New Technical Notes
Macintosh ®

Developer Support
FL 37 - You Want Permission to do What?!!

Files
Writtenby: Jim Luther September 1991 through September 1994

This note gives an in-depth explanation of the File Manager and AFP permission models used
by the File Manager to open files. It also tells how a File Sharing or AppleShare file server
implements the AFP permission model on the server Macintosh.

Topics
* The File Manager permission model
» The AFP deny-mode permission model
» The effect of File Sharing and AppleShare servers on permission models
« Foreign permission models
 Determining what permissions you have

First there were the original four File Manager open permissions. whatever permission is
currently allowed, read only permission, write only permission, and exclusive read/write
permission. Shared read/write permission was added with the HFS version of the File
Manager. AppleShare introduced AppleTak Filing Protocol (AFP) deny-mode permissions and
the trandation of standard File Manager permissions to AFP deny-mode permissions. System 7
added one more piece to our permissions pie; local File Sharing and AppleShare permissions.
There are also several foreign file systems which use other permission models. This note gives
an explanation of each permission model and gives some code that may make your application
more robust.

The File Manager Permissions
The Original Four Permissions

The original four File Manager permissions are simple to understand and simple to use. The
four permissions available under this model are:

Permission Description

fsCurPerm Thisisarequest for whatever permission is currently allowed. Read
permission will be granted if write accessis denied because the file
is locked. No other access path to the file fork will be granted
permission to write if write permission is granted.

fsRdPerm Thisisarequest for read permission only. You can aways get read
permission under the File Manager permission model.

FL 37 - You Want Permission to do What?!! 1of 14

Files

Macintosh Technical Notes

fSWrPerm Thisis arequest for write permission. The file must not be locked
and the no other access paths can be open to the file fork with write
access. If granted, no other access path to the file fork will be
granted permission to write. Write only permission has never been
enforced by the File Manager, so you really get read/write
permission.

fsSRAWrPerm This is a request for read/write permission. The file must not be
locked and the no other access paths can be open to the file fork with
write access. If granted, no other access path to the file fork will be
granted permission to write.

Table la—The Original Four Permissions

Using the original permission set, the File Manager gives only one access path to afile fork the
permission to write. The File Manager decides whether permission to write will be granted

based on what permissions other already open access paths may have and the current lock state
of thefile. The File Manager does not deny new read access paths to afile fork.

Shared Read/Write Permission

When the hierarchical version of the File Manager was introduced, shared read/write
permission was added to the original four permissions. This permission allows multiple access
paths to be opened for both reading and writing to afile fork.

Permission Description

fSRAWrShPerm Thisisarequest for shared read/write permission. The file must not
be locked and no other access paths can be open to the file fork with
non-shared write access. Other read/write shared access paths and
other read access paths are alowed.

Table 1b—Shared Read/Write Permission

As noted in Inside Macintosh: Fileson page 2-8, “ Shared read/write permission allows multiple
access paths for writing and reading. It is safe to have multiple read/write paths open to afile
only if there is some way of locking a portion of the file before writing to that portion of the
file” The PBLockRange and PBUnlockRange functions provide the mechanism to lock a
portion of afile. However, range locking is usually provided only by foreign file systems
where shared file access is fully supported. Seelnside Macintosh: Files Inside AppleTak, and
Technical Note FL 26 - Lock, Unlock the Range, for more information on range locking and a
method for determining whether PBLockRange and PBUnlockRange are supported on a
particular file.

To summarize, with the original File Manager permission model you canalways get an access
path with read permission to afile. The File Manager will only deny write permission if thefile
islocked or if another access path to the file aready has permission to write. Shared read/write
permission allows multiple read and write access paths to afile, but should not be used unless
range locking is available. Accessto afile can be reduced to the following table.

20of 14 FL 37 - You Want Permission to do What?!!

Files

Developer Technical Support

September 1994

Current File Access State Permission Requested ~ Permission Granted

file1slocked; other access fsCurPerm read

pathsto filemay or may not fsRdPerm read

be open fswrPerm none (permEerr)
fsRdWrPerm none (permkerr)
fsRdWrShPerm none (permkerr)

fileis not locked; no other fsCurPerm read/write

access paths are open fsRdPerm read
fSWrPerm read/write
fsRdWrPerm read/write
fsSRAWrShPerm read/write/shared

fileisnot locked and all fsCurPerm read/write

other open access paths fsRdPerm read

areread only access fsSWrPerm read/write
fsRdWrPerm read/write
fsRdWrShPerm read/write/shared

fileisnot locked and fsCurPerm read

another open access path fsRdPerm read

has write access fsWrPerm none (opWrErr)
fsSRdWrPerm none (opWrErr)
fsSRdWrShPerm none (opWrErr)

fileisnot locked and fsCurPerm read

other open access paths fsRdPerm read

areread/write shared access ~ fsWrPerm none (opWrErr)
fsSRAWrPerm none (opWrErr)
fsSRAWrShPerm read/write/shared

Table 2-File Manager Synchronization Rules

An Exception to the Rules

An open with write permission request (fsCurPerm, fsWrPerm, fsRdWrPerm, or
fsRdWrShPerm) does not fail on alocked volume and the write bit in ioFCBFlags returned by
PBGetFCBInfo will be set indicating that data can be written to the file. As noted in Inside
Macintosh: Files on page 2-8, you won't discover this until you receive an error (either
vLckdErr or wPrErr) on thefirst call that attempts to write to the file or change the file'slogical
or physical end-of-file. You can preflight for this condition by calling PBHGetVInfo and
checking the hardware and software locked bitsin ioVAtrb.

An Important Warning from our Sponsor

Warning:

Even though the Open calls return the ioRefNum of an existing access

path when the call fails with opWrErr, that ioRefNum should never be
used unless your application owns that particular access path to thefile.
If another application or process owns that particular access path to the
file, it could closeit at any time and then if the File Control Block (FCB)
is reused due to another file being opened, you could be accessing the
wrong file! Even if you own the original access path, you should be
very careful, because calls you make to the file could change the file's
mark (which will be shared).

FL 37 - You Want Permission to do What?!!

Files

3of 14

Macintosh Technical Notes

AppleTalk Filing Protocol Deny-mode Permissions

The permission model used by AppleTalk Filing Protocol (AFP) is designed to work in an
environment where several different users could share access to a file concurrently. An
application opening afile on an AFP file server or afile system that supports AFP' s permission
model can specify an access mode (read, write, read/write, or none) and a deny mode (deny-
read, deny-write, deny-read/write, or deny-none). The synchronization rules using AFP’'s
permission model can be summarized in the following table (borrowed from the File sharing
modes section in chapter 13 of Inside AppleTalk). A dot indicates a new open call has
succeeded; otherwise, it has failed.

New open attempt deny mode
and new open attempt access mode

A
[\
9
Deny > § >Q > >Q
Mode g g és = g ?é és 2
14
L 2 L 2
p P AP EP AP E
Mode 2 = 2 = 2 = 2 £
SIEHEEHE EHEEE
(None| .
Deny Read
Read/Write] Read/Write)
Write
3 None| . .
8 g Deny Read
IS Q Write | Read/Write)
29 Write
g8 <
- *g None| .
o 2 Deny Read
3 g Read |Read/Write]
= Write
Nonel o o o o
Deny Read
None |Read/Write
_ Write

Figure 1-AFP Synchronization Rules

Note that in addition to the synchronization rules listed above, an attempt to open afile on an
AFP volume can fail if write accessis requested and the file is “locked” (the AFP Writelnhibit
file attribute is set for the file).

Volumes that support AFP deny-mode permissions and thus, the PBHOpenDeny and

PBHOpenRFDeny functions, can be identified by checking the bHasOpenDeny bit returned in
the vMAttrib field by PBHGetVolParms. You should use the PBHOpenDeny and

PBHOpenRFDeny functionsif you really want to ensure the access permission and deny-mode
permission you request is what you get. PBHOpenDeny and PBHOpenRFDeny are not retried
in any way. If the file cannot be opened because of a deny conflict, the error afpDenyConflict is
returned and ioRefNum is set to zero.

4 of 14 FL 37 - You Want Permission to do What?!!

Files

Developer Technical Support September 1994

If you don’t want to special case volumes that support AFP deny-mode permissions, you can
use the File Manager permissions described in the previous section of this Note. The next
section of this Note describes how File Manager permissions are translated to AFP deny-mode
permissions.

Translation of File Manager to AFP Deny-mode Permissions

AppleShare (and other AFP file servers) use the AppleTak Filing Protocol (AFP) deny-mode
permissions exclusively. So that applications using classic File Manager permissions will
work, the foreign file system used by AppleShare (on each workstation) translates classic File
Manager permissions into the AFP deny-mode permissions.

To keep applications from damaging each other’s files, the basic rule of file access (in

trangating permissions for AppleShare volumes) was changed to “single writer OR multiple

readers, but not both.” Because of this change, two applications cannot both have access to the
same file unless both are read only; this eliminates the danger of reading from afilewhenitis

inconsistent.

Note: This change in the basic rule currently applies only to AppleShare volumes.
Should a future version of the File Manager incorporate this change for local
volumes, then an application expecting to get more than one path to afile (with
at least one read/write) will fail.

The AppleShare foreign file system is used to access volumes on AppleShare and other AFP
file servers. Files opened by a workstation must access the file on the AppleShare volume
through an AFP access path maintained by the foreign file system. In some situations (as you'll
see later), the AFP access path from a single workstation to the server may be shared by two or
more open File Manager access paths on that workstation. In those cases, the File Manager will
only allow one of the File Manager access paths write permission. A File Manager access path
is an access path between an application and afile on either alocal HFS volume or on avolume
accessed by an foreign file system.

The following table shows how the classic permissions described in the File Manager are
trandated into the AFP deny-mode permissions.

Permission AFP deny-mode permission trandation

fsCurPerm First an attempt 1s made to open an AFP access path to the file on the
file server with read/write/deny-read/deny-write permissions
(exclusive). If that fails, an attempt is made to open an AFP access
path to the file on the file server with read/deny-write permissions
(browsing). If that fails, the AppleShare foreign file system searches
through the open file control blocks (FCBs) for another AFP access
path to thefile. If it finds another AFP access path it can use, it will
open a File Manager read-only access path that shares the AFP
access path with another File Manager access path.

fsRdPerm First an attempt is made to open an AFP access path to the file on the
file server with read/deny-write permissions (browsing). If that
fails, the AppleShare foreign file system searches through the open
file control blocks (FCBs) for another AFP access path to thefile. If
it finds another AFP access path it can use, it will open a File

FL 37 - You Want Permission to do What?!! 50f 14

Files

Macintosh Technical Notes

Manager read-only access path that shares the AFP access path with
another File Manager access path.

fsSWrPerm An attempt is made to open an AFP access path to the file on thefile
server with read/write/deny-read/deny-write permissions
(exclusive). If that fails, no further attempts to open an access path
are made (under the assumption that if an application asked for
write-only access, then it really wants to write and not read).

fsRdWrPerm First an attempt is made to open an AFP access path to the file on the
file server with read/write/deny-read/deny-write permissions
(exclusive). If that fails, an attempt is made to open an AFP access
path to the file on the file server with read/deny-write permissions
(browsing). If that fails, the AppleShare foreign file system searches
through the open file control blocks (FCBSs) for another AFP access
path to the file. If it finds another AFP access path it can use, it will
open a File Manager read-only access path that shares the AFP
access path with another File Manager access path.

fsSRAWrShPerm An attempt is made to open an AFP access path to the file on the file
server with read/write/deny-none permissions (shared). If that fails,
no further attempts to open an access path are made.

Table 3-Translation of File Manager Permissions to AFP deny-mode
Permissions on a Remote Volume

fsRdPerm acts as you would expect: browsing access is achieved if there is no existing write
access path to thefile.

For fsCurPerm, you also get what you'd expect: “whatever is available” has always meant
“read/write if you can, otherwise, read only”. The deny portions of the trandation are important
for enforcing the updated basic rule of file access: if there's an existing read or write access
path to afile being opened with fsCurPerm, the first set of permissions will fail; the second set,
browsing access, will then succeed only if there is no existing write access path to thefile.

fsRdWrPerm is also retried as read-only, to simulate the case where afile is being opened from
alocked disk. Elsewhere, it's pointed out that fsRdWrPerm is granted even if the volume is
locked, and that an error won't be returned until a PBWrite (or PBSetEOF or PBAllocate) call
ismade. The sameis now true for aread-only folder on an AppleShare volume.

Note: Changing access privileges of afolder does not change the access established
for an open path to afilein that folder. Thisis unlike the case where you gject a
disk, remove the hardware lock, and can then write to an open file oniit.

Permissions in a File Sharing or AppleShare World

When the System 7 File Sharing or AppleShare file server is on, shared volumes on your
Macintosh can be accessed by both the local user and remote users. So, what permission model
isused? File Manager or AFP deny-mode permissions? The answer is both!

6 of 14 FL 37 - You Want Permission to do What?!!

Files

Developer Technical Support September 1994

To aremote user, your system looks like any other AFP file server on the network. When a
remote user opens a file on your system, they are always opening the file using AFP deny-
mode permissions. However, the local user is running in a hybrid environment and can use
either the File Manager permission model or the AFP deny-mode permission model.

When alocal user opens afile using the File Manager permission model, everything works just
like it does when file sharing is off, unless the file is already open using deny-mode
permissions. Deny-mode permissions take precedence over File Manager permissions.

When File Sharing is on and a new local open call is made using File Manager permissions, the
call is made and deny-mode permissions are added for synchronizing with remote users. If no

remote users have the file open, then the call acts just as it would without File Sharing. If a
remote user has the file open, then the deny-mode permissions are used. (Note:

afpAccessDenied is returned instead of permErr when afile islocked and File Sharing ison.)

Here' s the tranglation used when aremote user has the file open and deny-permissions must be
respected:

Permission AFP deny-mode permission on local shared volume

fsCurPerm First an attempt 1s made to open an AFP access path to the file on the
file server with read/write/deny-read/deny-write permissions
(exclusive). If that fails, an attempt is made to open an AFP access
path to the file on the file server with read/deny-write permissions
(browsing). If that fails, no further attempts to open an access path
are made.

fsRdPerm First an attempt is made to open an AFP access path to the file on the
file server with read/deny-write permissions (browsing). If that
fails, no further attempts to open an access path are made.

fsWrPerm An attempt is made to open an AFP access path to the file on the file
server with read/write/deny-read/deny-write permissions
(exclusive). If that fails, no further attempts to open an access path
are made.

fsSRAWrPerm An attempt is made to open an AFP access path to the file on the file
server with read/write/deny-read/deny-write permissions
(exclusive). If that fails, no further attempts to open an access path
are made.

fsSRAWrShPerm An attempt is made to open an AFP access path to the file on thefile
server with read/write/deny-none permissions (shared). If that fails,
no further attempts to open an access path are made.

Table 4-Translation of File Manager Permissions to
AFP deny-mode Permissions on a Local Shared Volume
when a Remote User has the File Open

Throwing the File Sharing Switch
One task the File Sharing extension performs when a user turns File Sharing on is assign deny-

mode permissions to all open files. The following table shows how the deny-mode permissions
are assigned to open files.

FL 37 - You Want Permission to do What?!! 7 of 14

Files

Macintosh Technical Notes

Previous File Manager Permission New Deny-mode Permission

fsCurPerm read/write/deny-read/deny-write
or read/deny-write (depends on
the actual permission given)

fsRdPerm read/deny-write

fSWrPerm read/write/deny-read/deny-write

fsSRAWrPerm read/write/deny-read/deny-write

fsSRAWrShPerm read/write/deny-none

Table 5-File Manager to Deny-mode Permission Translation

What happens when a user turns File Sharing off? Things revert to the File Manager
permissions. However, there' s the dight problem of trandlating the sixteen AFP permissionsto
the five File Manager permissions. Here's another table that shows what happens when you
turn File Sharing off.

8of 14 FL 37 - You Want Permission to do What?!!

Files

Developer Technical Support September 1994

Previous Deny-mode Permission New File Manager Permission

write/deny-none fSRAWrShPerm
read/write/deny-none fsSRAWrShPerm
read/deny-none fsRdPerm
read/deny-read fsRdPerm
read/deny-write fsRdPerm
read/deny-read/deny-write fsRdPerm
write/deny-read fsWrPerm
write/deny-write fsSWrPerm
write/deny-read/deny-write fSWrPerm
read/write/deny-read fsSRdWrPerm
read/write/deny-write fsSRdWrPerm
read/write/deny-read/deny-write fsSRAWrPerm
deny-none fsCurPerm
deny-read fsCurPerm
deny-write fsCurPerm
deny-read/deny-write fsCurPerm

Table 6-Deny-mode to File Manager Permission Translation

Foreign permission models

Foreign file systems that access non-Macintosh systems probably do not use the File Manager
or AFP permission models on the host system. However, those foreign file systems must still
map their permission model to one of the two permission models supported by the File
Manager. An application should use the PBGetForeignPrivs and PB SetForeignPrivs functions
provided by the System 7 File Manager if it needs to directly manipulate the permissions of a
non-Macintosh permission model. Seelnside Macintosh: Filesand contact the publisher of the
foreign file system for more information.

So, what permissions were actually used to open a file?

That’s a good question (at least | thought it was when | asked myself). You know what
permissions you' |l get if the volume the file is on supports AFP deny-mode permissions and
you used PBHOpenDeny or PBHOpenRFDeny. The chances of getting what you ask for are
somewhat slimmer if you use File Manager permissions to open afile. There two ways to deal
with this problem.

The first method isto try with the permissions you want and if that fails, keep retrying asking
for fewer permissions until you succeed (or decide to give up). Theidea hereis you know what
permissions you want before you open afile and if you don’t get it, you get to decide what to
try next. The OpenAware routines in the Devel oper Technical Support MoreFiles sample code
can be used for that purpose because it attempts to give you the AFP deny-mode permissions
you request and if it cannot, it tries to give you the equivalent File Manager permissions.

The OpenAware routines let you deal with one permission model, the more complete deny-
mode permission model. The following constants can be used to specify deny-mode
permissions.

/*

FL 37 - You Want Permission to do What?!! 9of 14

Files

Macintosh Technical Notes

** Deny node permssions for use with the HQpenAware, HOpenRFAwar e,
** FSppenAwar e, and FSpQpenRFAwar e functi ons.

*/
enum
{
dni\one = 0x0000,
dm\oneDenyRd = 0x0010,
dmN\oneDenyW = 0x0020,
dmNoneDeny RdW = 0x0030,
dniRd = 0x0001, /* Single witer, multiple readers; the readers */
dnRdDenyRd = 0x0011,
dnRdDenyW = 0x0021, /* Browsing - equivalent to fsRdPerm*/
dnRdDeny RdW = 0x0031,
dmw = 0x0002,
dmW DenyRd = 0x0012,
dmW DenyW = 0x0022,
dnmWV Deny RAW = 0x0032,
dniRdW = 0x0003, /* Shared access - equivalent to fsRIW ShPerm */
dnmRdW Deny Rd = 0x0013,
dnRdW DenyW = 0x0023, /* Single witer, multiple readers; the witer */
dnRdW Deny RdW = 0x0033 /* Exclusive access - equivalent to fsRAWPerm */
1

Here is a self-contained version of the HOpenAware function (it makes no calls to other

functionsin the MoreFileslibrary).

/*
** A sel f-contai ned version of HpenAware. See MirreFiles for the real thing.
*/

pascal OSErr HMenAware(short vRef Num
long dirlD,
Const St r 255Par am fi | eNaneg,
short denyModes,
short *ref Num

{
HPar anBl ockRec pb;
CBErr result;
Cet Vol Par nsl nf oBuf f er vol Par nsl nf o;
refNum= 0; / default */
/* Get volure attributes */
/* This preflighting is needed because Foreign File Access based file systens */
/* don't return the correct error result to the CpenDeny call */
pb.ioParamioNamePtr = (StringPtr)fileNane; /* might be a full pathnane */
pb. i oPar am i oVRef N\um = vRef Num
pb. i oParamioBuffer = (Ptr)&vol Parnsl nfo;
pb. i oParam i oReqCount = si zeof (Get Vol Par nsl nf oBuf f er) ;
result = PBHGet Vol Par nsSync(&pb) ;
if ((result == noErr) || (result == parantrr))
/* paranErr is OK it just means this vol une doesn't support GetVol Parns */
if ((result == noErr) &&
((vol Parmslnfo.vMALtrib & (1L << bHasQpenDeny)) != 0))
{
/* QpenDeny is supported, so use it */
pb.ioParamioMsc = NULL;
10 of 14 FL 37 - You Want Permission to do What?!!

Files

Developer Technical Support September 1994

pb. fil eParami oFVer sNum = 0;
pb.fileParamioNanePtr = (StringPtr)fil eName;
pb. fil eParam i oVRef Num = vRef Num
pb.fileParamioDrID = dirl D

pb. accessPar am i oDenyMbdes = denyhbdes;

result = PBHOpenDenySync(&pb) ;
*ref Num = pb. i oParam i oRef Num

}
el se
/* QpenDeny isn't supported, so try File Manager pen functions */
result = noErr; /* result back to noErr */
if ((denyModes & dnw) =0)
{
/* 1f request includes wite pernmission, then see if the volume */
/* is | ocked by hardware or software. The HFS file systemdoesn't */
/* check for this when a file is opened - you only find out |later */
/* when you try to wite and the wite fails with a wPrErr */
/* or a vLckdErr. */
Str255 t enpPat hnane;
pb. vol unePar am i oVRef Num = vRef Num
/* Make a copy of the fileName and */
/* use the copy so fileNane isn't trashed */
Bl ockMoveDat a(fi | eNarre, tenpPat hnanme, fileName[0] + 1);
pb. vol uneParam i oNanePtr = (StringPtr)tenpPat hnane;
pb. vol uneParamioVol I ndex = -1; /* use ioNamePtr/i oVRef Num */
result = PBHGet Ml nf oSync(&pb) ;
if (result == nokErr)
if ((pb.voluneParamioVAtrb & 0x0080) != 0)
result = wPrErr; /* volune | ocked by hardware */
}
else if ((pb.vol uneParamioVAirb & 0x8000) !'= 0)
{
result = viLckdErr; /* volume | ocked by software */
}
}
}
if (result == noErr) /* are we still OK? */
{
pb. i oParami oM sc = NULL;
pb. fil eParam i oFVer sNum = 0;
pb.fil eParamioNanmePtr = (StringPtr)fil eNane;
pb. fil eParam i oVRef Num = vRef Num
pb.fileParamiobDrID = dirl D
/* Set File Manager permissions to closest thing possible */
pb. i oParam i oPernssn = ((denyMddes == dnm¥) ||
(denyModes == dnRdW)) ?
(fsRAW ShPern) :
(denyModes % 4) ;
result = PBHOQpenDFSync(&pb); [* Try CpenDF */
if (result == parantrr)
result = PBHOpenSync(&pb); /* QpenDF not supported, try Cpen */
*ref Num = pb. i oParam i oRef Num
FL 37 - You Want Permission to do What?!! 11 of 14

Files

Macintosh Technical Notes

}
}

return (result);

}

Another way to know what permissions you have is to open the file and then check to see what
permissions you actually received (some people find it's easier to ask for forgiveness than to
ask for permission). Y ou can use the following routine to see what File Manager permissions
you received after you' ve opened afile.

/*
** This function returns the File Manager perm ssions of an open file
** gpecified by refNum Any errors are returned in the function result.
** |f the result is noErr, then permssion will contain fsRdPerm fsRIW Perm
** or fsRIW ShPerm
*/
pascal OSErr Get Perm ssion(short ref Num
short *perm ssi on)

{
CBEr r result;
FCBPBRec f cbPB;
HPar anBl ockRec pb;
Get Vol Par sl nfoBuf fer buffer;
enum
{
f cbFl gWvask = 0x0100, /* wite permssions bit in FCBFl ags */
f cbFl gSMask = 0x1000, /* shared-wite bit in FCBF ags */
vcbW Pr ot Mask = 0x8080, /* hardware and software | ocked bits */
[* in vcbAtrb */
user WiteACAccess = 0x04000000 /* user has wite access to directory */
b
/* Get the access path info fromthe FCB */
fcbPB. i oNanmePtr = NULL;
f cbPB. i oVRef Num = O;
fcbPB.i oRef Num = refNum /* check this access path */
f cbPB. i oFCBI ndx = 0;
result = PBGet FCBI nf oSync(&f cbPB);
if (result == nokErr)
{
/* Now, |ook at i oFCBFl ags to see what the File Manager thinks */
/* it can do with this file */
if ((fcbPB.ioFCBFl ags & fcbFl gSMvask) !'=0)
/* shared bit is set in the FCB */
permssion = fsRAWShPerm / shared bit is set in the FCB */
}
else if ((fcbPB.i oFCBFl ags & fcbF gWask) !'= 0)
/* Wite bit is set in the FCB, but a | ocked vol unme or */
/* a read-only fol der could squelch that idea. */
/* First, see if the volume supports AFP access control. */
pb. i oParam i oNamePtr = NULL;
pb. i oParam i oVRef Num = f cbPB. i oFCBVRef Num
pb.ioParamioBuffer = (Ptr)&uffer;
pb. i oParam i oReqCount = si zeof (buffer);
result = PBHGet Vol Par nsSync(&pb) ;
12 of 14 FL 37 - You Want Permission to do What?!!

Files

Developer Technical Support

September 1994

if ((result == noErr) &&
((buffer.vMAttrib & (1L << bAccessOntl)) !'=0))
{

/* Use GetDirAccess to see if we canreally wite */
pb. accessParam i oNanePtr = NULL;

pb. accessPar am i oVRef Num = f cbPB. i oFCBVRef Num
pb.fileParamiobD rID = fcbPB. i oFCBPar | D

result = PBHGet D r AccessSync(&pb);

if (result == noErr)

if ((pb.accessParami 0ACAccess & userWiteACAccess) !=

/* this user has folder wite access */
*perni ssion = f sSRAW Perm
}

el se

/* this user hasn't folder wite access */
*pernm ssion = fsRdPerm

/* GetVol Parns isn't supported or */
/* the volune doesn't support AFP access control */

/* Check for |ocked volune that will prevent wites */

pb. vol uneParam i oNanePtr = NULL;

pb. vol unePar am i oVRef Num = f cbPB. i oFCBVRef Num

pb. vol unePar am i oVol | ndex = 0; /* use ioVRef Numonly */
result = PBHGet VI nf oSync(&pb) ;

if (result == nokErr)

if ((pb.voluneParamioVAtrb & vcbWProtMask) !'= 0)

/* locked volunme, it can't really wite */
*perni ssion = fsRdPerm
}

el se

/* real wite access */
*pern ssion = fsRAW Perm

}
}
el se

{
/* wite bit wasn't set in FCB */
*perm ssion = fsRdPerm

}

return (result);

0)

FL 37 - You Want Permission to do What?!!

Files

13 of 14

Macintosh Technical Notes

Conclusion

By understanding the information provided in this Technical Note and the routinesin the Apple
Developer Support sample code MoreFiles, you should be able to get the access you require
when you open afile.

Further Reference:
* Insde Macintosh: Files, File Manager
Inside AppleTalk, second edition, AppleTalk Filing Protocol
Technical Note FL 6 - HFS Elucidations
Technical Note FL 26 - Lock, Unlock the Range
MoreFiles sample code

14 of 14 FL 37 - You Want Permission to do What?!!

Files

	The File Manager Permissions
	AppleTalk Filing Protocol Deny-mode Permissions
	Permissions in a File Sharing or AppleShare World
	Foreign permission models
	So, what permissions were actually used to open a file?
	Conclusion

