
| fined, and the firmware must not try to return control to the client program or reboot the system. The sug-
| gested behavior in this case is to enter a firmware-interactive mode, if available.

| The firmware may recognize strings other than “power-off” in a system-dependent manner.

| If the halt string is not a recognized command, the firmware must reboot the system. During the system reset
| and the firmware restart, the firmware must preserve the halt string. Then, the firmware must evaluate the
| string as if “auto-boot?” were true and “boot-command” were set to that string, without altering the values
| of the “auto-boot?” and “boot-command” Configuration Variables. If the firmware includes an Open
| Firmware user interface, the string can be any valid user interface command string. Otherwise, the firmware
| must interpret the string as shown in Table 37.

| I.9 User Interface Requirements

| An implementation of PowerPC Open Firmware must conform to the core requirements as specified in [1]
| and the following PowerPC specific extensions.

| I.9.1 Machine Register Access

| The following user interface commands represent PowerPC registers within the saved program state. Exe-
| cuting the command returns the saved value of the corresponding register. The saved value may be set by
| preceding the command with to; the actual registers are restored to the saved values when go is executed.

| I.9.1.1 Branch Unit Registers

| %cr Access saved copy of Condition Register.

| %ctr Access saved copy of Count Register.

| %lr Access saved copy of Link Register.

| %msr Access saved copy of Machine State Register.

| %srr0 and %srr1 Access saved copy of Save/Restore Registers.

| I.9.1.2 Fixed-Point Registers

| %r0 through %r31 Access saved copies of Fixed-Point Registers.

| %xer Access saved copy of XER Register.

| %sprg0 through %sprg3 Access saved copies of SPRG registers.

| Table 37. Halt Arguments

| String Value| Meaning

| boot| Load and execute the default client program

| <empty string>*| If the firmware has an interactive mode, enter that
| mode. Otherwise the result is undefined, except
| that the firmware must not perform the “boot”
| action.

| < a n y other string>| Behavior is system-dependent

| Note: *<empty string> means a valid address that points to a null character. An address value of 0 is
| not an empty string.

Appendix I. PowerPC Supplement to IEEE 1275 — Page 281 of 319

| I.9.1.3 Floating-Point Registers

| Unlike the other registers, the floating-point unit registers are not normally saved, since they are not used by
| Open Firmware. The following access words, therefore, access the registers directly.

| %f0 through %f31 Access Floating-Point Registers

| %fpscr Access Floating-Point Status and Control Register

| The following command displays the PowerPC CPU saved program state.

| .registers

| I.10 Configuration Variables

| In addition to the standard Configuration Variables defined by the core Open Firmware document [1], the
| following Configuration Variables must be implemented for PowerPC Open Firmware:

| “little-endian?” This Boolean variable controls the Endian mode of Open Firmware. If true (-1),
| the Endian mode is Big-Endian; if false (0), the Endian mode is Little-Endian.
| The default value is implementation dependent.

| “real-mode?” This Boolean variable controls the address translation mode of Open Firmware.
| If true (-1), the addressing mode is Real-Mode; if false (0), the addressing mode
| is Virtual-Mode. The default value is implementation dependent.

| “my-base” This integer variable defines the starting address to be used by Open Firmware.
| When Open Firmware is running in Real-Mode, “my-base” must be the physical
| memory address.

| “my-size” This integer variable defines the size of the address space which is used by Open
| Firmware. When Open Firmware is running in Real-Mode, “my-size” must be
| the physical memory size.

| “load-base” This integer variable defines the default load address for client programs when
| using the load method. The default value is implementation dependent.

| I.11 Terminal Emulator Support Package

| IEEE Std 1275-1994 defines the behavior of the Terminal Emulator Support Package (see Annex B of [1]).
| Annex B of [1] assumes that the Terminal Emulator Support Package implements certain escape sequences
| from the set defined by ANSI X3.64. The extension described here corresponds to ISO 6429-1983, as defined
| by [9]. An implementation of PowerPC Open Firmware is required to support additional graphic renditions
| (via SGR (Select Graphic Rendition) -- ESC[#m) beyond those specified in Annex B of [1].

| In order for these extensions to be used, the FCode device driver for a display device (i.e. a device whose
| “device_type” property has the value “display”) must initialize the first 16 entries of its color table to appro-
| priate values (see Section I.12.1.1, “Color Table Initialization”); note that this setup is standard for
| “VGA”-type devices. These values assume that the color is represented by the three LSbs of the color index
| and that the fourth LSb which corresponds to a value of 8 represents the intensity. The ISO 6429-1983
| standard provides parameter values to independently control the color of foreground (30-37) and background
| (40-47). The intensity is set separately (1-2), and must be issued before the color control.

| The expanded model of the Terminal Emulator is that there is a “current” background and foreground color
| (index), each of whose value is 0-15, corresponding to the first 16 entries of the color table. In positive

Page 282 of 319 — PowerPC Reference Platform

| image mode, pixels corresponding to a font (logo) bit set (1) must be set to the foreground color; pixels
| corresponding to a font (logo) bit clear (0) must be set to the background color. When in negative image
| mode, the roles of foreground and background are reversed.

| The default rendition must be positive image mode, background=15 and foreground=0, thus producing
| black characters on a bright white background.

| The following table describes the effect of executing the SGR escape sequence with the specified parameter.

| I.11.1 Display Device Low-Level Interfaces

| PowerPC Open Firmware must implement the following method in the terminal emulation support package.

| draw-logo-in-color (line# addr width height --) Draw (at line#) the logo stored at location addr

| This method implements 8-bit-per-pixel color drawing. The FCode device driver for a display device must
| initialize the first 16 entries of its color table to the appropriate values as defined in Section I.12.1.1, “Color
| Table Initialization.”

| Table 38. SGR Parameters

| Parameter| Interpretation

| 0| Default rendition

| 1| Bold (increased intensity)

| 2| Faint (decreased intensity)

| 7| Negative image

| 27| Positive image

| 30| Black foreground

| 31| Red foreground

| 32| Green foreground

| 33| Yellow foreground

| 34| Blue foreground

| 35| Magenta foreground

| 36| Cyan foreground

| 37| White foreground

| 40| Black background

| 41| Red background

| 42| Green background

| 43| Yellow background

| 44| Blue background

| 45| Magenta background

| 46| Cyan background

| 47| White background

Appendix I. PowerPC Supplement to IEEE 1275 — Page 283 of 319

| In addition to the methods defined in Section 3.8.4.3 of [1], execution of is-install creates the draw-logo-in-
| color method in the current package that will execute the draw-logo-in-color deferred word.

| When the “fb8” generic frame buffer package implements the display device low-level interface for a frame
| buffer, execution of fb8-install must install the fb8-draw-logo-in-color routine as the behavior of the draw-
| logo-in-color deferred word.

| fb8-draw-logo-in-color (line# addr width height --) Implement the “fb8” draw-logo-in-color

| I.12 Extensions for PowerPC Based Systems

| This section describes the properties, methods and device subtrees that are applicable to devices required by
| the PowerPC Reference Platform system architecture. It is strongly recommended that other platforms
| follow these definitions for the corresponding devices.

| I.12.1 Display Devices

| This section defines additional behavior of display devices (e.g. device_type = “display”) for PowerPC Refer-
| ence Platform Open Firmware implementations.

| I.12.1.1 Color Table Initialization

| The PowerPC Reference Platform Specification requires that display devices support a minimum of 256
| colors. The core specification of Open Firmware defines a Terminal Emulation Support Package that, while
| defined for 8-bit pixels, does not include support for colors. Open Firmware implementations for the
| PowerPC Reference Platform must support additional Select Graphic Rendition parameters (see Section
| I.11, “Terminal Emulator Support Package”) in order to allow client programs to display characters (and
| logo) using a 16-color model.

| For this expanded Terminal Emulation support to work, Open Firmware device drivers for “display” devices
| must initialize the first 16 entries of their color table to values defined in Table 39. Note that the table
| values are defined in terms of percentage of full saturation color for each of the primary RGB colors.

| Table 39 (Page 1 of 2). Color Table Values

| Index| Red| Blue| Green| Color

| 0| 0| 0| 0| Black

| 1| 0| 0| 2/3| Blue

| 2| 0| 2/3| 0| Green

| 3| 0| 2/3| 2/3| Cyan

| 4| 2/3| 0| 0| Red

| 5| 2/3| 0| 2/3| Magenta

| 6| 2/3| 1/3| 0| Brown

| 7| 2/3| 2/3| 2/3| White

| 8| 1/3| 1/3| 1/3| Gray

| 9| 1/3| 1/3| 1| Light Blue

| 10| 1/3| 1| 1/3| Light Green

| 11| 1/3| 1| 1| Light Cyan

Page 284 of 319 — PowerPC Reference Platform

| I.12.1.2 "Display" Device Standard Properties

| In addition to the standard properties defined by Open Firmware for display devices, the following properties
| must be present for PowerPC Reference Platform-compliant implementations.

| “width” Standard property, encoded as with encode-int, that represents the visible width of the
| display in pixels.

| “height” Standard property, encoded as with encode-int, that represents the visible height of the
| display in pixels.

| “linebytes” Standard property, encoded as with encode-int, that represents the address offset between a
| pixel on one scan line and that same relative horizontal pixel position on the immediately
| following scan line.

| “depth” Standard property, encoded as with encode-int, that represents the number of bits in each
| pixel.

| I.12.2 Keyboard Devices

| Open Firmware does not have a specific device class for keyboards; instead, keyboards are instances of the
| “serial” device class. However, certain features of keyboards (i.e. the ability to re-map keys, etc.) make it
| desirable to implement them as a separate device class.

| In general, keyboard devices produce a hardware scan-code that is specific to the type of keyboard. These
| scan-codes are then mapped via software to produce the character code for the key, taking into account the
| state of “modifier” keys (e.g. Shift, Control) and the keyboard layout. The mapping of scan-codes to char-
| acter value depends upon the keyboard layout. This is dependent upon the language that is being supported
| by the keyboard; e.g. the layout of keys for a French keyboard is different than that for an English keyboard.

| For purposes of localization, it is necessary for the scan-code conversion to be controlled by the software,
| including Open Firmware (via the client interface). This section adds mechanisms to allow client programs
| to alter the scan-code conversion, based upon the keyboard (language) layout.

| The language-specific layout is specified by means of a two-character abbreviation, as described by [11].
| The following languages may be supported:

| CS Czech

| DA Danish

| NL Dutch

| EN English (default)

| FI Finnish

| F R French

| Table 39 (Page 2 of 2). Color Table Values

| Index| Red| Blue| Green| Color

| 12| 1| 1/3| 1/3| Light Red

| 13| 1| 1/3| 1| Light Magenta

| 14| 1| 1| 1/3| Yellow

| 15| 1| 1| 1| Bright White

Appendix I. PowerPC Supplement to IEEE 1275 — Page 285 of 319

| DE German

| HU Hungarian

| IT Italian

| NO Norwegian

| PL Polish

| PT Portuguese

| SK Slovak

| ES Spanish

| SV Swedish

| For testing of keyboard devices, additional low-level methods are defined for “keyboard” devices. get-
| scancode will read the next available scan-code from the keyboard; scancode->char will perform character
| mapping, using the same conversion as would normal reads. This enables test software to test for a specific
| character to terminate the test without having to know the scancode-to-character translations.

| I.12.2.1 "Keyboard" Device Standard Properties

| “device_type” Standard Open Firmware property; the value of this property for keyboard devices must
| be “keyboard”.

| “language” Standard property, encoded as with encode-string, that indicates the current scan-code-
| to-character conversion based upon the language’s keyboard layout.

| The “language” standard property for keyboard devices is defined for PowerPC Open Firmware implementa-
| tions. This value indicates the language (i.e. keyboard layout scan-code conversion) to which the keyboard
| driver is currently set.

| I.12.2.2 "Keyboard" Device Methods

| In addition to the Open Firmware standard open, close and read methods, the following methods must be
| supported by an Open Firmware implementation of a “keyboard” device. Note that the open routine can
| take an optional argument which specifies the language (i.e. scancode->char mapping) to be used.

| get-scancode (msecs -- scancode true | false)

| This method returns the “raw” scan-code value of the next key alteration. msecs is the
| number of milliseconds to wait for a keystroke before reporting failure; a value of 0
| implies wait until keystroke. If this timeout expires before a keystroke is read, false is
| returned. Otherwise, the scancode and true are returned.

| scancode->char (scancode -- char true | false)

| Using the scancode, perform translation to a character. If the scancode represents a
| modifier key (e.g. Shift), no translation will be available; in this case, false is returned.
| If the scancode represents a translated character, char and true are returned.

| set-language (str len -- true | false)

| If the keyboard driver can support the requested character set, it must set its “language”

| property to the value specified by str,len, and return a value of true. If it can not
| support the requested language, no change of “language” is made and a value of false is
| returned.

Page 286 of 319 — PowerPC Reference Platform

| The reason for adding a special call, instead of just using the property (setprop) call, is to allow the device to
| “filter” the request; i.e. a scan-code conversion may not be available for the requested language. This call
| allows the device driver to change the property only if it can support the requested mapping.

| I.12.3 Pointing Devices

| This class of device covers a broad category of “pointing” devices, the most common embodiment of which
| is the mouse. These devices can typically generate X,Y coordinates and button-press information on some
| periodic basis. The following properties and methods are defined for such devices.

| I.12.3.1 "Mouse" Device Standard Properties

| “device_type” Standard Open Firmware property; the value of this property for pointing devices
| must be “mouse”.

| “#buttons” Standard property, encoded as with encode-int, that indicates the number of physical
| buttons supported by the device. This property can be used to interpret the buttons

| value returned by the get-event method.

| “absolute-position” Standard property, whose presence indicates that this device supplies absolute X,Y
| coordinates (e.g. a graphics tablet). Absence of this property indicates that the device
| supplies relative X,Y position (e.g. a mouse).

| I.12.3.2 "Mouse" Device Methods

| In addition to the Open Firmware standard open and close methods, the following methods must be sup-
| ported by an Open Firmware implementation of a “mouse” device.

| Pointing devices typically supply data only when an “event” occurs (e.g. the mouse moves or a button is
| pressed). The following method attempts to obtain an event from the device, reporting whether an event
| occurred.

| get-event (msecs -- pos.x pos.y buttons true | false)

| Standard method for obtaining the next “event” of pointing devices. msecs is the number
| of milliseconds to wait for an event before reporting failure; a value of 0 implies wait until
| event. pos.x, pos.y return the positioning information; they are interpreted as unsigned or
| signed, depending upon the presence or absence of the “absolute-position” property.
| buttons returns a bit-mask (in the low-order bits) representing any buttons that are pressed;
| the number of significant bits to examine is defined by the “#buttons” property. The least
| significant bit corresponds to the leftmost button of the device. The top stack result indi-
| cates whether an event was detected within the time-out period.

| I.12.4 Real-Time Clock (RTC) Device

| The PowerPC Reference Platform requires the presence of a Real-Time Clock, with a minimum resolution
| of one second. Open Firmware for this clock defines the following properties and methods. The represen-
| tation of time is defined by the TIME&DATE method of the ANS Forth standard [10].

| I.12.4.1 "RTC" Device Standard Properties

| “device_type” Standard Open Firmware property; the value of this property must be “rtc”.

Appendix I. PowerPC Supplement to IEEE 1275 — Page 287 of 319

| I.12.4.2 "RTC" Device Methods

| In addition to the Open Firmware standard open and close methods, the following methods must be sup-
| ported by an Open Firmware implementation of an “rtc” device.

| get-time (-- n1 n2 n3 n4 n5 n6)

| Return the current time as the integers n1...n6, where n1 is the second {0...59}, n2 is the
| minute {0...59}, n3 is the hour {0...23}, n4 is the day {1...31}, n5 is the month {1...12}, and
| n6 is the year (e.g. 1994).

| set-time (n1 n2 n3 n4 n5 n6 --)

| Set the current time from the integers n1...n6, where n1 is the second {0...59}, n2 is the
| minute {0...59}, n3 is the hour {0...23}, n4 is the day {1...31}, n5 is the month {1...12}, and
| n6 is the year (e.g. 1994).

| I.12.5 Sound Device

| The PowerPC Reference Platform requires an audio subsystem with at least two channels for input and two
| channels for output, capable of sampling rates of at least 22.05 and 44.1 KHz to at least 16-bit resolution.
| In order to use this sound device within the context of Open Firmware (e.g. “boot beeps”), the following
| properties and methods must be implemented.

| I.12.5.1 "Sound" Device Standard Properties

| “device-type” Standard Open Firmware property; the value of this property must be “sound”.

| “#channels” Standard property, encoded as with encode-int, that represents the number of chan-
| nels supported by the device.

| “sample-resolution” Standard property, encoded as with encode-int, that represents the number of bits of
| resolution for each sound sample.

| “sample-width” Standard property, encoded as with encode-int, that represents the number of bytes
| required for storing a sample.

| “sample-rates” Standard property, consisting of an array of integers, each encoded as with encode-int,
| that represents the rates (in hertz) at which this device can be sampled.

| I.12.5.2 "Sound" Device Standard Methods

| The following methods must be implemented by a “sound” device.

| open (-- true | false)

| This Standard method prepares the “sound” device for subsequent reads or writes. An
| argument can be supplied (i.e. following a “:” in the path-name component, available via
| my-args) to specify sampling parameters. The argument is a string consisting of the
| external representation of the sample-rate to be used; if absent, an implementation-defined
| sample rate is used. An error is signalled by open (i.e. it returns false) if the requested
| sample rate cannot be supported by the device.

| close (--)

| Standard Open Firmware behavior.

| read (addr size -- actual)

| Acquire sound data, storing the samples at addr. The sample rate is established by open.

Page 288 of 319 — PowerPC Reference Platform

| write (addr size -- actual)

| Output sound samples, stored at addr. The sample rate is established by open.

| I.12.6 NVRAM Device

| Access to the PowerPC Reference Platform-specific area of NVRAM is supported by this device-type. The
| NVRAM is treated as a device that can be read and written using the standard Open Firmware read and
| write methods; the starting position within the NVRAM can be specified by the seek method.

| The PowerPC Reference Platform standard defines CRCs that are used to validate the integrity of the data
| within the NVRAM. To provide flexibility in using NVRAM, options are provided on the open method for
| NVRAM that determine whether the CRCs have to be valid at open time, and/or whether they are written
| at close time. These options appear as the argument component of the device specifier used to open the
| device (as with open-dev).

| I.12.6.1 NVRAM Properties

| “device-type” Standard Open Firmware property; the value of this property must be “nvram”.

| I.12.6.2 NVRAM Methods

| The following methods have the semantics of the Open Firmware methods:

| read (addr len -- actual)

| write (addr len -- actual)

| seek (pos.lo pos.hi -- status)

| The following methods have additional behavior depending upon the argument used to open the device:

| open (-- true | false)
| Standard method used to initiate access to the device and control how CRCs are used and/or
| generated. The open method must use my-args to determine special handling, as follows:

| (no argument) my-args is not provided. The open method will verify the CRCs within the
| PowerPC Reference Platform’s NVRAM area. If correct, the open will
| succeed, returning true; subsequent calls to write will cause the CRCs to be
| calculated and stored when the device is close’d. If not correct, open will
| report failure by returning false.

| raw The open will succeed, without verifying the CRCs. Calls to write will not
| be reflected in the CRCs at close time.

| repair The open will succeed, without verifying the CRCs. However, the CRCs
| will be regenerated at close time.

| close (--) Standard method, whose behavior depends upon what the argument value
| was at the time the device was open’d. If argument was empty, or repair,
| the CRCs will be computed and stored.

| I.12.7 Parallel Port Device

| Access to the PowerPC Reference Platform parallel port is supported by this device type. The parallel port
| is treated as a byte-stream device.

| I.12.7.1 Parallel Port Properties

| “device-type” Standard Open Firmware property. The value of this property must be “parallel”.

Appendix I. PowerPC Supplement to IEEE 1275 — Page 289 of 319

| I.12.7.2 Parallel Port Methods

| The following methods have the semantics of the corresponding Open Firmware standard methods:

| open (-- true | false)

| close (--)

| write (addr len -- actual)

| I.12.8 Conventions for Devices on ISA and SCSI Buses

| This section defines the naming and device type conventions for typical devices on ISA and SCSI buses. The
| following list shows the values of the “name” and “device-type” properties of the devices on an ISA bus:

| name device_type
| 8042
| kbd “keyboard”
| mouse “mouse”
| floppy “block”
| com “serial”
| timer “timer”
| lpt “parallel”
| ide “block”
| nvram “nvram”
| rtc “rtc”

| Note: The “kbd” and “mouse” names are indented to show that they are the child nodes of the 8042 node.

| Some systems use an I/O controller, often called a super I/O chip, which provides control functions of mul-
| tiple I/O devices. When a system uses a super I/O chip, the device node of the super I/O chip must not be
| created. Instead, the device nodes of the devices attached to the super I/O chip must be implemented as a
| child node of the bus node to which the super I/O chip is attached.

| The following list shows the values of the name and device-type properties of the devices on a SCSI bus:

| name device_type
| scsi “scsi”
| disk “block”
| tape “byte”

| Note: The SCSI controller is considered a bus device in the device tree for PowerPC Open Firmware. The
| “disk” and “tape” names are indented to show that they are the child nodes of the “scsi” node.

| If there are multiple instances of the same device type, for example two IDE hard disks or two SCSI hard
| disks, their names must be postfixed with indices to distinguish them, such as ide1 and ide2, or disk1 and
| disk2.

| It is strongly recommended that the “compatible” property be implemented for ISA and SCSI bus devices to
| help operating systems find appropriate device drivers for these devices.

| I.12.9 "/aliases" Node Properties

| An implementation of Open Firmware for the PowerPC Reference Platform must provide the following
| aliases (for the preferred devices that exist) if applicable device exists under the “/aliases” node:

Page 290 of 319 — PowerPC Reference Platform

| disk
| tape
| cdrom
| keyboard
| screen
| scsi
| com1
| com2
| floppy
| net

Appendix I. PowerPC Supplement to IEEE 1275 — Page 291 of 319

Page 292 of 319 — PowerPC Reference Platform

| Appendix J. Plug and Play Extensions

| The structure below is the Plug and Play definition for PCI adaptors.

| /* Structure map for PCI Bridge in PnP Vendor specific packet */

| /* See Plug and Play ISA Specification, Version 1.0a, March 24, 1994.
| It (or later versions) is available on Compuserve in the PLUGPLAY
| area. This code has extensions to that specification, namely new
| short and long tag types for platform dependent information */
| /* Warning: LE notation used throughout this file */

| #ifndef _PCIPNP_
| #define _PCIPNP_

| #define MAX_PCI_INTS 4

| typedef enum _IntTypes { /* interrupt controller types enumerator */
| IntCtl8259 = 1, /* 8259 */
| IntCtlMPIC = 2 /* MPIC */
| } _IntTypes;

| typedef struct _IntStruct { /* PCI Int to IRQ conversion map */
| unsigned char IntCtrlType; /* Interrupt controller type */
| unsigned char uchReserved[3]; /* Reserved (padded with 0) */
| unsigned char IntMask[4]; /* PCI INT mask */
| /* For 8259: */
| /* Bit 0 : INTA */
| /* Bit 1 : INTB */
| /* Bit 2 : INTC */
| /* Bit 3 : INTD */
| /* Others: Reserved */
| unsigned char IRQ[4]; /* corresponding IRQ number */
| /* to the IntMask bits set */
| } IntStruct;

| typedef struct _IntMap { /* PCI Int to 8259 or MPIC IRQ conversion map */
| unsigned char SlotNumber; /* Slot number engraved on the box */
| /* zero indicates invalid entry */
| unsigned char DevFuncNumber; /* PCI slot's DeviceFunction number */
| /* zero indicates no option slot */
| /* non-zero indicates a valid option slot */
| unsigned char uchReserved[2]; /* Reserved (padded with 0) */
| IntStruct isInt[MAX_PCI_INTS]; /* Interrupt mapping table */
| /* 0, 0 indicates last valid */
| /* entry. Entries after 0, 0 */
| /* must be ignored */
| } IntMap;

| typedef struct _PCIInfoPack {
| unsigned char Tag; /* large tag = 0x84 Vendor specific */
| unsigned char Count0; /* lo byte of count */
| unsigned char Count1; /* hi byte of count */
| /* count = number of pluggable PIC slots * sizeof(IntMap) + 6 */
| unsigned char Type; /* = 3 (PCI bridge) */
| unsigned char ConfigBaseAddress[4];/* Base address of PCI Configuration */
| unsigned char BusNumber; /* PCI Bus number */

Appendix J. Plug and Play Extensions — Page 293 of 319

| IntMap Map[1]; /* Interrupt map array for each PCI */
| /* slots that are pluggable */
| } PCIInfoPack;

| #endif /* ndef _PCIPNP_ */

| The structure below is the Plug and Play definition for L2 cache devices.

| /* Structure map for L2 cache in PnP Vendor specific packet */

| /* See Plug and Play ISA Specification, Version 1.0a, March 24, 1994.
| It (or later versions) is available on Compuserve in the PLUGPLAY
| area. This code has extensions to that specification, namely new
| short and long tag types for platform dependent information */
| /* Warning: LE notation used throughout this file */

| #ifndef _L2PNP_
| #define _L2PNP_

| #define L2Info_Packet 0x84 /* tag for L2Info_Pack */

| typedef enum _L2_Store_Algorithm {
| None = 0,
| WriteThru = 1,
| CopyBack = 2,
| } L2_Store_Algorithm;

| typedef enum _L2_Cache_Asc {
| DirectMapped = 1, /* direct mapped */
| TwoWay = 2, /* 2-way */
| } L2_Cache_Asc;

| typedef enum _L2_HW_Assist {
| Invalidate = 1, /* invalidate */
| Flush = 2, /* flush */
| L2PowerManaged = 4 /* power managed */
| } L2_HW_Assist;

| typedef struct _L2InfoPack {
| unsigned char Tag; /* large tag = 0x84 Vendor specific */
| unsigned char Count0; /* = 0x0D sizeof(L2InfoPack - 3) */
| unsigned char Count1; /* = 0 */
| unsigned char Type; /* = 2 (L2 cache) */
| unsigned char L2_CacheSize[4]; /* In 1K bytes */
| unsigned char L2_CacheAsc[2]; /* L2_Cache_Asc enum */
| unsigned char L2_LineSize[2];
| unsigned char L2_SectorSize[2];
| unsigned char L2_StoreAlgorithm; /* L2_Store_Algorithm enum */
| unsigned char L2_HWAssist; /* L2_HW_Assist */
| } L2InfoPack;

| #endif /* ndef _L2PNP_ */

Page 294 of 319 — PowerPC Reference Platform

| The structure below is the Plug and Play definition for processor chip identities.

| /* Structure map for Chip ID in PnP Vendor specific packet */

| /* See Plug and Play ISA Specification, Version 1.0a, March 24, 1994.
| It (or later versions) is available on Compuserve in the PLUGPLAY
| area. This code has extensions to that specification, namely new
| short and long tag types for platform dependent information */
| /* Warning: LE notation used throughout this file */

| #ifndef _CHPIDPNP_
| #define _CHPIDPNP_

| #define ChipID_Packet 0x70 /* tag for ChipIDPack without size */

| typedef enum _Chip_ID {

| /* PCI Bridge chips */
| PCI_Br1 = 1, /* Part # IBM27-82650-653/4 */
| PCI_Br2 = 2, /* Part # IBM27-82657-50 */
| PCI_Br3 = 3, /* Part # MPC105 */

| /* Power management chips (ISA) */
| PM_ISA_1 = 1, /* Part # --- */
| Sig750 = 2, /* Signetic 87C750 */

| /* Power management chips (PCI) */
| PM_PCI_1 = 1, /* Part # --- */

| /* L2 Cache controller */
| L2_Cntl_1 = 1, /* Part # IBM27-82681-66 */
| L2_Cntl_2 = 2, /* Part # for Energy managed WS */
| L2_Cntl_3 = 3, /* Part # for Portable WS */
| L2_Cntl_4 = 4,
| L2_Cntl_5 = 5,
| L2_Cntl_6 = 6,
| L2_Cntl_7 = 7

| } Chip_ID;

| typedef struct _ChipIDPack { /* This packet identifies chip set ID. */
| /* Details of these specifics are */
| /* documented in the chip specs. */
| unsigned char Tag; /* small tag = 0x7n with n bytes */
| unsigned char Type; /* = 1 (Chip ID) */
| unsigned char VendorID0; /* Bit(7)=0 */
| /* Bits(6:2)=1st character in */
| /* compressed ASCII */
| /* Bits(1:0)=2nd character in */
| /* compressed ASCII bits(4:3) */
| unsigned char VendorID1; /* Bits(7:5)=2nd character in */
| /* compressed ASCII bits(2:0) */
| /* Bits(4:0)=3rd character in */
| /* compressed ASCII */
| unsigned char Name[2]; /* Chip ID name */
| } ChipIDPack;

| #endif /* ndef _CHPIDPNP_ */

Appendix J. Plug and Play Extensions — Page 295 of 319

| The structure below is the Plug and play definition for Disk drives.

| /* Structure map for Diskette drives Vendor specific packet */

| /* See Plug and Play ISA Specification, Version 1.0a, March 24, 1994.
| It (or later versions) is available on Compuserve in the PLUGPLAY
| area. This code has extensions to that specification, namely new
| short and long tag types for platform dependent information */
| /* Warning: LE notation used throughout this file */

| #ifndef _DSKTPNP_
| #define _DSKTPNP_

| #define Dskt_Packet 0x84 /* tag for DsktInfoPack */

| typedef struct _DsktInfoPack {
| unsigned char Tag; /* large tag = 0x84 Vendor specific */
| unsigned char Count0; /* lo byte of number of drives + 1 */
| unsigned char Count1; /* hi byte of number of drives + 1 */
| /* Count (Count0 and Count 1) - 1 = number of diskette drives */
| unsigned char Type; /* = 1 (diskette) */
| unsigned char Dskt[1]; /* diskette drives info array */
| /* 0 : no drive present */
| /* 1 : 3.5" 2MB drive */
| /* 2 : 3.5" 4MB drive */
| /* 3 : 5.25" 1.6MB drive */
| } DsktInfoPack;

| #endif /* ndef _DSKTPNP_ */

Page 296 of 319 — PowerPC Reference Platform

| Appendix K. Dump of Residual Data

| A dump of the residual data constructed by a machine which matches the Reference Implementation is
| shown below:

| Residual ID:
| Length = 0x6a0c
| Version = 0
| Revision = 0

| Residual VPD:
| Model = IBM PPS Model 6015
| Serial = ffffffffffffffff
| Spec Version = 0
| Spec Revision = 0
| FW Support = 0x1c5
| NVRAM size = 4096
| SIMM slots = 6
| ISA slots = 3
| PCI slots = 2
| PCMCIA slots = 0
| MCA slots = 0
| EISA slots = 0
| CPU MHz = 66
| CPU bus MHz = 66
| PCI bus MHz = 33
| Time base div = 0xffffffff
| Word width = 32
| Page size = 4096
| Block size = 32
| Granule size = 32
| Cache size = 32
| Cache attrib = 2
| Cache assoc = 8
| Cache line = 64
| I-Cache size = 32
| I-Cache assoc = 8
| I-Cache line = 64
| D-Cache size = 32
| D-Cache assoc = 8
| D-Cache line = 64
| TLB size = 256
| TLB attrib = 2
| TLB assoc = 2
| I_TLB size = 256
| I_TLB assoc = 2
| D_TLB size = 256
| D_TLB assoc = 2
| ExtVPD ptr = 0x0

| Residual CPU:
| Num CPUs = 1
| CPU[0] CPU Type = 0x 10002
| CPU Serial = 0xffffffff
| L2 size = 0
| L2 assoc = 0

Appendix K. Dump of Residual Data — Page 297 of 319

| Residual Memory:
| Total Memory = 0x2000000
| Good Memory = 0x2000000
| Mem seg[0] =
| Mem seg is Firm Code
| Mem seg base page = 0x0
| Mem seg page count = 0x400
| Mem seg[1] =
| Mem seg is Firm Heap
| Mem seg base page = 0x400000
| Mem seg page count = 0x80
| Mem seg[2] =
| Mem seg is Free
| Mem seg base page = 0x480000
| Mem seg page count = 0x1b80
| Mem seg[3] =
| Mem seg is Unpopulated
| Mem seg base page = 0x2000000
| Mem seg page count = 0x7e000
| Mem seg[4] =
| Mem seg is SystemIO
| Mem seg is ISAAddr
| Mem seg base page = 0x80000000
| Mem seg page count = 0x800
| Mem seg[5] =
| Mem seg is SystemIO
| Mem seg is PCIConfig
| Mem seg base page = 0x80800000
| Mem seg page count = 0x800
| Mem seg[6] =
| Mem seg is SystemIO
| Mem seg is PCIAddr
| Mem seg base page = 0x81000000
| Mem seg page count = 0x3e800
| Mem seg[7] =
| Mem seg is SystemIO
| Mem seg is SystemRegs
| Mem seg base page = 0xbf800000
| Mem seg page count = 0x800
| Mem seg[8] =
| Mem seg is IOMemory
| Mem seg base page = 0xc0000000
| Mem seg page count = 0x3f000
| Mem seg[9] =
| Mem seg is IOMemory
| Mem seg base page = 0xff000000
| Mem seg page count = 0x800
| Mem seg[10] =
| Mem seg is UnPopSystemROM
| Mem seg base page = 0xff800000
| Mem seg page count = 0x700
| Mem seg[11] =
| Mem seg is SystemROM
| Mem seg base page = 0xfff00000
| Mem seg page count = 0x80
| Mem seg[12] =
| Mem seg is UnPopSystemROM
| Mem seg base page = 0xfff80000
| Mem seg page count = 0x80

Page 298 of 319 — PowerPC Reference Platform

| Mem seg[13] =
| Mem seg is Boot Image
| Mem seg base page = 0x3b57e0
| Mem seg page count = 0x4b
| Total SIMMs = 4
| SIMM[0] size = 8
| SIMM[1] size = 8
| SIMM[2] size = 8
| SIMM[3] size = 8
| SIMM[4] size = 0
| SIMM[5] size = 0

| Residual Devices:
| Total Devices = 17
| Device [0] = [PNPB00F] Crystal CS4231 Audio Device
| Dev ID = 0x fb0d041
| Serial = 0xffffffff
| Device is ISA
| Device is Static
| Base Type = 4
| Sub Type = 1
| Inter Type = 0
| Spare Type = 0
| Bus Access[0] = 0
| Bus Access[1] = 0
| Bus Access[2] = 0
| Allocated = 0
| Possible = 16
| Compatible = 17
| Device [1] = [PNP0700] PC Standard Floppy Disk Controller
| Dev ID = 0x 7d041
| Serial = 0xffffffff
| Device is ISA
| Device is Static
| Base Type = 1
| Sub Type = 2
| Inter Type = 0
| Spare Type = 0
| Bus Access[0] = 0
| Bus Access[1] = 0
| Bus Access[2] = 0
| Allocated = 18
| Possible = 29
| Compatible = 30
| Device [2] = [PNP0200] AT DMA Controller
| Dev ID = 0x 2d041
| Serial = 0xffffffff
| Device is ISA
| Device is Static
| Base Type = 8
| Sub Type = 1
| Inter Type = 1
| Spare Type = 0
| Bus Access[0] = 0
| Bus Access[1] = 0
| Bus Access[2] = 0
| Allocated = 31
| Possible = 152
| Compatible = 153

Appendix K. Dump of Residual Data — Page 299 of 319

| Device [3] = [PNP0000] AT Interrupt Controller
| Dev ID = 0x d041
| Serial = 0xffffffff
| Device is ISA
| Device is Static
| Base Type = 8
| Sub Type = 0
| Inter Type = 1
| Spare Type = 0
| Bus Access[0] = 0
| Bus Access[1] = 0
| Bus Access[2] = 0
| Allocated = 154
| Possible = 166
| Compatible = 167
| Device [4] = [PNP0A00] ISA Bus
| Dev ID = 0x ad041
| Serial = 0xffffffff
| Device is ISA
| Device is Static
| Base Type = 6
| Sub Type = 1
| Inter Type = 0
| Spare Type = 0
| Bus Access[0] = 0
| Bus Access[1] = 0
| Bus Access[2] = 0
| Allocated = 168
| Possible = 169
| Compatible = 179
| Device [5] = [PNP0400] Standard LPT Parallel Port
| Dev ID = 0x 4d041
| Serial = 0xffffffff
| Device is ISA
| Device is Configurable
| Device is Disableable
| Device is Input
| Device is Output
| Base Type = 7
| Sub Type = 1
| Inter Type = 1
| Spare Type = 0
| Bus Access[0] = 0
| Bus Access[1] = 0
| Bus Access[2] = 0
| Allocated = 180
| Possible = 188
| Compatible = 214
| Device [6] = [PNP0A03] PCI Bus
| Dev ID = 0x 30ad041
| Serial = 0xffffffff
| Device is PCI
| Device is Static
| Base Type = 6
| Sub Type = 4
| Inter Type = 0
| Spare Type = 0
| Bus Access[0] = 0
| Bus Access[1] = 0

Page 300 of 319 — PowerPC Reference Platform

| Bus Access[2] = 0
| Allocated = 215
| Possible = 219
| Compatible = 220
| Device [7] = [PNP0B00] AT RTC
| Dev ID = 0x bd041
| Serial = 0xffffffff
| Device is ISA
| Device is Static
| Base Type = 8
| Sub Type = 3
| Inter Type = 1
| Spare Type = 0
| Bus Access[0] = 0
| Bus Access[1] = 0
| Bus Access[2] = 0
| Allocated = 221
| Possible = 229
| Compatible = 230
| Device [8] = [PNPA00F] NCR 810 SCSI Controller
| Dev ID = 0x fa0d041
| Serial = 0xffffffff
| Device is PCI
| Device is Configurable
| Device is Disableable
| Base Type = 1
| Sub Type = 0
| Inter Type = 0
| Spare Type = 0
| Bus Access[0] = 128
| Bus Access[1] = 16
| Bus Access[2] = 0
| Allocated = 231
| Possible = 235
| Compatible = 236
| Device [9] = [PNP0501] 16550A Compatible Serial port
| Dev ID = 0x 105d041
| Serial = 0xffffffff
| Device is ISA
| Device is Configurable
| Device is Disableable
| Device is Input
| Device is Output
| Base Type = 7
| Sub Type = 0
| Inter Type = 1
| Spare Type = 0
| Bus Access[0] = 0
| Bus Access[1] = 0
| Bus Access[2] = 0
| Allocated = 237
| Possible = 245
| Compatible = 319
| Device [10] = [PNP0501] 16550A Compatible Serial port
| Dev ID = 0x 105d041
| Serial = 0xffffffff
| Device is ISA
| Device is Configurable
| Device is Disableable

Appendix K. Dump of Residual Data — Page 301 of 319

| Device is Input
| Device is Output
| Base Type = 7
| Sub Type = 0
| Inter Type = 1
| Spare Type = 0
| Bus Access[0] = 0
| Bus Access[1] = 0
| Bus Access[2] = 0
| Allocated = 320
| Possible = 328
| Compatible = 402
| Device [11] = [PNP0100] AT Timer
| Dev ID = 0x 1d041
| Serial = 0xffffffff
| Device is ISA
| Device is Static
| Base Type = 8
| Sub Type = 2
| Inter Type = 1
| Spare Type = 0
| Bus Access[0] = 0
| Bus Access[1] = 0
| Bus Access[2] = 0
| Allocated = 403
| Possible = 415
| Compatible = 416
| Device [12] = [PNP0303] IBM Enhanced (101/102 key, PS/2 mouse)
| Dev ID = 0x 303d041
| Serial = 0xffffffff
| Device is ISA
| Device is Static
| Device is Disableable
| Device is Removable
| Device is ConsoleIn
| Device is Input
| Base Type = 9
| Sub Type = 0
| Inter Type = 0
| Spare Type = 0
| Bus Access[0] = 0
| Bus Access[1] = 0
| Bus Access[2] = 0
| Allocated = 417
| Possible = 429
| Compatible = 430
| Device [13] = [PNP0F03] Microsoft PS/2 Mouse
| Dev ID = 0x 30fd041
| Serial = 0xffffffff
| Device is ISA
| Device is Static
| Device is Disableable
| Device is Removable
| Device is Input
| Base Type = 9
| Sub Type = 2
| Inter Type = 0
| Spare Type = 0
| Bus Access[0] = 0

Page 302 of 319 — PowerPC Reference Platform

| Bus Access[1] = 0
| Bus Access[2] = 0
| Allocated = 431
| Possible = 443
| Compatible = 444
| Device [14] = [PNP090E] Weitek P9000 Graphics Adapter
| Dev ID = 0x e09d041
| Serial = 0xffffffff
| Device is PCI
| Device is Configurable
| Device is Disableable
| Device is ConsoleOut
| Base Type = 3
| Sub Type = 0
| Inter Type = 0
| Spare Type = 0
| Bus Access[0] = 0
| Bus Access[1] = 6
| Bus Access[2] = 0
| Allocated = 445
| Possible = 449
| Compatible = 450
| Device [15] = [PNP8327] IBM Token Ring (All types)
| Dev ID = 0x2783d041
| Serial = 0xffffffff
| Device is ISA
| Device is Input
| Device is Output
| Base Type = 2
| Sub Type = 1
| Inter Type = 0
| Spare Type = 0
| Bus Access[0] = 0
| Bus Access[1] = 0
| Bus Access[2] = 0
| Allocated = 451
| Possible = 480
| Compatible = 481
| Device [16] = [PNP8327] IBM Token Ring (All types)
| Dev ID = 0x2783d041
| Serial = 0xffffffff
| Device is ISA
| Device is Input
| Device is Output
| Base Type = 2
| Sub Type = 1
| Inter Type = 0
| Spare Type = 0
| Bus Access[0] = 0
| Bus Access[1] = 0
| Bus Access[2] = 0
| Allocated = 482
| Possible = 511
| Compatible = 512

| Residual Device Heap:

| 22 0 4 4b 8 30 4 2a 40 52
| 2a 80 52 71 1 78 78 78 22 40

Appendix K. Dump of Residual Data — Page 303 of 319

| 0 4b 3 f0 8 2a 4 48 78 78
| 78 4b 0 0 10 4b 0 80 11 4b
| 0 94 3 4b 0 98 1 4b 0 9c
| 4 4b 0 c0 1 4b 0 c2 1 4b
| 0 c4 1 4b 0 c6 1 4b 0 c8
| 1 4b 0 ca 1 4b 0 cc 1 4b
| 0 ce 1 4b 0 d0 1 4b 0 d2
| 1 4b 0 d4 1 4b 0 d6 1 4b
| 0 d8 1 4b 0 da 1 4b 0 dc
| 1 4b 0 de 1 4b 4 b 1 4b
| 4 10 4 4b 4 15 7 4b 4 1d
| 13 4b 4 34 c 4b 4 81 3 4b
| 4 87 1 4b 4 89 3 4b 4 d6
| 1 78 78 78 22 4 0 4b 0 20
| 2 4b 0 a0 2 78 78 78 78 22
| 0 2 22 0 8 22 0 40 78 78
| 22 80 0 4b 3 bc 3 78 30 22
| 80 0 4b 3 bc 3 30 22 80 0
| 4b 3 78 6 30 22 20 0 4b 2
| 78 6 38 78 78 22 0 80 78 78
| 78 22 0 1 4b 0 70 2 78 78
| 78 22 0 20 78 78 78 22 10 0
| 4b 3 f8 8 78 30 22 10 0 4b
| 3 f8 8 30 22 8 0 4b 2 f8
| 8 30 22 10 0 4b 2 20 8 30
| 22 10 0 4b 2 e8 8 30 22 10
| 0 4b 3 38 8 30 22 10 0 4b
| 3 e8 8 30 22 10 0 4b 2 38
| 8 30 22 10 0 4b 2 e0 8 30
| 22 10 0 4b 2 28 8 38 78 78
| 22 8 0 4b 2 f8 8 78 30 22
| 10 0 4b 3 f8 8 30 22 8 0
| 4b 2 f8 8 30 22 10 0 4b 2
| 20 8 30 22 10 0 4b 2 e8 8
| 30 22 10 0 4b 3 38 8 30 22
| 10 0 4b 3 e8 8 30 22 10 0
| 4b 2 38 8 30 22 10 0 4b 2
| e0 8 30 22 10 0 4b 2 28 8
| 38 78 78 22 1 0 4b 0 40 4
| 4b 0 78 4 78 78 78 22 2 0
| 4b 0 60 1 4b 0 64 1 78 78
| 78 22 0 10 4b 0 60 1 4b 0
| 64 1 78 78 78 22 0 80 78 78
| 78 4b a 20 0 81 9 0 21 0
| 0 0 0 0 10 0 0 81 9 0
| 1 0 0 0 0 0 10 0 0 78
| 78 78 4b 0 0 0 81 9 0 21
| 0 0 0 0 0 10 0 0 81 9
| 0 1 0 0 0 0 0 10 0 0
| 78 78 78 0 0 0 0 0 0 0
| 0 0 0 0 0 0 0 0 0 0
| 0 0 0 0 0 0 0 0 0 0
| 0 0 0 0 0 0 0 0 0 0
| 0 0 0 0 0 0 0 0 0 0
| 0 0 0 0 0 0 0 0 0 0
| 0 0 0 0 0 0 0 0 0 0
| 0 0 0 0 0 0 0 0 0 0
| 0 0 0 0 0 0 0 0 0 0

Page 304 of 319 — PowerPC Reference Platform

Obtaining Additional Information

Several sources exist for obtaining additional information about the PowerPC microprocessor and the PowerPC Refer-
ence Platform.

Anyone interested in obtaining more information on the PowerPC processor or on the PowerPC Reference Platform
/ may use the following sources:

/ IBM at 1-800-PowerPC (1-800-769-3772) in the U.S.A (MPR-PPC-RPU-02 is the number for the PowerPC Refer-

/ ence Platform Specification, Version 1.0)
| If the 1-800-PowerPC number can not be reached or if multilingual operators are required, use 1-708-296-6767

IBM at (39)-39-600-4295 in Europe
Motorola at 1-800-845-MOTO (6686)

Copies of the PowerPC Reference Platform Specification may be obtained from these numbers. Hardware system
| vendors may obtain information on IBM components or the IBM design kits which give further information on the
/ reference implementation by contacting IBM at the numbers listed above or at the following numbers:

/ Within Europe (33)-6713-5757 in French
/ Within Europe (33)-6713-5756 in Italian
/ Within Europe (49)-511-516-3444 in English
/ Within Europe (49)-511-516-3555 in German
/ In Asia (81)-755-87-4745 in Japanese

An electronic forum on CompuServe has been established for the discussion of PowerPC Reference Platform topics
and for obtaining answers to questions on the PowerPC Reference Platform. Go to the “PowerPC” forum on

| CompuServe and join the “Reference Platform” topic. The PowerPC Reference Platform Specification in PostScript
| format is maintained on a library of the PowerPC forum.

/ Several white papers are available from IBM at 1-512-838-5552. These papers expand on the information in this
/ specification. The papers which were available at the time of publishing this specification are as follows:

/ PowerPC 60x/PCI Bus Bridge Implementation for PowerPC Reference Platform by Yongjae Rim
/ Bi-Endian Designs in PowerPC Reference Platform by Shien-Tai Pan
/ Symmetric Multiprocessing by Don McCauley
/ PowerPC Endian Switch Code by Gary Tsao
/ Plug and Play for PowerPC Reference Platform by Gary Tsao
/ L2 Cache Design for PowerPC by Allan Steel

| This specification, the white papers, and various data structures (e.g. NVRAM Header) are available via anonymous
| FTP. The server address is ftp.austin.ibm.com and the material is placed in the directory /pub/technology/spec.

/ A paper, The PowerPC Reference Platform Specification and Machine Abstraction by Allan Steel, is available in the
/ Spring Compcon 94 digest.

/ For AIX license and product information, contact David Hall, AIX OEM Relations, at 512-838-2088.

/ Software vendors interested in porting their applications to AIX on PowerPC systems can contact the AIX Power
/ Team General Information Line at 1-800-222-2363.

/ A Windows NT porting center is available to help vendors who are interested in porting their products to this platform.
/ The center can be contacted by telephone at 1-800-803-0110 or 1-206-889-9011, or by electronic mail on Internet at
/ winntppc@vnet.ibm.com.

| The PowerPC Architecture, ISBN 1-55860-316-6, is published by Morgan Kaufmann Publishers, 415-392-2665. It is
| available in some bookstores and may be ordered from local IBM publications sources at 1-800-426-6477 in the US
| only.

Kernel Extensions and Device Support Programming Concepts, IBM document number SC232207, and Writing a

Device Driver for A I X Version 3.2, IBM document number GG243629, may be ordered by calling 1-800-879-2755.

Obtaining Additional Information — Page 305 of 319

/ To purchase a copy of System V Application Binary Interface, call 1-800-947-7700 in the U.S.A. or 515-284-6751
/ outside the U.S.A.

/ To order the Guide to Mac Family Hardware, call 1-800-282-2732.

/ Back issues of the Microsoft Systems Journal may be ordered by calling 1-800-444-4881 in the U.S.A. or 415-715-6213
/ outside the U.S.A.

/ To purchase the MS-DOS Programmer's Reference, call 1-800-677-7377.

| Call 212-642-4900 for orders or inquiries pertaining to ANSI and ISO standards.

To order copies of EIA standards, contact Global Engineering Documents at 1-800-854-7179.

Copies of IEEE standards may be obtained by calling 1-800-678-IEEE. For information about IEEE standards, call
908-562-3800.

/ To purchase PCI documents, call 1-800-433-5177 in the U.S.A. or 503-797-4207 outside the U.S.A.

Copies of PCMCIA standards may be obtained by calling 408-720-0107.

The PowerOpen Association may be contacted at the address and telephone number listed below:

PowerOpen Association
10500 North Wolfe Road
Suite SW2-255
Cupertino, CA 95014
1-800-457-0463

Page 306 of 319 — PowerPC Reference Platform

Bibliography

Documents which were referenced in this specification are listed below:

| The PowerPC Architecture, ISBN 1-55860-316-6

Kernel Extensions and Device Support Programming Concepts, IBM order number SC232207

Writing a Device Driver for A I X Version 3.2, IBM order number GG243629

| How To Create Endian-Neutral Software for Portability, TR54.837 (also published in Dr. Dobb’s Journal for
| October and November 1994)

PowerPC processor-specific user's manuals:

− PowerPC 601 RISC Microprocessor User's Manual, IBM order number 52G7484, Motorola order number
MPC601UM/ADREV1

A N S I Standard X3.131-1990 (Revision 10c) for SCSI-2

A N S I Standard X3.221 A T Attachment (Revision 4a)

ANSI/NISO/ISO 9660, Information Processing -- Volume and File Structure of CD-ROM for Information Inter-

change

EIA/TIA-232-E, Interface Between Data Terminal Equipment and Data Circuit Terminated Equipment Employing

Serial Binary Data Interchange

EIA-422-A, Electrical Characteristics of Balanced Voltage Digital Interface Circuits

IEEE P1275, Standard for Boot (Initialization Configuration) Firmware, Core Requirements and Practices

IEEE P1284, Standard Signaling Method for a Bi-Directional Parallel Peripheral Interface for Personal Com-

puters, March 15, 1993

IEEE 802.3, ISO/IEC 8802-3, Information technology -- Local and metropolitan area networks Part III: Carrier

sense multiple access with collision detection (CSMA-CD) access method and physical layer specifications, 1993

IEEE 802.5, Standards for Local Area Networks: Token Ring Access Method and Physical Layer Specifications

| IEEE 996, A Standard for an Extended Personal Computer Back Plane Bus

| ISO 639, Code for the representation of names of languages

Microsoft Hardware Abstraction Layer, Beta Version, March 1993

PCI documents (available from and maintained by the PCI Special Interest Group):

− PCI Local Bus Specification, Revision 2.0, April 30, 1993
− PCI System Design Guide, Revision 1.0, September 1993
− PCI to PCI Bridge Architecture Specification, Revision 1.0, April 5, 1994
− PCI Multimedia Design Guide, Revision 1.0, March 29, 1994

PCMCIA standards (can be ordered from the Personal Computer Memory Card International Association):

− PC Card Standard Specification, Release 2.1, July 1993
− Socket Services Specification, Release 2.1, July 1993
− Card Services Specification, Release 2.1, July 1993
− PC Card A T A Mass Storage Specification, Release 1.02, July 1993
− A I M S Specification, Release 1.01, November 1992
− Recommended Extensions, Release 1.00, November 1992

Michel Dubois, Christoph Scheurich, and Faye Briggs, Memory Access Buffering in Multiprocessors, Proceedings
of the 13th ISCA, pp. 434-441, 1986.

PowerOpen ABI

PowerOpen API

System V Application Binary Interface

MS-DOS Programmer's Reference

Bibliography — Page 307 of 319

“Peering Inside the PE: A Tour of the Win32 Portable Executable File Format,” Microsoft Systems Journal,
March 1994

Bootstrap Protocol, Internet RFC 951.

Page 308 of 319 — PowerPC Reference Platform

Acronyms and Abbreviations

Table 40 (Page 1 of 4). Acronyms and Abbreviations

Term Definition

ABI Application binary interface

ANSI American National Standards Institute

API Applications programming interface

APM Available processor mask

ASIC Application-specific integrated circuit

ATM Asynchronous transfer mode

BAT Block address translation

BE Big-Endian

/ BEPI/ Block effective page index

/ BL/ Block length

BLR Branch to link register

/ BRPN/ Block real page number

BTAS Boot-time abstraction software

BUID Bus unit identifier

CB Copy-back

CISC Complex instruction set computer

CPPR Current processor priority register

CRC Cyclic redundancy check

CV Compatible value

DAC Digital-to-analog converter

/ DBAT/ Data block address translation register

/ DCE/ Distributed computing environment

DDI Device driver interface

D D K Device driver development kit

DMA Direct memory access

DRAM Dynamic random access memory

/ DSI/ Data storage interrupt

DSP Digital signal processor

/ EA/ Effective address

ECC Error checking and correcting

ECP Extended capabilities port

EEPROM Electrically erasable programmable read-only memory

EISA Extended industry standard architecture

ELF Executable and linking format

EOI End of interrupt

EPLD Electrically programmable logic device

EPROM Erasable programmable read-only memory

Acronyms and Abbreviations — Page 309 of 319

Table 40 (Page 2 of 4). Acronyms and Abbreviations

Term Definition

FAL Firmware abstraction layer

/ FAT/ File allocation table

FCS Fiber Channel Standard

FDDI Fiber distributed data interface

FIFO First in first out

/ F R U/ Field-replaceable unit

GB Gigabyte

| G M T| Greenwich mean time

/ GOT/ Global offset table

G P R General purpose register

| GUI| Graphical user interface

HAL Hardware abstraction layer

HAS Hardware abstraction software

/ HPFS/ High-performance file system

/ HTAB/ Hashed page table

/ IBAT/ Instruction block address translation register

/ IC/ Integrated circuit

IDE Integrated device electronics

/ IP/ Interrupt prefix

IPIRR Inter-processor interrupt request register

IRDT Interrupt redirection table

IRQL Interrupt request level

IRQP Interrupt request priority

IRR Interrupt request register

ISA Industry standard architecture

| ISBN| International standard book number

ISDN Integrated services digital network

ISE Instruction set emulator

/ ISI/ Instruction storage interrupt

ISR Interrupt source register

ITL Independent test lab

JEIDA Japan Electronic Industry Development Association

JFS Journaled file system

KB Kilobyte

KBI Kernel binary interface

KPI Kernel programming interface

L1 First-level cache

L2 Second-level cache

LAN Local area network

LBX Local branch exchange

Page 310 of 319 — PowerPC Reference Platform

Table 40 (Page 3 of 4). Acronyms and Abbreviations

Term Definition

LE Little-Endian

LSb Least significant bit

LSB Least significant byte

LVM Logical volume manager

MB Megabyte

MCA Micro Channel Architecture

MIDI Musical instrument digital interface

| M K| Microkernel

M M U Memory management unit

/ MP/ Multiprocessor

MSb Most significant bit

MSB Most significant byte

/ MSR/ Machine status register

NFS Network file system

NVRAM Non-volatile random access memory

OEM Original equipment manufacturer

ONC Open network computing

OS Operating system

PCI Peripheral component interconnect

PCIB/MC PCI bridge and memory controller

PCMCIA Personal Computer Memory Card International Association

PDA Personal digital assistant

/ PE/ Portable executable

PIM Platform-independent module

PLL Phase lock loop

PnP Plug and Play

POE PowerOpen Environment

POST Power-on self test

PSM Platform-specific module

/ PTE/ Page table entry

QFP Quad flat pack

QIC Quarter-inch cartridge

/ RA/ Real address

RAID Redundant array of independent disks

RAMDAC Random access memory and digital-to-analog converter

RBA Relative block address

| RFC| Request for comments

/ RGB/ Red-green-blue

RISC Reduced instruction set computer

/ RPN/ Real page number

Acronyms and Abbreviations — Page 311 of 319

Table 40 (Page 4 of 4). Acronyms and Abbreviations

Term Definition

RTAS Run-time abstraction software

SCSI Small computer system interface

SIMM Single inline memory module

SIO Standard I/O

SMP Symmetric multiprocessor

| SODIMM| Small outline dual inline memory module

SPARC Scalable processor architecture

/ SPR/ Special purpose register

/ SR/ Segment register

SSD Storage system division

SVID System V interface definition

TCP/IP Transmission control protocol internet protocol

TEA Transaction error acknowlegement

TLB Translation lookaside buffer

TTY Teletypewriter

UMCU Universal micro control unit

/ VA/ Virtual address

VL Network VESA local bus

VME VERSA Module Eurocard

VPD Vital product data

/ VPN/ Virtual page number

/ VSID/ Virtual segment ID

WT Write-through

Page 312 of 319 — PowerPC Reference Platform

Glossary

Alpha-numeric input device. A device for the input of symbols and alphabetical and numeric characters, such as a
keyboard.

BAT register. A mechanism which provides a means of mapping ranges of virtual addresses larger than a page onto
contiguous areas of real storage.

Big-Endian. A byte ordering method in which the most significant byte is stored first.

Bi-Endian. Having Big-Endian and Little-Endian byte ordering capability.

Dataless. A hardware configuration in which the system's hardfile is used only for system support; most of the system
software and data reside on a network-connected storage device.

Directly attached. Electrically connected.

/ Hard disk. A storage media consisting of several spinning platters on which information is read and written electron-
/ ically.

/ Hardfile. A storage media for reading and writing large volumes of data. Typically implemented as a hard disk, but
/ other storage technologies may be used.

HUMAN-CENTERED. Technology which is centered around the human senses of sight, sound and touch.

Hot-plug capability. The ability to couple a peripheral device to a system without shutting down or restarting the
system.

Little-Endian. A byte ordering method in which the least significant byte is stored first.

Medialess. A hardware configuration with no data storage capability. A network connection supplies storage for the
operating system, applications and data.

Microkernel. A small, message-passing nucleus of system software running in the most privileged state of the com-
puter.

Pointing device. A device which provides two-dimensional positioning, such as a mouse, tablet or touch screen.

Glossary — Page 313 of 319

Page 314 of 319 — PowerPC Reference Platform

Trademark Information

The following terms, denoted by a double asterisk (**) in this publication, are trademarks or registered trademarks of
the companies shown:

/ DeskSet Sun Microsystems, Inc.
EtherCard Standard MicroSystems Corporation
EtherExpress Intel Corporation
EtherLink 3Com Corporation
Ethernet Xerox
LocalTalk Apple Computer, Inc.
Macintosh Apple Computer, Inc.
NetWare Novell, Inc.

/ Newscard Motorola, Inc.
/ NFS Sun Microsystems, Inc.
/ ONC Sun Microsystems, Inc.
/ OpenWindows Sun Microsystems, Inc.

PostScript Adobe Systems Incorporated
SatisFAXtion Intel Corporation

/ ScanJet Hewlett-Packard
Solaris Sun Microsystems, Inc.
Sound Blaster Creative Technology, Ltd.

/ SunOS Sun Microsystems, Inc.
/ ToolTalk Sun Microsystems, Inc.
| UNIX X/Open Company, Ltd.
/ Wabi Sun Microsystems, Inc.

WangDAT WangDAT Inc.
Windows Microsoft Corporation
Windows NT Microsoft Corporation
X Window System Massachusetts Institute of Technology

Trademark Information — Page 315 of 319

Page 316 of 319 — PowerPC Reference Platform

Index

A
abstraction layer, hardware 230, 239, 248, 256
abstractions, machine 83—88
AIX 49, 50, 235—243
alphanumeric input device

See keyboard
Application Binary Interface 241—242
Applications Programming Interface 241
ATM 39
audio

adaptor 224, 225
OS requirements 49, 229, 232, 237, 242, 246, 250,

255, 259
PowerPC Reference Platform subsystem 37, 47,

183, 188
Reference Implementation subsystem 143

B
Bi-Endian 66—69, 189, 209—222, 263
Big-Endian 66—69, 131, 144, 179, 263
boot image 89, 94—96
boot record 89, 91—94
boot time abstraction requirements

AIX 238
Solaris 256
Windows NT 230
Workplace OS 248

Bus Unit Identifier 81

C
cache-inhibited loads and stores to system

memory 75—78
cache, external 34
cache, L2

OS requirements 49, 232, 242, 250, 259
PowerPC Reference Platform subsystem 34, 47
properties for Open Firmware 273
Reference Implementation subsystem 141
upgrade slot 149—178

CD-ROM
OS requirements 49, 228, 232, 237, 242, 246, 250,

255, 259
PowerPC Reference Platform subsystem 35, 47
Reference Implementation subsystem 147, 223

clock generation 140, 188
cold-start transient state 89—91
Compatibility Mode 232, 237, 243, 250, 259
configuration, on-line 60—61
Cyclic Redundancy Check 90

D
desktop system 45—48
Device Driver Development Kit 232, 248, 258
diagnostics

on-line 60—61
proposed strategy 206
stand-alone 60

direct-store segment 79—81
disk array 147
DMA 40, 87, 139

E
EISA 39
Endian switching process 144
energy-managed system 184—190
Ethernet

OS requirements 229, 233, 238, 243
PowerPC Reference Platform subsystem 39, 48
Reference Implementation subsystem 225
standards 41

expansion bus 48—49
Extended Capabilities Port 43, 233, 243, 250, 259
external control instructions 81

F
FCS 39
FDDI 39
firmware 89—117

See also Open Firmware
floating-point load and store operations, unaligned 80
floppy

format for Open Firmware 270
OS requirements 49, 228, 232, 237, 242, 246, 250,

255, 259
PowerPC Reference Platform subsystem 35, 47
Reference Implementation subsystem 147, 224

G
graphics

OS requirements 49, 229, 232, 237, 242, 246, 250,
255, 259

PowerPC Reference Platform subsystem 37, 47
Reference Implementation subsystem 142

H
hard disk drive 147
hardfile

format for Open Firmware 270
OS requirements 49, 228, 232, 237, 242, 246, 250,

255, 259

Index — Page 317 of 319

hardfile (continued)

PowerPC Reference Platform subsystem 34, 47
Reference Implementation subsystem 225

I
I/O control subsystem 142—143
I/O decoder 144, 188
I/O device mapping 128—136
I/O memory mapping 137—139
IDE

OS requirements 229, 233, 238, 243, 247, 250, 255,
259

Reference Implementation subsystem 223
standards 41

input device interfaces 45
inter-processor synchronization 69
interrupt controller 40
interrupts 70, 136
ISA

OS requirements 49, 229, 233, 238, 243, 247, 250,
255, 259

PowerPC Reference Platform subsystem 39, 48
Reference Implementation subsystem 148, 225
standards 44

ISDN 39

K
keyboard

OS requirements 49, 229, 232, 237, 242, 246, 250,
255, 259

PowerPC Reference Platform subsystem 36, 47
Reference Implementation subsystem 223

L
Little-Endian 66—69, 78—79, 131, 144, 179, 209—210,

263
Little-Endian scalar operations, unaligned 78
load and store multiple operations 80
load and store string operations 79
loads and stores to system I/O bus 72—75
LocalTalk 39, 42, 48

M
MCA 39
medialess system 45—48, 190
memory and I/O map 120—122
memory map 56, 122—127
memory model, rationale for 128
memory-mapped I/O 34
memory, I/O 33, 53
memory, non-volatile

boot process and firmware 97
OS requirements 49, 232, 242, 246, 250, 259
PowerPC Reference Platform subsystem 33, 47
Reference Implementation subsystem 119

memory, read-only 33, 47—49, 119, 141, 182, 187
memory, system

architecture guidance 51
boot process and firmware 95
OS requirements 49, 228, 232, 236, 242, 246, 250,

254, 259
PowerPC Reference Platform subsystem 32, 47

memory, system I/O 34, 54, 137
microkernel 248
modem 148, 225, 226
monitor 148
mouse

OS requirements 49, 229, 232, 237, 242, 246, 250,
255, 259

PowerPC Reference Platform subsystem 37, 47
Reference Implementation subsystem 149, 223

multimedia 148
multiprocessor 69—71, 195—206, 232, 241, 248, 258

N
native I/O controller 143, 183, 187
native subsystems 223
network 39, 48—49, 225, 247
non-cachable operations 71
non-volatile RAM

See memory, non-volatile
NuBus 39
NVRAM data structure 99—101

See also memory, non-volatile

O
Open Firmware 89, 116—117, 263—291
optical disk 147

P
parallel port

OS requirements 49, 229, 232, 242, 247, 250, 255,
259

PowerPC Reference Platform subsystem 39, 48
Reference Implementation subsystem 224
standards 43

password 90
PCI

I/O configuration space mapping 136
OS requirements 49, 229, 233, 238, 243, 247, 250,

255, 259
PowerPC Reference Platform subsystem 39, 48
Reference Implementation subsystem 149, 224
standards 43

PCI bridge and memory controller 138, 140, 182, 186
PCMCIA

OS requirements 49, 229, 233, 238, 243, 247, 250,
255, 259

PowerPC Reference Platform subsystem 39, 48
Reference Implementation subsystem 225
standards 44

Page 318 of 319 — PowerPC Reference Platform

PCMCIA controller 183, 189
personality 248
Plug and Play 45
Plug and Play extensions 293—296
pointing device

See mouse
portable system 45—48, 179—184
power management 61—65, 88, 184—190
power-on self test 60, 90
PowerOpen Environment 241
printer 148, 224
processor 47, 139, 179, 184, 232, 242, 250, 259
processor subsystem 31
processor subsystem requirements

AIX 49, 236
Solaris 49, 254
Windows NT 49, 228
Workplace OS 49, 246

R
read-only memory

See memory, read-only
Real-Time Clock

601 processor 31, 144
OS requirements 49, 229, 232, 237, 242, 250, 259
PowerPC Reference Platform subsystem 38, 47,

183, 187
Reference Implementation subsystem 144

Reference Implementation 119—178
residual data dump 297—304
residual data structure 105—109

S
scanner 148, 223
SCSI

OS requirements 50, 229, 233, 238, 243, 247, 250,
255, 259

PowerPC Reference Platform subsystem 48
Reference Implementation subsystem 142, 223
standards 40

SCSI controller 182, 187
SCSI-2 36, 40, 48
serial port

OS requirements 49, 229, 232, 242, 247, 250, 255,
259

PowerPC Reference Platform subsystem 39, 47
Reference Implementation subsystem 224
standards 41

server system 45—48
Solaris 49, 50, 253—259
system board 139, 179, 184
system configuration register 40
system interrupt assignments 136

T
tape drive 147, 229, 233, 238, 243, 251, 259
technical workstation system 45—48, 192
time base 31, 188
timer 40
TLB synchronization 69
Token Ring

OS requirements 229, 233, 238, 243
PowerPC Reference Platform subsystem 39
Reference Implementation subsystem 225
standards 41

U
upgrade slot 141, 149—178

V
VL 39
VME 39

W
Windows NT 49, 50, 227—233
word alignment 71—78
Workplace OS 49, 50, 245—251

END OF DOCUMENT

This is the last page of this document

Index — Page 319 of 319

