
IC 520 - Apple Script Manager Q&As 1 of 5

M.IC.ScriptMgr.Q&As

New Technical Notes

Developer Support

ð
®Macintosh

IC 520 - Script Manager Q&As
Interapplication Communication

Revised by: Developer Support Center September 1993
Written by: Developer Support Center October 1990

This Technical Note contains a collection of Q&As relating to a specific topic—questions
you’ve sent the Developer Support Center (DSC) along with answers from the DSC engineers.
While DSC engineers have checked the Q&A content for accuracy, the Q&A Technical Notes
don’t have the editing and organization of other Technical Notes. The Q&A function is to get
new technical information and updates to you quickly, saving the polish for when the
information migrates into reference manuals.

Q&As are now included with Technical Notes to make access to technical updates easier for
you. If you have comments or suggestions about Q&A content or distribution, please let us
know by sending an AppleLink to DEVFEEDBACK. Apple Partners may send technical
questions about Q&A content to DEVSUPPORT for resolution.

String2Date and Date2Secs conversion surprises
Date Written: 8/19/91
Last reviewed: 6/14/93

String2Date and Date2Secs treat all dates with the year 04 to 10 as 2004 to 2010 instead of
1904 to 1910.

This is correct; the Script Manager treats two-digit years less than or equal to 10 as 20xx dates
if the current year is between 1990 and 1999, inclusive. Basically, it just assumes that you’re
talking about 1-20 years in the future, rather than 80-100 years in the past. The same is true of
two-digit 9x dates, when the current year is less than or equal to xx10. Thus, in 2003, the date
returned when 3/7/94 is converted will be 1994, not 2094. This is all documented in
“Worldwide Development: Guide to System Software,” available from APDA.

Using FormatXToStr and FormatStrToX with Pascal switches
Date Written: 12/10/90
Last reviewed: 6/14/93

Why do the FormatXToStr and FormatStrToX Script Manager routines stop working when I
use the Pascal -MC68881 switch?

Macintosh Technical Notes

2 of 5 IC 520 - Apple Script Manager Q&As

M.IC.ScriptMgr.Q&As

Regular SANE extended numbers are 10 bytes long while MC68881 extended numbers are 12
bytes long, and the extra two bytes are right in the middle of every 68881 extended number.
Appendix G “The SANE Library” in the Macintosh Programmer’s Workshop (MPW) Object
Pascal version 3.1 manual goes into detail about this. The FormatX2Str and FormatStr2X
parse the extended number you pass them directly, and they can only parse 10-byte extended
numbers. Fortunately, you can still use the -mc68881 option with these routines as long as you
convert any extended numbers to 80-bit extended numbers before passing them to
FormatX2Str and FormatStr2X. The SANE.p unit has routines to do this called X96toX80 and
X80toX96 (incorrectly documented as X96to80 and X80to96 in the MPW Object Pascal
manual). Because the extended80 and extended96 types aren’t equivalent to the extended type
as far as Object Pascal is concerned, you have to redeclare FormatX2Str and FormatStr2X to
take these types. You can do this as follows:

FUNCTION FormatX2Str80 (x: extended80;
 myCanonical: NumFormatString;
 partsTable: NumberParts;
 VAR outString: Str255): FormatStatus;
 INLINE $2F3C,$8210,$FFE8,$A8B5;

FUNCTION FormatStr2X80 (source: Str255;
 myCanonical: NumFormatString;
 partsTable: NumberParts;
 VAR x: extended80): FormatStatus;
 INLINE $2F3C,$8210,$FFE6,$A8B5;

Call these routines instead of the originals. To call FormatX2Str80, all you have to do is this:

VAR
 x: extended80; {96-bit extended number}
 myCanonical: NumFormatString;
 partsTable: NumberParts;
 outString: Str255

result := FormatX2Str80 (X96toX80 (x), myCanonical, partsTable, outString);

Calling FormatStr2X80 is just slightly more complicated because the extended number is
passed by reference:

VAR
 x: extended; {96-bit extended number}
 x80: extended80; {80-bit extended number}
 source: Str255;
 myCanonical: NumFormatString;
 partsTable: NumberParts;

x80 := X96toX80 (x);
result := FormatStr2X80 (theString, realCanon, PartsTable, x80);
x := X80toX96 (x80);

You should find that these calls now work properly with the -mc68881 option set. This of
course means that you’ll need two versions of the source code; one with the calls to convert
between 96-bit and 80-bit extended numbers for use with the -mc68881 option and another one
which just uses plain old 80-bit extended numbers for use when the -mc68881 option is turned
off.

Developer Support Center September 1993

IC 520 - Apple Script Manager Q&As 3 of 5

M.IC.ScriptMgr.Q&As

FormatX2Str strings
Date Written: 10/9/91
Last reviewed: 6/14/93

Using the Script Manager to convert numbers to strings and vice versa, in any language,
what’s the best way to create the string to pass to FormatX2Str? Will strings using the
characters: “#” or “0” or “.” or “,” work no matter what script is currently running, and if not,
what can I do?

The number format string and canonical number format string mechanisms that you use with
FormatX2Str and its kin is a strange design, for exactly the reason that you asked about. The
number format string (the one with the characters such as “#” and “0”) does not necessarily
work right regardless of the current script. In fact, it doesn’t even necessarily work right
between localized versions within one script system. The canonical number format string does
work between localized systems and between script systems. The strange thing is there’s an
easy way to store number format strings (usually in a 'STR ' resource), but no obvious way to
store canonical number format strings. Here’s what you can do when converting between
numbers and strings:

When you convert a number format string to a canonical number format string with Str2Format
on a U.S. system, it converts it from something like “###.###” to a canonical number format
string that looks something like, “three digits, a decimal point, and three digits.” On a German
system, that same number format string would be converted to “three digits, a thousands
separator, and three digits.”

What you can do to get around this is to save the canonical number format string in a resource
instead of the number format string. The canonical string stores things in a language- and
script-independent way. Create this resource by writing a trivial utility program that takes a
number format string and calls Str2Format to convert it into a canonical number format string,
and then copy this into a handle and save it as a resource of a custom type, like 'NUMF'. In
your real program, load the 'NUMF' resource, lock it, and then pass the dereferenced handle to
FormatX2Str and FormatStr2X.

You can see this done in the ProcDoggie Process Manager sample from the 7.0 Golden Master
CD. Take a look at the SetUpProcessInfoItems procedure in UProcessGuts.inc1.p file. You’ll
see that the 'NUMF' resource is loaded, locked, and then passed to FormatX2Str. The result is
displayed in the Process Information window.

If your program is localized by nonprogrammers, then you might want to provide the utility
that converts a number format string to a canonical number format string resource just in case
they have to change the entire format of the string. Then they can install the new 'NUMF' (or
whatever you choose) resource as part of the localization process.

Code for truncating a multi-byte character string
Date Written: 1/24/92
Last reviewed: 6/14/93

I create a Macintosh file name from another file name. Since I am adding information to the
name, I must make sure that it is within the 31 chars maximum allowed by the operating

Macintosh Technical Notes

4 of 5 IC 520 - Apple Script Manager Q&As

M.IC.ScriptMgr.Q&As

system. What I need is the equivalent of the TruncText command, except instead of dealing
with pixel width, I want the width to be number of characters (31). I can trunc myself, but I’d
rather do a proper “smTruncMiddle” and have it nicely internationalized.

If you’re going to be adding a set number of bytes to the end of a existing string and you don’t
want the localized ellipsis (from the 'itl4' resource) between the truncated string and your
bytes, then you can use this routine:

PROCEDURE TruncPString (VAR theString: Str255; maxLength: Integer);
{ This procedure truncates a Pascal string to be of length maxLength or }
{ shorter. It uses the Script Manager charByte function to make sure }
{ the string is not broken in the middle of a multi-byte character. }
 VAR
 charType: Integer;
 BEGIN
 IF Length(theString) > maxLength THEN
 BEGIN
 charType := CharByte(@theString[1], maxLength);
 WHILE ((charType < 0) OR (charType > 1)) AND (maxLength <> 0) DO
 BEGIN
 maxLength := maxLength - 1;
 charType := CharByte(@theString[1], maxLength);
 END;
 theString[0] := chr(maxLength);
 END;
 END;

If you want the localized ellipsis (from the 'itl4' resource) between the truncated string and
your bytes, or you want the localized ellipsis in the middle of the combined strings truncated to
a specific length, then you can use this routine:

FUNCTION TruncPString (maxLength: Integer; VAR theString: Str255;
truncWhere: TruncCode): Integer;
{ This function truncates a Pascal String to be of length maxLength or }
{ shorter. It uses the Script Manager TruncString function which adds }
{ the correct tokenEllipsis to the middle or end of the string. See }
{ Inside Macintosh Volume VI, pages 14-59 and14-60 for more info. }
 VAR
 found: Boolean;
 first, midPoint, last: Integer;
 tempString: Str255;
 whatHappened: Integer;
 BEGIN
 found := FALSE;
 first := 0;
 last := TextWidth(@theString[1], 0, Length(theString));
 IF Length(theString) > maxLength THEN
 BEGIN
 WHILE (first <= last) AND NOT found DO
 BEGIN
 tempString := theString; { tempString gets destroyed every }
 { time through }
 midPoint := (first + last) DIV 2;
 whatHappened := TruncString(midPoint, tempString, truncWhere);
 IF whatHappened < smNotTruncated THEN
 BEGIN { ERROR, bail out now }
 TruncPString := whatHappened; { return error }
 Exit(TruncPString);

Developer Support Center September 1993

IC 520 - Apple Script Manager Q&As 5 of 5

M.IC.ScriptMgr.Q&As

 END
 ELSE IF Length(tempString) = maxLength THEN
 found := TRUE
 ELSE IF Length(tempString) > maxLength THEN
 last := midPoint - 1
 ELSE
 first := midPoint + 1;
 END;
 theString := tempString;
 TruncPString := whatHappened; { will always be smTruncated }
 { in this case }
 END
 ELSE
 TruncPString := smNotTruncated; { the string wasn't too long }
 END;

Character type and subtype values within the Kanji system
Date Written: 11/17/89
Last reviewed: 12/17/90

What are the values of character type and subtype with the Macintosh Kanji system?

For Roman, these are the values of character type:

 Punctuation 0
 ASCII 1
 European 7

For KanjiTalk, the values are the same as Roman, with the addition of:

 Katakana 2
 Hiragana 3
 Kanji 4
 Greek 5
 Russian (Cyrillic) 6

In Roman, the subtype field is interpreted as:

 Normal punctuation 0
 Numeric 1
 Symbols 2
 Blanks 3

The KanjiTalk subtype values are the same as Roman except if the character type is Kanji, in
which case the subtype field takes these values:

 JIS Level 1 0
 JIS Level 2 1
 JIS User Character 2

Finally, for KanjiTalk, the character direction field is replaced by the In-ROM field. It is 1 if the
character is in the ROM card and 0 otherwise.

	String2Date and Date2Secs conversion surprises
	Using FormatXToStr and FormatStrToX with Pascal switches
	FormatX2Str strings
	Code for truncating a multi-byte character string
	Character type and subtype values within the Kanji system

