
QuickDraw 3D:
A New
Dimension for
Macintosh
Graphics

Copland: The Mac OS
Moves Into the
Future

Creating PCI Device
Drivers

Custom Color
Search Procedures

The OpenDoc User
Experience

Futures: Don’t Wait
Forever

Issue 22 June 1995

d e v e l o p
T h e A p p l e T e c h n i c a l J o u r n a l

$10.00

Issue 2
2

d
 e v e l o p

Q

uick
D

ra
w

 3
D

 •
 Cop

la
nd

 •
 PCI D

evice D
rivers •

 Custom
 Color Sea

rch Proced
ures •

 O
p
enD

oc U
ser Ex

p
erience •

 Futures

Apple Computer, Inc.
1 Infinite Loop

Cupertino, CA 95014

22

D
EV

EL
O

P-
22

MacsBug for PowerPC • A Better Development Environment • Scripting Quandaries

E D I T O R I A L S T A F F

Editor-in-Cheek Caroline Rose

Managing Editor Toni Moccia

Technical Buckstopper Dave Johnson

Bookmark CD Leader Alex Dosher

Able Assistant Meredith Best

Our Boss Greg Joswiak

His Boss Dennis Matthews

Review Board Pete “Luke” Alexander, Dave
Radcliffe, Jim Reekes, Bryan K. “Beaker”
Ressler, Larry Rosenstein, Andy Shebanow,
Gregg Williams

Contributing Editors Lorraine Anderson,
Steve Chernicoff, Toni Haskell, Jody Larson,
Cheryl Potter

Indexer Marc Savage

A R T & P R O D U C T I O N

Production Manager Diane Wilcox

Technical Illustration Deb Dennis, Shawn
Morningstar, John Ryan

Formatting Forbes Mill Press

Photography Sharon Beals, Deb Dennis,
Maggie Fishell

Cover Illustration Graham Metcalfe of
Metcalfe/Shuhert Design; modeled and
rendered in Strata StudioPro

Online Production Cassi Carpenter

ISSN #1047-0735. © 1995 Apple Computer, Inc.
All rights reserved. Apple, the Apple logo, APDA,
AppleLink, AppleScript, AppleShare, AppleTalk,
LaserWriter, Mac, MacApp, Macintosh, Macintosh
Quadra, MacTCP, MPW, MultiFinder, Newton,
PowerBook, QuickTime, and TrueType are trademarks
of Apple Computer, Inc., registered in the U.S. and
other countries. AOCE, AppleScript, A/ROSE,
Balloon Help, develop, Finder, NewtonMail, OpenDoc,
Power Macintosh, PowerTalk, and QuickDraw are
trademarks of Apple Computer, Inc. PostScript is a
trademark of Adobe Systems Incorporated, which may
be registered in certain jurisdictions. PowerPC is a
trademark of International Business Machines
Corporation, used under license therefrom. NuBus is a
trademark of Texas Instruments. UNIX is a registered
trademark of Novell, Inc. in the United States and
other countries, licensed exclusively through X/Open
Company, Ltd. All other trademarks are the property
of their respective owners.

T H I N G S T O K N O W

develop, The Apple Technical
Journal, a quarterly publication of
Apple Computer’s Developer Press
group, is published in March, June,
September, and December. develop
articles and code have been reviewed
for robustness by Apple engineers.

This issue’s CD. Subscription issues
of develop are accompanied by the
develop Bookmark CD. This CD contains
a subset of the materials on the monthly
Developer CD Series, available from
APDA. Included on the CD are this
issue and all back issues of develop along
with the code that the articles describe.
(The code is updated periodically, so
always use the most recent CD.) The
CD also contains Technical Notes,
sample code, and other documentation
and tools (these contents are subject to
change). Items referred to as being on
“this issue’s CD” are located on either
the Bookmark CD or the Reference
Library or Tool Chest edition of the
Developer CD Series. The develop issues
and code are also available in the
Developer Services areas on AppleLink
and eWorld and at ftp.info.apple.com.
(Selected articles are on the World
Wide Web at http://www.apple.com,
also in the Developer Services area.)

Macintosh Technical Notes.
Where references to Macintosh
Technical Notes in develop are followed
by something like “(QT 4),” this
indicates the category and number of
the Note on this issue’s CD. (QT is the
QuickTime category.)

E-mail addresses. Most e-mail
addresses mentioned in develop are
AppleLink addresses; to convert one of
these to an Internet address, append
“@applelink.apple.com” to it. For
example, DEVELOP on AppleLink
becomes develop@applelink.apple.com
on the Internet. Append “@eworld.com”
to eWorld addresses, and append
“@online.apple.com” to NewtonMail
addresses.

C O N T A C T I N G U S

Feedback. Send editorial suggestions
or comments to Caroline Rose at
AppleLink CROSE, Internet
crose@applelink.apple.com, or fax
(408)974-6395. Send technical
questions about develop to Dave
Johnson at AppleLink JOHNSON.DK,
Internet dkj@apple.com, CompuServe
75300,715, or fax (408)974-6395. Or
write to Caroline or Dave at Apple
Computer, Inc., 1 Infinite Loop, M/S
303-4DP, Cupertino, CA 95014.

Article submissions. Ask for our
Author’s Guidelines and a submission
form at AppleLink DEVELOP,
Internet develop@applelink.apple.com,
or fax (408)974-6395. Or write to
Caroline Rose at the above address.

Subscriptions and back issues.
You can subscribe to develop through
APDA (see below) or use the
subscription card in this issue. You can
also order printed back issues. For
subscription changes or queries or back
issue orders, call 1-800-877-5548 in
the U.S., (815)734-1116 outside the
U.S. Or write AppleLink DEV.SUBS or
Internet dev.subs@applelink.apple.com.
Be sure to include your name, address, and
account number as it appears on your mailing
label in all correspondence related to your
subscription. One-year U.S. subscription
price is $30 for 4 issues of develop and the
develop Bookmark CD; all other countries,
$50 U.S. For Canadian orders, price
includes GST (R100236199). Back issues
are $13 each in the U.S., $20 all other
countries.

APDA. To order products from APDA
or receive a catalog, call 1-800-282-
2732 in the U.S., 1-800-637-0029 in
Canada, (716)871-6555 internationally,
or (716)871-6511 for fax. Order
electronically at AppleLink APDA,
Internet apda@applelink.apple.com,
CompuServe 76666,2405, or America
Online APDAorder. Or write APDA,
Apple Computer, Inc., P.O. Box 319,
Buffalo, NY 14207-0319.Printed on recycled paper

d e v e l o p

A R T I C L E S

6 QuickDraw 3D: A New Dimension for Macintosh Graphics by Pablo Fernicola and
Nick Thompson
Introducing QuickDraw 3D, a powerful, flexible new 3D graphics package for the Power Macintosh. This
article provides an architectural overview and shows how to support 3D data in your application.

29 Copland: The Mac OS Moves Into the Future by Tim Dierks
Here’s a preview of the future of the Mac OS, detailing some of the major features and components and
giving some suggestions about how to get ready for it now.

42 Creating PCI Device Drivers by Martin Minow
All about the new driver model on PCI-based Macintosh computers, and advice on porting existing drivers.

66 Custom Color Search Procedures by Jim Wintermyre
Learn about this useful method of customizing Color QuickDraw’s color handling. A real-world graphics
problem is investigated and then solved using a custom color search procedure and a hash table.

83 The OpenDoc User Experience by Dave Curbow and Elizabeth Dykstra-Erickson
This article provides an overview of OpenDoc from the user’s perspective: understanding the user experience
is a prerequisite to designing good part editors.

98 Futures: Don’t Wait Forever by Greg Anderson
Futures are an invaluable abstraction for applications that handle multiple asynchronous Apple events,
allowing cleaner code and eliminating the need for completion routines.

C O L U M N S

39 BALANCE OF POWER
MacsBug for PowerPC
by Dave Evans and Jim Murphy
MacsBug changes with the times.

63 MPW TIPS AND TRICKS
Building a Better (Development) Environment
by Tim Maroney
Some things to think about when you’re
building a shared development environment.

81 ACCORDING TO SCRIPT
Scripting Quandaries
by Cal Simone
Bits of wisdom and advice for developers
supporting scripting in their applications.

94 THE VETERAN NEOPHYTE
Paper Juggling
by Dave Johnson
You can invent multiperson juggling patterns
even if you’re not a juggler. Really.

112 MACINTOSH Q & A
Apple’s Developer Support Center answers
questions about Macintosh product
development.

121 NEWTON Q & A: ASK THE LLAMA
Answers to Newton-related development
questions, along with a bit of llama lore. Send
in your own questions for a chance at a T-shirt.

124 KON AND BAL’S PUZZLE PAGE
A Branch Too Far
by Chris Yerga
Yet another multifaceted mystery is unraveled
before your very eyes, as guest puzzler Chris
Yerga tries to stump the master.

Issue 22 June 1995

CONTENTS 1

2 EDITOR’S NOTE
3 LETTERS

130 INDEX

CAROLINE ROSE

d e v e l o p Issue 22 June 19952

EDITOR’S NOTE
This is a very forward-looking issue of develop. The cover article is on QuickDraw 3D,
whose final release won’t have shipped by the time you read this (though it should be
soon). We’ve also got articles on Copland and OpenDoc, which aren’t due for final
release for a while yet. You’ll learn how Copland will take the Mac OS into the
future and how OpenDoc will affect the way users work with documents. There’s an
article on creating PCI device drivers that will be — as far as we can tell as of this
writing — forward compatible with Copland. And we’ve got an article on the very
subject of futures, a convenient way of implementing asynchronous interapplication
communication, which will be especially valuable as more applications become
scriptable and as component-oriented systems like OpenDoc become more
prevalent. All in all, we’re looking ahead.

Having articles on technology that hasn’t shipped yet makes it tough for us to give you
solid information and code that we know will withstand the test of time and not change
in the future. QuickDraw 3D is shipping soon enough that we know that article and
its code are reasonably solid — but the software is “beta” as of this writing, so changes
can still happen. The Copland and OpenDoc articles provide only background
information that should prove helpful as you consider how to use those technologies
in your work; these articles provide no code, but only a context for the respective
technologies. And although the PCI article does its best to tell you what may or may
not work with Copland, there are limits to how far it can see into the future.

While it’s certainly atypical to have develop articles that aren’t based on good, solid
code, we felt these articles would nonetheless be of interest to you. We’d really like
to know whether you agree with our decision. Our Review Board meetings are
driven by what we think you want; we periodically need a reality check from you.

There’s yet another way that we’re giving you a glimpse into the future: this issue’s
CD contains a Preliminary Drafts folder containing articles that we expect to publish
in a future issue of develop. Again, we didn’t want to keep you from getting information
that you might find useful. This time we’ve got an article on implementing multipane
dialogs and another on performing timing operations. Look in this folder from now
on for “extra” articles.

So please, take a moment to give us your feedback on all of this (see the inside front
cover to find out how to contact us). Why not stop by for a chat if you’re at this year’s
Worldwide Developers Conference? Help us help you do a better job; that’s why
we’re here.

Looking forward to hearing from you,

Caroline Rose

Editor
CAROLINE ROSE (AppleLink CROSE) has been
writing and editing for so long that she can do it
in her sleep. In fact, she sometimes lies awake at
night trying to solve writing problems — as she
used to do for code bugs back when she was a
programmer. To help get her mind off work,
Caroline does Tai Chi and Ch’i Kung and curls

up with her longtime feline companion, Cleo. But
even then she can’t get away from playing with
words, as she continually adds to the long list of
Cleo’s nicknames; current favorites include Fuzz
Bucket and The Purrmeister. Caroline agrees with
Albert Schweitzer that there are two means of
refuge from the miseries of life: music and cats.•

LETTERS
MORE ON HIDING DIALOG
ITEMS
In develop Issue 20, I came across the
Q&A (at the bottom of page 107) that
recommends using AppendDITL and
ShortenDITL to add or remove many
dialog items at once rather than using
ShowDItem and HideDItem on each
item individually. I agree with what’s
said; however, there’s an issue with using
AppendDITL that I encountered
recently and confirmed with Developer
Support.

I’ve been involved in writing an
application that uses 'ictb' resources to
define the font for each dialog item.
This is necessary for our application to
allow globalization. When AppendDITL
is called to append items to the dialog,
the associated 'ictb' resource for the
appended DITL resource isn’t loaded.
'ictb' resources are loaded only when
NewDialog is called. As a result,
AppendDITL can’t be used in this case;
the show/hide items mechanism must
be used instead.

I find develop informative; keep up the
good work.

— Niall Quiggin

Ah, the inevitable exception to the rule.
Thanks for pointing it out.

— Dave Johnson

PUZZLE PAGE ERROR: OPENRF
The solution for the Puzzle Page in
develop Issue 20 is wrong. It says that
the Finder should use OpenRF instead
of OpenResFile. OpenRF allows the
resource fork to be accessed only as a
data stream, and so is useful only if the
WHAT DO YOU THINK OF THE PUZZLE
PAGE or the rest of develop, for that matter?
We welcome timely letters to the editors,
especially regarding articles published in
develop. Letters should be addressed to Caroline
Rose — or, if technical develop-related questions,
to Dave Johnson — at AppleLink CROSE or
code wants to copy the entire resource
fork without examining its contents. To
look at bundles and icons and such, a
routine such as HOpenResFile must be
used — which is, in fact, what the
Finder calls.

The cause of the bug isn’t that the
Finder uses fsRdWrPerm, but that it
uses fsCurPerm. Inside Macintosh: More
Macintosh Toolbox implies that fsCurPerm
will work fine if the file is open for
writing by someone else, and that read
permission to the file will be granted in
that case. But unfortunately, fsCurPerm
will fail, just like fsRdWrPerm, if the
file is already open for writing. To
guarantee access to the resource fork of
the file, fsRdPerm must be used instead
of fsCurPerm. This change was made to
the Finder in system software version
7.5.1.

Still, you can’t blame Shelley and Byron
for getting the wrong answer; they’re
just dogs, and most dogs don’t have
access to Finder sources.

— Greg Anderson, Apple Computer

I conferred with my dogs and they apologized
profusely for assuming the inner workings
of the Finder that they indeed did not
understand. Thanks for the correction.

— Cary Clark

PUZZLE PAGE STINKS
Has it ever occurred to you how small
must be the audience to which your
regular contributors KON & BAL are
playing? Their Puzzle Page is elitist and
intellectually arrogant. Who do you
imagine would be privy to the Apple-
Eyes-Only knowledge necessary to solve
some of these puzzles?
LETTERS 3

JOHNSON.DK. Or you can write to Caroline
or Dave at Apple Computer, Inc., 1 Infinite Loop,
M/S 303-4DP, Cupertino, CA 95014. All letters
should include your name and company name as
well as your address and phone number. Letters
may be excerpted or edited for clarity (or to
make them say what we wish they did).•

d e v e l o p Issue 22 June 19954
As you progress further and further into
their morass of micro-minutiae, they
indicate that you’re less and less clever
due to your ever-reducing “score.” The
whole concept is punitive, pedantic,
and boorish. And those invectives at
the end of the article continue the
process of belittling the reader with the
suggestion that, due to your incredibly
low score, “Maybe you’d better stick to
AppleScript.” Ouch! As it happens,
AppleScript is an incredibly powerful
technology that helps to differentiate
the Mac OS from being just another
pretty interface. Their attempt at being
humorous isn’t lost on me, but it failed
nonetheless.

Those guys are certainly smart and Apple
needs to have people like that on the
payroll. But the average fellow in Kansas
with a subscription to develop who has
adopted Apple as his computing beacon
is mocked by such articles and to no real
good end. The Puzzle Page is wasted on
all but the most inner circle of monks in
the Apple sanctum sanctorum.

— Lance Drake

Your letter was surprising, since we get a lot
of good feedback on the Puzzle Page. The
puzzle format is just for fun (heh heh). The
idea is that you learn something from the
debugging techniques. Probably no one ever
scores above 0, but that’s not really the
point. If you haven’t already, you might
want to take a look at the two letters in
Issue 20 on the subject of the Puzzle Page.

Humor is a tricky thing: what some people
find hilarious, others find repugnant. I’m
sorry the Puzzle Page doesn’t work for you.
I certainly don’t want any of our readers to
feel mocked; maybe our publishing this
letter will stimulate some dialog on this.

Regarding your specific comment about
AppleScript: we couldn’t agree more. We
hope you’ll be pleased with our new regular
column, According to Script.

By the way, Apple does indeed need smart
people like KON & BAL on the payroll, but
they don’t work for Apple anymore.

Thanks for writing.

— Caroline Rose
UNTIDY CODE (GIVE US A BREAK)
Greg Anderson’s article in Issue 20 of
develop, in the listing on page 67, gave
me a probably unintentional insight into
the deeper workings of Apple code.
Apparently, constructions like this

while (true) {
do something
if (somethingelse) break;

}

are acceptable at Apple nowadays. Surely
there must be a better, less sloppy and
lazy way to do this. (Please don’t ask me
what’s wrong with it; that would force
me to go and buy Windoze machines
next.)

— Joost Carpay

You’re right; the use of a break statement
in conjunction with while (true) is generally
considered poor style. Good style would be:

condition = true;
while (condition)

condition = DoSomething();

While code that appears in develop should
of course use good style, the develop staff
tells me that they are loath to enforce
particular rules; they can, however, make
suggestions, and will keep an eye out for this
construct in the future. Apple’s guidelines
for software development recommend
against using breaks inside loops and also
against using do/while in place of a simple
while loop.

The ultimate metric used to judge code
should be the clarity of the intent of the
algorithm in question. Using good and
consistent style certainly improves the
readability of code, but I would hope that
small infractions of style would be forgiven
if the intent of the code remains clear. Code
quality is important to Apple, and we’re
always working at improving the process
used to produce system software.

— Greg Anderson

IIndispensndispensaable ble TToooolls s
oof the f the TTrraaddee

JUST RELEASED!
Macintosh Programmer’s Toolbox
Assistant by Apple Computer, Inc.,
provides instant access to essential
information for more than 5,000
toolbox calls that are at the heart of
the Mac™ OS. Directly accessible
from most of the popular develop-
ment environments, this CD-ROM
has been carefully designed to help
you reduce the time it takes to
develop your applications. With
abundant hypertext links and the
ability to copy and paste routine
templates and sample code,
Macintosh Programmer’s Toolbox
Assistant is the productivity tool
for programmers.

ISBN 0-201-48342-4

JUST RELEASED!
Apple Guide Complete: Designing
and Developing Onscreen Assistance
by Apple Computer, Inc., is the offi-
cial, complete kit for producing
interactive tutorials with System
7.5. The book demonstrates how
to develop a wide range of onscreen
help systems that streamline every-
thing from task-oriented procedures
to quick tips and reference mate-
rial. The accompanying CD con-
tains the Apple Guide authoring
software and will help instructional
designers, scripters, and program-
mers really get the most out of this
powerful help system.

ISBN 0-201-48334-3

Inside Macintosh CD-ROM has
already become an invaluable ref-
erence for thousands of program-
mers since its publication just this
past October. The CD-ROM con-
tains more than 16,000 pages of
the complete text from 26 volumes
of Inside Macintosh library — the
definitive reference for anyone writ-
ing software for Macintosh com-
puters plus the text of Macintosh
Human Interface Guidelines. No
Macintosh programmer should be
without this ultimate electronic
resource.

ISBN 0-201-40674-8

Addison-Wesley Publishing Company

Available at fine technical bookstores in your area, or call 1-800-822-6339 for U.S. orders and
1-800-447-2226 for International orders.

Inside Macintosh
CD-ROM

Apple Guide
Complete

Macintosh Programmer’s
Toolbox Assistant

6

QuickDraw 3D is a new technology that helps developers bring 3D
capabilities to their applications. It runs on all Power Macintosh
computers and offers high-performance 3D rendering and other features
that make working with 3D data easier. This article gives the basics
you’ll need to use QuickDraw 3D in your application, whether you’re a
consummate 3D developer, a classic 2D application developer, or a game
developer.

QuickDraw 3D: A New Dimension for
Macintosh Graphics
PABLO FERNICOLA AND
NICK THOMPSON

d e v e l o p Issue 22 June 1995
QuickDraw 3D is the newest enhancement to the Macintosh graphics architecture.
Developers have been requesting a 3D library, supported at the system level, since
the Macintosh was introduced. Although a number of Macintosh developers have
produced some amazing 3D applications, 3D graphics capabilities were relegated
to niche applications due to the lack of support at the core operating system level.
QuickDraw 3D, which is expected to ship in mid-1995, brings the ability to deal
with 3D graphics to all Power Macintosh applications: not only can traditional 3D
applications take advantage of it, but it provides base functionality for general-
purpose applications as well.

QuickDraw 3D is a Code Fragment Manager–based shared library, with a C-based
API. Here we’ll cover some concepts you need to know to get basic QuickDraw 3D
support into your application. This issue’s CD contains a prerelease version of the
QuickDraw 3D shared library, the 3D Viewer shared library, programming interfaces,
preliminary Inside Macintosh: QuickDraw 3D documentation, sample code, utility
libraries, and other goodies. Two of the sample programs are discussed in this article.

The API described in the article is based on a beta version of QuickDraw 3D;
although nearly final, the API may change before the final release of the software.•

In addition, we’ll talk about reading and writing data in QuickDraw 3D metafile
format, which is a way of representing 3D data in a consistent, transferable manner.
But first we’ll set the stage with some background information.
PABLO FERNICOLA (AppleLink PFF, eWorld
EscherDude) After spending many years working
in 3D graphics under operating systems named
**IX, in a faraway land called Alabama, Pablo
made the transition to real computers. After moving
to Silicon Valley, he learned to beat the traffic jams
by getting to work before 8 A.M. and going home
after 10 P.M. Now he can be found staring out the
window and wondering how he’s going to get
home on Interstate 280 after the next earthquake.•

NICK THOMPSON (AppleLink NICKT) is
currently establishing himself as the Mountain
Dew–guzzling fat fool of Developer Technical
Support. Unable to work the winter blubber off
due to killer waves that are preventing him from
surfing on the California coast, Nick has been
consoling himself with learning the wonder that is
QuickDraw 3D. He was last seen wandering
down one of the corridors at Apple mumbling to
himself.•

QUICKDRAW 3D — SO, WHAT’S THE BIG DEAL?
As we’ll explain further in this article, QuickDraw 3D provides developers with a
number of benefits:

• a rich set of high-level geometries

• built-in renderers that cover the base functionality needed by
developers

• immediate and retained graphics

• a common 3D file format

• human interface guidelines and widgets

• a 3D pointing-device manager that provides support for input
devices with more than two degrees of freedom

• pointing and picking support that enables user selection of 3D data

• transparent access to graphics accelerators

• an extensible, plug-in shading and rendering architecture

• implementation advantages over other 3D libraries

We’ve made dealing with 3D data in applications easier with QuickDraw 3D. By
creating a standard for data interchange, with a well-rounded metafile definition,
we’re enabling applications to read and write 3D data in a consistent format. The
metafile specification addresses requests from both end users (who couldn’t exchange
data between applications in a common format) and developers (who had to write
special-case code to deal with several different file formats).

QuickDraw 3D comes with a set of human interface guidelines to foster the adoption
of a consistent look and feel between applications (see “The QuickDraw 3D Human
Interface”). 3D applications today are geared toward the trained 3D expert; what you
learn in one application is generally not transferable to another application. By
following the QuickDraw 3D human interface guidelines, however, developers can
help make 3D graphics an integral part of the user experience within their applications.

QuickDraw 3D technology has been made possible in part by the dramatic performance
improvements in the Power Macintosh line of computers. The performance of
QuickDraw 3D is scalable across the Power Macintosh line; we’ve put in a lot of
effort to ensure that the performance on even entry-level computers is excellent.
With hardware acceleration, these computers can easily compete (and win) against
mid-range workstations costing a lot more money.

HOW QUICKDRAW 3D COMPARES WITH OTHER LIBRARIES
QuickDraw 3D offers many advantages over other 3D libraries. When using other
graphics libraries, you’re on your own if, for instance, you want to change the way a
scene is rendered (say, by doing ray tracing or applying procedural shading): you have
to reimplement all of the 3D architecture. With QuickDraw 3D, you only have to
write code to deal with the specific area that you want to change. And, even better,
the code you write can be used as a plug-in by other applications.

Unlike some libraries, QuickDraw 3D will be able to take advantage of a number of
3D hardware acceleration solutions, since acceleration was one of its design criteria.
Another important criterion was cross-platform support. For example, a renderer
could be written to take advantage of low-level 3D libraries, such as the Silicon
Graphics OpenGL graphics library.
QUICKDRAW 3D: A NEW DIMENSION FOR MACINTOSH GRAPHICS 7

d8
THE QUICKDRAW 3D HUMAN INTERFACE
BY DAN VENOLIA
QuickDraw 3D provides human interface guidelines (in
version 1.0) and a toolkit for implementing the guidelines
(to come in the second major release). A sample
application on this issue’s CD illustrates our current ideas
for a 3D human interface. By getting a preview of our
plans, you can start taking your applications along the
common path.

Our main goal is to provide integration into the
Macintosh experience. We feel that 3D graphics will
be the next popular multimedia data type — in the way
that 2D graphics, sound, and movies have been in the
past — and users will want to incorporate 3D data into
their documents in the same way that they can now
incorporate other multimedia data types. To do this they’ll
need an interaction model built on the 2D principles that
they’re familiar with.

Our guidelines offer suggestions and examples of how
things can be done. If your applications are targeted for
a very specific audience, and you know that audience
well, you may decide to communicate with them in a
different way, and that’s perfectly OK.

One of our guidelines, about direct manipulation through
the use of a widget, is illustrated in Figure 1. Here we’ve
 e v e l o p Issue 22 June 1995
appropriated the 2D grab handles that are popular in
many “draw” programs and extended them to 3D. A
widget is a set of handles for control of spatial parameters.
Some widgets, such as the scale tool shown in Figure 1,
indicate selection of a shape, while others make an
invisible object, such as a light or a camera, visible.

Figure 1. A scaling widget

Figure 2 shows what a full-featured 3D application might
look like. The emphasis here is on what’s the same as in
2D applications rather than on what’s unique. The
illustration shows a shape selected with a rotation widget,
a material selection palette, a room metaphor, and a
document containing multiple views of a scene.
WHAT YOU CAN DO WITH QUICKDRAW 3D
The 3D application development process can be broken down into four areas:
creation of 3D data into a set of data structures, manipulation of that data in the
human interface of the application, presentation of the data by displaying it, and
transportation of the data (saving to and reading from files). QuickDraw 3D provides
support in each of these areas. You can implement one or more of them in your
application:

• QuickDraw 3D geometries — If you’re planning to write an
application to deal with the creation of models, QuickDraw 3D
lets you define the representation of the objects to be modeled in
3D form.

• QuickDraw 3D human interface — Maybe you want to allow users
to visualize 3D data and models in a standalone application or as
part of an existing application. QuickDraw 3D’s human interface
guidelines and built-in widgets provide a consistent way of
manipulating 3D objects.

• QuickDraw 3D rendering and shading — Rendering turns the 3D
geometries into pixels; shading determines what color those pixels
should be. Realism can be added by applying textures to objects:
texture mapping takes a texture (usually from a picture source, such
as a picture of a brick wall) and wraps it around an object. For

Figure 2. Conceptual sketch of a 3D application
example, Figure 3 shows a dinosaur mesh rendered with a skin
texture picture as a texture map. In its second major release,
QuickDraw 3D will enable you to write plug-in renderers and
shaders and license them to other developers.

The dinosaur model was supplied in QuickDraw 3D metafile format courtesy
of Viewpoint DataLabs Intl.•

• QuickDraw 3D metafile format — If you want to provide 3D clip
art in the form of models, you’ll really be pleased with QuickDraw
3D’s metafile format. One of the common problems encountered
by users when working with several 3D applications is that of data
interchange, where one application’s file is not readable by another
due to the multitude of 3D data formats. QuickDraw 3D addresses
this problem by providing a standard for the interchange of 3D
data. This device- and platform-independent representation of 3D
data is extensible, so your custom data gets preserved. And all of
the elements for a scene can be stored in the metafile, including
lighting, camera objects, texture maps, and shaders.

ROAD MAP FOR ADOPTION
Based on our experience working with developers, we’ve created a road map for
adoption of QuickDraw 3D. Here we’ll look at how different application developers
might begin to adopt QuickDraw 3D, in order from the least to the greatest amount
QUICKDRAW 3D: A NEW DIMENSION FOR MACINTOSH GRAPHICS 9

d e v e l o10
Figure 3. Dinosaur mesh mapped with a skin-like texture
 p Issue 22 June 1995
of support. These categories provide you with a general strategy for bringing
QuickDraw 3D into your applications.

• Developers of general-purpose 2D applications should add
support for the metafile format, enabling users to read and save
3D data within an application. This can be achieved by using the
3D Viewer, which allows 3D objects derived from metafile data to
be viewed and manipulated by the user.

• Developers who use other 3D libraries and may not be ready to
move to QuickDraw 3D just yet should at least add support for the
metafile format and additionally consider adopting the QuickDraw
3D human interface guidelines. Obviously, support for the
metafile format requires writing a parser to convert metafile data
to another internal representation (Apple will be supplying parser
code). Implementing the human interface guidelines will make the
application be compatible with and look consistent with other 3D
applications available on the Macintosh. Note that an application
that uses a 3D library other than QuickDraw 3D will have a
harder time using the 3D Viewer.

• Developers of existing 3D applications who want to take the first
step toward creating a QuickDraw 3D–savvy application should
take advantage of QuickDraw 3D’s rendering capabilities through
the use of immediate-mode rendering (more on this later). This
method provides not only fast rendering in software but also
transparent access to hardware, while allowing the application to
preserve its own data structures. In addition, these developers
should plan to add support for the metafile format and the human
interface guidelines.

• Developers who want to leave the low-level work to QuickDraw
3D, and concentrate on creating differentiating features within
their applications, should make their applications as QuickDraw
3D–savvy as possible. This means taking advantage of the full API,
including QuickDraw 3D’s data structures and geometries (which
provide metafile support virtually for free), rendering (both
immediate and retained modes), and the human interface
guidelines.

QUICKDRAW 3D ARCHITECTURE
The QuickDraw 3D architecture isolates in a layer within the system software those
things that all developers have to do, leaving them to concentrate on the code that
will allow their application to stand out. This architecture can be thought of as a
sandwich filling that sits between your application and the hardware it’s running on,

isolating you from having to deal with operating system and hardware issues directly.
Like any good sandwich filling, if you examine it closely, you’ll see that it’s divided
into a number of appetizing chunks. Figure 4 shows some of the functional blocks
that make up QuickDraw 3D, with an emphasis on those areas that can be
customized by developers.

Let’s take a quick look at each of these functional areas, which we’ll expand on later.
Here we’ll use the word scene to describe not only the objects being modeled, but also
the lighting, camera settings, shaders, and other entities that affect the final
appearance on output devices.

Widgets are used to enhance the user experience for 3D applications. For example, to
allow the user to interact with an object, the application can draw grab handles, in the
form of a translation widget, to allow the object to be manipulated.

Geometries are the encapsulation of data used to describe an object. Some geometries
are provided as part of QuickDraw 3D, resulting in a very concise representation; for
more information, see “QuickDraw 3D Geometries.” (QuickDraw 3D uses
geometries to draw widgets.)

The I/O layer provides support for metafiles. There are routines for reading and
writing 3D data to Storage objects, which may be disk or memory based and are
useful for providing Clipboard or drag and drop support in your application.

Application

I/O Picking Lights Camera Attributes Shaders

Hardware/OS

Customizable in 1.0

Renderers

Customizable in future versions

Geometries

Widgets

Accelerators

Figure 4. QuickDraw 3D architecture

The QuickDraw 3D geometries that are currently available are as follows: line,
polyline, triangle, point, simple polygon, general polygon, trigrid, mesh, box, marker,
NURB curve, and patch.

In addition, the following geometries are planned for the second major release of
QuickDraw 3D: torus, ellipse, ellipsoid, disk, cylinder, cone, and triangle strip. (In
version 1.0, you can create any of these geometries by representing them as
meshes.)

Where applicable, the geometries are parameterized so that they’re ready for texture
mapping or other shading effects.

QUICKDRAW 3D GEOMETRIES
QUICKDRAW 3D: A NEW DIMENSION FOR MACINTOSH GRAPHICS 11

d e v e l o p Issue 22 June 199512
Picking is used to determine which object a user chose. QuickDraw 3D’s picking
facilities are more extensive than in other 3D libraries, not only providing several
different types but also returning quite a bit of information to the application beyond
whether a hit took place.

Light objects supply the lighting for a scene. QuickDraw 3D provides four types of
light sources: ambient, directional, point, and spot. Based on the light sources for a
given scene and the illumination shader, the renderer makes intensity calculations for
each object’s surface and vertex contained in the scene.

Camera objects define a point of view into a particular scene. QuickDraw 3D provides
three different camera types: view angle, orthographic, and view plane.

Attributes are used to specify different characteristics for each object (or parts of an
object, such as its vertices or faces), and also to attach custom data to an object.

Shaders are used to modify or add data, on either a per vertex or a per pixel basis, as
geometries are being processed by the renderer — for example, illumination and
texturing shaders.

Renderers are the business end of QuickDraw 3D. A renderer is a set of routines used
to create a shaded synthetic model of the scene, based on the information stored in
the geometry and taking into account the lighting, surface attributes, and camera
location. QuickDraw 3D provides two basic renderers: a wireframe and an interactive
renderer. You can extend QuickDraw 3D by writing a plug-in renderer, developing
an accelerator card, or implementing a combination of both — a renderer tied to a
particular hardware setup.

IMPLEMENTING SUPPORT FOR THE 3D VIEWER
Now, on to the coding details. We realized that some application developers wouldn’t
want to get involved with the low-level details of a new API. We looked at the
QuickTime model and saw that a lot of developers implemented support for viewing
movie data by using movie controllers in their existing nonmultimedia applications.
We likewise wanted to allow applications to support the viewing of QuickDraw 3D
metafiles with minimal effort, so we’ve provided an additional shared library that
implements a 3D Viewer. The Viewer allows users to view and have a basic level of
interaction with 3D data without your having to make any QuickDraw 3D calls.
Figure 5 shows a Viewer implementation in a modified version of the Scrapbook.
(We used a preliminary version, so the Viewer interface may change.)

The car model was supplied in QuickDraw 3D metafile format courtesy of
Viewpoint DataLabs Intl.•

Adding Viewer support is simple — it requires only about five function calls. Your
application can check to see if the Viewer is available by calling Gestalt with the
constant gestaltQuickDraw3DViewer.

We’ll now look at how your application can create and use a QuickDraw 3D Viewer
object. In the application named Simple 3D Viewer on this issue’s CD, we create a
window in which the only object is a Viewer.

As you read through the code samples, you’ll notice that function names have a
“Q3” prefix, data types have a “TQ3” prefix, and constants have a “kQ3” prefix. The
part of a function name before the underscore indicates the object being operated on
(the class), while the part after the underscore indicates the operation (the method). For
example, to set the origin of a Box object, you’d call the function Q3Box_SetOrigin.•

CREATING AND DISPOSING OF A VIEWER OBJECT
Creating and disposing of a Viewer object is very easy to do. You attach a Viewer to a
window with the Q3ViewerNew function:

viewerObj = Q3ViewerNew((CGrafPtr)theWindow, &theRect, 0L);

This function takes a WindowPtr, a pointer to a Rect that describes the window area
where you want the 3D scene to appear, and a long word containing flags for
modifying the behavior of the Viewer. When you’re finished with the Viewer, you
need to dispose of it with the Q3ViewerDispose function:

Q3ViewerDispose(viewerObj);

ATTACHING DATA TO THE VIEWER
To display the contents of a metafile in your Viewer, you can use the Q3ViewerUseFile
function:

Q3ViewerUseFile(viewerObj, fileRefNum);

Q3ViewerUseFile takes a reference to the Viewer object and a file reference to a
previously opened QuickDraw 3D metafile. You can also display data from the
Clipboard or data you created yourself, with the Q3ViewerUseData function:

Q3ViewerUseData(viewerObj, myDataPtr, myDataSize);

This function takes a reference to a Viewer object, a pointer to the data, and the size
of the data in bytes. The data must be in metafile format.

Figure 5. Viewer implementation in the Scrapbook
QUICKDRAW 3D: A NEW DIMENSION FOR MACINTOSH GRAPHICS 13

d e v e l o p Issue 22 June 199514
HANDLING EVENTS
You need to modify your event loop slightly to give the Viewer the opportunity to
handle events, as follows:

wasViewerEvent = Q3ViewerEvent(viewerObj, theEvent);

Q3ViewerEvent takes a reference to a Viewer object and a pointer to an event record
(usually obtained from WaitNextEvent). This function allows the Viewer to respond
to events, such as a mouse-down event in one of its controls. It returns a value of type
Boolean that indicates whether the event was handled.

If the area occupied by the Viewer needs to be updated, you need to redraw the data
in your update event handler by calling Q3ViewerDraw:

theErr = Q3ViewerDraw(viewerObj);

OTHER VIEWER FUNCTIONALITY
The Viewer allows access to the View object for the scene, which enables you to
customize the Viewer’s behavior by changing the renderer or lighting for the scene
(more on Views later). Also, the Viewer provides support for cut, copy, and paste; see
the Simple 3D Viewer sample on the CD for an example.

PROGRAMMING WITH THE QUICKDRAW 3D API:
ERROR CHECKING AND INITIALIZATION
Now let’s look at programming with the QuickDraw 3D API, starting with error
checking and initialization. First, the QuickDraw 3D shared library needs to be
installed in the Extensions folder or in the same folder as your project. During your
development cycle you should use the debugging version of the library for extensive
error checking.

Error checking may seem like a weird place to start, but checking and responding to
what QuickDraw 3D is trying to tell you will save a great deal of trouble and strife
during development. The QuickDraw 3D error manager provides several levels of
error checking along with functions for checking the last error that occurred. The
error checking, which is similar to that in QuickDraw GX, has three levels: errors,
warnings, and notices.

• Errors are the most severe indication of a problem and can be
divided into two kinds, fatal and nonfatal. You can determine
whether an error is fatal with the call

TQ3Boolean Q3Error_IsFatalError(TQ3Error theError);

For a complete list of errors provided by QuickDraw 3D, look in
the QuickDraw 3D header files.

• Warnings are less severe than errors, but you should be prepared
to handle them. If the system generates a warning based on a
recoverable situation that you ignore, often an unrecoverable error
may occur later.

• Notices indicate problems that may exist with the way you’re using
the QuickDraw 3D library. Although they’re less severe than
warnings, you should take note of what notices are telling you,
to prevent problems from occurring later in your application’s
execution. Notices are generated only in the debugging version.

You can install your own error, warning, and notice handlers, which can write the
error information to a window or file or present a dialog or alert. Presenting too
many alerts can be annoying to the user, so you should probably log errors, warnings,
and notices to a file or a status window, and present a dialog or an alert only for fatal
errors from which no recovery is possible.

DEFINING AND INSTALLING AN ERROR HANDLER
Handlers for errors, warnings, and notices are all similar — they’re functions that
take an error code of type TQ3Error and have no return value. Listing 1 shows a
definition of an error handler.

Once handlers have been defined, it’s a snap to install them. For example, you would
install the error handler defined in Listing 1 as follows:

Q3Error_Register(MyErrorHandler, 0L);

INITIALIZING QUICKDRAW 3D
Before you can use QuickDraw 3D, you need to call Gestalt to see if the library is
installed, using the constant gestaltQuickDraw3D. You then need to initialize the
library as shown in Listing 2. You call the Q3Initialize function to ensure that the
QuickDraw 3D library gets a chance to allocate its internal data structures and to
initialize any subcomponents (such as plug-in shaders) that it needs to call. You then
do other initialization as needed, such as installing an error handler. The return value
indicates whether the call was successful.

When your application is about to quit, you should shut down your connection to the
QuickDraw 3D library by calling Q3Exit, also shown in Listing 2. (Obviously a real
application would have more sophisticated error handling here.)

CREATING AND DRAWING A SIMPLE 3D OBJECT: THE BOX
APPLICATION
The Box application on this issue’s CD is a simple QuickDraw 3D program that
opens a window, displays 3D boxes in the window, and rotates the boxes (see
Figure 6). While this isn’t a useful application as such, it covers all the basics needed
to create and display objects using QuickDraw 3D. It also illustrates double buffering
support, which helps an application provide flicker-free drawing when animating

Listing 1. Error handler

static void MyErrorHandler(TQ3Error firstError, TQ3Error lastError,
long refCon)

{
char buf[512];

sprintf(buf, "ERROR %d - %s\n", lastError,
getErrorString(lastError)); // Get the error as a C string.

if (gErrorFile == NULL)
gErrorFile = fopen("error.output", "w+");

if (gErrorFile != NULL)
fputs(buf, gErrorFile);

}
QUICKDRAW 3D: A NEW DIMENSION FOR MACINTOSH GRAPHICS 15

d e v e l o p Issue 22 June 199516
geometries; QuickDraw 3D’s double buffering takes advantage of hardware double
buffering when available.

For a more complex example, see the Modeller program on the CD, which
shows most of the things a QuickDraw 3D application needs to do, such as reading
and writing metafiles, texture mapping, and using interpolation styles.•

We define the following data structure to store the information that QuickDraw 3D
needs to model and render our scene:

Figure 6. A window from the Box sample program

Listing 2. Initializing and closing the connection to the library

void Initialize3DStuff(void)
{

if (Q3Initialize() == kQ3Failure) {
// Handle the error.
StopAlert(kQD3DInitFailed);
ExitToShell();

}
MyErrorInit();

}

void Exit3DStuff(void)
{

if (Q3Exit() == kQ3Failure) {
// Handle the error.
StopAlert(kQD3DExitFailed);
ExitToShell();

}
}

struct _documentRecord {
TQ3ViewObject fView; // The view for the scene
TQ3GroupObject fModel; // Object in scene being modeled
TQ3StyleObject fInterpolation; // Style used when rendering
TQ3StyleObject fBackFacing; // Whether to draw shapes that face

// away from the camera
TQ3StyleObject fFillStyle; // Drawn as solid filled objects or

// decomposed to components
TQ3Matrix4x4 fRotation; // The transform for the model

};
typedef struct _documentRecord DocumentRec, *DocumentPtr, **DocumentHdl;

We can create a new instance of this type, initialize it with the required values, and
store a reference to it in each window’s refCon field.

OBJECT CREATION
Creating a simple object — like a box — is straightforward. We’ll make four copies
of the box, each with its own transform. The code to create these boxes is shown in
Listing 3. We can store the boxes in our document simply by storing the value
returned by this function in our document’s fModel field.

Notice that we dispose of the boxes after adding them to the document group.
QuickDraw 3D will create references to the boxes in the document group, so we can
safely dispose of them. To be good QuickDraw 3D citizens and to make more effective
use of memory, we need to dispose of each QuickDraw 3D object as soon as we’re
done with it. QuickDraw 3D keeps track of the reference count of each object to help
detect memory leaks. If you’re using the debugging version of QuickDraw 3D, it will
tell you when you call Q3Exit if there are any objects remaining that need to be
disposed of.

RETAINED AND IMMEDIATE MODE RENDERING
We talked earlier about retained and immediate modes. Which mode to use is the
subject of big philosophical arguments in the world of 3D graphics. Some developers
prefer one over the other as a matter of principle; other developers make a choice
based on the type of application being developed. QuickDraw 3D offers the best of
both worlds: not only does it support both ways of rendering geometric data, it also
allows you to mix these types in the same rendering loop.

Retained and immediate modes are simply methods of rendering, without the
usual connotation of the term “mode” (a state that you must exclusively remain in once
you get into it). Although this terminology has become common in the field of 3D
graphics, retained rendering and immediate rendering calls can in fact be freely
mixed.•

In retained mode, the definition and storage of the geometries are kept internal to
QuickDraw 3D (as an abstract object). This mode provides convenient features for
caching, rejection of entire objects based on clipping and culling, preservation of
tessellated surfaces, multiple instantiation of objects (drawing multiple versions of an
object but storing its definition only once), and conversion between geometry types.
Retained mode is useful when the geometry has to be passed around to different
modules within the application or to plug-in renderers. Extensive geometry editing
functions are provided as part of the QuickDraw 3D API, which makes it easy to alter
the data associated with each geometric object.

In immediate mode, the application keeps the only copy of the geometry. This is
particularly useful when your application needs to reference data that’s in a format
QUICKDRAW 3D: A NEW DIMENSION FOR MACINTOSH GRAPHICS 17

d e v e l o p Issue 22 June 199518
Listing 3. Creating four boxes

TQ3GroupObject MyNewModel()
{

TQ3GroupObject myGroup;
TQ3GeometryObject myBox;
TQ3BoxData myBoxData;
TQ3GroupPosition myGroupPosition;
TQ3ShaderObject myIlluminationShader;
TQ3Vector3D translation;
TQ3SetObject faces[6];
short face;

// Create a group for the complete model.
if ((myGroup = Q3DisplayGroup_New()) != NULL) {

// Define a shading type for the group and add the shader to
// the group.
myIlluminationShader = Q3PhongIllumination_New();
Q3Group_AddObject(myGroup, myIlluminationShader);

// Set up the colored faces for the box data.
myBoxData.faceAttributeSet = faces;
myBoxData.boxAttributeSet = nil;
MyColorBoxFaces(&myBoxData);

// Create the box itself.
Q3Point3D_Set(&myBoxData.origin, 0, 0, 0)
Q3Vector3D_Set(&myBoxData.orientation, 0, 1, 0);
Q3Vector3D_Set(&myBoxData.majorAxis, 0, 0, 1);
Q3Vector3D_Set(&myBoxData.minorAxis, 1, 0, 0);
myBox = Q3Box_New(&myBoxData);

// Put four references to the box into the group, each one with
// its own translation.
translation.x = 0; translation.y = 0; translation.z = 0;
MyAddTransformedObjectToGroup(myGroup, myBox, &translation);
translation.x = 2; translation.y = 0; translation.z = 0;
MyAddTransformedObjectToGroup(myGroup, myBox, &translation);
translation.x = 0; translation.y = 0; translation.z = -2;
MyAddTransformedObjectToGroup(myGroup, myBox, &translation);
translation.x = -2; translation.y = 0; translation.z = 0;
MyAddTransformedObjectToGroup(myGroup, myBox, &translation);

}

// Dispose of the objects we created here.
if (myIlluminationShader != NULL)

Q3Object_Dispose(myIlluminationShader);
for (face = 0; face < 6; face++) {

if (myBoxData.faceAttributeSet[face] != NULL)
Q3Object_Dispose(myBoxData.faceAttributeSet[face]);

}
if (myBox != NULL)

Q3Object_Dispose(myBox);
return myGroup;

}

different from the one used by QuickDraw 3D or when a large number of vertices
that make up the geometry are being edited continuously — for example, in the
animation of a stress analysis for mechanical design.

The code in Listing 3 creates the boxes in retained mode, by creating objects that
encapsulate the box data; QuickDraw 3D then manages the box data for us. If you
want to add QuickDraw 3D rendering and drawing to an existing application with its
own 3D data structures, you can draw in immediate mode instead. To draw a box in
immediate mode, you simply initialize the values in the TQ3BoxData structure to the
appropriate values and then draw the data directly in a rendering loop (described
later) by calling the following function:

myStatus = Q3Box_Submit(&myBoxData);

Because you never create a QuickDraw 3D object, there’s no need to call
Q3Object_Dispose.

Notice that in Listing 3 we initialize an object using a data structure of type
TQ3BoxData. This structure contains all of the information required to draw a Box
geometry, but is not an object in itself. Because of this we don’t call Q3Object_Dispose
on the box data structure, but we do call it on the Box object.•

THE DRAW CONTEXT
All window system dependencies are isolated to a layer we call the draw context.
This makes porting your application easier (and it also makes it easier for us to
port QuickDraw 3D to other platforms). Although QuickDraw 3D is platform
independent, of course at some point you’ll need to deal with the realities of a
particular platform’s window system, in this case the Mac OS.

This is where the concept of a draw context comes in. It’s a means for QuickDraw 3D
to interface with the host environment. There’s a special draw context for the Mac
OS, called a Macintosh draw context; information describing this context is stored in
a TQ3MacDrawContext object, which contains the information necessary for
QuickDraw 3D to image the data on a computer running the Mac OS.

Listing 4 is a routine from the Box application that creates a Macintosh draw context
the size of a window that we pass in. We’re telling QuickDraw 3D to create a buffer
in which to image the data; this is referred to as the back buffer. If we’re using double
buffering (that is, we set the doubleBufferState field of the Macintosh draw context to
true), the front buffer will be the window associated with the draw context. The data
is copied from the back buffer to the front buffer when Q3View_EndRendering is
called. This helps provide flicker-free animation if you’re animating the object being
viewed.

Sometimes you might want to be able to get at the back buffer yourself; for example,
you might want to create a picture preview of some metafile data to place on the
Clipboard along with the metafile data, so that applications that don’t support
metafiles can display the picture. QuickDraw 3D makes this possible by providing a
different type of draw context, called a pixmap draw context, which can be based on a
GWorld. First you need to create a GWorld the size of the window area; then you
can create a pixmap draw context as shown in Listing 5.

When using a pixmap draw context, you must keep the GWorld’s PixMap locked all
the time (which implies that you need to call LockPixels on it, to help avoid heap
fragmentation). Also, the PixMap must be 32 bits deep — other depths are not
supported.
QUICKDRAW 3D: A NEW DIMENSION FOR MACINTOSH GRAPHICS 19

d e v e l o p Issue 22 June 199520
THE CAMERA
A camera is a QuickDraw 3D object used to project a 3D scene onto a 2D plane. It
defines a point of view on the scene and a method of projection onto the viewing
plane. QuickDraw 3D provides three types of camera:

• View angle or perspective — This type of camera is defined in terms
of a viewing angle and horizontal-to-vertical aspect ratio. It’s the
most common camera type because it provides a natural-looking
perspective.

• Orthographic — This is a parallel projection, where the direction of
projection is perpendicular to the projection plane. Orthographic
projections are generally less realistic than perspective projections;
however, they’re popular for engineering drawings because parallel
lines remain parallel in the projection, rather than converging to a
single point on the horizon.

• View plane — This is a perspective projection defined in terms of
an arbitrary viewing plane. This type of camera is useful for
providing an off-axis view, which is used for scrolling.

We use a view angle camera for the Box application, creating the camera with the
routine in Listing 6.

LIGHTING
QuickDraw 3D includes a number of different light objects that can be used to
provide illumination to the surfaces in a scene. Lighting is additive, meaning that the

Listing 4. Creating a Macintosh draw context

TQ3DrawContextObject MyNewDrawContext(WindowPtr theWindow)
{

TQ3DrawContextData myDrawContextData;
TQ3MacDrawContextData myMacDrawContextData;
TQ3DrawContextObject myDrawContext;
TQ3ColorRGB clearColor;

Q3ColorRGB_Set(&clearColor, 1, 1, 1);
myDrawContextData.clearImageState = kQ3True;
myDrawContextData.clearImageMethod = kQ3ClearMethodWithColor;
myDrawContextData.clearImageColor = clearColor;
myDrawContextData.paneState = kQ3False;
myDrawContextData.maskState = kQ3False;
myDrawContextData.doubleBufferState = kQ3True;
myMacDrawContextData.drawContextData = myDrawContextData;
myMacDrawContextData.window = (CGrafPtr) theWindow; // The window

// associated with the view
myMacDrawContextData.library = kQ3Mac2DLibraryNone;
myMacDrawContextData.viewPort = nil;
myMacDrawContextData.grafPort = nil;

// Create draw context and return it; if nil, caller must handle it.
myDrawContext = Q3MacDrawContext_New(&myMacDrawContextData);
return myDrawContext;

}

Listing 5. Creating a pixmap draw context

TQ3DrawContextObject MyNewPixmapDrawContext(GWorldPtr theGWorld)
{

TQ3PixmapDrawContextData myPixmapDCData;
TQ3ColorRGB clearColor;
PixMapHandle hPixMap;
Rect srcRect;

Q3ColorRGB_Set(&clearColor, 1, 1, 1);

// Fill in the draw context data.
myPixmapDCData.drawContextData.clearImageState = kQ3True;
myPixmapDCData.drawContextData.clearImageMethod =

kQ3ClearMethodWithColor;
myPixmapDCData.drawContextData.clearImageColor = clearColor;
myPixmapDCData.drawContextData.paneState = kQ3False;
myPixmapDCData.drawContextData.maskState = kQ3False;
myPixmapDCData.drawContextData.doubleBufferState = kQ3False;
hPixMap = GetGWorldPixMap(theGWorld);
LockPixels(hPixMap);
srcRect = theGWorld->portRect;
myPixmapDCData.pixmap.width = srcRect.right - srcRect.left;
myPixmapDCData.pixmap.height = srcRect.bottom - srcRect.top;
myPixmapDCData.pixmap.rowBytes = (**hPixMap).rowBytes & 0x7FFF;
myPixmapDCData.pixmap.pixelType = kQ3PixelTypeRGB32;
myPixmapDCData.pixmap.pixelSize = 32;
myPixmapDCData.pixmap.bitOrder = kQ3EndianBig;
myPixmapDCData.pixmap.byteOrder = kQ3EndianBig;
myPixmapDCData.pixmap.image = (**hPixMap).baseAddr;

return Q3PixmapDrawContext_New(&myPixmapDCData);
}

Listing 6. Creating the camera

TQ3CameraObject MyNewCamera(WindowPtr theWindow)
{

TQ3ViewAngleAspectCameraData perspectiveData;
TQ3CameraObject camera;

TQ3Point3D from = { 0.0, 0.0, 13.0 };
TQ3Point3D to = { 0.5, 0.5, -1.5 };
TQ3Vector3D up = { 0.0, 1.0, 0.0 };
float fieldOfView = 0.523593333;
float hither = 0.001;
float yon = 1000;

perspectiveData.cameraData.placement.cameraLocation = from;
perspectiveData.cameraData.placement.pointOfInterest = to;
perspectiveData.cameraData.placement.upVector = up;
perspectiveData.cameraData.range.hither = hither;

(continued on next page)
QUICKDRAW 3D: A NEW DIMENSION FOR MACINTOSH GRAPHICS 21

d e v e l o p Issue 22 June 199522
amount of lighting applied to a particular surface will be the sum of the lighting from
all sources. There are four light types:

• Ambient — This is the amount of light added to all surfaces in a
scene. Since this light type has no location, it doesn’t cast shadows.

• Directional — Sometimes referred to as an “infinite” light, this
light source emits parallel rays of light in a specific direction. The
intensity of this light source doesn’t change as the distance from
the light changes.

• Point — This light source emits rays of light in all directions from
a particular point location. A point light is attenuated, meaning that
the intensity of the light decreases as the distance from the light
increases; QuickDraw 3D provides a set of constants to control
this behavior.

• Spot — This type of light emits a circular cone of light from a
point source in a particular direction. A spot light is attenuated
both by the distance from the source and by the position across the
cone; the intensity of light at the center of the cone is greater than
the intensity at the edge of the cone.

Listing 7 shows an extract from our sample’s MyNewLights routine; here we create a
point light and add it to a light group.

THE VIEW
Once you’ve added the light to a group, you can associate the group with the View
object for your scene. A View object keeps track of the information necessary to
render an entire scene, tying together the different parts of QuickDraw 3D. In our
simple example it ties together the draw context, camera, lights, and renderer. Listing
8 shows the code we use to create the View object for the Box program.

THE RENDERING LOOP
All drawing must be done in a rendering loop. This is necessary because we don’t
know in advance how much memory is required to render a complex model. The
loop should fit neatly into your application, because most Macintosh applications will
localize drawing in the update event–handling code, which is where you’ll call your
rendering loop for QuickDraw 3D. A simple rendering loop will look like Listing 9.

perspectiveData.cameraData.range.yon = yon;
perspectiveData.cameraData.viewPort.origin.x = -1.0;
perspectiveData.cameraData.viewPort.origin.y = 1.0;
perspectiveData.cameraData.viewPort.width = 2.0;
perspectiveData.cameraData.viewPort.height = 2.0;
perspectiveData.fov = fieldOfView;
perspectiveData.aspectRatioXToY =

(float) (theWindow->portRect.right - theWindow->portRect.left) /
(float) (theWindow->portRect.bottom - theWindow->portRect.top);

camera = Q3ViewAngleAspectCamera_New(&perspectiveData);

return camera;
}

Listing 6. Creating the camera (continued)

Listing 7. Creating a point light in a light group

lightGroup = Q3LightGroup_New();

pointData.lightData.isOn = kQ3True;
pointData.lightData.brightness = 0.80;
pointData.lightData.color.r = 1.0;
pointData.lightData.color.g = 1.0;
pointData.lightData.color.b = 1.0;
pointData.location.x = -10.0;
pointData.location.y = 0.0;
pointData.location.z = 10.0;
pointData.castsShadows = kQ3False;
pointData.attenuation = kQ3AttenuationTypeNone;
light = Q3PointLight_New(&pointData);

Q3Group_AddObject(lightGroup, light);
Q3Object_Dispose(light);

Listing 8. Creating the View object

TQ3ViewObject MyNewView(WindowPtr theWindow)
{

TQ3Status myStatus;
TQ3ViewObject myView;
TQ3DrawContextObject myDrawContext;
TQ3RendererObject myRenderer;
TQ3CameraObject myCamera;
TQ3GroupObject myLights;

myView = Q3View_New();

// Create and set the draw context.
myDrawContext = MyNewDrawContext(theWindow);
myStatus = Q3View_SetDrawContext(myView, myDrawContext);
Q3Object_Dispose(myDrawContext);

// Create and set the renderer. Use the interactive software renderer.
myRenderer = Q3Renderer_NewFromType(kQ3RendererTypeInteractive);
myStatus = Q3View_SetRenderer(myView, myRenderer);
Q3Object_Dispose(myRenderer);

// Create and set the camera.
myCamera = MyNewCamera(theWindow);
myStatus = Q3View_SetCamera(myView, myCamera);
Q3Object_Dispose(myCamera);

// Create and set the lights.
myLights = MyNewLights();
myStatus = Q3View_SetLightGroup(myView, myLights);
Q3Object_Dispose(myLights);

return myView;
}

QUICKDRAW 3D: A NEW DIMENSION FOR MACINTOSH GRAPHICS 23

d e v e l o p Issue 22 June 199524
Recall that earlier we set up our Macintosh draw context to use double buffering; this
causes all drawing to take place in the back buffer. The calls in the rendering loop
draw into the active buffer, which we have set up to be the back buffer. The image
data is copied from the back buffer to the front buffer (in this case the window) when
Q3View_EndRendering is called.

A rendering loop for a pixmap draw context would be similar to the routine in
Listing 9, except you would need to copy the data from your PixMap to the screen
yourself, generally with CopyBits.

THE QUICKDRAW 3D METAFILE
Here we’ll take a brief look at the architecture of QuickDraw 3D’s metafile format
(file type '3DMF') and at how you can provide metafile support in your application.

The QuickDraw 3D metafile comes in two forms: plain-text (ASCII) and binary.
Table 1 shows the differences between these two forms. The plain-text form is more
useful for debugging purposes; once your application is debugged, it’s more efficient
to use the binary form, which may be read and written much faster and may require
less storage space on disk.

Listing 9. The rendering loop

TQ3Status DocumentDraw3DData(DocumentPtr theDocument)
{

Q3View_StartRendering(theDocument->fView);
do {

Q3Style_Submit(theDocument->fInterpolation, theDocument->fView);
Q3Style_Submit(theDocument->fBackFacing, theDocument->fView);
Q3Style_Submit(theDocument->fFillStyle, theDocument->fView);
Q3MatrixTransform_Submit(&theDocument->fRotation,

theDocument->fView);
Q3DisplayGroup_Submit(theDocument->fModel, theDocument->fView);

} while (Q3View_EndRendering(theDocument->fView)
== kQ3ViewStatusRetraverse);

return kQ3Success;
}

Table 1. Differences between plain-text and binary metafiles

Primitive Plain-text Binary
Integer Text representation Int 8/16/32/64
Unsigned Text representation Uns 8/16/32/64
Float Text representation Float 32/64
Object type ObjectName 4-byte code
Sizes Parentheses delimited Uns32
File pointer Label>, Label: pairs Uns64
Enumerated types EnumName Uns32
Bit fields Mask1 | Mask2 | ... Uns32
String "Quoted String" Padded C string
Raw data Hex string (e.g., 0xAB02) Stored raw

The metafile format supports a wide range of primitive data types, including 1-, 2-,
4-, and 8-byte signed and unsigned integers and 4- and 8-byte IEEE floating-point
numbers, together with a range of types for describing 3D data. In addition, metafiles
may contain big- or little-endian numbers, making them ideal for storing data that
may be used in a cross-platform manner.

METAFILE ORGANIZATION
There are three distinct types of metafile organization: normal, stream, and database.
The organization of the file can affect both the size of the file and the time it takes to
access the data in the file. Let’s look at a simple example in which a single Box object
is drawn four times at different positions by means of four different Transform
objects, as was shown in Figure 6. The three types of organization are illustrated in
Figure 7. (Note that # marks the beginning of a comment.) These types are as
follows:

• Normal — This is the most compact representation. Referenced
objects are listed in a Table of Contents (TOC). In our example,
only the Box object is listed in the TOC. The Transform objects
don’t appear in the TOC because they were referenced only once.
Note that random access to the file is needed to resolve references,
since after reading a reference, the metafile parser needs to skip
forward to the TOC, and back to resolve the references.

• Stream — There is no TOC, and references to objects are written
as copies of the objects themselves. This may result in a larger file
if a lot of object references were used, but it allows for a sequential
search. A sequential search is very useful for reading from the file
and imaging to a printer, since each object can be read, imaged,
and disposed of. This organization is also useful as a wire protocol
for imaging on remote machines.

• Database — Every object is logged into the TOC, even if it’s not
referenced. Each TOC entry contains the type of the object.
Accessing the TOC lets you see all the information contained in
the file without having to read in all of the file and create objects.
This would be useful for creating a catalog of textures, for
example.

USING METAFILES
The simplest way to access data in metafiles is to use the QuickDraw 3D API. First,
there are two types of objects you need to understand:

• TQ3FileObject — Objects of this type maintain state information
and provide an interface between a given file format and a Storage
object. File objects are used to read and write data in metafile
format from and to Storage objects.

• TQ3StorageObject — Objects of this type act as an interface to a
type of physical stream-based storage (for example, memory and
files). Storage objects are used to represent a piece of physical
storage.

Why have this two-stage approach? The answer is that all the machine dependencies
are localized in the Storage object, which allows files to be used to read and write data
from differing types of physical storage with the same set of routines. For example,
you can use the same File object to write to a Storage object that represents a file on
your hard disk and to write to another Storage object that represents a block of
memory that will be passed to the Scrap Manager.
QUICKDRAW 3D: A NEW DIMENSION FOR MACINTOSH GRAPHICS 25

26
3DMetafile (0 5 Database Label0>)

Label2:
Container (
 Box (
 0 1 0 0 0 1 1 0 0 0 0 0)

 Label3:
 Container (
 GeometryAttributeSet ()
 DiffuseColor (0.9 0.9 0.2)
)
)

Label4:
Translate (2 0 0)

Reference (1)

Label5:
Translate (0 0 -2)

Reference (1)

Label6:
Translate (-2 0 0)

Reference (1)

Label0:
TableOfContents (
 Label1> # next TOC
 6 # reference seed
 -1 # typeSeed
 1 # tocEntryType
 16 # tocEntrySize
 5 # nEntries
 1 Label2>
 Box
 2 Label3>
 GeometryAttributeSet
 3 Label4>
 Translate
 4 Label5>
 Translate
 5 Label6>
 Translate
)

3DMetafile (0 5 Normal Label0>)

Label2:
Container (
 Box (
 0 1 0 0 0 1 1 0 0 0 0 0)
 Label11:
 Container (
 GeometryAttributeSet ()
 DiffuseColor (0.9 0.9 0.2)
)
)

Label3:
Translate (2 0 0)

Reference (1)

Label4:
Translate (0 0 -2)

Reference (1)

Label5:
Translate (-2 0 0)

Reference (1)

Label0:
TableOfContents (
 Label1> # next TOC
 2 # reference seed
 -1 # typeSeed
 0 # tocEntryType
 12 # tocEntrySize
 1 # nEntries
 1 Label2>
)

3DMetafile (0 5 Stream Label0>)

Container (
 Box (
 0 1 0 0 0 1 1 0 0 0 0 0)
 Container (
 GeometryAttributeSet ()
 DiffuseColor (0.9 0.9 0.2)
)
)

Translate (2 0 0)
Container (
 Box (
 0 1 0 0 0 1 1 0 0 0 0 0)
 Container (
 GeometryAttributeSet ()
 DiffuseColor (0.9 0.9 0.2)
)
)

Translate (0 0 -2)
Container (
 Box (
 0 1 0 0 0 1 1 0 0 0 0 0)
 Container (
 GeometryAttributeSet ()
 DiffuseColor (0.9 0.9 0.2)
)
)

Translate (-2 0 0)
Container (
 Box (
 0 1 0 0 0 1 1 0 0 0 0 0)
 Container (
 GeometryAttributeSet ()
 DiffuseColor (0.9 0.9 0.2)
)
)

Normal organization Stream organization Database organization

Figure 7. Three types of metafile organizations (representing Figure 6)
d e v e l o p Issue 22 June 1995
The usual method for using File and Storage objects is to create a new instance of a
Storage object and attach it to a newly created File object using Q3File_SetStorage,
as shown in Listing 10.

Reading data from metafiles. There are three routines that you can use to help
with reading the data: Q3File_GetNextObjectType, Q3File_ReadObject, and
Q3File_SkipObject. Listing 11 illustrates the technique used to read drawable data
from a metafile. The code loops through the file, getting each object and checking to
see if the object is drawable; if so, it adds the object to a group object.

Because we’re isolating the implementation details of how the metafile data is stored
in the Storage object that we associated with the File object at its creation time, we
don’t care how the metafile data we’re reading is physically stored. What this means
is that we could use the routine above to read data from the scrap, from a handle
supplied by the Drag Manager, or from a file, as long as the storage object attached to
the file is set up properly.

Writing data to metafiles. Data is written to files similarly to the way it’s drawn in
a rendering loop. Depending on the available memory and the complexity of the
model, QuickDraw 3D may need to traverse the model in the group more than once
in order to write all the data out (this is the same reason that the rendering needs to
be done in a loop). As shown below, you need to preface your file-writing loop with a
call to Q3File_BeginWrite, and test the value returned by Q3File_EndWrite to see if
there’s a need to traverse the data again.

Q3File_OpenWrite(file, kQ3FileModeNormal);
Q3File_BeginWrite(file);
do {

Q3Object_Write(group, file);
} while (Q3File_EndWrite(file) == kQ3FileStatusRetraverse);
Q3File_Close(file);

Listing 10. Attaching a Storage object to a file

TQ3FileObject MyGetNewFile(FSSpec *myFSSpec, TQ3Boolean *isText)
{

TQ3FileObject myFileObj;
TQ3StorageObject myStorageObj;
OSType myFileType;
FInfo fndrInfo;

// We assume the FSSpec passed in was valid and get the file
// information. We need to know the file type; this routine may get
// called by an Apple-event handler, so we can't assume a type -- we
// need to get it from the FSSpec.
FSpGetFInfo(myFSSpec, &fndrInfo);
myFileType = fndrInfo.fdType;

if (myFileType == '3DMF')
*isText = kQ3False;

else if (myFileType == 'TEXT')
*isText = kQ3True;

else
return NULL;

// Create a new Storage object and new File object.
if (((myStorageObj = Q3FSSpecStorage_New(myFSSpec)) == NULL)

|| ((myFileObj = Q3File_New()) == NULL)) {
if (myStorageObj != NULL)

Q3Object_Dispose(myStorageObj);
return NULL;

}

// Set the storage for the File object.
Q3File_SetStorage(myFileObj, myStorageObj);
Q3Object_Dispose(myStorageObj);

return myFileObj;
}

QUICKDRAW 3D: A NEW DIMENSION FOR MACINTOSH GRAPHICS 27

d e v e l o p Issue 22 June 199528
GO TO IT!
QuickDraw 3D lowers the bar for application developers who want to put support
for 3D data into their applications. By providing support for the features that all
developers need to have in applications — geometries, metafile support, rendering,
and human interface — QuickDraw 3D allows you to concentrate on the features and
facilities that set your application apart.

Listing 11. Reading from a metafile

TQ3Status MyReadModelFromFile(TQ3FileObject theFile, TQ3GroupObject
myGroup)

{
if (theFile != NULL) {

TQ3Object myTempObj;
TQ3Boolean isEOF;

// Read objects from the file.
do {

Q3File_ReadObject(theFile, &myTempObj);
if (myTempObj != NULL) {

// We want the object in our main group only if we can
// draw it.
if (Q3Object_IsDrawable(myTempObj))

Q3Group_AddObject(myGroup, myTempObj);
// We either added the object to the main group, or we don't
// care, so we can safely dispose of it.
Q3Object_Dispose(myTempObj);

}
// Check to see if we've reached the end of the file yet.
Q3File_IsEndOfFile(theFile, &isEOF);

} while (isEOF == kQ3False);
}
if (myGroup != NULL)

return kQ3Success;
else

return kQ3Failure;
}

Thanks to our technical reviewers Kent Davidson,
Eiichiro Mikami, Don Moccia, and Dan Venolia,
and to all the members of the QuickDraw 3D team.
Special thanks to Kent and Dan for supplying
information used in this article and to David

Vasquez for his Viewer sample. Thanks also to
the Shawn and John team (Shawn Hopwood,
Apple’s 3D evangelist, and our marketing
weenie, John Alfano) for their input.•

The Macintosh operating system has continually evolved since the days
when the Macintosh was a home appliance with 128K of RAM and a
floppy disk drive — but now the time has come for radical change. The
next generation of the Mac OS, code-named Copland, was designed
specifically to serve computers with a fast processor running several
tasks and processing large quantities of data. This preview describes
Copland’s major features and suggests how you might get ready for it.

Copland: The Mac OS Moves Into the Future
TIM DIERKS
Since the first Macintosh operating system and Toolbox were developed in the early
1980s, the needs of users and developers alike have evolved significantly. Newer
technologies, such as MultiFinder and the PowerPC™ processor, have appeared on
the scene. Users have come to expect greater ease of use, more capabilities, and
enhanced productivity. Although the Mac OS has evolved along with the times, a
more radical advance is now required to take advantage of the great increases in
power afforded by the PowerPC processor.

Enter Copland, a new generation of the Mac OS to be released by Apple in mid-
1996. Copland will provide a radically new architecture that includes technologies
such as preemptive multitasking and protected memory. For one thing, it’s based on
a microkernel that moderates between individual tasks and arbitrates access to the
machine’s resources. A number of other services have been updated and improved,
both to fulfill the requirements this change implies and to take advantage of the new
capabilities it provides. For example, the file system has been updated to be accessible
from several processes running simultaneously in several address spaces. Similarly, the
networking system has been enhanced, as have a number of the auxiliary operating
system managers such as the Process Manager.

With Copland will also come a number of enhancements to the user experience,
including a Finder that can perform several tasks simultaneously, changes to the
appearance and feel of the interface, and advances that will make it easier to locate
and access information. (See “Moving the Mac OS Interface Into the Future” for
more details.) All of this new functionality is glued together in a runtime model based
on the Code Fragment Manager, the dynamically linked library mechanism
introduced with the first Power Macintosh computers.
COPLAND: THE MAC OS MOVES INTO THE FUTURE 29

TIM DIERKS, who is known for having the
messiest office on the Apple R&D campus, has
been bumming around Apple for several years,
including stints working with the Macintosh
Developer Technical Support group as well as
on the Copland project. Currently, he’s hard at

work on Apple’s interactive television solution,
which gives him an excuse for watching Rocco’s
Modern Life at work. He shares his office with
two lizards, a corn snake, and a pinball machine
— which helps explain at least some of the
mess.•

d 30
MOVING THE MAC OS INTERFACE INTO THE FUTURE
BY B. WINSTON HENDRICKSON
Copland will not only radically change the foundation of
the Mac OS, it will also introduce some of the most
significant changes to the user experience since 1984.
For the user, this means new personalization capabilities,
built-in assistance with tasks, and improved access to
information. For the developer, it means a robust
foundation for constructing consistent and compelling
interfaces that are easier to use.

The new managers in Copland directly concerned with
enhancing the user experience are the Appearance
Manager, the Assistance Manager, and Navigation
Services. The following brief descriptions of these will
give you an inkling of things to come.

THE APPEARANCE MANAGER
The Appearance Manager defines how standard user
interface elements should be presented and enables users
to personalize the appearance of these elements by
choosing one of a number of graphical designs called
themes. Applications can use the Appearance Manager’s
capabilities to draw custom interface elements in the style
of the current theme.

The Appearance Manager provides you with

• a Pattern Manager that returns the appropriate PixPats
for use as dialog backgrounds, control colors, and
other aspects of the interface

• a set of drawing primitives for rendering common
interface elements such as window title bars and
dialog separator lines

• new standard interface elements, including sliders,
progress indicators, and icon buttons

• event notification when the current theme is changed,
allowing you to resync any cached appearance data

To prepare now for Copland’s dynamic system appearance,
be sure not to make assumptions about interface specifics
(such as assuming that the dialog or menu background is
white). Also, don’t hard-code the appearance of your
application’s interface elements; for instance, avoid the
use of custom definition procedures wherever possible.

THE ASSISTANCE MANAGER
The Assistance Manager supports the implementation
of active user assistance, enabling the computer to
accomplish specific tasks with little or no direction from
the user. The Assistance Manager provides support for
the following:
e v e l o p Issue 22 June 1995
• task delegation, allowing the creation and
management of automated activity controlled by a
condition or event, such as time or mail delivery

• the ability to create templates from which tasks are
created and executed

• user “interviews” for task configuration, based on
Apple Guide’s interaction engine

Since this active assistance is built on existing technologies,
you can start to prepare for it today. The first and most
important step is to make your application scriptable, so
that it can be automated. Second, you should provide
task-based assistance using Apple Guide. Finally, if your
application provides any task delegation, you should
factor out the related code now so that you can take
advantage of the Assistance Manager under Copland.

NAVIGATION SERVICES
Navigation Services replaces System 7’s Standard File
Package, providing a set of tools for opening, saving,
and naming documents as well as for navigating a
hierarchical information space containing such documents.
These tools will increase consistency between applications
and the Finder and will enable integration with the
Finder’s new and improved searching mechanism. The
new capabilities provided by Navigation Services include
these:

• support for a favorite items list, file list position recall
(rebound), and a more intuitive browser

• the ability to browse diverse containers such as a
mailbox and return a general-purpose reference value
to documents in those containers

• one-step calls for common operations such as selecting
a file or directory

• support for easy customization, including an extensible
list of information “panels” (based on Copland’s new
dialog panels)

• automatic dialog layout adjustment for active script
systems

You can do a few things now to get ready for Navigation
Services. First, when customizing the Standard File dialog,
render only inside your dialog items, as they may be
rearranged. Second, don’t assume you’re drawing into
the desktop port, because you won’t be. And finally, don’t
try to control Standard File by posting events to dialog
items; use the documented interface instead.

Because of the large number of advances and changes in Copland, some software will
be incompatible. For instance, applications that have inappropriately incestuous
relationships with the operating system might run into problems. But there are some
things you can do now to prepare yourself for this release and ensure that your
applications will be as compatible as possible. I’ll tell you about those things as I give
you a tour of Copland’s microkernel, runtime model, File Manager, and I/O
architecture.

THE MICROKERNEL: A NEW FOUNDATION
The present Macintosh operating system is somewhat too trusting: it doesn’t take
charge of restricting software’s actions or balancing the use of the machine’s
resources. Any piece of code can write all over memory, retain control forever, and
even turn off interrupts for any period of time. This model, while once appropriate,
has shortcomings in a computer with a fast processor running several tasks and
processing large quantities of data.

That’s where Copland’s microkernel, developed by Apple specifically for use in the
Mac OS, comes in. The microkernel serves as a referee for the system. It moderates
between many individual tasks so that none can hog the processor and so that special
code need not be implemented to share it. It also arbitrates access to the machine’s
resources, including memory, preventing software from being able to see or change
data unrelated to its task.

The microkernel provides a number of services — most of them familiar to those
conversant with kernel-based systems — including task control, address space
management, virtual memory management, interrupt control, synchronization
primitives, and intertask messaging. These services, which we’ll look at in more detail
in the following pages, serve as the basic building blocks of the system. In most cases,
your software won’t use any of these kernel services directly but will instead take
advantage of them through other APIs — APIs that are part of System 7 but that
have been reimplemented in Copland.

TASK CONTROL
The Copland kernel provides full support for a variety of tasking services. While
applications will normally be cooperatively scheduled by the Process Manager (just
as in System 7), applications will also be able to create tasks that are preemptively
scheduled. Preemptive tasks are scheduled in the order of their assigned priority and
according to kernel scheduling rules; the Process Manager doesn’t manage them in
the way it does applications. Such tasks behave as threads behave in other systems.
At any time, almost anything in the system — including the currently running
application — can be preempted to run such a task. Interrupt handlers can’t be
preempted, however.

You’ll be able to set the priority of preemptive tasks that you create; higher priority
tasks will run in preference to lower priority ones. By giving an I/O-intensive task
higher priority than your main application thread, you’ll gain performance very
similar to that made possible today by chained completion routines. During the
relatively long I/O delays when your task is blocked, your main application thread will
execute freely. Whenever its I/O requests do complete, the task will regain control
immediately so that it can issue its next I/O request, resulting in maximum throughput
without unnecessary blocking of other computing tasks. Similarly, you’ll be able to
assign a higher priority to general application tasks than to background tasks that can
afford to wait or proceed slowly while the machine is in use (such as a background
renderer for a network-distributed 3D software package). This will ensure
responsiveness in your application and allow you to use otherwise idle CPU time.
COPLAND: THE MAC OS MOVES INTO THE FUTURE 31

d e v e l o p Issue 22 June 199532
Chained completion routines are discussed in the article “Asynchronous Routines
on the Macintosh” in develop Issue 13.•

To prepare for this opportunity, you can work to make your application easier to
factor. If you remove dependencies between different portions of your application,
it’ll be easier to take full advantage of Copland’s multitasking capabilities. When a
Copland preemptive thread runs, the file system, networking, and device I/O will be
available, similar to the environment when a Time Manager or Deferred Task
Manager task runs in System 7. One addition is that synchronous calls can be made;
your thread will just block until the I/O has completed.

ADDRESS SPACE AND VIRTUAL MEMORY MANAGEMENT
In System 7.5, there’s only one address space. A particular address always refers to the
same part of memory, and data located there can be accessed by every part of the
operating system. In Copland, by contrast, multiple address spaces can be created,
allowing code and data to be hidden from some processes. For compatibility reasons,
Macintosh applications will continue in this release to share a single address space,
while components of the operating system and third-party software can create fully
protected memory areas in which code that’s not dependent on the Macintosh
Toolbox can execute. The kernel, the file system, and several other components will
create such areas to protect their private data structures.

Each address space is divided into areas. An area can be either private (accessible only
to tasks executing in that address space) or global (accessible at the same location in
all address spaces). In addition, an area can be either read/write to all tasks (most
global areas fit into this category) or read-only in user mode and read/write in
supervisor mode. (Most code runs in user mode; only code that needs special abilities,
such as drivers and parts of the operating system, runs in supervisor mode.) This
latter protection is used for most kernel and file system data structures; they’re
located in global memory for fast and easy access (without the need to switch to
another address space) but can’t be damaged by code executing in user mode. Only
the privileged clients of the system can change these structures.

In addition to having the ability to map RAM into a variety of address spaces,
Copland also uses virtual memory to provide more room than is available in physical
RAM, moving data between RAM and disk as needed. In fact, virtual memory is
always on. It’s dramatically better than System 7’s virtual memory in these ways:

• The new file system and better integration between the file system
and virtual memory will improve performance.

• Your application will be able to provide hints to the operating
system to allow it to tune for best performance. For example,
you’ll be able to tell it that you’re about to access a significant
portion of a large array, and it will asynchronously begin to bring
in the pages that the array resides on.

• Fewer limitations on what can be paged will increase the available
RAM for the system. In System 7, the system heap is always held
in memory and can’t be paged onto disk. In Copland, virtually all
of the system — aside from the kernel, the file system, and the disk
driver — will be pageable.

• The disk cache will be integrated with the virtual memory system,
and the size of the disk cache will dynamically adjust based on
current operations in order to optimize performance.

• Best of all, Copland’s virtual memory will dynamically expand the
amount of address space in the system as needed, giving users
much more flexibility than in System 7, where they must decide
beforehand how much memory they’ll need, adjust the Memory
control panel accordingly, and reboot. In Copland, if they need to
open additional applications, they can do so without going
through any rigmarole; space will be created on the fly to support
their needs, provided that sufficient disk space is available for use
as a backing store.

Because Copland will make available a full gigabyte of address space in which to run
applications (subject, of course, to the limits imposed by the amount of disk space
available for paging), two other limitations of the System 7 memory allocation system
should be alleviated. First, Copland will reduce (though not entirely eliminate) the
need for the user to configure and reconfigure the application’s memory partition to
accommodate changing needs. Also, problems with applications fragmenting the
available memory for launching more applications should be eliminated. Thus, no
longer will users always have to deal with the complex issues of memory allocation
and organization to make best use of their machines.

In addition to swapping space, Copland will support memory-mapped files. This
technology allows an application to map a file against an area of address space;
accessing locations in the address space causes the appropriate portions of the file to
be read into RAM. In system software version 7.1.2, this technology is used by the
system for paging PowerPC code when virtual memory is on, but it’s not available to
applications. In Copland, it will be available to applications; data files can be mapped
for read-only or read/write access. An application will be able to read a document just
by walking through the address space without having to manually stream it into buffers.

To be prepared for Copland’s use of virtual memory, applications today should be
able to operate well in a virtual memory environment. For purposes of performance,
this means keeping a tight locality of reference; code that uses contiguous data
structures rather than structures spread all over memory will require fewer pages to
be resident for any operation. Also, take care when allocating variable-sized buffers.
Don’t always attempt to allocate the largest possible buffer, sizing it down till it fits —
a popular but potentially wasteful habit; instead, cap buffers at points beyond which
they won’t gain from more RAM. For example, if reading a file, you might cap the
size of a data buffer at 64K, because there’s little to gain by reading the file in larger
chunks.

INTERRUPT CONTROL
On Power Macintosh computers running System 7.5, interrupts are handled by the
680x0 instruction emulator, incurring a large overhead. Even if the overhead of the
actual interrupt handler is small, a significant price is paid in invoking the emulator,
especially if a mostly native application is executing (in which case the emulator has to
be pulled into the cache on each interrupt, then flushed out as native code is reloaded
after the interrupt returns). Since a Macintosh can easily take several hundred
interrupts per second (thanks to interrupts caused by video retrace, the old-style VBL
Manager, ADB, and the like), this can have a significant performance impact.

By contrast, Copland’s I/O system, including interrupt handlers, is entirely native;
this, along with an improved architecture, should mean significantly lower interrupt
latency and better overall performance. Because of the flexibility of the execution
control available to the kernel, it will be easy for an interrupt handler to do the
absolute minimum to deal with an interrupt (often all that’s required is to
acknowledge it). After control is returned from the interrupt, another piece of code
COPLAND: THE MAC OS MOVES INTO THE FUTURE 33

d e v e l o p Issue 22 June 199534
called a secondary interrupt handler can be invoked; although under the same constraints
as a hardware interrupt handler, this handler results in the best system performance
by enabling the soonest possible exit from the hardware handler. If significant
processing needs to be done right away, this secondary handler can wake a high-
priority task to do that work, thus keeping the system from being bottlenecked by any
individual set of handlers.

Some native interrupt functionality will be delivered before Copland; see the
article “Creating PCI Device Drivers” in this issue of develop for more information.•

SYNCHRONIZATION AND INTERTASK MESSAGING
As mentioned earlier, applications under Copland will be able to create tasks that are
preemptively scheduled. You’ll be able to assign priorities to your preemptive tasks,
but this in itself won’t prevent the tasks from preempting each other at inopportune
times. What you’ll need in order to ensure correct behavior from your tasks is a
mechanism to synchronize access to shared resources.

Copland provides several synchronization mechanisms, each useful in a different
situation. Any operating systems textbook includes a variety of them, and most can
be implemented in combination with others. The ones implemented in Copland —
atomic operations, simple locks (mutual exclusions, or mutexes), read/write locks,
event flags, and event queues — are meant to efficiently solve problems common in
Macintosh applications and the Mac OS and to provide building blocks to implement
other synchronization mechanisms if necessary.

The kernel also has an intertask message system that provides data transfer as well as
synchronization, although for basic synchronization of shared data it’s probably more
than you’ll need. It can move arbitrary amounts of data across address spaces
synchronously or asynchronously, by value or by reference. In cases in which the
system uses messages to implement functionality, the message will be hidden inside
an API library, so you generally won’t have to deal with the details of how the
message system works.

THE RUNTIME MODEL
Copland’s runtime model is based on the Code Fragment Manager (CFM). Instead
of a monolithic binary file, the operating system consists of a number of individual
libraries that combine to provide the API and system functionality. This mechanism
allows software to be built in a much more modular fashion. In addition, the CFM
provides a much more consistent context and activation model than does the statically
linked, trap-dispatched runtime model used in 680x0-based computers. Rather than
having to be concerned with setting up and restoring the A5 register to provide access
to data when executing in an interrupt task, the CFM provides a standardized
transition to make sure the data appropriate to the executing code is always available.

Although applications under Copland will continue to be cooperatively scheduled
within a single address space, developers can, as already mentioned, use kernel
services to create tasks that take advantage of preemptive multitasking and protected
memory. Tasks running in address spaces outside the Toolbox will have a limited
number of services available to them, similar to those available to background-only
applications in System 7: they’ll be able to allocate memory, communicate with other
processes, and use the kernel services, the file system, and the network, but they won’t
be able to draw on the screen or interact directly with the user. Tasks that are I/O or
computation intensive running in separate address spaces will get the benefits of
preemptive multitasking, and protected memory will separate these tasks from
applications, providing an increased level of stability and reliability.

For example, Copland will include an implementation of the personal file sharing
server that runs in a separate address space. This allows the server — which takes
networking traffic and converts it to file system calls, serving files from the local drive
to remote clients — to share the system with the user and foreground processes as
efficiently as possible. It will use concurrent I/O to interleave its requests with those
of foreground processes, and it will get compute time at any moment when the
processor is otherwise idle, even if the foreground process is waiting for a page fault
to be completed.

Figure 1 illustrates Copland’s architecture, showing the separation between the
Toolbox environment, other tasks, and the operating system. Core portions of the
operating system such as the kernel and the file system run in an address space that’s
protected from the Toolbox environment and other processes; similarly, the Toolbox
environment is protected from other applications running in their own address
spaces. Each of these areas, including the kernel and other services, can have one or
several threads of execution; the kernel preemptively switches between them. Some
services, such as the file system, can have several active threads of control, each
responsible for a single outstanding file system request. All applications running in
the Toolbox environment, including the Finder, run as a single task, inside a single
address space. However, Copland-aware applications can use preemptive threads to
best handle CPU- and I/O-intensive tasks.

With the new runtime model will come a number of new ways to monitor and
modify system operations without patching, which is clunky and difficult to maintain.
Currently, extensions have no formal presence in the system; they live in the cracks
between the system and applications. By providing a better-defined environment for
extensions, Copland will make them easier to write and more stable. For example,
extensions currently must patch the file system — or use the inefficient alternative of
polling — if they need to track file usage; the new File Manager will let software
install notification procedures that can be called whenever a particular event, such as
creating or renaming a file, occurs. Patching will still be available; a new Patch

Finder System 7
application

Copland-aware
application

Cooperative Macintosh Toolbox environment

File system

Microkernel

Preemptive thread of control Memory protection boundary

Networking I/O system

Macintosh
Toolbox

QuickDraw User
experience

 Preemptive,
protected

task

 Preemptive,
protected

task

Figure 1. The Copland architecture
COPLAND: THE MAC OS MOVES INTO THE FUTURE 35

d e v e l o p Issue 22 June 199536
Manager will allow software to patch CFM entry points and will give much more
control over the installation and removal of patches, including where they fall in the
chain of execution.

To run under Copland, extensions you’ve developed will need to be revised. You’ll
make the transition easier for users if your applications that ship with extensions are
able to run without these extensions installed. Also, desk accessories will no longer be
supported in Copland; if you depend on any desk accessories, you should rewrite
them as small applications.

THE FILE MANAGER
When the Macintosh was first introduced, it had a flat file system that was appropriate
only for floppy disks. Since then, a number of advances have been made, including
the introduction of the hierarchical file system (HFS) in 1986. But the System 7 File
Manager has these limitations:

• The File Manager implementation is closely tied to the HFS
volume format, making it difficult to support other volume
formats.

• As HFS volumes grow in size, they become less efficient due to
HFS’s limitation of 216 (65536) allocation blocks, making it
difficult to extend the HFS volume format.

• The File Manager can process only one operation at a time,
restricting performance when several tasks are contending for file
I/O.

• The File Manager is implemented entirely in 680x0 assembly
code, limiting performance on the Power Macintosh platform.

Copland will introduce a new File Manager that addresses these limitations, directly
or indirectly. For instance, the new File Manager has been divorced from HFS
implementation details and thus imposes no limitations on volume formats; arbitrary
volume formats can be developed and plugged in. This will allow the Macintosh to
properly support any file system, including ones that feature larger volumes, more
files, or larger files than the HFS disk format. It will even be possible to create
components that provide access to distributed network file systems or other data
stores that don’t easily map onto the HFS block storage model. In fact, HFS itself
will be implemented as one of these plug-in modules.

The new File Manager will also support concurrent data transfer, so that several file
system requests can be in progress at any one time. This will dramatically increase
throughput in a number of cases. For example, copying files from a fast file server to
a hard drive now involves an entirely serialized read over the network followed by a
write to the hard drive; in Copland, the read and write operations can be overlapped,
so the copy can be completed in as little as half the time. Throughput will even be
increased in cases where two accesses share a communications channel, such as transfers
involving several devices on the local SCSI bus or several file servers, becausemost
communications channels won’t be filled by a single device. A significant portion of
the time it takes to read or write data to a SCSI disk is spent waiting for the disk, not
actually transferring data; in the new model, that time can be used to transfer data to
or from a different device.

Another real enhancement to the file system is the introduction of a new API,
designed to be easy to learn and use. A new API was necessary because the new file
system supports files and volumes larger than 231 bytes, meaning that more than 32

bits are needed to store various values. The System 7 File Manager API has already
been through several stages of evolution, from the original file system calls through
the HFS calls to the calls taking FSSpecs in System 7; the new API is in lieu of
reworking it one more time. In addition, the HFS API is composed of a number of
calls that take huge parameter blocks where it isn’t obvious which fields need to be set
to what at any moment; wherever possible in the new API, parameter blocks have few
fields and can easily be reused.

THE I/O ARCHITECTURE
With Copland comes a new I/O architecture designed with the following objectives
in mind:

• improved performance

• ability to support concurrent data transfer

• sufficient abstraction to enable Apple to license the Mac OS to
manufacturers who build a variety of hardware configurations

• increased ease of configuration

• independence from the 68000 microprocessor and its runtime
model

The I/O architecture is organized around a number of services, each of which can be
associated with a set of drivers in a unit known as a family. For example, the SCSI
Manager can be associated with a number of SCSI interface modules (SIMs), each of
which describes a single SCSI bus. Similarly, each of the drivers in the block storage
family can provide block storage functionality to a file system agent. Drivers in the
volume format family (through the File Manager) will manage a number of volume
format agents, including the HFS agent.

Thus, the I/O architecture is structured in a hierarchy of layered components, which
pass control and data among themselves. For example, an application might make a
file system call, which would be passed to the HFS file system agent, which would
then make a request of the appropriate block device driver. That driver could then
use the SCSI Manager to transfer data to a SIM, over a SCSI bus, to a specific SCSI
device. This modularity means that other data flows are easily constructed. For
example, the file system request might be passed to an AFP file system agent, which
would result in data being transferred over the network using Open Transport. (AFP
stands for AppleTalk Filing Protocol — the protocol used to talk to AppleShare file
servers.) These relationships are diagrammed in Figure 2.
Open Transport

Protocol stack

Network
device driver

SCSI Manager

SCSI SIM

File Manager

HFS file
system

AFP file
system

File Manager API

Block storage family

Disk driver

Figure 2. An example of relationships and control flow in the new driver model
COPLAND: THE MAC OS MOVES INTO THE FUTURE 37

d e v e l o p Issue 22 June 199538
This layered architecture permits a flexible dependency chain, where no component
has too much knowledge about the implementation details of its dependencies or its
clients. A block storage driver, for instance, doesn’t need to know the details of the
SIM’s SCSI bus implementation or which volume format it’s being used for; it just
passes requests up and down the chain. This modular architecture should make it
easier for Apple and developers to introduce new ways of solving problems.

The driver model for PCI cards, described in this issue of develop in the article
“Creating PCI Device Drivers,” was designed with this new I/O architecture in mind.
Copland will support drivers developed for PCI cards in accordance with the
guidelines presented in that article, so you would do well to familiarize yourself with
them. Old drivers will need to be revised because they read and write to hardware
locations directly; protection in the new kernel requires that this ability be reserved
to specially privileged software. But this doesn’t mean that everything packaged into
Device Manager drivers will break. The Device Manager will continue to support
code packaged as a driver that doesn’t actually touch hardware and that isn’t
otherwise incompatible with Copland, such as drivers that some programs use for
interapplication communication.

Note also that Open Transport, which is now available for development on System
7.5, will be the native networking protocol in Copland. Applications that use it will
make best use of the native networking stack and will be prepared to run in a separate
address space.

WHERE DOES THIS LEAVE YOU?
The transition to Copland will be the most significant operating system transition in
the history of the Macintosh. You can make this transition easier for yourself and
users if you do these things:

• Begin factoring your applications now.

• Make sure your applications can operate well in a virtual memory
environment.

• Avoid reading or modifying low-memory globals and system data
structures if at all possible in your applications.

• Avoid patching.

• Ensure that any of your applications that ship with extensions can
run without these extensions installed.

• Rewrite as small applications any desk accessories you depend on.

• Familiarize yourself with the new driver model for PCI cards.

• Make use of Open Transport for networking.

With its vastly expanded functionality, Copland will offer an unprecedented number
of new opportunities for developers. In providing a stronger foundation for third-
party products and future Mac OS releases, Copland will lay the groundwork for
years of advances on the Macintosh platform.
Thanks to our technical reviewers Jeff Cobb,
Dave Evans, John Iarocci, Wayne Meretsky, Mike
Neil, Steve Szymanski, and Russell Williams.

Special thanks to Russell Williams for information
on synchronization services for preemptively
scheduled tasks.•

Where would we be without our venerable friend
MacsBug? Those long debugging sessions, with soda
cans piling up, would be so lonely. Like a trusted
buddy, only a key press away, MacsBug has helped us
solve the toughest problems and has taken us into the
very core of the Macintosh.

Yet now the core has changed. The Macintosh has
transmuted into a RISC powerhouse, and its new
runtime environment is a foreign place to the old
MacsBug. But instead of leaving our friend in the past,
Apple is developing a next-generation MacsBug. The
next MacsBug, version 6.5, supports PowerPC
debugging with the same commands that you already
know. An early release of the new MacsBug is provided
on this issue’s CD.

A QUICK LOOK
When we’re confronted with a MacsBug display that
heralds the beginning of a new debugging challenge,
our first questions are “Where are we?” and “How did
we get here?” MacsBug has always provided tools and
information to help us quickly answer these questions.
The stack crawl commands, for example, show not only
what code you’re executing but also how you got there.
On a Power Macintosh, however, the old MacsBug
often failed at tasks like the stack crawl. The PowerPC
architecture changes fundamental structures — such as
stack frame formats — and introduces new hurdles like
mixed-mode switches and native code. The key goal of
the new MacsBug is to restore the functionality you
need in order to debug on a Power Macintosh.

BALANCE OF
POWER

MacsBug for
PowerPC

DAVE EVANS AND
JIM MURPHY
DAVE EVANS denies rumors that he modeled for the Mac OS
logo. Although he works in the Mac OS team at Apple and does
perpetually smile — and his favorite color is blue — Dave could
never sit still long enough for the pose. You’re more likely to spot
him racing off in his hunter green Jeep Sahara. He’ll probably be
late, after fitting too many activities into his day, and he’ll certainly
be en route to some new adventure.•
The new MacsBug adds many features to satisfy this
goal. It lets you disassemble, trace, and step through
PowerPC code. You can set breakpoints in PowerPC
code, and easily find out what code fragment you’ve
interrupted and what native symbol is closest. And you
can display a stack crawl that includes both PowerPC
and 680x0 stack frames. Let’s take a closer look at these
and other new features.

DISASSEMBLING POWERPC CODE
The new MacsBug will disassemble both PowerPC and
680x0 code. Some commands are now sensitive to
which type of code is executing. The td (total display)
command will show the PowerPC register set during
execution of native code, and the 680x0 emulated
registers during execution of 680x0 code. When used
without an address, the il and ip commands will
disassemble the code currently being executed, whether
PowerPC or 680x0; however, when an address is
specified with il and ip, MacsBug will disassemble
680x0 code at the specified address.

We’ve introduced a few new commands to force
disassembly of PowerPC native code. They include the
following:

ilp Instruction list of PowerPC code
ipp Instruction half-page list of PowerPC code
idp Instruction display one word as PowerPC code
dhp Disassemble hex as PowerPC code
brp Set breakpoint in PowerPC code

To demonstrate, we’ll set a native breakpoint in the
Memory Manager with brp __SetHandleSize. After
we type g and wait for a second, MacsBug interrupts
with this display:

PowerPC breakpoint at 000A06C4 __SetHandleSize

We type the il command and see the following (notice
the familiar breakpoint bullet and the asterisk showing
the current program counter location):

Disassembling PowerPC code from 000A06C4
__SetHandleSize

+00000 000A06C4 •*mflr r0
+00004 000A06C8 stmw r26,-0x0018(SP)
+00008 000A06CC stw r0,0x0008(SP)
BALANCE OF POWER: MACSBUG FOR POWERPC 39

JIM MURPHY (AppleLink MURPH, Internet murph@apple.com)
dislikes one thing more than the Pittsburgh Penguins hockey club
without superstar center Mario Lemieux, and that’s a Macintosh
without MacsBug. When he’s not dodging a tedious meeting at
Apple, blearily staring at a logic analyzer, or hacking the Mac OS
boot process, he can be found plying the backroads of the Santa
Cruz mountains in his trusty Miata.•

40
+0000C 000A06D0 stwu SP,-0x0170(SP)
+00010 000A06D4 lwz r30,0x0000(RTOC)
+00014 000A06D8 addic r7,SP,72
+00018 000A06DC lwz r26,0x0000(r30)
+0001C 000A06E0 ori r31,r4,0x0000
+00020 000A06E4 stw r7,0x0000(r30)
+00024 000A06E8 ori r29,r5,0x0000
+00028 000A06EC lwz r3,0x0004(RTOC)
+0002C 000A06F0 bl __HSetStateQ+013C
+00030 000A06F4 lwz RTOC,0x0014(SP)
+00034 000A06F8 ori r28,r3,0x0000
+00038 000A06FC addic r3,SP,72

From here we can display any PowerPC register, step
or trace through the code, or ask for our location using
the improved wh command. The wh command now
lists which code fragment contains the address, using
the code fragment export symbols to display the nearest
earlier symbol. In this example, we interrupted at
__SetHandleSize in the MemoryMgr code fragment,
so wh produces this:

Address 000A06C4 is in the System heap at
00002800 at __SetHandleSize

This address is within the code fragment
named “MemoryMgr”.

It is 000021D4 bytes into this heap block:
Start Length Tag Mstr Ptr Lock

• 0009E4F0 00009050+04 R 00002BF0 L

CRAWLING AROUND TOGETHER
MacsBug version 6.5 distinguishes between PowerPC
and 680x0 stack frames but will display them as a
unified stack crawl. This makes it very easy to
determine where you are and where you’ve been.
Since the PowerPC version of the Mac OS still
contains a substantial amount of 680x0 code, you’ll
often see references to 680x0 callers in the stack crawl.
Otherwise, expect to see the nearest earlier code
fragment symbol to each caller. A sample stack crawl,
displayed with the sc command, would look like this:

Frame Caller ISA
01D87FB2 00013CA0 PPC 'MyApp'+1A0
01D87F4A 00043050 PPC 'MyApp'+2F450
01D87EF0 4085FF06 68K ComponentDispatch+26
01D87EC8 4085FFE6 68K ComponentDispatch+106
01D87E50 00063144 PPC 'NativeComponent'+40

Here you can see that we’re executing a native
application with the exported main symbol MyApp.
The application calls a subroutine at MyApp+1A0,
leaving the first stack frame that we see here. Then at
MyApp+2F450 the subroutine appears to call the
680x0-based Component Manager. We assume this
because the next two stack frames are marked “68K”
d e v e l o p Issue 22 June 1995
and appear within the ComponentDispatch code. The
Component Manager then calls native code with the
symbol NativeComponent. The last frame is generated
when NativeComponent calls a subroutine.

EVEN MORE NEW FEATURES
Besides support for native Power Macintosh
debugging, the new MacsBug adds other exciting new
features, including:

• multiple debugger preferences files

• better ROM symbols using ROM map files

• an improved dcmd format

• significant performance improvements on 68040-
based Macintosh computers

We once used ResEdit to construct a single MacsBug
preferences file with all our favorite dcmds and
templates. Those days are over: the new MacsBug
version will load up to 32 preferences files that you
provide. And if you haven’t discarded the ROM list files
provided with MPW, you can build them and use the
resulting ROM map files with the new MacsBug. Put
the map files in the new MacsBug preferences folder to
use the map’s symbol information. When disassembling
or displaying addresses in the ROM, MacsBug will then
display better symbols.

The improved dcmd format adds new action calls and
an expanded parameter block structure, which provides
full access to the PowerPC register set and machine
state. Although this doesn’t give you special support for
developing PowerPC-native dcmds, you now have
access to valuable internal state information. With this
new information, your dcmds can do things that were
previously reserved for Apple dcmds, such as tdp (total
dump PowerPC), which was introduced in the article
“Debugging on PowerPC” in develop Issue 17. This
dcmd, among others from Apple, has intimate
knowledge of how the PowerPC system software
works. With the new dcmd format, this intimate
knowledge is no longer necessary since MacsBug
provides access to everything you’ll need.

The new dcmd format has been designed with
maximum flexibility in mind. Your dcmds can check
at run time for the availability of MacsBug features.
When new callbacks are defined, you can check
whether MacsBug supports the calls, rather than being
tied to a specific MacsBug version.

On 68040-based Macintosh computers, MacsBug will
perform most tasks much faster, and with an important
side effect. The new MacsBug doesn’t flush the 68040
processor cache nearly as often, greatly improving

performance for most commands. The key side effect is
for bugs related to cache flushing: in the past, MacsBug
would flush the cache frequently enough to make these
bugs hard to reproduce when you’re stepping or using
breakpoints; the new MacsBug, with its selective
flushing, should allow you to more readily reproduce
this type of problem.

IT’S LOG, LOG, LOG!
Here at Apple, bugs are usually found by test engineers
using automated scripts and manual testing. When they
find a bug in our code, we’re rarely nearby to analyze it
immediately. Therefore, they collect key information
so that we can later reproduce the problem. One useful
piece of information they collect is called a standard log.

The standard log is a sequence of MacsBug commands
that are run after a crash or interrupt — for example, a
Thanks to Brian Bechtel, Dave Lyons, and Greg Robbins for
reviewing this column.•
register display and stack crawl. These commands are
logged in a text file, and the result is copied into a
report that describes the problem. Having this
information in the problem report saves significant
time and sometimes provides enough detail to resolve
the problem immediately. MacsBug version 6.5 makes
this log useful on the Power Macintosh. Its improved
stack crawl, native disassembly, and PowerPC register
display provide key information for later analysis. We
recommend that you incorporate a standard log into
your testing process; you’ll find ours included as the
StdLog macro.

DON’T HESITATE
You can read the release notes provided on the CD for
detailed descriptions of these and other improvements.
We hope you’ll install the new version of MacsBug
without delay!
BALANCE OF POWER: MACSBUG FOR POWERPC 41

Speed Your Way to
OpenDoc Development

Apple Developer University’s
“Programming with OpenDoc” shortens the

learning curve and launches you into working
with this new development paradigm.

Courses are offered in Cupertino, California, and
Portsmouth, New Hampshire.

For the latest schedule and complete course
description, call (408)974-4897.

42
The new PCI-based Power Macintosh computers bring with them a
subset of the functionality to be offered by the next generation of I/O
architecture. New support for device drivers makes it possible to develop
forward-compatible drivers for PCI devices, while at the same time
making them much easier to write and eliminating their dependence on
the Macintosh Toolbox. Key features of the new driver model are
described in this article and illustrated by the accompanying sample
PCI device driver.

Creating PCI Device Drivers
d e v e l o p Issue 22 June 1995

MARTIN MINOW
Writing Macintosh device drivers has always been something of a black art. Details of
how to do it are hidden in obscure places in the documentation and often discovered
only by developers willing to disassemble Macintosh ROMs and system files. But this
art that’s flourished for more than a decade is about to get a lot less arcane.

The PCI-based Power Macintosh computers are the first of a new generation of
computers with support for a driver model that’s independent of the 68000 processor
family and the Macintosh Toolbox. Existing 680x0 drivers will continue to work on
the PCI machines (although this may not be true for future systems); a third-party
NuBus™ adapter enables the use of existing hardware devices and drivers without
change. But drivers for PCI hardware devices must be written in accordance with the
driver model supported in the new system software release, which makes them
simpler to develop and maintain.

This article will give you an overview of the new device driver model, without
attempting to cover everything (which would fill a book and already has). After
discussing key features, it suggests how you might go about converting an existing
driver to drive a PCI device. The remainder of the article looks at some of the
individual parts of a forward-compatible PCI device driver. The sample code
excerpted here and included in its entirety on this issue’s CD offers a complete device
driver that illustrates most of the features of the new driver model. Of course, you
won’t be able to use the driver without the hardware, and you’ll need updated headers
and libraries to recompile it.

How to write device drivers for PCI-based Macintosh computers is explained in
detail in Designing PCI Cards and Drivers for Power Macintosh Computers.•
MARTIN MINOW recently sneaked away to
England from his job at Apple for a (too) brief
vacation. The high point was at the Kew Bridge
Steam Museum outside of London, where he
stood inside the oldest, or perhaps the largest,
working steam engine in the world. The four-story-

high, 50-foot-long engine was used to pump
water from the Thames for more than 100 years
and is now the centerpiece of a large collection
of working steam engines. And speaking of
working, Martin’s been doing too much of it and
already needs another vacation.•

KEY FEATURES OF THE NEW DRIVER MODEL
The following list of features will give you some idea of the rationale behind the
move away from a device driver architecture that’s served the Macintosh operating
system for more than a decade. Some of these features address problems of the old
architecture, while some anticipate new requirements.

A simplified set of driver services independent of the Macintosh Toolbox
The existing Device Manager design is closely tied to specific features of the
Macintosh Toolbox. The new system software release supports only a small set of
driver services, which are independent of the Toolbox and are limited to just those
things that drivers need to do; they don’t let drivers display dialogs, open files, read
resources, or draw on the screen. This greatly simplifies both the driver’s task (the
driver interacts only with the actual hardware) and the operating system’s task (the
OS needn’t have a file system or screen available when starting up drivers).

Independence from the 68000 processor family
The old device driver architecture is highly dependent on specific features of the
680x0 processor architecture. For example, the way code segments are organized and
the conventions for passing parameters depend on the 680x0 architecture and make
the old driver code different from other code modules. This means that drivers can’t
be written in native PowerPC code — or must make use of computationally
expensive mixed-mode switches.

Also, in the 680x0 architecture, critical sections and atomic operations use assembly-
language sequences to disable interrupts. The PowerPC processor has a completely
different interrupt structure, effectively making these techniques impossible to
transport directly to native PowerPC code.

In the new system software, support for the driver model is independent of any
particular processor, hiding processor-specific requirements in operating system
libraries. Drivers can be compiled into native PowerPC code and can be written in a
high-level language such as C. Because they’re standard PowerPC code fragments,
they aren’t bound by the segment size limitations of the 680x0 architecture; they can
be created with standard compilers and debugged with the Macintosh two-machine
debugger.

A more flexible configuration facility
Driver configuration in the old architecture requires the ability to read resources
from a parameter file, or from a 6-byte nonvolatile RAM area indexed by NuBus slot.
These ad hoc configuration mechanisms based on the Resource Manager, File
Manager, and Slot Manager are replaced in the new system software by a more
flexible configuration facility that’s used throughout the system.

Drivers use a systemwide name registry for configuration. Each device has an entry in
the Name Registry containing properties pertinent to that device. Device drivers can
also store and retrieve private properties. Device configuration programs (control
panels and utility applications) should use the registry to set and retrieve device
parameters.

System-independent device configuration
Devices can use Open Firmware to provide operating system configuration as well as
system-independent bootstrap device drivers. Open Firmware is an architecture-
independent IEEE standard for hardware devices based on the FORTH language.
When the system is started up, it executes functions stored in each device’s expansion
ROM that provide parameters to the system. A device can also provide FORTH code
to allow the system to execute I/O operations on the device. This means a card can be
CREATING PCI DEVICE DRIVERS 43

d e v e l o p Issue 22 June 199544
used to bootstrap an operating system without having operating system–specific code
in its expansion ROM.

Open Firmware and the bootstrap process are described in detail in IEEE
document 1275 — 1994 Standard for Boot (Initialization, Configuration) Firmware.•

Grouping by family
Drivers are grouped into general families, and family-specific libraries simplify their
common tasks. Currently, four families are defined: video, communications, SCSI
(through SCSI Manager 4.3), and NDRV (a catch-all for other devices, such as data
acquisition hardware). The sample code is for a device driver in the NDRV family.

Direct support for important capabilities
The existing Device Manager doesn’t directly support certain capabilities, such as
concurrent I/O (required by network devices) and driver replacement. Driver writers
who need these capabilities have had to implement them independently, which is
difficult, error-prone, and often dependent on a particular operating system release.
The new system software supports these capabilities in a consistent manner.

A choice of storage
Drivers can be stored in the hardware expansion ROM or in a file of type 'ndrv' in
the Extensions folder. A later driver version stored in this folder can replace an earlier
version stored in the hardware expansion ROM.

Forward compatibility
Device drivers written for the new system software will run without modification
under Copland, the new generation of the Mac OS forthcoming from Apple, if they
use only the restricted system programming interface and follow the addressing
guidelines in Designing PCI Cards and Drivers for Power Macintosh Computers.

For more on Copland, see “Copland: The Mac OS Moves Into the Future” in this
issue of develop.•

CONVERTING AN EXISTING DRIVER
To illustrate how you’d go about converting an existing device driver to drive a PCI
device, let’s suppose you’ve developed a document scanner with an optical character
recognition (OCR) facility. The document scanner is currently controlled by a
NuBus board that you designed, and you’re building a PCI board to support the
scanner on future Macintosh machines.

A useful way to approach the conversion effort is to conceptualize the device driver as
consisting of three generally independent layers:

• A high-level component that connects the device driver to the
operating system and processes requests.

• A mid-level component that has the device driver’s task-specific
intelligence. For example, this might contain OCR algorithms.
This part is unique to each driver and generally hardware
independent.

• The low-level bus interface “hardware abstraction layer” that
directly manipulates the external device and thus is always device
dependent.

At the same time, you might also organize the code in each of these three layers into
the following functional groups:

• data transfer operations (Read, Write)

• interrupt service routines

• initialization and termination

• configuration and control (power management, parameterization)

Let’s look at what you would do to each of these layers and groups.

First, you would throw out the high-level component in your driver that interacts
with the Device Manager and replace it with the considerably simpler request
processing of the new system software release. You would need to add support for the
Initialize, Finalize, Superseded, and Replace commands (discussed later), as they have
no direct counterpart in the existing Device Manager. You would also need to revise
the way you complete an I/O request: instead of storing values in 68000 registers and
jumping to jIODone, your driver would call IOCommandIsComplete.

The mid-level component in your driver would include scanner management and, in
particular, OCR algorithms. These algorithms comprise the intelligence that sets
your product apart from its competition. To convert your driver to a PCI device
driver, you would recompile (or rewrite) the algorithms for the PowerPC processor.
If the algorithms were in 68000 assembly language, you could get started by making
mixed-mode calls between the new driver and the existing functions; however, this
won’t work with Copland, and I would recommend “going native” as soon as
possible.

You would replace the low-level bus interface that manipulates registers on a NuBus
card with code that manipulates PCI registers. Because this is specific to a particular
hardware device, it won’t be discussed in this article, but the sample driver on the CD
shows you how to access PCI device registers.

You would also create Open Firmware boot code to allow your card to be recognized
during system initialization. Because the new driver model doesn’t use Macintosh
Toolbox services, you would have to redesign your driver to (1) use the Name
Registry for configuration instead of resources and parameter files, and (2) use the
new timer services, replacing any dependency on the accRun PBControl call (the
sample code shows how to call timer services, although it’s not discussed here).

How your new driver code would look will become clearer in the next sections, where
we examine key parts of the sample device driver. To get the whole picture, see the
sample driver in its entirety on the CD.

The remainder of this article introduces a number of new operating system functions,
as well as a few new libraries, managers, and such. “A Glossary of New Operating
System Terms” will help you navigate through the new territory.

A LOOK AT THE SAMPLE DRIVER: CONFIGURATION AND
CONTROL
Now we’ll look at key pieces of the sample driver, starting with the code for
configuration and control. As mentioned earlier, the sample driver is a member of
the NDRV family. To the operating system, an NDRV driver is a PowerPC code
fragment containing two exported symbols: TheDriverDescription and DoDriverIO.
(Although all drivers have a TheDriverDescription structure, the particular driver
family they belong to determines which other exported symbols are required.)
CREATING PCI DEVICE DRIVERS 45

d 46
A GLOSSARY OF NEW OPERATING SYSTEM TERMS
CheckpointIO. A function that releases memory that
had been configured by PrepareMemoryForIO.

DoDriverIO. A function provided by the driver that
carries out all device driver tasks. When you build a
driver, it must export this function to the Device Manager.

DriverDescription. An information block named
TheDriverDescription that the Driver Loader Library uses to
connect a device driver with its associated hardware.
When you build a driver, it must export this block to the
Driver Loader Library.

Driver Loader Library. A library of functions used by
the Device Manager to locate and initialize all drivers. It
uses the DriverDescription structure to match a driver with
the hardware actually present on a machine.

Driver Services Library. A family-independent library
of driver services limited to just those things that drivers
need to do.

Expansion Bus Manager. A library that provides
access to PCI configuration registers.

GetInterruptFunctions. A function that retrieves the
current interrupt service functions established for this
device.

GetLogicalPageSize. A function that retrieves the size
of the physical page. Normally called once when the
driver is initialized.

InstallInterruptFunctions. A function that replaces the
current interrupt functions with functions specific to this
device driver.

IOCommandIsComplete. A function that completes
the current request by returning the final status to the
caller, calling an I/O completion routine if provided, and
starting the next transfer if necessary.
e v e l o p Issue 22 June 1995
MemAllocatePhysicallyContiguous. A function that
allocates a contiguous block of memory whose address can
be passed, as a single unit, to a hardware device. This is
essential for frame buffers and similar memory areas that
must be accessed by both the CPU and an external device.

Name Registry. A database that organizes all system
configuration information. Each device’s entry in the
registry contains a set of properties that can be accessed
with RegistryPropertyGet and RegistryPropertyGetSize.

PoolAllocateResident. A function that allocates and
optionally clears memory in the system’s resident pool.
This replaces NewPtrSys, which isn’t available to forward-
compatible PCI device drivers.

PoolDeallocate. A function that frees memory allocated
by PoolAllocateResident.

PrepareMemoryForIO. A function that converts a
logical address range to a set of physical addresses and
configures as much as possible of the corresponding
physical memory space for subsequent direct memory
access.

QueueSecondaryInterrupt. A function that runs a
secondary interrupt service routine at a noninterrupt level.

RegistryPropertyGet, RegistryPropertyGetSize.
Functions that retrieve, respectively, the contents and the
size of a property, given its name and a value that
identifies the current Name Registry entity.

Software task. An independently scheduled software
module that can call driver services, including
PrepareMemoryForIO. Software tasks can be used to
replace time-based processing that previously used the
PBControl accRun service.

SynchronizeIO. A function that executes the processor
I/O synchronize (eieio) instruction.
TheDriverDescription is a static structure, shown in Listing 1, that provides
information to the operating system about the device that this driver controls. The
driver will be loaded only if the device is present. TheDriverDescription also
indicates whether the driver is controlled by a family interface (such as Open
Transport for the communications family) and specifies the driver name to be
used by operating system functions to refer to it. The Driver Loader extracts
TheDriverDescription from the code fragment before the driver executes; thus it
must be statically initialized.

DoDriverIO is a single function called with five parameters to perform all driver
services (see Table 1). The overall organization of the driver thus is very simple, as
shown in Listing 2.

Listing 1. TheDriverDescription

DriverDescription TheDriverDescription = {
/* This section lets the Driver Loader identify the structure

version. */
kTheDescriptionSignature,
kInitialDriverDescriptor,
/* This section identifies the PCI hardware. It also ensures that the

correct revision is loaded. */
"\pMyPCIDevice", /* Hardware name */
kMyPCIRevisionID, kMyVersionMinor,
kMyVersionStage, kMyVersionRevision,
/* These flags control when the driver is loaded and opened, and

control Device Manager operation. They also name the driver to the
operating system. */

((1 * kDriverIsLoadedUponDiscovery) /* Load at system startup */
| (1 * kDriverIsOpenedUponLoad) /* Open when loaded */
| (0 * kDriverIsUnderExpertControl) /* No special family expert */
| (0 * kDriverIsConcurrent) /* Driver isn't concurrent */
| (0 * kDriverQueuesIOPB) /* No internal IOPB queue */
),
"\pMyDriverName", /* PBOpen name */
0, 0, 0, 0, 0, 0, 0, 0, /* For future use */
/* This is a vector of operating system information, preceded by

an element count (here, only one service is provided). */
1, /* Number of OS services */
kServiceTypeNdrvDriver, /* This is an NDRV driver */
kNdrvTypeIsGeneric, /* Not a special type */
kVersionMajor, kVersionMinor, /* NumVersion information */
kVersionStage, kVersionRevision

};

Table 1. DoDriverIO parameters

Parameter Type Usage
addressSpaceID Used for operating system memory management. Currently, only

one address space is supported; future systems will support
multiple address spaces.

ioCommandID Uniquely identifies this I/O request. The driver passes it back to the
operating system when the request completes.

ioCommandContents Varies depending on the ioCommandCode value. For example, for
Read, Write, Control, Status, and KillIO commands, it’s a pointer
to a ParamBlockRec.

ioCommandCode Defines the type of I/O request.

ioCommandKind Specifies whether the command is synchronous or asynchronous,
and whether it’s immediate.
CREATING PCI DEVICE DRIVERS 47

48
Listing 2. DoDriverIO

OSErr DoDriverIO(AddressSpaceID addressSpaceID,
IOCommandID ioCommandID,
IOCommandContents ioCommandContents,
IOCommandCode ioCommandCode,
IOCommandKind ioCommandKind)

{
OSErr status;

switch (ioCommandCode) {
case kInitializeCommand:

status = DriverInitialize(ioCommandContents.initialInfo);
break;

case kFinalizeCommand:
status = DriverFinalize(ioCommandContents.finalInfo);
break;

case kSupersededCommand:
status = DriverSuperseded(ioCommandContents.supersededInfo);
break;

case kReplaceCommand:
status = DriverReplace(ioCommandContents.replaceInfo);
break;

case kOpenCommand:
status = DriverOpen(ioCommandContents.pb);
break;

case kCloseCommand:
status = DriverClose(ioCommandContents.pb);
break;

case kReadCommand:
status = DriverRead(addressSpaceID, ioCommandID, ioCommandKind, ioCommandContents.pb);
break;

case kWriteCommand:
status = DriverWrite(addressSpaceID, ioCommandID, ioCommandKind, ioCommandContents.pb);
break;

case kControlCommand:
status = DriverControl(addressSpaceID, ioCommandID, ioCommandKind,

(CntrlParam *) ioCommandContents.pb);
break;

case kStatusCommand:
status = DriverStatus(addressSpaceID, ioCommandID, ioCommandKind,

(CntrlParam *) ioCommandContents.pb);
break;

case kKillIOCommand:
status = DriverKillIO();
break;

}

/* Force a valid result for immediate commands. Other commands return noErr if the operation
completes asynchronously. */

if ((ioCommandKind & kImmediateIOCommandKind) == 0) {
if (status == kIOBusyStatus) /* Our "in progress" value */

status = noErr; /* I/O will complete later */

(continued on next page)
d e v e l o p Issue 22 June 1995

else
/* To prevent a subtle race condition, the driver must not store final status in the

caller's parameter block. This prevents a problem where the caller can reuse the
parameter block before the caller's completion routine is called. */

status = IOCommandIsComplete(ioCommandID, status);
}
return (status);

}

Listing 2. DoDriverIO (continued)
The driver must ensure that immediate operations (those that must complete without
delay) return directly to the caller and that completed synchronous and asynchronous
requests call IOCommandIsComplete. (The sample driver handler functions return
the final status if they handled the request, and a private value, kIOBusyStatus, if an
asynchronous interrupt will eventually complete the operation.)

In the sample driver, individual subroutines carry out the functions. I’ll describe the
administration routines first, then the process of carrying out an I/O operation.

INITIALIZATION AND TERMINATION
Currently, drivers perform all of their initialization when called with PBOpen and
generally ignore PBClose. The new system software provides six commands for
initialization and termination, as shown in Table 2. Since drivers are code fragments,
they can also use the Code Fragment Manager initialization and termination
routines, although this probably isn’t necessary.

For details on the Code Fragment Manager, see Inside Macintosh: PowerPC
System Software.•

When you look at the sample driver, you’ll see that most of the work is done by
Replace and Superseded, with Open and Close having no function there.

Here are the tasks that a driver needs to perform when initialized, whether by
Initialize or Replace:

Table 2. Driver commands for initializing and terminating

ioCommandCode Value Usage
kInitializeCommand Carries out normal initialization. Called once when the

driver is first loaded.

kReplaceCommand Indicates that this driver is replacing a currently loaded
driver for the device (for example, a ROM driver is being
replaced by a driver loaded from the system disk).

kOpenCommand Begins servicing of device requests.

kCloseCommand Stops servicing of device requests.

kSupersededCommand Indicates that this driver will be replaced by another.

kFinalizeCommand Shuts down the device and releases all resources. Called
once just before the driver is to be unloaded.
CREATING PCI DEVICE DRIVERS 49

d e v e l o p Issue 22 June 199550
1. Initialize its global variables and fetch systemwide parameters,
such as the memory management page size.

2. Fetch the device’s physical address range (either memory address
or PCI I/O addresses) from the Name Registry.

3. Enable memory or I/O access and use the DeviceProbe function
to verify that the device is properly installed.

4. Fetch the interrupt property information from the Name Registry
and initialize the interrupt service routine.

5. If all initializations complete correctly, use device-specific
operations to reset the hardware.

Listing 3 shows how to extract the physical addresses of your device and use the
“AAPL,address” property to get the corresponding logical addresses. Unlike address
space assignments on NuBus machines, where the slot number directly corresponds
to the device’s 32-bit address range, PCI address space assignments are dynamic.
Devices define a set of registers, and the system initialization process (Open
Firmware) uses this information, together with information about buses and PCI
bridges, to bind the device to its 32-bit physical address range. (Actually, although
addresses use 32 bits, the low 23 bits select the physical address, while the high 9 bits
select between main memory and PCI bus address spaces. The device driver uses the
logical address to reference device registers.) Open Firmware code updates the Name
Registry to show the device’s binding. Note that the driver must search for the
required address register and can’t rely on any particular address being in a specific
location within the property.

Listing 3. Fetching the device’s logical address range

typedef struct AssignedAddress {
UInt32 cellHi; /* Address type */
UInt32 cellMid;
UInt32 cellLow;
UInt32 sizeHi;
UInt32 sizeLow;

} AssignedAddress, *AssignedAddressPtr;

#define kAssignedAddressProperty "assigned-addresses"
#define kAAPLAddressProperty "AAPL,address"
#define kIOMemSelectorMask 0x03000000
#define kIOSpaceSelector 0x01000000
#define kMemSpaceSelector 0x02000000
#define kDeviceRegisterMask 0x000000FF

OSErr GetDeviceAddress(UInt32 selector,
UInt32 deviceRegister,
LogicalAddress *logicalAddress)

{
OSErr status;
RegPropertyValueSize size;
AssignedAddressPtr addressPtr;
LogicalAddress *logicalAddressVector;

(continued on next page)

When the driver reads the “assigned-addresses” property, it looks at the address type
(I/O or memory) and may also need to examine other information to make sure the
address range is appropriate. For example, a device may have two memory address
ranges — one for the device’s registers and a separate range for its on-card firmware.
The GetDeviceAddress function in Listing 3 uses the register number to determine
which of several address ranges to use, but this may not work for all hardware. This
function also resolves the logical address range that corresponds to the device’s
physical address range using an Apple-specific property that records device logical
addresses. This is important for devices that require I/O cycles: using the logical
address lets the driver treat these devices as if they used normal memory addresses,
eliminating the overhead of the Expansion Bus Manager routines.

int nAddresses, i;
UInt32 cellHi;

addressPtr = NULL;
logicalAddressVector = NULL;
status = GetThisProperty(kAssignedAddressProperty,

(RegPropertyValue *) &addressPtr, &size); /* See Listing 6. */
if (status == noErr) {

/* GetThisProperty returned a vector of assigned-address records.
Search the vector for the desired address type. */

status = paramErr; /* Presume "no such address." */
nAddresses = size / sizeof (AssignedAddress);
for (i = 0; i < nAddresses; i++) {

cellHi = addressPtr[i].cellHi;
if ((cellHi & kIOMemSelectorMask) == selector
&& (cellHi & kDeviceRegisterMask) == deviceRegister) {
if (addressPtr[i].sizeLow == 0)

/* Open Firmware was unable to assign an address to this
memory area. We must return an error to prevent the
driver from starting up (status is still paramErr). */

break;
/* This is the desired address space. Find the corresponding

LogicalAddress by resolving the "AAPL,address" property.
We want the i'th LogicalAddress in the vector. */

status = GetThisProperty(kAAPLAddressProperty,
(LogicalAddress *) &logicalAddressVector, &size);

if (status == noErr) {
nAddresses = size / sizeof (LogicalAddress);
if (i < nAddresses)

*logicalAddress = logicalAddressVector[i];
else status = paramErr;

}
break; /* Exit the for loop. */

} /* Check for the requested register. */
} /* Loop over all address spaces. */
DisposeThisProperty((RegPropertyValue *) &addressPtr);
DisposeThisProperty((RegPropertyValue *) &logicalAddressVector);

} /* If we found our "assigned-addresses" property */
return (status);

}

Listing 3. Fetching the device’s logical address range (continued)
CREATING PCI DEVICE DRIVERS 51

d e v e l o p Issue 22 June 199552
Listing 4 shows how a driver might use the Expansion Bus Manager to enable a
device to become bus-master and respond to either memory or I/O accesses. It also
shows how to read a device register with the DeviceProbe function. While the actual
values are specific to the NCR 53C825 chip, the technique is generally useful. Note
that the command word was changed using a read-modify-write sequence.

The code for initializing the interrupt service routine, including connecting the
primary interrupt service routine to the operating system, is shown in Listing 5. This
code installs a single interrupt handler; if your device supports multiple interrupts
(for example, if it supports several serial lines), you may want to use the new interrupt
management routines in the Driver Services Library to build a hierarchy of interrupt
service routines.

Listing 4. Checking for the correct hardware device

OSErr InitializeMyHardware(void)
{

OSErr status;
UInt8 ctest3;
UInt16 commandWord;

status = ExpMgrConfigReadWord(
&gDeviceEntry, /* kInitializeCommand param */
(LogicalAddress) 0x04, /* Command register */
&commandWord); /* Current chip values */

if (status == noErr)
status = ExpMgrConfigWriteWord(

&gDeviceEntry, /* kInitializeCommand param */
(LogicalAddress) 0x04, /* Command register */
commandWord | 0x0147); /* New chip values */

if (status == noErr)
status = DeviceProbe(

gDeviceBaseAddress + 0x9B, /* Chip Test 3 register */
&ctest3, /* Store value here */
k8BitAccess);

if (status == noErr && (ctest3 & 0xF0) != 0x20)
status = paramErr; /* Wrong chip revision */

return (status);
}

Listing 5. Initializing the interrupt service routine

#define kInterruptSetProperty "driver-ist"

OSErr InitializeInterruptServiceRoutine(void)
{

OSErr status;
OSStatus osStatus;
RegPropertyValueSize size;

(continued on next page)

Interrupt management routines are described in Chapter 9 of Designing PCI
Cards and Drivers for Power Macintosh Computers.•

GetThisProperty (Listing 6) is a generic utility function that retrieves a property
from the Name Registry, storing its contents in the system’s resident memory pool.
This is useful for retrieving configuration information. The driver must, of course,
return the memory to the pool when it’s no longer needed, using DisposeThisProperty,
also shown in Listing 6.

InterruptSetMember *interruptSetMember;

status = GetThisProperty(kInterruptSetProperty,
(RegPropertyValue *) &interruptSetMember, &size);

if (status == noErr) {
if (size < (sizeof (InterruptSetMember)) {

DisposeThisProperty((RegPropertyValue *) &interruptSetMember);
status = paramErr;

}
}
if (status == noErr) {

/* We have the interrupt set ID and member number. Save the
current interrupt set and get the current functions for this
interrupt set. */

gInterruptSetMember = *interruptSetMember; /* Save globally */
DisposeThisProperty((RegPropertyValue *) &interruptSetMember);
osStatus = GetInterruptFunctions(gInterruptSetMember.setID,

gInterruptSetMember.member, &gOldInterruptSetRefCon,
&gOldInterruptServiceFunction, &gOldInterruptEnableFunction,
&gOldInterruptDisableFunction);

if (osStatus != noErr)
status = paramErr;

}
if (status == noErr) {

/* We have the information we need. Install our own interrupt
handler function. If successful, call the old enabler to
enable interrupts (we don't install a private enabler). */

osStatus = InstallInterruptFunctions(
gInterruptSetMember.setID,
gInterruptSetMember.member,
NULL, /* No refCon */
DriverInterruptServiceRoutine, /* See Listing 11. */
NULL, /* No new enable function */
NULL); /* No new disable function */

if (osStatus != noErr)
status = paramErr;

}
if (status == noErr)

(*gOldInterruptEnableFunction)(gInterruptSetMember,
gOldInterruptSetRefCon);

return (status);
}

Listing 5. Initializing the interrupt service routine (continued)
CREATING PCI DEVICE DRIVERS 53

d e v e l o p Issue 22 June 199554
Applications can use the functions in Listing 6 but must replace calls to
PoolAllocateResident and PoolDeallocate with calls to NewPtr and DisposePtr. The
latter aren’t available to PCI device drivers.•

CARRYING OUT AN I/O OPERATION
There are two parts to starting an asynchronous I/O operation: the driver must
carry out the operations unique to the particular hardware device and it must
configure memory so that hardware direct memory access (DMA) operations can

Listing 6. Retrieving properties from the Name Registry

OSErr GetThisProperty(RegPropertyNamePtr regPropertyName,
RegPropertyValue *resultPropertyValuePtr,
RegPropertyValueSize *resultPropertySizePtr)

{
OSErr status,
RegPropertyValueSize size;

*resultPropertyValuePtr = NULL;
status = RegistryPropertyGetSize(

&gDeviceEntry, /* kInitializeCommand param */
regPropertyName,
&size);

if (status == noErr) {
*resultPropertyValuePtr =

(RegPropertyValue *) PoolAllocateResident(size, FALSE);
if (*resultPropertyValuePtr == NULL)

status = memFullErr;
}
if (status == noErr)

status = RegistryPropertyGet(
&gDeviceEntry, /* kInitializeCommand param */
regPropertyName,
*regPropertyValuePtr,
&size);

if (status != noErr)
DisposeThisProperty(regPropertyValuePtr);

}
if (status == noErr)

resultPropertySizePtr = size; / Success! */
return (status);

}

/* DisposeThisProperty disposes of a property that was obtained by
calling GetThisProperty. Note that applications would call DisposePtr
instead of PoolDeallocate. */

void DisposeThisProperty(RegPropertyValue *regPropertyValuePtr)
{

if (*regPropertyValuePtr != NULL) {
PoolDeallocate(*regPropertyValuePtr);
*regPropertyValuePtr = NULL;

}
}

take place. Completing an operation requires responding to hardware interrupts,
updating user parameter block fields, selecting the proper status code, and calling
IOCommandIsComplete to inform the Device Manager that the driver has finished
with this I/O request. The sequence for a complete, but somewhat simplified, I/O
transaction might be as follows:

1. Use parameter block information to configure device-specific
information.

2. Compute the logical addresses that are needed and call
PrepareMemoryForIO to compute the corresponding physical
addresses. PrepareMemoryForIO replaces the LockMemory and
GetPhysical functions and handles virtual memory considerations.

3. With all memory ready for DMA, configure the hardware to start
the transfer.

4. When the device completes its operation, it will interrupt the
PowerPC processor. The operating system kernel will call your
driver’s primary interrupt service routine.

5. When the device request is complete, memory structures prepared
by PrepareMemoryForIO for this operation are released with
CheckpointIO, and the interrupt service routine calls
IOCommandIsComplete to return final status to the caller.

This sequence represents an idealized and somewhat simplified situation. For
example, display frame buffers generally don’t interrupt when written to but might
interrupt at the end of a display cycle.

I won’t say much about the Read, Write, Control, Status, and KillIO handlers: they
carry out tasks that are specific to the particular driver. Often, they initiate an
operation that will be completed by a device hardware interrupt. Control and Status
handlers must process PBControl csCode = 43 (driverGestalt) requests. These
provide a systematic way to query device capabilities and are also used for power
management. KillIO replaces the PBControl csCode = 1 (killCode) used for desk
accessories; it stops all pending I/O requests.

Before jumping into the complexities of PrepareMemoryForIO and interrupt service,
I need to mention one small task: setting and reading values in the device registers.

SETTING AND READING DEVICE REGISTER VALUES
The PCI bus architecture gives hardware developers two methods for setting and
reading values in the device registers: memory-mapped I/O and I/O cycle operations
(described in more detail in “Methods of I/O Organization”). A device advertises its
I/O organization through bits in its configuration register and by providing a PCI-
standardized “reg” property. When the system starts up, it assigns each device a range
of physical addresses in the system’s 32-bit physical address space. The driver can
retrieve the device’s physical addresses by resolving the “assigned-addresses” property
and can use the Apple-specific “AAPL,address” property to translate the values in an
“assigned-addresses” property to logical addresses, as was shown in Listing 3. Your
driver should use these values when accessing your device’s registers. Ranges of
logical addresses are assigned to PCI bus memory and I/O cycles; thus, your driver
can perform I/O cycles without calling operating system functions.

For example, the sample driver’s hardware device has a test register (byte) at offset
0xCC from the start of its memory base address. Suppose the logical address retrieved
by GetDeviceAddress was stored in the global gDeviceBaseAddress, defined as
CREATING PCI DEVICE DRIVERS 55

d56
Memory-mapped I/O and I/O cycle operations represent
two ways of designing a computer architecture.

Using memory-mapped I/O, device hardware responds
to normal memory operations in a particular range of
addresses. For example, PDP-11 computers without
memory management hardware reserved 8K for
peripheral hardware registers, limiting the memory
available to programs to 56K.

I/O cycle operations effectively place external devices in
an independent address space. This gives programs
additional memory but requires special instructions to

METHODS OF I/O ORGANIZATION
 e v e l o p Issue 22 June 1995
access peripheral devices. The Intel 80x86 series uses this
organization.

To the programmer, memory-mapped I/O has the
advantage of allowing direct device operations without
special instructions, making it relatively easy to write device
drivers in high-level languages. As bus widths and memory
size limitations have eased, the inability to use part of the
address space for programs has become less of an issue.

Apple’s PCI-based machines use only memory-mapped
I/O. However, the bus interface hardware generates PCI
I/O cycles for a subset of the physical address space.
volatile UInt8 *gDeviceBaseAddress;

The driver could then read the test register with

testRegister = gDeviceBaseAddress[0xCC];

The volatile keyword is important, as it prevents the compiler from removing what
appear to be unnecessary operations. Drivers will also need to call the SynchronizeIO
function in the Driver Services Library to force the PowerPC processor to flush its
data pipeline. While the sample device driver appears to use only memory operations,
the PCI hardware issues either memory or I/O addresses depending on the particular
logical address reference. To issue I/O addresses, your device driver would have to
retrieve the “AAPL,address” property shown in Listing 3.

While byte accesses are straightforward, word (16-bit) and long word (32-bit)
accesses are more complex. This is because the PCI bus is little-endian (the address
of a multibyte entity is the address of the low-order byte), whereas the Mac OS and
the PowerPC chip are big-endian (the address of a multibyte entity is the address of
the high-order byte). To access 16-bit and 32-bit data, then, your driver must swap
bytes in memory, either by using the PowerPC lwbrx instruction or by calling the
library functions EndianSwap16Bit or EndianSwap32Bit. The Expansion Bus
Manager routines handle “endian swapping” internally. Failing to swap bytes was the
most frequent error when I wrote the sample driver; you would be wise to check this
thoroughly in your code.

PREPARING THE MEMORY
Before starting a DMA operation, the operating system must ensure that the data
accessed by the operation is in physical memory and that any data in the processor
cache has been written to memory. This is done with the PrepareMemoryForIO and
CheckpointIO routines. Because the process is complex, I’ll break it down into
smaller pieces to describe it. Let’s assume your driver will prepare two areas: a
permanent shared-memory area used to communicate with the device (this could be
used for a display frame buffer) and a request-specific area used for a single I/O request.

Preparing the shared area is fairly straightforward: your driver allocates a physical
mapping table, initializes an IOPreparationTable, and calls PrepareMemoryForIO.
Listing 7 shows how to prepare a shared area and Listing 8 shows several related

Listing 7. Preparing a shared memory area

IOPreparationTable gSharedIOTable;
LogicalAddress gSharedAreaPtr;

OSErr PrepareSharedArea(
AddressSpaceID addressSpaceID) /* DoDriverIO parameter */

{
OSErr status;
ItemCount mapEntriesNeeded;

gSharedAreaPtr =
MemAllocatePhysicallyContiguous(kSharedAreaSize, TRUE);

if (gSharedAreaPtr == NULL)
return (memFullErr);

gSharedIOTable.options =
(kIOIsInput /* Device writes to memory. */
| kIOIsOutput /* Device reads from memory. */
| kIOLogicalRanges /* Input is logical addresses. */
| kIOShareMappingTables); /* Share tables with kernel. */

gSharedIOTable.addressSpace = addressSpaceID;
gSharedIOTable.firstPrepared = 0;
gSharedIOTable.logicalMapping = NULL; /* We don't want this. */
/* Describe the area we're preparing and allocate a mapping table. */
gSharedIOTable.rangeInfo.range.base = gSharedAreaPtr;
gSharedIOTable.rangeInfo.range.length = kSharedAreaSize;
mapEntriesNeeded = GetMapEntryCount(gSharedArea, kSharedAreaSize);
gSharedIOTable.physicalMapping = PoolAllocateResident(

(mapEntriesNeeded * sizeof (PhysicalAddress)), TRUE);
if (gSharedIOTable.physicalMapping == NULL)

status = memFullErr;
else

status = PrepareMemoryForIO(&gSharedIOTable);
if (status == noErr)

status = CheckPhysicalMapping(&gSharedIOTable, kSharedAreaSize);
return (status);

}

Listing 8. PrepareMemoryForIO utilities

/* Return the number of PhysicalMappingTable entries that will be
needed to describe this memory area. */

ItemCount GetMapEntryCount(void *areaAddress,
ByteCount areaLength)

{
ByteCount normalizedLength;
UInt32 theArea;

theArea = (UInt32) areaAddress;
normalizedLength = PageBaseAddress(theArea + areaLength - 1)

- PageBaseAddress(theArea);
return (normalizedLength / GetLogicalPageSize());

}

(continued on next page)
CREATING PCI DEVICE DRIVERS 57

d e v e l o p Issue 22 June 199558
utility routines. Because PrepareSharedArea allocates memory for its physical
mapping table, it must be called when your driver is initialized. Note that
GetLogicalPageSize, used in several routines, returns a systemwide constant value;
a production device driver would call it once, storing the value in a global variable.

To prepare a request-specific user area, your driver will initialize an IOPreparationTable
with the procedure shown in Listing 9. Since your driver can be called from an I/O
completion routine, it can’t allocate a physical mapping table for each I/O request.
Instead, your initialization procedure will allocate a maximum-length mapping table.

To process an I/O request, the driver initializes the options and I/O range and then
calls PrepareMemoryForIO and, after I/O completion, CheckpointIO. How to

/* Check that the entire area was prepared and that all physical
memory is contiguous. */

OSErr CheckPhysicalMapping(IOPreparationTable *ioTable,
ByteCount areaLength)

{
ItemCount i;
OSErr status;

if (areaLength != ioTable->lengthPrepared)
status = paramErr; /* Didn't prepare the entire area. */

else {
status = noErr;
for (i = 0; i < ioTable->mappingEntryCount - 1; i++) {

if (NextPageBaseAddress(ioTable->physicalMapping[i])
!= ioTable->physicalMapping[i + 1]) {
status = paramErr; /* Area isn't physically contiguous. */
break;

}
}

}
return (status);

}

/* Return the start of the physical page that follows the page
containing this physical address. */

PhysicalAddress NextPageBaseAddress(PhysicalAddress theAddress)
{

UInt32 result;

result =
PageBaseAddress(((UInt32) theAddress) + GetLogicalPageSize());

return ((PhysicalAddress) result);
}

/* Return the start of the physical page containing this address. */
UInt32 PageBaseAddress(UInt32 theAddress)
{

return (theAddress & ~(GetLogicalPageSize() - 1));
}

Listing 8. PrepareMemoryForIO utilities (continued)

prepare a single request is shown in Listing 10. You call CheckpointIO to complete
your use of the buffer in the interrupt service routine, as shown later in Listing 11.

A production device driver must extend the algorithm in Listing 10 to handle two
more complex cases:

• Virtual memory is enabled. This being the normal case, the user
area isn’t necessarily physically contiguous. If your hardware can
handle this, you can postprocess the physical mapping table into a
scatter-gather table.

• The operating system has only a limited amount of permanently
resident memory. Even if your hardware can perform a single 500
MB I/O transfer, you won’t want to allocate that many physical
mapping tables; you wouldn’t get a significant performance gain
and you would make your driver unusable on smaller
configurations.

The solution to both of these problems is partial preparation. Your driver provides a
physical mapping table of reasonable size. PrepareMemoryForIO prepares as much as
possible and your driver uses the firstPrepared and lengthPrepared fields to navigate
the physical mapping table. When your driver has performed all I/O in a partial
preparation, it recalls PrepareMemoryForIO to prepare the next segment. So the
overall, somewhat simplified, algorithm is as follows:

1. Prepare the first area.

2. Build scatter-gather tables and start up the device. When the
device interrupts, continue with the next step.

3. When the device needs more data, have the interrupt service
routine check the state field in the IOPreparationTable. If the I/O
is incomplete, send a software interrupt to the driver’s “restart
I/O” task.

Listing 9. Initializing a request-specific IOPreparationTable

IOPreparationTable gRequestIOTable;
ItemCount gRequestMapEntries;

OSErr InitializeRequestIOTable(void)
{

OSErr status;
ByteCount mapTableSize;

/* Compute the worst-case number of map entries. */
gRequestMapEntries =

GetMapEntryCount((void *) GetLogicalPageSize() - 1,
kDriverMaxTransferLength);

mapTableSize = (gRequestMapEntries * sizeof (PhysicalAddress));
gRequestIOTable.physicalMapping =

PoolAllocateResident(mapTableSize, TRUE);
status = (gRequestIOTable.physicalMapping != NULL)

? noErr : memFullErr;
return (status);

}

CREATING PCI DEVICE DRIVERS 59

d e v e l o p Issue 22 June 199560
4. Have the “restart I/O” task call PrepareMemoryForIO to prepare
the next area (this can cause virtual memory paging). If successful,
continue with step 2 to restart the device.

5. When I/O completes, call CheckpointIO to release the kernel
resources reserved by PrepareMemoryForIO.

THE INTERRUPT SERVICE ROUTINE
When the hardware device completes a request, it interrupts the PowerPC processor.
The operating system kernel fields the interrupt and searches an interrupt service tree
to find a function that’s been registered to handle that interrupt. A driver has established
this function by calling InstallInterruptFunctions, as was shown in Listing 5.

A driver’s interrupt service routine is generally broken into two parts: a primary
routine that handles immediate operations and a secondary routine that completes
the operation, releases any system resources held by PrepareMemoryForIO, and calls
IOCommandIsComplete. (Note that some drivers will have no secondary routine.)

Secondary interrupt routines are serialized: they always run to completion before the
system calls them again. However, they don’t block other devices from interrupting
the system. This greatly simplifies device driver design, as the secondary interrupt
routine can manage the driver’s internal queues without the significant overhead that
blocking all processor interrupts would require.

Listing 10. Using the request-specific IOPreparationTable

OSErr PrepareIORequest(AddressSpaceID addressSpaceID,
LogicalAddress userBufferPtr,
ByteCount userCount)

{
OSErr status;
ItemCount mapEntriesNeeded;

gRequestIOTable.options =
(kIOIsInput /* Device writes to memory. */
| kIOLogicalRanges /* Input is logical addresses. */
| kIOShareMappingTables); /* Share tables with kernel. */

gRequestIOTable.addressSpace = addressSpaceID;
gRequestIOTable.firstPrepared = 0;
gRequestIOTable.logicalMapping = NULL; /* We don't want this. */
/* Store the user parameters in the IOPreparationTable. */
gRequestIOTable.rangeInfo.range.base = userBufferPtr;
gSharedIOTable.rangeInfo.range.length = userCount;
mapEntriesNeeded = GetMapEntryCount(userBufferPtr, userCount);
if (mapEntriesNeeded > gRequestMapEntries)

status = paramErr;
else {

gRequestIOTable.mappingEntryCount = mapEntriesNeeded;
status = PrepareMemoryForIO(&gRequestIOTable);

}
if (status == noErr)

status = CheckPhysicalMapping(&gRequestIOTable, userCount);
return (status);

}

Device drivers may need more complex processing than can be accomplished with
primary and secondary interrupt routines. For example, a CD-ROM driver needs to
check for disk insertion periodically. Also, all drivers need to handle virtual memory
paging. To accomplish this, a driver can create a software task — an independent
function that’s scheduled at a time when all system services are available. Interrupt
service and timer completion routines can schedule software tasks when necessary.

Listing 11 shows an extremely simplified interrupt service routine to familiarize you
with this organization. DriverInterruptServiceRoutine, the primary routine, stores
the hardware completion status and then queues a secondary interrupt routine to
complete the operation. The secondary interrupt routine completes the I/O request
by checkpointing the memory that was prepared before the transfer started. It then
passes final completion status back to the operating system kernel.

This sample doesn’t use the interrupt set member number, the refCon, or the
interrupt count, which are needed for interrupt service routines that handle several
devices (for example, in the case of a hardware device that controls several serial
lines). Also, to simplify this sample, I’m presuming that all information is stored in
driver globals. A better organization would make use of a “per-request” data structure
that encapsulates all information needed for a single user I/O request (such as
PBRead); this greatly simplifies the driver organization when you want to extend the
driver to support multiple simultaneous requests (concurrent I/O).

Listing 11. A simplified interrupt service routine

InterruptSetMember DriverInterruptServiceRoutine(
InterruptSetMember interruptSetMember, /* Unused here */
void *refCon, /* Unused here */
UInt32 theInterruptCount) /* Unused here */

{
OSErr status;
UInt8 driverStatus;

/* Retrieve the operation status from the device. This is fiction:
a real device will be much more complex. */

driverStatus = gDeviceBaseAddress[kDeviceStatusRegister];
if (driverStatus == <device is not interrupting>

return (kISRIsNotComplete);
if (driverStatus == kDeviceStatusOK)

status = noErr;
else

status = ioErr;
/* The operation is (presumably) complete. Queue a secondary interrupt

task that will release all memory and return the final status to
the caller. We'll ignore an error from QueueSecondaryInterrupt. */

(void) QueueSecondaryInterrupt(
DriverSecondaryInterruptRoutine,
NULL, /* No exception handler */
(void *) status, /* Operation ioResult */
NULL); /* No p2 parameter */

return (kISRIsComplete);
}

(continued on next page)
CREATING PCI DEVICE DRIVERS 61

d e v e l o p Issue 22 June 199562
JUST THE TIP OF THE ICEBERG
There’s a lot of material here — and a lot more that I haven’t discussed. Still, this
should give you a good overview of the new driver services and how they work
together. While this may be overwhelming if you’ve never written a device driver
before, those of you who have (for any operating system) will be happy to note how
much isn’t here: no assembly language, no dependencies on the strange quirks of the
Mac OS, and all hardware dependencies either hidden from you or limited to your
device’s specific needs.

REFERENCES
• Designing PCI Cards and Drivers for Power Macintosh Computers will be

available from APDA in mid-June.

• IEEE document 1275 — 1994 Standard for Boot (Initialization, Configuration)
Firmware (Part number DS02683, available from IEEE Standards Department,
P.O. Box 1331, Piscataway, NJ 08855).

• Inside Macintosh: Power PC System Software (Addison-Wesley, 1994), Chapter 3,
“Code Fragment Manager.”

OSStatus DriverSecondaryInterruptRoutine(
void *p1, /* Has ioResult value */
void *p2) /* Unused */

{
IOPreparationID ioPreparationID; /* Request I/O prep ID */

/* Copy operation-specific values (such as the number of bytes
transferred) into the caller's parameter block. */

gCurrentParmBlkPtr->ioActCount = <device-specific value>;
ioPreparationID = gRequestIOTable.preparationID;
if (ioPreparationID != kInvalidID) {

gRequestIOTable.preparationID = kInvalidID;
(void) CheckpointIO(ioPreparationID, kNilOptions);

}
/* IOCommandIsComplete is the only function that should set the

ioResult field. */
IOCommandIsComplete(gIOCommandID, (OSErr) p1);
return (noErr);

}

Listing 11. A simplified interrupt service routine (continued)
Thanks to our technical reviewers Jano Banks,
Holly Knight, Wayne Meretsky, Tom Saulpaugh,
and George Towner.•

The days of the solitary hacker are long past. While
this reclusive species is still spotted in the wildernesses
of academia and shareware, today’s commercial
engineers roam the virtual plains in herds, overcoming
the incessant problems of bloated software projects by
sheer force of numbers.

Like all human groups, software teams are tied
together by a shared language and environment. On
the Macintosh, this common ground often contains a
set of MPW scripts and tools. While most developers
prefer the faster compilers offered by third-party
vendors, the scripting and source control capabilities of
MPW make it an indispensable workhorse in team
software projects. It even serves as the cornerstone of
many cross-platform efforts involving both the Mac OS
and that other operating system.

Following a few simple principles will greatly reduce
headaches resulting from maintaining a team’s MPW
configuration. These guidelines may seem obvious, but
I have yet to see a project that followed all of them.

ENGINEERS ARE USERS, TOO
While we may be accustomed these days to thinking
of a user interface as a sequence of pictures, a build
environment in MPW is as much a user interface as
any other software system. Like all such projects,
designing it naively invites the wrath of your users —
in this case, the engineers on your team. And unlike
most users, they have your direct telephone number
and know where you park your car!

The primary principle of user interface design is to stop
thinking “I want to make the best X ever,” whether X is

MPW TIPS AND
TRICKS

Building a Better
(Development)
Environment

TIM MARONEY
TIM MARONEY has been tempered in the forge of computer
networks, acquiring a rough, cast-iron finish that’s often mistaken
for obnoxiousness. His favorite animal name is “Kittens,” his
favorite food is anything dead, and his favorite new game involves
a text engine, file system, image processor, build
environment, or gorgonzola sandwich. That narrow
form of thinking leads to excellent solutions to
technical problems but systems that are difficult to use,
because the model of the problem adopted by an
engineer is likely to be different from that applied by an
end user. For instance, to an image processing expert,
rotating an image is a problem of accurate and rapid
approximation across a grid, but to a scanner operator,
the problem is one of deciding when to rotate, whether
to do it automatically, whether to do it before or after
other operations, and so forth. A technically superb
rotation algorithm may completely fail to meet the
requirements of the operator in a print shop if it wasn’t
originally designed with that environment in mind.

Balance technical problem solving by thinking through
in detail how the system will be used to accomplish
specific tasks. Spell out particular scenarios and make
sure your solutions work in them. Otherwise, they
probably won’t.

So, to keep the needs of your various users in mind,
you need to consider not only a normal build, but
auxiliary tasks such as the following:

• installing and updating the system

• incorporating scripts from other sources

• giving MPW commands by hand

• personalizing the configuration

• maintaining a synchronized environment among all
users

• archiving the environment for reproducing builds

• working from home over Apple Remote Access, and
other ways of working remotely

• troubleshooting scripts and tools

Never assume that smart people make fewer errors.
A rule of thumb is that the number of errors made is
proportional to the number of possible errors, not to
the skill of the user. Error prevention should be one
of your guiding principles in any system design. For
instance, don’t require three commands in a particular
order to complete a build; a single build should be a
single command. If you have user interface design staff,
get them involved with the development environment;
their familiarity with principles such as error
prevention and nonmodality could be very helpful.
MPW TIPS AND TRICKS: BUILDING A BETTER (DEVELOPMENT) ENVIRONMENT 63

building globe-spanning conspiracies out of overpriced trading
cards. Tim supplements his seven-figure earnings from writing for
magazines by developing software for Apple.•

64
Most of all, talk to your users. Ask them what they
need and what their problems are. Sometimes their
suggestions will be ones you can use directly; more
often they won’t hold up to scrutiny as actual designs,
but they always indicate a legitimate area of concern
that you’ll need to address. Design your system on
paper first, and have your users review your drafts. This
time will pay off later in increased productivity.

Many of the principles of modern software design were
originally developed for traditional command-line systems. See
The Elements of Friendly Software Design: The New Edition by
Paul Heckel (Alameda: Sybex, 1991).•

CHECK IN THE SYSTEM
An obvious, but flawed, approach to organizing a
system of tools and scripts is to put them all on a server
where everyone can reach them. Each engineer is
responsible for synchronizing his or her local
configuration with the latest files on the server, and
anyone can improve the scripts in their copious free
time. In addition, everyone can customize their own
system as much as they like.

In practice this simple scheme wastes the time of
everyone on the team, because no one ever has the
same configuration as anyone else. A typical frustrating
conversation under this system would be:

I can’t build the SuperWidgets library. Does it build for
you?

Sure! Maybe you didn’t get the new SourceGrinder
script?

No, I got that yesterday, after I couldn’t build Pat’s latest
brilliant changes to WhizzySnork. Let’s take a look at
your copy of the MungePrefix tool.

Hmmm. It seems to match yours. Gee, I don’t know what
the problem could be. Let’s both do a complete reinstall
and try again.

(Repeat until hysteria ensues.)

The solution to the problem of synchronization is to
keep the build system itself under source control.
When people run into problems, they’ll make sure that
they’ve checked out the current scripts and tools as well
as the current source files, before they bother you about
it. If they don’t, they’ll look silly. Since that will
probably bring back unpleasant memories from the
playground, they’ll try harder next time.

For complex projects, you’ll probably want to institute
a regular build process with versioning and source
archiving. When you archive the sources for a build,
don’t forget to archive a matching revision of the
d e v e l o p Issue 22 June 1995
development environment! You may need to reproduce
that build in the future, for which you’ll need the
source code and the exact build system.

In some larger projects, the development environment
may be maintained by a group separate from the
programmers who use the system. In that case, it may
not be practical to archive the environment as part of a
project build. The environment group needs to archive
the system with named versions, and the project team
needs to always build with respect to a named version
of the environment. The project team also needs to
record in its release notes which version of the
development environment was used for each archived
build. This allows the build to be reproduced from the
two archives.

HAVE AN INSTALLED COPY HANDY
Bootstrapping an MPW configuration for a new
engineer can be painful. There is a chicken-and-egg
problem with any script-based installation of an
MPW build system. The scripts you want to use for
installation are checked in, but how does the first-timer
get to them? You can write out careful step-by-step
instructions, but few engineers can resist the
temptation to improvise. You’ll wind up doing it for
them after all when they fail.

Instead, keep an up-to-date copy of a preconfigured
MPW on a convenient server. The new user simply
copies the entire MPW folder from the server to the
local disk (remember those licensing restrictions,
though!), edits the configuration file, and is ready to
run.

THE DREADED USERSTARTUP•PERSONAL FILE
It’s perfectly clear to the development environment
designer that the user needs to type his or her name
where it says

Set MyName "Your Name Here"

but no one ever seems to fill in the blanks correctly
without hand-holding.

It may be worth your while to write a mini-application
that sets up the personal configuration file in the MPW
folder. An hour or two creating a setup application with
a nice, clear modeless dialog will pay for itself a few new
hires down the road. More simply, you can use MPW’s
Request, GetFileName, and GetListItem commands in
a setup script — but a single dialog is friendlier.

This application or script should also be stored on the
server where you have the preconfigured MPW folder.
With a little clever scripting, you can easily arrange for

the application to be run automagically if the personal
configuration file hasn’t yet been set up.

There are a few kinds of setup that can be done
programmatically. For instance, if a script needs to
know the monitor size, don’t ask users to type it in
themselves; an MPW tool can look at the graphics
device list and figure it out by itself.

ESCHEW CLEVERNESS
One of the best programming tips I ever got was from
an introductory LISP text I read a few centuries ago as
an undergraduate. It warned against cleverness in
coding. On the surface this would appear to be stupid
advice. Isn’t cleverness a requirement for programming?
The problem is that when our own code strikes us as
clever, it usually involves some trick or back door that’s
both fragile and hard to understand, not only for the
next poor sap who inherits the code, but maybe for
ourselves a month or three from now. Yet these clever
tricks are rewarding. Not only does a trick resolve a
sticky problem in one swell foop, but it reinforces our
belief in our own intelligence and resourcefulness.

LISP, being inherently weird, lends itself to clever
solutions. So does object-oriented programming.
(I’ll spare you the name of a program that buries its
resolution of conflicting filenames — dialogs and all —
deep in the bowels of a general-purpose string class.)
Scripting languages such as those of MPW and csh also
encourage cleverness.

Remember the scripts to accelerate launching in last
issue’s MPW Tips and Tricks? The form in which they
were passed to me used a very clever method of
signaling a cold boot: it aliased the built-in End
command to Quit, bypassing the state-saving code in
the Quit script. Needless to say, the potential for side
effects was enormous, but no doubt someone enjoyed
thinking of it! I changed the cold boot sequence to
write an empty file called DontSaveState in the MPW
folder, and the Quit script to detect and remove this
file. It takes perhaps a tenth of a second longer, but it’s
comprehensible and free from harmful side effects.

KEEP IT SIMPLE, STUPID
Another common class of difficulties results from
redesigning the basis of MPW. It can be tempting to
make big changes to the system, such as by changing
the default value of a built-in variable like Exit, or
permanently blanking variables like CIncludes and
RIncludes to prevent conflicts with local headers.
Thanks to Shad Ahmad, Dave Evans, Arnaud Gourdol, and
Eleanor the Wonder Gerbil for reviewing this column.•
The problem is that this turns a multifunction system
into a single-function system, making MPW useful
solely for the build tasks you’ve planned. Scripts from
other sources won’t work anymore, and the existing
techniques and skills of people on the team may
become hard for them to apply in the oddly mutated
environment. Getting rid of RIncludes might make
some part of your build sequence easier to manage, but
what happens when an engineer wants to DeRez
something by hand?

The solution is to avoid changing the underpinnings of
the MPW Shell. If you need to add variables, add them
as new variables — don’t mess with the old ones. Don’t
install patches that let you add whizzy graphical menus
and floating windows if they interfere with the ordinary
AddMenu and Open commands. When you do need to
change something, change it only in the scope of the
script where it’s needed.

Among other reasons, you may someday need to have
more than one build system installed. Suppose your
company is acquired by the Gizmonics Institute and
they have their own MPW configuration. Would you
rather throw away yours and try to figure out how to
shoehorn your source code into their system, or be
able to run them both in the same MPW Shell? Or
suppose (and I admit this is pretty unlikely) you start
talking with the weirdos down the hall instead of just
snickering about them behind their backs. Before
you know it, you’ll be drinking beer together and
trying to integrate your build systems. Don’t laugh;
it happens.

THE JOY OF THEFT — SHARE AND ENJOY
There are various sources for useful MPW scripts.
Instead of trying to do it all yourself, you can impress
your manager by ripping off scripts from CDs,
computer networks, friends, and so forth. Sometimes
even magazines have good stuff.

Apple already distributes quite a few useful scripts, such
as those in the folder called DTS MPW Goodies on
this issue’s CD. Posting a note on a Usenet newsgroup
may get you just the script you wanted in a matter of
hours or days (even though you could have done it
better yourself, of course).

Remember to share a little of your own work to balance
the karmic load. This is the philosophy of UNIX®, and
unfortunately it’s better developed in that culture than
in ours. Don’t forget the others in the virtual herd!
MPW TIPS AND TRICKS: BUILDING A BETTER (DEVELOPMENT) ENVIRONMENT 65

66
Color QuickDraw can be customized for specific tasks in many ways,
most commonly by replacing the “bottleneck” procedures at its heart.
But another, often overlooked way of customizing Color QuickDraw is
by writing and installing custom color search procedures. These procedures
are very useful for color separation and other color processing tasks, and
for modifying QuickDraw’s default drawing behavior to solve particular
problems. This article reviews some Color QuickDraw basics, explores
how color search procedures work, and presents a sample search procedure.

Custom Color Search Procedures
JIM WINTERMYRE

d e v e l o p Issue 22 June 1995
It’s 2 A.M., and you’re finally ready to draw your carefully constructed offscreen
GWorld to a window. The GWorld is 32 bits deep and has been set up to contain a
color ramp using 100 shades of red. You’ve already created a palette containing the
100 shades of red you need and attached it to your window, so the exact colors will be
available on your 256-color screen. You plunk in your call to CopyBits, recompile,
and . . . Ack! Instead of the expected smooth red ramp, you get an image with 16
distinct bands of color (see Figure 1 on the inside back cover of this issue).

What happened? How can you get the results you want? This article attempts to
answer both of these questions, and a few others along the way. What happened has
to do with the way Color QuickDraw converts colors to pixel values, so we’ll start
with a brief review of how this works. As for getting the results you want, one way is
to use a custom color search procedure, which is the main subject of this article.

A QUICK REVIEW OF COLOR IN QUICKDRAW
Before delving into custom color search procedures, let’s pause for a quick review of
how QuickDraw converts between colors and pixel values. If you’re already familiar
with this, feel free to skip ahead to the section “Drawbacks of Inverse Tables.”

How QuickDraw converts colors to pixel values and vice versa is discussed
in Inside Macintosh: Imaging With QuickDraw, and in the Color Manager chapter of
Inside Macintosh: Advanced Color Imaging (available on this issue’s CD in draft
form). Only a brief overview of this complex topic is provided here.•
JIM WINTERMYRE (Internet winter@ai.rl.af.mil)
is in the Air Force but doesn’t get to fly a plane;
instead, he gets to fly a Macintosh (he thinks he
still deserves hazard pay, though). Officially, he’s
a Signals Intelligence Systems Engineer, but he
always seems to find himself doing Macintosh
programming in one form or another. When he’s

not busy solving the world’s problems or coming
up with another useless hack (the boundaries
between the two have become fuzzy lately), he
likes to engage in sports that let him pretend he
really does have wheels on his feet. He was
recently spotted playing jazz guitar in a smoky
little bar in upstate New York.•

DIRECT AND INDEXED COLOR
When an application does any drawing with Color QuickDraw, the ultimate result is
to change some pixel values in a pixel map somewhere. Color QuickDraw in System
7 (and 32-Bit QuickDraw in earlier systems) supports two distinct types of color pixel
maps: direct and indexed.

In direct pixel maps (those with pixel depths of 16 or 32 bits) the pixel values in
memory specify RGB color information for the pixel directly. For example, the 32-bit
direct pixel value $00AABBCC specifies a red component of $AA, a green component
of $BB, and a blue component of $CC — 8 bits of color information each for the red,
green, and blue components. (A 16-bit pixel value contains 5 bits of color information
for each component.)

In indexed pixel maps (those with pixel depths up to 8 bits) the pixel values in
memory don’t directly specify the colors at all; instead they specify positions in a table
of the available colors, called the color lookup table or just color table (sometimes called a
CLUT). Figure 2 shows an example; in this case, the 8-bit pixel value $1C in memory
actually represents the RGB color $AAAA BBBB CCCC, found at position $1C in
the color table.

Typically, when an application wants to draw in a particular color, it specifies the
desired color directly using an RGBColor record, and never deals with pixel values at
all. Color QuickDraw and the Color Manager convert between RGBColors and pixel
values as needed. If the application is drawing to a direct pixel map, the color
information itself is used to build the pixel value, and no color table is involved. On
the other hand, if the application is drawing to an indexed pixel map, Color
QuickDraw uses the index of the closest-matching color in the color table as the pixel
value (this process is called color mapping). But searching the entire color table for a
match every time a pixel value is needed would be far too time-consuming, so the
Color Manager uses something called an inverse table to speed up the lookup process.

INVERSE TABLES
An inverse table is something like a “reverse” color table: whereas a color table is used
to convert an index to a color, an inverse table is used to convert a given color to an
index into a color table. The conversion operation goes like this: You take some of
the most significant bits of each color component and concatenate them, then use the
resulting number as an index into the inverse table. The entry at that location in the
inverse table holds, in turn, the index of the closest-matching available color in the
corresponding color table. Figure 3 illustrates the process. Note that the closest-

8 bits

……

Color table

…

0

1

1B

1C

$1C

……

……

……

Pixel values in a PixMap

$AAAA BBBB CCCC

Figure 2. Indexed color
CUSTOM COLOR SEARCH PROCEDURES 67

d e v e l o p Issue 22 June 199568
matching color returned by this process need not match the original color exactly,
since only a few of the most significant bits were used (the default is 4 bits).

Inverse tables are described in the Color Manager chapter of Inside Macintosh:
Advanced Color Imaging.•

The number of bits each color component contributes to the inverse-table index is
called the resolution of the inverse table. Higher resolutions would give you greater
accuracy in color mapping, but also greatly increase the memory needed to hold the
inverse table, so a maximum of 5-bit resolution is allowed. (Since there are three
color components, each additional bit of resolution multiplies the size of the table
eightfold.) You can use the Color Manager routine MakeITable to create inverse
tables with resolutions of 3, 4, or 5 bits per component.

As an aside, Listing 1 shows how to temporarily change the resolution of the current
graphics device’s inverse table to 5 bits. (To permanently change the inverse table
resolution, set the gdResPref field of the GDevice record, set the iTabSeed field of
gdITable to the result of GetCTabSeed, and call GDeviceChanged.)

RGB color = $ABCD BCDE CDEF

…

Inverse table
Graphics device

color table

0

1

ABB

ABC

Inverse table index =

$1C

…

0

1

1B

1C

$ABC

$AAAA BBBB CCCC

Figure 3. Inverse table with 4-bit resolution

Listing 1. Temporarily changing the resolution of the inverse table

VAR
gdh: GDHandle;
oldITabRes: INTEGER;

{ Get current graphics device. }
gdh := GetGDevice;

{ Get resolution of current inverse table. }
oldITabRes := gdh^^.gdITable^^.iTabRes;

{ Create a new inverse table at 5-bit resolution. }
MakeITable(NIL, NIL, 5);

{ Draw into a port on this device. }
...

{ Reconstruct inverse table at original resolution. }
MakeITable(NIL, NIL, oldITabRes);

THE IMPORTANCE OF THE CURRENT GRAPHICS DEVICE
An often misunderstood fact about Color QuickDraw is
this: Color QuickDraw uses the current graphics device’s
color table when converting colors into indexed pixel
values, ignoring the color table of the destination pixel
map.

The inverse table is built from the color table in the
graphics device’s pixel map, not the one in the
destination pixel map. When you’re drawing to the
screen, this is not a problem, since the destination pixel
map and the current graphics device’s pixel map match
(the destination pixel map is the device’s pixel map).
However, it can be a problem when you’re drawing
offscreen (for example, when using CopyBits to copy one
offscreen pixel map to another). If the color table of the
destination pixel map doesn’t match that of the current
graphics device, you won’t get the results you expect. The
destination pixel map’s color table is used only when
converting the other way, from a pixel value to a color
(for example, when the pixel map is actually displayed on
the screen).

One of the nice things about using GWorlds for offscreen
graphics is that you don’t have to worry about this —
GWorlds always have a graphics device associated with
them, and routines such as SetGWorld ensure that the
GWorld’s pixel map and the graphics device’s pixel map
are synchronized for correct color mapping.
Note that inverse tables aren’t found in pixel maps or color graphics ports. They’re
instead associated with graphics devices (astute readers may have noticed that the color
table in Figure 3 was labeled “Graphics device color table” — this is why). So when
converting RGBColors to indexed pixel values, the Color Manager uses the inverse
table in the current graphics device. The implications of this are discussed in “The
Importance of the Current Graphics Device.”

DRAWBACKS OF INVERSE TABLES
The main problem with using inverse tables for color mapping is that because of their
limited resolution, different colors can map to the same inverse table index. Inverse
tables actually include some extra, undocumented information to allow the Color
Manager to resolve such “hidden colors” — but examining this extra information is
time-consuming, so some speed-sensitive QuickDraw routines don’t always use it.
One of these routines happens to be CopyBits, which is what accounts for our “100
shades of red” problem.

Let’s look at the problem in more detail. The offscreen GWorld holding our image is
32 bits deep, allowing the pixel values to specify RGB colors directly, with a precision
of 8 bits per component. When we copy the image to a window on an indexed
graphics device, CopyBits uses an inverse table to convert these pixel values from
direct to indexed. If our inverse table has a resolution of 4 bits (the default), it can
only distinguish 24 = 16 shades of red! (For example, all shades of red from RGB
$0000 0000 0000 to $0FFF 0000 0000 will map to the same inverse-table index.) So
even if all 100 shades are available in the destination device’s color table, only 16 of them
will actually be found and get drawn on the screen. This is why the actual result in
Figure 1 has 16 bands of red instead of a continuum of shades.

The various depth conversion cases are discussed in the book Programming
QuickDraw (see “Related Reading” at the end of this article) beginning on page
338.•

One way to deal with this problem would be to increase the resolution of the inverse
table to 5 bits, which would give us 32 bands of red instead 16. Another approach
would be to use the ditherCopy transfer mode in CopyBits. Both of these methods
give better results but don’t really solve the problem. After all, since we do have all the
shades of red available, shouldn’t there be some way to match the colors exactly?
CUSTOM COLOR SEARCH PROCEDURES 69

d e v e l o p Issue 22 June 199570
INTRODUCING COLOR SEARCH PROCEDURES
Knowing that inverse tables might not be adequate for some applications, the
QuickDraw engineers designed in a “hook” to allow developers to provide their own
color-mapping code. Each GDevice record has its own linked list of custom color
search procedures; there can be any number of such procedures installed for a given
graphics device. As defined in the Color Manager chapter of Inside Macintosh:
Advanced Color Imaging, a search procedure has the following interface:

FUNCTION SearchProc (VAR rgb: RGBColor; VAR position: LONGINT): BOOLEAN;

The rgb parameter is now always a VAR parameter. This was not true for direct-
color destinations in 32-Bit QuickDraw prior to System 7. Also, note that Inside
Macintosh Volume V incorrectly declared rgb as a value parameter.•

The Color Manager calls the search procedure with the RGB color it’s trying to
match, and expects the search procedure to do one of three things:

• Match the color — In this case, the search procedure returns the
pixel value for the color in the position parameter, and a result of
TRUE. On an indexed graphics device, the position parameter
should contain the index of the appropriate color in the graphics
device’s color table. On a direct graphics device, this parameter
should be set to the appropriate direct-color value.

• Modify the color — In this case, the search procedure modifies the
rgb parameter and returns a result of FALSE. Color QuickDraw
ignores the position parameter. See the next section for examples
of using this technique.

• Do nothing — In this case, the search procedure simply returns a
result of FALSE, leaving its parameters untouched.

The Color Manager runs through the list of search procedures for the current
graphics device, calling each procedure in turn until one of them returns TRUE. If
no search procedure returns TRUE, it uses the default color-mapping method on the
original (or possibly modified) color. For indexed graphics devices, this means using
the inverse table. For direct graphics devices, “color mapping” simply involves
truncating the RGBColor components to the appropriate size.

When called with an arithmetic transfer mode, CopyBits calls custom color
search procedures before the arithmetic operation is performed. You can get around
this by doing the desired operation first and then installing the search procedure and
using CopyBits with srcCopy mode to display the result.•

The search procedure mechanism provides a solution to our “100 shades of red”
problem. If we know where all the shades are located in the current graphics device’s
color table, we can write a search procedure that returns the correct index for any
shade of red we pass to it. This will avoid the bands shown in the actual result in
Figure 1 and instead produce the expected result, with the exact colors intended. Of
course, this technique can be applied to any image if we know where to find all the
colors we need in the color table; we’ll examine the technique in more detail later.

MODIFYING SEARCH COLORS
The fact that the desired color is passed to the search procedure through a variable
parameter is significant: it means that the procedure can actually modify the color
value it receives. In this case, the search procedure should return FALSE, telling

QuickDraw to perform the default color mapping on the modified color. This
technique opens up several possible uses for search procedures.

One such application is color separation for three-color printing. The snippet called
SearchProcs & Color Separation on this issue’s CD shows how to do this. To separate
all the greens from an image, for instance, you could install a search procedure that
sets the red and blue RGB components to 0. Listing 2 shows a simple example.

A similar search procedure could be used to darken or lighten an image. For example,
you could use the code in Listing 3 to darken the blue component of an image by a
factor of 2.

WHAT’S THE CATCH?
As usual, you do pay a price for all this functionality: search procedures definitely
slow down the drawing process. Just how badly depends on several factors. In the
case of CopyBits, the speed is most directly affected by the depth of the source and
destination pixel maps. If the source pixel map uses indexed color, the search
procedure needs to be called only once for each color in the source map’s color table.
For direct color, it must be called for every pixel!

Consider the very simplest search procedure — one that just returns FALSE without
doing anything:

FUNCTION NothingSearchProc (VAR rgb: RGBColor; VAR position: LONGINT):
BOOLEAN;

BEGIN
NothingSearchProc := FALSE

END;

Listing 2. Search procedure to separate green colors

FUNCTION GreenSepProc (VAR rgb: RGBColor; VAR position: LONGINT):
BOOLEAN;

BEGIN
WITH rgb DO

BEGIN
red := 0; { Set red and blue RGB components to 0, }
blue := 0 { keeping only the green component. }

END;
GreenSepProc := FALSE

END;

Listing 3. Search procedure to darken the blue component

FUNCTION DarkenBluesProc (VAR rgb: RGBColor; VAR position: LONGINT):
BOOLEAN;

BEGIN
rgb.blue := BSR(rgb.blue, 1); { Shift right to divide by 2. }
DarkenBluesProc := FALSE

END;
CUSTOM COLOR SEARCH PROCEDURES 71

d e v e l o p Issue 22 June 199572
(A search procedure that did nothing but return TRUE would actually be faster, but
would be useless, since the value in the position parameter would be garbage;
returning FALSE ensures that at least normal color mapping will take place.) Table 1
compares the speed of a CopyBits operation with and without this search procedure,
along with the speed of using the ditherCopy transfer mode in place of srcCopy. The
source image is the one shown in Figure 1.

As you can see, CopyBits with an installed search procedure runs just a little slower
than a dithered CopyBits. Note that the figures in the table are very rough. Several
other factors contribute significantly to the speed difference when a search procedure
is installed, such as the size of the source image and the number of colors it contains.
You’ll also get different results depending on what drawing routines you call with the
search procedure installed. But the “dithered CopyBits” rule of thumb seems to work
quite well as a general guide.

It’s up to you to decide whether the speed penalty for using a custom color search
procedure is worth the improved display quality. For image-processing applications,
where color accuracy is probably more important than speed, search procedures can
be very useful; for applications such as arcade-style video games, which depend on
real-time graphics, they’re probably not the way to go.

SOLVING THE “SHADES OF RED” PROBLEM
It’s very common these days for applications to prepare an image offscreen, using a
32-bit GWorld, before transferring it to the screen for display. Despite the decreasing
cost of 24-bit graphics cards, indexed 8-bit color is still a very common configuration,
and even users with direct color capability spend a lot of time in 8-bit mode, which
can lead to anomalies like the “100 shades of red” problem. As mentioned earlier, we
can use a custom color search procedure to draw direct pixel images into indexed
graphics devices with exact color reproduction, provided that all of the colors are
actually available in the destination device’s color table.

The way to make the colors available on the device is of course to use the Palette
Manager, attaching a palette of the needed colors to the window you’re drawing in.
(This works only if other applications aren’t “hogging” too many colors.) Getting the
right colors from a picture or pixel map won’t be discussed in any detail here, but the
sample code uses the octree method described in the article “In Search of the
Optimal Palette” in develop Issue 10. It’s probably easier to use the built-in popular
and median color-sampling methods, but they truncate colors to 5 bits per component,
meaning that they won’t return separate palette entries for colors that differ only in
the lower bits, as our shades of red do. The octree method doesn’t truncate the
colors, so it can be used to find all the colors in the image (assuming the image
contains fewer than 256 colors). Another approach is demonstrated in the snippet
CollectPictColors on the CD.

Table 1. Influence of search procedure on CopyBits speed

srcCopy With
Machine Type srcCopy ditherCopy Search Procedure
Macintosh IIci, Apple 8•24 card 21 57 83
Macintosh Quadra 800, built-in video 8 21 23

Note: Speeds are given in ticks, and are for ten successive calls to CopyBits, copying a
100-by-100-pixel, 32-bit-deep image to an 8-bit screen.

Once the colors are available, we can write a search procedure that simply searches
the graphics device’s color table and returns the index of the requested color. (If the
color table doesn’t contain all the needed colors, the search procedure may have to
return FALSE; QuickDraw will then use the inverse table to map these colors, which
can lead to unexpected results. See the section “Evaluating the Results,” later in this
article, for more on this.)

THE BRUTE-FORCE APPROACH
In true hacker fashion, let’s try the brute-force approach first: we can simply scan
straight through the current graphics device’s color table and stop when we find a
match. Listing 4 shows the code.

If we install this search procedure and draw the “100 shades of red” image, it will
find all 100 shades and produce the expected image. Unfortunately, it’s very slow: a
CopyBits with srcCopy mode using this search procedure takes 30 to 40 times as long
as a dithered CopyBits.

Listing 4. Brute-force search procedure

FUNCTION BruteSearchProc (VAR theRGB: RGBColor; VAR position: LONGINT):
BOOLEAN;

VAR
i: INTEGER;
gdh: GDHandle;
colorTab: CTabHandle;

BEGIN
{ Get handle to current device. }
gdh := GetGDevice;

{ Get color lookup table from current device. }
colorTab := gdh^^.gdPMap^^.pmTable;

{ If the color table exists, loop through all its entries until we }
{ find a match. }
IF colorTab <> NIL THEN

WITH colorTab^^ DO
FOR i := 0 TO ctSize DO

WITH ctTable[i] DO
IF (theRGB.red = rgb.red) & (theRGB.green = rgb.green) &

(theRGB.blue = rgb.blue) THEN
BEGIN

{ We found the color, so pass back its index and }
{ return TRUE. }
position := i;
BruteSearchProc := TRUE;
EXIT(BruteSearchProc)

END;

{ We didn't find the color in the table, so return FALSE to tell }
{ QuickDraw to use the default mapping method. }
BruteSearchProc := FALSE

END;
CUSTOM COLOR SEARCH PROCEDURES 73

d e v e l o p Issue 22 June 199574
HASH TABLES: A BETTER WAY
We can speed up our search procedure by using a hash table instead of a brute-force
linear search. (Hash tables are familiar to most of you from basic computer science
classes, and are described in any good book on algorithms, such as Algorithms by
Robert Sedgewick.) In our case, we’ll use the RGB color value as a hash key to find
the corresponding color table index. For our hash function, we’ll use the MOD
operator to find the remainder of the hash key relative to some suitably chosen prime
number. The bigger we make this prime number, the better the performance of the
hash function will be. Assuming that the target device uses 8-bit indexed colors (for
most images, any lower color depth will yield a color table too small to hold all the
colors we need), we’ll be working with a color table of 256 colors. We’ll choose 251, a
prime number near 256, as the divisor for our hash function. The MOD operator can’t
operate directly on 48-bit RGBColor records, so we’ll use the high-order 8 bits of
each color component to form a 32-bit integer of the form $00rrggbb (the same as a
32-bit pixel value) and use that for our key into the hash table.

Figure 4 shows the data structure containing our hash table. RGBHashArray is a
zero-based array of records of type RGBHashNode. Each node holds a 32-bit color
value (rgbComp), along with the index at which that color is stored in the color table.
Nodes whose colors map to the same hash value are chained together in a linked list,
with each node’s next field holding the array index of the next node in the chain (this
collision resolution method is called separate chaining). The first kPrimeRecords (251)
entries in the hash array hold header nodes for all possible hash values; these point
into the rest of the array, which holds the data nodes themselves.

The data structure definitions for our hash table are shown in Listing 5. In addition
to the array holding the table’s contents, there’s a short header containing the index of
the next available data node along with the color table’s seed value at the time the hash
table was built. We can use the latter to keep our hash table synchronized with the
color table. Any time QuickDraw changes the contents of the graphics device’s color
table, it also changes its seed value. Thus if the seed values in the hash table and color
table don’t match (as checked by the routine in Listing 6), we know the color table
has been changed and we need to rebuild our hash table before using it.

There are two straightforward procedures, not shown here, for initializing the hash
table and for clearing it out before building or rebuilding its contents (see the code

RGBHashArray

0 1 2

kPrimeRecords kTableSize

kPrimeRecords
header nodes

kNumRecords data nodes
available for use

rgbComp

index

next

RGBHashNode

Figure 4. Hash table data structure

on the CD for details). RGBHashInit zeroes out the entire hash table, while
RGBHashClear clears only the list headers, making the table appear empty; there’s
no need to zero the data nodes themselves.

The procedure for inserting a color into the hash table is shown in Listing 7. It starts
by doing some bit manipulation to convert the RGBColor to 32-bit form. It then
uses the result to compute the hash-table index for the given color by finding its
remainder modulo 251. Next, it fills in the fields of the next available hash node and
inserts it at the head of the linked list starting at the computed index. Finally, it
increments the hash table’s nextEntry field to point to the next hash node in the array.

Listing 5. Hash table data structures

CONST
kNumRecords = 256; { Number of colors in color table }
kPrimeRecords = 251; { Number of hash entries }
kTableSize = kPrimeRecords + kNumRecords - 1;

{ Total size of (zero-based) hash array }

TYPE
RGBCompressedColor = LONGINT; { Color in 32-bit form ($00rrggbb) }

{ Data structure for hash table nodes }
RGBHashNode = RECORD

rgbComp: RGBCompressedColor; { RGB color in compressed form }
index: INTEGER; { Index of matching color in }

{ color table }
next: INTEGER { Array index of next node in list }

END;

{ Data structure for array to store hash table data }
RGBHashArray = ARRAY[0..kTableSize] OF RGBHashNode;

{ Data structure for hash table itself }
RGBHashTable = RECORD

nextEntry: INTEGER; { Array index of next unused data node }
curCTabSeed: LONGINT; { Value of color table seed when hash }

{ table was created (indicates when}
{ hash table must be updated) }

table: RGBHashArray { Hash table contents }
END;
RGBHashTablePtr = ^RGBHashTable;

VAR
gRGBHash: RGBHashTablePtr; { Global hash table pointer }

Listing 6. Checking the validity of the hash table

FUNCTION HashTableNeedsUpdate (ctab: CTabHandle;
rgbHash: RGBHashTablePtr): BOOLEAN;

BEGIN
HashTableNeedsUpdate := ctab^^.ctSeed <> rgbHash^.curCTabSeed

END;
CUSTOM COLOR SEARCH PROCEDURES 75

d e v e l o p Issue 22 June 199576
Building a hash table from the current graphics device’s color table is relatively
straightforward (Listing 8). First we save the state of the color table handle and lock it
in case we do something that moves memory while the handle is dereferenced. (Our
code doesn’t currently do anything to move memory, but if we should change it in the
future so that it does, this precaution ensures that it will still work.) Next we call our
RGBHashClear procedure to clear the hash table’s list headers to empty, and save the
color table’s seed value so that we can tell when the hash table needs updating. Finally,
we step through the contents of the color table, inserting each color into the hash
table with RGBHashInsert (Listing 7). Then all that’s left is to restore the color table
handle to its original state, and the hash table is ready for use by our search procedure.

Finally, we get to the real heart of the hash-table search procedure, RGBHashSearch
(Listing 9). First we pack the 48-bit RGBColor value into 32 bits. Next, we compute
the hash-table index for the given color and retrieve the list header for that hash value.
If the list is nonempty, we step through it, comparing the RGB color stored in each
node with the color we’re looking for. If the colors match, we get the index of the
corresponding color table entry from the data node and return TRUE. If we don’t
find the desired color, we return FALSE to indicate that the color was not in the hash
table. Note that this will happen only if the source image contains colors that didn’t
fit in the color table (an example of this is given in the next section).

Listing 7. Inserting a color in the hash table

PROCEDURE RGBHashInsert (rgbHash: RGBHashTablePtr; rgb: RGBColor;
cTabIndex: INTEGER);

VAR
compressedRGB: RGBCompressedColor;
hashIndex: INTEGER;

BEGIN
{ Reduce 48-bit RGB value to 32-bit compressed form. }
WITH rgb DO

compressedRGB := BSL(BAND(red, $0000FF00), 8) +
BAND(green, $0000FF00) + BSR(BAND(blue, $0000FF00), 8);

{ Compute hash-table index. }
hashIndex := compressedRGB MOD kPrimeRecords;

WITH rgbHash^ DO
BEGIN

{ Store color data in next available node. }
WITH table[nextEntry] DO

BEGIN
rgbComp := compressedRGB; { Actual RGB color }
index := cTabIndex; { Index in color table }

{ Insert this node at front of linked list. }
next := table[hashIndex].next;
table[hashIndex].next := nextEntry

END;

{ Update to next available node. }
nextEntry := nextEntry + 1

END
END;

Listing 8. Building the hash table

PROCEDURE CTab2Hash (ctab: CTabHandle; rgbHash: RGBHashTablePtr);
VAR

state: SignedByte;
i: INTEGER;

BEGIN
{ Save state of color table handle and lock it. }
state := HGetState(Handle(ctab));
HLock(Handle(ctab));

{ Clear hash table to empty. }
RGBHashClear(rgbHash);

WITH ctab^^ DO
BEGIN

{ Save current seed value. }
rgbHash^.curCTabSeed := ctSeed;

{ Step through contents of color table. }
FOR i := 0 TO ctSize DO

{ Insert each color into hash table with its index. }
WITH ctTable[i] DO

RGBHashInsert(rgbHash, rgb, i)
END;

{ Restore original state of color table handle. }
HSetState(Handle(ctab), state)

END;

Listing 9. Searching the hash table

FUNCTION RGBHashSearch (rgbHash: RGBHashTablePtr; rgb: RGBColor;
VAR index: LONGINT): BOOLEAN;

VAR
compressedRGB: RGBCompressedColor;
hashIndex: INTEGER;
chainIndex: INTEGER;
nextIndex: INTEGER;

BEGIN
WITH rgb DO

{ Reduce 48-bit RGB value to compressed form. }
compressedRGB := BSL(BAND(red, $0000FF00), 8) +

BAND(green, $0000FF00) + BSR(BAND(blue, $0000FF00), 8);

{ Compute hash-table index. }
hashIndex := compressedRGB MOD kPrimeRecords;

WITH rgbHash^ DO
BEGIN
{ Get array index of first node in list. }
chainIndex := table[hashIndex].next;

(continued on next page)
CUSTOM COLOR SEARCH PROCEDURES 77

d e v e l o p Issue 22 June 199578
Listing 10 shows how to install our search procedure for use in a drawing operation
(gSearchProcUPP is a universal procedure pointer that points to our search procedure,
which is simply a wrapper that calls RGBHashSearch). The Color Manager routines
AddSearch and DelSearch, respectively, install and remove a search procedure for the
current graphics device. Note that we install our search procedure just before the
drawing operations that use it, and remove it immediately afterward. This is because
the search procedure will be called for any drawing that occurs on the device it’s
attached to, and can significantly affect performance. Before installing and using our
search procedure, we call our HashTableNeedsUpdate function (Listing 6) to
compare the hash table’s seed value with that in the current color table. The function
returns TRUE if the seed values don’t agree; this tells us to rebuild the hash table
with CTab2Hash (Listing 8) before using our search procedure.

Astute readers may wonder what happens if the drawing area spans more than one
screen in a multiple-monitor configuration, since search procedures “belong” to
particular devices. Our sample code deals with multiple devices simply by calling
DeviceLoop to do its drawing, installing the search procedure only on 8-bit color
devices; on any other devices, CopyBits is called with ditherCopy mode.

EVALUATING THE RESULTS
Has all this optimization been worth it? Table 2 compares the speeds of the various
search procedures, again using CopyBits in srcCopy mode to copy the image shown
in Figure 1 from a 32-bit offscreen GWorld to an 8-bit device. For comparison, the
speed of a “nothing” search procedure is also shown. Clearly, the work has paid off —
the hash-table search procedure is over 15 times as fast as the brute-force approach,
and is certainly comparable to a dithered CopyBits. In some cases (for example, when
drawing an image in a zoomed-in state), our hash table technique is actually as fast as
(or faster than) a dithered CopyBits.

Although our hash-table search procedure gives impressive results, there are certainly
cases where its performance is less than optimal. The hash table method assumes that
all of the colors in the source image can be loaded into the current graphics device’s
color table. If this condition doesn’t hold, the search procedure will still work, but it
won’t be able to find colors that aren’t in the color table, so QuickDraw will use the

WHILE chainIndex <> 0 DO { Loop till end of list. }
{ Is this the color we want? }
IF table[chainIndex].rgbComp = compressedRGB THEN

BEGIN { If so, pass back its CLUT index and return TRUE }
index := table[chainIndex].index;
RGBHashSearch := TRUE;
EXIT(RGBHashSearch);

END
ELSE { Otherwise go to the next node. }

chainIndex := table[chainIndex].next;
{ If we got here, either there were no links at this hash-table }
{ address, or we reached the end of the list. Both cases }
{ indicate that the color is not in the CLUT, so return FALSE. }
RGBHashSearch := FALSE;

END;
END;

Listing 9. Searching the hash table (continued)

default inverse-table mapping method for those colors. This can give unexpected
results. For example, Figure 5 (on the inside back cover of this issue) shows a version
of the “Better Bull’s eye” image from develop Issue 1 (from the article “Realistic Color
for Real-World Applications”), drawn using the hash-table search procedure.

The image in Figure 5 has more than 256 distinct colors. The results may look all
right at first glance, but if we zoom in on the top right corner of the image (Figure 6,
also on the inside back cover), we can see unwanted bands of gray. Some of the actual
grays that were supposed to appear at these locations were not available in the
graphics device’s color table. As a result, they were color-mapped to the closest
available gray at a 4-bit resolution, resulting in banding.

A similar problem can result if you have several windows displaying different images
at once. The frontmost window will display correctly, but the others may not have
the correct colors available. Usually this isn’t important, since the frontmost window
is generally the one you’re concerned with. Typically, you should install the search
procedure only when drawing in the frontmost window.

Another, more subtle case where our search procedure can give unexpected results is
when the destination rectangle passed to CopyBits is smaller than the source
rectangle. If the source image uses direct color, CopyBits will average the color values
of adjacent pixels to produce the reduced image. This usually gives more visually

Listing 10. Installing and removing a search procedure

{ Get color table from current graphics device. }
gdh := GetGDevice;
ctab := gdh^^.gdPMap^^.pmTable;

{ Update hash table if necessary. }
IF HashTableNeedsUpdate(ctab, gRGBHash) THEN

CTab2Hash(ctab, gRGBHash);

{ Install search procedure right before drawing. }
AddSearch(gSearchProcUPP);

{ Example drawing code }
CopyBits(BitMapPtr(thePixMap^)^, myWindow^.portBits, srcRect, destRect,

srcCopy, NIL);

{ Remove search procedure right after drawing. }
DelSearch(gSearchProcUPP);

Table 2. Comparison of search procedure speeds

Nothing Brute-Force Hash
Machine Type Procedure Procedure Procedure
Macintosh IIci, Apple 8•24 card 83 2234 175
Macintosh Quadra 800, built-in video 23 691 48

Note: Speeds are given in ticks, and are for ten successive calls to CopyBits, copying a
100-by-100-pixel, 32-bit-deep image to an 8-bit screen.
CUSTOM COLOR SEARCH PROCEDURES 79

d e v e l o p Issue 22 June 199580
appealing results than just dropping whole rows of pixels; but in this case, since
averaging can produce colors that aren’t in the color table, we run into the same kind
of problem we’ve been discussing. (There’s no problem when the destination
rectangle is bigger than the source rectangle, since CopyBits will simply replicate
existing pixels without introducing any new colors into the image.)

MAKING IT BETTER
Our hash-table search procedure is certainly much more efficient than the brute-
force approach, but it can be improved still further. The most obvious idea would be
to reimplement the code in assembly language for maximum efficiency, although this
hampers portability and may not result in much of a speed improvement, depending
on how good your compiler is. Another area for improvement might be the hashing
algorithm itself: we could try a different hash function or another method of collision
resolution. However, since the hash table in this application is so small, this may not
be worth the effort.

A useful extension would be to find the closest match for colors that are not in the
color table. This would alleviate the problems that occur when the image has too
many colors to fit in the color table. Abandoning the hash table in favor of a tree-
based algorithm might work, but it would be hard to make it as fast as the hash table
method. Another approach might be to use some color-quantization algorithm to
reduce the total number of colors in the image to 256 — but of course that would
mean changing the actual image data.

NOW IT’S UP TO YOU
Custom color search procedures are one of the least-used methods for customizing
Color QuickDraw. In this article, we’ve seen several practical uses for them — now
it’s up to your creativity to find others. (Let us know if you do!)
• Inside Macintosh: Advanced Color Imaging, on this
issue’s CD in draft form and forthcoming in print from
Addison-Wesley. See the Color Manager chapter.
This is the most thorough documentation in Inside
Macintosh for color search procedures and color
mapping with inverse tables. You’ll also find some
useful information in the Palette Manager chapter.

• Inside Macintosh: Imaging With QuickDraw (Addison-
Wesley, 1994), Chapter 1, “Introduction to QuickDraw,”
Chapter 4, “Color QuickDraw,” Chapter 5, “Graphics
Devices,” and Chapter 6, “Offscreen Graphics Worlds.”

• Programming QuickDraw by David Surovell, Frederick
Hall, and Konstantin Othmer (Addison-Wesley, 1992).

Everything you ever wanted to know about QuickDraw.
In particular, see “Graphics Devices” in Chapter 3,
“Drawing in Color,” and see “Pixel Processing Traps”
and “Depth Conversion and Dithering” in Chapter 7,
“Image Processing with QuickDraw.”

• “In Search of the Optimal Palette” by Dave Good and
Konstantin Othmer, develop Issue 10. How to use the
Picture Utilities Package to obtain a palette with the
best colors for displaying an image on an indexed
device.

• Macintosh Technical Notes “Principia Off-Screen
Graphics Environments” (QD 13) and “Of Time and
Space and _CopyBits” (QD 21).

RELATED READING
Thanks to our technical reviewers Joseph
Maurer, Don Moccia, Guillermo Ortiz, and Nick
Thompson.•

The world of scripting is heating up. More and more
developers are getting hip to scriptability, but they’re
discovering it’s not a simple matter — implementing
scripting support in an application involves many
complex issues. That’s where this column comes in.

My article, “Designing a Scripting Implementation,” in
the last issue of develop (Issue 21) offered approaches
you’ll want to consider when designing your scripting
implementation (your object model hierarchy and your
human vocabulary), as well as some basic tips and
guidelines for making your application scriptable. This
column picks up where that article left off, elaborating
on many of the same issues and providing further tips,
tricks, and standards for scriptability. In this first
installment of the column, I’ll clarify a couple of points
that some developers found confusing in the article;
then I’ll give some new guidelines.

STARTING WITH MENU COMMANDS
In my previous article, I suggested that one place to
start your scripting implementation is to implement
your menu commands. Permit me to clarify. Looking at
menu commands is useful because they can suggest
functionality that users should be able to script. But to
maintain consistency with other object model–based
applications, you should not implement scripting
commands that simply mimic the menu commands.

Resist the temptation to fill up your dictionary with all
your menu items, even though it might be easier to
write your event handlers this way. Instead, implement
the object model (discussed at length in “Apple Event
Objects and You” in develop Issue 10 and “Better Apple
Event Coding Through Objects” in Issue 12). Keep the
number of verbs small, implement standard verbs

ACCORDING TO
SCRIPT

Scripting
Quandaries

CAL SIMONE
CAL SIMONE (AppleLink MAIN.EVENT) spends a lot of time
helping others make sense of AppleScript, escaping from
Washington DC about once a month to promote or teach
wherever applicable, and let the script writer apply
those verbs (especially make, get, and set) to a large
number of objects.

LOWERCASING VERBS, TOO
I mentioned in the last issue that you should begin all
the terms in your dictionary (except for proper names)
with lowercase letters. This applies not only to object
names but to verbs as well. There are two reasons for
this rule. First, AppleScript allows commands to be
embedded within commands (particularly when the
embedded command is from a scripting addition such
as choose file), and these complex command
statements read better when all the verbs are in
lowercase. For example:

set myFile to choose file with prompt "Pick it!"

Second, if you were to include an entire suite (such as
the Required or Core suite) from the system dictionary
and then add your own verbs starting with uppercase,
you’d end up having a mixture of verbs beginning with
uppercase and those beginning with lowercase displayed
in your dictionary, not a pretty picture.

HANDLING REQUESTS TO GET AN OBJECT
Developers are sometimes confused about how to
handle a request from an Apple event or a script to get
an object. In the early days, especially when programs
were communicating directly with other programs,
developers thought that getting an object meant
returning the internal data structure of the object, such
as a WindowRecord or other C structure. In today’s
scripting world, you should never return raw internal
data structures. What you should return depends on
the object or property requested.

Applications, windows, documents, and interface
elements. In most cases, when the object requested is
an application, a window, a document, or an interface
element (such as a button), you should return an error
since you can’t really bring these types of objects into
your script. For example, get window 1 should result
in an error. One exception is that if your application is
a script-controlled interface builder, you might want to
return references to the windows, documents, and
interface elements.

You should provide a contents property for objects
such as windows and documents. When this property is
requested (as in get the contents of window 1), you
ACCORDING TO SCRIPT: SCRIPTING QUANDARIES 81

AppleScript. He lives in Adams-Morgan, the city’s only real ethnic
neighborhood; full of cultural diversity, it boasts 45 restaurants
representing 18 different nationalities in just one block.•

82
should return the entire contents of the object specified,
if appropriate.

Text elements. When the object requested is a text
element, such as a word or a character (as in get word
4 of paragraph 3 of document "Sales"), you should
return the contents of the object itself as a string, such
as "Fred" (word) or "x" (character).

Graphics objects. When the object requested is a
simple graphics object where a standard format is in
widespread use, you should return the contents of the
object itself, just as for text elements. For example, for
a PICT you would return the picture’s data; for a point
or a rectangle you would return a list of integers.
When the object requested is a compound graphics
object, such as a grouped graphic, you should return
a reference to the object, in the form of an object
specifier.

Cells, fields, and form elements. You should
provide a value property for objects such as cells in a
spreadsheet, fields in a database, or elements of a form.
(In essence, this property is the same thing as the
contents property, but in natural language, people
usually refer to the value of a cell or field and the
contents of a window. Making a distinction between
these two kinds of properties thus preserves a natural
language style.) When this property is requested (for
instance, get the value of cell 3 of row 7), you should
provide the content data for the object specified. If you
want script writers to be able to get the value in more
than one form, provide the as parameter (for example,
get the value of . . . as styled text).

Rows, records, and entire forms. When a row or
column in a spreadsheet or table, a record in a database,
or an entire form is requested, you can return a list of
the data values in each field (for example, get record
43 of database "Employees" might return {"Fred",
45.00}). However, it might be more appropriate to
return a reference to the object, since the list might be
too large or might contain large data. By the same
token, either a list or a reference should be returned
when the current record property that some
developers have implemented is requested.

An object’s internal data. Rather than dealing with
raw internal data structures, script writers should be
able to get any piece of attribute data for an object
through the object’s properties, by using the get
<property> construct. If you want to let them get all
the attribute data at once with a single get command,
provide a properties property (as, for example,
d e v e l o p Issue 22 June 1995

Thanks to Sue Dumont and Jon Pugh for reviewing this column.•
QuarkXPress does), return a record with the values for
all the properties, and provide a definition for the
record as a new abstract class in the Type Definitions
suite (discussed in my article in Issue 21).

As you can see, it’s not always clear how to respond to
an object request. While not a hard rule, the basic
guideline is this: If an object is an elementary piece of
data, such as a word or a rectangle, return its value
directly; if it’s a structure, such as a record or a row,
return a list of its values or a reference to the structure;
and if it’s a complex or abstract object (especially part of
the user interface like a window or a button), return
either an error or a reference to the object. What you
decide to return will often depend on the way you want
script sentences to read.

THE APPLICATION AS CONTAINER
How to create and extract object specifiers from Apple
events is explained in Inside Macintosh: Interapplication
Communication. The outermost container for an object
specifier is always the application itself, represented by
a container of type typeNull. A null container is the
only proper way to specify the application level of the
containment; do not include a cApplication object
specifier as a container. Figure 1 illustrates the right
way to specify the application as a container. The wrong
way in this case would be to have a third container
level labeled cApplication between cDocument and
cNull.

I’M OUTTA SPACE
Remember, everything you do in your event handlers,
your object accessor functions, your error messages,
and your dictionary will significantly affect the
experience your users have in writing scripts. In future
columns, I’ll be discussing how to organize your
dictionary; the increasingly crowded naming space for
terms; how to organize and propose a new standard
suite, event, or object definition; recording; and, as
always, more tips, tricks, and conventions.

cParagraph cDocument

cNull

the second
paragraph

in document
"Fred"

in application
"CoolApp"

Desired class
Container
Key form
Key data

Desired class
Container
Key form
Key data

Figure 1. Specifying the application as a container

OpenDoc, Apple’s compound-document architecture, offers a new
experience to users. This article gives developers a guided tour of
OpenDoc’s human interface and describes its conceptual model. We
provide the necessary background for helping you fit your application
into the OpenDoc world, and present some of the decisions you’ll have to
make that represent a departure from today’s applications.

The OpenDoc User Experience
DAVE CURBOW AND
ELIZABETH DYKSTRA-
ERICKSON
OpenDoc provides a new user paradigm: the user focuses on creating a document or
performing a task, rather than on using a particular application. Understanding the
OpenDoc user experience is a prerequisite to developing OpenDoc part editors that
are consistent with and supportive of the OpenDoc design model. We’ve talked with
developers at OpenDoc training classes who had written code without realizing what
user features they had implemented; this article will provide a context for the
OpenDoc code you write. The article describes the OpenDoc user experience on the
Macintosh, but most of it also applies to Microsoft Windows and IBM OS/2.

Developer releases of OpenDoc are available through a number of different sources.
The documentation provided in these releases, which includes the OpenDoc
Programmer’s Guide, OpenDoc Human Interface Guidelines, and the Drag and Drop
Human Interface Guidelines, can give you much more detail on what’s covered here (we
concentrate on the basics, so a lot of exceptions aren’t covered). Some of the technical
basics of OpenDoc are also covered in the develop articles “Building an OpenDoc Part
Handler” in Issue 19 and “Getting Started With OpenDoc Graphics” in Issue 21.

ALL ABOUT PARTS
OpenDoc provides an object-oriented user model, where documents are objects that
contain other objects, and where each object may have distinct behaviors. However,
object isn’t a term that typical users understand in a document context, so we use part
instead (for “part of the document”).
THE OPENDOC USER EXPERIENCE 83

DAVE CURBOW is the technical lead of the
OpenDoc Human Interface team. Before that he
worked on AppleScript and developer tools such
as ResEdit. In an earlier life he was a software
engineer on the Xerox Star and a now-forgotten
mainframe operating system. When he escapes
from the office, Dave can often be found working
with his wife on their house or exploring cathedrals,
castles, and other wonders in England (including
the Kew Bridge Steam Museum). It’s well known
that Dave can be bribed with dark chocolate.•

ELIZABETH DYKSTRA-ERICKSON is a recent
addition to the OpenDoc Human Interface team.
She comes to Apple from research and product
development in collaborative technology and
interactive multimedia at US WEST Technologies,
Pacific Bell, and the University of Amsterdam.
In her copious free time, she teaches human-
computer interaction at the University of San
Francisco, conspires to resurrect her 1980’s tech-
punk band, and marvels with her husband at the
havoc potential of their two-year-old daughter.•

d e v e l o p Issue 22 June 199584
Parts enable all kinds of content to be combined into a single document. The user
sees each part as a self-contained entity with its own content, behavior, and set of
properties. Each part contains one kind of data that’s intrinsic to it, and may contain
other parts as well.

PARTS AND DOCUMENTS
Every document consists of one or more parts: a single part at its top level, called the
root part, and other parts that are embedded in the root part. Documents always
reside on the desktop or in a folder — that is, they appear in the Finder. (Parts
embedded inside other parts aren’t considered to be documents.) Users assemble a
document by embedding parts as needed, with drag and drop or with the Paste and
Insert commands, as we’ll see later. Parts can be dragged between documents or onto
the desktop (where they become documents); documents can be dragged from the
desktop into other documents (where they become embedded parts).

The root part of a document determines the document’s overall characteristics such as
its basic editing metaphor (for instance, text, drawing, or spreadsheet), the size of its
work area (its “page”), its printing options, and whether saving is manual or automatic.

PART CONTENT: INTRINSIC AND EMBEDDED
Every part has some kind of intrinsic content, as defined by the part developer. This is
the content that’s natural to the part, such as characters and paragraphs in a text part,
or lines, circles, rectangles, and so on in a graphics part. In addition to its intrinsic
content, a part may contain embedded parts that have their own intrinsic content, as
shown in Figure 1.

There’s no requirement that a part be able to contain embedded parts, although it’s
usually desirable. Some parts have content models in which embedding doesn’t make
sense — for example, sound parts or parts that display information, such as clocks or
stock tickers. As a developer, you must decide whether it’s desirable for parts you
create to allow other parts to be embedded. But, a key characteristic of OpenDoc is
that if a part can contain one kind of part, it can contain all kinds of parts. (Contrast this
with traditional documents, which can contain only certain standard data types, such
as text, PICT, and TIFF, in addition to their intrinsic content.) To a part, any parts
embedded within it are “black boxes” — parts need know nothing about the internal
structure or semantics of embedded parts.

PART BEHAVIOR: EDITORS AND VIEWERS
There’s little difference between the appearance of the OpenDoc window in Figure 1
and that of a similar window in a page-layout application of today; manipulation of

Figure 1. A text part with an embedded graphics part

the window contents, however, can be very different. When users interact with
OpenDoc parts, the resulting behavior is determined by part editors and part viewers.

A part editor is a full-featured OpenDoc software component that allows the creation,
editing, and viewing of parts of a particular kind, just as a conventional application
allows manipulation of documents now. Like applications, part editors are sold or
licensed and are legally protected from unauthorized copying and distribution. You
supply users with the part editor (which the user installs in the Editors folder in the
System Folder) and also a stationery pad (which the user will double-click or drag to
create an OpenDoc document or part).

A part viewer is a special, limited type of part editor that can display and print a
particular kind of part but can’t be used to create or edit such a part. Often a part
viewer will just be a part editor with its editing and part-creation capabilities
removed. It’s important that part viewers be widely available, to allow portability of
OpenDoc compound documents across machines and platforms. We encourage you
to create and freely distribute part viewers without restriction for all the kinds of
parts that you support. Wide availability of a particular part viewer encourages
purchase and use of its equivalent part editor, because users will know that other
users will be able to view parts created with that editor.

Note that it may be possible to view a part even when neither its editor nor its viewer
is present; translation may occur that substitutes a different, compatible editor. For
example, suppose a user creates a document with a text editor named SurfWriter and
sends it to someone who doesn’t have the SurfWriter editor; the document is translated
to a similar format supported by a text editor that the receiving user does have.

Users don’t work with icons for part editors and part viewers the way they work with
application icons today: editors and viewers aren’t launched by double-clicking. So, as
a distinct break from application icons, the icons for editors and viewers have a unique
shape. This shape provides maximum customizable space for your identifying elements,
with no required badges or identifiers such as hands and pencils (see Figure 2).

As a step toward becoming fully OpenDoc compliant (that is, becoming part editors
themselves), some applications will be converted to container applications — applications
that allow parts to be embedded in their documents, much as some documents today
allow the embedding of QuickTime movies.

Many of today’s applications have plug-in or extension APIs that may be used to
add functionality to the application. These will continue to be important to extending
the capabilities of part editors.•

PROPERTIES OF PARTS
All parts have a basic set of properties; these include the part kind, the part category,
the view type (icon or frame, as we’ll see in a moment), which editor to use, who last
modified the contents of the part, and when the part was last modified. You may
decide to support additional properties for parts that you develop — for example,
whether to keep a paragraph of text with the next paragraph. Some part properties,

Part editor Part viewer

Figure 2 . The default part editor and part viewer icons
THE OPENDOC USER EXPERIENCE 85

d e v e l o p Issue 22 June 199586
such as the view type, may be modified by users; other properties may be set only by
developers or by the system.

Part kind and part category. Two critical part properties that you need to assign
(in your part editor’s 'nmap' resources) are part kind and part category.

• Part kind refers to the data format of a part’s intrinsic content; it’s
analogous to a file’s type. This property often has a name similar to
the editor name. If the user changes a part’s kind (with the Part
Info command in the Edit menu), the part’s content is translated to
the new kind.

• Part category refers to a set of part kinds that are conceptually
similar. OpenDoc uses categories to determine the set of part
editors or viewers that are applicable to a given part, and to decide
whether it’s appropriate to translate data during inter-part editing
(for example, when content is copied from one document into
another). If a single part editor supports many kinds of data, these
kinds are usually in the same category.

The list of categories is maintained by CI Labs, a consortium that coordinates cross-
platform OpenDoc development; Styled Text and Video are two examples of part
categories. If SurfWriter is a MacWrite-like text editor, its part kind might be
SurfWriter Text and would be in the Styled Text category. The SurfWriter editor
would most likely allow translation from other part kinds in the same category.

View type. Your part editor needs to assign the default view type for its embedded
parts, which determines how each part is initially displayed: as an icon or in a frame.

• The icon for a part can be not only the standard 32-by-32- and 16-
by-16-pixel sizes, but also a thumbnail icon (64-by-64 pixels). The
thumbnail shows a miniature representation (a “poster page”) of
the part’s contents to help users identify the part. Figure 3 shows
the standard icons for a graphics part, and the thumbnail icon for a
text part consisting of a one-page memo.

• A part can be displayed with its contents in a bounded area called a
frame, which allows editing in place (rather than requiring the part
to be opened into a separate window). Frames are usually, but not
necessarily, rectangular. A part’s content may be displayed in more
than one frame at a time and may have multiple representations;
for example, a tabular part may be seen as a chart in one frame and
as a text table in another.

In the Finder, documents are displayed only as 32-by-32- or 16-by-16-pixel icons in
the initial OpenDoc release; eventually thumbnail icons and frames will also be
supported at the Finder level.

32-by-32 and 16-by-16 64-by-64 (thumbnail)

Figure 3. Icons for OpenDoc parts

Internally, all parts have frames, even when they’re displayed as icons, but this
implementation detail is hidden from the user and so is ignored in this discussion; here
we use frame to mean only the view that displays the part’s contents.•

Users can change the view type with the Part Info command in the Edit menu (and
possibly with “accelerator” commands, such as View as Icon, that are provided by the
part editor). In Figure 1 above, frame view is desirable because it allows the user to
see the graphic laid out in the document and to edit it in place. An icon view might
be preferable for, say, a spreadsheet part that gives supporting data on a subject
covered broadly in the text. Any frame may be reduced to an icon at any time, or any
icon opened into a frame, without affecting the view type of any other part; however,
the containing part may reflow content when an embedded part’s view type is
changed.

Except that a part may be edited only when its content is viewed in a frame, icons and
frames are functionally equivalent. Operations such as drag and drop that may be
applied to one may be applied to the other. Whether viewed as icons or in frames,
embedded parts can be opened into separate windows if desired (although they’re still
embedded parts and not documents).

WORKING WITH PARTS
Now that you know some of the basics about parts, let’s look at what it’s like to work
with them. We’ll start with what the desktop might look like after the user opens the
document shown earlier in Figure 1 (see Figure 4). Document icons on the desktop
look the same as today, even though some of them, like the Text Document icon,
represent OpenDoc documents. From the user’s point of view, there’s no apparent
distinction between an OpenDoc document and a “regular” application document.
The menus are those of the text part editor (because the root part — a text part — is
active). The menu names are those you’d expect when editing text, except that the
File menu is named Document, and the Application menu icon (to the far right) is a
document icon rather than an application icon. Finally, notice the Stationery folder;
this contains the stationery pads that the user double-clicks or drags to create
documents or parts.

Figure 4. A Macintosh desktop in the world of OpenDoc
THE OPENDOC USER EXPERIENCE 87

d e v e l o p Issue 22 June 199588
Now suppose the user wants to edit the content of this document’s embedded graphics
part. The first step would be to select the content to be edited, just as in applications
today. To select the triangle, the user simply clicks it. As shown in Figure 5, a number
of things happen: The graphics part editor highlights the selected graphics object by
displaying handles. The graphics part becomes active (a border appears around its
frame, its menus replace those of the text editor, and its tool palette appears). The
text part is now inactive. Note that OpenDoc follows an “inside-out” model in
determining which part to activate: it activates the smallest part that contains the
mouse location.
Part editor menus
for graphics part

Document with
part embedded

Selected graphics object
in active part

Active part
(in frame)

Part editor
palette for

graphics part

Figure 5. The same desktop after the user clicks the triangle
Just as the content of a part may be selected for editing, an embedded part (which is
content of its containing part) may itself be selected for certain operations. To select
an embedded part, the user drags across it or, if the part is active, clicks its border.
Figure 6 shows what happens when the user clicks the active frame border in Figure
5: The graphics part is selected and its border changes to show handles; the part that
contains it — the text part — becomes active again. The menus are replaced by the
text menus and the graphics palette goes away. (The same thing happens to the
menus and palette when the user selects text in the text part, or clicks there to get an
insertion point; in all cases, content that resides in the text part has been selected.)

In summary, parts viewed in frames can be active, inactive, or selected. This state is
indicated by the appearance (or absence) of a frame border. Parts viewed as icons can
be only inactive or selected.

• A part is active when it contains the current selection or the
insertion location (which could be a visible insertion point, as in
text, or an unmarked default location, as when the background in a
graphics part is clicked). The selection may be within the part’s
intrinsic content or it may be a part embedded in the active part.
When an embedded part becomes active, OpenDoc displays the
active frame border — a double dotted line — around the part.

• A part is inactive when the user is working in some other part.
When viewed in a frame, an inactive part has no visible frame
border around it. (Note that when a part is inactive, its part editor

can still be running; for example, if there’s a part that searches a
database, the user can start the search and go off to do other work
in another part in the same document while the search continues.)

• Finally, a part may be selected. The user selects a part in a frame
view by dragging across it, or by clicking its border if it’s the active
part. The containing part is responsible for the visual appearance
of a selected part’s frame; typically, the frame shows handles, to
allow resizing. To select a part viewed as an icon, the user simply
clicks the icon.

In general, as soon as the user clicks inside a part’s frame, that part becomes active.
The editor for the previously active part removes its menus, palettes, and other user
interface elements, and the new active part’s editor displays its user interface
elements. The active part receives commands and keyboard events. Only one part at
a time may be active within a document because, as in today’s documents, there can
be only one selection at a time.

RESIZING FRAMES
From a user’s point of view, resizing a frame is similar to resizing an on-screen
object today. A difference in OpenDoc is that the same frame may show different
numbers of resize handles on its border when it’s in different containers, because the
containing part’s editor determines the appearance of a selected-frame border. Your
part editor may display more or fewer resize handles than other editors — and
perhaps none, if your editor doesn’t allow the frame’s size to be changed.

Your part editor also controls how much space an embedded frame occupies. When
a user attempts to change the size of a frame embedded in your part, the embedded
part negotiates with your part about the new size. Your editor may grant the
requested size, reduce it, or refuse altogether, depending on its current contents and
other part preferences such as snap-to-grid. The containing part also determines
whether to adjust the layout of its own intrinsic content around the frame when a
frame’s size changes.

Some containing parts may require that embedded frames be rectangular, in which
case their selection handles would resize only to rectangular areas. Others might
allow embedded frames to be nonrectangular; for example, a containing part could
provide selection handles that act independently, as shown in Figure 7.

Figure 6. Selected embedded part
THE OPENDOC USER EXPERIENCE 89

d e v e l o p Issue 22 June 199590
When a user changes the size of your part’s frame, you should not stretch or scale the
contents of the frame, but rather just change the viewing area. (Note how this differs
from the resizing of content, such as a selected graphics object, in which case scaling
may well occur.) Figure 8 shows a table part in its original state and after resizing to a
smaller size; the viewing area has become smaller, but the content hasn’t been scaled.

Although we recommend against scaling when a frame is resized, for some
parts scaling may make sense.•

To see the entire table, the user can choose View in Window from the Edit menu.
The table part then opens into a separate window (called a part window) allowing all
its content to be seen, as shown in Figure 9. Although the part is viewed in a window,
it’s not a document — it’s still an embedded part. Figures 8 and 9 show views of the
same content, and any changes made in one are reflected in the other views.

Figure 7. Independent resize handles
COPYING AND MOVING CONTENT
The user can copy and move any content with the Cut, Copy, Paste, and Paste As
commands as well as a variety of drag and drop operations. All these commands and
operations work with embedded parts as well as intrinsic content, and they work

Figure 8. A table part before and after resizing

Figure 9. The table part opened into its own window

between parts in the same document as well as between different documents. Also,
with drag and drop or the Insert command (in the Document menu), the source for a
copy operation can be an entire document.

The Paste As command presents a dialog that allows the user to specify the data format
to convert to when pasting. Holding down the Command key during drag and drop
is the equivalent of Paste As; at the end of the drop, the Paste As dialog is presented.

Copied or moved content is inserted at the insertion location or replaces the current
selection, with the exception that the Insert command inserts the contents of the
document after the current selection.

The part editor makes “embed vs. merge” decisions in certain circumstances — that
is, whether to insert the copied or moved content as an embedded part or to merge it
with the destination part’s intrinsic content. For example, a copied text part would be
merged into another text part but would be inserted as an embedded part in a graphics
part. Users will most often want the part editor to make these decisions, but they can
always override them with the Paste As command.

Links. The Paste As command, or its drag and drop equivalent, also allows links to
be created. Links are special cases of the copy operation: OpenDoc updates the copy
when the original content changes (the user specifies in what situations updating
should occur). Both intrinsic content and embedded parts can be linked, and links
can exist within a single part, between two parts in a single document, or between
multiple parts in different documents. The same content can be linked to multiple
destinations, but each link is technically one-way; every link has a single source and
a single destination. Typically, only edits to the source of the link are allowed. Some
part editors may allow edits to the destination (such as a font change); however, these
edits will not persist after the destination is updated from the source.

OPENDOC MENUS
OpenDoc provides these basic menus when a document is opened: Apple, Document
(replacing the File menu), Edit, Help, and Application. The other menus vary
depending on which part is currently active. As we saw earlier, when a part is activated,
the associated part editor installs its menus and any tool palettes or in-window controls.
When a part (or the document window itself) is deactivated, the menus and palettes
associated with the active part’s editor are removed.

Note that when content is dragged into a frame, the part editor shouldn’t install its
menus unless the mouse button is released within the frame. For example, if the user
selects some text in a text part and drags it into a graphics part, the initial text menus
shouldn’t be replaced until the user releases the mouse button within the graphics
part.

Figure 10 shows what the basic menus might look like when a part whose editor is
named SurfWriter is active. As you can see, the part editor has included its name in
some of the commands. In the sections that follow, we’ll look further at some of the
commands in the Document and Edit menus.

DOCUMENT MENU COMMANDS
Most of the commands in the Document menu behave similarly to their File menu
counterparts. Generally these commands refer to an entire document (the exception,
Open Selection, is here because it’s an open operation like Open Document). These
commands should be augmented only if absolutely necessary, and only by the root
part’s editor.
THE OPENDOC USER EXPERIENCE 91

92
Figure 10. The basic OpenDoc menus
d e v e l o p Issue 22 June 1995
Notice that the Quit command isn’t included, nor should it be added; OpenDoc
editors are unloaded automatically when no longer needed. Also note that we’re
recommending support for Save a Copy rather than Save As; Save a Copy keeps the
current document open and active, and the copy remains closed until the user opens it.

The Document menu includes these new commands: Open Selection, Open
Document, Insert, and Drafts.

• Open Selection opens a selected part into a part window, allowing
the user to, for example, look at the contents of a part viewed as an
icon. (Double-clicking the icon would also work.) Note that this
command applies to the currently selected part and not to the
active part, which is the part containing the current selection.

• Open Document is analogous to Open File: it lets the user choose
a document (through the Standard File dialog) and open it into a
window, just as when the document is opened from the Finder.

• With the Insert command, the user can choose a document (again,
through the Standard File dialog) to insert into the active part. It
inserts the contents of the document at the insertion location or
after the current selection. This command may be used with a
stationery pad to embed a new “blank” part.

• The Drafts command allows the user to take a “snapshot” of the
current state of the document at any time, creating a draft that can
be accessed (or deleted) later through this command. Drafts are
stored efficiently, as differences from the previous draft, so there’s
little penalty for using them. Previous drafts are “preserved”
historical versions of the document; they aren’t “live” and must be
copied out to be edited.

EDIT MENU COMMANDS
The commands in the Edit menu are used to edit contents of the active part — for
example, selected text or a selected embedded part — or to modify properties of a
selected part. Because different part editors may require different editing commands,
the active part editor may add additional commands to this menu.

Undo and Redo work as usual except that they can be invoked successively — that is,
if the user chooses Undo three times in a row, the last three “undoable” actions are
undone in order.

As described earlier, Cut, Copy, and Paste can be used to copy and move embedded
parts as well as intrinsic content. The Paste As command lets the user specify the data
format to convert to when pasting, and also includes an option for creating links.

The other commands of special interest in the Edit menu are Part Info, View in
Window, and Show Frame Outline:

• Part Info displays a dialog for editing a selected part’s properties —
for example, changing the part kind to another (compatible) part
kind or changing the view type from icon to frame or vice versa.
This command is replaced by Link Info if the user selects a linked
part. If intrinsic content is selected, the part editor may change
this command — for example, to Paragraph Info or Circle Info.

• View in Window opens the active part into a part window. If the
active part is already viewed in a window, this command brings
that window to the front. (Remember that a selected part can be
opened into a part window with the Open Selection command in
the Document menu, or by double-clicking if it’s an icon.)

• We recommend that you add Show Frame Outline to the Edit
menu when a part in a frame view is opened into a part window. In
the part window, this command puts an outline around the content
that matches what’s visible in the frame in the containing part, making
it easier to correlate the two. The user can also drag the outline to
change what’s displayed in the frame in the containing part.

OPENING A WORLD OF POSSIBILITIES
OpenDoc revolutionizes the way developers deliver software, and does so without
any dramatic upheavals to the user. OpenDoc part editors and container applications
can coexist with applications and documents of today, providing OpenDoc’s benefits
without disrupting how users work with current applications. Your OpenDoc parts
should behave much like current applications, so that users don’t have to go through
a substantial learning process. Our user tests show that users think OpenDoc simply
fixes some “bugs” and lets them work the way they want. In other words, you and
OpenDoc will provide business as usual — plus.
Th
Ta
to
C
B

• OpenDoc Human Interface Guidelines, OpenDoc
Programmer’s Guide, OpenDoc Class Reference,
OpenDoc Cookbook, and Drag and Drop Human
Interface Guidelines. These documents will eventually
be available in printed form but meanwhile are
provided electronically with early releases of OpenDoc.

• The OpenDoc World Wide Web pages, located at
http://www.cilabs.org.

• develop articles by Kurt Piersol: “Building an OpenDoc
Part Handler,” Issue 19, and “Getting Started With
OpenDoc Graphics,” Issue 21. (The term part handler
used in these articles has since changed to part editor.)

• Apple Directions: “OpenDoc Your Mind” in the
December 1994 issue, and periodic articles (including
Q&As) by the authors, starting with the January 1995
issue.

RELATED READING
THE OPENDOC USER EXPERIENCE 93

anks to our technical reviewers Dave Bice,
ntek Çelik, Ray Chiang, and Lori Kaplan, and
 the OpenDoc Human Interface teams at Apple,
laris, IBM, and WordPerfect, especially Sue
artalo, Kristin Bauersfeld, Dick Berry, Alex

Bigney, Jennifer Chaffee, Pat Coleman, Dan
Jordan, Jeff Kreeger, Per Nielsen, Kerry Ortega,
David Roberts, David C. Smith, Mark Stern, Mike
Thompson, and Ron Zeno. Special thanks to Dave
Bice for providing source material for this article.•

94
I’ve been juggling seriously since the summer of 1979,
when I saw a performance of the Pickle Family Circus
in a park one gorgeous Saturday afternoon. I already
knew how to juggle three balls — shakily — but that
was the day I really discovered juggling. I had never
seen clubs juggled up close and in person before (clubs
are those bowling pin–like things that are thrown
spinning end over end through the air), and in particular
I had never seen jugglers throw things back and forth
between each other (called passing). The Pickle Family
did lots of both.

I was stunned. I was bowled over. I was frozen in my
seat, gaping and incredulous. I couldn’t believe that what
I was seeing was possible. I had to learn how to do that.

Fortuitously, the circus offered workshops in various
circus arts, including juggling, so I immediately signed
up. The following morning, I learned the basics of
passing balls, forced my roommate to learn to juggle
three balls so that I’d have someone to try it out with,
and embarked on a long and fruitful juggling binge. The
fire that was lit that day burned white hot for over five
years, and will remain fitfully smoldering as long as I can
still lift my arms, close my fingers, and count to 3.

My favorite kind of juggling nowadays is getting
together with other jugglers and passing clubs. We
arrange ourselves in various formations about the floor,
start juggling all together, and throw the juggling clubs
back and forth in varied and complex — but mostly
predetermined — ways.

Which brings me to the main topic of this column:
how multiperson juggling patterns work, and one way

THE VETERAN
NEOPHYTE

Paper Juggling

DAVE JOHNSON
d e v e l o p Issue 22 June 1995

DAVE JOHNSON first met his wife, Lisa, in a stage combat class,
learning to swashbuckle in dramatic fashion. Dave took fencing in
college for a couple of years, always secretly wishing there were
more yelling, ducking, slashing, and diving, instead of the tightly
to write them down on paper. I’m going dangerously
far out on a limb here, assuming that it will be interesting
to you, even though it has precious little to do with
programming computers, and even though you’re
probably not a juggler. This particular limb is propped
up a little by the very high proportion of computer
people, mathematicians, engineers, and other scientists
among jugglers. (There have been long-winded and
unresolved discussions about why this should be so, but
whatever the reason, it’s a fact.) It’s also been my
observation (at Apple at our weekly juggle, and at the
Worldwide Developers Conference) that computer
people, in their endearing analytical way, often stand
around for a long time trying to figure out the patterns.

Once you understand the rules of how the objects
interleave and the jugglers interconnect, you can search
for new patterns on paper, whether or not you know
how to juggle. It’s like a puzzle, or like a mathematical
game. It’s even conceivable (though just barely) that a
knowledge of juggling patterns could be useful to you.
I saw a citation on the rec.juggling newsgroup a while
back for a paper called “Juggling Networks,” published
in the proceedings of a conference on parallel and
distributed computing. From the abstract:

. . . these constructions are based on a metaphor involving
teams of jugglers whose throwing, catching, and passing
patterns result in intricate permutations of the balls. This
metaphor affords a convenient visualization of time-
division-multiplex activities that should be of value in
devising networks for a variety of switching tasks.

There have been several mathematical papers that deal
with juggling in one way or another, and even so
eminent a personage as Claude Shannon, the father of
information theory, was an amateur juggler and was
interested in the permutations and combinations in
juggling patterns. He wrote a paper called “The
Scientific Aspects of Juggling,” and I heard that when
he appeared at a juggling convention he drew
thunderous applause from the assembled jugglers
(another indication of how many jugglers are science
types).

Club passing is by far my favorite kind of juggling. The
jollies I get from it are all over the map; it’s deeply
satisfying for me on many, many levels. Part of it is
social, of course. Like sex, it’s just more fun with others.
And a big part of it is the cooperation, being a part of
this complicated group pattern that’s built and
controlled, linear, minimalist motions of good foil fencing. Then he
discovered the world of stage combat, and he’s never gone back.
He and Lisa are currently enrolled in a new class: Elizabethan
Swordplay, using rapier and dagger. En garde!•

maintained by everyone together. I suspect it’s a lot like
jamming with a band in that sense: we all agree on a
framework — 12-bar blues in E or a seven-club four-
count with triples, as the case may be — and then go
for it, the members either struggling to keep up or
embellishing wildly, according to their level of skill.
Sometimes we’ll hit a “groove,” a day and a pattern and
a distribution of people that just feels right, the beat
solid, the hands sure of their grip.

Club passing can feel like being part of some giant,
whirling, clockwork contraption, with everything
ticking and clacking along. Talk about being a cog in
the machine! The spinning clubs form this sort of
living, writhing, flying tangle with its own weird
existence, a kind of “energy net” connecting the
jugglers involved. The old saw “what goes around
comes around” has a particularly pointed truth in club
passing: if one juggler throws a pass badly — say
without quite enough spin, or a little off target — it
causes the receiving juggler some, well, discomfort.
That discomfort often manifests itself in another bad
pass, causing the next receiver to struggle, and so on.
It’s often actually visible; you can see the disturbance
making the rounds, until it either gets smoothed out by
jugglers who manage to keep their cool, or amplifies
itself so badly that the whole pattern comes crashing
down around the jugglers’ heads. (Interestingly, the
disturbance often travels independently of the clubs
themselves, in a different direction or at a different
speed, like a wave passing through water.) And passing
clubs fosters — requires, actually — a sort of heightened
awareness of the other people involved. Often a quick,
nearly imperceptible motion on the part of one juggler,
a tiny hesitation, or the beginning of a wrong throw,
corrected almost before it happens, causes another
juggler to react reflexively. Typically both burst out
laughing, mostly because it’s unbelievable that such a
tiny signal is transmitted at all.

And then there’s the patterns game: a significant
portion of the time spent “juggling” is really spent
standing around, fiddling with the clubs, and trying to
come up with new formations, new ways to arrange
ourselves and the clubs in space and time so that
everything fits together. The landscape of possible
patterns is vast and complex, but also highly structured
in mysterious ways. As in other iterative systems
(computers and economies spring to mind), the
underlying rules are relatively simple but the results
can be very complex and widely variable. It’s a kind of
combinatorics and is, I think, actually covered by the
mathematics of group theory.

I wrote a computer program that implements one
particular kind of juggling notation, introduced to me
by a juggler named Martin Frost and known as causal
diagramming. This notation can be handy for doodling
around trying to find new multiperson passing patterns.
(Actually, I started writing the program. It’s still rickety
and unfinished, and will probably always remain so —
it was more an experiment in QuickDraw GX
programming than anything else. Nevertheless, it’s
included on this issue’s CD, for your edification and/or
derision.) The program implements a kind of active
graph paper, allowing you to draw only “legal” throws,
and constraining your diagrams in appropriate ways
(such as preventing you from drawing throws that go
back in time, for a start).

Figure 1 shows the diagram for a juggler doing a basic
three-object pattern (called a cascade), and will serve to
show both how the notation works and how juggling
works. First the diagram: Time marches off inexorably
to the right, divided into nice, even steps (called counts).
A juggler is represented through time as a row of Ls
and Rs, representing the juggler’s left and right hands,
alternately throwing things. A thrown object is
represented by an arrow from the hand that throws it
to the hand that catches it. The pattern wraps around
at the dotted lines, and repeats endlessly — or until
someone drops something. (The program always shows
two repeating cycles like this, with the repeated parts
“faded.”) Note that the arrows (throws) form an
unbroken line traveling through time from left to right,
and that each hand has exactly one “input” and one
“output.”

Contrary to what you might think at first glance, the
overall path the arrows make doesn’t directly trace the
path of an individual club. If it did, this would just be a
diagram of throwing one club back and forth between
two hands. (That’s a necessary prerequisite to juggling,
but is definitely not juggling.) Instead, each throw
displaces a club that is always assumed to be held, waiting,
in the receiving hand. Think of the juggler as holding a
club in each hand, while the third is in the air. The
incoming club displaces the club that’s already there,
forcing the juggler to throw it elsewhere. In a cascade,
the displaced club is thrown back to the opposite hand,
where it in turn displaces the club that’s there, which
goes back to the first hand, displacing the club that’s
there, and so on, ad infinitum. (Note that although I’m
saying “club” here, all these principles apply equally
well to balls or rings or rubber chickens.) So the chain

Figure 1. A three-object juggle
THE VETERAN NEOPHYTE: PAPER JUGGLING 95

96
of throws is really a conceptual one, not a material one;
it’s a chain of cause and effect through time.

Figure 2 shows two jugglers passing with each other
(the repeated cycle was cropped for space reasons).
Note that they juggle in time with each other, like
musicians keeping a beat. (When juggling with clubs,
you actually hear the beat, when the clubs slap into the
jugglers’ hands.) Both jugglers throw a club to each
other at the same time, both from the right hand
(though it could just as well be the left). Throwing
a club to another juggler “breaks” the juggler’s
continuous line of throws, but the other juggler’s club
arrives in the nick of time, knitting the pattern back
together. This is a requirement: any club thrown to
another juggler must be replaced by an incoming one.
Otherwise, juggling can’t continue; the juggler just
stops, a club in each hand, waiting. (Actually, there are
common situations that force a juggler to “stall” like
that for a count or two, but we’ll limit ourselves to the
nonstalling patterns here.)

Because of the close timing, both jugglers must agree
on the pattern before starting. The pattern in Figure 2
is called a four-count because there’s a pass every four
counts. (Another name for this pattern is every other,
referring to the fact that every other right-hand throw
is a pass.) The four-count is a very common pattern,
and for most club jugglers this is the default, “idling”
pattern. Since there’s so much time between passes,
it’s possible to do lots of fancy free-form tricks
(affectionately known as “throwing trash”) in the midst
of the pattern. Of course, “so much time” isn’t really
much time at all: a club juggle is roughly 160 counts
per minute, so there’s just over a second between the
passes in a four-count.

These diagrams show nothing about spatial relationships,
by the way. The usual situation has the jugglers facing
each other 6 or 8 feet apart, but the same patterns can
be done standing side by side, back to back, or even
with one juggler standing on the other’s shoulders.
These diagrams show only the “connectedness” of the
pattern through time, and in fact you can draw patterns
that work fine on paper but are difficult to actually do
because of mid-air collisions.

Figure 2. A four-count
d e v e l o p Issue 22 June 1995
Figure 3 shows another pattern that demonstrates some
other important concepts. In this case, every right-hand
throw is a pass (which makes this pattern a two-count).
Although the jugglers are juggling to the same beat,
note that they are out of sync; one juggler’s right-hand
throw is simultaneous with the other’s left. Note also
that each pass spends twice as long — two counts — in
the air. In all the previous diagrams, the throws have
been singles, meaning that the club spins around once
during transit. The passes in Figure 3 are doubles; since
they’re in the air twice as long, they have time to spin
around twice before being caught. (The left-hand “self”
throws are still singles.)

A warning about these multiple-spin throws: It’s
tempting, on paper, to make heavy use of long arrows
(throws that spend lots of time in the air between
jugglers). A little physics tells you, though, that the
time in the air is proportional to the height of the
throw squared. So a double needs to be thrown four
times the height of a single, and a triple must thrown
nine times higher. A quadruple — a “quad” — must be
sixteen times the height of a single, and that’s about as
far as you can reasonably go with any sort of accuracy
(or safety!). I generally stop at triples.

Now take a look at Figure 4 (again, cropped for space).
This shows a three-person pattern called a feed. In this
case one person (juggler 2) acts as the feeder and the
others are feedees. The feeder is passing twice as often as
the feedees; the feeder is doing a two-count, while the
feedees are each doing a four-count, interleaved with
each other in time. The feeder switches back and forth

Figure 3. A two-count with right-handed doubles

Figure 4. A feed

between the two feedees. This is another very common
pattern, and can be added to indefinitely: Juggler 3
could pass with a new juggler, juggler 4, on the first
count, at the same time jugglers 1 and 2 are exchanging
clubs. That makes juggler 3 a feeder as well, feeding 2
and 4.

I think by now you can see how the patterns fit
together. It’s like building a network, where everything
has to eventually connect up and balance out. Go
ahead, give it a try. A favorite pattern of mine is a
three-count, with a pass every third count; both left and
right hands pass. How about a feed where the feedees
do three-counts? How many three-count feedees can
one feeder possibly handle? Try a ten-club feed (the
feeder does two-count doubles, as in Figure 3, and the
feedees each do four-count doubles). Admire the
attractive and tidy braids that result. Go wild.

There are some interesting and nonobvious things
about this notation that are probably worth pointing
out. You can tell how many clubs there are in a pattern
by taking a vertical slice through the diagram
anywhere, counting the throws you intersect, and
adding two clubs per juggler. (Note that Figure 3 is a
seven-club pattern!) Also, if you start anywhere and
follow the line of arrows around, wrapping back at the
first dotted line, they always form closed paths,
eventually arriving back where they began. Some
patterns form one long continuous cycle; they’re knit
from a single strand, like a sweater. All the examples
here are like that. Other patterns form distinct “orbits,”
where there are two or more strands making up the
pattern; the three-count is an example. Each strand is
an independent line of cause and effect, really an
independent subpattern, that has no effect on the other
parts of the pattern. You can actually decompose such
patterns into their constituent parts, and juggle just one
strand of the pattern at a time.

Also, the fate of any particular club isn’t obvious at all
in these diagrams. You can trace it, if you like — a club
leaves a hand two counts after it arrives — but it’s a bit
of a pain (hmm, that might make a good addition to the
program). Of course, tracing the paths of individual
Thanks to Lorraine Anderson, Jeff Barbose, Martin Frost, Bo3b
Johnson, Lisa Jongewaard, and Ned van Alstyne for their
enlightening review comments.•
clubs isn’t of primary interest to jugglers (though it’s
fun sometimes), in the same way that the path of an
individual dollar is rarely of interest to economists and
the trials and tribulations of an individual electron
don’t concern circuit designers. In contrast, I’d bet that
the paths of the individual clubs are of great interest to
the folks who wrote the network paper cited earlier.
This notation would probably be a poor choice for
them.

Finally, of course, the experience of juggling is nowhere
to be found in these diagrams. In contrast to their
clean, orderly lines, passing clubs is a very physical
thing, full of grimacing effort, plagued with fumbling
and mistakes, and occasionally bone-whackingly
painful. It’s more like chopping wood than like doing
math; it’s more like pounding nails than like tying
macramé, despite the nice braided look of the
diagrams. But when things get cooking, when everyone
is warmed up and throwing well, when the pattern
grows and takes shape between our hands and fills the
air with intricate, swirling, impossible motion, there’s
nothing else quite like it in the world.

RECOMMENDED READING
• “Scientific Aspects of Juggling,” in Claude

Elwood Shannon Collected Papers (IEEE Press,
1993).

• “The Academic Juggler,” in Juggler’s World, Vol.
45, No. 4 (Winter 1993–94). A discussion of the
origins of juggling notations.

• The Juggling Information Service on the World
Wide Web at http://www.hal.com/services/
juggle/. You’ll find juggling software, FAQs,
archives of net discussions, movies, and lots more.

• Operating Instructions, A Journal of My Son’s First
Year by Anne Lamott (Ballantine Books, 1993).

• June 29, 1999 by David Wiesner (Clarion Books,
1992).
THE VETERAN NEOPHYTE: PAPER JUGGLING 97

Dave welcomes feedback on his musings. He can be reached
at JOHNSON.DK on AppleLink, dkj@apple.com on the Internet, or
75300,715 on CompuServe.•

98
Futures provide a convenient way to implement asynchronous
interapplication communication without having to manage unwieldy
completion routines. This article presents an updated Futures Package
that supports event timeouts, allows threaded execution of incoming
Apple events, and has been revised to work with the Thread Manager
in System 7.5.

Futures: Don’t Wait Forever
GREG ANDERSON

d e v e l o p Issue 22 June 1995
Asynchronous Apple-event handling is difficult in Macintosh applications, and
programmers who make the extra effort to implement it often find that detecting and
recovering from event timeouts is an unmanageable task. Code that’s written with the
assumption that a completion routine will eventually be called will end up waiting
forever if the event never completes. Futures provide a convenient way to support
asynchronous interapplication communication and handle timeouts in a robust way,
without sacrificing the simplicity or readability of the code.

Most applications attempt to manage multiple concurrent events through callbacks
passed to AESend — but that leaves you, the application writer, with the burden of
ensuring that the callbacks really do handle every event that’s processed by the
application’s main event loop. For example, if you’re writing an application that sends
events to the Scriptable Finder, and you want to make that application scriptable
itself, you’d have to be particularly careful not to lock up the user interface portion of
your application every time an Apple event was received and processed. But by using
threads, futures, and the asynchronous event-processing techniques described in this
article, you can make the user-interface and event-processing modules of your
application function independently — and almost without effort on your part.

If you’re a long-time develop reader, you probably remember Michael Gough’s article
on futures that appeared in develop Issue 7. That article’s information is still valid, and
its code runs as well on today’s Macintosh computers as it did when first published;
however, it requires the Threads Package that came with Issue 6 in order to run. This
article presents a revised version of the Futures Package, which works with the Thread
Manager that’s now part of System 7.5. We’ll also delve a little deeper into the realm
of asynchronous event processing and timeout event handling. And, for the curious,
we’ll open the black box and peer inside to examine the inner workings of futures.

For a review of threads and futures, see “Threads on the Macintosh” in
develop Issue 6, “Threaded Communications With Futures” in Issue 7, and
“Concurrent Programming With the Thread Manager” in Issue 17.•
GREG ANDERSON worked with Michael
Gough on the original Futures Package that was
described in Issue 7 of develop. One of Greg’s
favorite activities is ballroom dancing, which he

does at every opportunity — particularly if he
gets the chance to polka like a mad dog.
Professionally, Greg is the technical lead of the
Finder team at Apple.•

You can use the techniques described in this article with any application that uses
Apple events, but they’re particularly effective with scriptable applications that also
send Apple events to other applications. You’ll find the code for the new Futures
Package on this issue’s CD, along with the code for the FutureShock example,
described later on, and preliminary documentation for the Thread Manager
(eventually to be incorporated into Inside Macintosh: Processes).

For more on interactions with the Scriptable Finder, see “Scripting the
Finder From Your Application,” develop Issue 20.•

OVERVIEW OF FUTURES
For those of you who missed “Threaded Communications With Futures” in develop
Issue 7, a future is a data object that looks and acts just like a real reply to some
message, when in reality it’s nothing more than a placeholder for a reply that the
server application will deliver at some future time. (See “Client/Server Review” for a
summary of how clients and servers interact.) Code written to use futures looks the
same as code that waits for the reply to arrive (using a sendMode of kAEWaitReply)
and then works with the actual data. The only difference is that the futures code uses
a timeout value of 0. This causes AESend to return immediately to the caller with a
timeout error — the normal and expected result — and execution of the client
application is allowed to continue without delay.

The futures-savvy application then does as much processing as possible without
accessing the reply, including sending other Apple events. When the data from the
reply is absolutely needed, it’s accessed as usual via AEGetKeyPtr or some other
Apple Event Manager data-accessor function. It’s at this point that the Futures
Package steps in and suspends processing of the client application until the data for
the reply arrives; other parts of the client keep running unhindered. Of course, it’s
not possible to stop one part of an application without stopping all of it, unless the
application is multithreaded. Therefore, futures need to run with some sort of
Thread Manager. Figure 1, which appeared originally in develop Issue 7, summarizes
the roles of threads and futures and the interactions that take place when a client asks
a question.

The primary benefit of the Thread Manager and Futures Package is that their use
removes the burden of managing multiple concurrent events, whether they’re Apple
events or user actions. As mentioned earlier, most applications try to get around this
problem by providing a callback procedure to AESend that can handle other
incoming Apple events, update events, and user actions while the application is
waiting for the reply. This technique works, but it’s up to you to make sure the
In the vocabulary of interapplication communication, the
client is the application that sends a message, and the
server is the application that receives, processes, and
responds to it. Since any application that processes events
is a server, all scriptable applications are servers.

Some applications may take on the role of both client and
server at different times. For instance, if an application
needs to send an event to some other application in order
to process the event that it just received, that application

CLIENT/SERVER REVIEW
is the client of one application and the server of the other.
It’s also possible for an application to be a client of itself,
if it sends itself messages; factored, recordable
applications fall into this category.

Applications that act as both clients and servers should
process events asynchronously — otherwise, the system
can quickly become lost in a sea of woe and deadlock.
But asynchronous event handling is complex and difficult;
that’s the problem that futures solve.
FUTURES: DON’T WAIT FOREVER 99

d e v100
callbacks handle everything. Listing 1 shows an example of how the callback
approach works; notice that we need idle and filter procs to handle events that come
in while the handler is waiting for a reply.

Responding to Apple events without using threads and futures is even more
problematic, particularly if the application needs to send out another message in
order to process the one that just came in (as in Listing 1). In that case, AESend is
typically called again with the same callback procedure, and the whole process stacks
up one level and repeats.

The problem with the stacked approach is threefold: First, the stack must unwind
in the same order in which it was set up — an ill-timed incoming event, if it’s a
lengthy request, could interfere with the processing of the current outgoing request
for quite a while. Second, every stack is finite in size; it’s often difficult to prove that
reentrant code will always have enough stack space to complete. Finally, writing
callbacks and having multiple event loops in your application makes the source
harder to follow, and what’s more, it’s a real drag. By contrast, futures allow the
freedom of asynchronous operation without the drudgery of callbacks or completion
routines — your code looks as simple as the normal synchronous version, but it runs
asynchronously. The only difference from Listing 1 is that the code calls AskForFuture
instead of AESend, as follows:

if (err == noErr)
err = AskForFuture(&question, &answer, kAEDefaultTimeout, kNoMaximumWait,

kNormalPriority);

One of the primary differences between the behavior of the code that calls AESend
and the code that calls AskForFuture is that in the latter case, the event handler is
already executing in its own thread when it’s called. This is just one of the

Receive question

Event handler
generates answer

Server
4.

Apple Event Manager
sends answer back

The answer

5.

Apple Event
Manager sends
question

2.

Ask a question

Processing continues

Access answer

Access answer
without blocking

Futures Package
releases blocked

threads

Apple Event Manager
 fills in contents

of future

Client

Block until the future
becomes real

List of
threads
blocked on
this future

1.

3.

8. 6.

7.

The question

Figure 1. The transformation of a future into a real answer
 e l o p Issue 22 June 1995

conveniences offered by the new Futures Package, and it’s a major enhancement;
we’ll describe how it works shortly.

OUR SAMPLE APPLICATION: FUTURESHOCK
This issue’s CD contains a sample application called FutureShock that demonstrates
the use of futures. You’ll notice that there are two copies of this application on
the CD, one sitting right next to the other. These copies are provided because
FutureShock likes to talk to itself — well, not exactly to itself, but to other
applications having the same process signature but a different process serial number.
To use FutureShock, launch both copies of the application; you’ll be presented
with two instances of the same window. Clicking the button marked Send in one
application window will send an Apple event to the other FutureShock application,
which will acknowledge the receipt and begin “processing” the event.

Actually, no processing is being done — FutureShock is just whiling away the time
looking at its watch (TickCount, that is), calling AEResetTimer every now and again,
and calling YieldToAnyThread a lot. But don’t tell the other FutureShock application
that. It’s busy keeping track of how long the message has been out for processing
and how long it’s been since its server last called AEResetTimer. If the server
FutureShock is too slow, the client FutureShock will give up and cancel the message.
(If you’d like to see this happen, use the set of radio buttons that allow you to inhibit
the server from calling AEResetTimer.)

Listing 1. An Apple event handler that sends an event

pascal OSErr AnAEHandler(AppleEvent* ae, AppleEvent* reply, long refCon)
{

OSErr err = noErr;
AppleEvent question, answer;
AEAddressDesc target;
DescType typeCode;
long actualSize, result;

// Create an Apple event addressed to a previously determined target.
// 'question' and 'answer' should be set to null descriptors.
err = AECreateAppleEvent(kAnEventClass, kAnEventID, &gTarget,

kAutoGenerateReturnID, kAnyTransactionID, &question);
// Call AESend with the send mode kAEWaitReply. Note the idle and
// filter procs.
if (err == noErr)

err = AESend(&question, &answer, kAEWaitReply, kNormalPriority,
kAEDefaultTimeout, gAEIdleProcRD, gAEFilterProcRD);

if (err == noErr)
err = AEGetParamPtr(&answer, keyAEResult, typeLongInteger,

&typeCode, (Ptr) &result, sizeof(long), &actualSize);
if (err == noErr)

err = AEPutParamPtr(reply, keyAEResult, typeLongInteger,
(Ptr) &result);

AEDisposeDesc(&question);
AEDisposeDesc(&answer);

return noErr;
}

FUTURES: DON’T WAIT FOREVER 101

d e v e l o p Issue 22 June 1995102
The sample source code included with the applications gives you a good example of
how to use futures and keep track of message timeouts in a robust way. You’ll also
notice that FutureShock installs custom thread context–switching callbacks — a
critical step for any application that uses threads (see “Custom Context Switching”).

A LOOK AT THE SOURCE
The magic that makes Apple-event futures possible lies in the special blocking and
unblocking callbacks supported by the Apple Event Manager. These callbacks aren’t
documented in Inside Macintosh, but they can be enabled with the function
AEInstallSpecialHandler with the special keywords keyAEBlock ('blck') and
keyAEUnblock ('unbk').

AEInstallSpecialHander is described in Inside Macintosh: Interapplication
Communication, page 4-100.•

If a blocking handler is installed, the Apple Event Manager calls it whenever an
attempt is made to access data from an Apple-event reply that hasn’t yet been
received. Any Apple Event Manager function that extracts data, such as AEGetKeyPtr,
causes the blocking routine to be called. The Apple Event Manager calls the
unblocking routine as soon as the reply arrives. The blocking routine may be called
many times for one reply (once for each call to AEGetKeyPtr or to another data
accessor), but the unblocking routine will be called only once — whether it’s needed
or not.

The Futures Package makes use of the blocking and unblocking callbacks in a
straightforward way. Whenever the blocking routine is called for a given Apple event
reply, the reply’s return ID is looked up via its keyReturnIDAttr attribute. The return
ID is assigned by the Apple Event Manager whenever an event is sent. The Futures
Package creates a semaphore and gives it an ID number that matches the return ID
of the reply event so that the semaphore can be found again later. (For a review of
semaphores, see “What’s a Semaphore?”)
An application that uses threads must install custom
thread context–switching callbacks if it has any global
variables that need to have separate instances in every
thread of execution. The most common reason for needing
separate instances of a global variable is to maintain any
global stacks in the application, such as the failure handler
stack maintained by most exception handler packages.

A custom thread context–switching callback must be
installed for every thread created by an application and
also for the main thread (the thread created automatically
by the Thread Manager). You can reference the main
thread by using the constant kApplicationThreadID for its
thread ID.

In the Metrowerks environment, an internally used global
variable called _local_destructor_chain points to the top

CUSTOM CONTEXT SWITCHING
of a stack that keeps track of all the local variables that
may need to have their destructor called (~TObject). If this
variable isn’t swapped out on a per-thread basis, one
thread could cause the destructor for objects still active in
another thread to be called out of context. The results, of
course, would be disastrous (a crash). Compiler-specific
global variables should be saved and restored within #if
blocks, as is done in the following code (taken from
FutureShock’s swap-context-out callback):

#if _MWERKS_
fLocalDestructorChain =

_local_destructor_chain;
#endif

The same technique should also be used in the swap-
context-in callback.

A semaphore is an object that’s used to arbitrate access
to a limited resource or to somehow synchronize
execution of independently operating processes. A
semaphore controls the flow of execution in an
application.

Threads of execution that “own” a semaphore are
allowed to run, and threads that attempt to take
ownership of a semaphore that isn’t available are
stopped and not allowed to run again until the semaphore
becomes available. When used to arbitrate access to a
limited resource, the semaphore also enforces strict
sequencing of the threads that are blocked on it —

WHAT’S A SEMAPHORE?
ownership of the semaphore is provided to the threads
that request it one at a time, in the order the requests are
made. Typically, only one thread of execution is allowed
to own a semaphore at a time.

With the Futures Package, when a thread attempts to
access data from a future, a semaphore is used to
synchronize its execution with the arrival of the reply.
In this case, none of the threads owns the semaphore;
conceptually, ownership lies with the future that the
semaphore is associated with. When the future becomes
a real reply, all of the threads blocked on the semaphore
are allowed to run, and the semaphore is deleted.
The return ID is a long integer that’s assigned sequentially when an event is
created, and then copied into the reply event so that the Apple Event Manager can
match the reply with the event that generated it.•

Once the semaphore has been created, the blocking routine gets a reference to the
current thread, adds it to the semaphore, and puts the thread to sleep. The thread is
now said to be blocked on the semaphore. If all goes well, the reply arrives shortly, and
the Apple Event Manager calls the unblocking routine. Once again, the return ID is
extracted from the reply event passed to the unblocking routine and is used to look
up the semaphore created by the blocking routine. The unblocking routine then frees
the semaphore, waking up all the threads that are blocked on it. Listing 2 shows the
implementation of the blocking and unblocking routines in the Futures Package.

THE CLIENT SIDE — SENDING EVENTS
To use futures in your application, simply follow these guidelines:

• Use the Macintosh Thread Manager.

• Call InitFutures once when your application starts up to initialize
the Futures Package. If your application has a custom thread
scheduler, you’ll probably want to provide a thread creation
procedure. Alternatively, you can prevent the Futures Package
from ever spawning threads, and keep track of housekeeping and
asynchronicity issues on your own.

• Call AESend using the send mode kAEWaitReply, but specifying a
timeout of zero ticks. Ignore the resulting error if it’s errAETimeout.
You may instead prefer to use AskForFuture, a convenient wrapper
to AESend.

• Call AEGetKeyPtr and other standard Apple-event accessors to
extract data from your replies. If the reply has not yet arrived, the
current thread is blocked automatically. Make sure that the current
function is running within a thread before accessing the data of the
reply event; it wouldn’t do any good at all to block the main
thread.

• Call AEDisposeDesc to dispose of the event sent and the reply
when done with them, just as with any other Apple event.
FUTURES: DON’T WAIT FOREVER 103

d e v e l o p Issue 22 June 1995104
As you can see, there’s almost nothing special you need to do in order to use futures
— your code will look almost exactly the same as similar code that doesn’t use futures
at all.

THE SERVER SIDE — RESPONDING TO EVENTS
Futures provide a convenient way to send messages and receive replies
asynchronously, but it’s just as important for the server application to process events
asynchronously. There are a number of techniques for creating threads to process
incoming events, but the most convenient thing to do would be to spawn a thread
before calling AEProcessAppleEvent and allow the Apple Event Manager to dispatch
the event from within the cozy, asynchronous environment of its own thread.
Unfortunately, AEProcessAppleEvent is not reentrant; if you call it from a thread,
your application will crash if another event is received before the current one finishes
processing — which rather defeats the whole purpose of asynchronous processing, to
put it mildly. Fortunately, there’s a convenient workaround for this problem.

The solution is to install a predispatch handler that intercepts all events being
dispatched by AEProcessAppleEvent and makes sure that the event is suspended and
that the handler exits right away. The predispatch handler also forks a new thread
that manually dispatches the event when the thread is next scheduled. When the
event handler returns, this thread calls AEResumeTheCurrentEvent to force the
Apple Event Manager to send the reply back to the client. Listing 3 shows how this
is done.

Listing 2. Blocking and unblocking routines

pascal OSErr AEBlock(AppleEvent* reply)
{

TSemaphore* semaphore = nil;
OSErr err = noErr;

// It should always be possible to create and grab the semaphore.
semaphore = GetFutureSemaphore(reply, kCreateSemaphoreIfNotFound);
if (semaphore != nil)

err = semaphore->Grab();
else

err = errAEReplyNotArrived;
return err;

}

pascal OSErr AEUnblock(AppleEvent* reply)
{

TSemaphore* semaphore = nil;
OSErr err = noErr;

semaphore = GetFutureSemaphore(reply, kDontCreateSemaphoreIfNotFound);
if (semaphore != nil) {

semaphore->ReleaseAllThreads();
semaphore->Dispose();

}
return err;

}

Listing 3. Spawning a new thread before dispatching the event

#define kUseDefaultStackSize 0
pascal OSErr Predispatch(AppleEvent* ae, AppleEvent* reply, long refCon)
{

OSErr err = errAEEventNotHandled;
PredispatchParms** dispatchParams = nil;
AEEventHandlerUPP handler = nil;
long handlerRefCon = 0;

if (GetAppleEventHandlerUPP(ae, &handler, &handlerRefCon) == noErr) {
dispatchParams = (PredispatchParms**)NewHandle(

sizeof(PredispatchParms));
if (dispatchParams != nil) {

ThreadID newThreadID;
(*dispatchParams)->fAppleEvent = *ae;
(*dispatchParams)->fReply = *reply;
(*dispatchParams)->fEventHandler = handler;
(*dispatchParams)->fHandlerRefCon = handlerRefCon;
if (NewThread(kCooperativeThread,

(ThreadEntryProcPtr)RedispatchEvent,
(void*)dispatchParams, kUseDefaultStackSize,
kCreateIfNeeded | kFPUNotNeeded, nil, &newThreadID)
== noErr) {

dispatchParams = nil;
// Suspend the current event so that the Apple Event Manager
// won't break. Set the error to noErr to tell the Apple
// Event Manager we handled the event.
AESuspendTheCurrentEvent(ae);
err = noErr;

}
}

}
// Dispose of the dispatch parameters if created but not used.
if (dispatchParams != nil)

DisposeHandle((Handle)dispatchParams);
return err;

}

void RedispatchEvent(void* threadParam)
{

OSErr err = noErr;

PredispatchParms** dispatchParams = (PredispatchParms**)threadParam;
AppleEvent ae = (*dispatchParams)->fAppleEvent;
AppleEvent reply = (*dispatchParams)->fReply;
AEEventHandlerUPP handler = (*dispatchParams)->fEventHandler;
long handlerRefCon = (*dispatchParams)->fHandlerRefCon;
DisposeHandle((Handle)dispatchParams);
// Call the event handler directly.
err = CallAEEventHandlerProc(handler, &ae, &reply, handlerRefCon);
if (err != noErr) {

DescType actualType = typeNull;

(continued on next page)
FUTURES: DON’T WAIT FOREVER 105

d e v e l o p Issue 22 June 1995106
The beauty of the technique shown in Listing 3 is that it’s nicely isolated from the
rest of the code. The application’s main event loop still calls AEProcessAppleEvent as
usual, and event handlers are installed and dispatched as usual. The only difference is
that now, event handlers are processed in their own thread of execution and may call
YieldToAnyThread to allow other parts of the application to run. The Futures
Package installs this predispatch handler when it’s initialized; Listing 4 shows an
example of an event handler similar to the one in the FutureShock application.

Note the call to IdleUpdate; on PowerBooks, if the operating system thinks that the
system isn’t doing anything important, it will slow down the processor to conserve
power. This happens after 15 seconds during which no user activity and no I/O
occurs. In the realm of threads and interapplication communication, it’s easy for
15 seconds to go by with no such activity, even if the machine is actually busy
processing an event. Calling the Power Manager procedure IdleUpdate avoids the
power-saving mode, and any application that performs lengthy operations should

long actualSize = 0;
long errorResult;

// If the event handler returned an error, but the reply does not
// contain the parameter keyErrorNumber, put the error result into
// the reply.
if (AEGetParamPtr(&reply, keyErrorNumber, typeLongInteger,

&actualType, &errorResult, sizeof(long), &actualSize)
!= noErr) {

errorResult = err;
AEPutParamPtr(&reply, keyErrorNumber, typeLongInteger,

&errorResult, sizeof(long));
}

}
// Tell the Apple Event Manager to send the reply.
AEResumeTheCurrentEvent(&ae, &reply,

(AEEventHandlerUPP)kAENoDispatch, 0);
}

Listing 4. Simple threaded event handler

pascal OSErr TestEvent(AppleEvent* ae, AppleEvent* reply, long refCon)
{

OSErr err = noErr;

while (WorkLeftToDo() && (err == noErr)) {
YieldToAnyThread();
if (gHasIdleUpdate)

IdleUpdate();
err = DoSomeWork();

}
return err;

}

Listing 3. Spawning a new thread before dispatching the event (continued)

do this. Be sure, though, to check the gestaltPMgrCPUIdle bit of the Gestalt selector
gestaltPowerMgrAttr before calling IdleUpdate, because most desktop machines
don’t implement this trap.

IdleUpdate is described in Inside Macintosh: Devices, page 6-29.•

Another mechanism for spawning a thread besides using the predispatch handler is
to use Steve Sisak’s AEThreads library; see “The AEThreads Library” for more
information.

CLIENT/SERVER TIMEOUT NEGOTIATIONS
The Apple Event Manager provides a function called AEResetTimer that lets
servers inform their clients that work is being done on the event but that the reply is
not yet available. AEResetTimer is of value only to clients that use the send mode
kAEWaitReply — the intention was for clients to use a fairly short timeout value and
for servers to periodically inform the clients of progress so that the call to AESend
isn’t aborted unless the server actually can’t be reached (or crashes). The mechanism
involves the Apple Event Manager sending a “wait longer” event back to the client,
tagged with the return ID of the Apple-event reply. The “wait longer” event is
intercepted by a filter inside AESend that’s supposed to reset the event’s timer;
unfortunately, a bug in the Apple Event Manager prevents the “wait longer” event
from working correctly, and the timer is not reset.

The existence of this bug shouldn’t deter you from calling AEResetTimer in your
server application, though. The bug exists in the code that runs on the client side of
the communication, and some future version of the Apple Event Manager will fix it.
Also, as you’ll see shortly, the Futures Package hooks into the “wait longer” event and
uses it to prevent blocked messages from timing out if the server application uses
AEResetTimer to request more time, effectively bypassing the bug. Other applications
that don’t use the Futures Package could use a similar technique to detect server
activity — thus, AEResetTimer is the correct protocol for the server, whether the
client application uses AESend with kAEWaitReply or the Futures Package.
In my article entitled “Adding Threads to Sprocket” in
the December 1994 issue of MacTech Magazine, I
described an implementation of futures and a library
called AEThreads that allows you to install asynchronous
Apple event handlers. I stated that the futures code should
really be supported by Apple and that you should go
with their solution if they eventually provide one. This is
the case here. The Futures Package addresses many of
the issues that my library did not, and is also provided
in source form. Therefore I recommend that you use
Greg’s futures implementation instead of mine in any
new code.

You may, however, find AEThreads more useful for
spawning threads than the predispatch handler in the
Futures Package. Its main advantage is that it allows
you to control, on an individual basis, which events are

THE AETHREADS LIBRARY
BY STEVE SISAK
handled asynchronously and which are handled
immediately. It also enables you to control all of the
thread parameters (for example, stack size and needFPU)
for your event-handling threads, and it doesn’t interfere
with installing a predispatch handler in your application
(as described in Inside Macintosh: Interapplication
Communication on pages 10-19 to 10-21).

The AEThreads library is provided on this issue’s CD. To
use it, don’t install the predispatch handler when you
initialize the Futures Package (as explained in the
description of InitFutures later in this article), and call
AEInstallThreadedEventHandler where you would have
called AEInstallEventHandler. Everything else should work
the same. If you have any questions, comments, or
problems with AEThreads, please let me know at
sgs@gnu.ai.mit.edu.
FUTURES: DON’T WAIT FOREVER 107

d e v e l o p Issue 22 June 1995108
TIME AFTER TIME
How often should the server call AEResetTimer? Calling it too frequently is a bad
idea, because an event is generated on every call to reset the timer. Some existing
applications call AEResetTimer when half the message’s timeout value has expired;
the timeout value can be determined by examining the attribute keyTimeoutAttr in
the Apple event that the server receives. The problem with this technique is that
futures, as you may remember, are always sent with a timeout value of 0. Naive
servers that always depend on keyTimeoutAttr to be a meaningful value will call
AEResetTimer much too frequently.

At the very least, servers should define a threshold, perhaps 150 ticks, and never call
AEResetTimer more frequently than that. The recommended solution, however, is
first to check for the presence of the attribute keyAEResetTimerFrequency. If it
exists, it indicates approximately how often, in ticks, the client would like the server
to call AEResetTimer. If this attribute doesn’t exist, the server should fall back on the
default method of using the larger of half the value of keyTimeoutAttr or 150 ticks.
This technique provides the greatest flexibility for clients, while allowing the server
application to continue to perform reasonably well even with clients that don’t
provide specific timeout information in the events they send.

It’s the responsibility of the client to pick timeout and reset frequency values that
allow the server enough time to respond but still provide adequate response time to
the user when the server actually isn’t available. The client should take into account
that the transit time for the event will vary, depending on whether the event is being
sent to a local or a remote process and on the network conditions at the time the
event is sent. Finally, when choosing timeout values, remember that almost no
background processing is done on the Macintosh as long as the user is doing
something with the mouse button down (such as browsing menus or dragging
windows or Finder items). A client that picks too small a value for its timeout is in
danger of having user actions interfere with the server’s processing of its events,
which could quite easily cause the client’s events to time out unnecessarily.

HOW FUTURES DEAL WITH TIMEOUTS
The Futures Package keeps track of timeouts whenever a thread is blocked while
accessing data from a reply that hasn’t arrived yet. The client must specify the
timeout value to use with the SetReplyTimeoutValue function, which must be called
after the message is sent but before the reply is accessed. The AskForFuture function
follows this protocol when it calls SetReplyTimeoutValue, so your application
doesn’t need to call SetReplyTimeoutValue if it calls AskForFuture. When this
timeout value is set, the Futures Package creates a semaphore and stores the timeout
values inside it. This same semaphore is used to block any thread that attempts to
access data from the reply before it arrives. If an event times out, the semaphore
wakes up all threads that are blocked on it and returns a timeout error to the future’s
blocking routine. The error is passed to the Apple Event Manager, which will return
errAEReplyNotArrived to the accessor(s) that caused the thread to be blocked.

Both SetReplyTimeoutValue and AskForFuture take two parameters: a timeout value
and a maximum wait value, both expressed in ticks. The timeout value indicates how
many ticks the client is willing to wait before it hears anything from the server; if the
server calls AEResetTimer, the client resets its timer and begins waiting again. But if
the timeout value is the only control that a client has, a berserk-server-from-hell that
does nothing but call AEResetTimer for days on end and never returns any results
could keep the hapless client locked up forever. This is where the maximum wait
value comes in: if the client specifies a maximum wait time, any event that remains
unserviced for longer than this period of time immediately terminates, even if the
server called AEResetTimer only a couple of ticks ago.

Usually, it’s best for clients to assume that servers are well behaved, and that they will
eventually return results as long as they’re still working on the problem. Distributed
computing applications, though, might find it better to reschedule some lagging
events on a faster machine if the server initially selected doesn’t respond quickly
enough. The maximum wait value gives them the control they need to do so. If
either the timeout value or the maximum wait time expires, the Futures Package
automatically wakes up all threads blocked on that future. The error code returned by
the Apple Event Manager is errAEReplyNotArrived, which is the same result that
would be returned if a reply that had timed out from AESend was accessed without
using the Futures Package.

Note that the Apple Event Manager doesn’t assume that an application has given up
on a reply until the reply is disposed of. Until that happens, the reply will be filled in
as soon as it’s received, even if the event has timed out. A distributed computing
application that rescheduled an event on a faster machine could keep a reference to
the old future around and use the result from the machine that finished first.

THE FUTURES PACKAGE API
Here’s a description of the routines provided by the updated Futures Package.

void InitFutures(ThreadCreateUPP threadCreateProc, long initFuturesFlags)

The function InitFutures initializes and enables the Futures Package. The parameter
initFuturesFlags should be set to the sum of the flags that the futures-savvy
application wants to set. The Futures Package recognizes two flags: the first,
kInstallHouseKeepingThread, causes the Futures Package to create a new thread
that does nothing but call IdleFutures (described below); the other parameter,
kInstallPredispatch, specifies that the Futures Package should install the predispatch
handler shown earlier in Listing 4. This handler causes a new thread to be created for
every Apple event dispatched by AEProcessAppleEvent. The threadCreateProc
parameter to InitFutures is for applications that install custom context-switching
routines or that maintain a custom thread scheduler. This thread creation procedure
is called every time the Futures Package creates a new thread, allowing your
application to hook the new thread into its scheduler and install custom context-
switching routines.

The thread creation procedure is defined like this:

pascal OSErr MyThreadCreateHandler(ThreadEntryProcPtr threadEntry,
void* threadParam, long handlerRefCon, ThreadID* threadMade)

The threadEntry, threadParam, and threadMade parameters should be passed on to
NewThread. The handlerRefCon parameter is the refCon that was passed to
AEInstallEventHandler when the event handler for the Apple event being dispatched
was installed. InitFutures will also call the thread creation procedure to create the
housekeeping thread; in that case, the refCon passed in will be 0. If a thread creation
procedure isn’t provided, the Futures Package will call NewThread directly.

void BlockUntilReal(AppleEvent* reply)

The function BlockUntilReal causes the current thread of execution to be blocked
until the specified Apple event reply becomes a real message. Usually, this routine
doesn’t need to be called; the Futures Package automatically blocks the current
thread whenever any Apple Event Manager accessor function is called to get data out
of a future.
FUTURES: DON’T WAIT FOREVER 109

d e v e l o p Issue 22 June 1995110
Boolean ReplyArrived(AppleEvent* reply)

The function ReplyArrived returns true if the given reply has been received, in which
case it may be accessed without blocking. Usually, this routine won’t need to be
called. The whole idea of the Futures Package is to remove the burden of keeping
track of whether a reply has arrived. ReplyArrived has a counterpart function named
IsFuture, which is provided for compatibility with the Futures Package API presented
in Issue 7 of develop.

void SetReplyTimeoutValue(AppleEvent* reply, long timeout,
long maxWaitTime)

SetReplyTimeoutValue allows the client to specify a timeout value and an upper
bound on the amount of time it’s willing to wait before a thread that’s blocked on
a future should be awakened and informed that the event timed out. If used,
SetReplyTimeoutValue must be called after the event is sent, but before the reply is
accessed in any way. Usually, SetReplyTimeoutValue won’t need to be called directly,
because it’s called by the function AskForFuture (described below).

void IdleFutures()

The IdleFutures function does the actual test to see whether any of the blocked
messages have timed out. Usually, IdleFutures is called automatically by the Futures
Package; if your application doesn’t specify the flag kInstallHouseKeepingThread in
InitFutures, however, it should call IdleFutures periodically. It’s not necessary to call
IdleFutures more frequently than every tick or so, but the function is smart enough
not to do work superfluously, so there shouldn’t be a negative performance hit to
calling IdleFutures more frequently than once a tick. Don’t go overboard, though —
enough is enough.

OSErr AskForFuture(const AppleEvent* ae, AppleEvent* future, long timeout,
long maxWaitTime, AESendMode sendMode, AEPriority priority)

The AskForFuture function calls AESend following the protocol defined by the
Futures Package; keyAEResetTimerFrequency is set before the event is set, and
SetReplyTimeoutValue is called with the specified timeout and maximum wait times.
AskForFuture will always return immediately; the reply received will be a future, and
timeout processing will be done correctly if the current thread of execution blocks on
the future.

long GetResetTimerFrequency(const AppleEvent* ae)

The GetResetTimerFrequency function returns the frequency, in ticks, with which
the Futures Package thinks that your application should call the Apple Event
Manager function AEResetTimer, based on parameters in the provided Apple event.
Note that GetResetTimerFrequency should be passed the Apple-event message; this
is different from the Apple Event Manager routine AEResetTimer, which needs the
Apple-event reply.

OSErr ResetTimerIfNecessary(AppleEvent* reply, unsigned long& lastReset,
long resetFrequency)

ResetTimerIfNecessary calls AEResetTimer when enough time has elapsed since the
last time it was called. The server is responsible for keeping track of the reset
frequency and storing away the last reset tick, although the Futures Package will do
the housekeeping of updating the last reset tick whenever AEResetTimer is actually
called.

FUTURE DIRECTIONS
Apple events allow ordinary applications to become powerful tools for use both in
scripting and by other applications; however, the power afforded by Apple events can
be quickly negated if the server can’t process multiple events asynchronously, or if
the user can’t work with the client process while it’s waiting for a reply. As more
applications become scriptable, and as component-oriented systems such as OpenDoc
become more prevalent, the distinction between client and server becomes blurred,
and more applications will take on both roles. In a world where asynchronous
interapplication communication is the norm rather than the exception, the Futures
Package allows you to harness the power of asynchronicity without becoming lost in a
mire of completion routines.

RELATED READING
• Inside Macintosh: Interapplication Communication (Addison-Wesley, 1993).

• develop articles: “Threads on the Macintosh” by Michael Gough, Issue 6;
“Threaded Communications With Futures” by Michael Gough, Issue 7; “Concurrent
Programming With the Thread Manager” by Eric Anderson and Brad Post, Issue 17;
“Scripting the Finder From Your Application” by Greg Anderson, Issue 20.

• “Adding Threads to Sprocket” by Steve Sisak, MacTech Magazine, December 1994.
FUTURES: DON’T WAIT FOREVER 111

Thanks to our technical reviewers Eric Anderson,
Michael Gough, Ed Lai, and Steve Sisak. Special

thanks to Ed Lai, who put futures support into the
Apple Event Manager.•

Do you have code that solves a problem other Macintosh
developers might be having? Why not show it off by writing
about it in develop? We’re always looking for people who might be
interested in submitting an article or a column. If you’d like to
spotlight and distribute your code to thousands of developers of
Apple products, here’s your opportunity.

If you’re a lot better at writing code than writing articles, don’t
worry. An editor will work with you. The result will be something
you’ll be proud to show your colleagues (and your Mom).

So don’t just sit on those great ideas; feel the thrill of seeing them
published in develop!

For Author’s Guidelines, editorial schedule, and information
on our incentive program, send a message to DEVELOP on
AppleLink, develop@applelink.apple.com on the Internet, or
Caroline Rose, Apple Computer, Inc., 1 Infinite Loop, M/S
303-4DP, Cupertino, CA 95014.

Want to show off your cool code?

YOUR NAME HERE

YOUR PHOTO HERE

112
Macintosh
Q & A
d e v e l o p Issue 22 June 1995
Q I’m using the TPopup class in MacApp 3.0.1 in my window and I want to underline
the title string of a pop-up menu programmatically. The title text style is stored in a
field in the class but is used only when the pop-up menu is first created. How can I
change the text style of a pop-up menu title after it has been created?

A MacApp’s TPopup class is basically just a wrapper around System 7’s Popup
CDEF (with its own CDEF for pre-System 7) and so is subject to the same
limitations as normal System 7 pop-up menus. You’re correct that the title style is
stored in the TPopup class and referenced only once, when the pop-up control is
created. What happens is that when a pop-up menu is created with NewControl,
the Popup CDEF interprets the value parameter to NewControl to be the title
style of the pop-up menu control. Thereafter, the value of the control is equal
to the currently selected menu item. TPopup::CreateCMgrControl calls
NewControl as follows:

ControlHandle aCMgrControl = NewControl(itsPort, qdArea, itsTitle,
FALSE, (short) this->GetPopupTitleStyle(), fMenuID, fItemOffset,
this->GetProcID(), fUseAddResMenuResType);

The important setting is the title style: notice the TPopup::GetPopupTitleStyle
call, which returns a short integer corresponding to the text style settings. The
problem is that there’s no way of defining this title style after the control has
been created, so you have to recreate the control when you want to change the
title style. This may seem a bit much, but it takes only a few lines of code. The
important thing to remember is that most of the information you need is
already part of TPopup; all you’re doing is recreating the control.

Dispose of the old control, set the fTitleStyle field to the title style you want,
and then call CreateCMgrControl to create a new control with this title style,
using all the characteristics already set in your TPopup object. Here’s the code
to do this:

CStr255 itsLabel;
short itsVal;

/* First free the old control. */
DisposeControl(myPopup->fCMgrControl);
myPopup->fCMgrControl = NULL;
/* Now set the pop-up title style to underline. */
myPopup->fTitleStyle = myPopup->fTitleStyle + underline;
/* Get title and current value to send to CreateCMgrControl. */
myPopup->GetMenuLabel(itsLabel);
itsVal = myPopUp->GetCurrentItem();
/* Now create a new control with the desired text style. */
myPopup->CreateCMgrControl(itsLabel, itsVal, 0, 0, 0);

Q I’m having a problem with Balloon Help, getting HMCompareItem to work properly.
I’ve got several menu items that can change dynamically, and while HMCompareItem
successfully finds the first item, all other items have no balloons. What’s the problem
here?

A The problem is that the match string isn’t exact. HMCompareItem only finds
exact matches for the actual menu items. (A common case to look out for is
ellipsis (…) versus three periods (...): always use an ellipsis in menus.)

If you can’t determine the exact match ahead of time, we suggest that you use a
different technique: modify the help string on the fly. A method that other
developers have used is to store the current menu state in their preferences file
along with the current menu help string; then, as the application changes menu
items, they modify the 'STR ' resource that the help item refers to on the fly.

Q I’m writing a QuickDraw GX printer driver and need to get the text size of a shape.
I’ve tried GXGetStylePenSize and GXGetShapePenSize, but these continuously send
back 12 no matter what the real size is. I’ve looked through the shapes in GraphicsBug,
and 12 is there for the text size. What can I do to get the correct size?

A QuickDraw GX has three different shapes to handle typography — text, glyph,
and layout — and each one stores the typographic style objects (which are what
you need) differently. (There’s a good discussion of the three types of typographic
shapes in QuickDraw GX: Programmer’s Overview on pages 97 through 115.)

The important thing to remember is that simple text shapes can have only one
type style (attached to the style attribute of the object), so they’re fairly easy to
work with. However, glyph and layout shapes can have one or more runs of
type styles (attached to the style list attribute of the object’s geometry), so they
can be more complex to work with. Only if a glyph or layout shape doesn’t have
a style list attached to its geometry is the style attribute of the object itself used.
For shapes with multiple style runs, there’s no simple answer to the question
“What is the text size of this object?”

For glyph and layout shapes, you’ll need to write a “GetSizes” function that’s
capable of returning one or more sizes. This routine should get the style list by
calling GXGetGlyphShapeParts or GXGetLayoutShapeParts. If the style list is
nil, return the default size in the style attribute of the object itself; otherwise,
return an array of each size in the list of styles, or whatever is appropriate for
your application.

Q I’m writing a QuickDraw GX application, and the glyphs that are drawn on the screen
sometimes don’t match the character codes in the shape. Any idea what’s going on?

A It’s very important to pass the correct script system, language, and platform
when your application creates a layout shape or a style used within a layout
shape. The following code fragment will do the trick:

long script;
long language;

// Set myStyle's encoding correctly for this machine.
if ((script = GetEnvirons(smKeyScript)) != 0 &&

(language = GetScript(script, smScriptLang)) != 0)
GXSetStyleEncoding(myStyle, gxMacintoshPlatform,

(gxFontScript) (script + 1), (gxFontLanguage) (language + 1));
else

GXSetStyleEncoding(myLayoutStyle, gxMacintoshPlatform,
gxRomanScript, gxNoLanguage);

In the case of a shape, the code is similar but calls GXSetShapeEncoding
instead of GXSetStyleEncoding. Note the “(script + 1)” and “(language + 1)”:
MACINTOSH Q & A 113

d e v e l o p Issue 22 June 1995114
this synchronizes the information returned by the Script Manager with
QuickDraw GX’s representation of the same data.

Q When displaying JPEG-compressed PICTs with DrawPicture, I call QDError and get
the error code -8976, which isn’t documented anywhere I’ve looked. What’s going on?

A This is the codecNothingToBlitErr error. It means that the picture was drawn
into an entirely clipped-out bitmap. You can safely ignore this error. This is
fixed in Apple’s Multimedia Tuner (and will be fixed in future versions of
QuickTime), so that the error won’t be reported. Better, of course, would be to
avoid drawing into clipped-out bitmaps at all.

Q I’d like to add the capability to turn the Macintosh on and off automatically in my
application. Is there an API for scheduled startup and shutdown?

A Yes and no: there’s an API for auto-startup, but not for timed shutdown. The
auto-startup feature is built into the Time Manager. The Power Manager
features flag has been updated so that it can easily be tested. Timed shutdown
will have to be done manually: we recommend creating a background-only
application that simply waits for the appropriate time and then issues the Finder
event to shut the system down.

Auto-startup can be used if the PMFeatures routine returns a long word with
bit 10 set. The name of the enum in the new headers is hasStartupTimer. If this
flag is present, these routines are also supported:

void SetStartupTimer(StartupTime *theTime);
OSErr GetStartupTimer(StartupTime *theTime);

SetStartupTimer sets the time that the Macintosh will start up from a power-off
state, and enables or disables the startup timer. On a Macintosh that doesn’t
support the startup timer, SetStartupTimer does nothing. The time and enable
flags are passed in the following structure:

typedef struct WakeupTime WakeupTime, StartupTime;
struct WakeupTime {
unsigned long wakeTime; /* startup time (same format as current time) */
Boolean wakeEnabled; /* 1 = enable startup timer, 0 = disable */
SInt8 filler;

};

GetStartupTimer returns the startup time and the state of the startup timer. If
a particular Macintosh doesn’t support the startup timer, GetStartupTimer
returns 0.

Q We’d like to open a (usually color) dialog with GetNewDialog such that, if indicated by
the user, it ignores the 'dctb' resource and opens in black and white instead. This is a
feature request from our users. The best solution we’ve got so far is to check to see
whether we want a dialog to appear in color before calling GetNewDialog. If we want
to suppress color, we patch GetResource with code that will look for any call to fetch a
'dctb' resource with the same ID as our dialog. If the patch detects such a call, it returns
a nil handle; otherwise, it calls the original GetResource trap and returns its return
value. When the GetNewDialog call is complete, we unpatch GetResource if we had
patched it. Is this a good solution?

A The method you describe — patching GetResource — will probably work, but
is a needlessly complex solution to the problem. In general, patching should be
considered a last resort solution, suitable only when there are no other options.

Why not just have two duplicate DLOG resources (both referencing the same
DITL), one with a corresponding 'dctb' and one without? (DLOG resources
are small, on the order of 30 bytes, so there shouldn’t be a size problem.) You
can then pass the appropriate ID to GetNewDialog to get either a color or a
noncolor dialog. If you want to make this “automatic,” make the DLOG
resource without a corresponding 'dctb' have an ID that’s, say, 1000 more than
the one that has a 'dctb'; then keep a global variable that contains either 0 (if the
user wants color) or 1000 (for black and white). When you call GetNewDialog,
add the global to the (color) dialog ID and pass the result to GetNewDialog.
Voilà! You get color if the global is 0, black and white if it’s 1000. This is far
cleaner and safer than patching could ever be — and easier, too.

Q I have a question about the MailTime structure and setting the postIt.coreData.sendTime
field based on the contents of GetDateTime. The messages I’m reading have the time
and date in them, so I can retrieve the time the message was received. I convert this to a
DateTimeRec and then call Date2Secs. What’s the real way to handle this? I’ve written
a routine that seems to be the right approach, but the time in the mailbox is always
wrong, though my location is correct in the Date & Time control panel.

A Here’s a snippet that does what you need:

void MacToMailTime(unsigned long macTime, MailTime& mailTime)
{

long internalGmtDelta;
long dlsDelta = 0;
MachineLocation aLocation;

ReadLocation(&aLocation);
internalGmtDelta = aLocation.gmtFlags.gmtDelta & 0x00ffffff;
if (BitTst(&internalGmtDelta, 23))

internalGmtDelta = internalGmtDelta | 0xff000000;
mailTime.time = macTime;
mailTime.offset = internalGmtDelta;

}

Q I’m trying to get unread mail messages from the PowerTalk mailbox, but the
SMPGetNextLetter routine is returning an error of -903. That’s a PPC Toolbox
error noPortErr! What’s going on?

A The problem is that you haven’t set the isHighLevelEventAware flag in the
SIZE resource for your application. This is necessary because the AOCE
Standard Mail Package routines require your application to accept high-level
events.

Q How can I count the number of unread messages in the PowerTalk mailbox?

A Using the existing AOCE programming interfaces, this isn’t possible. However,
a new mailbox API will be available soon (if it isn’t already) that will allow these
types of operations.
MACINTOSH Q & A 115

d e v e l o p Issue 22 June 1995116
Q I’ve been using the Standard Mail Package to add mail capability to my application. In
some circumstances we generate text or PICT files and add them as attachments to the
document we’re mailing. The documentation states that the enclosure isn’t actually
added until well after SMPAddAttachment has returned. I’d like to delete the files as
soon as possible after I’ve generated them. How do I know when the file has been
completely copied so that I can delete the original?

A The problem with SMPAddAttachment is that the process is nondeterministic.
The file is added by an asynchronous background process that’s controlled by
sending Apple events between your application and the Finder. Apple events are
returned to your application during the file copy (they’ll be handled by the
normal Apple event mechanism).

Generally, these are the indications that the copy is complete:

• SMPMailerEvent returns with the kSMPDisposeCopyWindow bit set
in the whatHappened field.

• The Finder sends a kAEReply Apple event to your application.

• The size of the enclosures field goes up by sizeof(FSSpec).

However, if you were to try to add another enclosure at this point, you might
still end up getting the kSMPCopyInProgress error.

What you need to do is treat the kSMPCopyInProgress error as a “busy, try
later” indication, and try the action again the next time through your event
loop. This ensures that the Mailer (and the Finder) get a chance to move data
between successive tries.

Q I’m trying to write a patch that gets called when a floppy disk is inserted. I tried a
GNE filter patch that looks for the diskEvt message in the event queue. It works, but
it’s not really what I want; the patch also gets called when any volume, not just a floppy
disk, is mounted. Also, when a floppy disk is inserted, the patch gets called after the disk’s
icon shows up on the desktop, and I’d like to trigger the action before that. Any ideas?

A The Finder always gets events before your GNE patch, which is why your patch
gets called after the icon shows up on the desktop. Instead you should patch
MountVol inside the Finder.

Q I’m attempting to use the MenuHook routine called by MenuSelect to update a status
bar with text as the user traverses menu items with the mouse. It seems that if I call
TextEdit functions directly from within the function pointed to by MenuHook, problems
occur: the mouse highlights the first item in a menu, but that item stays highlighted no
matter where you move the mouse. In other words, it seems that MenuSelect stops
working correctly or that the screen is no longer correctly updated. Can you tell me how
to fix this?

A You need to save and restore the graphics port in your MenuHook routine.
Even if you aren’t explicitly changing the port yourself, the TextEdit routines
will probably leave it set to the edit record’s owning port, not what it was when
you started.

Q I found the following declarations in Scripts.h:

extern PASCAL Boolean IsCmdChar(const EventRecord *eventRecord,
short test)

FOURWORDINLINE(0x2F3C, 0x8206, 0xFFD0, 0xA8B5);

But I can’t seem to find any documentation for this call. Does such documentation exist?
If this is what I think it is, it could be very useful.

A Whoops, thanks for pointing this out. That routine was introduced with
System 7. We’ve updated the Macintosh Technical Note “International
Canceling” (TE 23) accordingly. Here’s a description of the routine:

FUNCTION IsCmdChar(keyEvent: EventRecord; testChar: CHAR): BOOLEAN;

This function tests whether the Command key is being pressed in conjunction
with another key (or keys) that could generate testChar for some combination
of Command up or down and Shift up or down. This accommodates European
keyboards that may have testChar as a shifted character, and non-Roman
keyboards that will only generate testChar if Command is down. It’s most useful
for testing for Command-period.

The caller passes in the event record, which is assumed by the function to be an
event record for a key-down or auto-key event with the Command key down.
The caller also passes in the character to be tested for (for example, '.'). The
function returns TRUE if testChar is produced with the current modifier keys,
or if it would be produced by changing the current modifier key bits in either or
both of the following ways:

• turning the Command bit off

• toggling the Shift bit

Q Someone has to ask this: just what are the “Miscellaneous Traps” toward the end of
Traps.h, and in particular _HFSPinaforeDispatch?

A Those few defines in Traps.h are leftover baggage:

/* Miscellaneous Traps */
_InitDogCow = 0xA89F,
_EnableDogCow = 0xA89F,
_DisableDogCow = 0xA89F,
_Moof = 0xA89F,
_HFSPinaforeDispatch = 0xAA52,

0xA89F is really _Unimplemented and 0xAA52 is really _HighLevelFSDispatch.
They were possibly left there to keep system builds working — or perhaps to
keep the build engineers amused.

Q To get started writing a raster printer driver for QuickDraw GX, I wrote a “skeleton”
driver (only 5K!) that overrides only two messages: RenderPage and RasterDataIn. The
RenderPage override merely posts debug notices before and after forwarding the message.
The RasterDataIn override also posts a debug message, then returns immediately. So no
data is sent to the printer; this is, after all, only a demonstration driver.

A crash occurs after BuggyDriver forwards the RenderPage message but before control
returns to the RenderPage override. RasterDataIn is called one or more times before the
crash occurs. Since there’s hardly any code, yet the driver still crashes, I’m guessing that
MACINTOSH Q & A 117

d e v e l o p Issue 22 June 1995118
incorrect driver resources are to blame (I don’t pretend that I’ve figured out the 'rdip'
resource yet).

A You’ve stumbled onto a bug in QuickDraw GX: rendering into 32-bit-deep view
devices at high resolutions causes the crash you’re seeing. Since the problem is
in several of the QuickDraw GX blitters, there’s no workaround short of
reducing the bit depth or the resolution, or both. This problem is fixed in
version 1.1.

Q I’m patching NewControl so that I can replace the standard controls on AV and Power
Macintosh machines. This seems to work fine everywhere except in alerts. When an
alert is posted, NewControl doesn’t get called until after the original control is drawn
once. Any ideas?

A The “proper” way to do this is to patch NewControl and GetNewControl to
change the procID to your CDEF’s procID. This is pretty clean: the Control
Manager thinks your CDEF was the one that was always asked for. The only
drawback is that you’ll have to make sure your resource file is always available
and in the search path. Be sure to set the system bit in your CDEF to avoid
constant reloading.

Q I’m trying to call LMGetUnitTableEntryCount in my application, but when I compile
for PowerPC I get a link error: the function isn’t in the native libraries. Is this policy or
an inadvertent omission? What can I do about it?

A This is an oversight. You’ll need to create an external function in a file (say,
Extra.c) to access the low-memory global yourself (from native code only), as
shown below. When an updated library is released, you’ll only have to remove
the Extra.c.o file from your link command and relink your application, not
recompile it.

Your Extra.c file would be simple and look something like this:

// Compile with: PPCC -appleext on Extra.c -o Extra.c.o
// Add Extra.c.o to your PPCLink command line.
// Later, when a .xcoff file is provided by Apple, replace it with that,
// and delete your Extra.c.o file.
#if defined (powerc) || defined (__powerc)

pascal short LMGetUnitTableEntryCount()
{

return *(short *)0x01D2;
}

#endif

Of course, best of all would be to rewrite your application so that it doesn’t
depend on low memory at all.

Q The cursor flickers when it’s over a playing QuickTime movie. Is there any way to stop
this? I don’t want to hide it completely because the user needs to access controls elsewhere
on the screen, and the movie is large, so hiding it only over the movie is still disorienting.

A Unfortunately, there’s no way to prevent the flickering cursor, short of hiding it
completely. The Macintosh doesn’t have a hardware cursor, so the cursor always

has to be hidden during blits to the screen. QuickTime 2.0 improved this
situation by shielding the cursor less of the time, but it still happens.

Q Is it OK for different nodes to run different versions of AppleTalk on a network?

A You don’t need to run the same version of AppleTalk for each node on the
network. However, AppleTalk versions 53 and later support AppleTalk Phase 2,
so if you’re working on an application that depends on Phase 2 support (for
instance, use of the NBP wildcard character “≈”), you’ll need to use AppleTalk
version 53 or later for all nodes running that application.

Q When I use the LaunchApplication routine with the launchDontSwitch bit set in the
launchControlFlags field for an application that doesn’t have the canBackground size
resource bit set, LaunchApplication returns 0 (noErr) but the application doesn’t launch.
What gives?

A LaunchApplication doesn’t return an error in this case because the application
actually is launched. But since it doesn’t have the canBackground bit set and it
was launched into the background, it never gets any processor time, which
means that it doesn’t initialize anything and isn’t added to the Application
menu. If the user double-clicks an application that has been launched like this, it
will bounce forward and get processor time, initialize itself, and be added to the
Application menu as usual.

Q A colleague of mine who is a Latin freak always calls me a “lens culinaris.” What does
it mean?

A You are being called a “lentil.”
MACINTOSH Q & A 119

These answers are supplied by the
technical gurus in Apple’s Developer Support
Center. Special thanks to Pete “Luke” Alexander,
Mark Baumwell, Mark “The Red” Harlan, David
Hayward, Scott Kuechle, Larry Lai, Joseph Maurer,
Jim Mensch, and Nick Thompson for the material
in this Q & A column.•

Have more questions? Need more answers?
Take a look at the Macintosh Q & A Technical
Notes on this issue’s CD.•

Are there issues of develop that have passed you by? If you’d like to complete your develop collection,
full-color, bound copies are available. (Back issues are also on the develop Bookmark CD and the

Reference Library edition of the Developer CD Series.) To order printed back issues, send $13 per issue in the
U.S. (or $20 outside the U.S.) to develop Back Issues, P.O. Box 531, Mount Morris, IL 61054-7858. Or call
1-800-877-5548 in the U.S. or (815)734-1116 elsewhere.Supplies are limited. Please allow 4 to 6 weeks for delivery.

Missing something?

Issue 1 Color; Palette Manager; Offscreen Worlds;
PostScript; System 7; Debugging Declaration ROMs

Issue 2 C++ (Objects; Style Guide); Object Pascal;
Memory Manager; MacApp; Object-Based Design

Issue 3 ISO 9660 and High Sierra; Accessing CD Audio
Tracks; Comm Toolbox; 8•24 GC Card; PrGeneral

Issue 4 Device Driver in C++; Polymorphism in C++;
A/ROSE; PostScript; Apple IIGS Printer Driver

Issue 5 (Volume 2, Issue 1) Asynchronous Background
Networking; Palette Manager; Macintosh Common Lisp

Issue 6 Threads; CopyBits; MacTCP Cookbook:
Constructing Network-Aware Applications

Issue 7 QuickTime 1.0; TrueType; Threads and Futures;
C++ Objects in a World of Exceptions

Issue 8 Curves in QuickDraw; Date and Time Entry in
MacApp; Debugging; Hybrid Applications for A/UX

Issue 9 Color on 1-Bit Devices; The TextBox You’ve
Always Wanted; Macintosh Sound; Text Windows via the
Terminal Manager; Tracks: A Tool for Debugging Drivers

Issue 10 Apple Event Objects; PostScript Enhancements
for the LaserWriter Font Utility; Drawing in GWorlds;
The Optimal Palette

Issue 11 Asynchronous Sound; Multibuffering Sounds;
Exceptions; NetWork: Distributed Computing

Issue 12 Components; Time Bases; Apple Event Coding
Through Objects; Globals in Standalone Code

Issue 13 Asynchronous Routines; QuickTime and
Component-Based Managers; Macintosh Debugging
Revisited; Adventures in Color Printing; DeviceLoop

Issue 14 Writing Localizable Applications; 3-D Rotation
Using a 2-D Input Device; Video Digitizing Under
QuickTime; Making Better QuickTime Movies

Issue 15 QuickDraw GX (Getting Started; Printing
Extensions; PostScript); Component Registration;
Floating Windows; Working in the Third Dimension

Issue 16 Making the Leap to PowerPC; PowerTalk;
Drag and Drop From the Finder; Color Matching With
QuickDraw GX; International Number Formatting

Issue 17 Proto Templates on the Newton; Standalone
Code on PowerPC; Debugging on PowerPC; Thread
Manager; Window Zooming

Issue 18 Apple Guide; Open Scripting Architecture;
Graphics Speed on the Power Macintosh; Displaying
Hierarchical Lists; Preferences Files

Issue 19 OpenDoc Part Handlers; PowerPC Memory
Usage; Designing for the Power Macintosh; Adding
QuickDraw GX Printing to QuickDraw Applications;
QuickDraw GX Bitmaps; Inheritance in Scripts

Issue 20 AOCE (Catalog Records; Advanced Templates);
Make Your Own Sound Components; Scripting the
Finder From Your Application; NetWare on PowerPC

Issue 21 OpenDoc Graphics; Dylan; Designing a
Scripting Implementation; Object-Oriented Hierarchical
Lists; Introducing PowerPC Assembly Language

Newton
Q & A:
Ask the
Llama
Q When I try to print or fax something, the Newton usually runs out of memory. I’m
sending a lot of data to my print format, but it seems that the fields frame passed to
SetupRoutingSlip should have only a reference to the data. What am I doing wrong?

A Unfortunately, you’re missing one important step in the process of printing.
The fields frame is eventually placed in the outbox soup. Thus all references are
followed, which means that all the data you placed in the fields frame is
duplicated. The duplication occurs in the soup:Add call.

In other words, you probably have a large data structure (or view, or proto) in
your application. You put a reference to this structure in the fields frame in
SetupRoutingSlip. When the user accepts the item to be printed (or faxed,
beamed, or whatever), the fields frame is placed in the outbox soup, causing
your structure to be duplicated.

Ideally, you should pass as little data as possible in the fields frame. As an
example, assume that your data is all in a soup. You would pass information that
allowed you to construct a query that returned the soup data of interest. This
may be the index to search on plus the key to search for. You may even pass the
query frame itself. Note that any changes made from the time the print request
is made to the time the printing occurs will be reflected in the printed items.
This may not be what you want. As in most cases, there are tradeoffs.

Q I’d like to have something like a viewIdleScript in my communications endpoint. The
endpoint proto doesn’t contain a way to do this. What’s a good way to do it?

A One solution is to include your endpoint in a view object, such as a clView. You
can then treat the whole clView as the communications object. You can use the
view messages associated with opening a view to manage the control of your
endpoint. Similar things can be done with viewQuitScript. And of course you
can use a viewIdleScript.

Also note that using a view gives you a way to provide visual feedback (assuming
it makes sense). Take a look at protoLlamaTalk in the LlamaTalk sample on this
issue’s CD for an example.

Q How do I get a text view to redraw itself with a new font?

A Simply use SetValue on the viewFont slot:

SetValue(theParaView,
'viewFont,
{family: 'espy, face: kFaceBold, size: 12});

Q I’m trying to use a view that has vfFillGray as the background. I’ve found that it looks
really bad. Why is this?

A The pattern vfFillGray is an alternating on/off checkerboard pattern of pixels
(that is, 50% gray). With the current state of the technology, all passive LCDs
NEWTON Q & A: ASK THE LLAMA 121

The llama is the unofficial mascot of the
Developer Technical Support group in Apple’s
Personal Interactive Electronics (PIE) division.
Send your Newton-related questions to

NewtonMail DRLLAMA or AppleLink DR.LLAMA.
The first time we use a question from you, we’ll
send you a T-shirt.•

d e v e l o p Issue 22 June 1995122
have problems displaying large areas of 50% gray (or large areas of black). The
problem (called crosstalk) is worse when you have alternating on and off pixels.
Basically, the LCD freaks out. You should avoid using large areas of 50% gray
where possible.

Q When I try to add an index to my soup I sometimes get an exception -48019, but not
always. What’s going on?

A That particular exception indicates that an entry in your soup has a value of
NIL in the slot you’re trying to create an index for (that is, the entry contains
the slot with a value of NIL). You can easily recreate this error by trying to add
an index on the bday slot in the names file. Here’s some code that you can type
in the inspector:

call func()
begin

local nameSoup := GetStores()[0]:GetSoup(ROM_cardfilesoupname);
nameSoup:AddIndex(

{structure: 'slot, path: 'bday, type: 'Int});
end with ();

In this case the error occurs because the default cardfile entry has a value of
NIL for the bday slot. The solution is to make sure that there are no soup
entries with a value of NIL for the slot that you want to use for the new index.
This is best done in the design of your soup data.

If this isn’t possible, the only solution is to make sure that all entries in the soup
either have a valid value for the new index slot or do not contain the new index
slot. Unfortunately, you don’t know in advance if the new index will fail. In this
case you can wrap the code that adds the index in a try/onexception clause. If
an exception occurs that has the -48019 error number, you know that you have
to iterate through the soup and fix entries.

Also note that you may want to keep a list of those “fixed” entries around since
you may have to unfix them after the index has been added. In other words, it’s
OK for an entry to have a NIL value in an indexed slot after the index has been
added to the soup.

Q I have a protoA2Z_TDS controlling a protoTextList. There are two things this
combination doesn’t do: (1) As the protoTextList contents are scrolled, the
protoA2Z_TDS doesn’t update the current letter, and (2) when the user clicks on a
letter in the protoA2Z_TDS, I want to scroll the protoTextList to the appropriate place.
How do I do these things?

A For those who may not know, protoA2Z_TDS is sample code provided by PIE
Developer Technical Support. In answer to the first question, all you need to do
is set the curIndex to the correct value, where A is 0 and Z is 25. If you use
SetValue, the display will update for you. So if your protoA2Z_TDS was declared
as indexer, and you wanted to change it to the letter B, you would do this:

SetValue(indexer, 'curIndex, 1);

You could also write a method of the protoA2Z_TDS that would update the
display based on a character:

SetIndex := func(newChar)
begin

local newIndex := Ord(Upcase(newChar)) - 65;
if newIndex < 0 then newIndex := 0;
if newIndex >= numIndices then newIndex := numIndices - 1;

SetValue(self, 'curIndex, newIndex);
end;

Note that this function will try to do the right thing with weird input. However,
if you’re expecting the full range of Unicode values, you’ll have to change the
function to accommodate multibyte characters.

Now let’s tackle question number 2. You need to know about three things in the
protoTextList that aren’t yet documented in the Newton Programmer’s Guide:

1. There’s a slot named lineHeight that contains the height of each line in pixels.

2. The protoTextList uses SetOrigin to scroll. Therefore, the slot viewOriginY
contains the number of pixels that the view is scrolled (and viewOriginY
DIV lineHeight is the line number of the top displayed line).

3. There’s a method DoScrollScript(offset) that scrolls from the current
position by the specified offset (in pixels).

Given these three pieces of information, here’s a method for a protoTextList
that will highlight a particular row and make it visible:

protoTextList.HiliteRow := func(index)
begin

// highlight this item
SetValue(self, 'selection, index);
// scroll as necessary
local topItem := viewOriginY DIV lineHeight;
if index < topItem or (index >= topItem + viewLines) then begin

// we need to scroll so that the index is the first item
:DoScrollScript(-(topItem - index) * lineHeight);

end;
end

Of course you still have to calculate what index to pass to the function. But that
should be fairly straightforward. The protoA2Z_TDS will give you the first letter,
which you can then find in your listItems array in the protoTextList. Note that if
the listItems array is sorted, you can use a binary search to find the correct index.

Q What is the origin of the llama?

A The first evidence of llamas dates back to the llama raptor discovered by Dr.
Leakey in the jungles of the Amazon. This find was dated back to the late
“Jurassic Park” period. Early llamas are thought to have been both more violent
and more intelligent than today’s breeds. Cave paintings from the hills of
Venezuela clearly depict early humans in use as pack animals for tribes of llamas.
NEWTON Q & A: ASK THE LLAMA 123

Thanks to Erik York and our PIE Partners for the
questions used in this column, and to Bob Ebert,
J. Christopher Bell, Mike Engber, Neil Rhodes,
Kent Sandvik, Jim Schram, Maurice Sharp, and
Bruce Thompson for the answers.•

Have more questions? Need more answers?
Take a look at PIE Developer Info on AppleLink.•

124
See if you can solve this programming puzzle, presented in the form of
a dialog between Konstantin Othmer and guest puzzler Chris Yerga.
The dialog gives clues to help you. Keep guessing until you’re done; your
score is the number to the left of the clue that gave you the correct
answer. Even if you never run into the particular problems being
solved here, you’ll learn some valuable debugging techniques that will
help you solve your own programming conundrums. And please, make
KON & BAL’s day by submitting a puzzle of your own to AppleLink
DEVELOP.

KON & BAL’S PUZZLE PAGE

A Branch Too Far
d e v e l o p Issue 22 June 1995

CHR
on Q
grap
curre

CHRIS YERGA
Chris I have a piece of code that runs fine on my Quadra, but when I run it
on a plain old 68000 it crashes.

KON A 68000? So you’re still trying to get GX to run on that Mac Portable
in Cary’s office, huh? How does it crash?

Chris With an address error.

KON What’s hard about that? Your code is doing a 2- or 4-byte access to an
odd address, which is OK on a 68040 but not on a 68000. It’s a trivial
problem.

Chris That’s what I thought, but the address it’s accessing appears to be
uninitialized data. The code is simply allocating a block and then
storing a pointer in the block, but the store never seems to occur,
because afterward the block has random data in it. And of course the
block itself is long-aligned, because it came from the Memory
Manager, so there’s no problem there.

KON Maybe on your Quadra, but on a Mac Plus the Memory Manager
allocates blocks that are word-aligned.

Chris Thanks for the history lesson, chief, but this isn’t a Mac Plus and the
Memory Manager on this machine is much different — much simpler,
actually. It just so happens that our Memory Manager always long-
aligns blocks.

KON Since when are you writing new Memory Managers? I thought you
wrote graphics code.
IS YERGA During his four years working
uickDraw GX, Chris learned a lot about
hics systems and large projects. He’s
ntly employed by Catapult Entertainment,

where he learned that a Sega is kinda like a
Macintosh, a SNES is kinda like an Apple IIGS,
and carbon dioxide can be explosive.•

Chris Yes. But the cornerstone of any decent graphics system is its Memory
Manager — I wouldn’t expect a “QuickDraw classic” guy like you to
understand.

KON I understand memory management just fine, Jackson. Show me where
you’re setting up this data.

100 Chris This is the interesting section:

NewDMAQueueEntry
...
+0030 0020C5D6 MOVE.L D3,D0
+0036 0020C5DC _NewPtr
+0038 0020C5DE MOVE.L A0,-$0008(A6)
+003C 0020C5E2 MOVE.L -$000C(A6),-(A7)
+0040 0020C5E6 MOVEA.W -$000E(A6),A1
+0044 0020C5EA MOVE.L A1,-(A7)
+0046 0020C5EC JSR *+$53A4 ; 00211990
+004A 0020C5F0 MOVE.L D0,-$000C(A6)
+004E 0020C5F4 MOVE.L A2,(A0,D0.L)

It makes the _NewPtr call, makes some other function call, and then
stores the pointer in A2 into our newly allocated buffer.

KON What’s the other function call doing?

95 Chris I’m not sure, actually. The C source doesn’t indicate that a function
call should be happening:

buffer = NewPtr(totalSize);
count = count * size;
*(long *) (buffer + count) = (long) handlerProc;

The only thing I see happening in the source code is a multiply. You
don’t need a function call for that.

KON Could this be some wacky C++ operator overloading nonsense? C++ is
very good at generating extra function calls. I think we’d better bring a
SmartFriend in on this one.

Chris Don’t bring out the big guns just yet. The code is written completely
in plain old C: no C++ and no CFront.

KON It’s got to be code you’ve written, because it’s a PC-relative JSR. Since
it’s not an A5-relative JSR, it’s not going through the jump table, so it
couldn’t have been linked in from a library or something external to
your program. It looks like a call to a static function.

Chris Actually, all the JSR instructions in this code are PC-relative. I wrote
a tool that transforms all JSRs that go through the jump table to PC-
relative JSRs. You may want to sit down for this next part — it’s a little
tricky.

KON That’s why it ended up in the Puzzle Page. Let’s hear it.

90 Chris All the code is being built into a ROM; however, our development
system of choice only allows us to build our code as a Mac application.
So I created a custom tool that postprocesses the application and turns
it into something that will run out of ROM. Basically we use the
CODE 0 jump table to link everything together.
KON & BAL’S PUZZLE PAGE: A BRANCH TOO FAR 125

d e v e l o p Issue 22 June 1995126
KON I see. You know where the code will reside in ROM, so you fake out
the jump table to make it look as if all the segments are loaded. Since
nothing will ever move or unload, your ROM jump table entries never
need to change. Pretty tricky.

Chris But not tricky enough. The scheme you describe will work, but it
has two problems. First, our ROM can be mapped into different
addresses, so the code must be completely relocatable. A Mac jump
table contains JMP instructions with fixed long addresses (for example,
JMP $4083143A), which are not relocatable. Second, as a cycle
counter like you should know, the jump table is superfluous here,
because no code will ever move or unload while it’s running. You’re
doing a JSR to the JMP in the jump table — the extra JMP is
unnecessary and wastes cycles.

KON I didn’t know you GX guys counted cycles. How do you get away with
removing the extra JMP?

85 Chris Our tool scans all the object code for all instructions that reference the
jump table. They are JSR xx(A5) (function call), PEA xx(A5) (pass a
function pointer on the stack), and LEA xx(A5),Ax (get a function
pointer in a local variable). When it finds one of these instructions, it
looks up the function in the jump table and changes the instruction to
a PC-relative version that simply references the address of the target
function directly. Everything is PC-relative, so it relocates correctly,
and there are no extra instructions.

KON But the PC-relative addressing mode has only a 16-bit offset, so you
can only reference functions within 32K of the PC. Is your ROM that
small?

80 Chris Are you kidding? The pictures for the About box are bigger than that.
When we need to reference a function that’s beyond 32K, we create a
“jump island” that’s still PC-relative but allows us a greater reach.

0020122A: JSR $00201FA8 ;go to jump island
0020122E: MOVE.W D0,(A3)
...
00201FA8: LEA *+0,A0 ;get pc
00201FAC: ADDA.L #$00014B02,A0 ;add long offset
00201FB2: JMP (A0) ;jump to destination

KON That looks suspicious to me. You’re messing with A0 in your jump
island.

75 Chris But that should be OK because the whole thing is written in C, which
never passes a parameter in A0 and never expects A0 to be preserved.

KON I can’t find a specific problem, but I’m still a little suspicious of all
this OS code you’re writing. You said that this code runs fine on
your Quadra. Does the Quadra version undergo the jump table
transformation process?

Chris No. The Quadra version is run just like a Mac application out of
RAM.

KON Tell me all the differences between the two environments.

70 Chris The 68000 version of the software is different in two ways. First, it’s
generated with the exact same compiler, but without 68020 code
generation enabled. Then, I run it through my BuildROM tool, which

transforms all the jump table references to PC-relative references. The
68000 target hardware is a diskless system; the only way to get code
into it is through ROM cartridges, so we can’t try to run a version of
the software that hasn’t undergone the BuildROM step.

KON So the bug may have nothing to do with the differences between the
68040 and 68000 processors — it may be the BuildROM process. Let’s
sum up what we know: First we saw a piece of code that allocates a
block of memory and stores a value into that block, but the store never
seems to happen. Near that code is an unexplained JSR which we
believe is a function call. Finally, we know that a critical difference in
the environment is that you alter the code path of function calls. It’s
really starting to smell like your BuildROM tool.

Chris The evidence is all circumstantial, counselor. The only questionable
part of the BuildROM process we’ve seen is my usage of A0 in the
jump islands, but I can’t see a case where a C function call takes a
parameter in A0 or assumes A0 is preserved.

KON We should trace through the NewDMAQueueEntry routine and see
what that mysterious function call is doing.

65 Chris I put in a breakpoint. But when I run the program again, I drop into
the debugger with a debug message complaining that some kind of
parameter is out of range.

KON You mean the bug isn’t reproducible?

Chris After many tries, this is the first time it’s failed this way.

KON Hmm. What parameter is out of range?

Chris The debug message doesn’t say, exactly. The value it’s complaining
about is in D2. The value is $00004E56.

KON That’s a funny-looking number. It looks like an opcode to me. dh
4E56 tells me it’s a LINK A6,#xx instruction. Where did the value in
D2 come from?

60 Chris From a MOVE.W (A0),D2 instruction. The code seems to think A0
points to some data.

KON But it looks as if it points to code instead. Where is A0?

Chris It points to the start of a routine called VBLHandler.

KON VBLHandler sure sounds like an interrupt service routine to me,
which would explain the various failure modes. Is the routine written
in C? C routines don’t bother to preserve A0, so your interrupt routine
is trashing a register!

55 Chris There’s some inline assembly code to save all the registers. Take a
look:

void VBLHandler(void)
{
asm {

MOVEM.L A0-A6/D0-D7, -(SP)
};

FlushQueue();
HandleVBLTasks();
KON & BAL’S PUZZLE PAGE: A BRANCH TOO FAR 127

d e v e l o p Issue 22 June 1995128
asm {
MOVEM.L (SP)+, A0-A6/D0-D7

};
}

KON It seems quite suspicious to me that A0 points to the beginning of this
routine. Sounds like your jump islands are at work. Look at the
interrupt vector for your VBL handler.

50 Chris On this particular machine the VBL is handled as a level-6 interrupt.
The level-6 vector is at $0078. It points to a jump island entry like the
one above.

KON And the first thing it does is trash A0 before your inline assembly gets
a chance to save it! Maybe you should stick to drawing bitmaps and
leave the OS work to someone else.

45 Chris The problem is that the code that installed the interrupt handler is
more than 32K away from the handler itself. So when it did an LEA
xx(A5),Ax to get the address of the interrupt handler, the ROM builder
tool needed to stick a jump island in there. Nasty. But I still need a way
to do PC-relative jump islands.

KON Use the stack, son. Try this:

PEA * ;push the pc
ADD.L #xxxxxx,(sp) ;add a long offset
RTS ;jump to the destination

Chris All this and you can draw bitmaps too! I’ll fix the ROM builder tool to
do this. But somehow I doubt that a VBL interrupt was hitting us at
the same spot in my NewDMAQueueEntry routine every time. There
must be another problem there.

KON We still have the breakpoint there; before we recompile and fix the
bug, let’s run it again and see if we can get the original failure mode to
happen again.

40 Chris This time we hit the breakpoint. We trace over the NewPtr and see
that it returns a valid pointer in A0. We step into the JSR at $20C5EC
and it takes us to one of my jump islands.

KON Which alters A0, and then jumps to the function being called. What is
the function doing?

35 Chris It’s a very short routine; it just takes some parameters off the stack and
does a few multiplies. It returns the result in D0 just like any normal C
function would.

KON But is it using the trashed A0 for anything?

Chris No. In fact, it’s not using any address registers at all. It only uses data
registers for the multiplies. I repeat: no C function would ever take a
parameter in A0.

KON So we return to the NewDMAQueueEntry routine, with a return
value in D0. We save D0 in a local variable on the stack frame, and
then hit the instruction at $20C5F4, which stores a value in the buffer
pointed to by A0.

30 Chris But A0 still has the result of the jump island calculation in it. The code
didn’t set up A0 to point to anything!

KON Look at the listing of NewDMAQueueEntry again. The code gets the
result of the NewPtr call in A0, makes the function call, and then
assumes that A0 still has the valid pointer in it. But meanwhile, some
wannabe OS programmer has gotten in there and hosed A0 on us!

20 Chris That function call seems to be doing the multiply. It must be some
runtime math library that the compiler uses.

KON I’ll bet one of your variables is a long word. With 68020 code
generation turned on, the compiler was able to generate a long
multiply instruction, but the 68000 doesn’t have a long multiply
instruction, so it calls the math library.

10 Chris I see. Since the math library was written by the same people who wrote
the compiler, their code generator knows that A0 won’t get trashed, so
it doesn’t bother to save and restore it around the call to the long
multiply routine. Pretty sneaky.

KON But nice. You want the person writing your code generator to be the
ultimate cycle counter. Since the Mac Segment Loader implementation
doesn’t trash A0, it’s a worthwhile optimization for them to make.

Chris Except in this case, the code that performs a multiply is more than 32K
away from where the math library resides in the ROM, so it hits a
jump island and loses the value of A0.

KON Even a lowly register like A0 is sacred sometimes.

Chris So it appears.

KON Nasty.

Chris Yeah.
KON & BAL’S PUZZLE PAGE: A BRANCH TOO FAR 129

SCORING
80–100 Please fax your resumé to Catapult Entertainment, Inc., (408)366-2471.
60–75 We also have junior positions available.
40–55 Don’t worry; just let CopyBits do the tricky stuff.
10–35 I see you’ve done your share of long multiplies.•

Thanks to Josh Horwich, KON (Konstantin Othmer), and BAL (Bruce Leak) for reviewing this column.•

For a cumulative index to all issues of
develop, see this issue’s CD.•

A
A0 register, KON & BAL puzzle

126, 127–129
“AAPL,address” property, PCI

device drivers and 50–51, 55
“According to Script” (Simone),

scripting quandaries 81–82
address space (Copland) 32–33
AddSearch (Color Manager) 78
AEBlock ('blck') keyword, futures

and 102, 104
AEDisposeDesc, futures and 103
AEGetKeyPtr, futures and 99,

102, 103
AEInstallEventHandler, futures

and 109
AEInstallSpecialHandler, futures

and 102
AEInstallThreadedEventHandler,

AEThreads library and 107
AEProcessAppleEvent, futures and

104, 106, 109
AEResetTimer

and client/server timeout
negotiations 107–108,
110

FutureShock and 101
AEResetTimerFrequency,

AEResetTimer and 108
AEResumeTheCurrentEvent,

futures and 104–106
AESend

futures and 99, 100, 103
multiple concurrent events

and 98
AEThreads library, futures and

107
“AEThreads Library, The” (Sisak)

107
AEUnblock ('unbk') keyword,

futures and 102, 104
ambient light (QuickDraw 3D) 22
Anderson, Greg 98
Appearance Manager (Copland)

30
AppendDITL, and 'ictb' resources

3
Apple-event futures. See futures

Apple event handler, for sending
events 101

Apple Event Manager, futures and
102, 109

Apple Guide, Copland and 30
Apple menu (OpenDoc) 91, 92
AppleScript 81–82
AppleTalk versions, Macintosh

Q & A 119
Application menu, OpenDoc and

91
Application menu icon (OpenDoc)

87
AskForFuture (Futures Package)

100, 103, 108, 110
“assigned-addresses” property,

PCI device drivers and 51, 55
Assistance Manager (Copland) 30
asynchronous interapplication

communication, futures and
98–111

attributes (QuickDraw 3D) 12
auto-startup (Time Manager),

Macintosh Q & A 114

B
back buffer (QuickDraw 3D) 19,

24
“Balance of Power” (Evans and

Murphy), MacsBug for Power
PC 39–41

Balloon Help, HMCompareItem
and (Macintosh Q & A)
112–113

binary metafiles (QuickDraw 3D)
24

blocking routine (Futures
Package) 102, 103, 104, 109

BlockUntilReal (Futures Package)
109

Box sample application
(QuickDraw 3D) 15–24

brp command (PowerPC),
MacsBug and 39

BuildROM tool, KON & BAL
puzzle 126–127, 128

C
camera objects (QuickDraw 3D)

12, 20, 21–22
case conventions, and scripting

implementation 81

causal diagramming, sample
program 95

cells, scripting implementation
and 82

CheckpointIO, PCI device drivers
and 46, 55, 58, 59, 60

clients (in interapplication
communication) 99, 103–104

client/server timeout negotiations,
futures and 107–109

Close command, PCI device
drivers and 49

CLUT (color lookup table) (Color
QuickDraw) 67

clView, Newton Q & A 121
codecNothingToBlitErr error,

Macintosh Q & A 114
Code Fragment Manager (CFM)

Copland and 29, 34
PCI device drivers and 49

CollectPictColors snippet 72
color lookup tables (Color

QuickDraw) 67
and the current graphics

device 69
seed values 74, 76

Color Manager, Color QuickDraw
and 70

color mapping (Color QuickDraw)
67

default 70
modified colors 71

Color QuickDraw 66–80
color search procedures

70–80
converting colors to pixel

values 66–69
colors, converting to pixel values

(QuickDraw) 66–69
color search procedures

brute-force approach 73,
78, 79

custom 66–80
evaluating 78–80
examples 71
installing and removing 78,

79
modifying search colors

70–71
using hash tables 74–79, 80

ComponentDispatch, MacsBug
and 40

INDEX

d e v e l o p Issue 22 June 1995130

concurrent I/O
Copland and 35
PCI device drivers and 44,

61
container applications (OpenDoc)

85
contents property, scripting

implementation and 81–82
Control handler, PCI device

drivers and 55
Copland 29–38

architecture 35
File Manager 36–37
I/O architecture 33–34, 35,

37–38
microkernel 31–34
and PCI device drivers 44
runtime model 34–36
synchronization mechanisms

34
See also microkernel

(Copland)
“Copland: The Mac OS Moves

Into the Future” (Dierks)
29–38

CopyBits
Color QuickDraw and 69
custom color search

procedures and 70,
71–72, 78, 79–80

dithered 72, 73
Copy command (Edit menu)

(OpenDoc) 90, 93
“Creating PCI Device Drivers”

(Minow) 42–62
crosstalk, Newton Q & A 122
Curbow, Dave 83
current graphics device, and

inverse tables (Color
QuickDraw) 69

current record property, scripting
implementation and 82

“Custom Color Search
Procedures” (Wintermyre)
66–80

custom thread context–switching
callbacks 102

Cut command (Edit menu)
(OpenDoc) 90, 92

D
database organization (of

QuickDraw 3D metafiles) 25,
26

dcmd format, MacsBug and 40
DelSearch (Color Manager) 78

development environment, MPW
and 63–65

device drivers 42
converting for PCI devices

44–45
See also PCI device drivers

DeviceLoop, Color QuickDraw
and 78

Device Manager
Copland and 38
PCI device drivers and 43,

44, 45, 55
DeviceProbe, PCI device drivers

and 52
dhp command (PowerPC),

MacsBug and 39
Dierks, Tim 29
direct color pixel maps (Color

QuickDraw) 67
directional light (QuickDraw 3D)

22
DLOG resources, Macintosh

Q & A 115
DMA (direct memory access)

operations
PCI device drivers and

54–55
preparing for 56–60

Document menu (OpenDoc) 87,
91, 92

commands 91–92
documents, scripting

implementation and 81
DoDriverIO

parameters for 47
PCI device drivers and 45,

46, 47–49
double buffering (QuickDraw 3D)

15–16, 19
Drafts command (Document

menu) (OpenDoc) 92
draw context (QuickDraw 3D)

19–20
DriverDescription

PCI device drivers and 46
See also

TheDriverDescription
DriverInterruptServiceRoutine,

PCI device drivers and 61
Driver Loader Library, PCI device

drivers and 46
Driver Services Library, PCI

device drivers and 46, 52, 56
Dykstra-Erickson, Elizabeth 83

E
Edit menu (OpenDoc) 91, 92

commands 92–93
embedded parts (OpenDoc) 84

copying and moving 90–91
EndianSwap16Bit, PCI device

drivers and 56
EndianSwap32Bit, PCI device

drivers and 56
errAEReplyNotArrived error

code, futures and 108, 109
error handlers (QuickDraw 3D)

15
errors (QuickDraw 3D) 14
Evans, Dave 39
Expansion Bus Manager, PCI

device drivers and 46, 52, 56

F
families

Copland I/O architecture
and 37

PCI device drivers and 44
Fernicola, Pablo 6
fields, scripting implementation

and 82
fields frame, Newton Q & A 121
File Manager (Copland) 36–37

compared with the System 7
File Manager 36

File objects (QuickDraw 3D)
25–26, 27

Finalize command, PCI device
drivers and 45, 49

flickering cursor, Macintosh
Q & A 118–119

form elements, scripting
implementation and 82

frames (OpenDoc) 86–87
resizing 89–90
scaling 90

front buffer (QuickDraw 3D) 19
FsCurPerm, and fsRdPerm 3
futures 98–111

client/server timeout
negotiations 107–109

responding to events
104–107

sending events 103–104
and timeouts 108–109
transforming into real

answers 100
“Futures: Don’t Wait Forever”

(Anderson) 98–111

INDEX 131

FutureShock sample application
99, 101–102

Futures Package 98–111
AEThreads library and 107
blocking and unblocking

callbacks 102, 103, 104
Futures Package API

109–110
initializing 103, 107, 109
semaphores 102, 103, 108
and the Thread Manager

98, 99
timeouts and 108

fvFillGray, Newton Q & A
121–122

G
geometries (QuickDraw 3D) 8,

11
gestaltQuickDraw3D constant 15
gestaltQuickDraw3DViewer

constant 12
GetDeviceAddress, PCI device

drivers and 51–52, 55
GetFileName command (MPW)

64
GetInterruptFunctions, PCI

device drivers and 46
GetListItem command (MPW)

64
GetLogicalPageSize, PCI device

drivers and 46, 58
GetNewControl, Macintosh

Q & A 118
GetNewDialog, Macintosh Q & A

114–115
GetResetTimerFrequency

(Futures Package) 110
GetResource, Macintosh Q & A

114–115
GetStartupTimer, Macintosh

Q & A 114
GetThisProperty, PCI device

drivers and 53–54
GNE filter patch, Macintosh

Q & A 116
graphics devices, and inverse tables

(Color QuickDraw) 69
graphics objects, scripting

implementation and 82
graphics part editor (OpenDoc)

88
GXGetGlyphShapeParts,

Macintosh Q & A 113

GXGetLayoutShapeParts,
Macintosh Q & A 113

GXSetShapeEncoding (Macintosh
Q & A) 113

GXSetStyleEncoding (Macintosh
Q & A) 113

H
HashTableNeedsUpdate, Color

QuickDraw and 75, 78
hash tables (Color QuickDraw)

building 76, 77
checking the validity of 75
for color search procedures

74–79, 80
data structure 74, 75
initializing 74, 75
inserting color into 75–76

Help menu (OpenDoc) 91, 92
Hendrickson, B. Winston 30
hierarchical file system (HFS),

Copland and 36
HMCompareItem, Macintosh

Q & A 112–113

I
'ictb' resources, and AppendDITL

3
IdleFutures (Futures Package)

109, 110
IdleUpdate (Power Manager),

futures and 106–107
idp command (PowerPC),

MacsBug and 39
il command (PowerPC), MacsBug

and 39, 39
ilp command (PowerPC),

MacsBug and 39
immediate-mode rendering

(QuickDraw 3D) 10, 17–19
indexed color pixel maps (Color

QuickDraw) 67
indexes, adding to the soup

(Newton Q & A) 122
InitFutures (Futures Package)

103, 109
Initialize command, PCI device

drivers and 45, 49
Insert command (Document

menu) (OpenDoc) 91, 92
InstallInterruptFunctions, PCI

device drivers and 46, 60
interface elements, scripting

implementation and 81
interrupt control (Copland)

33–34

interrupt service routine (PCI
device drivers) 52–53, 60–62

intertask messaging (Copland) 34
intrinsic content

of parts (OpenDoc) 84
copying and moving 90–91

inverse tables (Color QuickDraw)
67–69

drawbacks of 69, 78–79
and graphics devices 69
resolution of 68

I/O architecture (Copland)
33–34, 35, 37–38

IOCommandIsComplete, PCI
device drivers and 45, 46, 49,
55, 60

I/O cycle operations, PCI device
drivers and 55, 56

I/O layer (QuickDraw 3D) 11
I/O operations, PCI device drivers

and 54–62
IOPreparationTable, PCI device

drivers and 58, 59, 60
ip command (PowerPC), MacsBug

and 39
ipp command (PowerPC),

MacsBug and 39
IsFuture (Futures Package) 110

K
kAEWaitReply send mode,

AEResetTimer and 107
kCloseCommand, PCI device

drivers and 49
kFinalizeCommand, PCI device

drivers and 49
KillIO handler, PCI device drivers

and 55
kInitializeCommand, PCI device

drivers and 49
kInstallHouseKeepingThread flag

(Futures Package) 109, 110
kInstallPredispatch flag (Futures

Package) 109
“KON & BAL’s Puzzle Page”

(Yerga), A Branch Too Far
124–129

kOpenCommand, PCI device
drivers and 49

kReplaceCommand, PCI device
drivers and 49

kSMPCopyInProgress error,
Macintosh Q & A 116

kSupersededCommand, PCI
device drivers and 49

d e v e l o p Issue 22 June 1995132

L
LaunchApplication, Macintosh

Q & A 119
light objects (QuickDraw 3D) 12,

20–22
LMGetUnitTableEntryCount,

Macintosh Q & A 118
logical address range (PCI device

drivers) 50–52, 55
lowercasing, and scripting

implementation 81
lwbrx instruction, PCI device

drivers and 56

M
Macintosh draw context

(QuickDraw 3D) 19
Macintosh Q & A 112–119
MacsBug v. 6.5, for PowerPC

39–41
MailTime, Macintosh Q & A 115
MakeITable (Color Manager) 68
Maroney, Tim 63
MemAllocatePhysicallyContiguous,

PCI device drivers and 46
Memory Manager, KON & BAL

puzzle 124–125
memory-mapped files (Copland)

33
memory-mapped I/O, PCI device

drivers and 55, 56
menu commands, scripting

implementation and 81
MenuHook, Macintosh Q & A

116
MenuSelect, Macintosh Q & A

116
metafiles (QuickDraw 3D) 6, 7,

9, 24–28
binary 24
data types supported 25
organization types 25, 26
plain-text (ASCII) 24
reading data from 26, 28
support for 9–10
writing data to 27

microkernel (Copland) 31–34
address space 32–33
interrupt control 33–34
synchronization and

intertask messaging 34
task control 31–32
virtual memory management

32–33
Minow, Martin 42

Modeller sample application
(QuickDraw 3D) 16

MOD operator, hash functions
and 74

MountVol, Macintosh Q & A 116
“Moving the Mac OS Interface

Into the Future” (Hendrickson)
30

MPW (Macintosh Programmer’s
Workshop), development
environment 63–65

“MPW Tips and Tricks”
(Maroney), building a better
(development) environment
63–65

Murphy, Jim 39

N
Name Registry

PCI device drivers and 43,
45, 46, 50

retrieving properties from
53–54

NativeComponent, MacsBug and
40

Navigation Services (Copland) 30
NDRV drivers (PCI) 44, 45
'ndrv' files, storing PCI device

drivers 44
NewControl, Macintosh Q & A

112, 118
NewDMAQueryEntry, KON &

BAL puzzle 127, 128–129
NewThread (Futures Package)

109
Newton Q & A 121–123
NIL values, Newton Q & A 122
normal organization (of

QuickDraw 3D metafiles) 25,
26

notices (QuickDraw 3D) 14
null containers, scripting

implementation and 82

O
object model, scripting

implementation and 81
octree method (Color QuickDraw)

72
Open command, PCI device

drivers and 49
OpenDoc 83–93

documentation 83
menus 91–93
parts 83–91

Open Document command
(Document menu) (OpenDoc)
92

“OpenDoc User Experience, The”
(Curbow and Dykstra-
Erickson) 83–93

Open Firmware, PCI device
drivers and 43–44, 45, 50

Open Selection command
(Document menu) (OpenDoc)
92

Open Transport, Copland and 38
operating systems, Copland

29–38
orthographic camera (QuickDraw

3D) 20

P
Palette Manager, Color

QuickDraw and 72
paper juggling 94–97
part category (OpenDoc) 85, 86
part editor (OpenDoc) 85

embed vs. merge decisions
91

installing menus 91
resizing frames 89

Part Info command (Edit menu)
(OpenDoc) 93

changing the view type 87
part kind (OpenDoc) 85, 86
parts (OpenDoc) 83–91

active 88
copying and moving content

90–91
and documents 84
embedded 84, 90–91
frames 86–87, 89–90
icons for 85, 86
inactive 88–89
intrinsic content 84, 90–91
part category 85, 86
part editor 85, 91
part kind 85, 86
part viewers 85
part windows 90
properties of 85–87
selected 89, 93
view type 85

part viewers (OpenDoc) 85
part windows (OpenDoc) 90
Paste As command (Edit menu)

(OpenDoc) 90, 91, 92
Paste command (Edit menu)

(OpenDoc) 90, 93

INDEX 133

Patch Manager (Copland) 35–36
Pattern Manager (Copland) 30
PCI device drivers 42–62

and 680x0 processors 43
configuration facility 43
converting existing drivers to

44–45
Copland and 38, 44
driver services 43
Expansion Bus Manager and

46, 52
initialization and termination

49–54
interrupt service routine

52–53, 60–62
I/O operations 54–62
logical address range 50–52,

55
storage of 44
timer services 45

PCI device registers 45
setting and reading values

55–56
perspective camera (QuickDraw

3D) 20
picking (QuickDraw 3D) 12
pixel values (Color QuickDraw)

70
converting to colors 66–69

pixmap draw context (QuickDraw
3D) 19, 21

rendering loop for 24
plain-text (ASCII) metafiles

(QuickDraw 3D) 24
PMFeatures, Macintosh Q & A

114
point light (QuickDraw 3D) 22,

23
PoolAllocateResident, PCI device

drivers and 46, 54
PoolDeallocate, PCI device

drivers and 46, 54
position parameter (Color

QuickDraw) 70, 72
Power Macintosh, debugging on

39–41
PowerPC, MacsBug and 39–41
PowerTalk mailbox, Macintosh

Q & A 115
preemptive tasks (Copland)

31–32, 34
preferences files, MacsBug and 40
PrepareMemoryForIO, PCI

device drivers and 46, 55,
57–58, 59, 60

PrepareSharedArea, PCI device
drivers and 57, 58

Process Manager, Copland and 31
properties property, scripting

implementation and 82
protoA2Z_TDS, Newton Q & A

122–123
protoTextList, Newton Q & A

122–123

Q
Q3Exit 15, 16, 17
Q3File_BeginWrite 27
Q3File_EndWrite 27
Q3File_GetNextObjectType 26
Q3File_ReadObject 26
Q3File_SetStorage 26
Q3File_SkipObject 26
Q3View_EndRendering 24
Q3ViewerDispose 13
Q3ViewerDraw 14
Q3ViewerEvent 14
Q3ViewerNew 13
Q3ViewerUseData 13
Q3ViewerUseFile 13
QueueSecondaryInterrupt, PCI

device drivers and 46
QuickDraw 3D 6–28

architecture 10–12
creating and drawing 3D

objects 15–24
cross-platform support 7
error checking 14–15
features 7
human interface 8, 9
initializing 15, 16
and other 3D libraries 7, 10
rendering modes 10, 17–19
shutting down connection to

15, 16
supporting the 3D Viewer

12–14
See also metafiles

(QuickDraw 3D)
“QuickDraw 3D: A New

Dimension for Macintosh
Graphics” (Fernicola and
Thompson) 6–28

QuickDraw 3D API 14–15
using metafiles 25–28

“QuickDraw 3D Human
Interface, The” (Venolia) 8, 9

QuickDraw 3D metafile format.
See metafiles (QuickDraw 3D)

QuickDraw 3D Viewer 12–14

QuickDraw GX, glyphs and
shapes (Macintosh Q & A)
113–114

QuickDraw GX printer drivers,
typographic style objects
(Macintosh Q & A) 113

R
RasterDataIn, Macintosh Q & A

117–118
Read handler, PCI device drivers

and 55
records, scripting implementation

and 82
Redo command (Edit menu)

(OpenDoc) 92
RegistryPropertyGet, PCI device

drivers and 46
RegistryPropertyGetSize, PCI

device drivers and 46
renderers (QuickDraw 3D) 12
rendering (QuickDraw 3D) 6,

8–9, 10, 17–19
rendering loop (QuickDraw 3D)

19, 22–24
RenderPage, Macintosh Q & A

117–118
Replace command, PCI device

drivers and 45, 49
ReplyArrived (Futures Package)

110
Request command (MPW) 64
ResetTimerIfNecessary (Futures

Package) 110
retained-mode rendering

(QuickDraw 3D) 10, 17
RGBColor record (Color

QuickDraw) 67
RGBHashArray, Color

QuickDraw and 74
RGBHashClear, Color

QuickDraw and 76
RGBHashInsert, Color

QuickDraw and 76
RGBHashNode, Color

QuickDraw and 74
RGBHashSearch, Color

QuickDraw and 76, 77–78
rgb parameter (Color QuickDraw)

70
root part (OpenDoc) 84, 87
rows, scripting implementation

and 82
runtime model (Copland) 34–36

d e v e l o p Issue 22 June 1995134

S
Save a Copy command (Document

menu) (OpenDoc) 92
sc command (PowerPC), MacsBug

and 40
scenes (QuickDraw 3D) 11
scripting implementation 81–82

and case conventions 81
SearchProcs & Color Separation

snippet 71
secondary interrupt handler

(Copland) 34
seed values, of color tables 74, 76
semaphores

Futures Package and 102,
103, 108

threads and 103, 108
separate chaining, in hash tables

74
servers (in interapplication

communication) 99, 104–107
SetReplyTimeoutValue (Futures

Package) 108, 110
SetStartupTimer, Macintosh

Q & A 114
SetValue (viewFont slot), Newton

Q & A 121
shaders (QuickDraw 3D) 12
shading (QuickDraw 3D) 8–9
shared memory area, preparing for

I/O operations 57
Show Frame Outline command

(Edit menu) (OpenDoc) 93
Simone, Cal 81
Simple 3D Viewer sample

application 12, 14
Sisak, Steve 107
SMPAddAttachment, Macintosh

Q & A 116
SMPGetNextLetter, Macintosh

Q & A 115
Software task, PCI device drivers

and 46
spot light (QuickDraw 3D) 22
stack crawl commands (MacsBug)

39, 40
standard log (MacsBug) 41
Standard Mail Package (AOCE),

Macintosh Q & A 115–116
Stationery folder (OpenDoc) 87
Status handler, PCI device drivers

and 55
Storage objects (QuickDraw 3D)

25–26, 27

stream organization (of
QuickDraw 3D metafiles) 25,
26

Superseded command, PCI device
drivers and 45, 49

synchronization (Copland) 34
SynchronizeIO, PCI device drivers

and 46, 56

T
td (total display) command

(PowerPC), MacsBug and 39
testChar, Macintosh Q & A 117
text elements, scripting

implementation and 82
texture mapping (QuickDraw 3D)

8–9
TheDriverDescription, PCI

device drivers and 45, 46–47
Thompson, Nick 6
threaded event handler 106
Thread Manager

Futures Package and 98, 99
sending events 103–104

threads
custom thread context–

switching callbacks and
102

semaphores and 103, 108
spawning new 105–107,

109
3D graphics (QuickDraw 3D)

6–28
'3DMF' files (QuickDraw 3D

metafiles) 24
3D Viewer (QuickDraw 3D)

12–14
thumbnail icons (OpenDoc) 86
timed shutdown, Macintosh

Q & A 114
Toolbox environment, Copland

and 35
TPopup class (MacApp),

Macintosh Q & A 112
TPopup::CreateCMgrControl,

Macintosh Q & A 112
TPopup::GetPopupTitleStyle,

Macintosh Q & A 112
TQ3FileObject (QuickDraw 3D)

25, 27
TQ3StorageObject (QuickDraw

3D) 25, 27
Traps.h, Macintosh Q & A 117

U
unblocking routine (Futures

Package) 102, 103, 104
Undo command (Edit menu)

(OpenDoc) 92

V
value property, scripting

implementation and 82
VBLHandler, KON & BAL

puzzle 127–128
Venolia, Dan 8
“Veteran Neophyte, The”

(Johnson), Paper Juggling
94–97

view angle camera (QuickDraw
3D) 20

viewIdleScript, Newton Q & A
121

View objects (QuickDraw 3D) 22,
23

view plane camera (QuickDraw
3D) 20

view type (OpenDoc) 85
View in Window command (Edit

menu) (OpenDoc) 93
virtual memory management

(Copland) 32–33
volatile keyword, PCI device

drivers and 56

W
warnings (QuickDraw 3D) 14
wh command (PowerPC),

MacsBug and 40
widgets (QuickDraw 3D) 8, 11
windows, scripting

implementation and 81
Wintermyre, Jim 66
Write handler, PCI device drivers

and 55

Y
Yerga, Chris 124
YieldToAnyThread, futures and

101, 106

INDEX 135

Apple provides a wealth of information,

products, and services to assist

developers. APDA, Apple’s source for

developer tools, and Apple Developer

University are open to anyone who

wants access to development tools and

instruction. Developers may access

additional information and services

through Apple’s Developer Programs.

APDA offers worldwide access to
development tools, resources,
training products, and information
for anyone interested in developing
applications on Apple platforms.
Customers periodically receive the
Apple Developer Tools Catalog
featuring hundreds of Apple and
third-party development products.
There are no membership fees.
APDA offers convenient payment
and shipping options, including site
licensing.

Apple Developer University
(DU) provides training designed to
increase your software development
productivity. The curriculum
includes courses to get you started
programming on Apple platforms,
as well as advanced, in-depth training
on the newest Apple technologies,
such as PowerPC, OpenDoc, Apple
Guide, and Newton. DU offers
courses in Cupertino CA and
Portsmouth NH. In addition to
classroom training, multimedia self-
paced courses and low-cost mini-
course tutorials are available
through APDA.

The Macintosh Associates
Program is the primary program
for developers using Macintosh
technology — including PowerPC,
QuickTime, QuickDraw GX, and
PowerTalk — who don’t want direct
technical support from Apple. It’s a
low-cost, self-support program that
also provides a connection with
Apple and fellow developers,

information on new technologies,
and discounts on equipment.

The Macintosh Partners Program
is open to developers focused on
Macintosh technology. In addition
to receiving the same development
information and tools as members of
the Macintosh Associates Program,
Macintosh Partners receive
programming-level development
support via electronic mail,
Macintosh technology seeding, and
more.

The Newton Associates Program
is a low-cost self-support program
for developers who use Newton
technology and don’t want direct
technical support from Apple. It
includes discounts on equipment.

The Newton Partners Program is
open to developers focused on
Newton technology. It offers the
same core features as the Newton
Associates Program, but also includes
programming-level development
support via electronic mail,
additional hardware purchasing
privileges, and marketing programs.

The Apple Multimedia Program
is designed for developers interested
in the emerging multimedia market.
Program features include a quarterly
mailing, discounts on third-party
products, training, and events.

R E S O U R C E S

APDA To order products or receive a
complimentary catalog, call 1-800-282-
2732 in the U.S., 1-800-637-0029 in
Canada, (716)871-6555 internationally, or
(716)871-6511 for fax. You can also order
electronically (AppleLink APDA; Internet
apda@applelink.apple.com; America Online
APDAorder; or CompuServe 76666,2405)
or write APDA, Apple Computer, Inc., P.O.
Box 319, Buffalo, NY 14207-0319.

Apple Developer University (DU)
Descriptions and schedules can be found in
the Developer Services areas on AppleLink
(under Developer Support), eWorld (in the
Apple Customer Center), and the Internet
(World Wide Web at http://www.apple.com).
Or call (408)974-4897, fax (408)974-
0544, AppleLink DEVUNIV, or write to DU
at Apple Computer, Inc., 1 Infinite Loop,
M/S 305-1TU, Cupertino, CA 95014.

Apple Developer Programs Call the
Developer Support Center at (408)974-
4897, AppleLink DEVSUPPORT, or write
1 Infinite Loop, M/S 303-2T, Cupertino, CA
95014, for information or an application
form. Developers outside the U.S. and
Canada should instead contact the Apple
office in their country for information about
developer programs.

Figure 1. CopyBits of an offscreen color ramp to a window

Figure 6. Enlargement of top right corner of bull’s eye

Having trouble getting a smooth color image?
See the article “Custom Color Search Procedures” on page 66.

Figure 5. Bull’s eye

Expected result Actual result

Plug

Receive 4 issues of
develop for only $30.
That’s 25% off the cover
price! And every issue
comes with the develop
Bookmark CD containing
all develop source code.

FREE CD
with each

issue!

in
Plug

and
Save!

T
h

e

A
p

p
l

e

T
e

c
h

n
i

c
a

l

J
o

u
r

n
a

l
T

h
e

A

p
p

l
e

T

e
c

h
n

i
c

a
l

J

o
u

r
n

a
l

T
h

e

A
p

p
l

e

T
e

c
h

n
i

c
a

l

J
o

u
r

n
a

l

Apple Computer s award-winning quarterly technical journal, develop,
and the develop Bookmark CD give you techniques and code to reduce
your development time and enhance your programming savvy.

 YES! Please send me a one-year (4 issues) subscription to develop for only $
That’s 25% off the cover price!

 Bill me.		 Payment enclosed.
Phone orders: 1-800-877-5548 (in U.S.) (815) 734-1116 (elsewhere)
AppleLink: DEV.SUBS Internet: dev.subs@applelink.apple.com

N A M E

C O M P A N Y / I N S T I T U T I O N

A D D R E S S

C I T Y S T A T E Z I P

C O U N T R Y P H O N E

Please allow 6–8 weeks for delivery. U.S. subscription price is $30 for 4 issues and 4 CDs. All other countries $50. For Cana
orders, price includes GST (R100236199). Make check payable to Apple Computer, Inc., in exact amount, in U.S. dollars.

R E D U C E Y O U R D E V E L O P M E N T T I M E !
Apple Computer’s award-winning quarterly technical journal, develop,
and the develop Bookmark CD give you techniques and code to reduce
your development time and enhance your programming savvy.

 YES! Please send me a one-year (4 issues) subscription to develop for only $
That’s 25% off the cover price!

 Bill me.		 Payment enclosed.
Phone orders: 1-800-877-5548 (in U.S.) (815) 734-1116 (elsewhere)
AppleLink: DEV.SUBS Internet: dev.subs@applelink.apple.com

N A M E

C O M P A N Y / I N S T I T U T I O N

A D D R E S S

C I T Y S T A T E Z I P

C O U N T R Y P H O N E

Please allow 6–8 weeks for delivery. U.S. subscription price is $30 for 4 issues and 4 CDs. All other countries $50. For Cana
orders, price includes GST (R100236199). Make check payable to Apple Computer, Inc., in exact amount, in U.S. dollars.

E N H A N C E Y OUR P R O G R A M M I N G S A V V Y !
Apple Computer’s award-winning quarterly technical journal, develop
and the develop Bookmark CD give you techniques and code to reduce
your development time and enhance your programming savvy.

 YES! Please send me a one-year (4 issues) subscription to develop for only $
That’s 25% off the cover price!

 Bill me.		 Payment enclosed.
Phone orders: 1-800-877-5548 (in U.S.) (815) 734-1116 (elsewhere)
AppleLink: DEV.SUBS Internet: dev.subs@applelink.apple.com

N A M E

C O M P A N Y / I N S T I T U T I O N

A D D R E S S

C I T Y S T A T E Z I P

C O U N T R Y P H O N E

Please allow 6–8 weeks for delivery. U.S. subscription price is $30 for 4 issues and 4 CDs. All other countries $50. For Cana

Mount Morris, IL 61054 7858

Rece
issu

devel
only

That’s
the c

price
every
come

the de
Bookm
contain

dev
source

FRE
with

iss
T

h
e

A

T
h

e

A
p

p
l

e

T
e

c
h

n
i

c
a

l

J
o

u
r

n
a

l
T

h
e

A

p
p

l
e

T

e
c

h
n

i
c

a
l

J

o
u

r
n

a
l

d e v e l o p
Apple Computer, Inc.
P.O. Box 531
Mount Morris, IL 61054-7858

d e v e l o p
Apple Computer, Inc.
P.O. Box 531
Mount Morris, IL 61054-7858

	Table of Contents
	EDITOR’S NOTE
	LETTERS
	Indispensable Tools of the Trade
	QuickDraw 3D: A New Dimension for Macintosh Graphics
	QUICKDRAW 3D — SO, WHAT’S THE BIG DEAL?
	HOW QUICKDRAW 3D COMPARES WITH OTHER LIBRARIES

	THE QUICKDRAW 3D HUMAN INTERFACE
	Figure 1.

	WHAT YOU CAN DO WITH QUICKDRAW 3D
	Figure 2.

	ROAD MAP FOR ADOPTION
	Figure 3.

	QUICKDRAW 3D ARCHITECTURE
	Figure 4.

	QUICKDRAW 3D GEOMETRIES
	IMPLEMENTING SUPPORT FOR THE 3D VIEWER
	Figure 5.
	CREATING AND DISPOSING OF A VIEWER OBJECT
	ATTACHING DATA TO THE VIEWER
	HANDLING EVENTS
	OTHER VIEWER FUNCTIONALITY

	PROGRAMMING WITH THE QUICKDRAW 3D API: ERROR CHECKING AND INITIALIZATION
	DEFINING AND INSTALLING AN ERROR HANDLER
	Listing 1.

	INITIALIZING QUICKDRAW 3D

	CREATING AND DRAWING A SIMPLE 3D OBJECT: THE BOX APPLICATION
	Listing 2.
	Figure 6.
	OBJECT CREATION
	RETAINED AND IMMEDIATE MODE RENDERING
	Listing 3.

	THE DRAW CONTEXT
	Listing 4.

	THE CAMERA
	LIGHTING
	Listing 5.
	Listing 6.

	THE VIEW
	THE RENDERING LOOP
	Listing 7.
	Listing 8.
	Listing 9.

	THE QUICKDRAW 3D METAFILE
	Table 1.
	METAFILE ORGANIZATION
	USING METAFILES
	Figure 7.
	Listing 10.
	Listing 11.

	GO TO IT!

	Copland: The Mac OS Moves Into the Future
	MOVING THE MAC OS INTERFACE INTO THE FUTURE
	THE APPEARANCE MANAGER
	THE ASSISTANCE MANAGER
	NAVIGATION SERVICES

	THE MICROKERNEL: A NEW FOUNDATION
	TASK CONTROL
	ADDRESS SPACE AND VIRTUAL MEMORY MANAGEMENT
	INTERRUPT CONTROL
	SYNCHRONIZATION AND INTERTASK MESSAGING

	THE RUNTIME MODEL
	Figure 1.

	THE FILE MANAGER
	THE I/O ARCHITECTURE
	Figure 2.

	WHERE DOES THIS LEAVE YOU?

	BALANCE OF POWER: MacsBug for PowerPC
	A QUICK LOOK To demonstrate, we’ll set a native breakpoint in the
	DISASSEMBLING POWERPC CODE
	CRAWLING AROUND TOGETHER
	EVEN MORE NEW FEATURES
	IT’S LOG, LOG, LOG!
	DON’T HESITATE

	Creating PCI Device Drivers
	KEY FEATURES OF THE NEW DRIVER MODEL
	CONVERTING AN EXISTING DRIVER
	A LOOK AT THE SAMPLE DRIVER: CONFIGURATION AND CONTROL
	A GLOSSARY OF NEW OPERATING SYSTEM TERMS
	Listing 1.
	Table 1.
	Listing 2.

	INITIALIZATION AND TERMINATION
	Table 2.
	Listing 3.
	Listing 4.
	Listing 5.
	Listing 6.

	CARRYING OUT AN I/O OPERATION
	SETTING AND READING DEVICE REGISTER VALUES

	METHODS OF I/O ORGANIZATION
	PREPARING THE MEMORY
	Listing 7.
	Listing 8.
	Listing 9.
	Listing 10.

	THE INTERRUPT SERVICE ROUTINE
	Listing 11.

	JUST THE TIP OF THE ICEBERG
	REFERENCES

	MPW TIPS AND TRICKS: Building a Better (Development) Environment
	ENGINEERS ARE USERS, TOO
	CHECK IN THE SYSTEM
	HAVE AN INSTALLED COPY HANDY
	THE DREADED USERSTARTUP•PERSONAL FILE
	ESCHEW CLEVERNESS
	KEEP IT SIMPLE, STUPID
	THE JOY OF THEFT — SHARE AND ENJOY

	Custom Color Search Procedures
	A QUICK REVIEW OF COLOR IN QUICKDRAW
	DIRECT AND INDEXED COLOR
	Figure 2.

	INVERSE TABLES
	Figure 3.
	Listing 1.

	THE IMPORTANCE OF THE CURRENT GRAPHICS DEVICE
	DRAWBACKS OF INVERSE TABLES
	INTRODUCING COLOR SEARCH PROCEDURES
	MODIFYING SEARCH COLORS
	Listing 2.
	Listing 3.

	WHAT’S THE CATCH?
	Table 1.

	SOLVING THE “SHADES OF RED” PROBLEM
	THE BRUTE-FORCE APPROACH
	Listing 4.

	HASH TABLES: A BETTER WAY
	Figure 4.
	Listing 5.
	Listing 6.
	Listing 7.
	Listing 8.
	Listing 9.

	EVALUATING THE RESULTS
	Listing 10.
	Table 2.
	MAKING IT BETTER

	NOW IT’S UP TO YOU
	RELATED READING

	ACCORDING TO SCRIPT: Scripting Quandaries
	STARTING WITH MENU COMMANDS
	LOWERCASING VERBS, TOO
	HANDLING REQUESTS TO GET AN OBJECT
	THE APPLICATION AS CONTAINER
	Figure 1.

	I’M OUTTA SPACE

	The OpenDoc User Experience
	ALL ABOUT PARTS
	PARTS AND DOCUMENTS
	PART CONTENT: INTRINSIC AND EMBEDDED
	Figure 1.

	PART BEHAVIOR: EDITORS AND VIEWERS
	Figure 2.

	PROPERTIES OF PARTS
	Figure 3.

	WORKING WITH PARTS
	Figure 4.
	Figure 5.
	Figure 6.
	RESIZING FRAMES
	Figure 7.

	COPYING AND MOVING CONTENT
	Figure 8.
	Figure 9.

	OPENDOC MENUS
	DOCUMENT MENU COMMANDS
	Figure 10.

	EDIT MENU COMMANDS

	OPENING A WORLD OF POSSIBILITIES
	RELATED READING

	THE VETERAN NEOPHYTE: Paper Juggling
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	RECOMMENDED READING

	Futures: Don’t Wait Forever
	OVERVIEW OF FUTURES
	CLIENT/SERVER REVIEW
	Figure 1.
	Listing 1.

	OUR SAMPLE APPLICATION: FUTURESHOCK
	A LOOK AT THE SOURCE
	CUSTOM CONTEXT SWITCHING
	WHAT’S A SEMAPHORE?
	THE CLIENT SIDE — SENDING EVENTS
	Listing 2.

	THE SERVER SIDE — RESPONDING TO EVENTS
	Listing 3.
	Listing 4.

	CLIENT/SERVER TIMEOUT NEGOTIATIONS
	THE AETHREADS LIBRARY
	TIME AFTER TIME
	HOW FUTURES DEAL WITH TIMEOUTS

	THE FUTURES PACKAGE API
	FUTURE DIRECTIONS
	RELATED READING

	Macintosh Q & A
	Back Issues
	Newton Q & A: Ask the Llama
	KON & BAL’S PUZZLE PAGE: A Branch Too Far
	INDEX
	RESOURCES
	Inside Back Cover
	Subscription Card

