

C H A P T E R 2

2

A
ppleTalk U

tilities

AppleTalk Utilities 2

This chapter describes the AppleTalk functions and services that do not belong to a
specific AppleTalk protocol interface but that apply to AppleTalk as a whole.

The chapter describes how to

■ obtain a wide variety of information about AppleTalk and the network environment
of your node, including the maximum number of protocol handlers and concurrent
NBP calls that the installed .MPP driver supports

■ obtain the addresses of your node and its local internet router

■ enable intranode delivery, which lets you send packets to your own application or
other applications and processes running on the same node as yours

■ determine if the AppleTalk Phase 2 drivers are installed on your system

■ select a node ID in the server range

■ open the .MPP and .XPP drivers

The .MPP driver opens the .ATP driver. The chapter “AppleTalk Data Stream Protocol
(ADSP)” in this book describes how to open the .DSP driver. Although Apple Computer,
Inc. recommends that you not close any of the AppleTalk drivers because other applica-
tions that are coresident may be using them, this chapter explains how to close the .MPP
driver, if, for some reason, you must.

About the AppleTalk Utilities 2

The AppleTalk Utilities are a group of diverse functions, some of which allow you to
obtain information about AppleTalk and the networking environment of your node
and some of which allow you change values that affect AppleTalk features.

The PGetAppleTalkInfo function returns a wide range of information, including
some information that other functions belonging to the AppleTalk Utilities also return.
For example, both PGetAppleTalkInfo and GetNodeAddress return the node ID
and network address of the user node that is running your application. The
PGetAppleTalkInfo function returns the node ID and the network number of
the last router from which the node that is running your application has heard; the
GetBridgeAddress function also returns the node ID of the internet router on your
node’s local network.

Note
The PGetAppleTalkInfo function was developed and made available
after the GetNodeAddress and GetBridgeAddress functions. Apple
Computer, Inc. recommends that you use the PGetAppleTalkInfo
function to obtain addressing information for a user node or router
instead of using the GetNodeAddress and GetBridgeAddress
functions. ◆

Although the AppleTalk interface does not include a function that you can use to direct
AppleTalk to select a node ID from the server node range when you open AppleTalk,
this chapter describes how you can do this. If your application or the application that
About the AppleTalk Utilities 2-3

C H A P T E R 2

AppleTalk Utilities

opened AppleTalk directed AppleTalk to assign a server node ID to the node, the
PGetAppleTalkInfo function will return a flag that tells you this request was made.

AppleTalk includes a feature called intranode delivery that allows two programs
running on the same node to communicate with each other through the AppleTalk
protocols. The AppleTalk Utilities include the PSetSelfSend function, which you can
use to enable or disable intranode delivery. The PGetAppleTalkInfo function will
tell you if intranode delivery is on or off.

Using the AppleTalk Utilities 2
This section describes how to use some of the functions and services that make up the
AppleTalk Utilities. It explains how to

■ check the version of the AppleTalk drivers that are installed

■ get information about the .MPP driver and the network environment

■ get the address of your node and locate your local router

■ enable intranode delivery

■ request AppleTalk to assign to your node an ID that is in the range of numbers that
are reserved for server nodes

Determining Whether AppleTalk Phase 2 Drivers Are Supported2
Once the .MPP driver has been loaded into memory, you can use the Gestalt function
with the gestaltAppleTalkVersion selector to check the version of AppleTalk. The
Gestalt function returns the version of the .MPP driver. If the version is equal to or
greater than 53, then the .MPP driver supports AppleTalk Phase 2.

Alternatively, you can call the SysEnvirons function. If the atDrvrVersNum field of
the SysEnvRec data structure returned by this function is equal to or greater than 53,
then the .MPP driver supports AppleTalk Phase 2.

Getting Information About the .MPP Driver and the
Network Environment 2
This section describes how you can use the PGetAppleTalkInfo function to obtain
information about the installed version of the .MPP driver, the network environment,
and the .MPP driver’s maximum capacities, such as the number of sockets and the
number of NBP calls that the .MPP driver supports. The .MPP driver implements
these protocols:

■ Datagram Delivery Protocol (DDP)

■ Routing Table Maintenance Protocol (RTMP) stub
2-4 About the AppleTalk Utilities

C H A P T E R 2

AppleTalk Utilities

2

A
ppleTalk U

tilities

■ Name-Binding Protocol (NBP)

■ AppleTalk Echo Protocol (AEP)

Before you call the PGetAppleTalkInfo function, you must allocate memory for and
define a parameter block of type MPPParmType. The section “MPP Parameter Block”
beginning on page 2-9 shows this data structure. You must also allocate memory for and
provide pointers to the data buffers into which the PGetAppleTalkInfo function
returns the data-link address and zone name for extended networks.

The PGetAppleTalkInfo function’s Boolean parameter allows you to specify whether
the function is to be executed synchronously or asynchronously. This function is
generally executed synchronously. (For information on these two modes, see the chapter
“Introduction to AppleTalk” in this book.)

The PGetAppleTalkInfo function returns the following information:

■ a pointer to the MPP global variables

■ a pointer to the .MPP driver’s device control entry (DCE) data structure

■ configuration flags that indicate the status of certain conditions that are set at startup

■ a value (the selfSend flag) that indicates whether the node can send packets to itself
(See “Sending Packets to Applications and Processes on Your Own Node” on page 2-6
and “Enabling Intranode Delivery of DDP Packets” on page 2-15 for more
information.)

■ the range of network numbers for the network to which the node is attached

■ the 8-bit node ID and 16-bit network number of the node

■ the 8-bit node ID and 16-bit network number of the last router from which the node
has heard

■ the maximum capacities of the .MPP driver, such as the maximum number of protocol
handlers and the maximum number of static sockets allowed by this driver

■ a pointer to the registered names queue

■ the address of the node on the underlying data link (for example, the Ethernet
hardware address)

■ the node’s zone name

The data-link address and the zone name are returned only for extended networks—that
is, network types that allow more than one network number per network. You use the
laLength parameter to specify the length of the data-link address you want returned;
the function returns the actual length of the data in the laLength parameter and returns
the data in the buffer you provide.

The ExtendedBit flag returned by the PGetAppleTalkInfo function is TRUE if the
node is connected to an extended AppleTalk network. (The ExtendedBit flag is bit 15
of the configuration parameter returned by this function.) Note that the presence of
the AppleTalk Phase 2 drivers does not of itself indicate that the node is connected to
an extended network. For more information, see “PGetAppleTalkInfo” beginning on
page 2-11.
About the AppleTalk Utilities 2-5

C H A P T E R 2

AppleTalk Utilities

Note
Always use the PGetAppleTalkInfo function to obtain information
about the .MPP driver. You cannot rely on the validity of the MPP global
variables pointed to by the varsPtr parameter block field value for this
information. ◆

Getting the Address of Your Node or Your Local Router 2
You can use the AppleTalk Utilities GetNodeAddress function to get the node ID of the
node that is running your application and the number of the network to which that node
is connected.

Note
If GetNodeAddress returns a network number of 0, this means that
there is no internet router available. However, your application or
process should call GetBridgeAddress to determine if there are
router-like services, such as Apple Remote Access (ARA), available to
that node. ◆

To locate your local router, you can first call GetNodeAddress for the router’s network
number; the network number that GetNodeAddress returns for a node is also valid for
the internet router on that local network. To get the node ID part of a local router’s
address, you can call the GetBridgeAddress function. If there is not a router on the
local network, GetBridgeAddress returns a function result of 0.

Note
You can also use GetZoneList to determine if there is a router on the
local network. For information on GetZoneList, see the chapter “Zone
Information Protocol (ZIP)” in this book. ◆

Sending Packets to Applications and
Processes on Your Own Node 2
Because more than one application or process can be running on a single node at the
same time, it is reasonable to assume that you may want to send packets from your
application or process to other applications and processes running on the same node. To
support this, AppleTalk includes a function that lets you turn on (or off) an intranode
delivery feature.

When intranode delivery is on, two programs running on the same node can communi-
cate with each other through the AppleTalk protocols. You can address and send a packet
to another application or process that is an internet socket client running on your own
node from any of the AppleTalk protocols that provide programming interfaces.

You use the PSetSelfSend function to enable or disable intranode delivery. The
PSetSelfSend function returns the value of the previous setting, so that you can
save it and reinstate the value later if it differs from the setting that you specify. For
more information about enabling or disabling intranode delivery, see “PSetSelfSend”
beginning on page 2-15.
2-6 About the AppleTalk Utilities

C H A P T E R 2

AppleTalk Utilities

2
A

ppleTalk U
tilities
Note
Intranode delivery applies to user node applications and processes.
Sending packets between a multinode application and user node
applications on the same machine is independent of the intranode
delivery feature. A multinode is treated as a virtual node distinct from
the user node; both the user node and the multinode have their own
node IDs. ◆

Selecting a Node in the Server Range 2
AppleTalk node IDs are divided into two classes: user node IDs and server node IDs.

■ User node IDs are in the range 1–127 ($01–$7F).

■ Server node IDs are in the range 128–254 ($80–$FE).

AppleTalk’s dynamic node assignment occurs through a process in which the node
acquiring a node ID sends out enquiry packets to determine if the ID that the node
suggests is available. Although unlikely, problems can occur if a node that owns the
suggested ID fails to respond to the enquiry because it is busy.

User nodes are switched on and off more frequently than are server nodes. Separating
user node ID assignment from server node ID assignment allows for different degrees of
verification.

Within the user node ID range, verification is performed quickly with fewer retransmis-
sions of the enquiry control packet than are sent for server node ID verification; this
decreases the initialization time for user nodes. A more thorough node ID verification is
performed for servers. This scheme increases the initialization time for server nodes but
is not detrimental to the server’s operation because server nodes are rarely switched on
and off.

You can start up AppleTalk so that it will assign a node ID within the server range by
making an extended Open call to the .MPP driver. To do this, you set the immediate
bit in the _Open trap. To request a server node ID, set to 1 the high bit (bit 31) of the
extension longword field ioMix in the extended call. Set to 0 the remaining bits in the
ioMix field and the bits of all the other unused fields in the queue element. The code in
Listing 2-1 sets the high bit in the ioMix field, then it calls an assembly-language routine
that is not shown in this listing, PBOpenImmedSync, to make the extended open call.
The code uses the following global constants:

SPConfig = $01FB;

portBClearMask = $F0;

The code in Listing 2-1 assumes that the .MPP driver is not currently open. It is
important to remember that you can only request a server node ID when you first
open the .MPP driver.
About the AppleTalk Utilities 2-7

C H A P T E R 2

AppleTalk Utilities
Listing 2-1 Opening the .MPP driver and obtaining a node ID in the server range

FUNCTION PBOpenImmedSync(paramBlock: ParmBlkPtr): OSErr;

INLINE $205F,$A200,$3E80;

FUNCTION OpenNodeInServerRange: OSerr;

IMPLEMENTATION

FUNCTION OpenNodeInServerRange: OSerr;

VAR

MPPPtr: ParmBlkPtr;

err: OSerr;

MPPName: Str31;

SpConfigPtr: Ptr;

BEGIN

IF IsMPPOpen THEN

BEGIN

OpenNodeInServerRange := openErr;

END

ELSE

BEGIN

SPConfigPtr := Ptr(SPConfig);

SPConfigPtr^ := BYTE(BAND(SPConfigPtr^, portBClearMask));

SPConfigPtr^ := BYTE(BOR(SPConfigPtr^, UseATalk));

MPPName := '.MPP';

MPPPtr := ParmBlkPtr(NewPtrClear(sizeof(ParamBlockRec)));

MPPPtr^.ioMix := Ptr($80000000);

MPPPtr^.ioNamePtr := @MPPName;

OpenNodeInServerRange := PBOpenImmedSync(MPPPtr);

END

END;

AppleTalk Utilities Reference 2

This section describes the data structure and the routines that make up the AppleTalk
Utilities. The “Data Structures” section shows the MPP parameter block required for
the PSetSelfSend and the PGetAppleTalkInfo functions.

The “Routines” section describes the routines for

■ getting information about the installed .MPP driver and the current network
environment

■ enabling intranode delivery

■ getting the addresses of your node and your local internet router

■ opening the .MPP and .XPP drivers (The .MPP driver opens the .ATP driver.)
2-8 AppleTalk Utilities Reference

C H A P T E R 2

AppleTalk Utilities

2
A

ppleTalk U
tilities
Data Structures 2
This section describes the MPP parameter block that you use for the PSetSelfSend and
PGetAppleTalkInfo functions.

MPP Parameter Block 2

The PSetSelfSend and PGetAppleTalkInfo functions require a pointer to the MPP
parameter block. The MPPParamBlock data type defines the MPP parameter block.

■ The PGetAppleTalkInfo function uses the MPP parameter block with the
GetAppleTalkInfoParm variant record to pass information to and receive it
from the .MPP driver.

■ The PSetSelfSend function uses the MPP parameter block with the
SetSelfSendParm variant record to pass information to and receive it from
the .MPP driver. The MPPParamBlock data type defines the MPP parameter block.

This section defines the fields common to both of these functions. The fields for the
variant records are defined in the function description that uses the record.

TYPE

MPPParmType = (...SetSelfSendParm,

 GetAppleTalkInfoParm...);

MPPPBPtr = ^MPPParamBlock;

MPPParamBlock =

PACKED RECORD

qLink: QElemPtr; {reserved}

qType: Integer; {reserved}

ioTrap: Integer; {reserved}

ioCmdAddr: Ptr; {reserved}

ioCompletion: ProcPtr; {completion routine}

ioResult: OSErr; {result code}

ioNamePtr: StringPtr; {reserved}

ioVRefNum: Integer; {reserved}

ioRefNum: Integer; {driver reference }

{ number}

csCode: Integer; {primary command code}

CASE MPPParmType OF

SetSelfSendParm:

(newSelfFlag: Byte; {self-send toggle flag}

 oldSelfFlag: Byte); {previous self-send }

{ state}

GetAppleTalkInfoParm:

(version: Integer; {requested info version}

varsPtr: Ptr; {pointer to MPP }

{ variables}
AppleTalk Utilities Reference 2-9

C H A P T E R 2

AppleTalk Utilities
DCEPtr: Ptr; {pointer to MPP DCE}

portID: Integer; {port number [0..7]}

configuration: LongInt; {32-bit configuration }

{ word}

selfSend: Integer; {nonzero if self-send }

{ enabled}

netLo: Integer; {low value of network }

{ range}

netHi: Integer; {high value of network }

{ range}

ourAddr: LongInt; {our 24-bit AppleTalk }

{ address}

routerAddr: LongInt; {24-bit address of }

{ last router}

numOfPHs: Integer; {max. number of }

{ protocol handlers}

numOfSkts: Integer; {max. number of static }

{ sockets}

numNBPEs: Integer; {max. concurrent NBP }

{ requests}

ntQueue: Ptr; {pointer to registered }

{ name queue}

LAlength: Integer; {length in bytes of }

{ data-link address}

linkAddr: Ptr; {data-link address }

{ returned}

zoneName: Ptr); {zone name returned}

END;

Field descriptions

ioCompletion A pointer to a completion routine that you can provide. When you
execute the PGetAppleTalkInfo function or the PSetSelfSend
function asynchronously, the .MPP driver calls your completion
routine when it completes execution of the function. Specify NIL for
this field if you do not wish to provide a completion routine. If you
execute the function synchronously, the .MPP driver ignores the
ioCompletion field.

ioResult The result of the function. When you execute the function asynchro-
nously, the function sets this field to 1 and returns a function result
of noErr as soon as the function begins execution. When the
function completes execution, it sets the ioResult field to the
actual result code.

ioRefNum The .MPP driver reference number. The MPW interface fills in
this field.
2-10 AppleTalk Utilities Reference

C H A P T E R 2

AppleTalk Utilities

2
A

ppleTalk U
tilities
csCode The routine selector command code of the .MPP command
to be executed. The MPW interface fills in this field. For
the PGetAppleTalkInfo function, csCode is always
GetATalkInfo. For the PSetSelfSend function, csCode
is always setSelfSend.

Routines 2
This section describes the routines that you use to obtain information about AppleTalk
and the network environment, enable intranode delivery of DDP packets, obtain your
node’s address and your local network router’s address, and open and close the .MPP,
.ATP, and .XPP drivers.

Obtaining Information About the .MPP Driver and the Current Network Environment2

You can use the PGetAppleTalkInfo function to obtain a wide variety of information
about the .MPP driver that is installed on the node that is running your application
and the network environment of that node. Among the information that the
PGetAppleTalkInfo function returns are

■ the address and zone name of the node that is running your application

■ the number of concurrent NBP calls that the installed .MPP driver supports

■ the range of network numbers for the network, if it is an extended network

PGetAppleTalkInfo 2

The PGetAppleTalkInfo function returns information about the currently installed
version of the .MPP driver and the network environment.

FUNCTION PGetAppleTalkInfo (thePBptr: MPPPBPtr; async:

Boolean): OSErr;

thePBptr A pointer to an MPP parameter block.

async A Boolean that specifies whether the function should be executed
asynchronously. Specify TRUE for asynchronous execution.

Parameter block

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSerr The result code.
→ ioRefNum Integer The .MPP driver reference number.
→ csCode Integer Always GetATalkInfo.
→ version Integer The version of the function.
← varsPtr Ptr A pointer to the MPP globals.

continued
AppleTalk Utilities Reference 2-11

C H A P T E R 2

AppleTalk Utilities
Field descriptions

version The version number of the PGetAppleTalkInfo function you are
calling. For version number 53 and greater of the .MPP driver, this
number is always 1.

varsPtr A pointer to the MPP global variables. This parameter is reserved
for the use of Apple Computer, Inc.; you cannot rely on the validity
of the variables pointed to by this parameter.

DCEPtr A pointer to the device control entry (DCE) data structure for the
.MPP driver. For information about the DCE, see the chapter
“Device Manager” in Inside Macintosh: Devices.

portID The port number for the .MPP driver. The port number is always 0
unless you are requesting information for an .MPP driver being
used by a router.

configuration A 32-bit longword of configuration flags. The following flags are
currently defined:

← DCEPtr Ptr A pointer to DCE for the .MPP driver.
← portID Integer The port number.
← configuration LongInt The configuration flags.
← selfSend Integer Nonzero if self-sending is enabled.
← netLo Integer The low value of the network range.
← netHi Integer The high value of the network range.
← ourAddr LongInt The local 24-bit AppleTalk address.
← routerAddr LongInt The 24-bit address of the router.
← numOfPHs Integer The maximum number of protocol handlers.
← numOfSkts Integer The maximum number of static sockets.
← numNBPEs Integer The maximum concurrent NBP requests.
← ntQueue Ptr A pointer to registered names table.
↔ LAlength Integer The length in bytes of data-link address

(extended networks only).
→ linkAddr Ptr A pointer to data-link address buffer

(extended networks only).
→ zoneName Ptr A pointer to zone name buffer.

Bit Flag Description

31 SrvAdrBit TRUE (equal to 1) if the routine that
opened the .MPP driver requested
a server node number. For more
information on server nodes, see
“Selecting a Node in the Server
Range” on page 2-7. This flag
indicates only that the server node
number was requested, not that it
was returned. Some AppleTalk data
links, such as EtherTalk, TokenTalk,
and FDDITalk, do not honor a
request for a server node number.

continued
2-12 AppleTalk Utilities Reference

C H A P T E R 2

AppleTalk Utilities

2
A

ppleTalk U
tilities
selfSend The ability of a node to send packets to itself. This feature, called
intranode delivery, is enabled when this parameter is nonzero.
Use the PSetSelfSend function, which is described beginning
on page 2-15, to enable or disable this feature.

netLo The low value of the range of network numbers on the local cable.
Only extended networks can have a range of network numbers. For
a nonextended network, this parameter returns the network number.

netHi The high value of the range of network numbers on the local cable.
Only extended networks can have a range of network numbers. For
a nonextended network, this parameter returns the network number.

ourAddr The 24-bit AppleTalk network address of the node you are on. The
least significant byte of the longword is the node ID. The middle
16 bits are the network number. The most significant byte of the
longword is reserved for use by Apple Computer, Inc.

routerAddr The 24-bit AppleTalk network address of the last router from which
your node heard traffic. The least significant byte of the longword
is the node ID. The middle 16 bits are the network number. The
most significant byte of the longword is reserved for use by Apple
Computer, Inc. You should always use this address when you want
to communicate with a router.

30 RouterBit TRUE (equal to 1) if an AppleTalk
internet router was loaded at system
startup (that is, there’s a router
operating on the same node as your
application). A router can be loaded
and not active.

15 ExtendedBit TRUE (equal to 1) if the node is on
an extended network. Testing this
bit is the only way to determine
whether you are on an extended
network.

7 BadZoneHintBit TRUE (equal to 1) if the zone name
of the node you are on was not the
same as the zone name stored in
parameter RAM (sometimes
referred to as the zone name hint)
when the .MPP driver was opened.
If the zone name hint is invalid,
then the AppleTalk Manager uses
the default zone for the network.
The default zone is defined by the
network administrator.

6 OneZoneBit TRUE (equal to 1) if only one zone is
assigned to your extended network
or if you are not on an extended
network. Use the ExtendedBit
flag to determine whether you are
on an extended network.

Bit Flag Description
AppleTalk Utilities Reference 2-13

C H A P T E R 2

AppleTalk Utilities
numOfPHs The maximum number of protocol handlers that this .MPP
driver allows.

numOfSkts The maximum number of statically assigned sockets that this .MPP
driver allows. Statically assigned sockets are described in Inside
AppleTalk, second edition. For more information about sockets, see
the chapter “Datagram Delivery Protocol (DDP)” in this book.

numNBPEs The maximum number of concurrent requests to NBP that this
.MPP driver allows.

ntQueue A pointer to the first entry in the names table for the local node. You
can use NBP routines to look up and register names in the names
table. The names table is described in the chapter “Name-Binding
Protocol (NBP)” in this book.

LAlength The number of bytes of the data-link address that the function
should place in the buffer pointed to by the LinkAddr parameter.
You use this parameter when you call the PGetAppleTalkInfo
function on a node on an extended network. If you request more
bytes than the total number of bytes in the address, then the function
returns in the LAlength parameter the actual number of bytes it
placed in the buffer. If the address is longer than the size of the
buffer, then the PGetAppleTalkInfo function fills the buffer and
returns in the LAlength parameter the actual length of the address,
not the number of bytes returned. The function does not return an
error when the buffer is too large or too small for the address. A
value of 6 bytes for LAlength is sufficient for most purposes.

linkAddr A pointer to a buffer for the data-link address returned for extended
networks only. You use the LAlength parameter to specify the
number of bytes of the address that you want placed in this buffer.
You must allocate a buffer large enough to hold the number of bytes
you specify. Specify NIL for this parameter if you do not want the
function to provide a data-link address.

zoneName A pointer to a buffer into which the PGetAppleTalkInfo function
places the local node’s zone name. You must allocate a buffer of at
least 33 bytes to hold this data, or you must specify NIL for the
zoneName parameter if you do not want to obtain the zone name.
This field is returned only if the node is on an extended network.

DESCRIPTION

The PGetAppleTalkInfo function returns a variety of information about the current
networking environment. For example, it returns information telling you whether or not
applications running on the node can send packets to themselves or to other applica-
tions or processes on the same node. An application can call PGetAppleTalkInfo to
determine if the node on which it is running has an ID that falls within the server node
ID range. It can also obtain the address of the last router that the node communicated
with and the node’s own address.

You must allocate memory for and define a parameter block of type MPPParmType and
pass that parameter block’s pointer to PGetAppleTalkInfo when you call the function.
You must also allocate memory for and provide pointers to the data buffers into which
2-14 AppleTalk Utilities Reference

C H A P T E R 2

AppleTalk Utilities

2
A

ppleTalk U
tilities
the PGetAppleTalkInfo function returns the data-link address and zone name.
You pass a pointer to the buffer for the returned data-link address as the value of the
linkAddr field. You pass a pointer to the buffer for the returned zone name as the
value of the zoneName parameter block field.

SPECIAL CONSIDERATIONS

If the node on which your application is running happens also to be running AppleTalk
internet router software in the background, more than one set of MPP global variables
may be in RAM. To make sure you obtain information about the .MPP driver that handles
application software, always use the PGetAppleTalkInfo function rather than the
Device Manager’s PBControl function. However, if you want to use the PBControl
function, you must use a device driver reference number of –10 for the .MPP driver.

The memory that you allocated for the parameter block and data buffers belongs to the
.MPP driver until the PGetAppleTalkInfo function completes execution. The memory
must be nonrelocatable. After the PGetAppleTalkInfo function completes execution,
you can reuse the memory or release it.

ASSEMBLY-LANGUAGE INFORMATION

If you use assembly language to call this function, you must use a device driver
reference number of –10 for the .MPP driver.

RESULT CODES

Enabling Intranode Delivery of DDP Packets 2

This section describes how the PSetSelfSend function allows applications and
processes running on the same node to send packets to one another.

PSetSelfSend 2

The PSetSelfSend function enables or disables the AppleTalk intranode
delivery service.

FUNCTION PSetSelfSend (thePBptr: MPPPBPtr; async: Boolean): OSErr;

thePBptr A pointer to an MPP parameter block.

async A Boolean that specifies whether the function should be executed
asynchronously. Specify TRUE for asynchronous execution.

noErr 0 No error
paramErr –50 Version number is too high
AppleTalk Utilities Reference 2-15

C H A P T E R 2

AppleTalk Utilities
Parameter block

Field descriptions

newSelfFlag A flag that enables or disables the intranode delivery feature. Set
this field to a nonzero number to enable the feature; set it to zero to
turn off the feature.

oldSelfFlag A flag indicating the previous state of the intranode delivery
feature. The PSetSelfSend function returns this value. A nonzero
value indicates that intranode delivery was enabled; a value of
zero indicates it was disabled.

DESCRIPTION

The PSetSelfSend function turns on or off the intranode delivery feature that allows
you to send a packet to another socket on the same node. You can use this feature, for
example, to send data from an application to a print spooler that is running in the
background on the same node.

When PSetSelfSend is enabled, you can send packets to socket clients on your node
from all levels of the AppleTalk protocol stack for which there are programming
interfaces. The PSetSelfSend function returns in the oldSelfFlag field the previous
setting for the intranode delivery feature so that you can restore it later, if you want to.
Because intranode delivery is enabled on most systems running AppleTalk, you should
assume that it is turned on and take this into account when you write your code.

Note that intranode delivery applies to the user node applications. Sending packets
between a multinode application and user node applications on the same machine is
independent of the intranode delivery feature. A multinode is treated as a virtual node
distinct from the user node; both the user node and the multinode have their own
node IDs.

SPECIAL CONSIDERATIONS

Enabling or disabling the intranode delivery feature affects the entire node. For example,
an application that uses NBP to look up names and then display them to a user might
not expect to receive names of other network-visible entities within its own node; when
intranode delivery is enabled, this will occur.

ASSEMBLY-LANGUAGE INFORMATION

To execute the PSetSelfSend function from assembly language, call the _Control
trap macro with a value of setSelfSend in the csCode field of the parameter block.

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The function result.
→ ioRefNum Integer The .MPP driver reference number.
→ csCode Integer Always setSelfSend.
→ newSelfFlag Byte A flag that turns intranode delivery on or off.
← oldSelfFlag Byte A flag that reports the previous state of

intranode delivery, whether it was on or off.
2-16 AppleTalk Utilities Reference

C H A P T E R 2

AppleTalk Utilities

2
A

ppleTalk U
tilities
RESULT CODES

Getting the Addresses of Your Node and Local Internet Router 2

This section describes the GetNodeAddress and GetBridgeAddress functions, which
you can use to get the address of the node that is running your application or process
and to determine if the local network to which that node is connected includes a router.
If there is a router on the local network, GetBridgeAddress will return the node ID of
that router. The router’s network number is the same as that of your local network.

GetNodeAddress 2

The GetNodeAddress function returns the current node ID and network number of the
node on which the calling program is running.

FUNCTION GetNodeAddress (VAR myNode,myNet: Integer): OSErr;

myNode The node ID of the node on which your application or process is running.

myNet The network number of the network to which the node is attached that is
running your application or process. If myNet returns 0, this means that
there is no internet router available. However, your application or process
should call GetBridgeAddress to determine if there are router-like
services available to that node.

DESCRIPTION

The GetNodeAddress function returns the address of a node on a network. If the
network is not an extended network, the network number that GetNodeAddress
returns is 0. Note that even if GetNodeAddress returns a network number of 0, there
may be a router service on the local network. For example, a node can be on a network
whose network number is 0 and be connected to a remote network through Apple
Remote Access (ARA).

If the .MPP driver is not installed, the GetNodeAddress function returns a function
result of noMPPErr. To install the .MPP driver, open it using the Device Manager’s
OpenDriver function or the MPPOpen function.

ASSEMBLY-LANGUAGE INFORMATION

This function is implemented in the MPW glue code only. It is not accessible from
assembly language.

noErr 0 No error
AppleTalk Utilities Reference 2-17

C H A P T E R 2

AppleTalk Utilities
RESULT CODES

GetBridgeAddress 2

The GetBridgeAddress function returns the node ID of the router on your
local network.

FUNCTION GetBridgeAddress: Integer;

DESCRIPTION

The GetBridgeAddress function returns the current node ID of an internet router in
the low-order byte of the function result. If the function result is 0, there is no router
on the local network. The router’s network number is that of the local network; you can
use the GetNodeAddress function to get the network number.

ASSEMBLY-LANGUAGE INFORMATION

This function is implemented in the MPW glue code only. It is not accessible from
assembly language.

SEE ALSO

To obtain the network number of the local network, use the GetNodeAddress function
described on page 2-17.

Opening and Closing Drivers 2

This section describes the functions that you can use to open the .MPP and .XPP drivers,
MPPOpen and OpenXPP. The .MPP driver opens the .ATP driver. This section also
describes the function that closes the .MPP driver, MPPClose.

The MPPOpen and OpenXPP functions are included to provide a complete description of
the AppleTalk programmatic interface. Apple Computer, Inc. recommends that you use
the Device Manager’s OpenDriver function to open the .MPP and .XPP drivers. In
addition to opening a driver, the OpenDriver function returns the driver reference
number. If the driver is already open, the OpenDriver function simply returns the
driver reference number. For information on the OpenDriver function, see the chapter
“Device Manager” in Inside Macintosh: Devices.

The .MPP, .ATP, and .XPP drivers must always be open before you can use the AppleTalk
protocols that they implement. The .MPP driver must be open before you open the .XPP
driver. How to open the .DSP driver is described in the chapter “AppleTalk Data Stream
Protocol (ADSP)” in this book.

noErr 0 No error
noMPPErr –3102 The .MPP driver is not installed
2-18 AppleTalk Utilities Reference

C H A P T E R 2

AppleTalk Utilities

2
A

ppleTalk U
tilities
▲ W A R N I N G

Because coresident programs might also be using AppleTalk,
you should not close the AppleTalk drivers. ▲

This section also includes the IsMPPOpen and IsATPOpen functions that determine if
the .MPP and the .ATP drivers are already open.

MPPOpen 2

If the .MPP driver has not already been opened, the MPPOpen function opens
the .MPP driver, initializes the driver’s variables, and assigns a node ID to the
Macintosh computer.

FUNCTION MPPOpen: OSErr;

DESCRIPTION

The MPPOpen function first determines whether the .MPP driver has already been
opened. If it has, MPPOpen returns an error code. If the .MPP driver is not open,
MPPOpen loads the driver into the system heap and then initializes the driver’s variables
before dynamically assigning a node ID to the system. It also loads the .ATP driver
and the NBP code into the system heap.

Apple Computer, Inc. recommends that you use the Device Manager’s OpenDriver
function to open the .MPP driver instead of using the MPPOpen function.

SPECIAL CONSIDERATIONS

For versions of AppleTalk before AppleTalk version 56, if serial port B isn’t configured
for AppleTalk or if it is already in use, the .MPP driver is not loaded and the portInUse
result code is returned.

RESULT CODES

SEE ALSO

The MPPOpen function does not return the .MPP driver reference number, as the
OpenDriver function does. For information on the OpenDriver function, see
the chapter “Device Manager” in Inside Macintosh: Devices.

noErr 0 No error
portInUse –97 Driver open error code indicating that the port is in use
portNotCf –98 Driver open error code indicating that the parameter RAM is

not configured for this connection
AppleTalk Utilities Reference 2-19

C H A P T E R 2

AppleTalk Utilities
MPPClose 2

The MPPClose function closes the .MPP driver and removes from memory any data
structures associated with it.

FUNCTION MPPClose: OSErr;

DESCRIPTION

In addition to closing the .MPP driver, the MPPClose function also closes and removes
from memory the .ATP driver and the NBP code if they are installed. Calling MPPClose
completely disables AppleTalk.

▲ W A R N I N G

Apple Computer, Inc. strongly recommends that you not use this call
because other coresident applications could also be using AppleTalk. ▲

Calling MPPClose completely disables AppleTalk.

SPECIAL CONSIDERATIONS

If the current connection is LocalTalk, MPPClose also returns the use of port B to the
serial driver.

RESULT CODES

IsMPPOpen 2

The IsMPPOpen function determines and reports whether or not the .MPP driver is
loaded and running.

FUNCTION IsMPPOpen: Boolean;

DESCRIPTION

If the .MPP driver is open, the IsMPPOpen function returns a value of TRUE; if the
.MPP driver is not open, it returns FALSE. If you want to obtain a node ID in the server
range, you can request the assignment only when you first open the .MPP driver. In
this case, you can use the IsMPPOpen function to determine if the .MPP driver has
already been opened.

noErr 0 No error
2-20 AppleTalk Utilities Reference

C H A P T E R 2

AppleTalk Utilities

2
A

ppleTalk U
tilities
RESULT CODES

SEE ALSO

You can also use the Device Manager’s OpenDriver function to ensure that the .MPP
driver is open. If it is not, OpenDriver will open the .MPP driver and return the driver
reference number. If the .MPP driver is already open, the OpenDriver function will
return the reference number without performing additional processing, and therefore
without incurring much additional overhead.

IsATPOpen 2

The IsATPOpen function determines and reports whether or not the .ATP driver is
loaded and running.

FUNCTION IsATPOpen: Boolean;

DESCRIPTION

If the .ATP driver is open, the IsATPOpen function returns a value of TRUE; if the
.ATP driver is not open, it returns FALSE. Because the .MPP driver opens the .ATP
driver, this function is seldom used. It is included to provide a complete description
of the AppleTalk programmatic interface.

RESULT CODES

SEE ALSO

To open the .ATP driver, you open the .MPP driver. You can use the Device Manager’s
OpenDriver function to ensure that the .MPP driver is open. If the .MPP driver is open,
then the .ATP driver is also open. If the .MPP and .ATP drivers are already open, the
OpenDriver function will return the .MPP driver reference number without performing
additional processing, and therefore without incurring much additional overhead.

For information on the OpenDriver function, see the chapter “Device Manager” in
Inside Macintosh: Devices.

noErr 0 No error

noErr 0 No error
AppleTalk Utilities Reference 2-21

C H A P T E R 2

AppleTalk Utilities
OpenXPP 2

The OpenXPP function opens the .XPP driver and returns the driver reference number.

FUNCTION OpenXPP (VAR xppRefnum: Integer): OSErr;

xppRefnum The .XPP driver reference number, which the function returns.

DESCRIPTION

Before you can use the protocol interfaces (ZIP, ASP, and AFP) that are implemented
by the .XPP driver, you must open the driver. You can use the OpenXPP function to open
the .XPP driver, or you can call the Device Manager’s OpenDriver function. In either
case, before you open the .XPP driver, you must ensure that the .MPP driver and the
.ATP driver are open.

Apple Computer, Inc. recommends that you use the Device Manager’s OpenDriver
function to open the .XPP driver instead of using the OpenXPP function. The OpenXPP
function is included to provide a complete description of the AppleTalk programmatic
interface.

SPECIAL CONSIDERATIONS

Under most circumstances, you should not close the .XPP driver because other applica-
tions and processes could be using it. However, if you must close the .XPP driver, you
can use the Device Manager’s CloseDriver function. The CloseDriver function
should be used only by system-level applications.

RESULT CODES

SEE ALSO

The OpenXPP function does not return the .MPP driver reference number, as does the
OpenDriver function. For information on the OpenDriver and CloseDriver
functions, see the chapter “Device Manager” in Inside Macintosh: Devices.

noErr 0 No error
portInUse -97 Either AppleTalk is not open or the AppleTalk port is in use by

another driver
2-22 AppleTalk Utilities Reference

C H A P T E R 2

AppleTalk Utilities

2
A

ppleTalk U
tilities
Summary of AppleTalk Utilities 2

Pascal Summary 2

Constants 2

CONST

setSelfSend = 256; {allow intranode delivery, csCode}

GetATalkInfo = 258; {get AppleTalk information, csCode}

Data Types 2

MPP Parameter Block for PSetSelfSend and PGetAppleTalkInfo

TYPE MPPParmType = (...SetSelfSendParm,

 GetAppleTalkInfoParm...);

TYPE MPPParamBlock =

PACKED RECORD

qLink: QElemPtr; {reserved}

qType: Integer; {reserved}

ioTrap: Integer; {reserved}

ioCmdAddr: Ptr; {reserved}

ioCompletion: ProcPtr; {completion routine}

ioResult: OSErr; {result code}

ioNamePtr: StringPtr; {reserved}

ioVRefNum: Integer; {reserved}

ioRefNum: Integer; {driver reference number}

csCode: Integer; {primary command code}

CASE MPPParmType OF

SetSelfSendParm:

(newSelfFlag: Byte; {self-send toggle flag}

oldSelfFlag: Byte); {previous self-send state}

GetAppleTalkInfoParm:

(version: Integer; {requested info version}

varsPtr: Ptr; {pointer to MPP variables}

DCEPtr: Ptr; {pointer to MPP DCE}

portID: Integer; {port number [0..7]}
Summary of AppleTalk Utilities 2-23

C H A P T E R 2

AppleTalk Utilities
configuration: LongInt; {32-bit configuration word}

selfSend: Integer; {nonzero if self-send enabled}

netLo: Integer; {low value of network range}

netHi: Integer; {high value of network range}

ourAddr: LongInt; {our 24-bit AppleTalk address}

routerAddr: LongInt; {24-bit address of last router}

numOfPHs: Integer; {maximum number of protocol }

{ handlers}

numOfSkts: Integer; {maximum number of static sockets}

numNBPEs: Integer; {maximum concurrent NBP requests}

ntQueue: Ptr; {pointer to registered name queue}

LAlength: Integer; {length in bytes of data-link addr}

linkAddr: Ptr; {data-link address returned}

zoneName: Ptr); {zone name returned}

END;

MPPPBPtr = ^MPPParamBlock;

Routines 2

Obtaining Information About the .MPP Driver and the Current Network Environment

FUNCTION PGetAppleTalkInfo (thePBptr: MPPPBPtr; async: Boolean): OSErr;

Enabling Intranode Delivery of DDP Packets

FUNCTION PSetSelfSend (thePBptr: MPPPBPtr; async: Boolean): OSErr;

Getting the Addresses of Your Node and Local Internet Router

FUNCTION GetNodeAddress (VAR myNode: Integer; VAR myNet: Integer): OSErr;

FUNCTION GetBridgeAddress: Integer;

Opening and Closing Drivers

FUNCTION MPPOpen: OSErr;

FUNCTION MPPClose: OSErr;

FUNCTION IsMPPOpen: Boolean;

FUNCTION IsATPOpen: Boolean;

FUNCTION OpenXPP (VAR xppRefnum: Integer): OSErr;
2-24 Summary of AppleTalk Utilities

C H A P T E R 2

AppleTalk Utilities

2
A

ppleTalk U
tilities
C Summary 2

Constants 2

/*csCodes/

enum {

setSelfSend = 256, /*intranode packet delivery*/

GetATalkInfo = 258 /*get AppleTalk information*/

};

Data Types 2

MPP Parameter Block for PSetSelfSend and PGetAppleTalkInfo

union ParamBlockRec {

MPPparms MPP; /*general MPP parms*/

};

typedef MPPParamBlock *MPPPBPtr;

#define MPPATPHeader \

QElem *qLink; /*reserved*/\

short qType; /*reserved*/\

short ioTrap; /*reserved*/\

Ptr ioCmdAddr; /*reserved*/\

ProcPtr ioCompletion; /*completion routine*/\

OSErr ioResult; /*result code*/\

long userData; /*reserved*/\

short reqTID; /*reserved*/\

short ioRefNum; /*driver reference number*/\

short csCode; /*call command code*/

typedef struct {

MPPATPHeader

char newSelfFlag; /*self-send toggle flag*/

char oldSelfFlag; /*previous self-send state*/

}SetSelfparms;

typedef struct {

MPPATPHeader

short version; /*requested info version*/

Ptr varsPtr; /*pointer to well-known MPP vars*/
Summary of AppleTalk Utilities 2-25

C H A P T E R 2

AppleTalk Utilities
Ptr DCEPtr; /*pointer to MPP DCE*/

short portID; /*port number [0..7]*/

long configuration; /*32-bit configuration word*/

short selfSend; /*nonzero if self-send enabled*/

short netLo; /*low value of network range*/

short netHi; /*high value of network range*/

long ourAdd; /*our 24-bit AppleTalk address*/

long routerAddr; /*24-bit address of last router*/

short numOfPHs; /*maximum number of protocol handlers*/

short numOfSkts; /*maximum number of static sockets*/

short numNBPEs; /*maximum number of concurrent NBP requests*/

Ptr nTQueue; /*pointer to registered name queue*/

short LAlength; /*length in bytes of data-link addr*/

Ptr linkAddr; /*data-link address returned*/

Ptr zoneName; /*zone name returned*/

}GetAppleTalkInfoParm;

typedef union {

MPPparms MPP; /*general MPP parms*/

SetSelfparms SETSELF;

GetAppleTalkInfoParm GAIINFO;

}MPPParamBlock;

typedef MPPParamBlock *MPPPBPtr;

Routines 2

Obtaining Information About the .MPP Driver and the Current Network Environment

pascal OSErr PGetAppleTalkInfo
(MPPPBPtr thePBptr,Boolean async);

Enabling Intranode Delivery of DDP Packets

pascal OSErr PSetSelfSend (MPPPBPtr thePBptr,Boolean async);

Getting the Addresses of Your Node and Local Internet Router

pascal OSErr GetNodeAddress
(short *myNode,short *myNet);

pascal short GetBridgeAddress
(void);
2-26 Summary of AppleTalk Utilities

C H A P T E R 2

AppleTalk Utilities

2
A

ppleTalk U
tilities
Opening and Closing Drivers

pascal OSErr MPPOpen (void);

pascal OSErr MPPClose (void);

pascal Boolean IsMPPOpen (void);

pascal Boolean IsATPOpen (void);

pascal OSErr OpenXPP (short *xppRefnum);

Assembly-Language Summary 2

Constants 2

Unit Number for the .MPP driver

mppUnitNum EQU 9 ;MPP unit number

mppRefNum EQU –10 ;MPP driver reference number

Command Codes

setSelfSend EQU 256 ;set to allow writes to self, control call

GetATalkInfo EQU 258 ;get AppleTalk information, control call

Zone and Router Bits

BadZoneHintBit EQU 7 ;1, if zone hint was found invalid when the

 ; .MPP driver was opened

RouterBit EQU 30 ;1, if this is a router port

MPP Queue Element Standard Structure

;arguments passed in the CSParam area

newSelfFlag EQU $1C ;offset, new value for self-send flag

oldSelfFlag EQU $1D ;old value of self-send flag

GetAppleTalkInfo

GAIVersion EQU 1 ;highest version for GAI params
Summary of AppleTalk Utilities 2-27

C H A P T E R 2

AppleTalk Utilities
Data Structures 2

MPP Parameter Block Common Fields for PGetAppleTalkInfo and PSetSelfSend

GetAppleTalkInfo Parameter Variant

PSetSelfSend Parameter Variant

Result Codes 2

0 qLink long reserved
4 qType word reserved
6 ioTrap word reserved
8 ioCmdAddr long reserved

12 ioCompletion long address of completion routine
16 ioResult word result code
18 ioNamePtr long reserved
22 ioVRefNum word reserved
24 ioRefNum word driver reference number

16 ioResult word result code
26 csCode word command code; always GetAppleTalkInfo
28 version word version of function
30 varsPtr long pointer to the .MPP driver variables
34 DCEPtr long pointer to DCE for the .MPP driver
38 portID word port number
40 configuration long configuration flags
44 selfSend word nonzero if self-send is enabled
46 netLo word low value of network range
48 netHi word high value of network range
50 ourAddr long local 24-bit AppleTalk address
54 routerAddr long 24-bit address of router
58 numOfPHs word maximum number of protocol handlers
60 numOfSkts word maximum number of static sockets
62 numNBPEs word maximum number of concurrent NBP requests
64 ntQueue long pointer to registered names table
68 LAlength word length in bytes of data-link address (extended networks only)
70 linkAddr long pointer to data-link address buffer (extended networks only)
74 zoneName long pointer to zone name buffer

26 csCode word always setSelfSend
28 newSelfFlag byte flag that turns intranode delivery on or off
29 oldSelfFlag byte flag that reports the previous state of intranode delivery, whether

it was on or off

noErr 0 No error
paramErr –50 Version number is too high
portInUse –97 Driver open error code indicating that the port is in use
portNotCf –98 Driver open error code indicating that the parameter RAM is not configured

for this connection
noMPPErr –3102 The .MPP driver is not installed
2-28 Summary of AppleTalk Utilities

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to AppleTalk TOC
	 Introduction to AppleTalk
	 AppleTalk Utilities TOC
	AppleTalk Utilities
	About the AppleTalk Utilities
	Using the AppleTalk Utilities
	Determining Whether AppleTalk Phase 2 Drivers Are ...
	Getting Information About the .MPP Driver and the ...
	Getting the Address of Your Node or Your Local Rou...
	Sending Packets to Applications and Processes on Y...
	Selecting a Node in the Server Range

	AppleTalk Utilities Reference
	Data Structures
	MPP Parameter Block

	Routines
	Obtaining Information About the .MPP Driver and th...
	Enabling Intranode Delivery of DDP Packets
	Getting the Addresses of Your Node and Local Inter...
	Opening and Closing Drivers

	Summary of AppleTalk Utilities
	Pascal Summary
	Constants
	Data Types
	Routines

	C Summary
	Constants
	Data Types
	Routines

	Assembly-Language Summary
	Constants
	Data Structures

	Result Codes

	 Name-Binding Protocol (NBP) TOC
	 Name-Binding Protocol (NBP)
	 Zone Information Protocol (ZIP) TOC
	 Zone Information Protocol (ZIP)
	 AppleTalk Data Stream Protocol (ADSP) TOC
	 AppleTalk Data Stream Protocol (ADSP)
	 AppleTalk Transaction Protocol (ATP) TOC
	 AppleTalk Transaction Protocol (ATP)
	 Datagram Delivery Protocol (DDP) TOC
	 Datagram Delivery Protocol (DDP)
	 AppleTalk Session Protocol (ASP) TOC
	 AppleTalk Session Protocol (ASP)
	 AppleTalk Filing Protocol (AFP) TOC
	 AppleTalk Filing Protocol (AFP)
	 Link-Access Protocol (LAP) Manager TOC
	 Link-Access Protocol (LAP) Manager
	 Ethernet, Token Ring, Fiber Distribution Data Interface TOC
	 Ethernet, Token Ring, Fiber Distribution Data Interface
	 Multinode Architecture TOC
	 Multinode Architecture
	 Glossary
	 Index
	 Colophon

