
FL 37 - You Want Permission to do What?!! 1 of 14

Files

New Technical Notes

Developer Support

ð
®Macintosh

FL 37 - You Want Permission to do What?!!
Files

Written by: Jim Luther September 1991 through September 1994

This note gives an in-depth explanation of the File Manager and AFP permission models used
by the File Manager to open files. It also tells how a File Sharing or AppleShare file server
implements the AFP permission model on the server Macintosh.

Topics
• The File Manager permission model
• The AFP deny-mode permission model
• The effect of File Sharing and AppleShare servers on permission models
• Foreign permission models
• Determining what permissions you have

First there were the original four File Manager open permissions: whatever permission is
currently allowed, read only permission, write only permission, and exclusive read/write
permission. Shared read/write permission was added with the HFS version of the File
Manager. AppleShare introduced AppleTalk Filing Protocol (AFP) deny-mode permissions and
the translation of standard File Manager permissions to AFP deny-mode permissions. System 7
added one more piece to our permissions pie; local File Sharing and AppleShare permissions.
There are also several foreign file systems which use other permission models. This note gives
an explanation of each permission model and gives some code that may make your application
more robust.

The File Manager Permissions

The Original Four Permissions

The original four File Manager permissions are simple to understand and simple to use. The
four permissions available under this model are:

Permission Description
fsCurPerm This is a request for whatever permission is currently allowed. Read

permission will be granted if write access is denied because the file
is locked. No other access path to the file fork will be granted
permission to write if write permission is granted.

fsRdPerm This is a request for read permission only. You can always get read
permission under the File Manager permission model.

Macintosh Technical Notes

2 of 14 FL 37 - You Want Permission to do What?!!

Files

fsWrPerm This is a request for write permission. The file must not be locked
and the no other access paths can be open to the file fork with write
access. If granted, no other access path to the file fork will be
granted permission to write. Write only permission has never been
enforced by the File Manager, so you really get read/write
permission.

fsRdWrPerm This is a request for read/write permission. The file must not be
locked and the no other access paths can be open to the file fork with
write access. If granted, no other access path to the file fork will be
granted permission to write.

Table 1a–The Original Four Permissions

Using the original permission set, the File Manager gives only one access path to a file fork the
permission to write. The File Manager decides whether permission to write will be granted
based on what permissions other already open access paths may have and the current lock state
of the file. The File Manager does not deny new read access paths to a file fork.

Shared Read/Write Permission

When the hierarchical version of the File Manager was introduced, shared read/write
permission was added to the original four permissions. This permission allows multiple access
paths to be opened for both reading and writing to a file fork.

Permission Description
fsRdWrShPerm This is a request for shared read/write permission. The file must not

be locked and no other access paths can be open to the file fork with
non-shared write access. Other read/write shared access paths and
other read access paths are allowed.

Table 1b–Shared Read/Write Permission

As noted in Inside Macintosh: Files on page 2-8, “Shared read/write permission allows multiple
access paths for writing and reading. It is safe to have multiple read/write paths open to a file
only if there is some way of locking a portion of the file before writing to that portion of the
file.” The PBLockRange and PBUnlockRange functions provide the mechanism to lock a
portion of a file. However, range locking is usually provided only by foreign file systems
where shared file access is fully supported. See Inside Macintosh: Files, Inside AppleTalk, and
Technical Note FL 26 - Lock, Unlock the Range, for more information on range locking and a
method for determining whether PBLockRange and PBUnlockRange are supported on a
particular file.

To summarize, with the original File Manager permission model you can always get an access
path with read permission to a file. The File Manager will only deny write permission if the file
is locked or if another access path to the file already has permission to write. Shared read/write
permission allows multiple read and write access paths to a file, but should not be used unless
range locking is available. Access to a file can be reduced to the following table.

Developer Technical Support September 1994

FL 37 - You Want Permission to do What?!! 3 of 14

Files

Current File Access State Permission Requested Permission Granted
file is locked; other access fsCurPerm read
paths to file may or may not fsRdPerm read
be open fsWrPerm none (permErr)

fsRdWrPerm none (permErr)
fsRdWrShPerm none (permErr)

file is not locked; no other fsCurPerm read/write
access paths are open fsRdPerm read

fsWrPerm read/write
fsRdWrPerm read/write
fsRdWrShPerm read/write/shared

file is not locked and all fsCurPerm read/write
other open access paths fsRdPerm read
are read only access fsWrPerm read/write

fsRdWrPerm read/write
fsRdWrShPerm read/write/shared

file is not locked and fsCurPerm read
another open access path fsRdPerm read
has write access fsWrPerm none (opWrErr)

fsRdWrPerm none (opWrErr)
fsRdWrShPerm none (opWrErr)

file is not locked and fsCurPerm read
other open access paths fsRdPerm read
are read/write shared access fsWrPerm none (opWrErr)

fsRdWrPerm none (opWrErr)
fsRdWrShPerm read/write/shared

Table 2–File Manager Synchronization Rules

An Exception to the Rules

An open with write permission request (fsCurPerm, fsWrPerm, fsRdWrPerm, or
fsRdWrShPerm) does not fail on a locked volume and the write bit in ioFCBFlags returned by
PBGetFCBInfo will be set indicating that data can be written to the file. As noted in Inside
Macintosh: Files on page 2-8, you won’t discover this until you receive an error (either
vLckdErr or wPrErr) on the first call that attempts to write to the file or change the file’s logical
or physical end-of-file. You can preflight for this condition by calling PBHGetVInfo and
checking the hardware and software locked bits in ioVAtrb.

An Important Warning from our Sponsor

Warning: Even though the Open calls return the ioRefNum of an existing access
path when the call fails with opWrErr, that ioRefNum should never be
used unless your application owns that particular access path to the file.
If another application or process owns that particular access path to the
file, it could close it at any time and then if the File Control Block (FCB)
is reused due to another file being opened, you could be accessing the
wrong file! Even if you own the original access path, you should be
very careful, because calls you make to the file could change the file’s
mark (which will be shared).

Macintosh Technical Notes

4 of 14 FL 37 - You Want Permission to do What?!!

Files

AppleTalk Filing Protocol Deny-mode Permissions

The permission model used by AppleTalk Filing Protocol (AFP) is designed to work in an
environment where several different users could share access to a file concurrently. An
application opening a file on an AFP file server or a file system that supports AFP’s permission
model can specify an access mode (read, write, read/write, or none) and a deny mode (deny-
read, deny-write, deny-read/write, or deny-none). The synchronization rules using AFP’s
permission model can be summarized in the following table (borrowed from the File sharing
modes section in chapter 13 of Inside AppleTalk). A dot indicates a new open call has
succeeded; otherwise, it has failed.

Deny
Read/Write

None
Read

Read/Write
Write

None
Read

Read/Write
Write

None
Read

Read/Write
Write

None
Read

Read/Write
Write

N
on

e
R

ea
d

R
ea

d/
W

ri
te

W
ri

te

N
on

e
R

ea
d

R
ea

d/
W

ri
te

W
ri

te

N
on

e
R

ea
d

R
ea

d/
W

ri
te

W
ri

te

N
on

e
R

ea
d

R
ea

d/
W

ri
te

W
ri

te

Deny
Mode

Access
Mode

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

•

•

•

•

•

•

•

•

•
•

•
•

•
•

•
•

• • • •

•
•
•
•

•
•
•
•

•

•

•

•

•
•

•
•

• •

•
•
•
•

•
•
•
•

•

•

•

•

•
•

•
•

• •

•
•
•
•

•

•

•
•

•

New open attempt deny mode
and new open attempt access mode

C
ur

re
nt

 d
en

y
m

od
e

an
d

cu
rr

en
t a

cc
es

s
m

od
e

Deny
Write

Deny
Read

Deny
None

D
en

y
R

ea
d/

W
ri

te

D
en

y
W

ri
te

D
en

y
R

ea
d

D
en

y
N

on
e

Figure 1–AFP Synchronization Rules

Note that in addition to the synchronization rules listed above, an attempt to open a file on an
AFP volume can fail if write access is requested and the file is “locked” (the AFP WriteInhibit
file attribute is set for the file).

Volumes that support AFP deny-mode permissions and thus, the PBHOpenDeny and
PBHOpenRFDeny functions, can be identified by checking the bHasOpenDeny bit returned in
the vMAttrib field by PBHGetVolParms. You should use the PBHOpenDeny and
PBHOpenRFDeny functions if you really want to ensure the access permission and deny-mode
permission you request is what you get. PBHOpenDeny and PBHOpenRFDeny are not retried
in any way. If the file cannot be opened because of a deny conflict, the error afpDenyConflict is
returned and ioRefNum is set to zero.

Developer Technical Support September 1994

FL 37 - You Want Permission to do What?!! 5 of 14

Files

If you don’t want to special case volumes that support AFP deny-mode permissions, you can
use the File Manager permissions described in the previous section of this Note. The next
section of this Note describes how File Manager permissions are translated to AFP deny-mode
permissions.

Translation of File Manager to AFP Deny-mode Permissions

AppleShare (and other AFP file servers) use the AppleTalk Filing Protocol (AFP) deny-mode
permissions exclusively. So that applications using classic File Manager permissions will
work, the foreign file system used by AppleShare (on each workstation) translates classic File
Manager permissions into the AFP deny-mode permissions.

To keep applications from damaging each other’s files, the basic rule of file access (in
translating permissions for AppleShare volumes) was changed to “single writer OR multiple
readers, but not both.” Because of this change, two applications cannot both have access to the
same file unless both are read only; this eliminates the danger of reading from a file when it is
inconsistent.

Note: This change in the basic rule currently applies only to AppleShare volumes.
Should a future version of the File Manager incorporate this change for local
volumes, then an application expecting to get more than one path to a file (with
at least one read/write) will fail.

The AppleShare foreign file system is used to access volumes on AppleShare and other AFP
file servers. Files opened by a workstation must access the file on the AppleShare volume
through an AFP access path maintained by the foreign file system. In some situations (as you’ll
see later), the AFP access path from a single workstation to the server may be shared by two or
more open File Manager access paths on that workstation. In those cases, the File Manager will
only allow one of the File Manager access paths write permission. A File Manager access path
is an access path between an application and a file on either a local HFS volume or on a volume
accessed by an foreign file system.

The following table shows how the classic permissions described in the File Manager are
translated into the AFP deny-mode permissions.

Permission AFP deny-mode permission translation
fsCurPerm First an attempt is made to open an AFP access path to the file on the

file server with read/write/deny-read/deny-write permissions
(exclusive). If that fails, an attempt is made to open an AFP access
path to the file on the file server with read/deny-write permissions
(browsing). If that fails, the AppleShare foreign file system searches
through the open file control blocks (FCBs) for another AFP access
path to the file. If it finds another AFP access path it can use, it will
open a File Manager read-only access path that shares the AFP
access path with another File Manager access path.

fsRdPerm First an attempt is made to open an AFP access path to the file on the
file server with read/deny-write permissions (browsing). If that
fails, the AppleShare foreign file system searches through the open
file control blocks (FCBs) for another AFP access path to the file. If
it finds another AFP access path it can use, it will open a File

Macintosh Technical Notes

6 of 14 FL 37 - You Want Permission to do What?!!

Files

Manager read-only access path that shares the AFP access path with
another File Manager access path.

fsWrPerm An attempt is made to open an AFP access path to the file on the file
server with read/write/deny-read/deny-write permissions
(exclusive). If that fails, no further attempts to open an access path
are made (under the assumption that if an application asked for
write-only access, then it really wants to write and not read).

fsRdWrPerm First an attempt is made to open an AFP access path to the file on the
file server with read/write/deny-read/deny-write permissions
(exclusive). If that fails, an attempt is made to open an AFP access
path to the file on the file server with read/deny-write permissions
(browsing). If that fails, the AppleShare foreign file system searches
through the open file control blocks (FCBs) for another AFP access
path to the file. If it finds another AFP access path it can use, it will
open a File Manager read-only access path that shares the AFP
access path with another File Manager access path.

fsRdWrShPerm An attempt is made to open an AFP access path to the file on the file
server with read/write/deny-none permissions (shared). If that fails,
no further attempts to open an access path are made.

Table 3–Translation of File Manager Permissions to AFP deny-mode
Permissions on a Remote Volume

fsRdPerm acts as you would expect: browsing access is achieved if there is no existing write
access path to the file.

For fsCurPerm, you also get what you’d expect: “whatever is available” has always meant
“read/write if you can, otherwise, read only”. The deny portions of the translation are important
for enforcing the updated basic rule of file access: if there’s an existing read or write access
path to a file being opened with fsCurPerm, the first set of permissions will fail; the second set,
browsing access, will then succeed only if there is no existing write access path to the file.

fsRdWrPerm is also retried as read-only, to simulate the case where a file is being opened from
a locked disk. Elsewhere, it’s pointed out that fsRdWrPerm is granted even if the volume is
locked, and that an error won’t be returned until a PBWrite (or PBSetEOF or PBAllocate) call
is made. The same is now true for a read-only folder on an AppleShare volume.

Note: Changing access privileges of a folder does not change the access established
for an open path to a file in that folder. This is unlike the case where you eject a
disk, remove the hardware lock, and can then write to an open file on it.

Permissions in a File Sharing or AppleShare World

When the System 7 File Sharing or AppleShare file server is on, shared volumes on your
Macintosh can be accessed by both the local user and remote users. So, what permission model
is used? File Manager or AFP deny-mode permissions? The answer is both!

Developer Technical Support September 1994

FL 37 - You Want Permission to do What?!! 7 of 14

Files

To a remote user, your system looks like any other AFP file server on the network. When a
remote user opens a file on your system, they are always opening the file using AFP deny-
mode permissions. However, the local user is running in a hybrid environment and can use
either the File Manager permission model or the AFP deny-mode permission model.

When a local user opens a file using the File Manager permission model, everything works just
like it does when file sharing is off, unless the file is already open using deny-mode
permissions. Deny-mode permissions take precedence over File Manager permissions.

When File Sharing is on and a new local open call is made using File Manager permissions, the
call is made and deny-mode permissions are added for synchronizing with remote users. If no
remote users have the file open, then the call acts just as it would without File Sharing. If a
remote user has the file open, then the deny-mode permissions are used. (Note:
afpAccessDenied is returned instead of permErr when a file is locked and File Sharing is on.)
Here’s the translation used when a remote user has the file open and deny-permissions must be
respected:

Permission AFP deny-mode permission on local shared volume
fsCurPerm First an attempt is made to open an AFP access path to the file on the

file server with read/write/deny-read/deny-write permissions
(exclusive). If that fails, an attempt is made to open an AFP access
path to the file on the file server with read/deny-write permissions
(browsing). If that fails, no further attempts to open an access path
are made.

fsRdPerm First an attempt is made to open an AFP access path to the file on the
file server with read/deny-write permissions (browsing). If that
fails, no further attempts to open an access path are made.

fsWrPerm An attempt is made to open an AFP access path to the file on the file
server with read/write/deny-read/deny-write permissions
(exclusive). If that fails, no further attempts to open an access path
are made.

fsRdWrPerm An attempt is made to open an AFP access path to the file on the file
server with read/write/deny-read/deny-write permissions
(exclusive). If that fails, no further attempts to open an access path
are made.

fsRdWrShPerm An attempt is made to open an AFP access path to the file on the file
server with read/write/deny-none permissions (shared). If that fails,
no further attempts to open an access path are made.

Table 4–Translation of File Manager Permissions to
AFP deny-mode Permissions on a Local Shared Volume

when a Remote User has the File Open

Throwing the File Sharing Switch

One task the File Sharing extension performs when a user turns File Sharing on is assign deny-
mode permissions to all open files. The following table shows how the deny-mode permissions
are assigned to open files.

Macintosh Technical Notes

8 of 14 FL 37 - You Want Permission to do What?!!

Files

Previous File Manager Permission New Deny-mode Permission
fsCurPerm read/write/deny-read/deny-write

or read/deny-write (depends on
the actual permission given)

fsRdPerm read/deny-write
fsWrPerm read/write/deny-read/deny-write
fsRdWrPerm read/write/deny-read/deny-write
fsRdWrShPerm read/write/deny-none

Table 5–File Manager to Deny-mode Permission Translation

What happens when a user turns File Sharing off? Things revert to the File Manager
permissions. However, there’s the slight problem of translating the sixteen AFP permissions to
the five File Manager permissions. Here’s another table that shows what happens when you
turn File Sharing off.

Developer Technical Support September 1994

FL 37 - You Want Permission to do What?!! 9 of 14

Files

Previous Deny-mode Permission New File Manager Permission
write/deny-none fsRdWrShPerm
read/write/deny-none fsRdWrShPerm
read/deny-none fsRdPerm
read/deny-read fsRdPerm
read/deny-write fsRdPerm
read/deny-read/deny-write fsRdPerm
write/deny-read fsWrPerm
write/deny-write fsWrPerm
write/deny-read/deny-write fsWrPerm
read/write/deny-read fsRdWrPerm
read/write/deny-write fsRdWrPerm
read/write/deny-read/deny-write fsRdWrPerm
deny-none fsCurPerm
deny-read fsCurPerm
deny-write fsCurPerm
deny-read/deny-write fsCurPerm

Table 6–Deny-mode to File Manager Permission Translation

Foreign permission models

Foreign file systems that access non-Macintosh systems probably do not use the File Manager
or AFP permission models on the host system. However, those foreign file systems must still
map their permission model to one of the two permission models supported by the File
Manager. An application should use the PBGetForeignPrivs and PBSetForeignPrivs functions
provided by the System 7 File Manager if it needs to directly manipulate the permissions of a
non-Macintosh permission model. See Inside Macintosh: Files and contact the publisher of the
foreign file system for more information.

So, what permissions were actually used to open a file?

That’s a good question (at least I thought it was when I asked myself). You know what
permissions you’ll get if the volume the file is on supports AFP deny-mode permissions and
you used PBHOpenDeny or PBHOpenRFDeny. The chances of getting what you ask for are
somewhat slimmer if you use File Manager permissions to open a file. There two ways to deal
with this problem.

The first method is to try with the permissions you want and if that fails, keep retrying asking
for fewer permissions until you succeed (or decide to give up). The idea here is you know what
permissions you want before you open a file and if you don’t get it, you get to decide what to
try next. The OpenAware routines in the Developer Technical Support MoreFiles sample code
can be used for that purpose because it attempts to give you the AFP deny-mode permissions
you request and if it cannot, it tries to give you the equivalent File Manager permissions.

The OpenAware routines let you deal with one permission model, the more complete deny-
mode permission model. The following constants can be used to specify deny-mode
permissions.

/*

Macintosh Technical Notes

10 of 14 FL 37 - You Want Permission to do What?!!

Files

** Deny mode permissions for use with the HOpenAware, HOpenRFAware,
** FSpOpenAware, and FSpOpenRFAware functions.
*/

enum
{
 dmNone = 0x0000,
 dmNoneDenyRd = 0x0010,
 dmNoneDenyWr = 0x0020,
 dmNoneDenyRdWr = 0x0030,
 dmRd = 0x0001, /* Single writer, multiple readers; the readers */
 dmRdDenyRd = 0x0011,
 dmRdDenyWr = 0x0021, /* Browsing - equivalent to fsRdPerm */
 dmRdDenyRdWr = 0x0031,
 dmWr = 0x0002,
 dmWrDenyRd = 0x0012,
 dmWrDenyWr = 0x0022,
 dmWrDenyRdWr = 0x0032,
 dmRdWr = 0x0003, /* Shared access - equivalent to fsRdWrShPerm */
 dmRdWrDenyRd = 0x0013,
 dmRdWrDenyWr = 0x0023, /* Single writer, multiple readers; the writer */
 dmRdWrDenyRdWr = 0x0033 /* Exclusive access - equivalent to fsRdWrPerm */
};

Here is a self-contained version of the HOpenAware function (it makes no calls to other
functions in the MoreFiles library).

/*
** A self-contained version of HOpenAware. See MoreFiles for the real thing.
*/

pascal OSErr HOpenAware(short vRefNum,
 long dirID,
 ConstStr255Param fileName,
 short denyModes,
 short *refNum)
{
 HParamBlockRec pb;
 OSErr result;
 GetVolParmsInfoBuffer volParmsInfo;

 refNum = 0; / default */

 /* Get volume attributes */
 /* This preflighting is needed because Foreign File Access based file systems */
 /* don't return the correct error result to the OpenDeny call */

 pb.ioParam.ioNamePtr = (StringPtr)fileName; /* might be a full pathname */
 pb.ioParam.ioVRefNum = vRefNum;
 pb.ioParam.ioBuffer = (Ptr)&volParmsInfo;
 pb.ioParam.ioReqCount = sizeof(GetVolParmsInfoBuffer);
 result = PBHGetVolParmsSync(&pb);
 if ((result == noErr) || (result == paramErr))
 {
 /* paramErr is OK, it just means this volume doesn't support GetVolParms */

 if ((result == noErr) &&
 ((volParmsInfo.vMAttrib & (1L << bHasOpenDeny)) != 0))
 {
 /* OpenDeny is supported, so use it */

 pb.ioParam.ioMisc = NULL;

Developer Technical Support September 1994

FL 37 - You Want Permission to do What?!! 11 of 14

Files

 pb.fileParam.ioFVersNum = 0;
 pb.fileParam.ioNamePtr = (StringPtr)fileName;
 pb.fileParam.ioVRefNum = vRefNum;
 pb.fileParam.ioDirID = dirID;
 pb.accessParam.ioDenyModes = denyModes;
 result = PBHOpenDenySync(&pb);
 *refNum = pb.ioParam.ioRefNum;
 }
 else
 {
 /* OpenDeny isn't supported, so try File Manager Open functions */

 result = noErr; /* result back to noErr */

 if ((denyModes & dmWr) != 0)
 {
 /* If request includes write permission, then see if the volume */
 /* is locked by hardware or software. The HFS file system doesn't */
 /* check for this when a file is opened - you only find out later */
 /* when you try to write and the write fails with a wPrErr */
 /* or a vLckdErr. */

 Str255 tempPathname;

 pb.volumeParam.ioVRefNum = vRefNum;
 /* Make a copy of the fileName and */
 /* use the copy so fileName isn't trashed */
 BlockMoveData(fileName, tempPathname, fileName[0] + 1);
 pb.volumeParam.ioNamePtr = (StringPtr)tempPathname;
 pb.volumeParam.ioVolIndex = -1; /* use ioNamePtr/ioVRefNum */
 result = PBHGetVInfoSync(&pb);

 if (result == noErr)
 {
 if ((pb.volumeParam.ioVAtrb & 0x0080) != 0)
 {
 result = wPrErr; /* volume locked by hardware */
 }
 else if ((pb.volumeParam.ioVAtrb & 0x8000) != 0)
 {
 result = vLckdErr; /* volume locked by software */
 }
 }
 }

 if (result == noErr) /* are we still OK? */
 {
 pb.ioParam.ioMisc = NULL;
 pb.fileParam.ioFVersNum = 0;
 pb.fileParam.ioNamePtr = (StringPtr)fileName;
 pb.fileParam.ioVRefNum = vRefNum;
 pb.fileParam.ioDirID = dirID;

 /* Set File Manager permissions to closest thing possible */
 pb.ioParam.ioPermssn = ((denyModes == dmWr) ||
 (denyModes == dmRdWr)) ?
 (fsRdWrShPerm) :
 (denyModes % 4);

 result = PBHOpenDFSync(&pb); /* Try OpenDF */
 if (result == paramErr)
 result = PBHOpenSync(&pb); /* OpenDF not supported, try Open */
 *refNum = pb.ioParam.ioRefNum;

Macintosh Technical Notes

12 of 14 FL 37 - You Want Permission to do What?!!

Files

 }
 }
 }

 return (result);
}

Another way to know what permissions you have is to open the file and then check to see what
permissions you actually received (some people find it’s easier to ask for forgiveness than to
ask for permission). You can use the following routine to see what File Manager permissions
you received after you’ve opened a file.

/*
** This function returns the File Manager permissions of an open file
** specified by refNum. Any errors are returned in the function result.
** If the result is noErr, then permission will contain fsRdPerm, fsRdWrPerm,
** or fsRdWrShPerm.
*/
pascal OSErr GetPermission(short refNum,
 short *permission)
{
 OSErr result;
 FCBPBRec fcbPB;
 HParamBlockRec pb;
 GetVolParmsInfoBuffer buffer;

 enum
 {
 fcbFlgWMask = 0x0100, /* write permissions bit in FCBFlags */
 fcbFlgSMask = 0x1000, /* shared-write bit in FCBFlags */
 vcbWrProtMask = 0x8080, /* hardware and software locked bits */
 /* in vcbAtrb */
 userWriteACAccess = 0x04000000 /* user has write access to directory */
 };

 /* Get the access path info from the FCB */
 fcbPB.ioNamePtr = NULL;
 fcbPB.ioVRefNum = 0;
 fcbPB.ioRefNum = refNum; /* check this access path */
 fcbPB.ioFCBIndx = 0;
 result = PBGetFCBInfoSync(&fcbPB);
 if (result == noErr)
 {
 /* Now, look at ioFCBFlags to see what the File Manager thinks */
 /* it can do with this file */

 if ((fcbPB.ioFCBFlags & fcbFlgSMask) != 0)
 {
 /* shared bit is set in the FCB */
 permission = fsRdWrShPerm; / shared bit is set in the FCB */
 }
 else if ((fcbPB.ioFCBFlags & fcbFlgWMask) != 0)
 {
 /* Write bit is set in the FCB, but a locked volume or */
 /* a read-only folder could squelch that idea. */

 /* First, see if the volume supports AFP access control. */
 pb.ioParam.ioNamePtr = NULL;
 pb.ioParam.ioVRefNum = fcbPB.ioFCBVRefNum;
 pb.ioParam.ioBuffer = (Ptr)&buffer;
 pb.ioParam.ioReqCount = sizeof(buffer);
 result = PBHGetVolParmsSync(&pb);

Developer Technical Support September 1994

FL 37 - You Want Permission to do What?!! 13 of 14

Files

 if ((result == noErr) &&
 ((buffer.vMAttrib & (1L << bAccessCntl)) != 0))
 {
 /* Use GetDirAccess to see if we can really write */
 pb.accessParam.ioNamePtr = NULL;
 pb.accessParam.ioVRefNum = fcbPB.ioFCBVRefNum;
 pb.fileParam.ioDirID = fcbPB.ioFCBParID;
 result = PBHGetDirAccessSync(&pb);
 if (result == noErr)
 {
 if ((pb.accessParam.ioACAccess & userWriteACAccess) != 0)
 {
 /* this user has folder write access */
 *permission = fsRdWrPerm;
 }
 else
 {
 /* this user hasn’t folder write access */
 *permission = fsRdPerm;
 }
 }
 }
 else
 {
 /* GetVolParms isn't supported or */
 /* the volume doesn't support AFP access control */

 /* Check for locked volume that will prevent writes */
 pb.volumeParam.ioNamePtr = NULL;
 pb.volumeParam.ioVRefNum = fcbPB.ioFCBVRefNum;
 pb.volumeParam.ioVolIndex = 0; /* use ioVRefNum only */
 result = PBHGetVInfoSync(&pb);
 if (result == noErr)
 {
 if ((pb.volumeParam.ioVAtrb & vcbWrProtMask) != 0)
 {
 /* locked volume, it can’t really write */
 *permission = fsRdPerm;
 }
 else
 {
 /* real write access */
 *permission = fsRdWrPerm;
 }
 }
 }
 }
 else
 {
 /* write bit wasn’t set in FCB */
 *permission = fsRdPerm;
 }
 }

 return (result);
}

Macintosh Technical Notes

14 of 14 FL 37 - You Want Permission to do What?!!

Files

Conclusion

By understanding the information provided in this Technical Note and the routines in the Apple
Developer Support sample code MoreFiles, you should be able to get the access you require
when you open a file.

Further Reference:
• Inside Macintosh: Files, File Manager
• Inside AppleTalk, second edition, AppleTalk Filing Protocol
• Technical Note FL 6 - HFS Elucidations
• Technical Note FL 26 - Lock, Unlock the Range
• MoreFiles sample code

	The File Manager Permissions
	AppleTalk Filing Protocol Deny-mode Permissions
	Permissions in a File Sharing or AppleShare World
	Foreign permission models
	So, what permissions were actually used to open a file?
	Conclusion

