Appearance 1.0

21 February 1997

Do not distribute—Apple Confidential 1

Disclaimer

This documentation describes prerelease software and is subject to change. Some
sections of this documentation describe aspects of Appearance that won't appear
until after Tempo a2. See the release notes on Appearance 1.0 for details.

Overview

This document describes the new toolbox elements for Appearance 1.0. This is not a
complete specification of behaviors and appearances.

Many people relate Appearance to switchable interface themes. The switching
mechanism is not in this first release of Appearance, but is slated for a future
version. Appearance 1.0 lays the groundwork for introducting switchable themes
by providing the features that themes require, and should help developers ensure
their applications run correctly with different themes. By adopting Appearance, an
application will be theme-ready.

Goals

The main goal of Appearance is to modernize the MacOS interface, while at the
same time setting ourselves up for the advent of switchable themes, as mentioned
above. We also want to make it easier to develop applications for the MacOS. We
accomplish these goals by doing the following:

= provide many new control types previously unavailable on the
MacQOS, such as sliders, tabs, and group boxes.

= allow applications to adopt these new controls directly so they
will automatically be theme savvy when theme switching is
available.

= provide aricher environment for controls to allow multicolored
backgrounds, embedding, and correct drawing order and hit
testing.

Deployment

Extension
Appearance 1.0 is delivered as a system extension.

Do not distribute—Apple Confidential 2

Appearance APIs

APIls mentioned in this document are delivered as classic 68K trap-based routines,
CFM-68K routines, and CFM-PPC routines. The extension contains the necessary
shared libraries to link with.

System-Wide Appearance

Appearance is by default system-wide. This means that all applications that are
running automatically get the grayscale look. The new defprocs introduced with
Appearance have different resource IDs (and hence proc IDs) than the classic
System 7 controls. To cause applications to use the new Appearance defprocs, we
implement a set of 'mapper' CDEFs. When an application asks for WDEF 0, it gets
our mapper WDEF instead.

Compatibility Mode

For compatibility reasons, it is possible to turn off the system-wide aspect of
Appearance in the Appearance Settings control panel. This has the effect of putting
the system back into the classic System 7 look. A restart is required for this change.
When in this mode, the mappers simply do not install themselves, causing any
request for WDEF 0, for example, to fall on the System file. The classic WDEF 0 is
returned, as expected.

Applications that adopt the new Appearance defprocs directly will continue to
have a grayscale look when system-wide appearance is off. Direct adopters don't
need the mappers, so they get the new look directly and can still rely on the
enhanced functionality of the new defprocs being there.

Gestalt Selector

On startup, the extension installs a gestalt selector to indicate that Appearance is
running. The result returned is a bit field with the following possible values:

enum
{
gest al t Appear anceExi sts = 0,
gest al t Appear anceConpat Mode =1

};

The gest al t Appear anceExi st s bit indicates appearance is running.

gest al t Appear anceConpat Mode indicates that we are running in compatibility mode
and are using the system 7 defprocs, i.e. System-Wide Appearance in the
Appearance Settings control panel is off.

Do not distribute—Apple Confidential 3

Control Manager Extensions

Control Feature Flags
The Control Manager maintains a bit field which represents the feature set of a
specific control. The features possible are listed below:

enum

{
kCont r ol Support sGhosti ng =1 << 0,
kCont r ol Support sEmbeddi ng =1 << 1,
kCont r ol Support sFocus =1 << 2,
kCont rol Vant sl dl e =1 << 3,
kCont r ol \ant sActi vat e =1 << 4,
kCont r ol Handl esTr acki ng = 1 << 5,
kCont r ol Support sDat aAccess = 1 << 6,
kCont r ol HasSpeci al Backgr ound =1 << 7,
kCont r ol Get sFocusOnd i ck =1 << 8,
kCont r ol Support sCal cBest Rect =1 << 9,
kCont r ol Support sLi veFeedback =1<< 10

b

As a prerequisite to most of the following, a control which wishes to support the
new features we'll be explaining should support the kControlMsgGetFeatures
message. A CDEF should return as its result a bitfield comprised of the bits
representing the features you support. These bits are the simple OR-ing of the
constants shown above. Here is an example:

in your main CDEF function somepl ace. ..

case kControl MsgGet Feat ures:
result = kControl Support sDat aAccess |
kCont r ol Want sl dl e;
br eak;

This control would both support data access and would like to receive idle events.
Both are explained below.

To obtain a control's features, the GetControlFeatures routine is available.
New Control Messages

To provide for the extended functionality of controls, the following messages have
been added:

enum

{
kCont r ol MsgDr awGhost = 13,
kCont r ol MsgCal cBest Rect = 14,
kCont r ol MsgHandl eTr acki ng = 15,
kCont r ol MsgFocus = 16,

Do not distribute—Apple Confidential 4

kCont r ol MsgKeyDown = 17,
kCont rol Msgl dl e = 18,
kCont r ol MsgGet Feat ur es = 19,
kCont r ol MsgSet Dat a = 20,
kCont r ol MsgGet Dat a = 21,
kControl MsgActi vate = 22,
kCont r ol MsgSet UpBackgr ound = 23,
kCont r ol MsgCal cVal ueFr onPos =24

}s

Tagged Control Data

There is a definite need to have read and write access to different attributes of a
control. In most cases, these attributes are unique to a particular control. To
facilitate accessing this data without exposing the implementation of a CDEF, there
are a series of routines to allow you to get and set particular pieces of information
in a CDEF. These routines are listed in the Control Manager Reference section
below.

To advertise that a CDEF supports data access, it should return
kControlSupportsDataAccess as one of its feature bits in response to the
kControlMsgGetFeatures message. If you then call the new GetControlData or
SetControlData routines, it will then be called with the kControlMsgSetData and
kControlMsgGetData messages with the ‘param’ parameter holding a pointer to the
following structure:

struct Dat aAccessRec

{
ResType tag;
Control Part Code part;
Si ze si ze;
Ptr dat aPtr;
b

The tag field indicates the name of the piece of data we want, for example, we
might want the transform of a bevel button's image. The part field indicates what
part of the control this applies to, it is usually 0, meaning the entire control. For
controls like tabs, it might refer to a specific tab. The size and dataPtr generally
specify a buffer and how long it is. These two fields are used specially during the
GetData messages. If the dataPtr is nil, the information should not be copied in.
This tells the GetData handler that we are merely interested in the size of the data.
In all calls to GetData, the CDEF should fill in the actual size of the data in the size
field before returning.

It is the responsibility of the CDEF writer to return errDataNotSupported if the tag is
unknown or invalid (perhaps you don't want people to set a particular value). The CDEF
returns the error code as the function result of the CDEF itself.

Do not distribute—Apple Confidential 5

Here's an example of a CDEF responding to a GetData message. Let's assume that the
piece of data in question in a short integer:

sonepl ace in your CDEF nmin...

case kControl MsgGet Dat a:

{
OSEr r err;
Dat aAccessPtr ptr;
ptr = (DataAccessPtr)param
if (ptr->tag == kMyW zzyDat aTag)
if (ptr->dataPtr)
(SInt16)info->dataPtr =
Get YW zzyDat a() ;
ptr->size = sizeof(SIntl1l6);
result = noErr;
}
el se
result = errDataNot Supported;
}
br eak;

nore stuff here ...

/* return the result */
return result;

}

Notice how we return errDataNotSupported for an invalid tag. We also fill in the
size regardless of whether dataPtr is nil or not. This is the proper way to handle this
message.

Indicator Ghosting

Scroll Bars and Sliders, while tracking the indicator, drag a ghost image of the
indicator around instead of the old dotted outline. To accomplish this, these
controls return the feature flag kControlSupportsGhosting in response to a
kControlMsgGetFeatures message. When TrackControl is called to track the
indicator, it checks this feature flag and if set, calls the control with the message
kControlMsgDrawGhost, with the param parameter set to a region handle
indicating where the ghost indicator should be drawn. This region is a copy of the
indicator region offset by some amount, depending on where the user dragged it
to.

Do not distribute—Apple Confidential 6

Live Feedback

Live feedback is the more generic term for live scrolling. Scroll bars and sliders
support live feedback thru different variants. When the right variant is chosen,
these controls return the kControlSupportsLiveFeedback bit as part of their feature
bit set in response to the kControlMsgGetFeatures message.

When TrackControl is called, it checks to see if this feature is supported, and that
there is an actionProc installed (via SetControlAction). If so, it tracks the indicator,
calling the CDEF with a kControlMsgCalcValueFromPos message whenever the
user moves the mouse. The '‘param' parameter contains a handle to the indicator
region being dragged. The CDEF should respond by recalculating its value based
on the new position of the region passed in. Once recalculated, the CDEF should
redraw itself, making sure it draws the indicator in the position the region passed
in represents. The region should NOT be changed. It is very important to draw
exactly where the indicator is currently located, otherwise the feedback will behave
improperly. Drawing where the region is also makes for a very smooth scrolling
experience. When the user let's go of the mouse button, you will be asked to draw
again. At this time, you can recalculate your correct position and redraw.

Calc Best Rectangle

In order to make group boxes work right, it was necessary to add the ability to ask
check boxes and popups to calculate the best size so that they could be placed
properly at the top of the group box. A control advertises that they support the
kControlMsgCalcBestRect message by setting the right bit in their feature flags
(kControlSupportsCalcBest). When called with this message, a CDEF is passed the
address of a rectangle in its ‘param’ parameter. A control should calculate its best
width and height and adjust the rectangle accordingly. It should merely set the
bottom and right fields of the rectangle to the appropriate values. It should also
return the baseline for where the text should line up based off the bottom of the
rectangle (normally negative) as the CDEF function result.

With this message, a control's rectangle can automatically be sized to just fit the
check box icon and the text, for example. Currently push buttons, check boxes and
popup buttons are the only controls to support this message. In fact the
StandardAlert routine (mentioned later) uses this to help autosize the push buttons
in the alert.

Handle Tracking

Sometimes it is desirable to not have the default tracking behavior that
TrackControl provides. In particular, if a control needs to do special tracking, such
as the bevel buttons need when displaying a menu, the only way to do this is to
hook into autoTrack. In this case, TrackControl will always return the part code
that was initially hit, even if the user tracked off the menu. This is often
undesirable. Also, controls like Bevel Buttons have toggling and sticky behavior,
where they actually modify their own values after tracking.

Do not distribute—Apple Confidential 7

To allow for this special behavior, a control can perform all aspects of tracking by
advertising it wishes to do so by returning kControlHandlesTracking in the
attributes returned via a GetControlFeatures call. With this bit set, the control is
called when TrackControl or the new routine, HandleControlClick, is called.
(HandleControlClick is virtually identical to TrackControl, only it allows modifier
keys to be passed in.)

A structure of type ControlTrackingRec is passed in param when the CDEF is
called with the kControlMsgHandleTracking message. The structure looks like this:

struct Control Tracki ngRec

{
Poi nt startPt;

Sl nt 16 nodi fiers;
Cont r ol Acti onUPP acti on;

i

The action parameter should be called during tracking. The value of action can be a valid
procPtr, nil, or -1. -1 indicates the control should do what it wants to if it actually has some
special autoTrack behavior it wants to add. Most of the time, -1 would probably be treated
like nil, meaning do nothing.

When the CDEF is done tracking, it should return the part code that was hit, or
kControlNoPart if the user tracked off, etc. as the result code of the CDEF.

Focus

To accommodate the needs of focusing onto a control for keyboard input, there is a
new keyboard focus messaging mechanism. A control tells the Control Manager it
wants to receive keyboard input by returning kControlSupportsFocus as part of its
feature bit set. When the control needs to be focused (which is determined by the
Control Manager or some other outside influence), the CDEF is called with a
kControlMsgFocus message, with param being the part code to focus. There are
some special part codes that can be passed in param:

enum
kFocusNoPar t = 0,
kFocusNext Par t = -1,
kFocusPr evPart = -2

i
typedef SInt16 FocusPart ;

The kFocusNoPart part code indicates the control should lose its focus. It might respond
by deactivating its text edit handle and erasing its focus ring.

The kFocusNextPart and kFocusPrevPart part codes indicate that the CDEF should
advance or reverse the focus to the next/previous sub-part. A date/time CDEF might
advance to the day or year part, for example.

Do not distribute—Apple Confidential 8

Alternatively, the CDEF might be asked to focus a specific part. It is up to the CDEF to
decide how to behave in this case. Most controls only have one part and simply focus
themselves.

In response to a focus message, the CDEF should return the part code that actually was
focused. If it is out of parts, i.e. it has run off the end or beginning of its subparts, it should
return KFocusNoPart. It should also return kFocusNoPart if called with kFocusNoPart.
This tells the focusing mechanism to jump to the next control that supports focus.

Some controls actually want the focus when clicked, while others do not. To make sure a
CDEF gets the focus with a click, it needs to set the kControlGetsFocusOnClick feature bit
in response to a kControlMsgGetFeatures message. With that bit set, if the control is
clicked on, whatever part is returned by a call to TestControl should be passed in as the
part code for focusing.

Idle Processing

A CDEF can specify that it wants to get idle time by OR-ing the constant
kControlWantsldle into its feature bits. When this is set, it is called with the
kControlMsgldle message whenever someone calls IdleControls on the window the
control is in. The param parameter is undefined. The chasing arrows and
indeterminate progress indicator controls use idle time to do their animation.

Embedding

If a control is an embedder, i.e. it is designed to have other controls and widgets
within its contents, it should set the kControlSupportsEmbedding flag in response
to a GetFeatures call. This lets the Control Manager know to treat the control
differently. See the section on Control Embedding below.

Activate Events

It is often desirable for a CDEF to know that it is becoming deactivated at a high
level. The only way for a CDEF to determine such a change in state in the past was
to check the current hilite state against a previously saved hilite state on each call to
draw. The kControlMsgActivate message eliminates the need to do this. When a
control is going to be deactivated, its feature set is checked to see if its
kControlWantsActivate bit is set. If so, it is called with the kControlMsgActivate
message with the value of param being either 1 or 0, with 1 indicating the control is
becoming active. The control can do any special processing it needs, such as
deactivating its TEHandle or ListHandle.

Background Color

Some controls that embed other controls sometimes have their own fill color. This
may or may not be different than the current window background color. We need
to make sure that any controls that are drawn on top of it can erase to the correct
color using EraseRect or EraseRgn. It is very important that these two calls work, as
a control might call toolbox routines such as TETextBox, which internally call
EraseRect.

Do not distribute—Apple Confidential 9

To make sure the background is always correct when drawing a control, before drawing
it, the Control Manager works its way backwards from the control to be drawn, checking
to see whether any control behind it has its kControlHasSpecialBackground feature bit is
set. If it is, the control is asked to set up its background color and/or pattern. The Control
Manager saves and restores the graphics state before and after the drawing. This way the
CDEF can draw as it always has, using standard routines. The CDEF should never
assume, however, that the background is a flat color and not a pattern, so it is wise to call
BackPat with a white pattern before drawing.

Special Font Styles

It is now possible, thru the new data access support, to set the text style of a control.
All controls that display text have been written to support this feature. This allows
for easier handling of control fonts by not forcing frameworks etc. to have to use
the window font variant and constantly muck with the font of the window to make
sure everything draws right. Since so many controls support this piece of tagged
data, there is an API to actually set this information: SetControlFontStyle.

There is also a new resource type (‘'dftb’) which is automatically read in by the
Dialog Manager to facilitate a data-driven approach to setting font information for
all controls in a dialog. This resource simply consists of an array of
ControlFontStyleRecs. This resource is meant to replace the ictb, since the old
control color table information is ignored under Appearance. Also, ictbs don't allow
font specification for controls, just edit and static text. When this new resource is
read in, the control font styles are set, and the resource is then purged.

Control Embedding

Overview

We have introduced the concept of a containment hierarchy to the Control
Manager to help impose drawing and hit testing order based on visual
containment. Standard control drawing order is the order of the controls in the
control list of a window, which is backward from the order that items are added to
awindow. This is due to the fact that the Control Manager adds controls at the
head of the list, creating a push-down stack of controls.

A hierarchy is a very useful method of making sure embedder controls draw before
their embedded content. It also is helpful in doing an "inside-out" hit testing
function to determine the most deeply nested control that is hit by the mouse.
Other advantages to this hierarchy are helping to correctly setting up a control's
background color, as mentioned in the Background Color section above (we can
easily know what's 'behind' something), and helping with keyboard focus.

Do not distribute—Apple Confidential 10

Root Control

To enable embedding in a window, a window needs to have a root control created
for it. This control merely serves as the top level of the containment hierarchy for its
window. No embedding can take place until a call to CreateRootControl is
successfully made. Once created, the root can be retrieved by calling
GetRootControl. Once a root is created, all controls created after that are
automatically added into the root. If any controls exist prior to calling
CreateRootControl, an error is returned and the root is not created. The root control
is implemented as a User Pane, one of the new CDEFs added with Appearance.

Embedding

Embedding of controls is accomplished by two routines, EmbedControl and
AutoEmbedControl. EmbedControl tells the Control Manager to embed one control
specifically into another. AutoEmbedControl tells the Control Manager to find the
most likely container for the control based on where it is compared to what else is
in the window. If a control is visually within a group box, for example, it will be
embedded in that group box automatically with AutoEmbedControl, provided the
group box already exists (see the DITL Ordering section, below).

New routines are available to correctly deal with the hierarchy, and classic routines have
been changed to support this new construct. Consult the API section at the end of this
document for specifics.

DITL Ordering

The DITL ordering plays multiple roles with an embedding hierarchy. First, it helps
determine what gets embedded in what. As items are added to a dialog during
dialog creation, controls that exist in the window (because they've already been
created), can be valid target containers for any new controls that are created,
provided they support embedding. It is therefore important to control the order
that things are placed in the DITL. The large, embedder controls should be at the
beginning. Smaller ones should follow. So you'd add your tab control first, and
then follow it with some radio buttons, etc. Because the tab control would be
created and already in place, the radio buttons can then be autoembedded with the
tab control, as long as they were actually contained within it visually.

DITL ordering also affects focus ordering. The default focus order is the order
things are added into the hierarchy. Future versions of the toolbox will most likely
support other methods of focusing.

Do not distribute—Apple Confidential 11

Latency

To properly handled embedded content, it is necessary to have a certain latent state
when dealing with the enabled state and visibility of a control. For example,
consider a control within a group box. Disabling the group box disables the control
as well. When the group box is reenabled, the controls within should reenable if
they were enabled originally. If an embedded controls was disabled, it should
remain disabled.

To handle this we have introduced the concept of latency. When disabling an
embedder, any embedded content which is enabled becomes latent, or ‘pending
enabled'. This lets the Pane Manager know to reenable them when the embedder
becomes active again. This same concept applies to visibility as well. Clients should
never need to know whether something is latent or not - every thing will just seem
to work.

CONTROL DEFINITIONS

Check Boxes, Radio Buttons and Push Buttons

There is a mechanism to specify that a push button get the default appearance, i.e.
it is drawn with a default ring around it. This is accomplished thru the data access
mechanism.

Bevel Buttons

Bevel buttons are the most complex new control type. There are a multitude of
states, along with three different behaviors. On top of this are three different bevel
size choices, and the ability to display an icon, text, or a picture. It is also possible to
have the button display a combination of text and a graphic.

Bevel buttons allow the caller to control the content type (pict/icon/etc.), the
behavior (pushbutton/toggle/sticky), and the bevel size. The caller also has the
option of attaching a menu. When a menu is present, the caller can specify which
way the popup arrow is facing (down or right).

This is all made possible by overloading the Min, Max, and Value parameters for
the control, as well as adjusting the variant code. A similar approach is used in the
current popup menu control.

Parameter Meaning

Min Hi byte = Behavior; Lo byte = content type.
Max ReslD for resource-based content types.
Value MenulD to attach; 0 = no menu, please.

The variant code is broken down into two halves. The low 2 bits control the bevel
type. Bit 2 controls the popup arrow direction (if a menu is present) and bit 3
controls whether or not to use the control's owning window's font.

Do not distribute—Apple Confidential 12

The three behaviors of bevel buttons are push button, toggle, and sticky. The push
button behavior makes bevel buttons pop back up after clicking them, just like the
normal push button control. The toggle behavior allows the buttons to toggle state
automatically when clicked (from on to off). Sticky buttons never pop up after
clicking them. They stay down permanently, until the client calls
SetControlValue(0) on them. These are useful in tool palettes. All of these behaviors
are handled by the CDEF by setting itself up for self tracking when initialized. The
high byte of the Min parameter contains the behavior of the button.

It is also possible to mark a button as having multi-valued menus. This means that
the button does not maintain the menu value as it normally would (i.e. only one
item can be selected at a time). This essentially allows a user to toggle entries in a
menu and have multiple items checked. In this mode, the
GetBevelButtonMenuValue routine returns the value of the menu item last
selected.

One last behavior is to offset the contents while pressed. Some people believe it
gives it a more realistic button feel.

The four types of data that can be displayed in a bevel button are icon, picture, text, and
Clcon. The IDs for the icon/pict resource are passed in the Max parameter. The content
type is passed in the low byte of the Min parameter. The variant code
kControlUsesOwningWindowsFontVariant applies when text content is used.

An example call:
control = NewControl (w ndow, &bounds, "\p", true, O,
kCont ent | conSui t eRes + kBehavi or Toggl es,
nyl conSui tel D, bevel Butt onSnal | Bevel Proc, OL);

Attaching a menu:

control = NewControl (w ndow, &bounds, "\p", true, kM/Menul D,
kCont ent | conSui t eRes, nyl conSuitel D,
bevel But t onSnal | Bevel Proc + kBevel Butt onMenunRi ght ,
oL);

This will attach the menu with ID kMyMenulD to the button, with the popup
arrow facing right. This also puts the menu to the right of the button.

Bevel buttons with menus actually have two values: the value of the button
(on/off), and the value of the menu. The menu value can be extracted with the
routine GetBevelButtonMenuValue.

One can mix graphics and text by selecting a graphical content type while providing a
control title.

Do not distribute—Apple Confidential 13

It is possible to align and place graphic and text content in special ways. For
example, text buttons can have their text aligned to the left, right, centered, or use
the current script direction. Graphic contents can be aligned likewise, but can also
be aligned to the top, bottom, left, right, and all four corners of the button. With
each of these alignment options, you can specify an offset from the particular side
you are aligning the element to. For example, you can specify that the graphic be
aligned to the top of the button, but allow 4 pixels of space.

Text placement can be specified as well if you are combining text and a graphic.
You can specify whether the text should go above, below, to the left, or to the right
of the graphic. This can be combined with the graphic alignment property to create
a button where the graphic and text is left justified with the text below the graphic.
You can also use a script direction placement in combination with a script direction
graphic alignment. This means it is possible to have a graphic on the left with the
text to the right in left-to-right systems, and the graphic on the right with the text to
the left of it on right-to-left systems. All of this is automatic.

All bevel button private data is hidden. Accessor routines get and set values.

The caller can create its own control and then set the content to an existing handle to an
icon suite, etc., using the accessors. Resource-based content is owned by the control, while
handle-based content is owned by the caller. The CDEF will not try to dispose of handle-
based content.

The bevel button can return 3 possible part codes: kControlNoPart, kControlButtonPart,
and kControlMenuPart. The most complex case is when a Menu is attached. If the user
selects a menu item, the part code kControlMenuPart is returned. If the user tracks out of
the menu, but is still over the button when the mouse is released, the kControlButtonPart
code is returned. If the user tracks outside of the button and the menu, kControlNoPart is
returned. The button always returns kControlNoPart when it is disabled, as is expected.

Chasing Arrows

Chasing arrows are a small CDEF. Animation is handled on idle, which this CDEF
sets itself up to be called with an idle message (when IdleControls is called) by OR-
ing in the kControlWantsldle bit into its feature flags.

Clock

This CDEF implements either an editable or non-editable time/date field, such as
can be found in the Date & Time control panel. It is focusable and keyboard aware.
The little arrows it uses to allow manipulating a particular portion of the date or
time are actually coded as part of this control, i.e. it does not use the actual Little
Arrows control. This is to make sure the little arrows will never get the focus on
their own, which will happen in future releases.

Do not distribute—Apple Confidential 14

Disclosure Triangle

This is a fairly straightforward CDEF with two possible values, 0 and 1 for
collapsed and expanded, respectively. There is a variant code bit to select between
right- and left-facing versions. There is also a variant which allows autotracking to
take the burden off application programmers. This control maintains its last value,
so it knows what transition is taking place when a SetControlValue is called on it
(expanded to collapsed, or vice versa). A function is available to set the last value of
the control to make sure animation is set up properly.

Editable Text Control
A CDEF implements editable text complete with theme-savvy border and focus
rings.

This control advertises that it should be included in the Dialog Manager focus
chain by setting a flag in the control's feature flags: kControlSupportsFocus. It has
two variants: the normal variant is used in a window (non-dialog) situation, and in
this state it maintains its own TEHandle. The second variant is used in dialogs, so
that it shares the dialog's common text handle, just like the edit text dialog
primitive does. This is to provide maximum compatibility, and to make sure that
routines like DIgCut, etc. still work, since they are implemented as glue routines in
MacOS.lib. They assume the text edit handle in the dialog record is valid and up-to-
date.

This control can also have a key filter attached to it to handle filtered input. The
filter is attached via the Data Access routines.

There is a password variant of this control which is script manager-savvy. The clear
text of the password can be gotten thru GetControlData. The tag is
kEditTextPasswordTag.

Group Box

The primary group box is implemented as a CDEF with variants for no header,
check box header, text header, and popup header. The part code returned from
TestControl or TrackControl depends on what type of header is in use. If the
header is text, this always returns kControlNoPart. If it is a check box, it will return
kControlButtonPart if the check box was hit. If it is a popup menu, it will return
kControlButtonPart if the mouse was released over the button and
kControlMenuPart if an item in the menu was selected. If the user tracked
completely out of the control, kControlNoPart is returned.

Secondary group boxes are a variant with all the same options and a slightly
different group box line look.

It is up to the caller to perform any pane-switching when using a popup title
variant and the value of the popup changes. Likewise, the caller must
enable/disable contents if using a check box variant.

Do not distribute—Apple Confidential 15

Icon CDEF

This CDEF merely takes an ID to a cicn, ICON, or icon suite in its Value parameter
on creation and displays that icon in its contrlRect. After the control is initialized,
the value parameter is reset to zero.

There is a 'no track’ variant which tells it to just return the part hit immediately and
return, it doesn't actually track the mouse in this mode. This is used in dialogs
when the dialog has an embedding hierarchy and wants an icon. This control is
created with the no-track variant so that it behaves like it always has, i.e. clicking
on it doesn't track, but it does report a hit.

Image Well

A simple CDEF performs imaging for icons and picts. The control is controlled in
much the same way as the bevel button, but with fewer options and states. Menus
may not be attached. There is a checked state which displays a ring around the well
for a selected appearance. It is currently up to clients to implement any drag and
drop behavior.

Little Arrows

This simple CDEF acts like a subset of a scroll bar, i.e., it returns the part codes
kControlUpButtonPart and kControlDownButtonPart. Callers use
ControlActionUPPs (as with scroll bars) to be called back during tracking.

List Box

This CDEF allows clients to put a List Box into dialogs (or any window) with
minimal effort. An auxiliary resource type (‘ldes’) is used to provide the
information necessary to create the list. The ID of this resource is passed into the
Value parameter of the control when created. The Min, Max, and Value parameters
currently serve no purpose. Keyboard navigation is included for moving around
with the arrow keys. Double-clicking an item returns a special part code to make
you aware of such an action. There is a keyFilter available for this control.

Picture CDEF

This CDEF merely takes an ID to a PICT resource in its Value parameter on creation
and displays that picture in its contrlRect. There is a 'no track' variant which tells it
to just return the part hit immediately and return, it doesn't actually track the
mouse in this mode.

Popup Button

The popup button is special-cased to handle standard file dialogs. The first item in
the menu (which at presents displays the current directory) will be removed from
the menu during tracking. This is required by the change to the position of popup
menus. The special case can be readily determined by the control settings.

Do not distribute—Apple Confidential 16

A new kind of popup button allows better control by the caller. The existing
implementation makes many assumptions about the menu handle, its numbering, and its
inclusion in the menu list, which diminish its usefulness in modeless panels and other
contexts requiring closer control of the menu handle. A special menu ID (-12345) value
tells the control not to try to create the menu handle itself, to allow for a NULL menu
handle, and to insert the menu in the menu list with a unique 1D only for a short time
directly around the PopupMenuSelect call.

Setting the title width (Min) to -1 tells the popup button to auto-calculate the title width.

Popup Glyph
This is a simple CDEF with 4 variants that draws the popup arrow glyph. The
CDEF does no mouse tracking or hiliting and has no values.

Progress Indicator
Both determinate and indeterminate progress indicators are supported, and it is
possible for one mode to transition to the other.

Indeterminate progress is accomplished using the Data Access APIs to set the control's
indeterminate tag. From that point forward, the control will request idle events (by setting
its kControlWantsldle feature bit), which is what drives the animation. By resetting the
indeterminate flag, it resumes its normal function.

Scroll Bar

Scroll bars have support for drawing a ghost indicator, and also support live
feedback. To use live feedback, you would set an action proc for the control either
using SetControlAction and calling TrackControl with an actionProc parameter of
-1, or passing the actionProc into TrackControl directly. As the indicator is dragged
by the user, the action proc is called back whenever the indicator moves. When the
action proc is called, the value of the scroll bar will be updated to reflect whererver
the indicator has been moved.

Visual Separator

A simple CDEF to draw separator lines. Orientation of the bounding rectangle
determines the orientation of the line, i.e. if the bounding rect is more horizontal
than vertical the horizontal line will be drawn. (Scroll bars currently do this as
well). The CDEF does no mouse tracking or hiliting and has no values.

Do not distribute—Apple Confidential 17

Sliders/Slider Tick Marks

The slider with tick marks is a relatively straightforward CDEF, with a minimum,
maximum, and value. Depending on whether he control is taller or wider, a vertical
or horizontal slider will be created. This CDEF supports ghosting and live
feedback. By default, the indicator points either down or to the left, depending on
the orientation. You can reverse this by adding the kSliderReverseDirection variant
into the proclD for this control. Ticks marks are normally not shown, but can be by
adding kSliderHasTickMarks to the procID. The number of tick marks is passed in
the value parameter - after initialization in this case, the value is set to the
minimum and the number of tick marks is stored internally.

There is also a non-directional thumb variant. Using this variant disables the tick
mark and reverse direction options. They are not allowed to be combined.

Static Text
CDEF Implementation of Static Text. It supports getting and setting its text style
information. It also supports different justification options.

Tabs

The tab mechanism is implemented as a CDEF. An auxiliary 'tab#' resource holds
the tab names and icon IDs. This resource ID is passed into the Value parameter of
the control. Callers check the value after getting a hit; they switch to the
appropriate pane through whatever mechanism they prefer, such as AppendDITL.
The value of the control is the one-based index of the currently selected tab (front
most tab).

It is possible to get the content rectangle for tabs and also get/set a particular tab's enabled
state using the Data Access routines. This CDEF is an embedder.

User Pane

This CDEF is a general purpose control. It is used as the root pane for a window,
but could also be used by clients to hook in callbacks for drawing, hit testing, etc.
This is especially useful for frameworks that wish to tap into the new control
manager's hierarchy. This should be used in place of Userltems in dialogs when in
embedding mode (see below).

Window Header

This CDEF provides a header for a window. There is a normal variant and a list
view variant. The list view header lacks the bottom line, so that things can be
butted up against it without overlapping.

MENU DEFINITIONS

New Menu Features
The following support has been added to the standard menus:

Do not distribute—Apple Confidential 18

= Support for extended modifiers keys (option, control, etc.)
= Support for icon suites
= Ability to store application specific data for a menu item
= Ability to set a command ID for a menu item.
= Ability to set a full 16-bit hierarchical ID for an item.
The new extended information is maintained by the Menu Manager.

A replacement to MenuKey has been added to allow modifiers to be considered when
searching for the item. The new routine is called MenuEvent and takes an event record as
its only parameter. It returns a long, just like MenuSelect.

For resource-based creation of menus, a new resource type has been added, 'xmnu'. This
resource contains the extended menu information for each item in a menu. After creating
a menu, GetMenu looks for an 'xmnu' resource with the same ID. The information is set
for each menu item. At that point the resource can be purged or released.

Dialog Manager

FEATURE FLAGS

A caller may activate different features for a dialog by relating a special resource to
their DLOG and ALRT resources. The new resource types which hold the new,
extended information are 'dlgx and 'alrx’. In the new resources, there is a new flags
field that is used to determine dialog or alert features. Whenever a dialog is created
via GetNewDialog, Alert, StopAlert, CautionAlert, or NoteAlert, after the DLOG or
ALRT is read in, the Dialog Manager searches for a resource type of 'dlgx’ or "alrt’,
respectively, with the same ID as the original DLOG or ALRT. If the resource is
found, we read the information and use it to help create the dialog.

Following is a listing of the features that can be set in the extended information.

NOTE: This information is actually not applicable to the Tempo a2 release, but will be
in releases that follow. Please read the Appearance release notes for details on how this
works in Tempo a2.

Use Theme Backgrounds
If the kDialogFlagsUseThemeBackground bit is set in the flags, we set the
background color to the correct color for the current theme automatically.

Do not distribute—Apple Confidential 19

Use Control Hierarchy

When the kDialogFlagsUseControlHierarchy bit is set, right after the window is
created, the CreateRootControl routine is called for the window to establish an
embedding hierarchy. This has two effects; first, the hierarchy is established and
embedding of controls is possible; second, all dialog items (except user items, for
reasons explained later) are controls. This means that if a static text item is in the
DITL, a static text control is created instead of the old static text dialog primitive.
This ends up having many advantages, such as homogenous treatment of dialog
items, and the ability to disable all items in a dialog, including edit text.

The fact that all items are controls means that GetDialogltem will always return a
ControlHandle, not a text handle, for EditText items, for example. If the Dialog
Manager APIs are still used, it still works as advertised, i.e. if you call
GetDialogltem and then GetDialogltemText, the Dialog Manager will extract the
text from the control and fill out the Str255, just like the client expects.

Use Theme Controls

This bit should always be set for Appearance-savviness. It tells the dialog manager
that when it encounters a push button, check box, or radio button primitive (i.e.
dialog items of type kButtonDialogltem, kRadioButtonDialogltem, or
kCheckBoxDialogltem) to create a new theme-savvy control instead of the classic
control. This bit is necessary, otherwise the Dialog Manager won't know the
difference, since there is no other way to tell that we want theme controls. The use
theme background bit doesn't have to be set to use this bit. In fact, there might
times when that is the desired behavior.

Handle Movable Modal

The kDialogFlagsHandleMovableModal bit in the flags tells the Dialog Manger to
handle all movable modal behavior if ModalDialog is called with this window
frontmost. This only works if the window itself is a movable modal dialog. When
told to handle this situation, the Dialog Manager handles window dragging and
allows the user to click into another application. The menu bar does not currently
support activating the process menu.

Event filtering is handled a little differently, in that ALL events are passed thru to
the application in this mode. This allows the app to handle suspend and resume
events, as well as handle Apple Events if it so wishes while the movable modal
dialog is up.

Movable Alerts

If the kKAlertFlagsHandleMovableModal bit is set, it tells the Dialog Manager
whether or not an alert should be movable. If so, a movable modal dialog is used
instead of a standard modal one. The behavior is the same as it is for normal
movable modals, as mentioned above.

Do not distribute—Apple Confidential 20

AUTOMATIC SIZING

The Dialog Manager introduces a new routine, AutoSizeDialog, that automatically
resizes a dialog to fit all static text contained in it. This is used by the new
StandardAlert routine to ensure that all the text of an alert is visible and doesn't get
truncated. The DITL is iterated over, looking for static text items. When one is
found, the item is resized, the window height is adjusted, and any items below the
static text item are moved downward the appropriate amount.

Window Manager

COLLAPSING API

The routines for collapsing and uncollapsing a window are exposed to developers.
This will allow clients such as the Finder to control the collapsing of windows in an
intelligent manner. A good example of this might be uncollapsing automatically
after double-clicking on an icon to bring its window forward.

There are four routines to do with collapsing: CollapseWindow,
CollapseAllWindows, IsWindowCollapsed, and IswWindowCollapsable. These
routines only affect windows that advertise that they support the collapsing API,
which brings us to window features.

WINDOW FEATURES

It is possible to determine a window's features thru the GetWindowFeatures API.
This is implemented thru a new message, kWindowMsgGetFeatures, which is just
like the corresponding version for controls. In response to the GetFeatures message,
the window should return a bitfield representing the features it supports. Those
features are listed here:

enum

{
kW ndowCanGr ow = (1 << 0),
kW ndowCanZoom = (1 <<,
kW ndowCanCol | apse = (1 << 2,
kW ndowl sMbdal = (1 << 3),
kW ndowl sMbvabl eMbdal = (1 << 4),
kW ndow sAl ert = (1 << 5)

s
WINDOW DEFINITIONS

WindowShade Widget

The new WDEFs (64, 65, 66, 67) support the windowshade widget. If a window can
be collapsed, a collapse box appears in the title bar of the window. A click on this
returns the part code inCollapseBox.

Do not distribute—Apple Confidential 21

The new API for collapsing windows handles this. A bit in the AuxWinRec for the
window tells whether a particular window is windowshaded. A WDEF should call
IsWindowcCollapsed on the window to ensure that it calculates its regions properly.

The WindowShade control panel is obsolete. We have a check box in the Appearance
Control Panel to allow double-clicking to still work on all windows. The WindowShade
sound is carried forward from the old control panel into Appearance.

Standard Windows (WDEF 64)

This WDEF supports the new horizontal and vertical zoom boxes. The variants are
more straightforward than the old WDEF 0 variants with respect to how grow,
zoom, etc. are specified.

Dialogs (WDEF 65)

The new WDEF for dialogs supports modal, movable modal, plain, and shadow
dialog variants. It also supports red-tinged borders when drawing alerts. When
called from the mapper WDEF, this defproc operates in a compatibility mode.
When in this mode, a 3-pixel space exists between the content region and the
structure region, as it always did in the past. When used directly, this area is
banished and content can finally be run up to the edge of the window. There have
been numerous applications which were doing some pretty wild stuff to make this
happen in the past.

Utility Windows (WDEF 66 & 67)

This is implemented as two new WDEFs which replaces the current WDEF 124.
WDEF 66 is the normal, top-title-bar variant, and 67 is the side title bar variant.
They were split in two to allow for the new horizontal and vertical zoom boxes.
This defproc runs in a compatibility mode when called from the mapper WDEF.
When in this mode, the grow box is not drawn until a call to DrawGrowlcon is
made. When used directly (no compatibility mode), the presence of a grow box is
completely driven thru the variant codes.

SUPPORT

Appearance Control Panel

The Color control panel has been replaced by a new Appearance control panel. This is
implemented as an application. Here's the features in a nutshell:

e The "Window Color" popup from the old Color control panel has been changed to
"Accent Color" and allows the user to set the accent colors of controls and menus.

e There is also a check box to turn double-clicking to collapse on and off.
= The user can turn window collapsing sounds on and off.

= The user can select between Chicago and Truth as their system font.

Do not distribute—Apple Confidential 22

= There is a checkbox to turn Appearance on System-wide.

Changing the font or the System-Wide preference requires a restart, all others take effect
immediately.

Do not distribute—Apple Confidential 23

Control Manager Reference

This section describes the new routines added to the Control Manager as
well as the new behavior of several classic routines.

Support/Debugging Routines

The routines in this section are used by the Dialog and Control Managers.

SendControlMessage

Use the SendControlMessage to send a low-level message to a control.

pascal Sl nt32 SendControl Message(Control Ref theControl,

SInt16 nmessage, SInt32
paran ;

DESCRIPTION

The SendControlMessage sends the specified message to a CDEF and gets a
response.

DumpControlHierarchy

This routine dumps the contents of the control hierarchy for the specified
window into a file.

pascal OSErr DunpControl H erarchy(W ndowRef wi ndow,
const FSSpec* file);

Do not distribute—Apple Confidential 1

DESCRIPTION
DumpControlHierarchy dumps a text listing of the current pane hierarchy

for the window specified into the file specified, overwriting any existing
file. It is extremely useful when debugging embedding issues.

Creating Controls

NewControl

NewControl is adjusted to automatically embed the control into the root
control if the root exists. All other aspects of behavior are the same.

Embedding Controls

The routines in this section allow you to create the root control for a
window and also embed controls within others.

CreateRootControl

Use CreateRootControl to create the root container control for a window
and enable embedding in a window.

pascal OSErr CreateRoot Control (W ndowPtr w ndow,
Cont r ol Handl e* control);

DESCRIPTION

Do not distribute—Apple Confidential 2

CreateRootControl creates the top-level container control for a window.
From that point on, the embedding routines EmbedControl and
AutoEmbedControl can be used. If controls were already added to the
window when CreateRootControl is called, an error is returned and the
root is not created.

GetRootControl

GetRootControl returns the root container control for the specified window.

pascal OSErr Get Root Control (W ndowPtr wi ndow,
Cont r ol Handl e* control);

DESCRIPTION
GetRootControl returns the root container control for the window specified.
If a hierarchy doesn't exist, an error is returned.
EmbedControl
Use EmbedControl to place one control inside another.
pascal OSErr EnbedControl (Control Handl e control,
Control Handl e contai ner);
DESCRIPTION
EmbedControl is used to place one control inside of another control. You
might use this to place a radio button inside of a group box, for example. If
the container does not support embedding, or there is no root control for
the container's owning window, an error is returned.
AutoEmbedControl

Do not distribute—Apple Confidential 3

Use AutoEmbedControl to have a control find its best embedding
container.

pascal OSErr Aut oEnbedControl (Control Handl e control,
W ndowPt r wi ndow) ;

DESCRIPTION

The AutoEmbedControl automatically finds the 'best fit' container for a
control. It essentially searches for the smallest embedder control that
contains the given control and automatically embeds the control in there.
The Dialog Manager uses this to automatically assume the embedding
hierarchy from the DITL. If there is no root control for the window, an error
is returned.

Drawing Controls

DrawOneControl

DrawOneControl has been changed to draw all controls contained within a
control if the control passed in is an embedder and the window has a root
control. If the root control for a window is passed in, the result is the same
as if DrawControls was called.

DrawControls

If a root control is present, DrawControls uses the hierarchy to determine
drawing order and draws using that information, else it draws it in the
classic manner.

UpdateControls

Do not distribute—Apple Confidential 4

If a root control is present, UpdateControls uses the hierarchy to determine
drawing order and draws using that information, else it draws it in the
classic manner.

DrawControllnCurrentPort

DESCRIPTION

Use DrawControlInCurrentPort to tell a control to draw in the current port
and not in its owner's port.

pascal void DrawControl I nCurrentPort (Control Handl e
control);

DrawControlInCurrentPort draws a control in whatever the current port is
at the time. This is unlike DrawOneControl (or DrawControls/
UpdateControls) in that controls normally are forced to draw in their
owner's port. The Control Manager sees to this. This routine is designed to
allow for offscreen drawing. All system controls support this type of
functionality. For a custom control to work right with this, it just needs to
assume that the right port is always set up for it, and not set the port to its
owner.

Testing and Changing Control Settings

The routines in this section allow you to manipulate controls and check
their state.

IsControlActive

DESCRIPTION

Use IsControlActive to tell whether a control is currently active.

pascal Bool ean I sControl Active(Control Handl e control);

Do not distribute—Apple Confidential 5

IsControlActive is used to tell whether the given control is active, that is, it
is not disabled or pending disabled (latent).

IsControlVisible

Use IsControlVisible to tell whether a control is visible.

pascal Bool ean | sControl Visibl e(Control Handl e control);

DESCRIPTION

IsControlVisible returns true if the given control is currently visible.

ActivateControl

Use ActivateControl to activate a control and any subcontrols.

pascal OSErr ActivateControl (Control Handl e control);

DESCRIPTION

ActivateControl activates the given control. If the control is an embedder
and embedding is on, this activates all subcontrols that are currently latent.
Passing the root control into this routine will activate all controls in the
root's window. You can use this routine in that manner to activate all
controls in a window when the window becomes active. If a control
supports activate events, it will receive an activate event before getting a
draw call to update its appearance.

You should always use this routine instead of HiliteControl(0) to activate a
control when a root control is present. It doesn't hurt to use it other times as
well.

Do not distribute—Apple Confidential 6

DeactivateControl

Use ActivateControl to deactivate a control and any subcontrols.

pascal OSErr Deactivat eControl (Control Handl e control);

DESCRIPTION

DeactivateControl deactivates the given control. If the control is an
embedder and embedding is on, this deactivates all subcontrols as well.
Any subcontrols that are enabled become latent. Passing the root control
into this routine will deactivate all controls in the root's window. You can
use this routine in that manner to deactivate all controls in a window when
the window becomes inactive.If a control supports activate events, it will
receive an activate event before getting a draw call to update its
appearance.

Calling this routine when a window is inactive is the only way to guarantee
that the item will truly get disabled when a root control is present. Calling
HiliteControl(255) will short-circuit because the hilite is already 255. You
should generally always use this routine instead of HiliteControl(255).

SetControlFontStyle

Use SetControlFontStyle to give a control a special font style.

pascal OSErr Set Control Font Styl e(Control Handl e control,
Control Font Styl ePtr style);

DESCRIPTION

Do not distribute—Apple Confidential 7

SetControlFontStyle sets the font style of the given control to that specified
in style. Normally a control uses the System font unless directed to use the
window font via a variant. This routine allows you to override that and
force the control to use a special font style. Not all controls support this
feature. To clear a style in effect, simply pass in a style record with a cleared
flags field. The CDEF is expected to respond by falling back to using the old
system/window font logic.

ShowControl

If embedding is enabled for a window, this call will show any subcontrols
that are embedded within the control passed in. Passing the root control
into this routine will show all items in a window, if they were previously
hidden.

HideControl

If embedding is enabled for a window, this call will hide any subcontrols
that are embedded within the control passed in. Passing the root control
into this routine will hide all items in a window, if they were previously
hidden. Hiding will save the states of all subpanes so that when the control
is later shown, all panes that were visible when it was originally hidden
will be displayed.

MoveControl

If embedding is enabled for the control's window, this call will move the
control and any subcontrols it might have.

HiliteControl

Do not distribute—Apple Confidential 8

If embedding is enabled for the control's window, this call does the
following:

= |f the part code passed in is 0, the control and all subcontrols are activated

= |f the part code passed in is 255, the control and all subcontrols are
deactivated.

= |If the part code is any other value, the control's hilite value is set, and:

= If the control is inactive, it remains inactive, but will take on the new
hilite when activated.

= If the control is active, it will be drawn in its new hilite state.

In addition, if a control is caused to become active/Zinactive, it will call the
control with an activate message if the CDEF supports it.

If an embedding hierarchy is not present, this routine behaves as it always
has.

Handling Mouse Events in Controls

FindControl

FindControl is changed to use the hierarchy to determine what control the
mouse went down in before calling TestControl. If no hierarchy is present,
it uses the control list as usual.

FindControlUnderMouse

Use FindControlUnderMouseto to locate a control under the given point,
regardless if any parts of the control are hit.

pascal Control Handl e Fi ndContr ol Under Mouse(Poi nt where,

Do not distribute—Apple Confidential 9

W ndowPt r wi ndow, SInt16* part);

DESCRIPTION

FindControlUnderMouse is a variation of FindControl that, unlike
FindControl, actually returns the ControlRef for the control currently under
the given point. FindControl only returns the ControlRef if a part was hit.
This can be used to help adjust the cursor, etc. when over particular items.
FindDialogltem uses this when a control hierarchy is present for a dialog.

HandleControlClick

Use HandleControlClick to handle a mouse click on a control.

pascal SlInt16 Handl eControl dick(Control Handl e control,
Poi nt where, SIntl16 nodifiers,
Control Acti onUPP action);

DESCRIPTION

Like TrackControl, this routine tracks a control until the mouse is released.
All that applies to TrackControl applies here as well. The difference,
however, is that this routine allows modifier keys to be passed in so that
the control may use these if the control is set up to handle its own tracking.

SetControlSupervisor

Use SetControlSupervisor to route mouse down events from one control to
another.

pascal OSErr Set Control Supervi sor (Control Handl e

control,
Cont r ol Handl e

supervisor);

Do not distribute—Apple Confidential 10

DESCRIPTION

This routine is used to make sure that things like list box controls work
correctly. List boxes control their scroll bars in an intimate way, and handle
the tracking in LClick. Because the new hierarchy is in place. When these
controls are created, they get their own panes and report that they are hit
(as they rightfully should). This presents a problem in that the list box will
never know it got hit (after all, we hit the scroll bar, right?), and LClick will
never be called. This routine alleviates this problem by routing the event to
the supervisory control, in this case the list box.

Handling Keyboard Events in Controls

HandleControlKey

Use HandleControlKey to send a keyboard event to a control.

pascal SInt16 Handl eControl Key(Control Handl e control,
SInt16 keyCode, SInt16 char Code,
SInt16 nodifiers);

DESCRIPTION

HandleControlKey is used when a control supports focus. It sends the
necessary information, keyCode, charCode, and modifiers into the CDEF so
that it can process it as it wished. This routine returns the part code that the
control considers 'hit' by the keyboard event.

Idle Processing for Controls

IdleControls

Do not distribute—Apple Confidential 11

Use IdleControls to give idle time to controls in a window.

pascal void IdleControl s(WndowPtr w ndow);

DESCRIPTION
IdleControls calls each control in a window who wants idle events with an

idle event so it can do its idle-time processing. The Chasing Arrows CDEF
uses this time to perform its animation.

Determining Features of Controls

GetControlFeatures

Use GetControlFeatures to find out what messages a control supports.

pascal Ul nt32 Cet Control Features(Control Handl e
control);

DESCRIPTION

GetControlFeatures returns a 32-bit bitfield which represents the different
features that a control supports.

GetBestControlRect

Use GetBestControlRect to find out what a control's favorite size is.

pascal OSErr GetBest Control Rect (Control Handl e control,

Do not distribute—Apple Confidential 12

Rect* rect, SIntl6* baselLineOfset);

DESCRIPTION

GetBestControlRect is implemented on top of the kControlMsgCalcBestRect
control message. It allows an application to find out what the optimal
control size is and where text should be placed in relation to the control's
bottom coordinate. You should generally pass in an empty rect (0, 0, 0, 0).
This routine will call the CDEF that drives the specified control to fill out
the right and bottom sides of the rectangle, so you can determine its metrics
for correct placement, etc. This allows you to autosize some controls based
on their text, such as Push Buttons. The StandardAlert routine uses this call
to help its button placement algorithm. The baseLineOffset parameter
returns where the text baseline should be in relation to the bottom of the
control rectangle. It is a negative value.

Handling Focus for Controls

The routines in this section allow you to manage keyboard focus.

GetKeyboardFocus

Use GetKeyboardFocus to get the current keyboard focus for a window.

pascal OSErr Get KeyboardFocus(W ndowPtr w ndow,
Cont r ol Handl e* control);

DESCRIPTION
The GetKeyboardFocus returns the ControlRef of the control which
currently is the keyboard focus of the window specified.
SetKeyboardFocus

Do not distribute—Apple Confidential 13

Use SetKeyboardFocus to set the current keyboard focus for a window.

pascal OSErr Set Keyboar dFocus(W ndowPtr w ndow,
Control Handl e control, FocusPart part);

DESCRIPTION

The SetKeyboardFocus routine is used to set the current keyboard focus to
the specified control. The part parameter tells the control what part to focus
on. This parameter can be a positive part code or one of the constants,
kFocusNoPart, kFocusNextPart, or kFocusPrevPart. These values tell the
control to clear, advance, or reverse, its focus. If the control cannot become
the focus for some reason, an error is returned. Using this routine, it is
possible to set the focus to a disabled or invisible control. You might need
to do this when preparing a dialog while hidden.

AdvanceKeybordFocus

Use AdvanceKeyboardFocus to move the keyboard focus forward.

pascal OSErr AdvanceKeyboar dFocus(W ndowPtr w ndow) ;

DESCRIPTION
AdvanceKeyboardFocus attempts to advance forward to the next focusable

item in a window and make it the current focus. It skips over disabled and
hidden items.

ReverseKeyboardFocus

Use ReverseKeyboardFocus to move the keyboard focus backwards.

pascal OSErr ReverseKeyboar dFocus(W ndowPtr w ndow) ;

Do not distribute—Apple Confidential 14

DESCRIPTION

ReverseKeyboardFocus attempts to advance backwards to the next
focusable item in a window and make it the current focus. It skips over
disabled and hidden items.

ClearKeyboardFocus

Use ClearKeyboardFocus to clear any keyboard focus that exists in a
window.

pascal OSErr C ear Keyboar dFocus(W ndowPt r wi ndow) ;

DESCRIPTION

Clear keyboard focus tells any control that might be the current focus to
clear its focus. After the successful execution of this routine, nothing in a
window has the keyboard focus.

Getting and Setting Control Data

The routines in this section allow you to get and set values in a control's
private data. You might use this to get the text from an edit text or static
text control, or set the indeterminate flag of a progress indicator.

SetControlData

Use SetControlData to set a piece of data for of a control.

pascal OSErr Set Control Data(Control Handl e control,
Control Part Code part, ResType
tag,

Do not distribute—Apple Confidential 15

Si ze dat aSi ze, Ptr dataPtr);

DESCRIPTION

The SetControlData routine is used to set the data represented by t ag of
the specified control to the data pointed to by dataPtr. The part parameter
indicates which part of the control should get the data.

Passing kControlEntireControl in for part indicates it doesn't belong to any

specific part, but the control as a whole. For some pieces of data, part may
not make sense and is ignored by the CDEF.

GetControlData

Use GetControlData to get a piece of data from a control.

pascal OSErr Get Control Dat a(Control Handl e control,

Control Part Code part, ResType
t ag,

Si ze bufferSize, Ptr buffer,
Si ze*

act ual Si ze);

DESCRIPTION

The GetControlPartText is used to get the data represented by tag in the
specified control. The part parameter indicates which part of the control the
data should come from. The actual size of the data is returned in actualSize.
You can pass nil in this parameter to avoid getting the size back. Calling
this routine will a nil buffer pointer is functionally equivalent to calling
GetControlDataSize.

Passing kControlEntireControl in for part indicates it doesn't belong to any

specific part, but the control as a whole. For some pieces of data, part may
not make sense and is ignored by the CDEF.

GetControlDataSize

Use GetControlDataSize to set the size of a data member of a control.

Do not distribute—Apple Confidential 16

pascal OSErr Get Control DataSi ze(Control Handl e control,
Control Part Code part, ResType
tag,
Si ze* size);

DESCRIPTION

The GetControlDataSize routine is used to get the size of a specific piece of
data the specified control owns. The part parameter indicates which part of
the control should be checked for the data.

Passing kControlEntireControl in for part indicates it doesn't belong to any

specific part, but the control as a whole. For some pieces of data, part may
not make sense and is ignored by the CDEF.

Iterating Over the Control Hierarchy

The routines in this section allow you to walk the control hierarchy of a
window.

CountSubControls

CountSubControls returns the number of controls embedded within a
control.

pascal OSErr Count SubControl s(Control Handl e control,
Sl nt 16* nuntChi | dren);

DESCRIPTION
The CountSubControls routine returns the number of controls that are

inside of the given control. If the control does not support embedding, or
embedding is not enabled in its window, an error is returned.

GetlndexedSubControl

Do not distribute—Apple Confidential 17

GetlndexedSubControl returns a specific control embedded within another
control.

pascal OSErr GetlndexedSubControl (Control Handl e
control,
SInt16 index, Control Handl e* child);

DESCRIPTION

The GetlndexedSubControl routine returns the control at the index
specified within the control passed in. If the control does not support
embedding, or embedding is not enabled in its window, an error is
returned. If the index passed in is invalid, an error is returned.

GetSuperControl

GetSuperControl returns the parent of a control.

pascal OSErr Get Super Control (Control Handl e control,
Cont r ol Handl e* daddy);

DESCRIPTION
The GetSuperControl routine returns the parent control of the given

control. If the control does not support embedding, or embedding is not
enabled in its window, an error is returned.

RemovingControls

DisposeControl

Do not distribute—Apple Confidential 18

DisposeControl is changed to remove any subcontrols that might be
embedded within it. Passing the root control into this routine is the same as
calling KillControls. In fact, this is what KillControls does.

KillControls

KillControls gets the root control for a window and if it exists, it disposes of
it and all subcontrols via a call to DisposeControl. If a root control does not
exist, it does the same thing it always has.

Application-Defined Routines

This section describes routines that an application can provide to hook into
the new architecture.

MyKeyFilter

Controls that support keyboard focus often have the ability to allow
filtering of keystrokes. This is accomplished by a key filter proc.

pascal KeyFilterResult MyKeyFilter(
Cont r ol Handl e t heControl,
Sl nt 16* keyCode, SInt16*

char Code,
SInt16* nodifiers);
t heContr ol the control we are dealing with
keyCode the key code of the key that was pressed
char Code the character code of the key that was pressed
nodi fiers the modifiers that were down when the key was pressed

Do not distribute—Apple Confidential 19

This callback should be called from a CDEF when its receives a key hit
message. The callback can change the keystroke in any way they see fit,
leave it alone, or completely block the CDEF from getting it. This does rely
on the CDEF implementing this correctly. There are two results the key
filter can return: kKeyFilterPassKey or kKeyFilterBlockKey to allow
keystrokes thru or to block them, respectively.

UserPane Callbacks

When using a UserPane control, you can hook callback procedures into it to
have it call you back to draw, perform hit testing, etc. In its most basic
form, itis just like an old-style Userltem. Essentially a UserPane is a real
control which just calls you back to do all the fun stuff.

MyUserPaneDrawProc

To handle drawing, you can attach a draw proc to a user pane control.

pascal void MyUser PaneDr awPr oc(Cont r ol Handl e control,
SInt1l6 part);

control the control to draw

part the part to draw, 0 = everything

MyUserPaneHitTestProc

To handle hit testing in a user pane, you can attach a hit testing procedure.

pascal Control Part Code MyUser PaneHit Test Proc(
Cont rol Handl e control,
Poi nt where);

Do not distribute—Apple Confidential 20

contr ol the control to test

wher e the point where the mouse went down, in local
coordinates

When called with this message, your routine should determine what part, if
any, the mouse hit in your control and return that part code as its result.

MyUserPaneTrackProc

To handle tracking in a user pane, you can attach a tracking procedure.
This routine will only get called if you've specified the HandlesTracking bit
of the control features, which get passed into the value of the control on
creation.

pascal Control Part Code MyUser PaneTr ackProc(
Control Ref control,
Poi nt startPt,
Cont r ol Acti onUPP acti onProc);

contr ol the control to track

start Pt the point where the mouse went down, in local
coordinates

acti onProc the address of a routine to call during tracking.

When called with this message, your routine should track your control,
calling actionProc repeatedly until the mouse is released. The value of
actionProc can be a valid procPtr, nil, or -1. -1 indicates the control should
do what it wants to if it actually has some special autoTrack behavior it
wants to add. Most of the time, -1 would probably be treated like nil, i.e. do
nothing. When the mouse is released, the part the mouse was released on
should be returned to indicate a successful tracking session.

Do not distribute—Apple Confidential 21

MyUserPaneldleProc

To handle idle processing in a user pane, you can attach an idle procedure.
This routine will only get called if you've specified the Wantsldle bit of the
control features, which get passed into the value of the control on creation.

pascal void MyUser Panel dl eProc(Control Handl e control);

contr ol the control to idle

You can use this to take advantage of control idle time to do some
animation, etc.

MyUserPaneKeyDownProc

To handle keyboard event processing in a user pane, you can attach an
keydown procedure. This routine will only get called if you've specified the
SupportsFocus bit of the control features, which get passed into the value of
the control on creation.

pascal Control Part Code MyUser PaneKeyDownPr oc(
Contr ol Handl e control,
SInt 16 keyCode, SInt16 char Code,
SInt16 nodifiers);

control the control that received the key event

keyCode the key code of the key that was pressed

char Code the character that the key generated

nodi fiers the modifiers that were held down during the keypress

Do not distribute—Apple Confidential 22

When called with this message, your routine should do whatever is right
for your special item, returning the part code of the item that was hit, if you
wish. The standard EditText control, for example, returns
kControlEditTextPart so that DialogSelect will return the itemHit when a
keystroke is pressed.

MyUserPaneActivateProc

To handle activate/deactivate events in a user pane, you can attach an
activate procedure. This routine will only get called if you've specified the
WantsActivate bit of the control features, which get passed into the value of
the control on creation.

pascal void MyUser PaneActi vat eProc(
Control Handl e control,
Bool ean activating);

control the control that is becoming active/inactive

activating true if the control is becoming active, false otherwise.

Your routine should do whatever is proper to become active or inactive,
such as calling LActivate, etc.

MyUserPaneFocusProc

To handle focus events in a user pane, you can attach an focus procedure.
This routine will only get called if you've specified the SupportsFocus bit of
the control features, which get passed into the value of the control on
creation.

pascal Control Part Code MyUser PaneFocusProc(
Cont rol Handl e control,
FocusPart part);

Do not distribute—Apple Confidential 23

control the control in question

part the part code to focus

This routine is called in response to a change in focus. The part code passed
in can mean many different things:

kFocusNoPar t Clear your focus, return kFocusNoPart

kFocusNext Part Focus on the next item. If nothing is in focus now,
focus the first item. If there are no more items, clear
your focus and return kFocusNoPart.

kFocusPrevPart Focus on the previous item. If nothing is in focus
now, focus the last item. If there are no more items,
clear your focus and return kFocusNoPart.

<part code> Focus on this part. You can interpret this in any
way you wish.

It is very important that your return the right part code for what you
consider to be focused after you are called with this. By returning
kFocusNoPart, you are telling the Control Manager to go onto another
control, or that you can't be focused right now and go bother someone else.

Control Manager Summary

Constants

/* New part codes returned by
Fi ndCont rol / Test Cont r ol / Fi ndCont r ol Under Mouse*/

enum

{

kControl Edi t Text Part = 5, /* an edit text field was
hit */

Do not distribute—Apple Confidential 24

kControl Pi cturePart = 6, /* a picture control was
hit */

kControl | conPar t =7, /* an icon control was
hit */

kControl C ockPart = 8, /* a clock control was
hit */

kCont rol Li st BoxPar t = 24, /* a list box was clicked
*/

kControl Li st BoxDoubl el i ckPar t 25 /* a list box was doubl e-
clicked*/

b

/* val ues for focusing */
enum

{

kFocusNoPar t =0, / *Lose focus or returned to nean
focus | ost*/

kFocusNext Part = -1, /*Focus on next part, if any*/
kFocusPrevPart =-2 /*Focus on previous part, if any*/
b

typedef SInt16 FocusPart;

[* return results for key filters */
enum

{

kKeyFi | t er Bl ockKey
control */

0, /* allow keypress to go thru to

1
=

kKeyFi | t er PassKey
control */

}s

typedef SInt1l6 KeyFilterResult;

/* stop keypress fromgoing to

Do not distribute—Apple Confidential 25

/* Error codes */

enum

{
err MessageNot Support ed = -30580,
er r Dat aNot Support ed = -30581,
err Cont r ol Doesnt Support Focus = -30582,
er r W ndowDoesnt Support Focus = -30583,
er r PaneNot Found = -30584,
err Coul dnt Set Focus = -30585,
er r NoRoot Cont r ol = -30586,
err Root Al r eadyEXi sts = -30587,
errlnval i dPart Code = -30588,
err Control sAl r eadyExi st = -30589,
err Control | sNot Enbedder = -30590,
errDat aSi zeM smat ch = -30591,
err Cont r ol Hi ddenOr Di sabl ed = -30592

/* Feature bits to be returned when a CDEF is called with a 'get
features' nsg*/

enum
{
kCont r ol Support sGhosti ng =1 << 0,
kCont r ol Support sEmbeddi ng =1 << 1,
kCont r ol Support sFocus =1 << 2,
kCont rol Vant sl dl e =1 << 3,
kCont r ol \ant sActi vat e = 1 << 4,

Do not distribute—Apple Confidential 26

kCont r ol Handl esTr acki ng

kCont r ol Support sDat aAccess

kCont r ol HasSpeci al Backgr ound

kCont r ol Get sFocusOnCl i ck

kCont r ol Support sCal cBest

kCont r ol SupportsLi veFeedback

/* New control messages */

enum

{

kCont r ol MsgDr awGhost
t he indicator*/

kCont r ol MsgCal cBest Rect
t he best bounds*/

kCont r ol MsgHandl eTr acki ng

kCont r ol MsgFocus
cl ear focus */

kCont r ol MsgKeyDown
event */

kCont rol Msgl dl e
processing */

kCont r ol MsgCet Feat ur es
features */

kCont r ol MsgSet Dat a
data */

kCont r ol MsgGet Dat a
data */

kCont rol MsgActi vate
acti vate/ deactivate */

kCont r ol MsgSet UpBackgr ound
color, etc */

1 <<

1 <<

13,

14,

15,

16,

17,

18,

19,

20,

21,

22,

23,

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

Draw a ghost inmage of
Cal cul ate and return

Handl es tracking */

Focus on a part, or

Handl e a keyboard

Do some idle

Return 32-bit field of

Set a piece of private

Get a piece of private

Handl e

Set up background

Do not distribute—Apple Confidential

27

kCont r ol MsgCal cVal ueFr onPos = 26

/* These constants are neta-font values used in
Cont r ol Font Styl eRecs*/

enum
{
kCont r ol Font Bi gSyst entont = -1, /* force to big system
font */
. kCOfErol Font Snal | Syst enfont = -2, /* force to small system
ont

1
1
w

kCont r ol Font Snal | Bol dSyst enfont /* force to snall bold

system font */

}s

/* bits to set in flags of Control FontStyleRec to control what to

set */
enum
{
kUseFont Mask = 0x0001, /* Set the font */
kUseFaceMask = 0x0002, /* Set the face */
kUseSi zeMVask = 0x0004, [* Set the size */
/kUseForeOoI or Mask = 0x0008, / Set the foreground col or
/kUseBackCOI or Mask = 0x0010, / Set the background col or
kUseModeMask = 0x0020, /* Set the text nopde */
kUseJust Mask = 0x0040, /* Set the justification */
kUseAl | Mask = OxOO0FF, /* Set all of the above */

Do not distribute—Apple Confidential 28

kAddFont Si zeMask
add */

0x0100 /* size represents value to

/* to current font size */

/* sonme comopn data tags */

enum
{

kCont r ol Font St yl eTag = "'font', /* font style
(Control Font Styl eRec) */

kCont rol KeyFi | t er Tag ="fltr’ /[* key filter

(Control KeyFi | t er UPP) */

s

Data Types

/* This structure is passed to CDEFs when called via
Handl eControl dick, */

/* provided that the control does its own tracking */

struct Control Tracki ngRec

{

Poi nt startPt;

SInt16 nodi fi ers;

Cont r ol Acti onUPP action;
b

t ypedef struct Control Tracki ngRec Control Tracki ngRec,
*Cont rol Tracki ngPtr;

/* This structure is passed to the CDEF for keyboard events */

struct Control KeyDownRec

Do not distribute—Apple Confidential 29

SInt16 nodi fi ers;
SInt16 keyCode;
SInt 16 char Code;

b

t ypedef struct Control KeyDownRec Control KeyDownRec,
*Cont r ol KeyDownPtr;

/* this structure is passed to CDEFs for the Get/ SetData nmessage */
struct DataAccessRec

{

ResType t ag; /* '"name' of the data we are
speci fying */

Control Part Code part; /* part of the control this tag
refers to */

Si ze si ze; /* size of the data or buffer */

Ptr dat aPtr; /* pointer to the data or buffer */

}s

t ypedef struct DataAccessRec DataAccessRec, *DataAccessPtr

/* this is used by many controls to set a special font style */

struct Control Font Styl eRec

{
SInt 16 fl ags; /* which pieces should we set */
SInt16 font; /* the font to set to (can be neta-
font) */
SInt16 si ze; /* the size of the type */
SInt16 styl e; /* the style (bold, italic, etc.) */
SInt16 node; /* text node (srcOr, etc.) */

Do not distribute—Apple Confidential 30

SInt16 j ust;

RG&BCol or foreCol or;

RG&BCol or backCol or;

b

/* justification */

/* foreground color */

/* background col or */

typedef struct Control Font Styl eRec Control Font Styl eRec,

*Control Font Styl ePtr;

Control Manager Routines

Internal Routines

pascal SInt32 SendControl Message

pascal OSErr DunpControl H erarchy

Embedding Routines

pascal OSErr CreateRoot Contr ol

pascal OSErr Get Root Contr ol

pascal OSErr EnmbedCont r ol

pascal OSErr Aut oEnbedContr ol

Drawing Controls

pascal void DrawControl I nCurrent Port

(Control Handl e t heControl,
SInt16 nessage, Slnt32

par am ;

(W ndowPt r wi ndow, const
FSSpec* file);

(Control Handl e wi ndow,
Control Handl e * control);

(Control Handl e wi ndow,
Control Handl e * control);

(Control Handl e control,
Cont r ol Handl e cont ai ner);

(Control Handl e control,
W ndowPt r wi ndow) ;

(Control Handl e control);

Do not distribute—Apple Confidential

31

Testing and Changing Control Settings

pascal Bool ean IsControl Active (Control Handl e control);
pascal Bool ean IsControl Visible (Control Handl e control);
pascal OSErr ActivateControl (Control Handl e control);
pascal OSErr Deacti vat eContr ol (Control Handl e control);
pascal OSErr Set Control Font Styl e (Control Handl e control,
Control Font Styl ePtr
style);

Handling Mouse Events in Controls

pascal Control Ref Fi ndControl Under Mouse

(Point where, WndowRef wi ndow, SIntl6* part);

pascal SInt16 Handl eControl dick (Control Handl e control,
Poi nt where, SIntl6
nodi fi ers,

Cont rol Acti onUPP acti on);

pascal OSErr Set Control Supervi sor (Control Handl e control,
Cont rol Handl e boss);

Handling Keyboard Events in Controls

pascal SInt16 Handl eContr ol Key (Control Handl e control,
SInt 16 keyCode, SInt16
char Code, SInt16
nodi fiers);

Idle Processing for Controls

pascal void IdleControls (W ndowPt r wi ndow)

Handling Focus for Controls

pascal OSErr Get KeyboardFocus (W ndowPt r w ndow,
Cont rol Handl e* control);

Do not distribute—Apple Confidential 32

pascal OSErr Set KeyboardFocus

pascal OSErr AdvanceKeyboar dFocus

pascal OSErr Rever seKeyboar dFocus

Determining Features of Controls

pascal Ul nt32 Get Control Feat ures

Getting and Setting Control Data

pascal OSErr Set Control Data

pascal OSErr Get Control Data

pascal OSErr Get Control DataSi ze

Iterating Over the Control Hierarchy

pascal OSErr Count SubControl s

pascal OSErr Getl ndexedSubContr ol

pascal OSErr Get Super Contr ol

Application-Defined Routines

(W ndowPt r w ndow,
Control Handl e control,
FocusPart part);

(W ndowPt r wi ndow) ;

(W ndowPtr wi ndow) ;

(Control Handl e control);

(Control Handl e control,
Control Part Code part,
ResType tagNane, Size
size, Ptr dataPtr);

(Control Handl e control,
Cont rol Part Code part,
ResType tagNane, Size
bufferSize, Ptr
bufferPtr, Size*
act ual Si ze);

(Control Handl e control,
Cont rol Part Code part,
ResType tagNane, Size*
si ze);

(Control Handl e control,
Sl nt 16* nuntChi | dren);

(Control Handl e control,

SInt 16 i ndex, Control Ref*

child);

(Control Handl e control,

Control Handl e * parent);

Do not distribute—Apple Confidential 33

pascal

pascal

pascal

pascal

pascal

pascal

pascal

pascal

KeyFilterResult MyKeyFilter (Control Handl e t heControl,
Sl nt 16* keyCode,

Sl nt 16* char Code, SInt 16*
nodi fiers);

voi d MyUser PaneDr awPr oc (Control Handl e control,
SInt1l6 part);

Control Part Code MyUser PaneHi t Test Proc

(Control Handl e control,
Poi nt where);

Cont r ol Part Code MyUser PaneTr ackPr oc
(Control Handl e control,
Poi nt startPt,
Cont r ol Acti onUPP
actionProc);
voi d MyUser Panel dl eProc (Control Handl e control);
Cont r ol Part Code MyUser PaneKeyDownPr oc

(Control Handl e control,
SInt 16 keyCode,

SInt 16 char Code, SInt16
nodi fiers);

voi d MyUser PaneAct i vat eProc (Control Handl e control,
Bool ean activating);

Cont r ol Part Code MyUser PaneFocusPr oc

(Control Handl e control,
FocusPart part);

Do not distribute—Apple Confidential 34

Dialog Manager Reference

This section describes the new routines added to the Dialog Manager as
well as how some routines have been altered when running with a
hierarchy.

Creating Dialogs And Alerts

NewFeaturesDialog

Call NewFeaturesDialog to create a dialog while specifying features for the
dialog.

pascal Di al ogPtr Newreat uresDi al og(voi d *wSt or age,
const Rect *boundsRect, ConstStr255Paramtitle,
Bool ean visible, SIntl16 proclD, W ndowRef behind,
Bool ean goAwayFl ag, SInt32 refCon,
Handl e itmlstHndl, SInt32 flags);

DESCRIPTION

This new routine allows the creation of a dialog while specifying options,
such as theme backgrounds and embedding, when the dialog is created.

Presenting Dialogs

StandardAlert

Call StandardAlert to use a system-supplied default alert template.

pascal OSErr StandardAl ert (
Al ert Type type,
StringPtr error,

Do not distribute—Apple Confidential 1

StringPtr explanation, Bool ean novabl e,
Modal Filter UPP filterProc,

StringPtr defaultText,

StringPtr cancel Text,

StringPtr otherText,

const FSSpec* agFil eSpec,

SInt 16 agSequencel D,

SInt16* itenHt);

DESCRIPTION

The StandardAlert routine is available as an easy to use template for
creating alerts. It allows you to set the error text, as well as text to further
explain what went wrong and how to fix it. The explanatory text is
displayed in the small system font. The alert can be movable by passing
true in for the movable parameter. Your modal filter is passed into
filterProc as usual. You can have up to 4 buttons in the alert: a default
button, a cancel button, an 'other’ button, and a help button. The buttons
auto-size and autoposition themselves correctly in the alert for you. By
default, the default button text is "OK", the cancel button text is "Cancel",
and the 'other’ button text is "Don't Save". The 'other’ button is always left
justified in the alert, and allows you to easily create a save alert. To specify
that the default button names should be used, you pass -1 in for the text
parameters. Passing nil in for a button text parameter indicates that no
button should be displayed for that particular button. Default buttons
cannot be hidden, so passing nil is equivalent to passing -1 in for that
parameter. If an AppleGuide file spec is passed in agFileSpec, the routine
expects a valid sequence ID passed in agSequencelD as well. When a file
spec is passed in, the help button is automatically displayed and handled
for you (it opens Apple Guide to the specified sequence when clicked). The
item hit will be returned in the itemHit parameter. Any errors are returned
as the function result.

ModifyingDialogs

The routines in this section allow you to manipulate aspects of a dialog.

AutoSizeDialog

Use AutoSizeDialog to automatically resize a dialog to make sure all static
text is visible.

pascal OSErr AutoSizeDi al og(Di al ogPtr dial og);

DESCRIPTION

Do not distribute—Apple Confidential 2

The AutoSizeDialog routine resizes the given dialog enough to show all
static text. This is extremely useful in dialogs where the amount of text to
be displayed is determined at runtime. Calling this routine iterates over the
items in the dialog. For each static text item it finds, it adjusts the bottom of
the window to accomodate the amount of text. Any items below a static
text field being adjusted are moved down accordingly. If the dialog is
visible when this routine is called, it is hidden, resized, and then shown. If
the dialog has enough room to show the text as is, no resizing is done.

Changes To Existing Routines

This section documents new behavior of some of the classic Dialog
Manager routines when a dialog is in the Appearance Savvy mode.

GetNewDialog

GetNewDialog has been changed to check for the presence of a 'digx’
resource with the same ID as the dialog resource ID passed in. If found, the
information is read in and used. The 'dlgx' resource holds information such
as the dialog flags for setting features like ‘use theme background' and 'use
embedding hierarchy"'.

Alert, CautionAlert, StopAlert, NoteAlert

These routines have been changed to check for the presence of a 'alrx'
resource esource with the same ID as the alert resource ID passed in. If
found, the information is read in and used. The "alrx' resource holds
information such as the alert flags for setting features like 'use theme
background' and 'use embedding hierarchy".

GetDialogltem

GetDialogltem is changed so that calling it when the dialog has an
embedding hierarchy always returns ControlRefs instead of the different
types of data. Using this along with GetDialogltemText will still result in
retrieving the text from an edit text control.

SetDialogltem

Do not distribute—Apple Confidential 3

SetDialogltem is changed so that calling it when the dialog has an
embedding hierarchy always expects ControlRefs instead of the different
types of data.

GetDialogltemText

GetDialogltemText is changed such that calling it when the dialog has an
embedding hierarchy it will expect a ControlRef in the handle parameter. It
will ask the EditText control for the text and return it in the string
parameter.

SetDialogltemText

SetDialogltem is changed so that calling it when the dialog has an
embedding hierarchy always expects a ControlRef instead of a text handle.
The string passed in is set in the Edit Text control.

Summary of the Dialog Manager

Constants

/* Flags for NewFeaturesDi al og, as well as dlgx and alrx resources

*/

enum

{
kDi al ogFl agsUseTheneBackground = 1,
kDi al ogFl agsUseCont rol Hi erarchy = 2,
kDi al ogFl agsHandl eMbvabl eModal = 4,
kDi al ogFl agsUseTheneControl s =8

Do not distribute—Apple Confidential 4

Creating Dialogs and Alerts

pascal Di al ogPtr Newkeat uresDi al og

pascal OSErr AutoSizeDi al og

pascal OSErr Standar dAl ert

(Al ert Type type,

(void *wStorage, const Rect
*pboundsRect ,
Const Str255Paramtitle,
Bool ean visible, SIntl6
procl D, W ndowRef behi nd,
Bool ean goAwayFl ag,
SInt 32 ref Con, Handl e
itmist Hndl, SInt32
flags);

(Di al ogPtr dial og);

StringPtr
error, StringPtr

expl anati on, Bool ean
novabl e, Mbodal Fi |l t er UPP
filterProc, StringPtr
defaul t Text, StringPtr
cancel Text, tringPtr

ot her Text, const FSSpec*
agFi | eSpec, SInt16
agSequencel D, Sl nt 16*
itenHit);

Do not distribute—Apple Confidential 5

Window Manager Reference

This section describes the new routines added to the Window Manager.

Window Collapsing Support

A new part code is introduced to represent the Collapse Box:

enum

i nCol | apseBox = 9

Normally this is hidden from an application and taken care of by our

SystemEvent patch. We are working on trying to establish a mechanism

whereby apps can signal us that they want to receive these events
themselves, bypassing the automatic behavior.

A new message has been created for getting the features of a window
definition function:

enum

kW ndowsgCet Feat ur es 7

When sent this message, the WDEF should respond by filling out a 32-bit
response field and returning it as the result of the definition function. The
values that are currently valid are:

Do not distribute—Apple Confidential 1

enum

{
kW ndowCanGr ow = (1 << 0),
kW ndowCanZoom = (1 << 1),
kW ndowCanCol | apse = (1 << 2),
kW ndowl sMbodal = (1 << 3),
kW ndowl sMovabl eMbdal = (1 << 4),
kW ndow sAl ert = (1 << 5)

b

When a WDEF supports the collapsing, it knows to calculate its regions in
its collapsed state by testing to see whether IsWindowCollapsed returns
true. If so, it should calculates its structure region based on the collapsed
state. If not, it should do its normal structure calculation.

Collapsing Routines

CollapseWindow

Call CollapseWindow to collapse a window. A window typically collapses
to its title bar.

pascal OSErr Col | apseW ndow(W ndowPt r wi ndow,
Bool ean col | apse);
DESCRIPTION
This routine will either tell a window to collapse or uncollapse a window,

depending on the value of the collapse parameter. If a window does not
support collapsing thru the new mechanism, an error is returned.

CollapseAllWindows

Do not distribute—Apple Confidential 2

Call CollapseAllWindows to collapse or uncollapse all windows.

pascal OSErr Col | apseAl | Wndows(Bool ean col | apseEnj;

DESCRIPTION

This routine will either tell all windows that are in the application's layer to
collapse or uncollapse a window, depending on the value of the collapse
parameter. If a window does not support collapsing thru the new
mechanism, an error is returned.

IswWindowCollapsed

Call IswWindowCollapsed to check to see whether a window is in its
collapsed state.

pascal Bool ean | sWndowCol | apsed(W ndowPtr w ndow) ;

DESCRIPTION

This routine will return true or false depending on the collapse state of the
window. If the window does not support collapsing, false is returned.

Summary of the Window Manager

Constants

/* Part codes returned by Fi ndW ndow */

enum

{

Do not distribute—Apple Confidential 3

i nCol | apseBox = 9 /* Col | apse box of a wi ndow was hit */

}s

/* Wndow definition function task codes */

enum

{

kW ndowsgGet Feat ur es =7

/* Wndow feature bits */

enum
{
kW ndowCanGr ow = (1 << 0),
kW ndowCanZoom = (1 <<,
kW ndowCanCol | apse = (1 << 2,
kW ndowl sMbdal = (1 << 3),
kW ndowl sMovabl eModal = (1 << 4)
1

Collapsing Windows

pascal OSErr Col | apseW ndow (W ndowPtr wi ndow, Bool ean
col | apse) ;

pascal OSErr Col | apseAl | W ndows (Bool ean col | apse);

pascal Bool ean | sW ndowCol | apsed (W ndowPtr wi ndow) ;

Do not distribute—Apple Confidential 4

Menu Manager Reference

This section describes the new routines added to the Menu Manager. It has
been extended to allow for more modifier keys to be used, such as shift and
option. We have also added the ability to set a command ID for a menu
item an other information. The routines in this section only function when
the system supplied MDEF is used.

Handling Keyboard Events

MenuEvent
Call MenuEvent instead of MenuKey to determine if a keyboard equivalent
for a menu item has been pressed when using the extended modifiers.
pascal Ul nt32 MenuEvent(Event Record* event);

DESCRIPTION

MenuEvent is used to determine if a keyboard equivalent has been pressed
by the user when using the new extended set of modifiers. The charCode
and modifiers are normally taken from an EventRecord's message and
modifiers fields.

Getting and Setting Menu Item Data

SetMenultemModifiers

Call SetMenultemModifiers to set the modifier keys to use for a specific
menu item.

Do not distribute—Apple Confidential 1

pascal OSErr Set MenultenModifiers(MenuHandl e nmenu,
SIntl1l6 item SIntl6 nodifiers);

DESCRIPTION
This routine will set the modifiers field of a menu item. The Command key
is always implied to be set; however, it is possible to set a modifier

sequence without the command key using the kMenuNoCommand flag in
modifiers.

GetMenultemModifiers

Call GetMenultemModifiers to set the modifier keys to use for a specific
menu item.

pascal OSErr Get Menulteniodifiers(MenuHandl e nenu,
SIntl1l6 item SIntl16* nodifiers);

DESCRIPTION

This routine will get the modifiers field of a menu item.

SetMenultemCommandID

Call SetMenultemCommandID to set the modifier keys to use for a specific
menu item.

pascal OSErr Set MenultenConmandl D{ MenuHandl e nenu,
SInt1l6 item U nt32 comandl D);

DESCRIPTION

Do not distribute—Apple Confidential 2

This routine will set the command ID of a menu item. You can use the
command ID as a position independent method of signaling a specific
action in an application. After a successful call to MenuSelect, MenuKey, or
ExtendedMenuKey, you can call GetMenultemCommandID to get the
command of the item and do the appropriate thing.

GetMenultemCommandID

Call GetMenultemCommandID to get the command ID for a specific menu
item.

pascal OSErr Get Menult enConmandl D{ MenuHandl e nenu,
SIntl1l6 item U nt32* conmandl D);

DESCRIPTION

This routine will get the command ID of a menu item. You can use the
command ID as a position independent method of signaling a specific
action in an application. After a successful call to MenuSelect, MenuKey, or
ExtendedMenuKey, you can call GetMenultemCommandID to get the
command of the item and do the appropriate thing.

SetMenultemTextEncoding

Call SetMenultemTextEncoding to set the script code to use for a specific
menu item.

pascal OSErr Set MenulteniText Encodi ng(MenuHandl e nenu,
SInt16 item TextEncoding encoding);

DESCRIPTION

Do not distribute—Apple Confidential 3

This routine will set the script code of a menu item. You can use this
routine instead of the older method of using $1C in the command key
equivalent field, which uses up that field as well as the icon field, which
would hold the script code. Using this new method allows you to gain
those fields back for your use. If a menu item has a command code of $1C
when this routine is called, the command and icon fields are cleared, in
favor of the new setting passed in and stored with the extended
information for this item.

GetMenultemTextEncoding

Call GetMenultemTextEncoding to get the script code for a specific menu
item.

pascal OSErr Get Menult enTText Encodi ng(MenuHandl e nenu,
SInt16 item TextEncodi ng* encodi ng);

DESCRIPTION

This routine will get the script code of a menu item. If the script code is set
using the old method ($1C in the key equivalent field), the script code is
extracted from the icon field and returned. In general, when running
Appearance, you should use the new SetMenultemScript routine instead of
the older method.

SetMenultemlconHandle

Call SetMenultemlconHandle to set an icon to use for a specific menu item.

pascal OSErr Set Menultem conHandl e(MenuHandl e nenu,
SInt16 item Menul conType type, Handle icon
)

DESCRIPTION

Do not distribute—Apple Confidential 4

This routine will set the icon of a menu item with an icon handle instead of
an ID. This call allows you to set icons of type ICON, cicn, SICN, and icon
suites. The menu will not dispose of any icons, it is up to the application to
do so.

GetMenultemlconHandle

Call GetMenultemlconHandle to get the handle of an icon you've set using
SetMenultemiconHandle.

pascal OSErr Get Menultem conHandl e(MenuHandl e nenu,
SInt16 item Menul conType* type, Handle* suite);
DESCRIPTION
This routine will return the icon handle and the type of icon. If there is no

icon for this item, nil is returned for the icon handle and kMenuNolcon is
returned for the type.

SetMenultemRefCon

Call SetMenultemRefCon to set an application-specific piece of information
for a menu item.

pascal OSErr Set MenultenRef Con(MenuHandl e nenu,
SInt1l6 item SInt32 refCon);
DESCRIPTION

This routine allows an application to set a piece of application specific data
to a menu item.

Do not distribute—Apple Confidential 5

GetMenultemRefCon

DESCRIPTION

Call GetMenultemRefCon to get an application-specific piece of
information for a menu item.

pascal OSErr Get Menult enRef Con(MenuHandl e nenu,
SIntl6 item SInt32* refCon);

This routine returns the application specific data set for a menu item with
SetMenultemRefCon.

SetMenultemRefCon2

DESCRIPTION

Call SetMenultemRefCon2 to set an application-specific piece of
information for a menu item.

pascal OSErr Set MenultenRef Con2(MenuHandl e nenu,
SInt1l6 item SInt32 refCon);

This routine allows an application to set a piece of application specific data
to a menu item.

GetMenultemRefCon2

Call GetMenultemRefCon2 to get an application-specific piece of
information for a menu item.

Do not distribute—Apple Confidential 6

pascal OSErr Get MenultenRef Con2(MenuHandl e nenu,
SIntl1l6 item SInt32* refCon);

DESCRIPTION

This routine returns the application specific data set for a menu item with
SetMenultemRefCon2.

SetMenultemHierarchical ID

Call SetMenultemHierarchicallD to attach a submenu to a menu item.

pascal OSErr Set MenultenH erarchical | D{ MenuHandl e nmenu,
SInt16 item SIntl1l6 hierlD);

DESCRIPTION

This routine allows you to attach a hierarchical menu to the given menu
item. This is a better alternative than the previous method for doing this as
it allows you to use a full 16-bit value for the menu ID, instead of the
previous 8-bit value. You can still use the old method, but this new routine
is the preferred method. If the keyboard equivalent of the item is set to $1B
when this routine is called, the keyboard equivalent and mark field of the
menu item are cleared.

GetMenultemHierarchicalID

Call GetMenultemHierarchicallD to get an application-specific piece of
information for a menu item.

pascal OSErr Get MenultenH erarchical | D{ MenuHandl e nenu,
SIntl1l6 item SIntl16* hierlD
)

DESCRIPTION

Do not distribute—Apple Confidential 7

This routine returns the hierarchical menu ID for the given menu item. If
the keyboard equivalent for the item is set to $1B, the menu ID is extracted
from the item mark field and returned.

SetMenultemFont

Call SetMenultemFont to set the font for a specific menu item.

pascal OSErr Set Menultentont (MenuHandl e nenu,
SIntl6 item SIntl1l6 fontNum
);

DESCRIPTION
This routine allows you to set the font to use when drawing the given menu

item. This effectively allows you to set up a font menu with each item being
drawn in the actual font.

GetMenultemFont

Call GetMenultemFont get the font used by a specific menu item.

pascal OSErr Get Menult enfont (MenuHandl e nenu,
SInt16 item SIntl1l6* fontNum);

DESCRIPTION

This routine returns the font for the given menu item.

Summary of the Menu Manager

Constants

Do not distribute—Apple Confidential 8

/* Modifier flags used by Set MenultemVbdifiers */

enum
{
kMenuQOpt i onKey =
kMenusShi f t Key =

kMenuCont r ol Key =

kMenuNoComuandKey

b

/* Valid icon types for
enum
{
kMenul con =
kMenuCol or | con =

kMenuSmal | | con =

kMenul conSuite

kMenul conRef =

Routines

Set Menul t enl conHandl e */

1, /* old | CON data */
2, [* cicn format */
3, /* SICN format */
4, /* lcon Suite */

5 /[* lcon Ref */

Handling Keyboard Events

pascal SInt32 MenuBEvent

(Event Record* event);

pascal OSErr Set Menultenhodifiers (MenuHandl e nenu, SInt16

item SIntl6 nodifiers);

Do not distribute—Apple Confidential

Getting and Setting Menu Data

pascal

pascal

pascal

pascal

pascal

pascal

pascal

pascal

pascal

pascal

CSEr r

CSErr

CSEr r

CSErr

CSEr r

CSEr r

CSErr

CSEr r

CSEr r

CSEr r

Set Menul temVbdi fiers

Set Menul t enConmandl D

Cet Menul t enCommandl| D

Set Menul t enifext Encodi ng

Get Menul t eniTfext Encodi ng

Set Menul t enl conHandl e

Cet Menul t enl conHandl e

Set Menul t enRef Con

Cet Menul t enRef Con

Set Menul t enRef Con2

(MenuHandl e nenu, SInt16
item SIntl1l6* nodifiers);

(MenuHandl e nenu, SIntl6
item U nt32 comuandl D);

(MenuHandl e nenu, SInt16
item Ul nt32* commandl D);

(MenuHandl e nenu, SIntl6
item Text Encoding
encodi ng) ;

(MenuHandl e nenu, SInt16
item TextEncoding *
encodi ng) ;

(MenuHandl e nenu, SIntl16
item Menul conType type,
Handl e icon);

(MenuHandl e nenu, SIntl16
item Menul conType* type,
Handl e* suite);

(MenuHandl e nenu, SInt16
item SInt32 refCon);

(MenuHandl e nenu, SIntl6
item SInt32* refCon);

(MenuHandl e nenu, SInt16
item SInt32 refCon);

Do not distribute—Apple Confidential 10

pascal OSErr Get Menult enRef Con2

pascal OSErr Set Menultenti erarchicallD

pascal OSErr Get MenultentHi erarchicallD

pascal OSErr Set Menult enfont

pascal OSErr Get Menult enfont

(MenuHandl e nenu, SIntl6
item SInt32* refCon);

(MenuHandl e nenu, SInt16
item SIntl1l6 hier);

(MenuHandl e nenu, SIntl6
item SIntl6* hier);

(MenuHandl e nenu, SInt16
item SIntl1l6 font);

(MenuHandl e nenu, SIntl16
item SIntl6* font);

Do not distribute—Apple Confidential

11

Appearance Manager Reference

This section describes the routines available as part of the Appearance
Manager.

Getting Patterns and Colors

GetThemePixPat

Use GetThemePixPat to get a specific theme pattern from the Appearance
Manager.

pascal OSStatus Get ThenePi xPat (Sl nt 16 patternl ndex,
Pi xPat Handl e *pi xPat) ;

DESCRIPTION
GetThemePixPat returns in pixPat a handle to the specified pattern. The

pattern passed back is owned by the system and is shared, so you should
never dispose of the handle passed back to you.

SetThemePenPixPat

Use SetThemePenPixPat to set the pen pattern to a specific theme pattern
from the Appearance Manager.

pascal OSStatus Set ThemePenPi xPat (Sl nt 16 patternl ndex) ;

DESCRIPTION

Do not distribute—Apple Confidential 1

SetThemePixPat sets the current pen pattern to the specified pattern.

SetThemeForeColor

Use SetThemeForeColor to set the foreground color to a specific theme
color from the Appearance Manager.

pascal OSStatus Set ThermeFor eCol or (Sl nt16 col orl ndex,
SInt16 depth);

DESCRIPTION

SetThemeForeColor sets the foreground color to the color specified by
colorindex. Pass the current bit depth into depth to ensure color correctness
for all depths.

SetThemeBackColor

Use SetThemeBackColor to set the background color to a specific theme
color from the Appearance Manager.

pascal OSStatus Set ThermeBackCol or (Sl nt16 col or | ndex,
SInt16 depth);

DESCRIPTION

SetThemeForeColor sets the background color to the color specified by
colorindex. Pass the current bit depth into depth to ensure color correctness
for all depths.

Do not distribute—Apple Confidential 2

Drawing Theme-Savvy Primitives

DrawThemeWindowHeader

Call DrawThemeWindowHeader to draw the correct window header for
the current theme.

pascal OSErr DrawTheneW ndowHeader (const Rect* rect,
TheneDr awSt at e state);

DESCRIPTION

This routine will draw a window header which looks right for the current
theme. The header is the same as that used in the Finder. The state
parameter indicates which state to draw the header in.

DrawThemeWindowListViewHeader

Call DrawThemeWindowL.istViewHeader to draw the correct window
header for a list view for the current theme.

pascal OSErr DrawThemeW ndowlLi st Vi ewHeader (
const Rect* rect, TheneDrawState state);

DESCRIPTION

This routine will draw a window header for a list view which looks right
for the current theme. The header is the same as that used in the Finder.
The state parameter indicates which state to draw the header in.

DrawThemePlacard

Call DrawThemePlacard to draw a placard for the current theme.

Do not distribute—Apple Confidential 3

pascal OSErr DrawThenePl acard(const Rect* rect,
TheneDr awSt at e state);

DESCRIPTION

This routine will draw a placard which looks right for the current theme.
The state parameter indicates which state to draw the header in.

DrawThemeModelessDialogFrame

Call DrawThemeModelessDialogFrame to draw the right frame for a
modeless dialog for the current theme.

pascal OSErr DrawTheneModel essbDi al ogFr ane(
const Rect* rect, TheneDrawState state);

DESCRIPTION

This routine will draw a modeless dialog frame which looks right for the
current theme. The state parameter indicates which state to draw the
header in. This call is actually used by the Dialog Manager to draw
appearance-savvy dialogs. It is provided for those developers which
implement windows that act like dialogs without the use of the Dialog
Manager.

DrawThemeEditTextFrame

Call DrawThemeEditTextFrame to draw an edit text frame in the current
theme.

pascal OSErr DrawTheneEdit Text Frane(const Rect* rect,
TheneDrawSt ate state);

DESCRIPTION

Do not distribute—Apple Confidential 4

This routine will draw an edit text frame which looks right for the current
theme. The state parameter indicates which state to draw the header in.
The frame is can actually be outset from the rectangle you pass in. In
practice, you would pass the bounding rectangle of your item. This routine
would outset the appropriate amount as specified by the theme and draw
the frame.

DrawThemeGenericFocus

Call DrawThemeGenericFocus to draw a rectangular generic focus ring
around a rectangle.

pascal OSErr DrawTheneCGenericFocus(const Rect* rect,
Bool ean hasFocus);

DESCRIPTION

This routine will draw a generic focus ring which looks right for the
current theme. The hasFocus parameter indicates whether to draw or erase
the ring. The ring is actually outset from the rectangle you pass in. In
practice, you would pass the bounding rectangle of your item. This routine
would outset the appropriate amount as specified by the theme and draw
the ring.

DrawThemePrimaryGroup

Call DrawThemePrimaryGroup to draw the right frame for a primary
group box.

pascal OSErr DrawThenePri maryG oup(const Rect* rect,
TheneDr awSt at e state);

DESCRIPTION

Do not distribute—Apple Confidential 5

This routine will draw a primary group frame which looks right for the
current theme. The state parameter indicates which state to draw the
header in.

DrawThemeSecondaryGroup

Call DrawThemeSecondaryGroup to draw the right frame for a secondary
group box.

pascal OSErr DrawTheneSecondaryG oup(const Rect* rect,
TheneDrawSt ate state);

DESCRIPTION
This routine will draw a secondary group frame which looks right for the
current theme. The state parameter indicates which state to draw the
header in.
DrawThemeSeparator
Call DrawThemeSeparator to draw a visual separator for the current theme.
pascal OSErr DrawThenmeSeparator(const Rect* rect,
TheneDrawSt ate state);
DESCRIPTION

This routine will draw a visual separator which looks right for the current
theme. The state parameter indicates which state to draw the header in.
The orientation of the rect passed in determines whether the line is
horizontal or vertical.

Do not distribute—Apple Confidential 6

Summary of the Appearance Manager

Constants

/* pattern indexes */

enum {
kThermeAct i veDi al ogBackgroundPattern
kTherel nact i veDi al ogBackgr oundPattern
kThemeAct i veAl ert Backgr oundPat t er n
kTherel nacti veAl ert Backgr oundPattern
kThermeAct i veModel essDi al ogBackgr oundPat t ern
kTherel nact i veModel essDi al ogBackgr oundPatt ern
kThermeActiveltilityW ndowBackgroundPattern
kTherel nacti veUtilityW ndowBackgroundPattern
kThemeFi nder Li st Vi ewSort Col umPattern
kThereFi nder Li st Vi ewBackgr oundPat t ern
kThermeFi nder Li st Vi enSepar at or Li nePattern
kThermeFi nder W ndowBackgr oundPat t ern

kThemeFi nder W ndowAr r angedBackgr oundPat t ern

/* Col or indexes */

enum

{

kThermeAct i veDi al ogText Col or

kTherrel nact i veDi al ogText Col or

Do not distribute—Apple Confidential 7

kThenmeActi veAl ert Text Col or = 3,

kThenel nacti veAl ert Text Col or = 4,
kThemeAct i veMbdel essDi al ogText Col or = b5,
kTherrel nact i veModel essDi al ogText Col or = 6,
kTheneAct i veW ndowHeader Text Col or =17,
kThemel nact i veW ndowHeader Text Col or = 8,
kThemeAct i vePl acar dText Col or =9,
kThenel nacti vePl acar dText Col or = 10,
kThenePr essedPl acar dText Col or = 11,
kTherrel conLabel Text Col or = 12,
kTherel conLabel Backgr oundCol or = 13,
kThemeFi nder Li st Vi ewText Col or = 14,
kThemeChasi ngAr r owsCol or = 15

/* These are used to tell nobst routines what state to draw a
primtive in */

enum
{
kTheneSt at eDi sabl ed =0,
kTheneSt at eActi ve =1,
kTheneSt at ePr essed =2

b

t ypedef Ul nt32 TheneDr awst at €;

Do not distribute—Apple Confidential 8

Routines

Getting Patterns and Colors

pascal OSStatus Get ThenmePi xPat (SInt16 patternlndex,

Pi xPat Handl e *pi xPat);
pascal OSStatus Set ThemePenPi xPat (SInt16 patternlndex);
pascal OSStatus Set ThermeFor eCol or (SInt16 col orlndex, SIntl6

depth);
pascal OSStatus Set ThemeBackCol or (SInt16 col orlndex, SIntl6

depth);

Drawing Theme-Savvy Primitives

pascal OSErr DrawTheneW ndowHeader (const Rect* rect,
TheneDr awSt ate state);

pascal OSErr DrawThemeW ndowlLi st Vi ewHeader

(const Rect* rect,
TheneDrawSt ate state);

pascal OSErr DrawThenePl acard (const Rect* rect,
TheneDr awSt ate state);

pascal OSErr DrawTheneModel essDi al ogFr ane

(const Rect* rect,
ThemeDrawSt ate state);

pascal OSErr DrawTheneEdit Text Frane (const Rect* rect,
TheneDr awSt ate state);

pascal OSErr DrawThenmeCGeneri cFocus (const Rect* rect, Boolean
hasFocus);

Do not distribute—Apple Confidential 9

pascal OSErr DrawThenePri maryG oup (const Rect* rect,
TheneDr awSt ate state);

pascal OSErr DrawThenmeSecondaryG oup (const Rect* rect,
TheneDrawSt ate state);

pascal OSErr DrawThenmeSepar at or (const Rect* rect,
TheneDr awSt ate state);

Do not distribute—Apple Confidential 10

