
K AppleShare 3.0 Developer’s Kit

AppleTalk Filing Protocol Version 2.1

 Apple Computer, Inc.
This manual is copyrighted by Apple or by Apple’s
suppliers, with all rights reserved. Under the
copyright laws, this manual may not be copied, in
whole or in part, without the written consent of Apple
Computer, Inc. This exception does not allow copies
to be made for others, whether or not sold, but all of
the material purchased may be sold, given, or lent to
another person. Under the law, copying includes
translating into another language.

System 7 is a trademark of Apple Computer, Inc.

Adobe, Adobe Illustrator, and PostScript are
trademarks of Adobe Systems Incorporated, registered
in the United States.

ITC Garamond and ITC Zapf Dingbats are registered
trademarks of International Typeface Corporation.

Microsoft is a registered trademarks of Microsoft
Corporation.

QuarkXPress is a registered trademark of Quark, Inc.The Apple logo is a registered trademark of Apple
Computer, Inc. Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes without the
prior written consent of Apple may constitute
trademark infringement and unfair competition in
violation of federal and state laws.

Varityper is a registered trademark, and VT600 is a
trademark, of AM International, Inc.

Simultaneously published in the United States and
Canada.

Mention of third-party products is for informational
purposes only and constitutes neither an endorsement
nor a recommendation. Apple assumes no
responsibility with regard to the performance or use of
these products.

© Apple Computer, Inc., 1992
20525 Mariani Avenue
Cupertino, CA 95014-6299
(408) 996-1010

Apple, the Apple logo, APDA, AppleShare,
AppleTalk, LaserWriter, and Macintosh are trademarks
of Apple Computer, Inc., registered in the United
States and other countries.

Contents

Overview of the extension in AFP 2.1 / 1
Blank access privileges / 3

Two-Way Scrambled user authentication method / 3
UAM implementation notes / 5

New bitmap definitions / 5
Directory Attributes and Access Rights words / 5
Flags word in afpGetSInfo / 7
Volume Attributes word in afpGetVolParms / 8

New security features / 9
Minimum password length / 9
Password expiration / 9
Maximum failed login attempts / 10

New AFPUserBytes definitions / 10
afpGetSrvrMsg (38 or $26) / 13
afpCreateID (39 or $27) / 15
afpDeleteID (40 or $28) / 17
afpResolveID (41 or $29) / 18
afpExchangeFiles (42 or $2A) / 20
afpCatSearch (43 or $2B) / 22
Valid bitmaps for afpCatSearch / 24
RequestBitmap / 24
Attributes bits / 26
New function codes / 27
New result codes / 28

Some AFP 2.1–related questions and answers / 29

Overview of the extension in AFP 2.1

This document describes extensions to version 2.0 of the AppleTalk Filing
Protocol (AFP), the version currently used in AppleShare 2.0.1 and
documented in Inside AppleTalk, that support extra features in AFP
servers and new calls that have been added to the hierarchical file system
(HFS) for system software version 7.0. These protocol extensions are
called AFP 2.1. The AFPVersion string for AFP 2.1 is
AFPVersion 2.1.

The following calls have been added to the protocol:

n afpGetSrvrMsg, which enables an AFP client to get a string message
from the server. Use of this call is optional; the server can be
considered AFP 2.1–compliant whether or not this call is supported.
This document defines the previously undocumented AFPUserBytes
field, the 2-byte attention code sent in an ASP Attention packet to an
AFP client.

n afpCreateID, afpDeleteID, afpResolveID, and
afpExchangeFiles, which support file IDs. File IDs provide a
mechanism by which applications and users can keep track of a file
regardless of whether it has been moved or its name has been changed.
Use of these calls is optional. For more information, see “Volume
Attributes Word in afpGetVolParms,” later in this document.

n afpCatSearch, which allows searching of the catalog on almost any
field that is returned by PBGetCatInfo. Use of this call is optional.
For more information, see “Volume Attributes Word in
afpGetVolParms,” later in this document.

AFP 2.1 also defines changes in the behavior of the server to support
optional enhanced security features.

AppleShare 3.0 Developer’s Kit / AppleTalk Filing Protocol Version 2.1 1

To accommodate some of the new features of AFP and HFS, the bitmaps
of certain calls have been augmented:

n new Directory Attributes and Access Rights in afpGetFlDrParms and
any call that uses this bitmap

n new Flags word bit definitions returned by afpGetSInfo

n new Volume Attributes in afpGetVolParms

A new user authentication method (UAM), known as Two-Way Scrambled,
is available for use with AFP 2.1. When this method is used, not only is the
user authenticated to the server, but the server is authenticated to the user.

A “blank access privileges” feature was added to accommodate an
environment on a local computer in which some portions of the
hierarchical file system are shared (or “exported”) for regular users,
while the entire hierarchy is available for the local user (and the owner
when connected remotely). A folder with blank access privileges
“inherits” the privileges of the folder in which it is contained.

Furthermore, when a folder is created remotely, the default access
privileges assigned to that folder are different under AFP 2.1 than under
AFP 2.0. When a user creates a new folder under AFP 2.1, the owner is
still assigned full privileges, but the enclosing folder’s Group and World
privileges are copied to the new folder.

User and group names are now valid in either the owner field or the group
field. This enhancement allows for two new situations that were not
allowed under AFP 2.0:

n A folder can now be owned by more than one user.

n A different set of access privileges for a shared folder can be assigned
for a user (or group) than for everyone else.

The rest of this document describes these extensions in more detail. The
section “Some AFP 2.1–Related Questions and Answers,” later in this
document, provides additional information about AFP 2.1.

2 AppleShare 3.0 Developer’s Kit / AppleTalk Filing Protocol Version 2.1

Blank access privileges

AFP 2.1 supports blank access privileges for folders. When a folder’s
blank access privileges bit is set, then its other access privilege bits are
ignored and it uses the access privilege bits of its parent. The inherited
access privileges include the parent’s group affiliation.

Blank access privileges cannot be set on any share point. Since the volume
root directory (directory ID = 2) of a shared volume is always a share
point for the administrator/owner, blank access privileges cannot be set on
a volume root directory.

IMPORTANT This paradigm is useful because it causes folders’ access
privileges to behave as users expect them to: When a folder with blank
access privileges is moved around within a folder hierarchy, it always
reflects the access privileges of the folder containing it. However, when the
blank access privileges bit is cleared for a folder, its current access
privileges “stick” to that folder and remain unchanged no matter where
the folder is moved.

Therefore, although the use of blank access privileges is optional under
AFP 2.1, it is highly recommended that you include this feature in your
AFP 2.1 implementation as it has subtle human interface repercussions.

Two-Way Scrambled user authentication method

AFP 2.1 supports a new user authentication method, the Two-Way
Scrambled UAM. With this UAM, the user is authenticated to the server
and the server is also authenticated to the user. This method uses the same
initial steps as the Random Number Exchange UAM, with one additional
last step. The corresponding UAM string is 2-Way Randnum exchange.

Both the Random Number Exchange UAM and the Two-Way Scrambled
UAM start with the workstation asking to login to the server. If the login is
allowed, the server returns a random double-long word and an error of
afpAuthContinue. The workstation then
encodes the double-long word with its password and sends it back to the
server in an afpLoginCont call. If the encoding was performed
correctly, the workstation is authenticated and noErr is returned.
However, for the Two-Way Scrambled method, the workstation sends a
second random double-long word along with its afpLoginCont call.
The server encodes this double-long word with what it believes is the
user’s password, and returns the resulting double-long word in the
afpLoginCont reply.

AppleShare 3.0 Developer’s Kit / AppleTalk Filing Protocol Version 2.1 3

The workstation compares this response to what resulted from its encoding
of the second double-long word; if the two responses are the same, the
server is then also authenticated. This feature guards against trojan-horse
file servers.

The following figure shows the command and reply block formats for the
afpLoginCont call when the Two-Way Scrambled user authentication
method is used.

Request

LoginCont function

0

ID number

UserAuthInfo

UserRandNum

Reply

SrvrAuthInfo

The Two-Way Scrambled UAM is not available for use with the
afpPwdChange call, nor is it required. If the user is concerned about
authenticating the server, he or she will have already logged in to the
server with the Two-Way Scrambled UAM. Since the user must already be
authenticated to call afpPwdChange, he or she is assured that the server is
the one expected.

4 AppleShare 3.0 Developer’s Kit / AppleTalk Filing Protocol Version 2.1

UAM implementation notes

Both the Random Number Exchange UAM and the Two-Way Scrambled
UAM use 8-bit ASCII characters in the password. 7-bit ASCII is used only
by the Cleartext UAM.

The Random Number Exchange and Two-Way Scrambled UAMs
interpret differently the password used as the key passed to the National
Bureau of Standards Data Encryption Standard (NBS DES) algorithm.

With the Random Number Exchange UAM, the key (password) is used without
change. Thus, the low-order bit of each byte of the password is ignored. The
NBS DES algorithm uses only 56 bits of the 64-bit key, and the unused bits
are where the low-order bit of each password character is kept. The result is
that in passwords, “0” matches “1”, “b” matches “c”, and so on.

With the Two-Way Scrambled UAM, the key is shifted left one bit (that is,
with the 68000 LSL instruction) before it is used, so that the high-order
bit is ignored. Two values are still accepted for each byte of the password.
However, the two values will not be adjacent in ASCII space and so will
probably not be adjacent alphabetically. (For example, “0” will match
“∞”, “7” will match “∑”, and so on.)

New bitmap definitions

This section describes the new bits defined for AFP 2.1. The bits are
divided into three categories: Directory Attributes and Access Rights
words in afpGetFlDrParms, Flags word in afpGetSInfo, and Volume
Attributes word in afpGetVolParms.

Directory Attributes and Access Rights words
in afpGetFlDrParms

To accommodate the ability to share folders within Macintosh File
Sharing and AppleShare 3.0 (as opposed to the ability to share only entire
volumes under AppleShare 2.0.1), new bit definitions have been added to
the Directory Attributes word for afpGetFlDrParms:

IsExpFolder (bit 1)
This folder is a share point. This folder, and all folders within it, will give
feedback to the local user, indicating that access privileges are valid (for
example, by using tabbed folders or drop-box folder icons, or by
enabling the Get Privileges [System 6] or Sharing [System 7] menu
items). None of the folders outside the shared (exported) area show access
privileges on the local computers (although they may still possess valid
access privilege information, which only a superuser can see or modify).

AppleShare 3.0 Developer’s Kit / AppleTalk Filing Protocol Version 2.1 5

Mounted (bit 3)
This share point is mounted by a regular user (that is, a user without “All
Privileges”). The icon for such a folder indicates to the user of the local
computer, that this folder is a share point, and that a remote user currently
has it mounted.

InExpFolder (bit 4)
This folder is in a shared area of the folder hierarchy. This folder, and all
folders within it, will give feedback to the local user, indicating that access
privileges are valid. This folder cannot be shared, since a share point
cannot exist within another share point.

Note IsExpFolder, Mounted, and InExpFolder are read-only; they
cannot be set with afpSetFileDirParms. They are returned to the
remote user and are relevant to a general AFP server since the
administrator/owner can access the whole server from the volume root
directory down, and regular users can access only those portions of the
volume that are contained within the share points (which may be
contained within the volume directory level).

The following figure shows the entire Directory Attributes word, with the
new bits for AFP 2.1 shown in boldface.

Directory attributes

0 0
0

0 0 0 0

RenameInhibit

BackupNeeded

InExpFolder

Mounted

System

IsExpFolder

Invisible

DeleteInhibit

Set/Clear

To accommodate blank access privileges, a new bit definition has been
added to the Access Rights long word for afpGetFlDrParms:

BlankAccessPrivileges (bit 28)
This folder has blank access privileges and will have the same access
privileges as the folder enclosing it.

6 AppleShare 3.0 Developer’s Kit / AppleTalk Filing Protocol Version 2.1

The following figure shows the entire Access Rights long word, with the
new bit for AFP 2.1 in boldface.

Access rights

0 0 0 0 0

Write

Read

Search

BlankAccessPrivileges

Owner
0 0 0

0 0 0 0 0
0 0 0 00

UARights
World
Group
Owner

Flags word in afpGetSInfo

In order to accommodate the (optional) new features of AFP 2.1, some
new bit definitions have been added to the Flags word for afpGetSInfo.
The new bits are as follows:

DontAllowSavePassword (bit 2)
The workstation should not allow the user to save his or her password for
volumes mounted at system startup. The item-selection dialog box may
still allow the user to save his or her name, but when this bit is set, the
button that would allow the user to save his or her name and password will
not be displayed.

SupportsServerMessages (bit 3)
Since server messages are an option in AFP 2.1, this bit allows servers to
specify whether or not this optional feature is supported.

The following figure shows the entire Flags word, with the new bits for
AFP 2.1 in boldface.

Flags

SupportsServerMessages

DontAllowSavePassword

SupportsChgPwd

SupportsCopyFile

0 0 0 0 0
0 0 00

0 0 0

AppleShare 3.0 Developer’s Kit / AppleTalk Filing Protocol Version 2.1 7

Volume Attributes word in afpGetVolParms

In order to accommodate the new HFS calls in System 7, some new bit
definitions have been added to the Volume Attributes word for
afpGetVolParms:

HasVolumePassword (bit 1)
This volume has a volume password. Volume passwords were supported in
prior versions of AFP; now the volume attributes reflect this information.
This bit has the same value as the HasPassword bit returned for each
volume by afpGetSrvrParms.

SupportsFileIDs (bit 2)
This volume supports file IDs. In general, if file IDs are supported on one
volume, they will be supported on all volumes, but this bit allows the server
to be more selective if necessary.

SupportsCatSearch (bit 3)
This volume supports afpCatSearch calls. Since the use of
afpCatSearch is optional in AFP 2.1, this bit allows the server to make
this capability available on a per-volume basis.

SupportsBlankAccessPrivileges (bit 4)
This volume supports blank (inherited) access privileges. Blank access
privileges are discussed earlier in this document.

The following figure shows the entire Volume Attributes word, with the
new bits for AFP 2.1 in boldface.

Volume attributes

SupportsBlankAccessPrivileges

SupportsCatSearch

SupportsFileIDs

HasVolumePassword

ReadOnly

0 0 0 0 0
0 0 0

0 0 0

8 AppleShare 3.0 Developer’s Kit / AppleTalk Filing Protocol Version 2.1

New security features

This section describes the new security features of AFP 2.1: minimum
password length, password expiration, and maximum failed login attempts.

Minimum password length

It is now possible to specify the minimum length for a user’s password.
This length is specified by means of some administrative program. If the
user’s password is too short, he or she will get an afpPwdTooShort error
upon logging in. The client code should display an explanatory dialog
box and then allow the user to change his or her password. The
afpPwdChange call will continue to fail with an afpPwdTooShort error
until a password of at least the specified length is submitted.

The administrative program should be intelligent enough to prevent the
administrator from giving users passwords that are too short; otherwise
these users’ first login attempts will be dissatisfying, if not confusing.
Whether or not the administrative program should alert the administrator
when passwords for existing users are too short (as might happen when the
administrator changes the minimum password length from 4 to 8) is up to
the developer of the administrative program. The maximum password
length is still 8.

Password expiration

It is now possible to specify the period of time after which a user must
change his or her password. This interval can be specified by means of a
server administrative program. If the user changes the password before the
password expiration time expires, the password expiration timer is reset. If
the user does not change the password before the interval expires, the
actions that he or she can perform become severely limited. If the
workstation is using AFP 2.1, the user can issue an afpPwdChange call
and change the password; issue an afpLogout call; or issue an
afpLoginCont call. (If the user issues any other call, the error
afpParmErr will be returned.) The afpLoginCont call returns one of
the following errors: afpPwdTooShortErr, afpPwdExpiredErr, or
afpPwdNeedsChangeErr. At this point the user is logged in, and the only
command that can be issued is afpPwdChange or afpLogout. If the
user issues any other command, the error afpParmErr will be returned.
Once the user successfully changes the password, the user can issue any
command.

Note that if the workstation is using a version of AFP earlier than 2.1, two
additional calls, afpGetSParms and afpOpenVol, will allow the user to
log in as usual without returning an error.

AppleShare 3.0 Developer’s Kit / AppleTalk Filing Protocol Version 2.1 9

If the administrator wants to give a user an account that becomes inactive
after a certain interval, the administrator can set the password expiration
time to that interval and then disallow the changing of the password. When
the time expires, the user will no longer be able to connect to the server.

To keep users from circumventing this feature, a new error,
afpPwdSameErr, is returned by the afpPwdChange call. This error
prevents the user from changing his or her password when the new
password is the same as the old password. The afpPwdChange call will
return afpPwdSameErr only if the password expiration feature is
enabled.

Maximum failed login attempts

It is now possible to specify the maximum number of consecutive failed
login attempts that will be allowed before the user’s account is disabled.
This count can be specified by an administrative program. The count is
reset to zero after every successful login. For every failed login attempt
without a preceding successful login, the count is incremented. When the
maximum number of failed login attempts is reached, the user’s account
is disabled. Any attempts to log in after the account is disabled will result
in an afpParmErr indicating that the user is unknown or that his or her
login is disabled. The administrator will need to be notified to enable the
user’s account again. AFP does not notify the administrator that a user’s
account has been disabled; the user must notify the administrator by some
other means, such as a phone call.

New AFPUserBytes definitions

The AFPUserBytes bytes make up the 2-byte attention code sent in an
ASP Attention packet to the AFP client. This section describes how the
AFPUserBytes bytes have been augmented to accommodate some of the
new features in AFP 2.1 (such as the server message feature) and new
modes in the workstation code (such as Disconnect).

The AFPUserBytes bytes are defined as shown here.

Attention code (4 bits) Number of minutes or extended bitmap (12 bits)

10 AppleShare 3.0 Developer’s Kit / AppleTalk Filing Protocol Version 2.1

The following figure shows how the attention code bits for the
AFPUserBytes bytes are defined, with the new bit definitions for AFP
2.1 in boldface.

Attention code

ShutDown

ServerCrash

Server Message

(User or Shutdown)

Disconnect

The bit numbers for the attention code bits are defined as follows:

bit 15 ShutDown bit. This bit is used when the session is being shut
down. Either the server is being shut down or the user is being
disconnected.

bit 14 ServerCrash bit. The server has detected some internal error,
and the session will close immediately with minimal flushing of
files. There may be some data loss. This condition is never
accompanied by a server message and is highly unlikely to
occur.

bit 13 Server Message bit. There is a server message that the client
should request by using the afpGetSrvrMsg call with a
MsgType of “Server.” (For more information, see the section
“afpGetSrvrMsg (38 or $26)” later in this document.) The
client should request the message as soon as possible after
receiving this attention code, or else the server message it
receives could be outdated.

bit 12 Disconnect bit. This bit is set when the user is being
disconnected. This bit has meaning only if the ShutDown bit is
also set.

AppleShare 3.0 Developer’s Kit / AppleTalk Filing Protocol Version 2.1 11

Here is a list of valid bit combinations:

1000 The server is shutting down in the designated number of
minutes. No message accompanies this shutdown. This code
may be used upon server shutdown (that is, when the
administrator quits file service).

1001 The user will be disconnected in the designated number of
minutes. No message accompanies this shutdown. This is one of
the codes used upon user disconnection (for example, when the
administrator detects an intruder and disconnects him or her).

1010 The server is shutting down in the designated number of
minutes. A message accompanies this shutdown. The
workstation should immediately submit an afpGetSrvrMsg call
to receive and display the message. This code may be used
upon server shutdown (that is, when the administrator quits file
service).

1011 The user will be disconnected in the designated number of
minutes. A message accompanies this shutdown. The
workstation should immediately submit an afpGetSrvrMsg call
to receive and display the message. This is one of the codes
used upon user disconnection (for example, when the
administrator detects an intruder and disconnects him or her).

0100 The server is going down immediately (possibly because of an
internal error) and can perform only minimal flushing.
Number of minutes is ignored. No message ever accompanies
such an attention code.

0010 The server has a server message available for this workstation.
The workstation should immediately submit an afpGetSrvrMsg
call to receive and display the message. The extended bitmap is
reserved for Apple Computer’s use only.

0011 Reserved. The extended bitmap is reserved for Apple
Computer’s use only.

0001 Reserved. The extended bitmap is reserved for Apple
Computer’s use only.

0000 Reserved. The extended bitmap is reserved for Apple
Computer’s use only.

Note that for some of the valid bit patterns, the lower twelve bits of
afpUserBytes are interpreted as the number of minutes before the
action described by the bit pattern will take place. This value can be a
number in the range 0 to 4094 ($FFE) inclusive. A value of 4095 ($FFF)
means that the action is being canceled.

12 AppleShare 3.0 Developer’s Kit / AppleTalk Filing Protocol Version 2.1

afpGetSrvrMsg (38 or $26)

The afpGetSrvrMsg call allows an AFP client to get a string message
from the server. This call is made by the client to receive shutdown, user,
and login messages from the server. Usually, the server will send an
attention code to the client when these messages are available. However,
the client can make the afpGetSrvrMsg call at any time. An empty or
zero-length string is returned if no message is available.

The afpGetSrvrMsg parameters are defined as follows:

Inputs MsgType (int) Type of server message:

0 = login
1 = server (This value should be used in response to
the Server Message bit in the attention code.)

MsgBitmap (int) Bitmap indicating what information to pass with the
server message. (Currently, this is only the message
string itself.) The structure of the bitmap is shown
later in this section.

Outputs MsgType (int) Type of server message:

0 = login
1 = server

MsgBitmap (int) Bitmap indicating what information was passed.

SrvrMessage (str) String message from the server.

FPError (long)

Result codes afpCallNotSupported afpGetSrvrMsg is not implemented by the
server, or the AFP version is earlier than 2.1.

afpUserNotAuth The user was not logged in.

afpBitmapError The bitmap specified has unrecognized bits set.

Rights The client must be logged on to the server to receive server message
notification and to issue this request. Other than that, the client need have
no special access rights to issue this call.

Continued on following page .

AppleShare 3.0 Developer’s Kit / AppleTalk Filing Protocol Version 2.1 13

The login (0) MsgType is used for only one kind of message:

Login This condition allows the server to send a message to a
client at login time. The workstation can query the server
for a login message at login time, or whenever it is
convenient to do so. If there is no login message,
afpGetSrvrMsg returns a zero-length string, and nothing
need be displayed.

The server (1) MsgType is used for two kinds of messages:

Shutdown In addition to sending an attention code when the server is
going to shut down, the server can send a message
explaining, for example, why the server is going down, how
long it will be down, and so on. The workstation is made
aware that a shutdown message is available by the server’s
setting the Server Message bit in AFPUserBytes along
with the ShutDown bit.

User The server can send a message to a specified user or users.
The workstation is made aware that a user message is
available by the server’s setting the Server Message bit in
AFPUserBytes. Workstations implementing older AFP
versions should simply ignore this bit.

The maximum size of any of these messages is 200 bytes including the
length byte (a Str199). The attention mechanism currently being used
has been augmented to let the workstation know that there is a server
message. The client then requests (by means of afpGetSrvrMsg) the
message from the server.

Command

GetSrvrMsg command

0

Message Type

Reply

Message Bitmap

Message Type

Message Bitmap

Server Message

Message bitmap

0 0 0 0 0
0 0 0

0 0 0
0 0 0 0 Message

14 AppleShare 3.0 Developer’s Kit / AppleTalk Filing Protocol Version 2.1

afpCreateID (39 or $27)

As stated earlier, file IDs provide a means of keeping track of a file even if
its name or location changes. The afpCreateID call creates a unique
file ID for a specified file. (Note that the scope of file IDs is limited to the
files on a volume. File IDs cannot be used across volumes.)

The afpCreateID parameters are defined as follows:

Inputs VolumeID (int) The ID of the volume on which the file ID is to be
created.

DirectoryID (long) The ID of the directory in which the file ID is to be
created.

PathType (byte) Path type of the pathname:
1 = short name
2 = long name

PathName (str) String name of the file that is the target of the file
ID (that is, the filename of the file for which you
want to create the file ID).

Outputs FileID (long) File ID that was created for the specified file.

FPError (long)

Result codes afpCallNotSupported AFP version earlier than 2.1.

afpObjectNotFound The target file does not exist.

afpIDExists A file ID already exists for this file. The file ID
is returned in the FileID field.

afpObjectTypeErr Object defined was a directory, not a file.

afpVolLocked The destination volume is read-only.

afpAccessDenied User does not have the rights required to issue
this call.

afpParamErr Session reference number, volume identifier, or
pathname type is unknown; pathname is null or
bad.

Continued on following page .

AppleShare 3.0 Developer’s Kit / AppleTalk Filing Protocol Version 2.1 15

Rights The user must have See Files rights to issue this call.

Notes Before issuing this call, the user must have called afpOpenVol for this
volume.

The AFP server should take steps to ensure that every file ID is unique and
that no file ID is reused once it has been deleted.

Command

CreateID command

0

Volume ID

Reply

File ID

Directory ID

Path Type

Path Name

16 AppleShare 3.0 Developer’s Kit / AppleTalk Filing Protocol Version 2.1

afpDeleteID (40 or $28)

The afpDeleteID call invalidates all instances of the specified file ID.

The afpDeleteID parameters are defined as follows:

Inputs VolumeID (int) The ID of the volume on which the file ID is to be
invalidated.

FileID (long) File ID that is to be invalidated.

Outputs FPError (long)

Result codes afpCallNotSupported AFP version earlier than 2.1.

afpObjectNotFound The target file does not exist. (The file ID is
deleted anyway.)

afpIDNotFound File ID was not found. (No file thread exists.)

afpObjectTypeErr Object defined was a directory, not a file.

afpVolLocked The destination volume is read-only.

afpAccessDenied User does not have the rights required to
issue this call.

afpParamErr Session reference number, volume identifier,
or pathname type is unknown; pathname is
null or bad.

Rights The user must have See Files and Make Changes rights to issue this call.

Notes Before issuing this call, the user must have called afpOpenVol for this
volume.

Command

DeleteID command

0

Volume ID

File ID

AppleShare 3.0 Developer’s Kit / AppleTalk Filing Protocol Version 2.1 17

afpResolveID (41 or $29)

The afpResolveID call returns parameters for the file referred to by the
specified file ID. These parameters can be any of those specified in the
afpGetFlDrParms call.

The afpResolveID parameters are defined as follows:

Inputs VolumeID (int) The ID of the volume on which the file ID is located.

FileID (long) File ID that is to be resolved.

ResultBitmap (int) Bitmap describing which parameters are to be
returned. (The bitmap structure is shown later in this
section.)

Outputs ResultBitmap (int) Copy of input parameter.

Parameters requested

FPError (long)

Result codes afpCallNotSupported AFP version earlier than 2.1.

afpIDNotFound File ID was not found. (No file thread exists.)

afpObjectTypeErr Object defined was a directory, not a file.

afpBadIDErr File ID number is not a defined file ID.

afpAccessDenied User does not have the rights required to
issue this call.

afpParamErr Session reference number, volume identifier,
or pathname type is unknown; pathname is
null or bad.

18 AppleShare 3.0 Developer’s Kit / AppleTalk Filing Protocol Version 2.1

Rights The user must have See Files rights to issue this call.

Notes Before issuing this call, the user must have called afpOpenVol for this
volume.

Command

ResolveID command

0

Volume ID

Reply

FileID

Result Bitmap

Result Parameters

File bitmap

0 0 0 0

Result Bitmap

Short Name

Long Name

Finder Info

Backup Date

Mod Date

Create Date

Parent Directory ID

Attributes

File Number

Data Fork Length

Rsrc Fork Length

ProDOS Info

AppleShare 3.0 Developer’s Kit / AppleTalk Filing Protocol Version 2.1 19

afpExchangeFiles (42 or $2A)

The afpExchangeFiles call is used to preserve existing file IDs when
an application performs “Save” or “Save As” functions. Both files to be
changed are specified. They must exist on the same volume. File IDs do
not have to exist on the files to be exchanged. The files can be either open
or closed.

The afpExchangeFiles parameters are defined as follows:

Inputs VolumeID (int) The ID of the volume on which the two files are
located.

SrcDirID (long) The ID of the directory that contains the source
file.

DestDirID (long) The ID of the directory that contains the
destination file.

SrcPathType (byte) Path type of the source pathname:
1 = short name
2 = long name

SrcPathName (str) String name of the source file.

DestPathType (byte) Path type of the destination pathname:
1 = short name
2 = long name

DestPathName (str) String name of the destination file.

Outputs FPError (long)

Result codes afpCallNotSupported AFP version earlier than 2.1.

afpObjectNotFound A target file does not exist.

afpObjectTypeErr Object defined was a directory, not a file.

afpObjectLocked The file was locked.

afpSameObjectErr The source file is the same as the destination
file.

afpVolLocked The destination volume is read-only.

afpAccessDenied User does not have the rights required to
issue this call.

afpParamErr Session reference number, volume identifier,
or pathname type is unknown; pathname is
null or bad.

Rights The user must have See Files and Make Changes rights to both files to
issue this call.

20 AppleShare 3.0 Developer’s Kit / AppleTalk Filing Protocol Version 2.1

Notes Before issuing this call, the user must have called afpOpenVol for this
volume.

The following example shows the results of an afpExchangeFiles
operation between the two files “Blue” and “Red.” Notice that only the
filename, parent directory ID, file ID, and creation dates are exchanged.
Byte-range locks and deny modes still apply to the same file reference
number and data.

Before

Catalog
information

After

RefNum
Filename
Parent directory ID
File ID
Length
Creation date
Modification date
RangeLock
DenyModes

100
Blue
31
121
962
Jan 1991
April 1991
0...10
DenyWrite

Data BlueBlueBlueBlueBlueBlueBlueBlu
eBlueBlueBlueBlueBlueBlueBlueBlu
eBlueBlueBlueBlueBlueBlueBlueBl
ueBlueBlue

RefNum
Filename
Parent directory ID
File ID
Length
Creation date
Modification date
RangeLock
DenyModes

100
Red
32
222
962
Feb 1992
April 1991
0...10
DenyWrite

BlueBlueBlueBlueBlueBlueBlueBlue
BlueBlueBlueBlueBlueBlueBlueBlu
eBlueBlueBlueBlueBlueBlueBlueBlu
eBlueBlue

Catalog
information

RefNum
Filename
Parent directory ID
File ID
Length
Creation date
Modification date
RangeLock
DenyModes

202
Red
32
222
961
Feb 1992
May 1992
25...30
None

Data

RefNum
Filename
Parent directory ID
File ID
Length
Creation date
Modification date
RangeLock
DenyModes

202
Blue
31
121
961
Jan 1991
May 1992
25...30
None

RedRedRedRedRedRedRedRedRe
dRedRedRedRedRedRedRedRedR
edRedRedRedRedRed

RedRedRedRedRedRedRedRedRe
dRedRedRedRedRedRedRedRedR
edRedRedRedRedRed

Command

ExchangeFiles command

0

Volume ID

SrcDirID

DestDirID

Src PathType

Src PathName

DestPathType

DestPathname

AppleShare 3.0 Developer’s Kit / AppleTalk Filing Protocol Version 2.1 21

afpCatSearch (43 or $2B)

The afpCatSearch call allows an application to efficiently search an
entire volume for files that match specified criteria. These criteria include
any fields in the file bitmaps, directory bitmaps, or both, that are defined
for the afpGetFlDrParms call. Information parameters for the
matching files and directories are returned. These parameters can also be
any of those specified for the afpGetFlDrParms call.

The afpCatSearch call’s parameters are defined as follows:

Inputs VolumeID (int) The ID of the volume on which the file is located.

ReqMatches (long) The maximum number of matches to return.

Reserved (long) Reserved (must be zero).

CatPosition (16 bytes) Current position in the catalog.

FileRsltBitmap (int) The fields in the file parameters that are to be
returned; this field is the same as the File
Bitmap field in the afpGetFlDrParms call
(with some restrictions, explained later in this
section).

DirRsltBitmap (int) The fields in the Dir parameters that are to be
returned; this field is the same as the Directory
Bitmap field in the afpGetFlDrParms call
(with some restrictions, explained later in this
section).

RequestBitmap (long) The fields in the File/Dir parameters that are
to be searched. (The structure of the bitmap is
shown later in this section.)

Specification1 Search criteria lower bounds and values.

Specification2 Search criteria upper bounds and masks.

Outputs CatPosition (16 bytes) Current position in the catalog.

FileRsltBitmap (int) Copy of the input bitmap.

DirRsltBitmap (int) Copy of the input bitmap.

ActualCount (long) The number of matches that were actually found.

Results An array of records that describes the matches
that were found.

FPError (long)

22 AppleShare 3.0 Developer’s Kit / AppleTalk Filing Protocol Version 2.1

Result codes afpCallNotSupported AFP version earlier than 2.1.

afpCatalogChanged The catalog has changed and CatPosition
may be invalid. No matches are returned.

afpParmErr Input parameters are not valid or volume
identifier is unknown.

afpEofError No more matches.

Rights The user need have no special access rights to issue this call; however, to
see all the files, folders, or files and folders that match the specified
criteria, the caller must have See Files/See Folders rights to them. Folders
for which the caller does not have See Files/See Folders rights are skipped
by the search.

Notes Before issuing this call, the user must have called afpOpenVol for this
volume.

CatPosition is a 16-byte field in which the first word signifies whether the
field denotes a “real” catalog position or hint. If the first word is zero,
afpCatSearch should start from the beginning of the volume. If the first
word is nonzero, CatPosition is a “real” catalog position and
afpCatSearch should begin its search with this entry.

Specification1 and Specification2 are used together to specify the search
parameters. These parameters are packed in the same order as that in
which the bits are set in the request bitmap. All variable-length parameters
(name, for example) are put at the end of each spec-ification record. An
offset is stored in the parameters to indicate where the actual variable-
length parameter is located. This offset is measured from the start of the
specification parameters (not including the length and filler bytes). Results
are packed in the same way.

The fields in Specification1 and Specification2 have different uses:

n In the name field, Specification1 holds the target string; Specification2
must always have a nil name field.

n In all date and length fields, Specification1 holds the lowest value in the
target range and Specification2 holds the highest value in the target range.

n In file attributes and Finder Info fields, Specification1
holds the target value, and Specification2 holds the bitwise mask that
specifies which bits in that field in Specification1 are relevant to the
current search.

Continued on following page .

AppleShare 3.0 Developer’s Kit / AppleTalk Filing Protocol Version 2.1 23

The afpCatSearch call returns the error afpEofError only when it
has reached the end of the volume directory tree. For example, if the
workstation requests ten matches, the server may return only four matches,
without returning an error. The workstation should then make a request
for six (10 minus 4) more matches, using the same CatPosition value that
was received in the previous reply. This process continues until the
originally requested matches are received or an afpEofError is
returned. If the afpCatSearch call returns the error
afpCatalogChanged, the workstation cannot continue the search. The
workstation must restart the search by setting the first word of CatPosition
to zero.

The afpCatSearch call returns files and/or directories, depending on
the FileRsltBitmap and DirRsltBitmap fields. If the
FileRsltBitmap field is zero, afpCatSearch will assume that you are
not searching for files. Likewise, if the DirRsltBitmap field is zero,
afpCatSearch will assume that you are not searching for directories. If
both fields are nonzero, afpCatSearch will return both files and
directories. Note that if you are searching for both files and directories,
certain restrictions apply as to what fields afpCatSearch will search.
The rest of this section describes these restrictions.

Valid bitmaps for afpCatSearch

The only valid bits for the FileRsltBitmap and DirRsltBitmap
fields are the LongName and Parent Directory ID bits. The
following figure shows the valid Result Bitmap bits.

Valid result bitmap bits

0 0 0 0

LongName

0 0 0 0
00 0 00 0

Parent Directory ID

RequestBitmap

The low-order word of RequestBitmap is roughly equivalent to the File
and Directory Bitmaps in afpGetFlDrParms. (See the bitmaps for the
differences.) The high bit of the high-order word of RequestBitmap
indicates whether the search should match on full names or partial name
(0 = full name, 1 = partial name). There is no equivalent to the
fsSBNegate bit used by the Macintosh File Manager’s PBCatSearch
function.

24 AppleShare 3.0 Developer’s Kit / AppleTalk Filing Protocol Version 2.1

The following figure shows the valid directory bits. afpCatSearch can
search for this information when searching for directories only.

Valid directory bits

0 0 0 0

LongName

Finder Info

Backup Date

Modification Date

Creation Date

Parent Directory ID

Attributes

Offspring Count

0 0 0
0

The following figure shows the valid file bits. afpCatSearch can search
for this information when searching for files only.

Valid file bits

0 0 0 0

LongName

Finder Info

Backup Date

Modification Date

Creation Date

Parent Directory ID

Attributes

0 0
0

Data Fork Length

Resource Fork Length

The following figure shows the valid directory and file bits.
afpCatSearch can search for this information when searching for
directories and files.

Valid directory and file bits

0 0 0 0

LongName

Finder Info

Backup Date

Modification Date

Creation Date

Parent Directory ID

0 0
0

0 0
0

AppleShare 3.0 Developer’s Kit / AppleTalk Filing Protocol Version 2.1 25

Attributes bits

The only valid bits that can be searched for in the Attributes parameter are
the inhibit bits. For files, these bits are DeleteInhibit,
RenameInhibit, and WriteInhibit. For directories, these bits are
DeleteInhibit and RenameInhibit. You cannot search any bits in
Attributes when searching for files and directories.

Command

CatSearch command

0

Volume ID

Reply

Requested Matches

Struct Length

0

0
(Reserved)

CatPosition

File Result Bitmap

Dir Result Bitmap

Request Bitmap

Spec 1

Spec 2 (if any)

Spec Struct

CatPosition

File Bitmap

Directory Bitmap

ActCount

Parameters

0

Struct Length

File/Dir flag

A null byte will be added to each
structure if necessary to make the
length of the structure even.

The low-order word of the Request Bitmap
is equivalent to the File and Directory Bitmaps
in afpGetFileDirParms. The high bit
of the high word is 1 if searching on partial
name, 0 if searching on full name.

26 AppleShare 3.0 Developer’s Kit / AppleTalk Filing Protocol Version 2.1

New function codes

The following new function codes have been defined for AFP 2.1. Each
function code is a 16-bit integer sent high-byte first in the packet.

Decimal value Hex value AFP function

38 $0026 afpGetSrvrMsg

39 $0027 afpCreateID

40 $0028 afpDeleteID

41 $0029 afpResolveID

42 $002A afpExchangeFiles

43 $002B afpCatSearch

AppleShare 3.0 Developer’s Kit / AppleTalk Filing Protocol Version 2.1 27

New result codes

The following new result codes have been defined for AFP 2.1. Each
result code is a 4-byte long word.

Decimal Hex FPError Description

–5034 $FFFFEC56 afpIDNotFound Returned when the file ID was not found. (No file thread
exists.)

–5035 $FFFFEC55 afpIDExists Returned when an attempt is made to create a file ID for a
file that already has a file ID.

–5037 $FFFFEC53 afpCatalogChanged Returned when the catalog has changed while an
afpCatSearch operation was being performed.
CatPosition is not returned. The workstation must restart
the search by setting the first word of CatPosition to
zero.

–5038 $FFFFEC52 afpSameObjectErr Returned when afpExchangeFiles is called and the
source and destination files are the same.

–5039 $FFFFEC51 afpBadIDErr Returned when an afpResolveID operation is
performed on a nonexistent file ID. (File ID is dangling or
doesn’t match the file number.)

–5040 $FFFFEC50 afpPwdSameErr Returned when the user attempts to change his or her
password to the same password that he or she previously
had.

–5041 $FFFFEC4F afpPwdTooShort Returned when the user’s password is too short, or the
user attempts to change his or her password to a
password that is shorter than the server’s minimum
password length.

–5042 $FFFFEC4E afpPwdExpired Returned when the user’s password has expired and the
user is required to change his or her password. The user
can log in, but can only perform an afpPwdChange
operation.

–5043 $FFFFEC4D afpInsideSharedErr The folder being shared is inside a shared folder; the
folder contains a shared folder and is being moved into a
shared folder; or the folder contains a shared folder and is
being moved into the descendent of a shared folder.
afpMoveAndRename may return this error.

–5044 $FFFFEC4C afpInsideTrashErr The folder being shared is inside the trash folder; the
shared folder is being moved into the trash folder; or the
folder is being moved to the trash and it contains a shared
folder. afpMoveAndRename may return this error.

28 AppleShare 3.0 Developer’s Kit / AppleTalk Filing Protocol Version 2.1

Some AFP 2.1–related questions and answers

It appears to be a requirement that all user IDs be numerically different from all group IDs.
When upgrading an old volume, must one change these IDs if they are not numerically
different?

Yes. AppleShare’s user ID numbers and group ID numbers have always
been that way. In addition, AFP 2.1 servers must assign the guest user ID
number 0 and the administrator/owner ID number 1.

Do FPMapID and FPMapName work the same way in AFP 2.1 as they do in AFP
2.0? (That is, must one choose the proper subfunction or get an error?)

Under AFP 2.1, calls to afpMapID must use subfunction codes of 1 or 2
and calls to afpMapName must use subfunction codes of 3 or 4. The
subfunction used will tell the call which database (user or group) to search
first. This process doesn’t affect the afpMapID call (since user and
group IDs come from the same pool of numbers) except that the
user/group name will be returned for that ID no matter what. However, it
does affect the afpMapName call. For example, if you have both a user
and a group named “Fred” and you call afpMapName, the subfunction
code will determine where the match is found (user or group).

Note that the AFP 2.1 server will respond the same way for 1.1 and 2.0
clients as it does for AFP 2.1 clients.

On the Macintosh, PBGetCatInfo returns the file ID in the ioDirID field
for files. Is this the value returned in the FileNumber field by
afpGetFlDrParm ?

The value returned in the FileNumber field by the AppleShare file
server is what the file server gets from the Macintosh File Manager’s
PBGetCatInfo call. Since AppleShare implementations supporting AFP
2.1 on the Macintosh run under System 7, everything works as it would on
a local volume. (That is, the value could represent a file ID or a directory
ID, and you must use afpResolveID to see if the value is a real file ID.)

How does the AFP file server know which directory is the Network Trash Folder?

The Network Trash Folder is identified by name and will not be localized
in international versions of the Macintosh system software, as it is invisible.

AppleShare 3.0 Developer’s Kit / AppleTalk Filing Protocol Version 2.1 29

Do servers using AFP 2.1 have to limit their icons to any particular size?

Yes, because Macintosh workstations running versions of AFP earlier than
2.1 behave poorly if the icon size is greater than 1536.

Is it true that the value of DTRefNum is the same as that of Volume ID for AFP desktop
database calls?

Yes, but only if that volume has not been closed and then reopened (in
which case new values for DTRefNum and Volume ID are assigned).

Is it true that afpCloseVol does not close all files open on a volume?

Yes, you should specifically close all open files on a volume before
closing it, rather than relying on afpCloseVol to close them for you.

30 AppleShare 3.0 Developer’s Kit / AppleTalk Filing Protocol Version 2.1

	AppleShare 3.0 Developer’s Kit: AppleTalk Filing Protocol Version 2.1
	Contents
	Overview of the extension in AFP 2.1
	Blank access privileges
	Two- Way Scrambled user authentication method
	UAM implementation notes

	New bitmap definitions
	Directory Attributes and Access Rights words in
	Flags word in
	Volume Attributes word in

	New security features
	Minimum password length
	Password expiration
	Maximum failed login attempts

	New AFPUserBytes definitions
	afpGetSrvrMsg (38 or $26)
	afpCreateID (39 or $27)
	afpDeleteID (40 or $28)
	afpResolveID (41 or $29)
	afpExchangeFiles (42 or $2A)
	afpCatSearch (43 or $2B)
	Valid bitmaps for afpCatSearch
	Attributes bits
	New function codes
	New result codes

	Some AFP 2.1– related questions and answers

