characters A through Z, the underscore, and
the digits 0 through 9. This is a subset of ISO 646, an international character
representation standard roughly equivalent to ASCII. You will see a sample primary
volume descriptor later in this article in the section entitled “A Simple Formatting
Program: ISO 9660 Floppy Builder.”

A volume can have zero or more secondary volume descriptors. The purpose of the
secondary volume descriptor is to enable you to press a CD-ROM that can display
the directories in a nonroman character set, such as Japanese Kanji, Hebrew, or
Arabic. In the directory structure pointed to by the secondary volume descriptor, the
characters used to represent filenames are not restricted to ISO 646. This directory
structure is separate from but parallel to the directory structure pointed to by the
primary volume descriptor. The secondary volume descriptor contains the same
information as the primary volume descriptor—although in a different alphabet—in
all but two fields. The volumeFlag field is used to indicate whether a non-ISO-
standard alphabet is being used. The escapeSequences field contains
characters that define which alphabet is being used.

The files ISO 9660 File Access and High Sierra File Access each contain a resource
used to determine if the Macintosh should use a secondary volume descriptor. The
NRVD resource contains a word for the volumeFlags field, followed by 32
bytes for the escapeSequences field. If a secondary volume descriptor exists,
and if the volume flags and escape sequences match those in the NRVD resource,
then the secondary volume descriptor is used instead of the primary volume
descriptor.

The boot descriptor was designed to allow the creator of a CD-ROM to include
system information for booting from that CD-ROM. This descriptor is not
For the five people out there who really care:
Apple’s High Sierra and ISO access software
supports level-2 interchange, according to section
10.2 of the ISO 9660 specification. This means
it supports interleaved files, but not multivolume
sets. •

supported on the Macintosh, since the Macintosh operating system looks for boot
information at the beginning of the disk, in the area undefined by ISO 9660 and
High Sierra. The partition descriptor is also unsupported on the Macintosh.

The volume descriptor terminator is a simple structure that serves to indicate the end
of the volume descriptor array. Each volume contains one, and only one, volume
descriptor terminator.

THE PATH TABLE
The path table describes the directory hierarchy in a compact form, containing
entries for each of the volume’s directories. Its purpose is to minimize the number of
seeks necessary to get to a file’s directory information. The Macintosh caches the
path table in memory, enabling access to any directory with only a single seek.

ISO 9660 allows up to two identical copies of the path table to be stored on the disc,
while High Sierra allows up to four copies. This is useful to operating systems that
do not cache the path table in memory. In this case, copies of the path table can be
stored at regular intervals on the disc—say a quarter of the way in and again three-
quarters of the way in—to decrease the seek time necessary for the optical read head
to find one of the copies.

The path table for a simple formatting program is shown later in this article.

DIRECTORIES
Directories are stored in a hierarchical tree. Each volume has a root directory, the
parent to all other directories on the volume. Subdirectories can be nested up to
eight levels deep (the root plus seven levels).

Directory records are the basic unit of information kept about each file. Each directory
record contains the offset from the beginning of the disc to the file itself, the size of
the file, date and time information for creation and modification, file attribute flags,
information useful for interleaved files, and the filename (preceded by a length byte).
There is also an optional extension field, used by the Macintosh and Apple II
operating systems to store additional information not defined by the High Sierra
and ISO 9660 formats but necessary to the operating system. A directory record for
a simple formatting program is shown later in this article.

Additional file information necessary for multiuser operating systems such as the
UNIX operating system or VMS is retained in a separate field known as the extended
attribute record. Extended attribute records are recognized by the Macintosh, but
they are ignored since they contain information that is irrelevant to it.

A file identifier consists of a filename, a period, a file extension, a semicolon, and a
file version number. File identifiers can use the uppercase English alphabet,
numbers, and the underscore character (_), and can be up to 31 characters long.
THE INS AND OUTS OF ISO 9660 AND HIGH SIERRA July 1990

277

d e v e l o p July 1990

278
Either the filename or file extension can be missing, but not both; if the extension
is missing, the period must still precede the semicolon; and the version number
must exist. This means that valid file identifiers look like THIS_FILE.EXISTS;1
or .ONLYEXTENSION;1 but that file identifiers like NO_PERIOD;1 or
NO_VERSION are invalid. Both standards define a level-1 conformance, designed
for compatibility with MS-DOS, that restricts filenames to eight characters, a
period, three characters, a semicolon, and a version number.

There are two types of files: regular files and associated files. A regular file without
an associated file is simply a stream of bytes, like the files used in an operating
system such as the UNIX® operating system or MS-DOS. An associated file is a file
with the same name as a regular file, and with the associated file attribute bit set in
the directory record. This scheme accommodates the data and resource forks of a
Macintosh file, as we’ll discuss later.

HOW THE FORMATS DIFFER
The differences between ISO 9660 and High Sierra are slight, and mostly of interest
to programmers. They are as follows:

• The primary and secondary volume descriptors differ in the type
and number of fields they accommodate.

• In ISO 9660, a bibliographic preparer field was added to the
primary and secondary volume descriptors.

• Up to four copies of the path table are allowed in High Sierra,
but only two copies in ISO 9660.

• Two fields changed position in the directory records in ISO 9660.
• All date/time fields have an extra byte in ISO 9660, used to

describe the 15-minute offset from Universal Standard Time
(GMT or UTC).

• The order of directory records is slightly different in ISO 9660.
In High Sierra, the associated file comes after the regular file with
which it is associated; in ISO 9660, the associated file comes first.

HOW MACINTOSH FILES ARE STORED IN THE FORMATS
The Macintosh uses a file system called the Hierarchical File System (HFS). As its
name implies, it is hierarchical in structure, like that specified by ISO 9660 and High
Sierra; it supports subdirectories, called folders, where files can be logically grouped
together. HFS corresponds reasonably well to the ISO 9660 and High Sierra formats,
with some limitations. Let’s look at specific parts of the information required by the
Finder and see how the ISO 9660 and High Sierra support handles these issues.

FILE FORKS
Every file in HFS has two forks: a resource fork and a data fork. The resource fork
of an application file contains the resources used by the application (for example, the

bit image for an icon or the title and commands for a menu) plus the application
code. The data fork can contain anything an application wants to store there.
Similarly, a document file contains the document’s resources in its resource fork and
the document’s data in its data fork. In ISO 9660 and High Sierra format, the data
fork of a Macintosh file is stored as a regular file, and the resource fork is stored as
an associated file.

A Macintosh application’s data fork may be empty. How this should be handled is
not stated clearly in either the ISO 9660 or the High Sierra specification; however,
in both cases, an associated file is defined to exist only in conjunction with a regular
file of the same name. If the regular file (corresponding to the data fork) is missing,
the Macintosh operating system handles the case correctly; however, MS-DOS
won’t show the file, because the MS-DOS CD-ROM extensions ignore files with the
associated bit set. This is because all files in MS-DOS are regular files.

FILE IDENTIFIERS
Like ISO 9660 and High Sierra file identifiers, HFS filenames can have a maximum
of 31 characters. HFS filenames differ from valid ISO 9660 and High Sierra file
identifiers in the following ways:

• HFS does not distinguish between uppercase and lowercase
letters; the names “forecast,” “Forecast,” and “FoReCaSt” all
refer to the same file.

• HFS allows any character to be used in a filename except the
colon (:). This means that filenames such as “My payroll file” or
“Åéîøü” are perfectly acceptable on the Macintosh.

• In HFS there is no concept of a filename extension. File types are
stored as part of the Finder information.

These differences mean that many HFS filenames are illegal in ISO 9660 or High
Sierra format. This may cause problems in an application that depends on hard-
coded filenames. For example, Hypercard requires that the home stack be named
HOME, but this is illegal in ISO 9660 and High Sierra. The legal ISO 9660 or
High Sierra name is HOME.;1, which won’t be found by Hypercard. Some versions
of Videoworks depend upon sounds being in a file named Sounds. The only solution
is to have the user copy such files over to an HFS volume and rename them.

FILE TYPE AND CREATOR
To establish the proper interface with the Finder, when a Macintosh application
creates a file it sets the file’s creator and file type. Normally it sets the creator to its
signature, which is a unique four-letter sequence by which the Finder can identify it,
such as MACA for MacWrite, XCEL for Excel, and FNDR for Finder. It sets the file
type to a four-character sequence that identifies files of that type, such as TEXT for
plain text or documents of unknown type, APPL for applications, and WORD for
MacWrite documents. When the user asks the Finder to open or print the file, the
THE INS AND OUTS OF ISO 9660 AND HIGH SIERRA July 1990

279

d e v e l o p July 1990

280
Finder starts up the application whose signature is the file’s creator and passes the file
type to the application, along with the filename and other identifying information.
This information about each file is not defined in either High Sierra or the ISO
9660 standard. To preserve this file-specific information, Apple has defined a
legitimate extension to ISO 9660 (which also applies to High Sierra), documented in
CD-ROM and the Macintosh Computer, included on the Developer Essentials disc. The
extension specifies how to use the optional SystemUse field present in each ISO
9660 directory record to accommodate the file type and file creator.

If a CD-ROM has been pressed in ISO 9660 or High Sierra format without the
Apple extension, all files on the disc are considered to be of type TEXT and creator
hscd. TEXT is a generic type that can be read successfully by many Macintosh
applications; hscd is a creator registered with Developer Technical Support that does
not correspond to any application or utility. If the CD-ROM has been pressed with
the Apple extension, then files on the disc can have any arbitrary type and creator.

FINDER FLAGS
The Finder flags are defined in Technical Note #40, Finder Flags. Only the invisible
bit has an analogy in the ISO 9660 and High Sierra formats, but with the Apple
extension to ISO 9660, the SystemUse field in the directory record
accommodates Finder flags. If the CD-ROM has been pressed with the Apple
extension, only bits 5 (always switch launch), 12 (system file), 13 (bundle bit), and 15
(locked) can be used. All other bits are either ignored or set due to internal workings
of the file system translator. Flags indicating that a file is on the desktop or in the
trash are not supported; all files are assumed to be in their folders.

DESKTOP INFORMATION
The Finder also requires some information describing how files on the desktop are
to be viewed, the icon to display for a specific file, the position of folders and file
icons on the desktop, and the default scroll position when the user opens a folder.
This information is contained in the FInfo, FXInfo, DInfo, and DXInfo
structures documented on pages IV-104 through IV-106 of Inside Macintosh. File or
folder comments are kept in the Desktop file. None of this information can be
specified when pressing a CD-ROM in ISO 9660 or High Sierra format. Some of it
is computed by the ISO 9660 File Access or High Sierra File Access software,
however.

Due to some deficiencies in the original design of the Finder, the correct icon
cannot be displayed for a file on an ISO 9660 or a High Sierra disc. This is because
the Finder does not actually ask for the icon of a file; rather, it assumes the existence
of a desktop database that contains these mappings, and makes a special call, giving
only the file creator and type. The software to provide this information was designed
to be very HFS-specific. Currently, even if the icon bitmap for a file on an ISO 9660
or a High Sierra disc is defined in the Apple extension, it is not used by the Finder.

or a High Sierra disc is defined in the Apple extension, it is not used by the Finder.

Consequently, all files on a High Sierra or an ISO 9660 disc display a generic icon.
If such a file is copied to a hard disk, the correct icon is then displayed on the desktop.
If the user double-clicks on a generic application icon, the application opens correctly.
If the user double-clicks on a generic document icon, and the associated application
exists only on CD-ROM and not in the current directory, the application will not be
found; if the application exists on an HFS volume (because the user has copied it
there), it will be found.

Under HFS, the Finder keeps track of the position of a file icon on the desktop or
in a folder by using a special field; under High Sierra and ISO 9660, an iconÕs
position is computed when the folder is opened, and cannot be changed. File and
folder comments are not supported under the ISO 9660 and High Sierra formats.
The view is always assumed to be View by Icon and the scroll position is always
assumed to be at the top of the folder; these items are hard-coded in the file system
translators.

SUMMARY
As a developer, you donÕt have to worry about files on an ISO 9660 or a High
Sierra CD-ROM looking different to your application. You may have to worry
about filenames, if you have hard-coded a particular filename into your application
(which is always a bad idea anyway.) Except for the icons not showing up properly (a
major exception), your users donÕt really see a difference between ISO 9660, High
Sierra, and HFS-format CD-ROMs. Names are reported back to the Finder exactly
as found on the High Sierra or ISO 9660 volume; they are not altered in any way,
except that they are truncated at 31 characters if they started out longer.

STRANGE BEHAVIOR IN ISO 9660 AND
HIGH SIERRA SUPPORT
Version 1 of ISO 9660 File Access and High Sierra File Access had a misfeature that
slowed down volume mounting times on CD-ROMs with a large number of files.
Because neither the ISO 9660 nor the High Sierra format contains a count of the
total number of files on a volume, the access software was iterating over the volume
to find this number to stuff into the volume control block. This could make a
CD-ROM with 10,000 files on it take up to 20 minutes to mount.

It turns out that the volume control block field that was being set is used in only one
place in the Macintosh operating system: the file count of the GetInfo of the
volume. Version 2 of High Sierra File Access and ISO 9660 File Access fixes this
problem by setting the appropriate field in the volume control block to 0. A special
hard-coded comment has been added to the volumeÕs GetInfo box that says
either ÒThe number of files shown is incorrect due to limitations of the High Sierra
formatÓ or ÒThe number of files shown is incorrect due to limitations of the ISO
THE INS AND OUTS OF ISO 9660 AND HIGH SIERRA July 1990

281

d e v e l o p July 1990

282
SO HOW DO I PRESS AN ISO 9660 CD-ROM?
CD-ROMs are actually pressed from an image of a disk. To press a CD-ROM in
ISO 9660 or High Sierra format, you need some premastering software that creates
a disk in the appropriate format. You can either hire a CD-ROM pressing plant to
convert your files to the ISO 9660 format, or you can purchase a system to do it
yourself, or you can write your own ISO 9660 formatting software.
3M Optical Recording DADC
Building 223-5S-01 1800 N. Fruitridge Ave.
3M Center Terre Haute, IN 47804
St. Paul, MN 55144 812/462-8100
612/736-3274 Linda Watson/Kozo Arai
Mark Arps/Dick Tendill AppleLink: D2125
AppleLink: D2462

Disctronics Philips Dupont Optical
1120 Cosby Way 1409 Foulk Road
Anaheim, CA 92806 Suite 200
714/630-6700 Wilmington, DE 19803
Wan Seegmiller 800/433-3475

Jill Jones
AppleLink: D2173

Nimbus Information Systems Denon America
SR 629, Guildford Farm 222 New Road
Ruckersville, VA 22968 Parsippany, NJ 07054
800/782-0778 201/575-2532
Larry Boden Nob Tokutake/Ben

Garcia

If you want to buy your own premastering system, you
can contact one of the following:

Meridian Data, Inc. Optical Media Int’l.
5615 Scotts Valley Drive 485 Alberto Way
Scotts Valley, CA 95066 Los Gatos, CA 95032
408/438-3100 408/395-4332
Dean Quarnstrom Applelink: D1490

COMPANIES TO CONTACT FOR CD-ROM PRODUCTION
Here’s a list of pressing plants that can convert your files to the ISO 9660 format:

(The legal beagles want me to tell you that these company names are here for your information, but Apple Computer,
Inc., does not recommend or endorse any particular company listed.)
If you want to write your own software, you’ll find a simple example program on
the Developer Essentials disc to get you started. The program is called ISO 9660
Floppy Builder and is written in Think C. It builds disks conforming to the ISO
9660 standard.

A SIMPLE FORMATTING PROGRAM:
ISO 9660 FLOPPY BUILDER
ISO 9660 Floppy Builder has a number of features, listed below. The bracketed
number after each feature indicates the section in the formal ISO 9660 document
referred to earlier that describes this feature. You should read that section of the ISO
9660 document for more detail about each feature.

• Assumes that the logical sector size is 2048. [6.1.2]
• Assumes that the logical block size is 2048. [6.2.2]
• Writes a primary volume descriptor. [8.4]
• Writes a volume descriptor terminator. [8.3]
• Supports the Apple extensions to ISO 9660.
• Enables the user to specify a volume name. The volume name is

automatically converted to the proper character subset. [8.4.6]
• Enables the user to choose, via a standard file dialog, files to be

added to the ISO 9660 disk. All files are currently put in the root
directory.

• Copies both the resource fork and the data fork of a file to the
disk. The resource fork is stored as the associated file.

ISO 9660 Floppy Builder is a demonstration program; it doesn’t do many of the
difficult parts of building a disk in ISO 9660 format. Specifically, it doesn’t support:
subdirectories (folders), keeping the files in a directory in alphabetical order, a main
directory whose total size exceeds one block of 2048 bytes, a block size other than
2048 bytes, secondary volume descriptors (used to implement non-ASCII alphabets),
or more than one logical sector of directory records.

TO USE THE PROGRAM
To use the program, start with a formatted blank floppy. We will unmount and
format the disk as part of the process of making it into an ISO 9660 format disk. All
data will be lost from the floppy inserted.

Select “Specify Files for Root…” to put files into the root directory. You’ll be asked
for the names of the files to be copied over via a standard file dialog. When you’ve
finished selecting filenames, click the Cancel button.
THE INS AND OUTS OF ISO 9660 AND HIGH SIERRA July 1990

283

284
A CLOSER LOOK AT THE CODE
Let’s look at the C structures we’ll use to implement ISO 9660. We need three basic data structures: the primary
volume descriptor, the path table, and the directory record. A primary volume descriptor has the basic data for the
entire volume. It looks like this in C:

typedef unsigned char Byte;
typedef unsigned short Word;
typedef unsigned long Long;

typedef struct
{

Byte VDType; /* Must be 1 for primary volume descriptor. */
char VSStdId[5]; /* Must be “CD001”. */
Byte VSStdVersion; /* Must be 1. */
Byte volumeFlags; /* 0 in primary volume descriptor. */
char systemIdentifier[32];/* What system this CD-ROM is meant for. */
char volumeIdentifier[32];/* The volume name. */
char Reserved2[8]; /* Must be 0’s. */
Long lsbVolumeSpaceSize; /* Volume size, least-significant-byte order. */
Long msbVolumeSpaceSize; /* Volume size, most-significant-byte order. */
char escapeSequences[32]; /* 0’s in primary volume descriptor */
Word lsbVolumeSetSize; /* Number of volumes in volume set (must be 1). */
Word msbVolumeSetSize;
Word lsbVolumeSetSequenceNumber;/* Which volume in volume set (not used). */
Word msbVolumeSetSequenceNumber;
Word lsbLogicalBlockSize; /* We’ll assume 2048 for block size. */
Word msbLogicalBlockSize;
Long lsbPathTableSize; /* How many bytes in path table. */
Long msbPathTableSize;
Long lsbPathTable1; /* Mandatory occurrence. */
Long lsbPathTable2; /* Optional occurrence. */
Long msbPathTable1; /* Mandatory occurrence. */
Long msbPathTable2; /* Optional occurrence. */
char rootDirectoryRecord[34]; /* Duplicate root directory entry. */
char volumeSetIdentifier[128]; /* Various copyright and control fields */

/* follow. */
char publisherIdentifier[128];
char dataPreparerIdentifier[128];
char applicationIdentifier[128];
char copyrightFileIdentifier[37];
char abstractFileIdentifier[37];
char bibliographicFileIdentifier[37];
char volumeCreation[17];
char volumeModification[17];
char volumeExpiration[17];
char volumeEffective[17];
d e v e l o p July 1990

char FileStructureStandardVersion;
char Reserved4; /* Must be 0. */
char ApplicationUse[512];
char FutureStandardization[653];

} PVD, *PVDPtr;

The path table looks like this in C:

typedef char dirIDArray[8];

typedef struct
{

byte len_di; /* Length of directory identifier. */
byte XARlength; /* Extended attribute record length. */
Long dirLocation; /* First logical block where directory is stored. */
Word parentDN; /* Parent directory number. */
dirIDArray dirID; /* Directory identifier: actual length is */

/* len_di; there is an extra blank */
/* byte if len_di is odd. */

} PathTableRecord, *PathTableRecordPtr;

Notice that this strucure is difficult to describe in C, because C requires that arrays
of characters have a fixed size, and the character arrays in these records are variable
in size. The path table records are packed together, so you’ll see some grungy code
to move a pointer along in the variable records of the path table.

The directory record looks like this in C:

typedef struct
{

char signature[2]; /* $41 $41 - ‘AA’ famous value. */
byte extensionLength; /* $0E for this ID. */
byte systemUseID; /* 02 = HFS. */
byte fileType[4]; /* Such as ‘TEXT’ or ‘STAK’. */
byte fileCreator[4]; /* Such as ‘hscd’ or ‘WILD’. */
byte finderFlags[2];

} AppleExtension;

typedef struct
{

byte len_dr; /* Directory record length. */
byte XARlength; /* Extended attribute record length. */
Long lsbStart; /* First logical block where file starts. */
Long msbStart;
Long lsbDataLength; /* Number of bytes in file. */
Long msbDataLength;
THE INS AND OUTS OF ISO 9660 AND HIGH SIERRA July 1990

285

286
byte year; /* Since 1900. */
byte month;
byte day;
byte hour;
byte minute;
byte second;
byte gmtOffset; /* 15-minute offset from Universal Time. */
byte fileFlags; /* Attributes of a file or directory. */
byte interleaveSize; /* Used for interleaved files. */
byte interleaveSkip; /* Used for interleaved files. */
Word lsbVolSetSeqNum; /* Which volume in volume set contains this file. */
Word msbVolSetSeqNum;
byte len_fi; /* Length of file identifier that follows. */
char fi[37]; /* File identifier: actual is len_fi. */

/* Contains extra blank byte if len_fi odd. */
AppleExtension apple; /* This actually fits immediately after the fi[] */

/* field, or after its padding byte. */
} DirRcd, *DirRcdPtr;

Again, this structure is difficult to describe in C. The directory records are packed
into 2048-byte blocks. No directory record is allowed to span a block, so any extra
bytes at the end of a directory record block are ignored. We’ll ignore such details in
this simple example.

Our basic flow of control is simple. The core of the program is in the file BuildISO.c.
(See CreateAVolume for the main core code.) When we get a floppy, we check to
see if it is formatted. If so, we ask the user if he or she wants to continue (to make
sure we don’t accidentally destroy a useful floppy). We create a primary volume
descriptor (by calling CreatePVD) and fill in most of the fields with blanks. We
create a simple path table. Because we don’t have any subdirectories, we can build an
extremely simple path table with only one entry (for the root). We make a copy of the
path table in both least-significant-byte and most-significant-byte order.

At this point, we loop, prompting the user for a filename. (See the routine
CreateFiles for details.) When the user selects a file, we get the Finder
information for that file (GetFileInfo) and check to see if the file has a resource
fork. If the file has a resource fork, we create an associated file directory record, and
copy the resource fork to the floppy. We always create a regular file, even if the file
in question has no data fork. (This is an arguable point. The Macintosh ISO 9660
support works fine on files with only an associated file, but users of other operating
systems get bothered by the fact that files consisting of only an associated file don’t
show up in their directory listings. Creating a regular file, even if the data fork is
empty, ensures that the same number of files shows up on the Macintosh and
MS-DOS or other operating systems.)
d e v e l o p July 1990

POSSIBLE IMPROVEMENTS
Improvements you can make to this sample program include the following:

• Add secondary volume descriptor support.
• Add subdirectories. There are a lot of subtle issues with ordering

of records in the path table that I’ve managed to avoid by not
permitting subdirectories.

• Give the program a real user interface. Ideally, you’d show a
Finder-like set of volumes and let the user drag files (and folders)
from a HFS volume onto the ISO 9660 volume.

• Allow hard disks to be specified. This requires changing the
drvName constant in iso9660.h.

IN CONCLUSION
If you’ve read to this point, you know more about ISO 9660 and High Sierra than
you ever thought your attention span could tolerate. You know where the formats
came from, how they’re implemented on the Macintosh, what they specify, how
Macintosh files are stored in these formats, how to press a CD-ROM in one of these
formats, and even how to write a program to convert HFS files to one of these
formats.

The point of all this is that ISO 9660 (and its older cousin High Sierra) gives you an
operating system independent platform for delivering information, thus opening up
new markets for your applications. If you are trying to penetrate multiple markets
without using ISO 9660, you are just pounding sand.
THE INS AND OUTS OF ISO 9660 AND HIGH SIERRA July 1990

287
Thanks to Our Technical Reviewers:
Bill Galcher, Matt Gulick, Andy Poggio,
Llew Roberts, Keith Rollin, Helen Wang

LLEW

d e v e

288
HOW TO

CREATE A

MIXED-

PARTITION

CD-ROM
ROBERTS

l o p July 1990
Since the original Phil & Dave’s Excellent CD was released,
containing both Macintosh HFS and Apple II ProDOS volumes, DTS
has gotten many questions about how it was done. Some ask just out of
curiosity, while others want to create their own mixed-partition CD-
ROMs. This article gives a detailed account of how any developer can
prepare a mixed-partition hard disk whose image can be pressed onto
CD-ROM.

The process of producing a CD-ROM disc containing both HFS and ProDOS
volumes is relatively simple and straightforward. It’s facilitated by the fact that
Apple’s operating systems recognize the data track of a CD-ROM as if it were a
SCSI hard disk. You prepare a hard disk exactly as you wish it to appear on CD-
ROM, ship it off to a CD production company, and they send you back a CD.

Mixing partitions is easiest if you have a 600+ MB hard disk, but you can also mix
partitions if you have two or more smaller hard disks. We’ll get down to the brass
tacks of this procedure after a preliminary discussion of why you might want to mix
HFS and ProDOS partitions, and some background information about partitions
that you need to know if you’re to fully understand the procedure.

WHY MIX HFS AND PRODOS PARTITIONS?
Why would a developer want to create a CD-ROM that mixes HFS and ProDOS
volumes? For one thing, combining HFS and ProDOS volumes on one CD is a way
for developers of Apple II applications to make their applications and files available
both locally and through AppleShare® fileservers (which only read CD-ROMs in
HFS format) with minimal additional effort. For another, mixing partitions is a way
to distribute applications and files so they can be read by both the Macintosh and
the Apple II.
LLEW ROBERTS became an Apple person by
accident, although we’re not sure exactly which
accident that was. (Lately there have been
several.) He says he works on just too many
different things to actually specify what he does
for a living. We think he may be a DTS engineer,
because he was recently overheard answering
questions regarding mixing HFS and ProDOS
partitions on a single drive. His only REAL hobby

is collecting originals and English translations of
Japanese manga and anime (comic books and
animated video). His favorite is AppleSeed. Llew
also dabbles in subliminal suggestion. Can you
find the hidden message in his article? You’ll know
for sure when you awaken in the middle of the
night craving some manga or a CD-ROM drive. •

BUY A CD-ROM DRIVE

Perhaps a more obvious solution to the problem of creating a CD-ROM readable by
both the Macintosh and the Apple II would be to convert all volumes to the ISO
9660 format, described in Brian Bechtel’s article in this issue. A CD-ROM in ISO
9660 format is readable not only by both the Macintosh and the Apple IIGS but by
other operating systems as well.

For developers who rely on CD-ROM to store large amounts of information
accessible by only one application, this is adequate and in some cases preferred. On
the other hand, for developers who wish to use CD-ROM to distribute multiple
applications, graphics and sound files, or other files that the user can browse through
and launch using the Finder (such as Apple’s Developer CD Series and the public
domain CDs being released by user groups), using the ISO 9660 format presents
certain problems.

Storing files in ISO 9660 format strips the Finder of its ability to read desktop
information about those files. On the Macintosh desktop, applications on
ISO-format CD-ROMs are shown as generic application icons, documents as
generic document icons, and folder and file placement information is lost. In
addition, although there are supported extensions to ISO to handle Apple IIGS

filetype and auxtype information, software is not available at this time to apply
these extensions before pressing.

Another reason for choosing to use native file formats rather than ISO 9660 is that
conversion into the latter format involves an additional step in the process of
pressing a CD-ROM: a premastering system must be used to create a tape that a
production company then uses to create a CD-ROM. If your CD-ROM will be used
only on an Apple computer, there’s really no need for you to go through this
additional step.

ABOUT PARTITIONS
Partitions are logical volumes on a hard disk.

ProDOS is limited to 32 MB volumes, so under the ProDOS file system, a 20 MB
hard disk would usually have only one ProDOS volume on it, while a 650 MB hard
disk would probably be partitioned into several ProDOS volumes. HFS can handle
very large volumes, so there is rarely a need for more than one HFS volume on one
disk. (Note that the Macintosh driver currently supplied with Apple HD SC and CD
SC drives will support only one HFS partition. Most large third-party drives will
support multiple HFS partitions. Apple does not recommend shipping CD-ROM
with multiple HFS partitions.)

A disk is partitioned and the partitions are initialized with software that is included
on the system disks or with the hard disk drive. Advanced Disk Utility (ADU) for
the Apple IIGS, included with System Disk 5.0 or later, will satisfy most Apple II
HOW TO CREATE A MIXED-PARTITION CD-ROM July 1990

289

d e v e l o p July 1990

290
partitioning needs. It supports all drives that follow the Apple extensions to the
ANSI SCSI standard, and most that follow the ANSI SCSI standard faithfully, even
without the Apple extensions. For the Macintosh, partitioning software is usually
included with a hard disk drive.

SCSI hard disks store block allocation information (that is, number and size of the
partitions and drivers on the disk) in the first few physical blocks of the disk. The
hard disk driver creates logical volumes from this information at boot time and
mounts these partitions as volumes on the desktop. Figure 1 illustrates the layout
of a typical hard disk with mixed partitions.

Figure 1
The Layout of a Typical Hard Disk With Mixed Partitions

Partition map entry
(driver)

Partition map entry
(partition map)

Partition map entry
(HFS)

Driver descriptor map

Partition map entry
(ProDOS)

ProDOS partition

HFS partition

Other partitions

Driver partition

Partition map

Physical block 0 of the disk contains the driver descriptor map (DDM), which
describes the drivers on the disk. When the disk is mounted, this information is used
to load the necessary drivers, as detailed in Inside Macintosh, volume V, page 576.
The Macintosh requires that a driver be resident on the disk; the Apple II supports
drivers if they are resident on the disk, while not requiring them to be.

Starting at physical block 1 of the disk is the partition map. Each partition on the
disk is described in its own partition map entry (PME) in this partition map. A PME,
which occupies one block and is built when the partition is initialized, consists of a
series of data fields describing the size and state of a specific partition. With the
exception of physical block 0, every block on the disk must be accounted for in a
PME, as belonging to a partition. The partition map is itself a partition and contains
a PME describing itself. The PME format is shown in Figure 2.

Figure 2
The Format of a Partition Map Entry

pmBootSize (longword)

pmBootLoad (longword)

pmBootLoad2 (longword)

pmBootEntry (longword)

pmBootEntry2 (longword)

pmBootCksum (longword)

pmProcessor (16 bytes)

(128 bytes)

pmSig (word)

pmSigPad (word)

pmMapBlkCnt (longword)

pmPyPartStart (longword)

pmPartBlkCnt (longword)

pmPartName (32 bytes)

pmPartType (32 bytes)

pmLgDataStart (longword)

pmDataCnt (longword)

pmPartStatus (longword)

pmLgBootStart (longword)

Always $504D

Reserved for future use

Number of blocks in map

First physical block of partition

Number of blocks in partition

Partition name

Partition type

First logical block of data area

Number of blocks in data area

Partition status information

First logical block of boot code

Size in bytes of boot code

Boot code load address

Additional boot load information

Boot code entry point

Additional boot entry information

Boot code checksum

Processor type

Boot-specific arguments

$00

$02

$04

$08

$0C

$10

$30

$50

$54

$58

$5C

$60

$64

$68

$6C

$70

$74

$78

$88
HOW TO CREATE A MIXED-PARTITION CD-ROM July 1990

291

292
In condensed form, the partition map for a hard disk with both HFS and ProDOS
partitions looks like this:

Block pmMapBlkCnt pmPyPartStart pmPartBlkCnt pmPartName pmPartType

1 6 1 3F Apple APPLE_PARTITION_MAP
2 6 40 20 Macintosh APPLE_DRIVER
3 6 60 10000 /PRODOS.1 APPLE_PRODOS
4 6 10060 10000 /PRODOS.2 APPLE_PRODOS
5 6 20060 28000 MacOS APPLE_HFS
6 6 48060 D6800 Extra APPLE_FREE

pmMapBlkCnt is a count of valid PMEs on the hard disk. This longword is
contained in each valid PME. If it is modified in one, it must be modified in all
PMEs. If a partition has been added manually (that is, with a SCSI block editor) and
is not recognized by the operating system, the cause is usually an incorrect value in
pmMapBlkCnt.

pmPyPartStart is the address of the first physical block of the partition. If the
first physical block of a partition (logical block 0) is at physical block $200 of the
hard disk, then reading block $20 of the partition actually reads physical block $220
of the disk.

pmPartBlkCnt is the size, in blocks, of the partition. The size of the last partition
on the disk is arrived at by subtracting the address in pmPyPartStart for this
partition from the total number of blocks on the disk.

pmPartName is the name of the partition. It serves to identify the partition and
should not be confused with the volume name.

pmPartType is the partition type and can contain (but is not limited to) the
following:

APPLE_DRIVER Partition contains a device driver
APPLE_PARTITION_MAP Partition contains a partition map
APPLE_SCRATCH Partition is unused and free for use
APPLE_HFS Partition contains Macintosh HFS volume
APPLE_PRODOS Partition contains Apple II ProDOS volume
APPLE_FREE Partition is unused and unusable

APPLE_SCRATCH partitions are areas of the disk that are currently unused, but that
can be recognized and initialized by the operating system. In the process of creating
a mixed-partition disk, this is the type to assign to partitions that will later be
initialized in ProDOS format (assuming that HFS partitions are formatted first).
APPLE_FREE is the type to assign to partitions consisting of blocks that will not be
d e v e l o p July 1990

used but must be accounted for in order to fulfill the requirement that all blocks on
the disk belong to a partition.

When you go about mixing partitions, as described in the following section, you may
need to change some of the fields in a PME, and to copy blocks from one disk to
another. PMEs can be browsed and edited with SEDIT, a utility written at Apple by
David Shayer. Figure 3 shows a PME viewed in SEDIT. This utility also makes it
easy to perform block editing at a device level on SCSI hard disks. SEDIT can copy
blocks on the same or between separate devices, and provides nifty templates for
editing blocks of data. You’ll find SEDIT included, along with documentation, on
the Developer Essentials disc. (A word to the wise: SEDIT also has the wonderful
ability to scramble any SCSI device that is connected, so be sure to look at the
warning message under the File menu and to read the documentation before trying
anything you’re not sure of.)

Figure 3
SEDIT View of the PME for the HFS Partition of A Disc Called Wanda

THE PROCEDURE FOR MIXING PARTITIONS
Now that you understand the layout of the disk and the importance of the partition
map, you’re ready to mix your own partitions. You can choose to either include the
same information on both partitions (for example, large databases) or arrange the
files so that Apple II-specific information is on a ProDOS volume and Macintosh-
specific information is on an HFS volume. And you have a choice of whether to start
out with one large hard disk, or two or more smaller hard disks. The first way is easiest.
HOW TO CREATE A MIXED-PARTITION CD-ROM July 1990

293

29
ProDOS volume

HFS volume

Partition map

Large hard disk

DDM

CD-ROM

TOC

ProDOS volume

Partition map

Data
trackProDOS volume ProDOS volume

HFS volume

Audio track 1

Audio track n

ProDOS volume

Partition map

The Harder Way

ProDOS volume

Partition map
=

ProDOS volume ProDOS volume

HFS volume

DDM

HFS volume

Partition map

DDM

+

DDM

The Easy Way

DDM

Small hard disk Small hard disk
Large hard disk or

premastering system

DDM

CD-ROM

TOC

ProDOS volume

Partition map

ProDOS volume

HFS volume

Audio track 1

Audio track n

Data
track

Figure 4
Two Ways to Create a CD-ROM
d e v e l o p July 1990

4

In the processes described here, every attempt has been made to let the existing
system software and utilities do the work, with a minimum of “twiddling” necessary
by the developer. This ensures that the CD-ROM will work properly and will be
compatible with future system software.

MIXING PARTITIONS ON A LARGE HARD DISK
The simplest method to prepare a mixed-partition disk from which to press a CD is
as follows:

1. Beg, borrow, steal, or even (gasp!) buy a 600+ MB hard disk drive that will work
with both the Apple IIGS and the Macintosh. Software to partition the hard disk
for the Macintosh is usually included with the drive.

2. Use the Macintosh partitioning software on the hard disk. This will create the
DDM in block 0. Create an APPLE_SCRATCH partition for each ProDOS
volume you wish to include on the disk. Remember that ProDOS volumes are
limited to 32 MB and that only the first two volumes will be accessible under
ProDOS 8 (but all will be accessible under GS/OS). Make the HFS partition the
last one on the disk, to allow for changing the size of this partition without
disturbing the ProDOS partitions.

If you create two APPLE_SCRATCH partitions, the partition map will look
something like this:

Block pmMapBlkCnt pmPyPartStart pmPartBlkCnt pmPartName pmPartType

1 6 1 3F Apple APPLE_PARTITION_MAP
2 6 40 20 Macintosh APPLE_DRIVER
3 6 60 10000 Scratch APPLE_SCRATCH
4 6 10060 10000 Scratch APPLE_SCRATCH
5 6 20060 28000 MacOS APPLE_HFS
6 6 48060 D6800 Extra APPLE_FREE

3. Disconnect the drive from the Macintosh (with the power off, of course), and
connect it to the Apple IIGS. Boot the system with System Disk 5.0.2 or later (to
take advantage of the new SCSI Manager and drivers). When the Finder’s
desktop appears, a dialog will be presented declaring that the disk is unreadable.
Click Initialize for each of the APPLE_SCRATCH partitions (that’s twice for the
above example).

Warning: Do not initialize the HFS partition! The Finder will also want to initalize the
HFS partition, since it doesn’t recognize it, and you may politely decline by clicking
Eject in the dialog box.
HOW TO CREATE A MIXED-PARTITION CD-ROM July 1990

295

d e v e l o p July 1990

296
Figure 5
The Dialog Box to Initialize Partitions

Every time the GS Finder is launched (booting, quitting from an application, and so
forth) it will ask if you wish to initialize the HFS partition. This annoying behavior
will disappear when the CD-ROM with the image of the hard disk is mounted, since
it is write-protected.

The hard disk is now fully prepared. In our example, it contains two ProDOS
volumes and one HFS volume, which are fully initialized and ready for files to be
copied onto them.

4. Copy the desired files to their respective volumes. Transfer the hard disk drive
between the Apple IIGS and the Macintosh as needed, until the files and folders
for all volumes are arranged as you wish them to appear on the CD.

5. Mail your hard disk drive to the CD production company of your choice, asking
them to place an image of the hard disk on the data track of the CD.

MIXING PARTITIONS FROM SMALLER HARD DISKS
In cases where you wish to combine partitions from separate hard disks on one large
hard disk, more work is required, but it is certainly not impossible.

The same process I’m about to describe can also be done using a CD-ROM
premastering system that allows block manipulation by a Macintosh, but you will
definitely need technical assistance from the premastering system’s engineer. With
such a system, it is possible to manually create partition maps and block copy the
desired volumes over. The end result is an image of a large hard disk identical to the
image achieved by the process described in the preceding section and below.

As an example to illustrate the process of combining smaller hard disks on a larger
one, let’s say we’re starting with two hard disks—one 80 MB hard disk formatted as
a large HFS volume and one 80 MB hard disk with two 32 MB ProDOS partitions.
The partitioning utilities and system software have already done most of the work
for us: the partitions are initialized and the partition maps built.

The partition map for our first hard disk, SCSI ID 1, looks like this:

Block pmMapBlkCnt pmPyPartStart pmPartBlkCnt pmPartName pmPartType

1 4 1 3F Apple APPLE_PARTITION_MAP
2 4 40 20 Macintosh APPLE_DRIVER
3 4 60 2626E MacOS APPLE_HFS
4 4 262CE 4 Extra APPLE_FREE

Note that because not all hard disks, even of the same capacity, have the same block
count, the value in PmPartBlkCnt for the last partition could differ if a different
hard disk were being used.

The partition map for our second hard disk, SCSI ID 2, looks like this:

Block pmMapBlkCnt pmPyPartStart pmPartBlkCnt pmPartName pmPartType

1 4 1 3F Apple APPLE_PARTITION_MAP
2 4 40 10000 /PRODOS.1 APPLE_PRODOS
3 4 10040 10000 /PRODOS.2 APPLE_PRODOS
4 4 20040 6292 Extra APPLE_FREE

Manually combining the partition maps on paper, we come up with the desired
partition map for the large hard disk, SCSI ID 3:

Block pmMapBlkCnt pmPyPartStart pmPartBlkCnt pmPartName pmPartType

1 6 1 3F Apple APPLE_PARTITION_MAP
2 6 40 20 Macintosh APPLE_DRIVER
3 6 60 10000 /PRODOS.1 APPLE_PRODOS
4 6 10060 10000 /PRODOS.2 APPLE_PRODOS
5 6 20060 2626E MacOS APPLE_HFS
6 6 462CE D8592 Extra APPLE_FREE

What remains is to combine all of the partitions on the third hard disk. To do so, we
first copy block 0 (the DDM) from hard disk 1 to hard disk 3. Then we copy the
partition map from hard disk 1 to hard disk 3. We copy physical blocks 3 and 4 from
hard disk 1 to physical blocks 5 and 6 on hard disk 3.
HOW TO CREATE A MIXED-PARTITION CD-ROM July 1990

297

d e v e l o p July 1990

298
From hard disk 2, we copy physical blocks 2 and 3 to blocks 3 and 4 on hard disk 3.
The final partition map is now in place, although the values in some of the fields are
incorrect. We use SEDIT to update the fields according to the manually created
table, remembering to update pmPyPartStart in each entry and
PmPartBlkCnt for the last partition on the disk (to adjust for the changed
number of unused blocks in the APPLE_FREE partition). Now hard disk 3 is ready
to have the volumes copied to it.

Using the SEDIT Copy Blocks command, we copy the volumes from the smaller
hard disks to the proper locations on the large hard disk:
From SCSI ID To SCSI ID From Block To Block # of Blocks
1. 1 3 0 0 1 DDM
2. 1 3 40 40 20 Mac Driver
3. 1 3 60 20060 2626E HFS Partition
4. 2 3 40 60 10000 ProDOS partition
5. 2 3 10040 10060 10000 ProDOS partition
After we copy the DDM from hard disk 1 to hard disk 3 it is no longer valid, so
we zero out the DDM's first 24 bytes. (If we planned to use hard disk 3 from the
Macintosh and not as a master for a CD-ROM, we would update these bytes to
make the DDM valid for hard disk 3.) We also zero out the first 8 bytes (the boot
block) of the HFS partition to ensure that the CD doesn't attempt to boot.

The large hard disk is now fully prepared and ready for shipment to the CD
production company.

ODDS AND ENDS
If after reading this article you’re eager to try creating your own mixed-partition
CD-ROM, you’ll want to refer to the sidebar on CD-ROM production companies
in Brian Bechtel’s article in this issue. There you’ll find names and addresses of
places to send your hard disk. Brian’s paper CD-ROM and the Macintosh Computer,
found on the accompanying Developer Essentials disc, covers basic details of cost and
time required to get a CD-ROM pressed.

And here’s a final note to round out your understanding of mixed-partition CD-
ROMs. When the CD-ROM resulting from the process described in this article is
mounted, the partitioned volumes on its data track are recognized and mounted on
the desktop. The Macintosh will currently mount only the first HFS partitioned
volume that it finds. The Apple II will try to mount the HFS volume but will not
find a file system translator to read it with, and so will effectively ignore it.
Thanks to Our Technical Reviewers:
Bryan Atsatt, Matt Gulick, Jim Luther, Dave Lyons,
Jim Reekes, Dave Shayer

QMACINTOSH

Q & A
Q

AQ

How can I keep track of a file the next
time my application is launched?

A
Technical Note #238, Getting a
Full Pathname, documents the
recommended method for
“remembering” a file’s location.

. . . you should remember the
DirID of the directory the file is
in along with its name. This way,
you will still be able to find your
file even if the directory has been
moved. Under System 7.0 or
later, save the file’s unique 32-bit
ID number as well, so that you
can also find the file even if its
name has changed.

To remember a file’s location, keep
the volume name, DirID, and filename.
This information is all you need to
locate any file. Standard File returns
the DirID of the file in CurDirStore
or the wdRefNum in the vRefNum
field of the reply.record. Note that
Technical Note #238 mentions how
to get a file’s DirID while in Standard
File. Given the working directory, you
can find its vRefNum and DirID by
calling _GetWDInfo. Refer to Inside
Macintosh, volume IV. Volume
references and working directories are
dynamic; they change every time the
system is booted, so you cannot use the
vRefNum or wdRefNum. Typically,
the volume name and filename are not
changed. The DirID will not change
unless the user deletes the folder.
Renaming the folder does not change
its DirID.
These questions and answers are compiled by the
Macintosh Developer Technical Support group. •
First ask the user to locate the file by
calling SFGetFile. Keep the volume
name, DirID, and filename for this file.
The next time you want to locate the
file, use this same information. If you
do not find the file, then again call
SFGetFile asking the user to locate it.

DTS has an example application,
SC.018.StdFile, which you may find
helpful. You can find this in the Sample
Code folder on the enclosed Developer
Essentials disc.

Q
How can I determine the size of my
application’s MultiFinder partition?

A
It’s really difficult to find the exact
size of the memory partition that the
application is running under. If it can
be determined, I doubt that the effort
would be worth the trouble. I think the
real concern you have is the size of the
available stack and heap, but not the
entire partition. Since there is little
that an application can do to change
its partition size (except to change
the ‘SIZE’ resource and then force a
relaunch), the real concern would be
to find the size of the available stack
and heap. Included in the application’s
partition are the application
parameters, jump table, application
globals, and QuickDraw globals. The
size of the partition is not easily
determined. The only portions of an
application’s memory use that are
adjustable at run time are the stack and
the heap.
A
MACINTOSH Q & A July 1990

299

Q
Q

d e v e l o p July 1990

300
AThe stack and heap sizes are fixed
within the boundaries of the entire
application partition. Increasing one
decreases the other. There are Memory
Manager calls to change the size of the
heap. To increase the stack size, you
decrease the heap’s size.

Q
In earlier versions of the Chooser, there
was a limit of 16 volumes per server for
AppleShare servers. Has this limit
changed in System 6.0.4?

A
The limit of 16 volumes per server in
the Chooser has not changed with
System 6.0.4. We hope to have
a new version of the Chooser for
System 7.0.

Q
How do I force the Finder to update its
windows after my application has changed
a file’s FndrInfo?

A
There is no direct way to tell the
Finder to update the desktop. The
Finder will synchronize the desktop
file’s appearance after it detects that
the volume’s modification date has
changed. Whenever you create or
delete a file, or move it to another
folder, the hierarchical file system
(HFS) will change the modification
date of the volume and that folder.
When the Finder has noticed the
volume’s modification date has
changed, it begins scanning about
once every 10 seconds for changes
in all of the open folders.
Changing the file’s FndrInfo or
renaming it is not going to change the
modification date. As a suggestion for
an installer program, you can initially
create a temporary file. Once all the
files are installed you can delete the
temporary file. Deleting this temporary
file as a last step will cause the Finder’s
window to be updated.

Q
My little application has two handles in
memory that have been allocated. I want to
lock one handle high in memory and the
other one low in memory. I noticed that the
Mac toolbox has the functionality to lock a
handle high (MoveHHi); however, I did
not notice any routine that would move the
block low in memory, before a lock. I’m
looking for a MoveHLow routine. Does
one exist? If not, how would I go about
doing this?

A
There is no similar functionality for
locking a handle low. The best way to
go about doing this is to use NewPtr,
which automatically allocates the block
as low as possible. Of course, it’s not a
handle, but it’s still a locked block as
low in the heap as possible.

Another way to do this is to use
ResrvMem which, as Inside Macintosh,
volume 2, page 39 says, “will try every
available means to place the block as
close as possible to the bottom of the
zone, including moving other blocks
upward, expanding the zone, or
purging blocks from it.” Then make
your call to NewHandle with the same
size as requested in ResrvMem. That’ll
allocate the handle as low as possible.
A

Q
Q
How can I support multiple HFS
partitions on a SCSI device?

A
If at all possible, avoid trying to
support partitions. We’ll warn you up
front that an ejectable drive that
contains multiple HFS partitions is not
going to be anything less than difficult.
You’ll be better off not attempting to
support multiple HFS partitions. It
greatly complicates the code, and there
are user interface problems too. What
if the user ejects one of the partitions?
What should happen? This is techni-
cally difficult for the driver to handle.

If the user ejects a partition, then the
driver might eject the media and mark
all of its remaining partitions as off-
line. If the user drags a partition to the
trash, this should unmount only that
partition (but then how would the user
unmount the entire media?). The
remaining partitions should be marked
off-line and the user will see them as
gray icons on the desktop. If users want
to access one of these partitions, they’ll
get the Disk Switch alert. They need to
insert the proper cartridge and the
device will then post a disk insert event
for every partition (because it cannot
determine exactly which partition is
really needed). This will again bring all
partitions back. The trap _Offline
should take care of all this for you, but
it cannot be called at interrupt time.
Therefore, the driver will need to use
accRun calls to use _OffLine.

Again, the system doesn’t support
multiple HFS partitioned drives. It only
expects to find one HFS partition on a
Q
Avolume. The system will attempt to read
from the first HFS partition and then
stop. If the first one is not bootable,
then that device cannot be a startup
device. If you attempt to put more than
one partition on a device, then you have
to perform additional hacks to mount
them. Be warned that hacking this
feature into your drive involves a
compatibility risk.

All the work will be up to the driver.
It will have to find the extra partitions
and mount them. Each partition will
have a drive queue entry having each
element reference the same driver.
When your driver’s open routine is
called, you call _AddDrive for each
partition. This calls _Enqueue and
installs each element into the drive
queue. Once the driver is closed, you
should remove each of the queue
elements with _Dequeue.

Q
I would like to write James Brown in jail,
but now that he is on work release, where
do I write?

A
You can write the Godfather of Soul at

Lower Savannah Work Center
Route 4, Box 50
Aiken, SC 29801

Brown is serving concurrent six-year
and six-year-and-three month terms
for his involvement in a wild, two-state
car chase in September of 1988. He
won’t be eligible for parole until 1992.
A
MACINTOSH Q & A July 1990

301

d e v e l o p

302
QAPPLE II

Q & A
Q
July 1990
AQ
In the previous issue of d e v e l o p, an
answer said that anyone doing a Close with
reference number zero will close New Desk
Accessory resource forks. Does this mean
my NDA can’t use resources?

A
No. It means that your NDA can’t
open its resource fork at DAInit time
and expect it to always be open. You
can use resources in an NDA by
opening the resource fork when your
DA is opened and closing it when your
DA is closed. Although an application
could still close your resource fork
while your DA window is open but
not active, this is not likely.

Q
Matt, I found your caching article to be
very informative, but I’m confused about
the driver level of caching. You say that if
the cachePriority word on GS/OS direct
page is zero, the driver should not write
the block to the cache. If the block was
already in the cache, won’t this mean the
disk has a different block than is in the
cache, messing things up drastically?

A
Thanks, and yes. When a driver is
supposed to ignore the cache on a
write call (because the cachePriority
field is zero), it still must deal with the
possibility that the block may already
be in the cache. When writing with
cachePriority zero, drivers may not add
new blocks to the cache but must
update blocks that are already in the
cache. This step is necessary because
These questions and answers are compiled by the
Apple II Developer Technical Support group. •
the next time someone reads with
caching enabled, the block in the cache
will be returned. Next time I forget
something, I promise that it will be
less important.

Q
I did a SelectMember2 on an extended list
control, and the list was drawn at a funny
place in my window. What gives?

A
The current port was not set to the
window that the list control was in.
Most List Manager calls, and many
other toolbox calls, require that the
current grafPort be explicitly set.
Before you call SelectMember2, set the
current port to your window with a
SetPort call. Remember the note in the
Apple IIGS Toolbox Reference, volume 2,
under the NewWindow call—
“Important: NewWindow does not set
the current port, but many routines
require that a current port exist. Use
the QuickDraw II routine SetPort to
set the current port.” Using SetPort
can prevent toolbox confusion and
reduce your debugging time.

Q
Someone told me that there’s an easier way
of keeping track of double and triple clicks in
System Software 5.0 and later. What is it?

A
The extended Task Record introduced
in System Software 5.0 includes a new
field called wmClickCount, at offset
$1C. If you’re using TaskMaster in
your application, set bit 19 of your
wmtaskMask (the tmMultiClick bit)
A

Q
and TaskMaster will keep the
wmClickCount field updated. Every
time there is a mouse-down event
within the limits set by the user in the
control panel setting ‘Double Click’,
TaskMaster will increment
wmClickCount by 1. If you’re
interested in double or triple clicks,
check wmClickCount on every mouse-
down-related event. If it’s at 2, then
a double click was the last mouse-down
result, three, it was a triple click. In fact,
you can track as many closely spaced
clicks as you like—quintuple, sextuple,
on up—if you really want to get silly.
Apple recommends not going further
than triple-clicking since more clicks
become quite unwieldy.

Q
What the heck is the resource ID for a
control color table, and why is it so hard to
find in the Types.Rez interface file?

A
The resource ID for control color
tables is $800D, and is referenced in
Types.Rez as resource name r_BBBB.
It is listed under its regular name
(rCtlColorTable) in Appendix E of the
Apple IIGS Toolbox Reference, volume 3.
The obscure name in Types.Rez and
the lack of a resource structure either
in Types.Rez or Appendix E is caused
by the structure being variable,
depending on the control type
associated with the color table.

Q
ACE compression and expansion don’t
work consistently for me. I can compress
(or expand) one sound correctly, but the
Q
Anext time I try it the results are all wrong.
What gives?

A
You forgot to call ACECompBegin or
ACEExpBegin between different
compressions or expansions. ACE
maintains information on the current
operation in its direct page space to
allow you to do multipart expansions
or compressions. When you start
working with a new sound sample, you
have to call either ACECompBegin or
ACEExpBegin to inform ACE that
you’re starting a new operation, and all
the internal data should be reset. More
information can be found in the ACE
chapter of the Apple IIGS Toolbox
Reference, volume 3.

Q
Do I need to purchase APW Tools &
Interfaces if I already bought Programming
Tools & Interfaces for APW?

A
Yes! The original Programming Tools &
Interfaces utilities did not correctly
support ORCA/Pascal and ORCA/C.
Also, every tool in the package has
been updated and enhanced. A new C
library, used to build some of the tools,
had bugs fixed in it (and will be
available separately later). The new
package also includes completely
revised Apple IIGS interfaces for APW
C and the APW/ORCA assembler.
The new APW Tools & Interfaces
package is a class 1 product that may be
ordered from Developer Tools Express;
the previous class 2 product is no
longer supported.
A
APPLE Q & A July 1990

303

Introducing the new Developer Essentials disc. In addition to
d e v e l o p and related code, on this issue of the disc you’ll find
tools and information we think every developer should have. These pages
highlight what’s on the disc, but once you start browsing, you’ll also find
a few surprises.

To use the disc, you need a CD-ROM drive and the appropriate cables
and connectors. Refer to your CD-ROM drive’s owner’s manual for
detailed information about connecting the drive to your particular
machine.

For a Macintosh, you need at least 1 MB of memory, System 4.1 or
later, and Finder 5.4 or later. In addition, you need to copy the Apple
CD-ROM INIT that comes with the CD drive startup disks into your
System Folder. For an Apple II, your SCSI card must have Rev C or
later ROM. With ProDOS, no special setup is required. If you use
GS/OS, you must use the Installer on System Disk 4.0 or later to install
the CD-ROM driver onto your startup volume.

DEVELOPER ESSENTIALS: ISSUE 3

Scott Converse, Corey Vian, Cleo
Huggins, and Mary Skinner put
d e v e l o p in electronic form.
Read more about the Electronic
Media Group below.

The allegedly 27-year-old Jack
Hodgson, product manager of
Developer Essentials, produced
and directed corporate videos in
Boston, ran a small, computer
book publishing company, did
some free-lance programming,
and founded the Boston Computer
Society’s Mac Users Group. His
next big life goals are to buy his
own plane and to learn to play his
piano well enough to cut loose in
Dave Szetela’s Excellent Annual
WWDC Moofamania Jam
Sessions (caution: unofficial title).

d e v e l o p May 1990

SCOTT CONVERSE is the group’s Electronic
Media Mogul and leader. A true on-line addict,
he makes a living cruising the electronic
highways and getting information to as many
people as possible by using computers. Scott also
loves sci-fi (particularly cyberpunk), reads books
on design, and plays music on any of six full-
blown, wall-shaking stereo systems in his house.
When not cruising the electronic highways, he’s
racing radio-controlled cars. Would you ride the
fiber optic byways with this guy? •

COREY VIAN takes the Zen approach to most
things. He has an interdisciplinary B.A. in art and
math from Maharishi International University.
(Really! It’s in Iowa.) An eight-month Apple veteran
(two years and eight months if you count his prior
consulting), he’s now doing information interface
design. (See his sidebar in the first article in this
issue.) An avid meditation practitioner, he also flies
airplanes, builds cabinetry, windsurfs, snow skis,
practices aikido, and composes R&R music—and
he claims he isn’t busy. •

304

d e v e l o p
You’ve read the articles, you’ve bought
the arguments, and now it’s time to write
your own code. The idea is that you
don’t waste your time typing the
example programs—just mount this
handy CD-ROM, then copy and paste.
We’ve included d e v e l o p as well as
the code from each of the articles to help
you avoid typos. So, browse around, take
what you need, and save the rest for a
rainy day. Each new issue of Developer
Essentials will archive all of the back
issues of the journal and the code. So
look forward to one-stop searching
coming soon to a CD-ROM near you.
If you don’t yet have a CD-ROM drive,
you should be able to find the contents
of Developer Essentials on AppleLink, the
Apple FTP site on the Internet, and
other on-line services in the near future.

International System Software
Developer Essentials includes all the latest
international versions of Macintosh
system software as well as the latest U.S.
versions of GS/OS and ProDOS, all in
DiskCopy image format. (You must have
a Macintosh to run DiskCopy and create
floppy disks from these images.)

International HyperCard
Need the latest version of HyperCard?
Look no further. Developer Essentials
includes the latest international versions
of this “software erector set” in
DiskCopy image format.

DTS Technical Notes and
Sample Code
All Apple II and Macintosh Technical
Notes and Sample Code programs are
included for your reference. Be sure to
check here for the latest and greatest
development information and Developer

Technical Support programming tips
and techniques.

Macintosh Technical Notes Stack
This HyperCard stack incorporates all
of the latest Macintosh Technical Notes
into a single on-line source, which is
cross-referenced with SpInside Macintosh,
Q & A Stack, and the Human Interface
Notes Stack.

Macintosh Q & A Stack
Got a tough development question? Try
the Q & A Stack, which is a collection
of the most frequently asked questions
DTS receives from developers.
Organized by subject, this stack answers
the questions within and includes
cross-references to SpInside Macintosh
and the Macintosh Technical Notes
Stack.

SpInside Macintosh
Of course the most essential of all
documentation for Macintosh
developers is Inside Macintosh, so
Developer Essentials offers you SpInside
Macintosh, an on-line version of volumes
I-V. SpInside Macintosh combines all five
volumes into a single, searchable
electronic form that is
cross-referenced with the Macintosh
Technical Notes Stack, Q & A Stack,
and Human Interface Notes Stack.

Now you have some of the headliners in
Developer Essentials, but you should take
some time to browse the disc and see
what else you might discover. We’ll be
adding more as Developer Essentials
evolves, and we hope you agree that
these are tools that no developer should
be without.

DEVELOPER ESSENTIALS: ISSUE 3 July 1990

305
CLEO HUGGINS studied graphic design at the
Rhode Island School of Design, taught design
and semiotics at the Portland School of Art in
Maine, and created the music typeface “Sonata”
when she worked at Adobe. She received an
M.S. in digital typography from Stanford
University, and plays electric violin. Cleo always
knew the computer would be a good place to
combine her interests; she has joined Apple to
help refine the use of typography and design
(and maybe even music) in our CDs. •

MARY SKINNER collects the input, supervises
testing, processes the feedback and is the group’s
systems administrator (thank goodness Mary is a
HyperCard fanatic). She’s a native Iowan born
in New York City. Her B.A. in physics and B.A. in
Russian from the University of Iowa landed her as
an Air Force Lieutenant at Johnson Space Center.
In her spare time, she plays with the computer,
reads sci-fi (she’s a Poul Anderson fan), and
listens to the nonsoft side of rock and roll.
Mozhete skazat “Def Leppard”? •

30

E

ACCESSING

CD-ROM

AUDIO

TRACKS

FROM YOUR

APPLICATION
6

d e v e l o p July 1990

RIC MUELLER
CD-ROM opens up the possibility of providing the user of your

application with a new dimension of sound feedback, in full

digitally reproduced stereo. Coaxing the sound out of the AppleCD

SC® drive, however, is not as simple as prompting the user to

“press PLAY on your CD-ROM drive now.” This article explains the

intricacies of controlling the audio functions of the AppleCD SC

from an Apple II application.

Imagine how you might use CD-ROM audio tracks to make your software burst with
sound: language software that pronounces each lesson as it teaches it; reading
programs that speak words instead of just displaying them; almost any kind of
program adapted with audio cues for an audience with reading disabilities.
CD-ROM is also the answer for applications that require lengthy music tracks or
background music that simply won’t fit on the program disk in a digitized format.

In this article, you’ll learn about the capabilities of the AppleCD SC drive, and
the kinds of calls you can make to the drive to control the audio features. The
article also covers basic information about how audio tracks are stored on CD-ROM.
(While the primary focus of this article is the Apple II, this section applies to the
Macintosh as well.) Finally, it covers the specifics of playing audio tracks via the
GS/OS® SCSI CD driver and the five major audio control calls.

AN OVERVIEW OF THE AUDIO CAPABILITY
You make the AppleCD SC do your bidding by sending it the GS/OS device calls
DStatus and DControl via the GS/OS SCSI CD driver. These calls enable you
to control all features of the drive.

You get information about the contents of the disc in the drive and the current status
of the drive with two DStatus subcalls: ReadTOC and AudioStatus.
ERIC MUELLER is a free-lance Apple II
programmer (with an interest in telecommuni-
cations) who leads an unstructured life with no
days off, no days on. Despite that, he doesn’t
seem to have much free time. He plans to go
to college somewhere, someday, to study the great
unknown. For now, he writes his code, co-
manages an Apple II area on GEnie, listens to
the B-52’s, eats lunch in Chinese restaurants, and
watches “Late Night With David Letterman.”

During his days off (or is it his days on?) he
enjoys teaching “stupid pet tricks” to his two cats,
Conan and Aster, and enjoys life in Colorado
Springs. Otherwise, he gets perverse thrills by
writing Apple II programs that don’t go at all “
by the book.” (He does promise that he
absotively, posilutely has memorized the
interface guidelines, a MUST in the curriculum
of the great unknown.) •

You control audio play with five DControl subcalls: AudioPlay,
AudioPause, AudioScan, AudioStop, and AudioSearch. These calls start
and stop the disc from spinning inside the AppleCD SC, and position the laser.

We’ll look at each of these functions in greater detail in the sections that follow, and
illustrate them with code for a CD Remote classic desk accessory (CDA). You’ll find
the complete source code on the Developer Essentials disc in Merlin 16+ format. This
code serves three purposes: first, it enables you to experiment with the AppleCD SC
drive and see how it responds to certain calls. Second, it documents the exact steps
necessary to make audio calls. Finally, you can modify and extend it with your own
test code.

TO COMMUNICATE WITH THE DRIVE
Your Apple II application can communicate with the AppleCD SC through calls
built into either the SmartPort or the GS/OS SCSI CD driver. Accessing the
AppleCD SC’s audio features via the Smartport or from the Macintosh side of things
is very well documented, while documentation about using the GS/OS SCSI CD
driver is not as complete (yet). We’ll focus here on how to access the AppleCD SC
via GS/OS.

Issuing CD SC commands from your program is a two-step process: first you must
locate the drive with a DInfo call, and then you can use DStatus and
DControl to check the status and control the device. The control data you send
will be parameter lists for the audio calls; the status data you receive will be
information about the disc in the drive.

DINFO

Locating the drive with DInfo is fairly straightforward: you step through each of
the available devices until you find one that has a deviceIDNum of $0007 (SCSI
CD ROM drive). If your DInfo call returns an error $11, that means that you’ve
hit the end of the device chain, and that no CD SC drive is hooked up.

Here is an example from the sample program of how to locate the attached
AppleCD SC drive:

FindCDRom
lda CDROMDev ;Have we found it before?
bne :leave ;Yes - leave now.

:look ;Start looking for drive.
jsl GSOS
dw DInfo ;Make GS/OS DInfo call.
adrl :devParm
bcs :err ;Leave if error.
ACCESSING CD-ROM AUDIO TRACKS FROM YOUR APPLICATION July 1990

307
Complete details on using the SmartPort
are given in the AppleCD SC Developers Guide
(revised edition, Apple Computer, 1989, APDA
#A7G0023/A), starting on page 139. Included
are parameter lists, a list of all possible CD SC
calls, and details on how your parameter list for
each of the calls should be set up.

Details on controlling the CD SC from GS/OS
can be found in the GS/OS Reference (beta
draft, Apple Computer, 1988), volume 1 (APDA
#A2F2037) and volume 2 (APDA #A0008LL/A).
Volume 1, pages 108–109 and 112–119,
explains the DControl and DStatus calls,
while volume 2, chapter 2, provides detailed
instructions on making each call and gives
[continue on next page]

308
lda devID ;Get device ID.
cmp #$0007 ;Is it a SCSI CD-ROM device?
beq :found ;Yes - found it.

inc devNum ;No - move to next device . . .
bra :look ;and keep looking.

:found lda devNum
sta CDROMDev
sta DCdevNum ;Store device number for all control calls.
sta DSdevNum ;Store device number for all status calls.

:leave clc ;Found it.
rts

:none ~WriteCString #:noCDRom
:1 jsr getKey

sec ;None found!
rts

:err cmp #$11 ;Error $11 - invalid device number?
beq :none ;Yes - no CD-ROM drive found!
~WriteCString #:error ;No - some other weird error.
bra :1

:error asc 0d’GS/OS error on DInfo call. Press any key to quit. ‘0700
:noCDRom asc 0d’No CD-ROM drive found. Press any key to quit. ‘0700

:devParm dw 8 ;Eight parameters.
devNum dw 1 ;Device number - start with 1.

adrl nameBuffer ;Pointer to buffer for device name.
dw 0 ;Characteristics.
dl 0 ;TotalBlocks.
dw 0 ;SlotNum.
dw 0 ;UnitNum.
dw 0 ;Version.

devID dw 0 ;Device ID: $0007 = SCSI CD-ROM.

nameBuffer dw 31 ;Max length.
ds 33 ;Storage for device name.
d e v e l o p July 1990

detailed parameter lists for each of the CD SC
status and control calls.

(Note that on page 64 of the GS/OS Reference,
volume 2, in the parameter list for the
AudioPause call, the value for start pause in the
pause flag byte [$02] should be $10, not $40.)
The AppleCD SC Developers Guide gives an
explanation of every call. The GS/OS SCSI

Driver (General) External ERS (not presently
available from APDA) contains the most up-to-date
and correct parameter lists for the audio calls. •

DSTATUS AND DCONTROL

Once you’ve found the drive, exchanging information with it is simply a matter of
DStatus and DControl calls. DStatus enables you to receive status data
from the drive; DControl enables you to send control data to the drive.

The main parameter table for DControl and DStatus contains a parameter
count, the device number you’re working with, the control (or status) code, a pointer
to the command data, a request count (used for status calls), and a transfer count.

The command data information is a parameter list of 18 bytes (see Figure 1). The
first two are reserved and must be 0; the following byte is the SCSI command (which
is the same as the control/status code low byte). Next is a block of 11 bytes: these are
specific to each call. Finally, the command data parameter list ends with a long
pointer to another buffer, where SCSI data is returned from the status calls.

Figure 1
Command Data for DStatus and DControl

Offset
$00

$02

$0E

Description

$0000

commandData

bufferPtr

Reserved, must be zero

12 bytes of data

Pointer to a buffer that may contain
additional information
ACCESSING CD-ROM AUDIO TRACKS FROM YOUR APPLICATION July 1990

309

310
The following code from the sample program implements two handlers to make
DControl and DStatus calls:

* Make a DControl call - enter with control code in accumulator.

DoDControl
sta DCcode ;Store control code.
shortacc
sta controlData ;Store it in start of the parameter list.
longacc

jsl GSOS
dw DControl ;Make GS/OS DControl call.
adrl :devParm

jsr GDS ;Get device status & set new disc flag, if necessary . . .

rts ;and return with the call made.

:devParm dw 5 ;Parm list for the DControl call.
DCdevNum dw 0 ;Fill in device number here.
DCcode dw 0 ;Control code.

adrl controlList ;Pointer to buffer.
dl 0 ;RequestCount - unused.
dl 0 ;TransferCount.

controlList dw 0 ;Reserved.
controlData ds 12 ;12 bytes of data.

adrl buffer ;Pointer to buffer.
buffer ds 20

* Make a DStatus call - enter with status code in accumulator.

DoDStatus
sta DScode ;Store control code.
shortacc
sta statusData ;Store it in start of the parameter list.
longacc

jsl GSOS
dw DStatus ;Make GS/OS DStatus call.
adrl statParm

jsr GDS ;Get device status & set new disc flag, if necessary . . .

rts ;and return with the call made.
d e v e l o p July 1990

statParm dw 5 ;Parm list for the DStatus call.
DSdevNum dw 0 ;Fill in device number here.
DScode dw 0 ;Status code.

adrl statusList ;Pointer to buffer.
DSrequest dl 0 ;RequestCount.

dl 0 ;TransferCount.

statusList dw 0 ;Reserved.
statusData ds 12 ;12 bytes of data.

adrl buffer ;Pointer to buffer.

TO FIND OUT MORE ABOUT THE DISC IN THE DRIVE
The AppleCD SC has two important calls for finding out more about the disc in the
drive: ReadTOC (to read the table of contents) and AudioStatus (to find out
exactly what the drive is doing). These calls are useful immediately after the user has
inserted a new (foreign) disc, to ascertain the disc’s layout and whether the disc is
currently playing, searching, paused, or muted. They are also useful in the case
where you’ve placed one application on several different discs, each with a different
audio track layout.

READTOC
The ReadTOC call can return data in three ways, known as types $00, $01, and
$02. You specify the type in the ReadTOC parameter list.

A type $00 table of contents returns the value of the first and last tracks available on
the disc. Tracks are numbered consecutively, starting with 1, and the type $00 table
of contents always returns $01 as the value for the first track on the disc.

Type $01 gives you the disc lead-out time in minutes, seconds, and blocks. (The
lead-out time is the total time of all tracks on the disc, including the data track, if
one exists.)

Finally, type $02, the most flexible of the three, returns starting address information
(control field, minutes, seconds, and blocks) for each track on the disc. You can
specify how many bytes the call will return and which track to start on, which makes
it possible to find out about a single track instead of all of the tracks on the disc.

Examples of using the ReadTOC call can be found in the “NewDisc” and “Play”
routines of the accompanying source code.
ACCESSING CD-ROM AUDIO TRACKS FROM YOUR APPLICATION July 1990

311

d

312
ABOUT CD-ROM AUDIO TRACK FORMAT
Audio data on a CD-ROM is stored in tracks. A CD can
have a maximum of 99 tracks. Each track is broken down
into minutes, seconds, blocks, frames, and finally, bytes,
as shown in Figure 2. Tracks are numbered consecutively
starting with 1, while minutes, seconds, blocks, and
frames are numbered consecutively starting with 0.

This format enables exact specification of a location on a
CD-ROM. A location can be specified by absolute block
number (for example, start playing at absolute block
1,234,567 from the start of the disc), or by absolute
minute, second, and block number (for example, start
e v e l o p July 1990
playing at minute 42, second 30, block 15 on the disc),
or by logical track number (for example, start playing
at track 2).

Note that blocks are often referred to as frames in
CD-ROM industry documentation; following that lead,
you’ll see references to disc data in minute-second-frame
format in my source code when it’s truly in minute-second-
block format. There is no way to access individual frames
(1/98th of a block) or bytes of the disc with the AppleCD
SC drive; however, for audio playback, it is unnecessary
and presents no handicap.
Figure 2
Format of a CD-ROM Audio Track

CD tracks are addressed by minutes
(from 0-99 on disc)

Each minute is divided into 60 seconds

Each second contains 75 blocks, each with
2336 bytes (mode 2) or 2048 bytes (mode 1)

Minutes

Seconds

Blocks

Frames

Bytes

Within a block, there are 98 frames of data,
containing 588 physical bits

A frame contains 192 bits,
or 24 bytes, of user data

AUDIOSTATUS

The AudioStatus call returns the current status of the drive, the current play
mode, the control field of the current track, and the Q Subcode for either the next
track on the disc (if a track is currently playing) or the current track (if a track is not
currently playing).

The current status of the drive is reported as one of six messages: AudioPlay
operation in progress, Pause operation in progress, Muting On operation in
progress, AudioPlay completion status, Error during AudioPlay operation status, or
AudioPlay operation not requested.

The play mode is how audio will be output. It has the following possible values:

Bits
3210 Effect
0000 Muting on (no audio)
0001 Right channel through right channel only
0010 Left channel through right channel only
0011 Both channels through right channel only
0100 Right channel through left channel only
0101 Right channel through left and right channel
0110 Right channel through left channel, left channel through right channel (reversed)
0111 Right channel through left channel, both channels through right channel
1000 Left channel through left channel only
1001 Left channel through left channel, right channel through right channel (stereo)
1010 Left channel through left and right channels
1011 Left channel through left channel, both channels through right channel
1100 Both channels through left channel
1101 Both channels through left channel, right channel through right channel
1110 Both channels through left channel, left channel through right channel
1111 Both channels through left channel, both channels through right channel (mono)

The control field describes the format of the current track, and has the following
possible values:

Bits
3210 Effect
00x0 Two audio channels without preemphasis
00x1 Two audio channels with preemphasis
10x0 Four audio channels without preemphasis
10x1 Four audio channels with preemphasis
01x0 Data track
01x1 Reserved
11xx Reserved
xx0x Digital copy prohibited
xx1x Digital copy permitted
ACCESSING CD-ROM AUDIO TRACKS FROM YOUR APPLICATION July 1990

313

d e v e l o p July 1990

314
The Q Subcode is the absolute address of either the next track on the disc (if a track
is currently playing) or the current track (if a track is not currently playing). It
consists of the track starting address in minutes, seconds, and blocks. With the Q
Subcode, you can quickly tell where the laser is positioned.

Here is a short example of getting the drive status and reporting it to the user:
Status
~WriteCString #:stat

jsr ZeroParamList ;Zap old parameter list.

lda #$0006 ;Get six bytes from AudioStatus.
sta DSrequest
lda #AudioStatus ;Make this call.
jsr DoDStatus
shortacc
lda buffer ;Get audio status.
longacc
cmp #5+1
bge :bad
asl ;*2 so offset into table is correct.
tay
lda #^:msgPtrs ;Get current bank.
pha ;Push high word.
lda :msgPtrs,y ;Push low word.
pha
_WriteCString ;Print string.
clc
rts

:bad ~WriteCString #:unk
clc
rts

:stat asc ‘Status’0d0d00
:unk asc ‘Unknown audio status returned’0d00
:msgPtrs

dw :nowPlay ;$00
dw :pause ;$01
dw :muting ;$02
dw :playComp ;$03
dw :errPlay ;$04
dw :noPlay ;$05

:nowPlay asc ‘AudioPlay operation in progress’0d00
:pause asc ‘Pause operation in progress’0d00
:muting asc ‘Muting On operation in progress’0d00
:playComp asc ‘AudioPlay completion status’0d00
:errPlay asc ‘Error occurred during AudioPlay operation’0d00
:noPlay asc ‘AudioPlay operation not requested’0d00

TO PLAY AUDIO TRACKS
Five main audio calls are available to the programmer to control the audio features
of the AppleCD SC drive:

AudioPlay This call enables you to start the drive on an audio playback
operation (you pass it the play mode), or to specify a stop address
for audio playback.

AudioStop Like AudioPlay, this call enables you to specify a stop address
for audio playback. AudioStop can be used to set up a stop
address prior to issuing an AudioPlay call starting playback.

AudioPause This call enables you to temporarily stop the audio playback
operation by turning on muting and holding the laser over the
same Q Subcode address. AudioPause also enables you to
resume the audio playback operation after it has been stopped with
a previous AudioPause operation. This call is useful if you wish
to pause audio playback on the fly and resume it instantly, without
any delay.

AudioSearch This call enables you to position the laser over an address on the
disc (a specified track or Q Subcode). This can be useful if it is
crucial that your application be able to start playback at a certain
time: you can first search to the specific track and then hold the
disc there, later issuing an AudioPlay command (which will
begin play immediately). AudioSearch can also be set to start
playing as soon as the specified address is located.

AudioScan This call causes a fast-forward or fast-reverse scan operation,
starting from the address passed to it.
ACCESSING CD-ROM AUDIO TRACKS FROM YOUR APPLICATION July 1990

315

d e v e l o p July 1990

316
The steps to play an audio track from your application are fairly straightforward:

1. Choose the last track you wish to play and set it with the AudioStop command.
2. Choose the first track you wish to play and pass it to AudioPlay with the stop

flag set to 0.

If you wish to play a single track, pass the same track number for both commands. If
you want to simply start playback on a given track and allow the disc to play to the
end, pass the last track number to AudioStop and the track to begin playback on
to AudioPlay. (The last track number can be retrieved with a type $00
ReadTOC command.)

The AudioScan call is useful if you’re allowing the user to directly control the
disc from the application; otherwise, there is little need to fast-forward or fast-
rewind when your program is already aware of the layout of the disc. AudioPause
and AudioSearch are two practical ways to prepare the disc for playback without
delay, and then pause and resume it. By using AudioSearch before your program
needs to begin playback, you can have the disc spinning and the laser positioned
exactly where it needs to be.

TO SUM IT ALL UP
By now, you’re familiar with the many advantages and possibilities that CD-ROM
audio access can provide your application. You know the layout of an audio track on
CD-ROM and how to find out more about the track from your application.

You know the five major audio calls and a handful of supporting calls. You know
what they can do for you and why you might want to use them.

You’re ready to produce an application that takes full advantage of the AppleCD SC
drive, equipping your program with the ability to produce sound and music of
unequaled quality.
Thanks to Our Technical Reviewers:
Mike Barnick, James Beninghaus, Matt Gulick,
Jim Luther, Llew Roberts

Eric sends many thanks to Ken Kashmarek for his
help.

ROB B
AND A
SURF’S UP:

CATCH THE

COMM

TOOLBOX

WAVE
ERKOWITZ
LEX KAZIM
The Macintosh Communications Toolbox provides managers and
utilities that offer basic networking and communications services
to applications. This article introduces you to three of the
Communications Toolbox managers—the Connection Manager, the
Terminal Manager, and the File Transfer Manager—as well as
Surfer, a sample application that uses the Communications Toolbox
to implement simple networking and communications services.

Networking and communications applications running on the Macintosh are like a
good pair of rose-colored shades. They filter out the harshness of antiquated
architectures and conventions, and present users with a familiar, intuitive interface.
The Macintosh Communications Toolbox provides a standard framework in which
you can develop modular, consistent networking and communications applications.
As a developer using the Communications Toolbox, you can write applications
without having to know the complexities of each networking and communications
environment your applications run in. For example, imagine writing a chess program
that enables users to play opponents over any sort of data connection, without
having to code for each type of connection. The Communications Toolbox makes
this possible.

COMMUNICATIONS TOOLBOX CONTENTS
The Communications Toolbox consists of four managers and a set of utilities that
provide basic networking and communications services. Think of these managers
and utilities as an extension to the Macintosh Toolbox. Each of the managers in the
Communications Toolbox—the Connection Manager, the Terminal Manager, the
File Transfer Manager, and the Communications Resource Manager—handles a
different aspect of networking and communications. The utilities provide routines
that perform a variety of useful auxiliary functions. This article focuses on the
Connection Manager, the Terminal Manager, and the File Transfer Manager.
SURF’S UP: CATCH THE COMM TOOLBOX WAVE July 1990

317ROB BERKOWITZ’S career has come a long
way, despite getting off to a dubious start (he
worked for the large blue corporation). His B.S.
in English (emphasis on the BS, he says) from
Carnegie Mellon put him on the path to his Great
American Reference Manual, the Macintosh
Toolbox Reference. He likes working at Apple
because “the offices are right next to some pretty

primo cycling trails” and he has “the freedom to
thrash around in the dirt in the middle of the day
all year round.” He is a Grateful Dead enthusiast
who feels that “most Deadheads are genuinely
good people. It would be nice if more people
were like that.” Truck on, Rob.

d e v e l o p July 1990

318
Communications Toolbox managers work with communications tools, which
are self-contained software modules that provide protocol-specific services. The
managers and tools perform the following functions:

• The Connection Manager and tools are the mechanism for
establishing and maintaining a data connection between
machines.

• The Terminal Manager and tools show data to users in a manner
that emulates the characteristics of specific terminal types.

• The File Transfer Manager and tools handle the protocols for
sending and receiving files.

• The Communications Resource Manager helps applications keep
track of necessary resources.

You code to the application programming interface defined by the managers. In
turn, the managers request specific services from communications tools. The
interaction between the tool and the manager is invisible to your application, so
when you design your application, you don’t have to be concerned with what sort
of data connection is in place, what kind of terminal to emulate, or what type of
file transfer to perform. It’s similar to the way applications deal with the Printing
Manager. Applications say “Print,” and the Printing Manager sends the request
to the Printer Driver, which figures out how to print on a specific device.

By providing basic services, communications tools free application developers from
having to learn the most heinous intricacies of communications conventions. That
work is left up to those who practice the black art of writing communications tools.

Communications tools live in the Communications folder, which is in the System
Folder and is created and populated when you install the Communications Toolbox.
(Under System 7.0 they will reside in the Extensions folder.) A number of
communications tools are available from APDA. Others, from Apple and third-party
developers, will be available in the near future.

Figure 1 shows how the Communications Toolbox managers and tools fit between
your application and the operating system. The application interacts with the
manager, which in turn interacts with the tool. The tool, in turn, communicates
with the operating system (or Communications Resource Manager), provides a
specific service, and passes back to the application (through the manager) any
relevant informationp.
KAZ doesn’t know his official title, but thinks he
may be a Communications Toolbox Engineer. We
try to be understanding of these lapses; he’s got
his hands full keeping track of and remembering
the names of his hundreds of colorful family
members worldwide. He, himself, is an
international sort; he was born in Trinidad and
has lived in Toronto and Texas. He’s been at
Apple since 1988, after getting his degree in

mechanical engineering from Rice University. He
tries to stay as busy as possible, especially with
sailing, skiing, gliding, cooking, dancing, and
writing fiction. He likes his food extremely(!)
spicy, so we suggest caution if he invites you to
lunch. His goal in life is not to get convicted, and
he studies karate. Again, we suggest caution if
he invites you to lunch. •

Figure 1
How the Communications Toolbox Fits In

USING THE MANAGERS: AN OVERVIEW
In this section we give an overview of how your application uses each manager. The
sample application Surfer, discussed in detail in the next section, provides a model of
how an application uses the Communications Toolbox.

To get each of the Communications Toolbox managers ready for action, your
application does the following:

1. Initializes the manager, by calling InitCM, InitTM, or InitFT.
2. Gets the procID for a specified tool (this is a tool file reference number,

similar to the ones returned by the File and Resource Managers), by calling
CMGetProcID, TMGetProcID, or FTProcID.

Application

Connection
Manager

ToolToolTool

Operating system

Terminal
Manager

File Transfer
Manager

Communications
Resource Manager

Communications
Toolbox
SURF’S UP: CATCH THE COMM TOOLBOX WAVE July 1990

319

d e v e l o p July 1990

320
3. Creates a new instance of the tool, by calling CMNew, TMNew, or FTNew.
4. Configures the tool. You can present users with a standard tool-settings dialog

box by calling CMChoose, TMChoose, or FTChoose, or you can set the
configuration directly using a configuration string. Figure 2 shows the dialog box
that is put up in response to a call to TMChoose while the VT 102 tool is active.

Figure 2
The Dialog Box for Choosing and Configuring a Terminal Tool

Associated with each communications service (connection, terminal, and file
transfer) is a data structure that the manager, tool, and application maintain. For
the Connection Manager, this data structure is called the connection record; for the
Terminal Manager, the terminal record; for the File Transfer Manager, the file
transfer record. These records are discussed in detail in Macintosh Communications
Toolbox Reference. Your application refers to these records for information upon
which to base decisions, similarly to how the Window Manager uses information in
the window record.

An important concept central to the architecture of the Communications Toolbox is
that applications wait on events. When an application (Surfer, for example) gets an
event to pass to one of the communications tools, it tells the manager, which then
passes a message to the appropriate tool, along with a handle to the associated data
structure (that is, connection record, terminal record, or file transfer record). The
communication between the tool and the manager is done through the data
structure and return codes. The section ÒHandling EventsÓ goes into more detail
about this.
The definitive reference on the Communications
Toolbox is Macintosh Communications Toolbox
Reference, available from APDA. •

A LOOK AT SURFER
Surfer is a simple terminal emulation package that Alex adapted from the DTS
sample code sent out to developers. It uses the Communications Toolbox to
implement simple networking and communications services. It provides support for
data connections, terminal emulations, and file transfers; and can use new
communications tools without changing one line of code. Keep in mind that you can
use the Communications Toolbox to go well beyond the domain of standard
terminal emulation software, to seamlessly incorporate networking and
communications functionality into all kinds of programs.

Here we’ll show you selected portions of Surfer to illustrate how it uses the
Communications Toolbox. First we’ll show you code to help you get a feel for the
structure and flow of the program. Then we’ll show how Surfer meets the common
communications challenges of establishing and maintaining a connection, emulating
a terminal, and tranferring files. Finally, we’ll discuss how Surfer handles two
common problems. You should examine the source code, which appears in its entirety
on the Developer Essentials disc, to fully understand Surfer. You should also examine
the connection record, terminal record, and file transfer record in Surfer. As
mentioned earlier, these records are fundamental to the operation of each manager.

HOW SURFER STARTS UP
Here’s Surfer’s main routine:

BEGIN
UnloadSeg(@_DataInit); { Note that _DataInit must not be in Main! }
MaxApplZone; { Expand the heap so code segments load at the top.

}
Initialize; { Initialize the program. }
UnloadSeg(@Initialize);{ Note that Initialize must not be in Main! }
EventLoop; { Call the main event loop. }

END.

As with surfing, where you’ve got to get out the wetsuit and put the board on the
Bug, Surfer has some preparation it needs to do before it calls its main event loop.
The following fragment from the Initialize procedure shows how Surfer
initializes the Communications Toolbox:

{ Does CommToolbox exist? }
IF NOT TrapAvailable(_CommToolboxTrap, OSTrap) THEN

AlertUser(‘ACK!! No CommToolbox’,TRUE);

{ Check for System 6.0 or better, 64K ROM. }
ignoreError := SysEnvirons(kSysEnvironsVersion, TerraMac);
SURF’S UP: CATCH THE COMM TOOLBOX WAVE July 1990

321

322
WITH TerraMac DO
IF (systemVersion < $0600) OR (machineType < 0) THEN

AlertUser(‘Need System 6.0 or better’,TRUE);

{ Check various memory configs. }
IF ORD(GetApplLimit) - ORD(ApplicZone) < kMinHeap THEN

AlertUser(‘Out of Memory’,TRUE);

PurgeSpace(total, contig);
IF total < kMinSpace THEN

AlertUser(‘Out of Memory’,TRUE);

{ Load up the Communications Toolbox. }
{ Must initialize CRM & CTBUtilities first. }
err := InitCTBUtilities;
err := InitCRM;

err := InitTM; {Initialize the Terminal Manager.}
IF err = TMNoTools THEN

AlertUser(‘No terminal tools found’,TRUE);

err := InitCM; { Initialize the Connection Manager. }
IF err = CMNoTools THEN

AlertUser(‘No connection tools found’,TRUE);

err := InitFT; { Initialize the File Transfer Manager. }
IF err = FTNoTools THEN

AlertUser(‘No file transfer tools found’,FALSE);

HANDLING EVENTS
After dealing with the initialization details, Surfer loops, waiting for events to wave
through, handling them like this:

PROCEDURE EventLoop;
VAR

gotEvent : BOOLEAN;
event : EventRecord;

BEGIN
REPEAT

DoIdle;

IF gHasWaitNextEvent THEN { Put us ‘asleep’ forever under MultiFinder }
gotEvent := WaitNextEvent(everyEvent, event, 0, NIL)
d e v e l o p July 1990

ELSE BEGIN
SystemTask; { Must be called if using GetNextEvent. }
gotEvent := GetNextEvent(everyEvent, event);

END;

IF gotEvent THEN BEGIN
AdjustCursor(event.where);{ Make sure we have the right cursor. }
DoEvent(event);

END;

AdjustCursor(event.where);
UNTIL FALSE; { Loop forever; we quit through an ExitToShell. }

END; { EventLoop }

The procedure DoEvent is where much of the code surfing takes place. The
procedure is too long to reproduce here, but Figure 3 shows the important points
schematically, and you can read the source code on the CD for more details.

Figure 3
How Surfer Handles Events

Surfer Main
Event Loop

Update

Mouse

Key
Idle

OSEvent

Activate

CMIdle
CMAddSearch
TMIdle
FTExec
TermRecvProc

TMKey

do the menu command

Menu

OpenConnection (CMOpen)
CloseConnection (CMClose)
DoSend
DoReceive
CMChoose
CMAddSearch
FTChoose
CMRemoveSearch
TMChoose

Content

TMClick

TMResume
CMResume
FTResume

TMActivate
CMActivate
FTActivate

TMUpdate
SURF’S UP: CATCH THE COMM TOOLBOX WAVE July 1990

323

d e v e l o p July 1990

324
Events received by Surfer come in two main flavors: Surfer-owned and tool-owned.
Tools can create their own windows behind Surfer’s back (for instance, file transfer
tools can put up a status window during a transfer), but since Surfer is in control,
events destined for these windows come through Surfer’s main event loop. Luckily,
when a tool creates its own window, it stuffs a handle to itself in the window’s
refCon field. All Surfer has to do to determine who owns a window is compare
the window’s refCon to the existing tool handles. If a match is found, Surfer calls
the appropriate routine (TMEvent, CMEvent, or FTEvent) so that the tool can
handle the event. Otherwise, Surfer handles the event itself.

Even Surfer’s window, though, has “guests.” The terminal tool needs to receive
mouse clicks and update events, and all the tools need to receive activate/deactivate
and suspend/resume events. These are passed to the tool with the appropriate
routine: TMClick, TMUpdate, CMActivate, and so on.

MANAGING IDLE TIME
The idle procedure is a little convoluted because so much is happening. Surfer has to
read and send data someplace, blink cursors, and provide all the sessions time for
background file transfers. It’s something like the action at O’Hare Airport.

Because communications tools can display their own windows, Surfer must walk the
window list to give each tool time in a session. Although idle time is provided to
tools with CMIdle, FTExec, and TMIdle, Surfer doesn’t want to send data to
the terminal tool if there’s a file transfer in progress and the tools are using the same
channel. Another thing worth checking is the file transfer status. Did the transfer
start? Has it just ended? Was it successful? Did an auto-receive sequence come
across? These concerns are discussed in greater detail later in this article in the
section “Doing a File Transfer.”

Surfer also needs to get data to the terminal tool. Surfer checks to see if the
connection is open or data is available, and if so tells the tool to read it and stream it
to the terminal:
{ Get the state of the connection. }
theErr := CMStatus(gConn, sizes, status);

IF (theErr = noErr) THEN BEGIN
{ Route the data if we have any. }
IF (BAND(status, cmStatusOpen + cmStatusDataAvail) <> 0) AND
(sizes[cmDataIn] <> 0) THEN BEGIN

{ Tell the tool to get the data. }
theErr := CMRead(gConn, gBuffer, sizes[cmDataIn],

cmData, FALSE,NIL,0,flags);

{ Send data to the terminal. }
IF (theErr = noErr) THEN

bytesEaten := TMStream(gTerm,gBuffer,
sizes[cmDataIn],flags);

{ Could check bytesEaten vs. sizes[cmDataIn]. }
END; { Sizes <> 0. }

END; { Good status. }

Now that you’ve seen something of Surfer’s main event loop, we’ll look at how
Surfer uses the Communications Toolbox managers.

INITIATING A CONNECTION
For two computers to talk to each other, they must establish and maintain a data
connection. Applications that provide terminal emulation or file transfer services use
the data connection to physically transfer the data. Before an application can open a
data connection, the Connection Manager has to be properly set up. Surfer does this
during initialization by calling InitCM to initialize the Connection Manager;
calling CMGetProcID to get its ProcID; and calling CMNew to create a new
instance of a connection tool. Note that Surfer does not explicitly configure the
tool: CMNew automatically configures the tool to its default settings. The user can
reconfigure the tool by choosing the appropriate menu item.

Here’s how Surfer calls CMNew:

sizes[cmDataIn] := kBufferSize;
sizes[cmDataOut] := kBufferSize;
sizes[cmCntlIn] := 0;
sizes[cmCntlOut] := 0;
sizes[cmAttnIn] := 0;
sizes[cmAttnOut] := 0;

{ refCon and UserData are 0. }
gConn := CMNew(procID, cmData, sizes, 0, 0);
IF gConn = NIL THEN

AlertUser(‘Can’’t create a connection tool’,TRUE);

Surfer supports only the data channel and asks for a 1K buffer for both input and
output. Because the connection tool may be unable to handle the requested buffer
size, Surfer needs to look at the bufSizes field in the connection record and use
that value to allocate space for the buffer.

gBuffer := NewPtr(gConn^^.bufSizes[cmDataIn]);
IF MemError <> noErr THEN

AlertUser(‘Out of memory’,TRUE);
SURF’S UP: CATCH THE COMM TOOLBOX WAVE July 1990

325

d e v e l o p July 1990

326
Before Surfer initiates a connection, it checks the state of the connection with
CMStatus. If the connection is not already open or in the process of opening,
Surfer issues a CMOpen call, in this case synchronously with a 0 time-out. A
timeout of 0 says, “Make a single attempt to open the connection.”
{ Get connection info. }
theErr := CMStatus(gConn, sizes, status);
IF (theErr = noErr) THEN BEGIN

{ If it isn’t already open, then open it. }
IF BAND(status, cmStatusOpen + cmStatusOpening) = 0 THEN

theErr := CMOpen(gConn, FALSE, NIL, 0);
END;

ONCE THE CONNECTION IS OPEN . . .
Using the Connection Manager to maintain a data connection is a lot like talking
with a friend. You start off by saying hello (CMOpen, CMAccept, or CMListen),
ask how he’s doing (CMStatus), engage in small talk (CMRead and CMWrite), take
a deep breath once in a while (CMIdle), and end by saying goodbye (CMClose).

Surfer uses CMStatus a lot to return information like whether there is data waiting
to be read, and whether the connection is open or closed. If CMStatus shows
that data is available, Surfer reads it and passes the data to the terminal tool or the
file transfer tool, whichever is appropriate.

Closing a connection is similar to opening one, except, of course, the logic is
reversed: Surfer only closes the connection if it’s open. When Surfer is done with the
session, it disposes of the tool with CMDispose and gets rid of the buffer with
DisposPtr.

STARTING A TERMINAL EMULATION SESSION
In Surfer, a session is a connection, terminal, and file transfer tool, along with a data
buffer tied to an owning window. Surfer is limited to one
window and one session. To create a new session, Surfer calls

{ Get window. }
window := GetNewWindow(rWindow, NIL, WindowPtr(-1));
SetPort(window);

The first thing to notice right after the GetNewWindow call is the SetPort.
The terminal tool does as little port manipulation as possible and assumes that the
port where it’s drawing is the correct one. Surfer sets the port so it can direct
drawing to either a window graphics port or a printer graphics port. Be warned that
the terminal tool may die ungracefully if the current port is not valid.

During initialization, Surfer gets the Terminal Manager ready for action by
calling InitTM, TMGetProcID, and TMNew. Surfer creates a new instance of
a terminal tool as follows:

theRect := window^.portRect;

{ Flags set to 0; no cacheProc, breakProc, or clikLoop; }
{ refCon and UserData are 0. }
gTerm := TMNew(theRect,theRect,0,procID,window,

@TermSendProc,NIL,NIL,NIL,@ToolGetConnEnvirons,0,0);
IF gTerm = NIL THEN

AlertUser(‘Can’’t create a terminal tool’,TRUE);

In TMNew, Surfer specifies the bounds of the drawing area, the terminal tool to use,
the owning window, two internal procedures, and some application data.

When Surfer is done with the session, it disposes of the tools with TMDispose.

ONCE THE TERMINAL SESSION HAS STARTED . . .
The Terminal Manager handles the interaction between the host and the user
during a session. Through the Terminal Manager, terminal tools can display both
words and images to the user in a manner that emulates the characteristics of
specific terminal types. The Terminal Manager also accepts information from the
user (such as keystrokes), which is sent back to the host.

Many Terminal Manager routines are similar to TextEdit routines. Since the
Terminal Manager is in charge of interacting with the user, most of the calls to the
Terminal Manager that Surfer uses are event-oriented—even events like streaming
data, when data becomes available, and passing data between Surfer and the tool.

The calls TMIdle, TMStream, and TMKey enable Surfer to provide basic
terminal emulation services. Surfer calls TMIdle during its idle loop so, among
other things, the tool can blink its cursor (similar to the way TEIdle works).
When data becomes available from the connection tool, Surfer calls TMStream to
stream the data to the terminal tool for drawing to the window. When a key event
occurs, Surfer calls TMKey. The terminal tool processes the keystroke and then
uses a Surfer procedure, specified in TMNew, to send data back to the connection.
Since Surfer is in charge of this procedure, it can do some data filtering, use
synchronous or asynchronous write calls, or just drop the request on the floor if it
wants to.

Your application will probably support multiple sessions, making it difficult to find
the connection handle associated with a particular terminal record. To help your
application out, the terminal tool’s refCon is passed along in the parameter list to
TMNew. Your application can put the connection tool handle in this location for
SURF’S UP: CATCH THE COMM TOOLBOX WAVE July 1990

327

d e v e l o p July 1990

328
this purpose. Then, in TermSendProc (a procedure that terminal tools expect
your application to provide), your application can get the connection handle back by
casting the refCon to a ConnHandle. Of course, this is only one possibility; you
can store whatever you want in the refCon.

DOING A FILE TRANSFER
The File Transfer Manager provides file transfer services for a transfer between
Surfer and another computer process. The other process can be running on the
same computer as Surfer or on any other type of computer. Surfer makes a request
of the File Transfer Manager in order to transfer a file or perform some other file
transfer related function. The File Transfer Manager then sends this request to one
of the tools it manages. The tool provides the service according to the specifics of
its file transfer protocol. Once the tool has finished, it passes back to Surfer any
relevant parameters and return codes. It’s very similar to the way the other
Communications Toolbox managers work.

During initialization, Surfer gets the File Transfer Manager ready for action by
calling InitFT, FTGetProcID, and FTNew. Surfer uses the following code to
create a new instance of a file transfer tool:
{ Flags set to 0, no read/write proc (let the tool use its own), }
{ refCon and UserData are 0. }
gFT := FTNew(procID,0,@FTsendProc,@FTreceiveProc,NIL,NIL,

@ToolGetConnEnvirons,window,0,0);
IF gFT = NIL THEN

AlertUser(‘Can’’t create a file transfer tool’,TRUE);
For FTNew, Surfer specifies a send-and-receive procedure for the file transfer tool
to use, if it doesn’t already have one. Some file transfer tools, like ftp, handle their
own connection and therefore don’t use these procedures.

To start a file transfer, either sending or receiving, Surfer calls FTStart. To keep the
transfer going, Surfer calls FTExec in its idle loop. That’s it. When the transfer has
completed, the tool takes care of closing itself. If Surfer needs to stop during the
transfer, it can call FTAbort, and the tool automatically cleans up its mess.

Surfer needs to handle three things during a file transfer. First, it needs to look out
for an auto-receive string, a sequence of characters supported by some file transfer
protocols that throws Surfer into receive mode (MacTerminal 1.1 does this). If the
file transfer tool supports auto-receive strings, Surfer uses the Connection Manager
routine CMAddSearch to tell the connection tool to look out for the auto-receive
string. Incidentally, when the connection tool is looking for an auto-receive string
and the user chooses a new connection tool or modifies the current one, the
Connection Manager destroys the old search for this string. Surfer, therefore, needs
to add the search again.

Second, Surfer needs to handle data routing. Most file transfer tools use the current
connection to get data. However, if a file transfer is in progress, we don’t want
Surfer trying to send data to the terminal tool. Some file transfer tools establish
their own connection separate from the one Surfer has established, so any data read
from the connection should go to the terminal tool as usual.

Third, Surfer needs to check that the file transfer was copacetic. Here’s how it does
this. During a file transfer, the File Transfer Manager turns on a bit in the file
transfer record called ftIsFTMode. By keeping track of this bit, Surfer can tell
when a file transfer has completed. It can then check the FTSucc bit in the file
transfer record to see if the file transfer went according to plan.

Two of the procedures file transfer tools use are FTSendProc and
FTReceiveProc, which respectively send and receive data. FTSendProc
and FTReceiveProc are similar to TermSendProc, except the file transfer tool
can specify which connection channel Surfer should use to read or write the data.

When Surfer is done with the session, it disposes of the tools with FTDispose.

HOW SURFER WORKS WITH AUTO-RECEIVE STRINGS
Whenever a new file transfer tool is created, either through an FTNew or
FTChoose, Surfer searches the file transfer record for an auto-receive string. If
there is one, Surfer calls CMAddSearch to tell the Connection Manager to look
for the string in the incoming data.

IF (gFT <> NIL) AND (gConn <> NIL) THEN BEGIN
tempStr := gFT^^.AutoRec; { Do I need to add a search? }
IF (tempStr <> ‘’) THEN BEGIN

gFTSearchRefNum := CMAddSearch(gConn,tempStr,cmSearchSevenBit,
@AutoRecCallback);

IF gFTSearchRefNum = -1 THEN BEGIN
AlertUser(‘Couldn’’t add stream search’,FALSE);
gFTSearchRefNum := 0;

END;
END; { Can autoreceive. }

END; { Good FT and conn. }

Surfer passes a procPtr to CMAddSearch so that when the search completes,
the connection tool calls Surfer’s AutoRecCallback. If more than one search
was going on simultaneously, Surfer also gets back a refNum to help identify the
returning search.

When the file transfer tool calls AutoRecCallback, Surfer starts to receive a
file. Unfortunately, Surfer can’t call FTStart from the callback procedure,
because that procedure may be called at interrupt time, and FTStart cannot be
called at interrupt time because it may move memory. So Surfer does the next best
SURF’S UP: CATCH THE COMM TOOLBOX WAVE July 1990

329

d e v e l o p July 1990

330
thing. It sets a global flag in AutoRecCallback that says it received the auto-
receive string. During the idle loop, it then looks at the flag to see if it’s time to start
the file transfer.

Here's how Surfer start to receive a file transfer.
IF gFT <> NIL THEN BEGIN
{ Let the FT tool use its own default file info. }
theReply.vRefNum := 0;
theReply.fName := ‘’;
theReply.good := TRUE;

gStartFT := FALSE; { Shut the flag down. }

{ We remove the search temporarily in case it comes }
{ across during the transfer. Will be re-added in the }
{ idle loop once the transfer is completed. }

IF gConn <> NIL THEN
IF (gFT^^.autoRec <> ‘’) AND (gFTSearchRefNum <> 0) THEN BEGIN

CMRemoveSearch(gConn, gFTSearchRefNum);
gFTSearchRefNum := 0; { We found it already. }

END;

{ Start receiving the file. }
{ The rest gets transferred in the Idle loop. }

anyErr := FTStart(gFT,ftReceiving,theReply);

IF (anyErr <> noErr) THEN
; { File Transfer tool will alert user on an error. }

END; { Good handle. }
One other thing to think about is the string itself. If the string randomly came across
again during the file transfer, Surfer doesn’t want to start the transfer again because
it’s already in progress. Therefore, when starting the transfer, Surfer removes the
search for the string, transfers the file, and adds the search back in the idle loop
when finished.

HOW SURFER HANDLES TWO COMMON PROBLEMS
Two useful routines—IsAppWindow and FindToolID—help Surfer determine
the owner of a window and the procID for a given tool.

As discussed earlier, a tool-owned window has a handle to the owning tool in its
refCon. In IsAppWindow, Surfer makes sure the window is an application
window by checking the refCons against all the tool handles.

IF window = NIL THEN
IsAppWindow := FALSE

ELSE BEGIN
theRefCon := GetWRefCon(window);
WITH WindowPeek(window)^ DO

IsAppWindow := ((windowKind > = userKind) |
(windowKind = dialogKind)) &

(gTerm <> TermHandle(theRefCon)) &
(gConn <> ConnHandle(theRefCon)) &
(gFT <> FTHandle(theRefCon));

END;

As mentioned earlier, all three managers—the Terminal, Connection, and File
Transfer Managers—require a procID when specifying a new instance of a tool.
To go from a name of a terminal tool, for instance, to a procID, Surfer calls
TMGetProcID(theName) first. (You can also do this with Connection Manager
and File Transfer Manager routines.) Because the procID is dynamic, Surfer
works with the name of the tool, rather than this value.

IF (toolClass = ClassTM) THEN BEGIN
{ If it can’t get the default, get the first. }
toolName := kDefaultTermTool; {VT102 Tool}
procID := TMGetProcID(toolName);

IF (procID = -1) THEN BEGIN
anyErr := CRMGetIndToolName(toolClass,1,toolName);
IF (anyErr = noErr) THEN

procID := TMGetProcID(toolName);
END;

END { ClassTM. }

THE END OR JUST THE BEGINNING?
It should be clear by now that the Communications Toolbox makes writing full-
blown communications applications and adding networking and communications
services to existing applications easier than it used to be. By coding to the
Communications Toolbox application programming interface, you can focus on
providing networking and communications services rather than worrying about
support for various industry standards. Seamless and easy access to information all
over the world is revolutionizing how we communicate and think about each other.
The Macintosh Communications Toolbox helps application developers and users
become part of this revolution.
SURF’S UP: CATCH THE COMM TOOLBOX WAVE July 1990

331
Thanks to Our Technical Reviewers:
Mark Baumwell, Mary Chan, Byron Han,
Rob Neville, Mike Shoemaker

GU

d e

332
MACINTOSH

DISPLAY

CARD

8•24 GC:

THE NAKED

TRUTH
ILLERMO ORTIZ

 v e l o p July 1990
The Macintosh Display Card 8•24 GC, which supports monitors with
depths up to 24 bits per pixel, allows use of a special version of 32-Bit
QuickDraw that improves drawing performance on computers in the
Macintosh II family. This article details the new card’s features,
describes how third-party developers can make sure their products are
compatible, and tells how to take advantage of the card and its software.

Since the invention of the first computer, users and developers have been
complaining about the amount of memory available, the speed of the machine, or
the number of things that could be done at the same time. (Do you remember when
16K was considered a lot of memory? Of course not.)

The new Macintosh Display Card 8•24 GC addresses the perennial issue of speed,
specifically the speed with which the Macintosh executes drawing commands. With
its on-board processor and accompanying software, the new 8•24 GC card can
execute QuickDraw™ commands from 5 to 30 times faster than standard 32-Bit
QuickDraw.

The Macintosh Display Card 8•24 GC has two independent components: the
circuitry that controls the display and the hardware and software that accelerate
32-Bit QuickDraw.

DISPLAY NUTS AND BOLTS
We’ll start with the display circuitry of the Macintosh Display Card 8•24 GC, which
closely matches the behavior of the Macintosh Display Card 8•24. Figure 1 shows
the principal components.
GUILLERMO ORTIZ (in a rare interview):
How long have you been with Apple and why?
Six years plus, and we’ve got good people and
better beer busts.

Did you enjoy your sabbatical? Yes, the energy it
restored lasted a full two weeks.

What’s the best book you recently read? Between
Past and Present by Neil A. Silberman, a new

look at archeological findings and discussion of
how facts present and past are seen according to
the political/social currents of the times.

What’re you reading now? Invisible Matter and
the Fate of the Universe by Barry Parker. He says
that according to current knowledge, 90 percent
of the matter of the universe is missing. This
leaves some possibilities:

Figure 1
Macintosh Display Card 8•24 GC

MONITOR SUPPORT
The new card supports all Apple monitors, including the Apple 13-Inch (B/W &
Color) monitor, the Apple Portrait Display, and the Apple Two-Page Display.

The Macintosh Display Card 8•24 GC connects to a monitor through a DB-15
connector and, via the sense lines, detects the type of monitor to which it is connected.
At boot time the card senses the monitor and configures itself for it. Third party-
monitors with sense lines that are compatible with Apple standards should work as well.

ROM

RDNC

NuBus Connector

Am29000

MFB

DRAM

VRAM

AC842 Custom Chip

Programmable Pixel Clock

Video
Connector

SRAM

MFB Frame Buffer Controller
Controls the flow of video data and acts as the
memory management unit for the Am29000.
Am29000
RISC-architecture processor running at 30 MHz.
For those with mainframe mentality, Am29000
performance is measured at 22 MIPS.
SRAM
64K of fast static RAM used to cache Am29000
instructions.
Configuration ROM
Holds the declaration structures, sResources, and
so forth; carries the initialization software
(Primary and Secondary Inits) and holds the
card‘s driver.
RDNC NuBus Controller
Controls the traffic to and from the NuBus bus.
Allows for block transfers both as master and
slave card.

DRAM
Up to 8 MB of dynamic RAM used by the GC
software.
AC842 Custom Chip
Provides video support; has three digital-to-
analog converters and three dual-port color
tables capable of supporting 256 8-bit levels
each.
VRAM
2 MB of video RAM for buffering the display.
Programmable Pixel Clock
At boot time the card detects the monitor being
used and programs this chip to generate the
signal that defines the period for refreshing each
individual pixel.
MACINTOSH DISPLAY CARD 8•24 GC July 1990

333
a. We don’t have a clue of what is going on.
b. Our current models don’t closely enough

represent the universe.
c. Physical laws don’t apply out of the local

universe.
d. I don’t know what I am talking about.
e. All or none of the above.

Now a paid political announcement: “Contrary
to the lies of his opponents, Mark Harlan is not a
crook. Trust me!” •

d e v e l o p July 1990

334
One important difference between the 8•24 GC card and its companion Macintosh
Display Card 8•24 is that the 8•24 GC does not fall back into a dormant state when
it finds no monitor connected during boot time. To allow for cases when users may
want to have an 8•24 GC to accelerate output to other monitors, but don’t want to
connect a monitor to the card, the 8•24 GC card remains active, allowing 8•24 GC
software to operate.

DEPTH SUPPORT
The 8•24 GC card supports depths of up to 8 bits for all monitors and 24-bit color for
the 13-inch monitor (and RS-170A and PAL monitors). The 8-bit-per-pixel support
for all Apple monitors implies, among other things, that true gray-scale output is
possible with both the Apple Portrait Display and the Apple Two-Page Display.

On a high-resolution (13-inch) monitor, the 8•24 GC card can display 24 bits of
color per pixel. As many people have noted (repeatedly), with this level of depth
support, applications can display more colors than most human eyes can discern.

NUBUS BLOCK TRANSFERS
The new card uses NuBus™ block transfers to accelerate display in other display
buffers present in the system. The Macintosh Display Card 8•24 GC is a NuBus
master card. When it detects other cards in the system that can accept block transfer
calls, the card uses block transfer mode to improve the performance of QuickDraw
operations all across the board. For video buffer cards that do not support block
transfer mode, the Macintosh Display Card 8•24 GC uses a special pseudo block
transfer to optimize video performance.

Hardware developers should take special interest in designing cards that will make use
of the block transfer mode, which will allow them to squeeze the most performance
out of NuBus. The 8•24 GC card can receive block transfers (acting as slave), so other
cards that may move data to the card’s memory can move the data faster.

This is probably a good place to emphasize that, although you can have as many
8•24 GC boards as you want (or as many as you can afford), only one will function
as a graphics accelerator. At boot time QuickDraw GC uses the card in the lowest
slot. Any other 8•24 GC card becomes a glorified display card that is basically
equivalent to the Macintosh Display Card 8•24.

VIDEO SIGNALS
The RS-170A standard video signals produced by the 8•24 GC card allow you to
connect computers in the Macintosh II family to NTSC devices. Note, however,
that the RS-170A signals are not directly NTSC compatible. A box is necessary to
produce NTSC output that can be displayed on a standard television set or used
along with other video equipment such as a VCR. You can generate NTSC black-
and-white output by making a cable that uses the green video signal (which also carries
a sync pulse), as shown in Figure 2.

Figure 2
Simple NTSC B/W Connector

When displaying images Macintosh monitors refresh all the scan lines every time
they refresh the screen. This process is called noninterlaced video. RS-170A
monitors, which are interlaced devices, can scan only half the lines during each
vertical scan. Every other line is “repainted” every time the screen is refreshed.

Interlaced video is reasonably good for pictures and images in general, but really poor
for the display of thin horizontal lines, which seem to flicker when repainted only
every other scan. Because the Macintosh desktop is ordinarily full of such lines, the
desktop looks bad when displayed on interlaced devices. To overcome this problem,
the RS-170A output of the 8•24 GC card uses a technique called Apple convolution.
The technique is basically a filter that, before displaying a scan line, averages each line
with the line above and the line below. This filter is applied to all depths except direct
RGB (24 bits per pixel) when the card is operating in RS-170A mode (see Figure 3).

Pin
no.

Signal
name

1
2
3
4
5
6
7
8

Red ground
Red video
/CSYNC
SENSE0
Green video
Green ground
SENSE1
Not connected

SENSE0 SENSE1

Reserved
Apple Portrait Display
Reserved
Apple Two-Page Display
RS-170A Monitor
Reserved
High-Resolution 13-Inch

SENSE2 Monitor

No display connected
or extended protocol

Monitor, B&W or Color

Ground
Ground
Ground
Ground
Not connected
Not connected
Not connected

Not connectedNot connectedNot connected

Ground
Ground
Not connected
Not connected
Ground
Ground
Not connected

Ground
Not connected
Ground
Not connected
Ground
Not connected
Ground

4 3 2 15678

12 11 10 9131415

To shell of jack

To central
pin in jack

Pins 4 and 7 (SENSE0 and SENSE1) are connected to
ground, and pin 10 (SENSE2) is not connected at all.
This arrangement signals the card to go into the
RS-170A mode. A slash (/) at the beginning of a signal

name indicates that the signal is active low.
When in this mode, pin 5 has the green

9
10
11
12
13
14
15

Blue video
SENSE2
Ground
/VSYNC
Blue ground
Ground
/HSYNC

Pin
no.

Signal
name

video plus the sync pulse, and pin 6 carries ground.
MACINTOSH DISPLAY CARD 8•24 GC July 1990

335

d e v e l o p July 1990

336
Figure 3
Convolution Filter Weights for Interlaced Video

PAL-COMPATIBLE SIGNALS
The Macintosh Display Card 8•24 GC also produces video signals that are
compatible with PAL timings. These signals can be used to produce PAL output
to drive video devices of the type used in most European countries.

The PAL-compatible signals have the same characteristics as the RS-170A output;
that is, the output is interlaced. For settings of 1 to 8 bits deep, a convolution filter
is applied before each line is produced. The PAL output mode is triggered through
one of the extended sense-line configurations, as described in the accompanying
sidebar, “Extended Sense Line Protocol.”

These pixels
are drawn on
one scan

These pixels
are drawn on
alternate scan

weighted
average

weighted
average

Pixel
above

Target
pixel

Pixel
below

Pixel
above

Target
pixel

Pixel
below

Each line is refreshed in alternating vertical scans
and each displayed pixel is averaged with the
pixels above and below to eliminate flickering.

intensity displayed
on screen

The convolution formula used is
 intensity of pixel above
+ 2 * intensity of target pixel
+ intensity of pixel below

=

4

Bitmap in RAM Image on Interlaced Monitor

The Sense Line Protocol was implemented when Apple
recognized the need for a mechanism that would allow
a display card to identify the monitor connected to it.
For example, the Macintosh IIci display circuitry and the
Macintosh 8•24 and 8•24 GC display cards can now
configure themselves according to the monitor that is
connected at boot time. The identification scheme works
fine, but there is one problem. Three sense lines limit the
number of different monitors to seven. To overcome this
limitation, newer display cards use an extension to the
sense line scheme that allows for 28 new codes.

The extension is based on the following idea: When
the display circuitry senses a configuration that in the
original scheme signals “no display connected” (in other
words, when all three sense lines are not connected),
the card pulls down each sense line, one by one, and
reads back what the other lines return. To return a
unique code, the only requirement is that the sense lines
be connected, in the cable or the monitor itself, by wires
or diodes. The beauty of this idea is that existing monitors
are detected correctly. Newer monitors can have their
own encoding, and the circuitry for detecting new
monitors is relatively simple. Since there are no active
components, adding the encoding to new or existing
monitors involves only a few inexpensive diodes and a
little wire.

EXTENDED SENSE LINE PROTOCOL

Figure 4
PAL Connector

4 3 2 15678

12 11 10 9131415

To tell the 8•24 GC card to configure itself
for PAL timing output, sense lines must be
connected as shown here.
SENSE1

SENSE2SENSE0

SENSE1

SENSE2SENSE0

The circuitry shown here produces
the following code:

SENSE0 low

SENSE1 low

SENSE2 low

SENSE1 SENSE2

SENSE0 SENSE2

SENSE0 SENSE1

1

0

0

1

0

1

It follows that the extended sense line
code for PAL is

SENSE0 low

SENSE1 low

SENSE2 low

SENSE1 SENSE2

SENSE0 SENSE2

SENSE0 SENSE1

0

0

0

0

0

0

In the examples,
1 means high and
0 means low.

Example 1

Example 2
PAL Monitor
MACINTOSH DISPLAY CARD 8•24 GC July 1990

337

d e v e l o p July 1990

338
GC QUICKDRAW: SPIRIT STRONGER THAN FLESH
Software for the Macintosh Display Card 8•24 GC is made up of three main
components (see Figure 5).

• GC QuickDraw: An optimized version of 32-Bit QuickDraw
tailored for the best performance on the Am29000 processor.

• The Am29000 kernel (also referred to as GC OS): The software
in the card that takes care of scheduling the execution of GC
QuickDraw; also manages memory on the card.

• IPC Software: The communication mechanism between the
680x0 environment and the GC QuickDraw software. For
maximum performance, the IPC software was designed to deal
only with QuickDraw operations, thus limiting the overhead.
The software intercepts QuickDraw drawing commands and
redirects them to GC QuickDraw on the card, buffering
commands when needed.
Figure 5
Software Architecture of the 8•24 GC Card

Macintosh

QuickDraw
calls

8•24 GC Display Card

One-time
port setup

Wait for
request

Draw

Frame
buffer

Cached Additional frame
buffers with
NuBus block
transfer

Applications Interprocess
communication

Asynchronous
buffer

GWorld

All these components come in a single file called 8•24 GC, which must be moved to
the System Folder as a single-step installation process. At boot time, after the
“Welcome to Macintosh” screen appears, the System looks for the file and, when it
finds it, installs the GC software as a transparent upgrade to 32-Bit QuickDraw. The
installation consists of loading the GC QuickDraw code into the card memory,
loading the GC kernel (GC OS) and initializing its structures, and loading and
initializing the IPC software. At INIT time, the rocket icon appears to indicate the
presence of the GC software in the System.

The 8•24 GC file contains a Control Panel device that allows the user to turn
acceleration on and off.

THE HAND IS QUICKER THAN THE EYE
A good way to start the discussion of GC QuickDraw is by separating QuickDraw
calls into two global classes. The first class consists of the “drawing”
commands—LineTo and FrameRect, for example. The second class consists of
the “state”-oriented calls, such as SetPenState and RGBForeColor.

DRAWING CALLS
When 32-Bit QuickDraw is running the show, all drawing commands cause one of
the standard QuickDraw bottleneck procedures to be called. For example, calling
PaintRect causes StdRect to be called, and calling FillPoly ends up
invoking StdPoly. “Under” the bottleneck procedures, QuickDraw takes the
commands and goes into a set of calls that execute commands based on the type of
drawing taking place. The lowest level for QuickDraw is the code that actually
draws to the devices affected by the drawing that is being executed.

The software for the 8•24 GC card takes effect at the level immediately under the
standard (bottleneck) procedures. If DrawChar is called, for example, QuickDraw
checks to see if the CQDProcs field in the current port is nil and, if so, calls the
StdText routine. At this point the IPC software intercepts the call and passes the
request to GC QuickDraw to initiate the accelerated process.

The previous paragraph points to an important fact: If an application completely
replaces the standard bottleneck procedures, it is effectively turning acceleration
off. Ordinarily standard bottleneck procedures are completely replaced only when
driving nondisplay devices such as printers, so there is no conflict with the
acceleration scheme. But some applications may bypass QuickDraw completely.
By doing so they forgo the benefits of accelerated QuickDraw.

When the IPC takes control, it handshakes with the card kernel, queues the
command in the asynchronous buffer, and returns control to the application. From
the application’s point of view, the call to QuickDraw returns almost immediately
MACINTOSH DISPLAY CARD 8•24 GC July 1990

339

d e v e l o p July 1990

340
and allows the application to continue its execution. This parallelism reduces the
apparent time it takes QuickDraw to perform a drawing operation. Performance is
also enhanced because, while GC QuickDraw is performing the task, the application
can be busy calculating whatever is necessary for the next call.

When GC QuickDraw processes one command from the queue, two paths are
available. If the target is the current port, and if no changes have been made,
GC QuickDraw goes ahead and does the drawing; it has in its cache everything it
needs. On the other hand, if the target is a different port, or if the current port has
changed, GC QuickDraw proceeds to import the necessary parameters from main
memory, set its own structures, and finally do the actual drawing. In this discussion,
we’ve used the word port, but the same principle applies to any change if the
destination is a GWorld or if the GDevice associated with the destination has
changed.

The application can issue as many drawing commands as necessary. The IPC
software buffers them as needed, and GC QuickDraw completes all operations as
quickly as it can. The result is a completely asynchronous operation that gives
applications the fastest responsiveness and frees more processor time for application
calculations (applications have more time to think!).

There are some exceptions to the complete asynchronous scheme. Calls (such as
CopyBits) that involve not only the destination port/device combination, but also
different source and destination environments, make it necessary to flush the queue
by processing all pending operations and then performing the setup for the call.
Once the CopyBits call has been initiated, it is executed in parallel for optimum
performance. Software developers should note that using GWorlds to buffer
PixMaps makes CopyBits intrinsically faster.

PARAMETER-CHANGING (“STATE”) CALLS
The Macintosh Display Card 8•24 GC acceleration mechanism concerns itself
mainly with the drawing class of calls. Parameter-changing calls also have an
important effect on the overall performance of GC QuickDraw. The 8•24 GC
software does not work in its own environment, but heavily relies on the global
structures that QuickDraw keeps in main memory.

Instead of loading all the parameters with every call, GC QuickDraw caches all the
data structures it needs, but has to reload the data when changes are detected. Some
of the structures cached by GC QuickDraw are color tables, GDevices, GWorlds,
PixPats, Fonts, and Width Tables. Changing the pen or modifying the foreground
color, for example, invalidates the cached data. To squeeze the maximum out of the
8•24 GC card, it is therefore important to group calls that draw elements with
shared characteristics (same color, same pattern, and so forth) instead of constantly
changing port parameters between drawing calls.

Changing directly any structure maintained and used by QuickDraw has always been a
clear and dangerous compatibility risk. The 8•24 GC software cannot detect changes to
the drawing environment unless you use the proper calls to accomplish such changes.

Not all QuickDraw calls are redirected when acceleration is enabled. Acceleration
affects only calls that either perform drawing operations or change the state of
QuickDraw structures. A list of such calls follows.

SetPortBits PortSsize MovePortTo
SetOrigin SetClip ClipRect
StdLine StdBits StdText
StdRgn StdArc StdRRect
StdOval StdRect StdPoly
InitGDevice DisposGDevice AddSearch
DelSearch AddComp DelComp
DisposPixPat CopyPixPat MakeRGBPat
GWorldDispatch HidePen ShowPen
SetPenState PenSize PenMode
PenNormal BackColor ColorBit
OpenRgn OpenPicture OpenPoly
CopyRgn SetRectRgn RectRgn
OffsetRgn InsetRgn SectRgn
UnionRgn DiffRgn XorRgn
MapRgn RGBForeColor RGBBackColor
CopyPixMap PenPixPat BackPixPat
OpColor HiliteColor SetPortPix
PenPat BackPat CopyBits
DrawPicture PMgrDispatch

THE DEVELOPER POINT OF VIEW
The best feature of the Macintosh Display Card 8•24 GC is that application
developers have little to worry about when it comes to compatibility. You must put
forth some effort to do something in an application that GC QuickDraw cannot
straighten out.

The one area that may require some rewriting is changing the way an application
allocates offscreen drawing environments (see “Braving Offscreen Worlds” in
d e v e l o p, issue 1). When a GDevice is created by hand (instead of by a call
to NewGWorld), all the structures are kept in main memory. Drawing to this
environment and then using CopyBits to display the result takes a greater
number of NuBus transfers.

When a drawing operation that involves a GWorld occurs, GC QuickDraw
immediately caches the complete GWorld structure in the card’s memory if the
structure has not yet been cached and if sufficient memory is available.
MACINTOSH DISPLAY CARD 8•24 GC July 1990

341

d e v e l o p July 1990

342
(The card’s optional DRAM kit is an important addition for applications that work
with large GWorlds.) When CopyBits is called to display the results, the
transfer of pixels to the screen driven by the 8•24 GC card is therefore really fast
because there is no NuBus transfer. Even displaying the image into other monitors
benefits, especially when the other cards can accept block transfers. Drawing
operations to and from GWorlds can be executed in parallel. This is not the case
when drawing to or from old-style offscreens (see Figures 6 and 7).

Figure 6
Offscreen Old Style

When applications create offscreen environments by hand, GC QuickDraw
performance is affected because the data has to go many more times across NuBus.
For example, if an application draws to an offscreen port and then calls CopyBits
to display the results on the screen, the following happens:

1. IPC passes the drawing command to GC QuickDraw.
2. GC QuickDraw does the drawing across the Nubus to buffer.
3. The application waits for the completion signal.
4. IPC passes the CopyBits call to GC QuickDraw.
5. GC QuickDraw copies from main memory…
6. …to the frame buffer.

Finally, QuickDraw operates more efficiently when the PixMap’s rowBytes is
a multiple of four (long word alignment). It just happens that when NewGWorld
is called it creates the offscreen PixMap in such a fashion, which increases the
performance of QuickDraw even when the offscreen buffer could be in main memory.

Macintosh 8•24 GC Display Card

Applications GC QuickDraw

Offscreen

1. Draw

4.

2. Draw

3. Complete

5.

Frame buffer6. Move

CopyBits

CopyBits

Figure 7
Offscreen GWorlds

When an application uses GWorlds to buffer the display, GC QuickDraw can use
the cached data in its memory and minimize NuBus traffic. The steps are as follows:

1. IPC passes the draw command and returns control to the application
immediately.

2. GC QuickDraw executes the command as soon as possible.
3. IPC passes the CopyBits call and returns.
4. GC QuickDraw moves pixels from the local copy of the GWorld to the

screen buffer while the application does its stuff.

COMPATIBILITY ISSUES
As mentioned earlier, GC QuickDraw is port oriented, which suggests that to
improve performance it caches the port’s structure in its entirety while drawing
to a port. The implication is that, if an application draws to different ports in
an alternating fashion, the application is forcing GC QuickDraw to flush its
asynchronous buffer and move data from main memory with each drawing command.

To get the best performance from GC QuickDraw, a good programming technique
is to bundle all drawing operations that affect a given port and complete them before
changing ports to do some more drawing. As noted earlier, it is also important to
put together all the calls that affect a single port and share characteristics such
as color, pattern, and pen. The same admonition applies to GWorlds because

Macintosh 8•24 GC Display Card

Draw

CopyBits

Cached

Frame
buffer

Applications GC QuickDraw

GWorld

3.

1. Draw

2. Complete

GWorld

CopyBits

4.
Move
MACINTOSH DISPLAY CARD 8•24 GC July 1990

343

d e v e l o p July 1990

344
GC QuickDraw caches the GWorld into its memory when a GWorld is the
destination of a drawing operation. Changing GWorlds and drawing to each one
in rapid succession means that GC QuickDraw has to keep flushing its asynchronous
buffer and moving the necessary data from memory, which could imply copying
the new GWorld, including its PixMap (and 32-bit PixMaps can be a lot of
bytes to move).

BOTTLENECKS AND STRUCTURE CHANGES
As mentioned earlier, two areas make life difficult for an application running under
GC QuickDraw. These areas are replacing the bottleneck procedures and changing
QuickDraw structures directly.

Replacing bottleneck procedures. Replacing the standard bottleneck procedures
is a time-honored tradition in the Macintosh world. The problem is that, if an
application replaces a standard procedure and does not end up calling the original
default trap after it finishes its manipulations, the application is turning off
acceleration. Whenever possible—and if acceleration is desired—the application
that replaces the standard bottleneck procedures should call the original through the
trap dispatcher before returning to the main program.

Changing QuickDraw structures. The dangers of messing up with QuickDraw
structures directly are well known to all. Nevertheless, some applications still go
about happily changing structures. As a rule, you should call the ToolBox whenever
possible to change the state of the drawing environment. When the need is too
strong, use the calls that alert QuickDraw to the changes you’re making.

TIMING
One interesting compatibility problem is not uniquely tied to the 8•24 GC card but
has to do with faster hardware in general. Some techniques still being used are direct
descendants of routines that were implemented for the 64K Macintosh. Now, with
new machines, these techniques simply run too fast.

One example is the “marching ants” technique of repeatedly calling FrameRect,
with each repetition shifting a pattern 1 bit to create a rippling frame on the screen.
The trick is still valid, but now causes a problem. In the time it took the Ol’ Macintosh
to make four passes through the FrameRect loop, a newer Macintosh can make
hundreds of passes. With 8•24 GC acceleration on, the number is even greater. The
result is that the marching becomes jerky and annoying, and the cursor tends to
disappear, because HideCursor is being called to complete the FrameRect call.
The cursor appears and disappears so quickly that it becomes invisible.

Do not time loops based on the performance of a given machine. For any form of
animation, use the Time Manager routines to time your application.

Applications can use the calls listed here to make
QuickDraw and GC QuickDraw aware of direct
changes to forbidden structures.

PROCEDURE CTabChanged (ctab: CTabHandle)
This call says, “Yes, I know I shouldn’t mess with a color
table directly, but I did it, and I want to come clean.”
Use SetEntries, or—even better—let the Palette
Manager maintain the color table for you.

PROCEDURE PixPatChanged (ppat:
PixPatHandle);
Use this call to say, “I admit I modified the fields of a
PixPat directly. Please fix the resulting mess for me.”
When the modifications include changing the contents
of the color table pointed to by PixPat.patMap^^
.pmTable, you should also call CTabChanged.

ALERTING QUICKDRAW TO CHANGES
PenPixPat and BackPixPat are better ways to
install new patterns.

PROCEDURE PortChanged (port: GrafPtr);
You should not modify any of the port structures directly.
But if you cannot control yourself, use this call to let
QuickDraw know what you have done.

If you modify either the PixPat or the color table
associated with the port, you need to call
PixPatChanged and CTabChanged.

PROCEDURE GDeviceChanged (gdh: GDHandle);
The best practice is to stay away from the fields of
any GDevice. But if you do change something, make
this call to rectify any problems. If you change the color
table data in the device’s PixMap, you must also call
CTabChanged.
DRAWING DIRECTLY TO THE SCREEN
As a final admonition, do not draw directly to the screen. Drawing directly to the
screen puts any application at immediate compatibility risk with 32-Bit QuickDraw
and with all Apple and third-party 24-bit video cards. Drawing directly into the
8•24 GC card’s display buffer will probably cause crashes and, at the minimum,
create weird artifacts if both the application and GC QuickDraw are drawing at the
same time.

PROGRAMMING THE Am29000 (NOPE!)
No, you can not program the Am29000 yourself. At the moment of this writing, third-
party applications cannot make direct use of the Am29000 processor for any purpose.

The good news is that Apple recognizes the burning desires developers have to use
the Am29000 for more than accelerating QuickDraw, and future releases of the
software may provide such capability. So if you have a brilliant idea, Apple wants to
know about it. Although implementation details are not yet available, you can start
by sending a message that describes what you want to do and what kind of support
you hope the GC software can give you.
MACINTOSH DISPLAY CARD 8•24 GC July 1990

345

d e v e l o p July 1990

346
Send these and any other comments about programming the Am29000 on the 8•24
GC card to AppleLink address FAST.GRAPHIC. Apple will get back to you when
more information is available.

Figure 8
Block Diagram of the 8•24 GC Card

NOTEWORTHY CALLS
One piece of software that has not been mentioned is the 8•24 GC cdev. With it
users can turn acceleration on and off through the Control Panel. Although turning
acceleration on and off should be left under the control of the user, you may want to
provide users with some kind of on/off dialog box or menu option. The Developer
Essentials disc (this issue) contains the GraphAccel.o file, an MPW library that
accomplishes this task. A sample FKey for turning acceleration on and off is
included with the library.

Frame control buffer

2M VRAM

0/2/8M DRAM

ROM

NuBus

Am29000/30MHz

64K SRAM

Programmable
pixel clock

Clut/DAC

Frame buffer

NuBus
For More Information
Designing Cards and Drivers for the Macintosh
Family, second edition, Addison-Wesley, 1990,
available from APDA.

Macintosh Display Card 8•24 GC, Developer
Notes, April 1990, available from Developer
Technical Publications.

A new call was implemented with 32-Bit QuickDraw to allow an application to
determine whether a drawing operation initiated by it, and affecting a given port,
has been finished:

Function QDDone(pPtr: CGrafPtr): Boolean;

This call may be of especially good use if you’re interested in timing each individual
call. It may also be of use in some animation situations, such as when you want to
initiate the next drawing action only after execution of a prior call has definitely
concluded.

QDDone returns FALSE if QuickDraw is in the process of drawing to pPtr and
TRUE when QuickDraw is done. If pPtr is nil, QDDone returns TRUE only
when drawing to all ports is completed. Note that when nil is passed to the call,
background processes such as clocks could prevent QDDone from ever returning
TRUE.

Function QDDone(pPtr: CGrafPtr): Boolean;
INLINE $203C, $0004, $0013, $AB1D; { Move.l #$00040013,D0

_QDOffscreen
}

FINALLY
The Macintosh Display Card 8•24 GC is Apple Engineering’s response to the
demands for enhanced graphics performance for the Macintosh family of computers.
Designers of graphics-intensive applications now can concentrate on the algorithms
that will improve overall performance instead of using design resources to squeeze
the last drops of display speed, a choice which often compromises compatibility and
ease of use.

Developers get the benefits of the 8•24 GC card with almost no programming hit.
Coding of special routines to achieve faster performance is unnecessary. Following
old, simple QuickDraw rules, developers can be assured of faster graphics
performance at no extra cost.
MACINTOSH DISPLAY CARD 8•24 GC July 1990

347
Thanks to Our Technical Reviewers:
Dave Cho, Casey King, Mark Krueger,
Jean-Charles Mourey

34

PET
MEET

PRGENERAL,

THE TRAP

THAT MAKES

THE MOST OF

THE PRINTING

MANAGER
8

d e v e l o p July 1990

E “LUKE” ALEXANDER
The Printing Manager has been expanded and enhanced

by the addition of the trap PrGeneral. This little-known trap—

available in ImageWriter® driver versions 2.5 and later, and

LaserWriter® driver versions 4.0 and later—can pass five operation

codes that solve special problems and improve a printer’s

performance. This article describes the trap and its opcodes. The

accompanying sample application on the Developer Essentials disc

enables you to experiment with the opcodes as you print images we

provide.

The little-known trap PrGeneral, through its five operation codes, can give
your application the ability to achieve highest-resolution print output, verify
page orientation, and increase performance by avoiding the need to spool. These
enhancements to the Printing Manager come in handy in a variety of situations.

The sample application PrGeneral Play lets you print images with and without the
PrGeneral opcodes. That way you can compare the images and see for yourself
the effects of the opcodes. We’ll look at fragments of the sample application in the
course of this article.

ABOUT PRGENERAL

PrGeneral is a multipurpose call that can perform a number of different functions,
depending on the opcode used with it. PrGeneral currently can pass five opcodes:
GetRslData, SetRsl, GetRotn, DraftBits, and NoDraftBits.

• GetRslData enables an application to determine the resolutions
that the currently selected printer supports.

• SetRsl specifies the resolution to print with, so that your
application can achieve the highest-resolution print output.
PETE “LUKE” ALEXANDER loves technical
support for printing because it’s “hard, ugly, and
kinda sick.” He earned his middle name while
using The Force to feel his way through the
stickier parts of the art. Naturally, he feels quite
at home with light sabers. He’s been at Apple for
two years, after doing a brief stint at a company
he won’t name (hint: BLUE). He’s a born-and-bred
Silicon Valley boy. He rides mountain bikes, sails

a 16-foot Hobie Cat, and chuckles over Calvin and
Hobbes. He loves to get high—30,000 feet to be exact,
in an airplane without an engine (read: glider). He
established a few records for that possibly unequaled
but arguably looney feat. If he ever asks you if you need
a ride, please think twice, and if you say yes, may The
Force be with you. •

• GetRotn enables an application to determine if the landscape
orientation has been selected in the style dialog, useful if your
image will only fit on a page when printed in landscape
orientation.

• DraftBits forces draft printing, thereby avoiding the need to
spool large quantities of data to disk, while also enabling
printing of bitmaps and pixel maps.

• NoDraftBits cancels the effect of DraftBits.

PrGeneral is declared like this in C:

pascal void PrGeneral (Ptr pData);

The pData parameter is a pointer to a record called TGnlData. The first eight
bytes comprise a header shared by all the PrGeneral calls:

struct TGnlData {

short iOpCode;

short iError;

long lReserved;

};

The first field in the record, iOpCode, contains the opcode that is passed through
the call to PrGeneral to obtain the requested feature. The second field, iError,
contains the result code returned by the call to PrGeneral. The final field,
lReserved, is reserved for future use by the Printing Manager and/or the Printer
Driver. Additional fields follow lReserved, depending on the opcode that is
used.

After each call to PrGeneral, your application should check the value in the
iError field. Three possible result codes can be returned:

#define noErr 0 /* You’ve seen this one before. */

#define NoSuchRsl 1 /* Only defined for PrGeneral. */

#define OpNotImpl 2 /* Only defined for PrGeneral. */

If PrGeneral accomplishes your request, it returns noErr in the iError
field. If you request a resolution that is not supported by the currently selected
printer, the call to PrGeneral returns the NoSuchRsl error code. Finally, some
printer drivers might not support one of the opcodes described here, in which case
the call to PrGeneral returns the OpNotImpl error code. ImageWriter driver
versions 2.5 and later, and LaserWriter driver versions 4.0 and later support all of
the PrGeneral opcodes.

349

MEET PRGENERAL July 1990

350

d e v e l o p July 1990
Your application should also check PrError (which returns the result code left
by the last Printing Manager routine) after checking iError, to be sure that no
additional error was generated by the Printing Manager or the Printer Driver. See
Technical Note #72, Optimizing for the LaserWriter, for a complete list of the
possible result codes returned by the Printing Manager or the LaserWriter driver.

If resNotFound is returned by PrError, then the current Printer Driver doesn’t
support PrGeneral. This shouldn’t be a major problem for your application, but
your application must be prepared to deal with this error. If you do receive the
resNotFound error back from PrError, you should clear the error with
PrSetError(0); otherwise, PrError might still contain this error the next time
you check it.

If an error is returned by PrError, be sure that all of the Printing Manager calls
receive their corresponding close calls before you report the error to the user. This
enables the Printing Manager and the Printer Driver to clean up their worlds before
you exit. See Technical Note #161, When to Call PrOpen and PrClose, for a
demonstration of the technique.

If noErr is returned by PrError, you can then proceed.

ACHIEVING HIGHEST-RESOLUTION OUTPUT
Your application can use the SetRsl opcode to set print resolution to the highest
supported resolution of the current printer. But before doing this, it needs to
determine the resolutions supported by the current printer, using the GetRslData
opcode. The data returned by GetRslData is essential because there are now over
50 different models of printers that can be connected to the Mac, each with its own
unique imaging capabilities. GetRslData saves your application from having to
make assumptions about which resolution would or would not work.

To illustrate the benefits of setting print resolution to the highest supported
resolution of the current device, let’s compare the two graphs shown in Figures 1 and
2, printed on a LaserWriter II/NTX.

As you can see, the results without using SetRsl are not too impressive. (The
graph is printed at 72 dpi.) The same graph printed using SetRsl looks quite a
bit better. (The graph is printed at 300 dpi.) You can demonstrate the effects of
using SetRsl for yourself with the sample application PrGeneralPlay on the
Developer Essentials disc.

Figure 1
A Graph Printed Without Using SetRsl

Figure 2
The Same Graph Printed Using SetRsl

351

MEET PRGENERAL July 1990

352

d e v e l o p July 1990
USING GETRSLDATA

GetRslData (iOpCode = 4) requests that the Printer Driver return resolution
information about the current printer. Three records are used to convey the
resolution information: TRslRg, TRslRec, and TGetRslBlk. We’ll look at
these records in detail after some basic information about resolution.

A printer supports either discrete or variable resolution. Discrete resolution means
that the application can choose from a limited number of resolutions (expressed in
dots per inch, or dpi, in the X and Y directions) predefined by the Printer Driver.
For example, the ImageWriter driver supports four discrete resolutions: 72 x 72 dpi,
144 x 144 dpi, 80 x 72 dpi, and 160 x 144 dpi. If a printer supports variable resolution,
the application can define any resolution within a range bounded by minimum and
maximum values. The LaserWriter driver supports variable resolution within a
range from 25 dpi to 1500 dpi in both the X and Y directions.

Best quality output is always obtained by choosing a square resolution, meaning one
in which the resolutions for the X and Y directions are equal. Some devices support
nonsquare resolutions–that is, where the resolution for the X direction does not
equal the resolution for the Y direction–but using a nonsquare resolution will result
in distortion of the printed image.

Let’s look now at the records that convey resolution information.

struct TRslRg {

short iMin;

short iMax;

};

The TRslRg record returns information about the resolution supported by the
current printer. If the printer supports only discrete resolutions, which is the case
for the ImageWriter, iMin and iMax are set to 0. Otherwise, if the printer
supports variable resolution, as the LaserWriter does, these fields are set to the
minimum and maximum resolutions supported.

struct TRslRec {

short iXRsl;

short iYRsl;

};

The TRslRec record specifies a discrete resolution supported by the printer. The
iXRsl field specifies the discrete resolution for the X direction, and iYRsl for
the Y direction. A printer driver can have up to 27 separate TRslRec resolution
records. The ImageWriter driver contains 4 such records, which are returned when
you use the GetRslData opcode. In this case, your application will need to choose
one of these records to be used by SetRsl. Our application PrGeneral Play when
printing to an ImageWriter uses the highest square resolution that the
ImageWriter supports, which is 144 x 144 dpi.

struct TGetRslBlk {

short iOpCode;

short iError;

long lReserved;

short iRgType;

TRslRgxRslRg;

TRslRgyRslRg;

short iRslRecCnt;

TRslRec rgRslRec[27];

};

The TGetRslBlk record is the complete structure passed to PrGeneral when using
the GetRsl opcode. It contains the iOpCode, iError, and lReserved fields,
which we’ve already discussed, plus some others.

iRgType is a version number returned by the Printer Driver. The version number is
all your application needs to determine that a particular set of functionality is or is
not present. The LaserWriter and the ImageWriter will always return 1. If it’s not
1, don’t use the data.

xRslRg and yRslRg are the resolution ranges supported for the X and Y
directions by a variable-resolution printer. If the current printer doesn’t support
variable resolution, the value in these fields is 0.

iRslRecCnt returns the number of resolution records used by a particular printer
driver. As mentioned earlier, up to 27 are allowed.

rgRslRec is an array of resolution records, each specifying a discrete resolution at
which the current printer can print an image. In the arrays returned by Apple
printer drivers, the last record represents the highest supported resolution. We
recommend that other printer drivers do the same.

353

MEET PRGENERAL July 1990

354

d e v e l o p July 1990
The records shown in Figure 3 are returned by PrGeneral for the LaserWriter and
the ImageWriter, respectively.

Figure 3
The Records for the LaserWriter and the ImageWriter

Note that in the LaserWriter record, the resolution range shown is 25 through 1500
dpi. Inside Macintosh, volume V, page 413, shows the minimum value as 72; this is
an error. And although up to 1500 dpi is supported by the Printer Driver, the device
itself is only capable of a maximum resolution of 300 x 300 dpi. Accordingly, the
single resolution record indicates that the printer will only support a maximum
resolution of 300 x 300 dpi. Other devices can achieve higher resolutions, up to the
maximum supported by the driver.

In the ImageWriter record, all the resolution range values are 0, because the printer
only supports discrete resolutions. The four resolution records returned give your
application the option to choose one of these discrete resolutions. Note that the
highest supported resolution is represented by the last record.

USING SETRSL

SetRsl (iOpcode = 5) tells the Printer Driver the desired imaging resolution
requested by the application. The contents of the record are as follows:

struct TSetRslBlk {

short iOpCode;

short iError;

long lReserved;

THPrint hPrint;

short iXRsl;

short iYRsl;

};

We have already discussed the iOpCode, iError, and lReserved fields, so
we’ll start with the hPrint field. hPrint contains a handle to a print record
that has previously been created and passed through PrDefault to make sure
that all of the information contained in the handle is good. If you are using a print
record that was saved as a resource, you will want to call PrValidate on it to
make sure that the contents of the handle will work with the current version of the
Printing Manager and the printer driver. Because the SetRsl opcode may require
the Printer Driver to change the appearance of the style and/or job dialogs, we
want to determine and set the resolution before the print dialogs are presented to
the user. This is why we need a good handle—the same handle that is passed to
the dialogs.

The iXRsl and iYRsl fields contain the resolutions that you would like the
Printer Driver to image with. If iError returns a value of 0 (noErr), the print
record will be updated with this new resolution, which can be used at print time. If
the requested resolution isn’t supported by the current printer, iError will return
NoSuchRsl, and the printer driver will revert to the previous setting.

You can undo a previous call to PrGeneral with the SetRsl opcode, by calling
PrGeneral with the SetRsl opcode again, this time with the original
resolutions used by the Printer Driver before your call to SetRsl. (Inside
Macintosh, volume V, page 414, suggests making another call that specifies an
unsupported resolution, such as 0 x 0. This doesn’t work.) If you save the resolutions
contained in the iVRes and iHRes fields of the TPrinfo record, you can then
pass these values in the iXRsl and iYRsl fields of the TSetRslBlk record,
and the next time you call PrGeneral with the SetRsl opcode, your resolution
for the current printer will be back to its default setting. You can also call
PrintDefault on the print record passed to the call to PrGeneral with the
SetRsl opcode. This definitely works, but it loses all of the user’s selections from
her or his last trip to the style dialog, which is not very user-friendly!

355

MEET PRGENERAL July 1990

356

d e v e l o p July 1990
int SetMaxResolution (thePrRecHdl)

THPrint thePrRecHdl;

{

int maxDPI = 0,

resIndex;

TGetRslBlk getResRec;

TSetRslBlk setResRec;

getResRec.iOpCode = getRslDataOp;

PrGeneral ((Ptr)(&getResRec));

/* At this point, we have an array of possible resolutions. After checking

for errors, we loop through each resolution range record looking for the

highest resolution available,where x and y are equal. This loop makes no

assumptions about the order of the resolution records. */

if (getResRec.iError == noErr && PrError() == noErr)

 {

 for (resIndex = 0; resIndex < getResRec.iRslRecCnt; resIndex++)

 {

 if (getResRec.rgRslRec[resIndex].iXRsl ==

getResRec.rgRslRec[resIndex].iYRsl &&

getResRec.rgRslRec[resIndex].iXRsl > max DPI)

 maxDPI = getResRec.rgRslRec[resIndex].iYRsl;

 }

/* We now have the desired resolution. If it is not zero, we use

SetRsl to set it. */

Note that if the resolution is set to greater than 600 x 600, then the LaserWriter
driver limits the reduction factor to 60 percent—that is, it will not allow you to go
below that. This is done so that the page rect/paper rect coordinates fit within 16-
bit signed integers.

GETRSLDATA AND SETRSL IN ACTION
The following code fragment from our sample application PrGeneral Play uses the
GetRslData opcode of PrGeneral to find the highest square resolution
supported by the current printer. It then sets the resolution with SetRsl. Note
that for simplicity this code fragment and others in this article assume that
PrGeneral and the particular opcode are supported. PrGeneral Play checks for
PrGeneral and the opcode before using them.

if (maxDPI != 0)

 {

 setResRec.iOpCode = setRslOp;

 setResRec.hPrint = thePrRecHdl;

 setResRec.iXRsl = maxDPI;

 setResRec.iYRsl = maxDPI;

 PrGeneral ((Ptr)(&setResRec));

 }

 if (setResRec.iError == noErr && PrError() == noErr

 && maxDPI != 0)

 return (maxDPI);

}

else return (0);

}

Now that the resolution has been set to the highest supported resolution of the
current device, what about drawing objects? In the case of the LaserWriter, because
the printer supports a physical resolution that is roughly four times higher than
the screen’s, your printing grafPort is now four times bigger than a standard printing
grafPort. If you do not compensate for this change, your objects will be printed at
micro size, as illustrated in Figure 4.

Figure 4
A Graph Printed Without Correct Scaling

You should scale all of your objects bigger by the scale factor arrived at by dividing
your device resolution by your screen resolution. In the case of the LaserWriter, all
of your objects, plus coordinates and font sizes, should be scaled roughly four times
bigger than their original size.

The following code fragment from our sample program demonstrates this scaling
idea:

deviceRes = SetMaxResolution (thePrRec);

357

MEET PRGENERAL July 1990

358

d e v e l o p July 1990
Upon our return from using SetMaxResolution, we receive the highest
resolution supported by the current printer. We can now determine the scaling
factor:

if (deviceRes != 0) scale = deviceRes / MacScreenRes;

If the device resolution is 0, we assume that all drawing will occur at the
Macintosh computer’s screen resolution of 72 dpi. The value of scale was originally
set at 1 when it was declared, thereby preventing problems that might otherwise
occur if the SetRsl call fails or the driver does not support the GetRslData or
SetRsl opcodes.

We then draw all of our objects bigger as specified by the scaling factor. For
example:

TextSize (FontSize * scale);

VERIFYING PAGE ORIENTATION
At times it can be very useful for your application to be able to determine which
page orientation the user has selected in the style dialog. For instance, if the user
has not selected landscape orientation, and an image will only fit on a page when
printed in landscape orientation, your application can remind the user to select this
orientation to print the image. Otherwise, the user will get a clipped image.

GetRotn (iOpcode = 8) enables your application to determine if the user has
selected the landscape orientation in the style dialog. This opcode should be used
after the style dialog has been presented. At this point, if landscape orientation
has not been selected but would give the best printed results for the current image,
you can present a dialog that asks if the user wants to select landscape orientation.
If the answer is yes, you should close up the print loop and start the process over
again. If the answer is no, you can then proceed with printing the image.

GetRotn has been implemented in the ImageWriter and LaserWriter drivers.
Here are the contents of the record:

struct TGetRotnBlk {

 short iOpCode;

 short iError;

 long lReserved;

 THPrint hPrint;

 Boolean fLandscape;

 char bXtra;

};

If the landscape orientation has been selected by the user in the style dialog, then
fLandscape is true. The final field in this record, bXtra, is reserved for future
use by the Printing Manager and/or the Printer Driver.

The following code fragment from our sample program uses the GetRotn opcode to
determine if the user has selected landscape orientation from the style dialog:

Boolean IsLandscapeModeSet (thePrRecHdl)

THPrint thePrRecHdl;

{

TGetRotnBlk GetRotRec;

GetRotRec.iOpCode = getRotnOp;

GetRotRec.hPrint = thePrRecHdl;

PrGeneral ((Ptr) &GetRotRec);

/* We now have the result from our call to PrGeneral, but we check

all known errors to make sure that PrGeneral was successful and

no errors have been encountered from printing land. */

if (GetRotRec.iError == noErr && PrError() == noErr

 && GetRotRec.fLandscape)

 return (true);

else return (false);

}

FORCING IMMEDIATE PRINTING TO AVOID SPOOLING
If your application needs to print only text or bitmaps, it can increase performance
and save disk space by printing in draft mode. DraftBits (iOpcode = 6) forces
draft printing. This means that the document will be printed immediately, rather
than spooled to disk, as in spool printing. In the latter mode, the Printing Manager
writes out a representation of the document’s printed image to a disk file; this
information is then converted into a bit image and printed. On the ImageWriter,
draft printing is used to print quick, low-quality drafts; spool printing is used for
standard or high-quality printing. The LaserWriter always prints in draft mode.

With DraftBits, you can print bitmaps via calls to CopyBits. (Normally, in
draft mode, bitmaps and pixel maps are ignored.) Note, though, that the landscape
orientation is not available when printing with DraftBits; and this opcode
does not have any effect if the printer only prints in draft mode (like the
LaserWriter), does not support draft printing, or does not print bitmaps.

359

MEET PRGENERAL July 1990

360

d e v e l o p July 1990
Here are the contents of the record:

struct TDftBitsBlk {

short iOpCode;

short iError;

long lReserved;

THPrint hPrint;

};

We’ve already discussed the iOpCode, iError, and lReserved fields. The
hPrint field is discussed in the section on using SetRsl.

Using this opcode may require the Printer Driver to change the appearance of the
style and job dialogs. In the case of the ImageWriter, using the DraftBits
opcode before presenting the dialogs to the user disables the landscape icon in the
style dialog, and the Best and Faster options in the job dialog. The DraftBits
opcode can also be used after the call to the job dialog, to give users the choice of
print quality without forcing draft printing on them, but if the user chooses draft
printing from the job dialog, this will prevent the printing of any bitmaps or pixel
maps in the document. Therefore, you may prefer to use DraftBits before
presenting the dialogs.

You should keep one additional point in mind when using the DraftBits opcode:
all of the data that is printed must be Y-sorted, because reverse paper motion is not
possible on the printer when printing your image in draft mode. This means that
you cannot print two objects side by side. That is, the top boundary of an object
cannot be higher than the bottom boundary of the previous object. If you violate
this requirement, you will get some extremely undesirable results. To get around
this restriction, you should sort your objects before print time.

This code fragment from our sample program demonstrates the use of the
DraftBits opcode to force immediate draft printing:

THPrint doDraftBits (thePrRecHdl)

THPrint thePrRecHdl;

{

TDftBitsBlk draftBitsBlk;

draftBitsBlk.iOpCode = draftBitsOp;

draftBitsBlk.hPrint = thePrRecHdl;

PrGeneral(&draftBitsBlk);

if ((PrError() == noErr) &&

(draftBitsBlk.iError == noErr))

 return (true)

else return (false)

}

At this point, the code returns the result to the calling function. If DraftBits
was set without any problems, we return true. Otherwise, an error occurred and we
return false.

You use the NoDraftBits opcode to turn off the DraftBits opcode. The
contents of the record are the same as for DraftBits. If you call NoDraftBits
without first calling DraftBits, this opcode does nothing.

Here is a code fragment from our program that uses the NoDraftBits opcode to
turn off draft printing:

THPrint doNODraftBits (thePrRecHdl)

THPrint thePrRecHdl;

{

TDftBitsBlk draftBitsBlk;

draftBitsBlk.iOpCode = nodraftBitsOp;

draftBitsBlk.hPrint = thePrRecHdl;

PrGeneral(&draftBitsBlk);

if ((PrError() == noErr) &&

 (draftBitsBlk.iError == noErr))

 return (true) /* DraftBits is on. */

else return (false) /* DraftBits is NOT on. */

}

At this point, the code returns the result to the calling function. If NoDraftBits
was set without any problems, we return true. Otherwise, an error occurred and we
return false.

THINGS TO REMEMBER WHEN USING PRGENERAL

We have looked at the five opcodes currently available in the PrGeneral trap.
GetRslData and SetRsl are used to determine and set the resolution of the
printer, thus enabling your application to achieve highest-resolution output.
GetRotn enables your application to determine if the landscape orientation has
been selected in the style dialog. DraftBits is used to force draft printing, thus
avoiding the need for spooling, while also enabling printing of bitmaps and pixel
maps; and NoDraftBits cancels the effect of DraftBits.

In review, here are the things you should always keep in mind when using the
PrGeneral trap:

361

MEET PRGENERAL July 1990

362

d e v e l o p July 1990
• PrGeneral has been implemented in ImageWriter driver versions
2.5 and later, and LaserWriter driver versions 4.0 and later. You
should check for the Resource Manager error resNotFound after
the first call to PrGeneral to see if PrGeneral is
implemented in the Printer Driver in use. If you receive this error,
PrGeneral is not implemented.

• Your application should always check iError in the TGnlData
record after making the call to PrGeneral, thereby ensuring
that the call completed correctly. Your application should also
check PrError before proceeding. Technical Note #72,
Optimizing for the LaserWriter, contains a complete list of result
codes returned by the Printing Manager and the LaserWriter
driver.

• GetRsl, SetRsl, and NoDraftBits should always be called
before the style and job dialog boxes are presented to the user;
DraftBits should preferably be called before the dialogs are
presented, although it can also be called after; and GetRotn
should always be called after the dialogs are presented.

• The DraftBits opcode will have no effect if the printer always
prints in draft mode, does not support draft printing, or does not
print bitmaps.

To reinforce what you’ve learned here, you can experiment with PrGeneral by
printing images with the PrGeneral Play program on the Developer Essentials disc.
Thanks to Our Technical Reviewers:
Jay Patel, Larry Rosenstein,
Scott “ZZ” Zimmerman

For a complete source code listing
and a cumulative index of issues 1-3,
see the Developer Essentials disc.
A cumulative index of d e v e l o p
will be printed in issue 4 each year.

A
acceleration, GC QuickDraw and
340-341
“Accessing CD-ROM Audio
Tracks From Your Application”
(Mueller) 306-316
ADU. See Advanced Disk Utility
Advanced Disk Utility (ADU)
289-290
Alexander, Pete (“Luke”) 348
Am29000 kernel

described 338
programming 345-346

AppleCD SC drive, sound and
306-316
Apple convolution, described 335
Apple Developer CD Series 289
APPLE_DRIVER 292
APPLE_FREE 292-293, 298
APPLE_HFS 292
APPLE_PARTITION_MAP 292
Apple Portrait Display, Macintosh
Display Card 8•24 GC and
333-334
APPLE_PRODOS 292
APPLE_SCRATCH 292, 295
Apple 13-inch monitor, Macintosh

Display Card 8•24 GC and 333-
334
Apple Two-Page Display,
Macintosh Display Card 8•24 GC
and 333-334
application environments,
CD-ROM and 267. See also
CD-ROM
associated files, High Sierra/ISO
9660 format and 278, 279
audio. See sound
Audio Notes #1: “The Magic Flute”
(CD-ROM) 270
AudioPause 307, 315, 316
AudioPlay 307, 315, 316
AudioScan 307, 315, 316
AudioSearch 307, 315, 316
AudioStatus 306, 311,
313-315
AudioStop 307, 315, 316
AutoRecCallback 329, 330

B
Bechtel, Brian 272-273
Bechtel, Meg 272
Berkowitz, Rob 317
blocks, CD-ROM sound and 312
block transfers, NuBus 335
boot descriptor, High Sierra/ISO
9660 format and 276-277
boot records, High Sierra/ISO
9660 format and 274
bottleneck procedures, standard
339-340, 344
bufSizes 325
BuildISO.c 286

bXtra 358
bytes, CD-ROM sound and 312

C
calls

drawing 339-340
parameter-changing 340-341

capacity (of CD-ROM) 262
CD driver. See GS/OS SCSI
CD driver
CDevs, 8•24 GC 346
CD Remote classic desk accessory
307. See also Developer Essentials
disc
“CD-ROM: The Cutting Edge”
(Johnson) 262-271
CD-ROM (Compact Disc—Read
Only Memory)

capacity of 262
cost of drives 265
durability of 263
economy of 262-263
HyperCard and 270
inability to write 265
interchangeability of 263
mixed-partition 288-298
portability of 263
possibilities of 265-271
pressing 282
sound and 306-316
speed of 263-264
versatility of 263
See also High Sierra format;

ISO 9660 format or specific
CD-ROM
classic desk accessories, CD

INDEX

INDEX July 1990

363

Remote 307
CMAccept 326
CMActivate 324
CMAddSearch 328, 329
CMChoose 320
CMClose 326
CMDispose 326
CMEvent 324
CMGetProcID 319, 325
CMIdle 324, 326
CMListen 326
CMNew 320, 325
CMOpen 326
CMRead 326
CMStatus 326
CMWrite 326
collaborative products, CD-ROM
and 267. See also CD-ROM
color tables, GC QuickDraw and
340
commands. See specific command
Communications folder 318
Communications Resource
Manager 317-319
Communications Toolbox 317-
331
Compact Disc—Read Only
Memory. See CD-ROM
compatibility, GC QuickDraw and
341-344
Connection Manager 317-331
connection record 320, 321
ConnHandle 328
Convolution. See Apple
convolution
CopyBits 359

GC QuickDraw and 340-342
Copy Blocks command (SEDIT)
298
cost (of CD-ROM drives) 265
CreateAVolume 286
CreateFiles 286
CreatePVD 286
creator, High Sierra/ISO 9660
format and 279-280
CTabChanged 345

D
data forks 278-279
DControl 306, 307, 309-311
DDM. See driver description map
descriptors

boot 276-277
partition 277
primary volume 276, 284-

285
secondary volume 276
volume 276-277

desk accessories, classic 307
desktop database, High
Sierra/ISO 9660 format and 280
Desktop file 280
desktop information, High
Sierra/ISO 9660 format and 280-
281
develop (CD-ROM version) 268-
269
DInfo 280, 307-308
directories, High Sierra/ISO 9660
format and 277-278
directory records

High Sierra/ISO 9660 format

and 277
ISO 9660 Floppy Builder and

285-286
Disc Called Wanda, A 293
discrete resolution, defined 352
disk(s), hard 288-298
Display Card 8•24 GC. See
Macintosh Display Card 8•24 GC
displays, Macintosh Display Card
8•24 GC and 333-334
DisposPtr 326
DoEvent 323
DraftBits 348, 349, 359-
361, 362
draft mode 359-361
drawing calls, GC QuickDraw and
339-340
driver(s)

GS/OS SCSI CD 306, 307
ImageWriter 348-362
LaserWriter 348-362

driver description map (DDM)
291
drives, AppleCD SC 306-316
DStatus 306, 307, 309-311
durability (of CD-ROM) 263
DXInfo 280

E
economy (of CD-ROM) 262-
263
8•24 GC card. See Macintosh
Display Card 8•24 GC
8•24 GC CDev 346
8•24 GC file 339
Englander, Roger 270

d e v e l o p July 1990

364

enhanced versions of products,
CD-ROM and 266
escapeSequences 276
EventLoop 322
extended attribute records, High
Sierra/ISO 9660 format and 277
Extended Sense Line Protocol
336, 337
Extensions folder 318
external file system hook 273-
274

F
file(s)

associated 278, 279
Desktop 280
8•24 GC 339
Foreign File Access 274
GraphAccel.o 346
High Sierra File Access 274,

280, 281
ISO 9660 File Access 274,

280, 281
Macintosh 278-281
regular 278, 279

file forks, High Sierra/ISO 9660
format and 278-279
file identifiers, High Sierra/ISO
9660 format and 277, 279
File Transfer Manager 317-331
file transfer record 320, 321
file type, High Sierra/ISO 9660
format and 279-280
Finder (Macintosh), ISO 9660
format and 289
Finder flags, High Sierra/ISO

9660 format and 280
FindToolID 330
FInfo 280
flags, Finder 280
fLandscape 358
Floppy Builder. See ISO 9660
Floppy Builder
folders

Communications 318
Extensions 318
System Folder 318, 339

fonts, GC QuickDraw and 340
Foreign File Access file 274
forks, data/resource 278-279
formats

High Sierra 272-287
ISO 9660 272-287
logical 274

FrameRect, GC QuickDraw and
344
frames, CD-ROM sound and
312
FTAbort 328
FTChoose 320, 329
FTDispose 329
FTEvent 324
FTExec 324, 328
FTGetProcID 328
ftIsFTMode 329
FTNew 320, 328, 329
FTProcID 319
FTReceiveProc 329
FTSendProc 329
FTStart 328, 329
FTSucc 329
FXInfo 280

G
GC kernel. See Am29000 kernel
GC OS. See Am29000 kernel
GC QuickDraw, Macintosh
Display Card 8•24 GC and 332-
347
GDevice, GC QuickDraw and
340, 341
GDeviceChanged 345
GetFileInfo 286
GetInfo 281
GetNewWindow 326
GetRotn 348, 349, 358-359,
361, 362
GetRsl 353, 362
GetRslData 348, 350, 352-
354, 356-358, 361
GraphAccel.o file 346. See
also Developer Essentials disc
GS/OS, CD-ROM sound and
306-316
GS/OS SCSI CD driver 306,
307
GWorlds, GC QuickDraw and
340-344

H
hard disks, mixed-partition 288-
298
HFS (Hierarchical File System)

High Sierra/ISO 9660 format
and 278-281

mixed-partition CD-ROMs
and 288-298
HideCursor, GC QuickDraw

INDEX July 1990

365

and 344
Hierarchical File System. See HFS
Highlighted Data 266
high-resolution output 350-358
High Sierra File Access file 274,
280, 281
High Sierra format 272-287

described 274-278
differences between ISO 9660

format and 278
history of 273
Macintosh files and 278-281
Macintosh support of 273-

274
pressing CD-ROMs in 282
strange behavior in 281
See also CD-ROM; ISO 9660

format
“How to Create a Mixed-Partition
CD-ROM” (Roberts) 288-298
hPrint 355
HyperCard, CD-ROM and 270

I
identifiers, file 277, 279
iError 349, 350, 353, 355,
362
iHRes 355
ImageWriter driver, PrGeneral
and 348-362
iMax 352
iMin 352
information products, CD-ROM
and 267-268. See also CD-ROM
InitCM 319, 325
InitFT 319, 328
Initialize 321
InitTM 319, 327
“Ins and Outs of ISO 9660
and High Sierra, The” (Bechtel)
272-287
interactive media

CD-ROM and 270. See also
CD-ROM
interchangeability (of CD-ROM)

263
interlaced video, defined 335
iOpCode 349, 353
IPC software, described 338
iRgType 353
iRslRecCnt 353
IsAppWindow 330
IsLandscapeModeSet 359
ISO 9660 File Access file 274,
280, 281
ISO 9660 Floppy Builder 283-
287. See also Developer Essentials
disc
ISO 9660 format 272-287

described 274-278
differences between High

Sierra format and 278
history of 273
Macintosh files and 278-281
Macintosh support of 273-

274
mixed-partition CD-ROMs and

289
pressing CD-ROMs in 282
strange behavior in 281
See also CD-ROM; High Sierra

format
iVRes 355
iXRsl 353, 355
iYRsl 353, 355

J
Johnson, Mark B. 262-263

K
Kazim, Alex 317, 318
kernel, Am29000 338

L
landscape orientation 358-359
large products, CD-ROM and
266
LaserWriter driver, PrGeneral
and 348-362

logical format, High Sierra/ISO
9660 format and 274
lReserved 349, 353
Ludwig Van Beethoven, Symphony
No. 9 (CD-ROM) 270

M
“Macintosh Display Card 8•24
GC: The Naked Truth” (Ortiz)
332-347
Macintosh Display Card 8•24 GC
332-347

illustrated 333
MacroMind CD-ROM 267
MacroMind, Inc. 267
Manhole (CD-ROM) 266
marching ants technique, GC
QuickDraw and 344
Mediagenic 266
“Meet PrGeneral, the Trap That
Makes the Most of the Printing
Manager” (Alexander) 348-362
Merriam-Webster’s Ninth New
Collegiate Dictionary (CD- ROM)
266
Microsoft Office (CD-ROM)
267
minutes, CD-ROM sound and
312
mixed-partition CD-ROMs 288-
298
monitors, Macintosh Display Card
8•24 GC and 333-334
Mueller, Eric 306
Music Discovery series 270

N
NewDisc 311. See also Developer
Essentials disc
NewGWorld, GC QuickDraw and
341, 342
new versions of products,
CD-ROM and 266
NoDraftBits 348, 349, 361,

d e v e l o p July 1990

366

362
noErr 349, 350, 355
noninterlaced video, defined 335
nonsquare resolution, defined
352
NoSuchRsl 349, 355
NRVD resource 276
NTSC output, Macintosh Display
Card 8•24 GC and 333-334,
335
NuBus block transfers, Macintosh
Display Card 8•24 GC and 335

O
OCLC (On-Line Computer
Library Corporation) 267
Office. See Microsoft Office
offscreen graphics environments,
GC QuickDraw and 341-343
On-Line Computer Library
Corporation. See OCLC
OpNotImpl 349
orientation, page 358-359
Ortiz, Guillermo 332-333
output

high-resolution 350-358
NTSC 333-334, 335
PAL 336
RS-170A 335-336

P
page orientation, verifying 358-
359
PAL output, Macintosh Display
Card 8•24 GC and 336
parameter-changing calls, GC
QuickDraw and 340-341
partition descriptor, High
Sierra/ISO 9660 format and 277
partition map entry (PME) 291-
293
partitions, mixed 288-298
path table

High Sierra/ISO 9660 format

and 277
ISO 9660 Floppy Builder and

285
pData 349
Phil & Dave’s Excellent CD 265,
288
PixMap, GC QuickDraw and
340, 342, 344
PixPatChanged 345
PixPats, GC QuickDraw and
340
Play 311. See also Developer
Essentials disc
PME. See partition map entry
pmMapBlkCnt 292
pmPartBlkCnt 292, 297, 298
pmPartName 292
pmPartType 292
pmPyPartStart 292, 298
portability, of CD-ROM 263
PortChanged 345
Portrait Display. See Apple
Portrait Display
possibilities (of CD-ROM) 265-
271
PrDefault 355
premastering, ISO 9660 format
and 289
PrError 350, 362
PrGeneral 348-362

about 348-350
things to remember 361-362

PrGeneral Play 348, 350, 353,
356, 362. See also Developer
Essentials disc
primary volume descriptor

High Sierra/ISO 9660 format
and 276

ISO 9660 Floppy Builder and
284-285
PrintDefault 355
printing, forcing 359-361
Printing Manager, PrGeneral
and 348-362
procedures, bottleneck 339-340,

344
ProcID 325
procID 319, 330, 331
procPtr 329
ProDOS, mixed-partition
CD-ROMs and 288-298
products, CD-ROM and 265-
271
PrSetError 350
PrValidate 355
public domain CDs 289

Q
QDDone 347
QuickDraw GC. See GC
QuickDraw

R
ReadTOC 306, 311, 316
records

boot 274
connection 320, 321
directory 277, 285-286
extended attribute 277
file transfer 320, 321
terminal 320, 321

refCon 324, 327, 328, 330
refNum 329
regular files, High Sierra/ISO
9660 format and 278, 279
resNotFound 350, 362
resolution 352, 356-357
resource forks 278-279
resources, NRVD 276
rgRslRec 353
Roberts, Llew 288
rowBytes, GC QuickDraw and
342
RS-170A output, Macintosh
Display Card 8•24 GC and 335-
336

S
scaling 357-358

INDEX July 1990

367

screen(s), drawing to 345
SCSI CD driver. See GS/OS SCSI
CD driver
secondary volume descriptors,
High Sierra/ISO 9660 format and
276
seconds, CD-ROM sound and
312
SEDIT 293, 298. See also
Developer Essentials disc
Sense Line Protocol 337
SetMaxResolution 356-358
SetPort 326
SetRsl 348, 350, 351, 353,
355-358, 361, 362
Shayer, David 293
signals, video 335-336
SmartPort 307
software, IPC 338
sound, CD-ROM and 306-316
speed (of CD-ROM) 263-264
spooling, avoiding 359-361
square resolution, defined 352
standard bottleneck procedures,
GC QuickDraw and 339-340,
344
state calls. See parameter-changing
calls
Surfer 317-331. See also
Developer Essentials disc
“Surf’s Up: Catch the Comm
Toolbox Wave” (Berkowitz and
Kazim) 317-331
System 5.0 (Apple II), ADU and
289-290
System Folder 318

8•24 GC file and 339
System 7.0 (Macintosh),
Extensions folder and 318
SystemUse 280

T
tables

color 340
path 277, 285

width 340
TDftBitsBlk 360
Terminal Manager 317-331
terminal record 320, 321
TermSendProc 328, 329
TGetRotnBlk 358
TGetRslBlk 352, 353
TGnlData 349, 362
13-inch monitor. See Apple 13-
inch monitor
Time Manager 344
timing, GC QuickDraw and 344
TMChoose 320
TMClick 324
TMDispose 327
TMEvent 324
TMGetProcID 319, 327, 331
TMIdle 324, 327
TMKey 327
TMNew 320, 327
TMStream 327
TMUpdate 324
ToolBox 344
TPrinfo 355
tracks, CD-ROM sound and 312
transfers, block 335
TRslRec 352-353
TRslRg 352
TSetRslBlk 355
Two-Page Display. See Apple Two-
Page Display

U
user views, CD-ROM and 270-
271. See also CD-ROM

V
variable resolution, defined 352
versatility (of CD-ROM) 263
versions of products, CD-ROM
and 266
video signals, Macintosh Display
Card 8•24 GC and 335-336
volume descriptors, High

Sierra/ISO 9660 format and 276-
277
volume descriptor terminator,
High Sierra/ISO 9660 format
and 277
volumeFlag 276
volumes, High Sierra/ISO 9660
format and 274, 275
Voyager CD Companion Series
270
Voyager Company 270

W
Warner New Media 270
width tables, GC QuickDraw and
340
Winter, Robert 270
((X))
xRslRg 353

Y,Z
yRslRg 353

d e v e l o p July 1990

368

d e v e l o p Subscription Order

Price for a one-year subscription (4 issues): United States $30. All other countries $50.

Please print clearly and enclose payment. Use a separate form for each subscriber.

I am using the following method of payment:

❏ Visa

❏ MasterCard

Credit Card Account Number

Expiration Date

month year

Signature

❏ Bank Check / Money Order / International Money Order

Make payable to Apple Computer, Inc., in exact amount, in U.S. dollars.

First Name Middle Initial Last Name

Company / School / Agency

Street or Post Office Address

City State / Province Country Zip Code

Daytime Phone Home / Evening Phone AppleLink Address

Mail orders:

d e v e l o p
Apple Computer, Inc.
P.O. Box 531
Mt. Morris, IL 61054

Phone orders: 1-800-545-9364 (U.S.)
(815)734-6309 (International)

Fax orders: (815)734-4205

AppleLink orders: DEV.SUBS

Check, money order, or credit card information must be enclosed; absolutely no cash
or ”bill me“ orders. Please allow 6-8 weeks for processing your order.

For Canadian subscribers, price includes 7% GST (GST registration number R100236199).

B 790

Issue 1 Realistic Color for Real-World Applications;
All About the Palette Manager; Braving Offscreen
Worlds; The Perils of PostScript; Compatibility: Rules
of the Road; Debugging Declaration ROMS; Apple II
Development Dynamo

Issue 2 Using C++ Objects in a Handle-Based World;
Using Obects Safely in Object Pascal; The Secret Life
of the Memory Manager; Speed Your Software
Development with MacApp; How to Design an
Object-Based Application; Unofficial C++ Style Guide;
Demystifying the GS/OS Cache

Issue 3 CD-ROM: The Cutting Edge; The Ins and
Outs of ISO 9660 and High Sierra; How to Create a
Mixed-Partition CD-ROM; Accessing CD-ROM
Audio Tracks From Your Application; Surf’s Up: Catch
the Comm Toolbox Wave; Macintosh Display Card

8•24 GC: The Naked Truth; Meet PrGeneral, the
Trap That Makes the Most of Printing

Issue 4 Writing a Device Driver in C++;
Polymorphic Code Resources in C++; Inside the
Macintosh Coprocessor Platform and A/ROSE; The
Perils of PostScript—The Sequel; Driving to Print: An
Apple IIGS Printer Driver

Issue 5 (Volume 2, Issue 1) Asynchronous Background
Networkng on the Macintosh; Scanning From
ProDOS; Palette Manager Animation; The Power of
Macintosh Common Lisp

Issue 6 Threads on the Macintosh; QuickDraw’s
CopyBits Procedure: Better Than Ever in System 7.0;
MacTCP Cookbook: Constructing Network-Aware
Applications

BACK ISSUES OF develop . . .
. . . are on the Developer Essentials CD-ROM disc. You can get printed back issues through APDA®, or send your
request along with $13 per back issue in the U.S. (or $20 outside the U.S.) to the address on the order form on the
reverse.

HOW’RE WE DOING?
We’d love to hear how you feel about develop. If you have any questions, suggestions, or even gripes, please don’t
keep them to yourself. (Be sure to include your name, company name, address, and phone number.)

Send technical questions
about develop to:

Dave Johnson
Apple Computer, Inc.
20525 Mariani Avenue, M/S 75-2B
Cupertino, CA 95014
AppleLink: Johnson.DK
Internet: dkj@apple.com
CompuServe: 75300, 715

Send editorial suggestions
or comments to:

Caroline Rose
Apple Computer, Inc.
20525 Mariani Avenue, M/S 75-2B
Cupertino, CA 95014
AppleLink: CRose
Internet: crose@applelink.apple.com

WANT TO SUBSCRIBE?
If you’d like to subscribe to develop, please use the order form on the reverse.

Apple provides a wealth of information,

products, and services to assist

developers. The Apple Programmers

and Developers Association (APDA)

provides access to development tools to

anyone who wants them. Qualified

commercial and noncommercial

developers may gain access to additional

information and services through the

Apple Partners and Associates programs.

These programs are administered by

Apple’s Developer Programs

organization. In addition to

automatically becoming APDA

subscribers, Partners and Associates also

have access to the information and

services provided by Apple’s Developer

Services organization.

Apple Developer University
is committed to teaching you skills
that will help you create superior
software products—whether you’ve
just started programming in the
Macintosh environment or whether
you’re an expert. Our hands-on
teaching approach offers you the
most direct and responsive means of
acquiring up-to-date development
skills. And you can be confident that
the programming languages, tools,
and platforms taught at Apple
Developer University are chosen
because they are integral to Apple’s
direction for the future.

The Apple Associates Program
is a program designed to assist
noncommercial developers by
providing them with technical
information and resources on a
regular basis.

The Apple Partners Program is
Apple’s major developer support
program. This program provides
access—for U.S.-based developers—
to marketing and technical
information, to answers to

development questions, and to the
annual Worldwide Developers’
Conference. Apple Partners can also
purchase, directly from Apple at
special prices, a limited number of
Apple systems for development
purposes.

APDA is an Apple-operated
worldwide mail-order distribution
service for developers. Serving as
the sole source for nonretail
development products created by
Apple, APDA also offers an
extensive selection of key third-
party development tools, languages,
and technical books.

All Apple computer users worldwide
are eligible to participate in APDA.
In addition to commercial
developers, APDA’s customers
include in-house corporate
developers, university professors and
students, value-added resellers, and
hobbyists. You do not need to be an
Apple Partner or Associate to
participate in APDA.

R E S O U R C E S

CONTACT:
Apple Developer University The
registrar at 408/974-6215 can reserve
your place or request a current catalog.
You can also AppleLink Developer University
at DEVUNIV.

Apple Partners and Associates
Programs Developer Programs at 408/
974-4897; or 20525 Mariani Ave., M/S
75-2C, Cupertino, CA, 95014, can give you
information or an application kit for either the
Associates or the Partners program. Non-U.S.
developers should contact the Apple office in
their country for information about the
developer programs they offer.

APDA Call 800/282-2732 (U.S.), or
408/562-3910, or write 20525 Mariani
Ave., M/S 33G, Cupertino, CA 95014.

	Table of Contents
	Editorial
	LETTERS
	CD-ROM:THE CUTTING EDGE
	THE CD-ROM EDGE
	SO WHAT’S THE CATCH?
	MAXIMIZING CD-ROM SPEED
	A WORLD OF POSSIBILITIES
	DISTRIBUTING LARGE PRODUCTS
	CREATING NEW OR ENHANCED VERSIONS OF PRODUCTS
	DISTRIBUTING APPLICATION ENVIRONMENTS
	ENABLING COLLABORATIVE PRODUCTS
	DISTRIBUTING INFORMATION PRODUCTS

	INSIDE AN ELECTRONIC d e v e l o p
	ENABLING INTERACTIVE MEDIA PRODUCTS
	ENABLING USER INTERACTION IN A LEARNING ENVIRONMENT

	WHAT NOW?

	THE INS AND OUTS OF ISO 9660 AND HIGH SIERRA
	ISO 9660 AND HIGH SIERRA: SOME HISTORY
	HOW THE FORMATS ARE IMPLEMENTED ON THE MACINTOSH
	A LOOK AT THE FORMATS
	THE LOGICAL FORMAT
	Figure 1

	THE VOLUME DESCRIPTORS
	THE PATH TABLE
	DIRECTORIES
	HOW THE FORMATS DIFFER

	HOW MACINTOSH FILES ARE STORED IN THE FORMATS
	FILE FORKS
	FILE IDENTIFIERS
	FILE TYPE AND CREATOR
	FINDER FLAGS
	DESKTOP INFORMATION
	SUMMARY

	STRANGE BEHAVIOR IN ISO 9660 AND HIGH SIERRA SUPPORT
	SO HOW DO I PRESS AN ISO 9660 CD-ROM?
	COMPANIES TO CONTACT FOR CD-ROM PRODUCTION
	A SIMPLE FORMATTING PROGRAM: ISO 9660 FLOPPY BUILDER
	TO USE THE PROGRAM
	A CLOSER LOOK AT THE CODE
	POSSIBLE IMPROVEMENTS

	IN CONCLUSION

	HOW TO CREATE A MIXED-PARTITION CD-ROM
	WHY MIX HFS AND PRODOS PARTITIONS?
	ABOUT PARTITIONS
	Figure 1
	Figure 2
	Figure 3

	THE PROCEDURE FOR MIXING PARTITIONS
	Figure 4
	MIXING PARTITIONS ON A LARGE HARD DISK
	Figure 5

	MIXING PARTITIONS FROM SMALLER HARD DISKS

	ODDS AND ENDS

	MACINTOSH Q & A
	APPLE II Q & A
	DEVELOPER ESSENTIALS: ISSUE 3
	ACCESSING CD-ROM AUDIO TRACKS FROM YOUR APPLICATION
	AN OVERVIEW OF THE AUDIO CAPABILITY
	TO COMMUNICATE WITH THE DRIVE
	DINFO
	DSTATUS AND DCONTROL
	Figure 1

	TO FIND OUT MORE ABOUT THE DISC IN THE DRIVE
	READTOC

	ABOUT CD-ROM AUDIO TRACK FORMAT
	Figure 2

	TO PLAY AUDIO TRACKS
	TO SUM IT ALL UP

	SURF’S UP:CATCH THE COMMTOOLBOX WAVE
	COMMUNICATIONS TOOLBOX CONTENTS
	Figure 1

	USING THE MANAGERS: AN OVERVIEW
	Figure 2

	A LOOK AT SURFER
	HOW SURFER STARTS UP
	HANDLING EVENTS
	Figure 3

	MANAGING IDLE TIME
	INITIATING A CONNECTION
	ONCE THE CONNECTION IS OPEN . . .
	STARTING A TERMINAL EMULATION SESSION
	ONCE THE TERMINAL SESSION HAS STARTED . . .
	DOING A FILE TRANSFER
	HOW SURFER WORKS WITH AUTO-RECEIVE STRINGS
	HOW SURFER HANDLES TWO COMMON PROBLEMS

	THE END OR JUST THE BEGINNING?

	MACINTOSH DISPLAY CARD8•24 GC: THE NAKED TRUTH
	DISPLAY NUTS AND BOLTS
	Figure 1
	MONITOR SUPPORT
	DEPTH SUPPORT
	NUBUS BLOCK TRANSFERS
	VIDEO SIGNALS
	Figure 2
	Figure 3

	PAL-COMPATIBLE SIGNALS

	EXTENDED SENSE LINE PROTOCOL
	Figure 4

	GC QUICKDRAW: SPIRIT STRONGER THAN FLESH
	Figure 5
	THE HAND IS QUICKER THAN THE EYE
	DRAWING CALLS
	PARAMETER-CHANGING (“STATE”) CALLS
	THE DEVELOPER POINT OF VIEW
	Figure 6
	Figure 7

	COMPATIBILITY ISSUES
	BOTTLENECKS AND STRUCTURE CHANGES
	TIMING

	ALERTING QUICKDRAW TO CHANGES
	DRAWING DIRECTLY TO THE SCREEN
	PROGRAMMING THE Am29000 (NOPE!)
	Figure 8

	NOTEWORTHY CALLS

	FINALLY

	MEET PRGENERAL,THE TRAP THAT MAKES THE MOST OF THE PRINTING MANAGER
	ABOUT PRGENERAL
	ACHIEVING HIGHEST-RESOLUTION OUTPUT
	Figure 1
	Figure 2
	USING GETRSLDATA
	Figure 3

	USING SETRSL
	GETRSLDATA AND SETRSL IN ACTION
	Figure 4

	VERIFYING PAGE ORIENTATION
	FORCING IMMEDIATE PRINTING TO AVOID SPOOLING
	THINGS TO REMEMBER WHEN USING PRGENERAL

	INDEX
	Subscription Card
	RESOURCES

