

4/30/99
© 1999 Apple Computer, Inc.

Carbon Porting Guide

Converting Mac OS 8 Applications to the

Carbon

Programming Interface

Developer Preview Edition

 Apple Computer, Inc. 4/26/99

Apple Computer, Inc.
© 1999 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying, recording,
or otherwise, without prior written
permission of Apple Computer, Inc.,
except to make a backup copy of any
documentation provided on
CD-ROM. Printed in the United
States of America.
The Apple logo is a trademark of
Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop
applications only for Apple-labeled
or Apple-licensed computers.
Every effort has been made to ensure
that the information in this manual is
accurate. Apple is not responsible for
printing or clerical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, AppleScript,
AppleTalk, ColorSync, HyperCard,
LaserWriter, Mac, Macintosh, MPW,
QuickDraw, QuickTime, SANE, and
WorldScript are trademarks of Apple
Computer, Inc., registered in the
United States and other countries.
Balloon Help, Finder, and Sound
Manager are trademarks of Apple
Computer, Inc.

PowerPC is a trademark of
International Business Machines
Corporation, used under license
therefrom.
UNIX is a registered trademark in
the United States and other
countries, licensed exclusively
through X/Open Company, Ltd.

Simultaneously published in the
United States and Canada.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE PURCHASER, ARE
ASSUMING THE ENTIRE RISK AS TO
ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the
possibility of such damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED.
No Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state.

Contents

Chapter 1 Introduction 7

Understanding Carbon 9
The Carbon Advantage 10
An Easy Transition 11

Carbon Today 11
Carbon and the Mac OS Application Model 12

Preemptive Scheduling and Application Threading 12
Separate Application Address Spaces 13
Virtual Memory 13
Code Fragments and the Code Fragment Manager 13
Mixed Mode Manager 13
Printing 13
The Trap Table 14
Standard and Custom Definition Procedures 14
Application-Defined Functions 14
Data Structure Access 14

Chapter 2 Preparing Your Code For Carbon 17

Carbon Dater 19
Analyzing Your Application 19
Reading the Report 20

Analysis of Imports 20
Analysis of Access to Low Memory Addresses 21
Analysis of Resources Loaded into the System Heap 21

Additional Reports 21
Carbon Coding Guidelines 22

Begin With the Current Universal Interfaces 22
Compile Native PowerPC Code 22
Review Your Mixed Mode Calls 22
Avoid Using Low-Memory Globals 23
Do Not Patch Traps 25
iii
Draft. Apple Computer, Inc. 4/30/99

Draw Only Within Your Own Windows 25
Manage Memory Efficiently 25

New Carbon Functions 26
Custom Definition Procedures 27
Functions For Accessing Opaque Data Structures 27

Casting Functions 27
Accessor functions 28
Utility functions 31

Debugging Functions 37
Resource Chain Manipulation Functions 38

Chapter 3 Building Carbon Applications 41

Platform-Specific Considerations 43
Object File Formats: CFM and Mach-O 43
File System Formats: UFS and HFS Plus 43
Native Mac OS 8 vs. Blue Box 45

Implementation Issues 45
Spaces in Filenames on Mac OS X 45
Carbon on Mac OS X 45
PreCarbon.o 46

Development Scenarios 48
Using CodeWarrior to Build a CFM Carbon Application 48
Using CodeWarrior to Build a Mach-O Carbon Application 49
Using Project Builder to Build a Mach-O Carbon Application 49

Building a CFM Carbon Application with CodeWarrior 49
Preparing Your Development Environment 50
Building Your Application 50
Running Your Application on Mac OS 8 51
Running Your Application on Mac OS X 51

Building a Mach-O Carbon Application with CodeWarrior 52
Preparing Your Development Environment 52
Building Your Application 52
Running Your Application on Mac OS X 52

If the application is located on an HFS Plus disk 52
If the application is located on a UFS disk 53

Building a Mach-O Carbon Application with Project Builder 53
iv
Draft. Apple Computer, Inc. 4/30/99

Debugging Your Application 53
v
Draft. Apple Computer, Inc. 4/30/99

vi
Draft. Apple Computer, Inc. 4/30/99

C H A P T E R 1

Contents

Draft.

 Apple Computer, Inc. 4/30/99

Contents

Figure 1-0
Listing 1-0
Table 1-0
1 Introduction
Understanding Carbon 9
The Carbon Advantage 10
An Easy Transition 11

Carbon Today 11
Carbon and the Mac OS Application Model 12

Preemptive Scheduling and Application Threading 12
Separate Application Address Spaces 13
Virtual Memory 13
Code Fragments and the Code Fragment Manager 13
Mixed Mode Manager 13
Printing 13
The Trap Table 14
Standard and Custom Definition Procedures 14
Application-Defined Functions 14
Data Structure Access 14
7

C H A P T E R 1

8 Contents

Draft. Apple Computer, Inc. 4/30/99

C H A P T E R 1

Introduction 1

This Carbon Porting Guide is intended to help experienced Macintosh developers
convert existing Mac OS 8 applications into Carbon applications that can run on
Mac OS X as well as Mac OS 8. This chapter introduces Carbon and provides an
overview of the changes you’ll need to be aware of as you convert your
application.

Understanding Carbon 1

Carbon is the set of programming interfaces you can use to build Mac OS X
applications that can also run on Mac OS 8 (version 8.1 or later). Carbon
includes about 70 percent of the existing Mac OS APIs, covering about 95
percent of the functions used by applications.

Because it includes most of the functions you rely on today, converting to
Carbon is a straightforward process. Apple is providing tools and
documentation to help you determine the changes you’ll need to make in your
source code, as well as the header files and libraries necessary to build a Carbon
application.

Carbon allows you to take advantage of all the great new features in Mac OS X
with a minimum of effort. And you don’t need to maintain separate source code
versions because Carbon supports both the Mac OS 8 and Mac OS X runtime
environments. (As always, you should test for the existence of specific features
before using them.)

Your Carbon applications gain these benefits when running under Mac OS X:

■ Greater stability
Protected address spaces help prevent errant applications from crashing the
system or other applications.

■ Improved responsiveness
Each application is guaranteed processing time through preemptive
multitasking, resulting in a more responsive user experience.

■ Dynamic resource allocation
More efficient use of system resources, including the elimination of fixed size
heaps, means your application can allocate memory and other shared
resources based on actual needs rather than predetermined values.
Understanding Carbon 9
Draft. Apple Computer, Inc. 4/30/99

C H A P T E R 1

Introduction

The Carbon Advantage 1

The Mac OS has proven to be the strongest development platform for building
innovative applications. Thousands of world-class programs have been created
on the Macintosh, and it continues to be the platform of choice for creative
professionals in the design, publishing, education, and new media markets.
Flexible, extensible, and complete, the Mac OS has matured and evolved while
retaining its leading-edge characteristics.

Mac OS X brings important new features and enhancements that developers
have asked for, and Carbon allows you to take advantage of them while
preserving your investment in Mac OS 8 source code. As Apple moves the
Mac OS forward, Carbon ensures you won’t be left behind.

Figure 1-1 The Carbon advantage

Current
application

Carbon
application

Minimal
programming

effort

• Preemptive multitasking
• Memory protection
• Dynamic resource allocation

Mac OS XMac OS 8
10 Understanding Carbon

Draft. Apple Computer, Inc. 4/30/99

C H A P T E R 1

Introduction

An Easy Transition 1

Apple’s goal is to ease your transition to Mac OS X by making as few changes
as possible to the Mac OS API. Carbon accomplishes this goal by providing a
compatible set of interfaces on which to base both existing and future
applications.

Based on feedback from developers, and our own experience porting large
applications, the level of programming effort required for Carbon compatibility
is about the same as was needed for converting 68K applications to PowerPC,
and can usually be accomplished in less than two weeks. Smaller applications
have been ported in just a few days.

Carbon Today 1

Apple continues to make progress implementing Carbon on both Mac OS 8 and
Mac OS X. You can begin developing Carbon applications today using the tools
and libraries included on the Mac OS X Developer Preview CD.

By adopting Carbon now, you’ll be ready to deliver Mac OS X compatibility to
your customers when the new operating system is released. Better still, your
applications will take advantage of all the latest performance, stability, and
interface improvements of both Mac OS 8 and Mac OS X.

As you begin your porting effort, it’s important that you understand where we
are with Carbon today, and where we plan to take Carbon in the future:

■ All new functions added to Mac OS 8 (versions 8.5 and later) will be part of
Carbon, where applicable. Exceptions are functions for hardware drivers and
other APIs that are not required by applications.

■ Core Foundation is a new set of services available to Carbon applications.
Some of the benefits provided by Core Foundation are data and code
sharing, plug-in support, and internationalization support. For complete
details, see “Overview of Core Foundation” (CFOverview.pdf) on the
Developer Preview CD.

■ Carbon does not currently support applications that bypass or control
operating system services. For example, disk utilities that bypass the file
system are not supported. We are investigating how to best address these
needs for Mac OS X.
Carbon Today 11
Draft. Apple Computer, Inc. 4/30/99

C H A P T E R 1

Introduction

■ Control panels are not supported by Carbon at this time. If possible, you
should repackage your control panel as an application.

■ System extensions that install device drivers will not be supported in
Carbon. For other types of system extensions, Apple is considering how best
to support programmatic extensibility in Carbon.

Apple is working hard to deliver the features and performance you expect from
Carbon. We encourage you to keep abreast of current developments by visiting
the Carbon website at http://developer.apple.com/macosx/carbon/, where
you’ll find the complete Carbon Specification, preliminary documentation, and
links to other useful information.

If you have comments or suggestions about Carbon, please send them to
carbon@apple.com.

Carbon and the Mac OS Application Model 1

The Mac OS application model remains fundamentally unchanged in Carbon.
Carbon applications employ system services in essentially the same manner for
both Mac OS 8 and Mac OS X. But because Mac OS 8 and Mac OS X are built on
different architectures, there will be slight differences in the way your
application uses some system services. This section highlights the most
important changes you need to be aware of. Chapter 2, “Preparing Your Code
For Carbon,” provides more detailed information on each of these subjects.

Preemptive Scheduling and Application Threading 1

In Mac OS X, each Carbon application is scheduled preemptively against other
Carbon applications. For calls to most low-level operating system services,
Mac OS X also supports preemptive threading within an application. Because
most Human Interface Toolbox functions are not reentrant, however, a
multithreaded application will initially be able to call these functions only from
cooperatively scheduled threads. Thread-based preemptive access to all system
services—including the Human Interface Toolbox—is an important future
direction for the Mac OS.

In both Mac OS 8 and Mac OS X, you can use the Multiprocessing Services API
to create preemptively scheduled tasks.
12 Carbon and the Mac OS Application Model

Draft. Apple Computer, Inc. 4/30/99

C H A P T E R 1

Introduction

Separate Application Address Spaces 1

In Mac OS X, each Carbon application runs in its own protected address space.
An application can’t reference memory locations—or corrupt another
application’s data—outside of its assigned address space. This separation of
address spaces increases the reliability of the user’s system, but it may require
small programming changes to applications that use zones, system memory, or
temporary memory. For example, temporary memory allocations in Mac OS X
will be allocated in the application’s address space, and Apple will define new
functions for sharing memory between applications. “Manage Memory
Efficiently” (page 25) provides more detailed information about memory
management for Carbon applications.

Virtual Memory 1

Mac OS X uses a dynamic and highly efficient virtual memory system that is
always enabled. Your Carbon application must therefore assume that virtual
memory is turned on at all times. In addition, the Mac OS X virtual memory
system introduces a number of changes to the addressing model that are
discussed in “Manage Memory Efficiently” (page 25).

Code Fragments and the Code Fragment Manager 1

Carbon fully supports the Code Fragment Manager, and the Mac OS X runtime
environment fully supports code compiled into code fragments. For Mac OS X,
however, all code fragments must contain only native PowerPC code.

Mixed Mode Manager 1

For source code compatibility, Carbon supports universal procedure pointers
(UPPs) transparently. Because Mac OS X does not run 68K code, the Mixed
Mode Manager will not provide any useful functionality on that operating
system. However, you may keep Mixed Mode Manager calls in your
application to maintain source code compatibility with Mac OS 8.

Printing 1

Carbon introduces a new Printing Manager that allows applications to print on
Mac OS 8 using current printer drivers and on Mac OS X using new printer
Carbon and the Mac OS Application Model 13
Draft. Apple Computer, Inc. 4/30/99

C H A P T E R 1

Introduction

drivers. The functions and data types defined by the Carbon Printing Manager
are contained in the header file PMApplication.h. Preliminary documentation
for the Carbon Printing Manager is provided on Developer Preview CD.

The Trap Table 1

The trap table is a 68K-specific mechanism for dispatching calls to Mac OS
Toolbox functions. Because Mac OS X does not support 68K code, the Trap
Manager is unavailable in Carbon, and your applications should not dispatch
calls through the trap table. Likewise, the Patch Manager is unsupported in
Carbon, and your application should not attempt to patch the trap table or any
operating system entry points. If your application relies on patches, please tell
us why so that we can help you remove this dependency.

Standard and Custom Definition Procedures 1

Carbon supports the standard Mac OS 8 definition procedures (also known as
defprocs) for such human interface elements as windows, menus, and controls.
Custom definition procedures are also supported (as long as they are compiled
as PowerPC code), but there are new procedures for creating and packaging
them. These new functions are discussed in “Custom Definition Procedures”
(page 27).

Application-Defined Functions 1

Carbon supports most Mac OS application-defined (callback) functions.
Mac OS X will fully support callback functions within an application’s address
space. In Carbon, callback functions use native PowerPC conventions instead of
68K conventions, but Carbon doesn’t change these function definitions.

Data Structure Access 1

So that future versions of Mac OS can support access to all system services
through preemptive threads, Carbon limits direct application access to some
Mac OS data structures. Carbon allows three levels of data structure access,
depending on which is appropriate for a given structure:

■ Direct access—your application can read from and write to the data structure
without restriction.
14 Carbon and the Mac OS Application Model

Draft. Apple Computer, Inc. 4/30/99

C H A P T E R 1

Introduction

■ Direct access with notification—your application can read from and write to
the data structure, but after modifying the structure your application must
call a function to notify the operating system that the structure has been
changed.

■ Indirect access—your application has no direct access to the data structure.
Instead, your application can obtain and set values in the structure only by
using accessor functions. Structures of this type are said to be “opaque”
because their contents are not visible to applications.

Opaque data structures and the functions for using them are discussed in
“Functions For Accessing Opaque Data Structures” (page 27).
Carbon and the Mac OS Application Model 15
Draft. Apple Computer, Inc. 4/30/99

C H A P T E R 1

Introduction

16 Carbon and the Mac OS Application Model

Draft. Apple Computer, Inc. 4/30/99

C H A P T E R 2

Contents

Draft.

 Apple Computer, Inc. 4/30/99

Contents

Figure 2-0
Listing 2-0
Table 2-0
2 Preparing Your Code For Carbon
Carbon Dater 19
Analyzing Your Application 19
Reading the Report 20

Analysis of Imports 20
Analysis of Access to Low Memory Addresses 21
Analysis of Resources Loaded into the System Heap 21

Additional Reports 21
Carbon Coding Guidelines 22

Begin With the Current Universal Interfaces 22
Compile Native PowerPC Code 22
Review Your Mixed Mode Calls 22
Avoid Using Low-Memory Globals 23
Do Not Patch Traps 25
Draw Only Within Your Own Windows 25
Manage Memory Efficiently 25

New Carbon Functions 26
Custom Definition Procedures 27
Functions For Accessing Opaque Data Structures 27

Casting Functions 27
Accessor functions 28
Utility functions 31

Debugging Functions 37
CheckAllHeaps 37
IsHeapValid 37
IsHandleValid 37
IsPointerValid 37

Resource Chain Manipulation Functions 38
17

C H A P T E R 2

InsertResourceFile 38
DetachResourceFile 38
FSpResourceFileAlreadyOpen 39
18 Contents

Draft. Apple Computer, Inc. 4/30/99

C H A P T E R 2

Preparing Your Code For Carbon 2

This chapter describes the kinds of modifications you may need to make to
your source code to create a Carbon application. To make your job easier, we
recommend you begin by using the Carbon Dater tool to analyze the current
compatibility level of your application.

The process of converting a typical large application can usually be
accomplished in less than two weeks, depending on how closely you’ve
followed Apple’s recommended programming practices. The Carbon Dater
report, and the information provided in this chapter, will help you gauge the
extent of your porting effort.

Carbon Dater 2

Apple has developed a tool called Carbon Dater to analyze compiled
applications and libraries for compatibility with Carbon. You can use Carbon
Dater to obtain information about the compatibility of your existing code and
the scope of your future conversion efforts.

Carbon Dater works by examining PEF containers in application binaries and
CFM libraries. It compares the list of Mac OS symbols your code imports
against Apple’s database of Carbon-supported functions.

You’ll find the Carbon Dater tool and complete instructions online at

http://developer.apple.com/macosx/carbon/dater.html

Analyzing Your Application 2

Using Carbon Dater is a two-step process. You begin by dropping your
compiled application or CFM library file onto the Carbon Dater tool. The tool
examines the first PEF container in your file and outputs a text file named
filename.CCT (Carbon Compatibility Test). You can drop more than one file onto
the Carbon Dater tool to get a combined report, but the tool examines only the
first PEF container in each file.

The CCT file contains a list of all the Mac OS functions referenced by your code.
If applicable, it may also include information about your application’s use of
direct access to low memory addresses, or resources stored in the system heap.
Carbon Dater 19
Draft. Apple Computer, Inc. 4/30/99

C H A P T E R 2

Preparing Your Code For Carbon
The second step is to send your CCT file to Apple for analysis. The information
gathered by the Carbon Dater tool is used to create a compatibility report for
your application. Attach the CCT file as an e-mail enclosure (preferably
compressed) and send it to

CarbonDating@apple.com

IMPORTANT

Carbon Dater does not expose any proprietary information
about your product. The CCT file only lists calls to Mac OS
functions and certain other potential compatibility issues.
You can examine the CCT file to verify its contents. ▲

Reading the Report 2

The CCT file you send to Apple will be processed by an automated analysis
tool. The analyzer compares the list of Mac OS functions your code calls against
Apple’s Carbon API database, and returns a report to you via e-mail. This
report is an HTML document that provides a snapshot of your application’s
Carbon compatibility level.

Analysis of Imports 2

For each Mac OS function your code calls that is not fully supported in Carbon,
the compatibility report specifies whether the function is

■ supported but modified in some way from how it is used in previous
versions of the Mac OS

■ supported but not recommended—that is, you can use the function, but it
may not be supported in the future

■ unsupported

■ not found in the Universal Interfaces 3.2

The report includes a chart that shows the percentages of Mac OS functions in
each category. For many functions, the report also describes how to modify
your application. For example, text accompanying an unsupported function
might describe a replacement function or recommended workaround.
20 Carbon Dater

Draft. Apple Computer, Inc. 4/30/99

C H A P T E R 2

Preparing Your Code For Carbon
Analysis of Access to Low Memory Addresses 2

This section of the compatibility report lists instances where your code makes a
direct access to low memory. For information on how to access low memory
correctly, see “Avoid Using Low-Memory Globals” (page 23). If the tested code
was built with symbolic debugging information enabled, the report specifies the
names of the routines that access low memory directly.

Note
Many of the low-memory accessor functions currently
defined in the Universal Interfaces are implemented as
inline macros that insert load or store instructions directly
in your code. Carbon Dater can’t tell the difference between
one of these macros and code you wrote yourself, so you’ll
need to verify that you’re using an approved accessor
function. ◆

Analysis of Resources Loaded into the System Heap 2

This section of the compatibility report lists resources that have their system
heap bit set, indicating they should be stored in the system heap. For each
flagged resource, the report lists the resource type and ID, as well as the
resource name if one is available. Applications do not have access to the system
heap in Mac OS X, so Carbon applications cannot store resources there.

Additional Reports 2

You can obtain additional compatibility reports as often as you wish. This is a
good way to see how much progress you’ve made in your porting effort. Also,
as work on Mac OS X and Carbon continues, there may be changes in the level
of support for some functions, which Carbon Dater may bring to your attention.

IMPORTANT

The Carbon Dating process cannot guarantee that your
application is entirely compatible with Carbon and
Mac OS X, even if your report lists no specific
incompatibilities. For example, applications might access
low memory in a way that is not supported but that cannot
be detected by the compatibility analyzer. ▲
Carbon Dater 21
Draft. Apple Computer, Inc. 4/30/99

C H A P T E R 2

Preparing Your Code For Carbon
Carbon Coding Guidelines 2

This section lists requirements and recommendations for creating
Carbon-compatible code.

Begin With the Current Universal Interfaces 2

Your transition to Carbon will be easier if your application already compiles
using the latest version of the Universal Interfaces (currently at 3.2). Although
updating is not a requirement, doing so will minimize the number of
compatibility problems. Once your project compiles without errors, you should
switch to the Carbon headers provided with this SDK.

You’ll find the most recent Universal Interfaces on Apple’s website at

http://developer.apple.com/sdk/

Compile Native PowerPC Code 2

Because Mac OS X requires 100% native PowerPC code, you will need to
remove any dependencies on 68K instructions. This applies to custom definition
procedures (defprocs) and plug-ins as well as your main application. See
“Custom Definition Procedures” (page 27) for information about new functions
for creating native defprocs.

Review Your Mixed Mode Calls 2

Carbon introduces significant changes to the Mixed Mode Manager. Static
routine descriptors are not supported, and you must use the system-supplied
UPP creation functions (such as NewModalFilterProc) for system callback UPPs.
On Mac OS 8, these functions will allocate routine descriptors in memory just as
you would expect. On Mac OS X they are likely to simply return the target
function’s address. By using the system-supplied UPP creation functions, your
application will operate correctly in both environments. You still need to
dispose of your UPPs using DisposeRoutineDescriptor, so that any allocated
memory can be released when your application is running on Mac OS 8.

Your own plug-ins must be compiled as PowerPC code, so there is no need to
create UPPs for them. Use ProcPtrs instead.
22 Carbon Coding Guidelines

Draft. Apple Computer, Inc. 4/30/99

C H A P T E R 2

Preparing Your Code For Carbon
Avoid Using Low-Memory Globals 2

Low-memory globals are system and application global data located below the
system heap in the classic Mac OS 8.x runtime environment. They typically fall
between the hexadecimal addresses $100 and $2800. Carbon applications can
continue to use many of the existing low-memory globals, although in some
cases the scope and impact of the global has changed. But in all cases, Carbon
applications must use the supplied accessor routines to examine or change
global variables. Attempting to access them directly with an absolute address
will crash your application when running on Mac OS X.

The complete list of low-memory globals supported in Carbon is not yet
finalized, but your transition to Carbon will be easier if you follow these
guidelines:

■ Use high-level calls instead of low-memory accessors whenever possible.
For example, use GetGlobalMouse instead of LMGetMouseLocation.

■ If a high-level call is not available, use an accessor function.

■ Rely on global data only from Mac OS managers supported in Carbon.
For example, because the driver-related calls in the Device Manager are not
supported in Carbon, low-memory accessors like LMGetUTableBase are not
likely to be available. Similarly, direct access to hardware is not supported in
Carbon, so calls like LMGetVIA will no longer be useful.

Table 2-1 lists some frequently used low-memory accessors that are
unsupported in Carbon. Refer to the Carbon Specification for the most recent
information.
Carbon Coding Guidelines 23
Draft. Apple Computer, Inc. 4/30/99

C H A P T E R 2

Preparing Your Code For Carbon
Table 2-1 Summary of Carbon Low Memory Accessor Support

Accessor Replacement

LMGet/SetAuxCtlHead not supported

LMGet/SetAuxWinHead not supported

LMGet/SetCurActivate not supported

LMGet/SetCurDeactive not supported

LMGet/SetDABeeper not supported

LMGet/SetDAStrings GetParamText, ParamText

LMGet/SetDeskPort not supported

LMGet/SetDlgFont not supported

LMGet/SetGhostWindow not supported

LMGetGrayRgn GetGrayRgn

LMGetMBarHeight GetMBarHeight

LMSetMBarHeight not supported

LMGet/SetMBarHook not supported

LMGet/SetMenuHook not supported

LMGetMouseLocation GetGlobalMouse

LMSetMouseLocation not supported

LMGet/SetPaintWhite not supported

LMGetWindowList GetWindowList

LMSetWindowList not supported

LMGet/SetWMgrPort not supported
24 Carbon Coding Guidelines

Draft. Apple Computer, Inc. 4/30/99

C H A P T E R 2

Preparing Your Code For Carbon
Do Not Patch Traps 2

Carbon applications should not patch traps, because there is no trap table in
Mac OS X. The Patch Manager is unsupported, and functions like
GetTrapAddress and SetTrapAddress are not available in Carbon. You can, of
course, conditionalize your code and continue to patch traps when running
under Mac OS 8, but your programs will be much easier to maintain if you
avoid patching entirely.

Draw Only Within Your Own Windows 2

Because Mac OS X is a truly preemptive system, any number of applications
may be drawing into their windows at the same time. Carbon applications,
therefore, cannot draw outside their own windows. In the past you could call
the GetWMgrPort function and use that port to draw anywhere on the screen.
This port does not exist in Mac OS X. If you were using this technique for
custom dragging or zooming feedback, use DragWindow or other Window
Manager or Drag Manager functions instead.

If you draw directly into the bitmap of your windows (without using
QuickDraw), you’ll need to wrap those blits with two new calls that will signal
the Window Manager not to update the screen until your drawing operation
completes. These functions are not yet available.

Manage Memory Efficiently 2

Memory management doesn’t change much for Carbon applications running on
Mac OS 8. You’ll need all the code you use today to handle heap fragmentation,
low memory situations, and stack depth.

However, there are some techniques you can adopt now that will help your
application perform well when running on Mac OS X, which uses an entirely
different heap structure and allocation behavior. The most significant change
you’ll need to make is in determining amounts of free memory and stack space
available.

The functions FreeMem, PurgeMem, MaxMem, and StackSpace are all included in
Carbon. You should, however, think about how and why you are using them.
You’ll probably want to consider additional code to better tune your
performance.
Carbon Coding Guidelines 25
Draft. Apple Computer, Inc. 4/30/99

C H A P T E R 2

Preparing Your Code For Carbon
The FreeMem, PurgeMem, and MaxMem functions behave as expected when your
Carbon application is running on Mac OS 8, but they’re almost meaningless
when it’s running on Mac OS X, where the system provides essentially
unlimited virtual memory. Although you can still use these calls to ensure that
your memory allocations won’t fail, you shouldn’t use them to allocate all
available memory. Allocating too much virtual memory will cause excessive
page faults and reduce system performance. Instead, determine how much
memory you really need for your data, and allocate that amount.

Before Carbon, you would use the StackSpace function to determine how much
space was left before the stack collided with the heap. This routine could not be
called at interrupt time, but was useful for preventing heap corruption in code
using recursion or deep call chains. But because a Carbon application may have
different stack sizes under Mac OS 8 and Mac OS X, the StackSpace function is
no longer very useful. You shouldn’t rely on it for your logic to terminate a
recursive function. It might still be useful as a safety check to prevent heap
corruption; but for terminating runaway recursion, you should consider
passing a counter or the address of a stack local variable instead of calling
StackSpace.

The Carbon API does not include any subzone creation or manipulation
routines. If you use subzones today to track system or plug-in memory
allocations, you’ll need to use a different mechanism. For plug-ins, you might
switch to using your own allocator routines. To prevent memory leaks, make
sure all your allocations are matched with the appropriate dispose calls.

The Carbon API also removes the definition of zone headers. You no longer can
modify the variables in a zone header to change the behavior of routines like
MoreMasters. Simply call MoreMasters multiple times instead, which will allocate
128 master pointers each time.

New Carbon Functions 2

This section provides an overview of some of the new functions introduced in
Carbon. Until complete documentation is available, you should refer to the
header files and sample code on the Developer Preview CD for additional
information.
26 New Carbon Functions

Draft. Apple Computer, Inc. 4/30/99

C H A P T E R 2

Preparing Your Code For Carbon
Custom Definition Procedures 2

Custom defprocs (that is, WDEFs, MDEFs, CDEFs, and LDEFs) must be
compiled as PowerPC code and can no longer be stored in resources. Carbon
introduces new variants of CreateWindow and similar calls (such as NewControl
and NewMenu) that take a universal procedure pointer (UPP) to your custom
defproc. Instead of creating a window definition as a WDEF resource, for
example, you call the Carbon routine CreateCustomWindow:

OSStatus CreateCustomWindow(const WindowDefSpec *def,
WindowClass windowClass, WindowAttributes attributes,
const Rect *bounds, WindowPtr *outWindow);

The WindowDefSpec parameter contains a UPP that points to your custom
window definition procedure.

Functions For Accessing Opaque Data Structures 2

A major change introduced in Carbon is that some commonly used data
structures are now opaque—meaning their internal structure is hidden. Directly
referencing fields within these structures is no longer allowed, and will cause a
compiler error. QuickDraw globals, graphics ports, regions, window and dialog
records, controls, menus, and TSMTE dialogs are all opaque to Carbon
applications. Anywhere you reference fields in these structures directly, you’ll
have to use new casting and accessor functions described in the following
sections.

Casting Functions 2

Many applications assume that WindowPtr and DialogPtr types have a
GrafPort embedded at the top of their structures. In fact, the current Universal
Interfaces define DialogPtrs and WindowPtrs as GrafPtrs so that you don’t have
to cast them to a GrafPtr before using them. For example:

void DrawIntoWindow(WindowPtr window)
{

SetPort(window);
MoveTo(x, y);
LineTo(x + 50, y + 50);

}

New Carbon Functions 27
Draft. Apple Computer, Inc. 4/30/99

C H A P T E R 2

Preparing Your Code For Carbon
If you compile the above code using the Carbon interfaces, you’ll get a number
of compilation errors due to the fact that WindowPtrs are no longer defined as
GrafPtrs. But you can’t simply cast these functions to GrafPtrs because it will
cause your application to crash under Mac OS X.

Instead, Carbon provides a set of casting functions that allow you to obtain a
pointer to a window’s GrafPort or vice versa. Using these new functions, code
like the previous example must be updated as follows to be Carbon-compliant
and compile without errors:

void DrawIntoWindow(WindowPtr window)
{

SetPort(GetWindowPort(window));
MoveTo(x, y);
LineTo(x + 50, y + 50);

}

Casting functions are provided for obtaining GrafPorts from windows,
windows from dialogs, and various other combinations. By convention,
functions that cast up (that is, going from a lower-level data structure like a
GrafPort to a window or going from a window to a dialog pointer) are named
GetHigherLevelTypeFromLowerLevelType. Functions that cast down are named
GetHigherLevelTypeLowerLevelType.

Examples of functions that cast up include:

pascal DialogPtr GetDialogFromWindow(WindowPtr window);
pascal WindowPtr GetWindowFromPort(CGrafPtr port);

Functions that cast down include:

pascal WindowPtr GetDialogWindow(DialogPtr dialog);
pascal CGrafPtr GetWindowPort(WindowPtr window);

Accessor functions 2

Carbon includes a number of functions to allow applications to access fields
within system data structures that are now opaque. Table 2-2 (page 33) provides
a summary of accessor functions you can use for common Mac OS data types.

Listing 2-1 shows an example of some typical coding practices that must be
modified for Carbon.
28 New Carbon Functions

Draft. Apple Computer, Inc. 4/30/99

C H A P T E R 2

Preparing Your Code For Carbon
Listing 2-1 Example of unsupported data structure access

void WalkWindowsAndDoSomething(WindowPtr firstWindow)
{

WindowPtr currentWindow = firstWindow;

while (currentWindow != NULL)
{

if ((WindowPeek) currentWindow->visible)
&& RectIsFourByFour(¤tWindow->portRect))

{
DoSomethingSpecial(currentWindow);

}
currentWindow = (WindowPtr) ((WindowPeek) currentWindow->nextWindow);

}
}

There are four problems in Listing 2-1 that will cause compiler errors when
building a Carbon application.

1. Checking the visible field directly is not allowed because the WindowPeek
type is no longer defined (it’s only useful when you can assume that a
WindowPtr can be cast to a WindowRecord pointer, which is not the case in
Carbon).

2. The currentWindow variable is treated as a GrafPort. You need to use the
casting functions discussed above to access a window’s GrafPort.

3. GrafPorts are now opaque data structures, so you must use an accessor to get
the port’s bounding rectangle.

4. Accessing the nextWindow field directly from the WindowRecord is not
allowed.

To compile and run under Carbon, the code above would have to be changed as
shown in Listing 2-2.
New Carbon Functions 29
Draft. Apple Computer, Inc. 4/30/99

C H A P T E R 2

Preparing Your Code For Carbon
Listing 2-2 Example using Carbon-compatible accessor functions

void WalkWindowsAndDoSomething(WindowPtr firstWindow)
{

WindowPtr currentWindow = firstWindow;

while (currentWindow != NULL)
{

Rect windowBounds;

if (IsWindowVisible(currentWindow)
&& RectIsFourByFour(GetPortBounds(GetWindowPort(currentWindow),

&windowBounds))
{

DoSomethingSpecial(currentWindow);
}
currentWindow = GetNextWindow(currentWindow);

}
}

One thing to note is that the GetPortBounds function returns a pointer to the
input rectangle as a syntactic convenience, to allow you to pass the result of
GetPortBounds directly to another function. Many of the accessor functions
return a pointer to the input in the same way, as a convenience to the caller.

With a few exceptions as noted below, all accessor functions return copies to
data, not the data itself. You must make sure to allocate storage before you
access non-scalar types such as regions and pixel patterns. For example, if you
use code like this to test the visible region of a graphics port:

if (EmptyRgn(somePort->visRgn))
DoSomething();

you’ll have to change it as shown below in order to allow the accessor to copy
the port’s visible region into your reference:
30 New Carbon Functions

Draft. Apple Computer, Inc. 4/30/99

C H A P T E R 2

Preparing Your Code For Carbon
RgnHandle visibleRegion;

visibleRegion = NewRgn();
if (EmptyRgn(GetPortVisibleRegion(somePort, visibleRegion)))

DoSomething();
DisposeRgn(visibleRegion);

A few accessor functions continue to return actual data rather than copied data.
GetPortPixMap, for example, is provided specifically to allow calls to CopyBits,
CopyMask, and similar functions, and should only be used for these calls. The
interface for the CopyBits-type calls will be changing to work around this
exception, but for now be aware that this exception exists. The QuickDraw
bottleneck routines, which are stored in a GrafProc record, continue to operate
just like their classic Mac OS equivalents. That is, the actual pointer to the
structure is returned rather than creating a copy. Other instances where the
actual handle is passed back include cases where user-specified data is carried
in a data structure, such as UserHandles in ListHandles.

Utility functions 2

Carbon includes a number of utility functions to make it easier to port your
application. Under the classic Mac OS API, new GrafPorts were created by
allocating non-relocatable memory the size of a CGrafPort and calling
OpenCPort. Because GrafPorts are now opaque, and their size is system-defined,
Carbon includes new routines to create and dispose of graphics ports:

pascal CGrafPtr CreateNewPort()
pascal void DisposePort(CGrafPtr port)

These functions provide access to commonly used bounding rectangles:

pascal OSStatus GetWindowBounds(WindowRef window,
WindowRegionCode regionCode, Rect *bounds);

pascal OSStatus GetWindowRegion(WindowRef window,
WindowRegionCode regionCode, RgnHandle windowRegion);
New Carbon Functions 31
Draft. Apple Computer, Inc. 4/30/99

C H A P T E R 2

Preparing Your Code For Carbon
Often you’ll find the need to set the current port to the one that belongs to a
window or dialog box. SetPortWindowPort and SetPortDialogPort allow you to
do this:

pascal void SetPortWindowPort(WindowPtr window)
pascal void SetPortDialogPort(DialogPtr dialog)

The new function GetParamText replaces LMGetDAStrings as the method to
retrieve the current ParamText setting. Pass NULL for a parameter if you don’t
want a particular string.

pascal void GetParamText(StringPtr param0, StringPtr param1,
 StringPtr param2, StringPtr param3)
32 New Carbon Functions

Draft. Apple Computer, Inc. 4/30/99

C H A P T E R 2

Preparing Your Code For Carbon
Table 2-2 Summary of Carbon Human Interface Toolbox Accessors

Data Structure Element Accessor

Controls

ControlRecord nextControl Use Control Manager embedding hierarchy
functions. (See Mac OS 8 Control Manager Reference.)

contrlOwner Get/SetControlOwner. May be replaced in favor of
Embed/DetachControl.

contrlRect Get/SetControlBounds

contrlVis IsControlVisible, SetControlVisibility

contrlHilite GetControlHilite, HiliteControl

contrlValue Get/SetControlValue, Get/SetControl32BitValue

contrlMin Get/SetControlMinimum, Get/SetControl32BitMinimum

contrlMax Get/SetControlMaximum, Get/SetControl32BitMaximum

contrlDefProc not supported

contrlData Get/SetControlDataHandle

contrlAction Get/SetControlAction

contrlRfCon Get/SetControlReference

contrlTitle Get/SetControlTitle

AuxCtlRec acNext not supported

acOwner not supported

acCTable not supported

acFlags not supported

acReserved not supported

acRefCon Use Get/SetControlProperty if you need more
refCons.

PopupPrivateData mHandle Use Get/SetControlData with proper tags.

mID Use Get/SetControlData with proper tags.
New Carbon Functions 33
Draft. Apple Computer, Inc. 4/30/99

C H A P T E R 2

Preparing Your Code For Carbon
Dialog Boxes

DialogRecord window Use GetDialogWindow to obtain the value. There is no
equivalent function for setting the value.

items AppendDITL, ShortenDITL, AppendDialogItemList,
InsertCheckBoxDialogItem,
InsertControlDialogItem,
InsertEditTextDialogItem,
InsertIconDialogItem,
InsertPictureDialogItem,
InsertPushButtonDialogItem,
InsertRadioButtonDialogItem,
InsertStaticTextDialogItem,
InsertUserDialogItem,
RemoveDialogItem, SetDialogItem

textH GetDialogTextEditHandle

editField GetDialogKeyboardFocusItem

editOpen Get/SetDialogCancelItem

aDefItem Get/SetDialogDefaultItem

Menus

MenuInfo menuID Get/SetMenuID

menuWidth Get/SetMenuWidth

menuHeight Get/SetMenuHeight

menuProc not supported

enableFlags Enable/DisableMenuItem, IsMenuItemEnabled

menuData Get/SetMenuTitle

Windows

WindowRecord
CWindowRecord

port Use GetWindowPort to obtain the value. There is no
equivalent function for setting the value.

windowKind Get/SetWindowKind

visible Hide/ShowWindow, ShowHide, IsWindowVisible

Table 2-2 Summary of Carbon Human Interface Toolbox Accessors (continued)

Data Structure Element Accessor
34 New Carbon Functions

Draft. Apple Computer, Inc. 4/30/99

C H A P T E R 2

Preparing Your Code For Carbon
hilited HiliteWindow, IsWindowHilited

goAwayFlag ChangeWindowAttributes

spareFlag ChangeWindowAttributes

strucRgn GetWindowRegion

contRgn GetWindowRegion

updateRgn GetWindowRegion

windowDefProc not supported

dataHandle not supported

titleHandle Get/SetWTitle

titleWidth GetWindowRegion

controlList GetRootControl

nextWindow GetNextWindow

windowPic Get/SetWindowPic

refCon Get/SetWRefCon

AuxWinRec awNext not supported

awOwner not supported

awCTable Get/SetWindowContentColor

reserved not supported

awFlags not supported

awReserved not supported

awRefCon Use Get/SetWindowProperty if you need more refCons.

Table 2-2 Summary of Carbon Human Interface Toolbox Accessors (continued)

Data Structure Element Accessor
New Carbon Functions 35
Draft. Apple Computer, Inc. 4/30/99

C H A P T E R 2

Preparing Your Code For Carbon
Lists

ListRec rView Get/SetListViewBounds

port Get/SetListPort

indent Get/SetListCellIndent

cellSize Get/SetListCellSize

visible Use GetListVisibileCells to obtain the value.
No equivalent function for setting the value.

vScroll GetListVerticalScrollBar, use new API (TBD) to turn
off automatic scroll bar drawing.

hScroll GetListHorizontalScrollBar, use new API (TBD) to
turn off automatic scroll bar drawing.

selFlags Get/SetListSelectionFlags

lActive LActivate, GetListActive

lReserved not supported

listFlags Get/SetListFlags

clikTime Get/SetListClickTime

clikLoc GetListClickLocation

mouseLoc GetListMouseLocation

lClickLoop Get/SetListClickLoop

lastClick SetListLastClick

refCon Get/SetListRefCon

listDefProc not supported

userHandle Get/SetListUserHandle

dataBounds GetListDataBounds

cells LGet/SetCell

maxIndex LGet/SetCell

cellArray LGet/SetCell

Table 2-2 Summary of Carbon Human Interface Toolbox Accessors (continued)

Data Structure Element Accessor
36 New Carbon Functions

Draft. Apple Computer, Inc. 4/30/99

C H A P T E R 2

Preparing Your Code For Carbon
Debugging Functions 2

The following functions have been added to MacMemory.h to aid in debugging.

CheckAllHeaps 2

pascal Boolean CheckAllHeaps(void);

Checks all applicable heaps for validity. Returns false if there is any corruption.

IsHeapValid 2

pascal Boolean IsHeapValid(void);

Similar to CheckAllHeaps, but checks only the application heap for validity.

IsHandleValid 2

pascal Boolean IsHandleValid(Handle h);

Returns true if the specified handle is valid. It is invalid to pass NULL or an
empty handle to IsHandleValid.

IsPointerValid 2

pascal Boolean IsPointerValid(Ptr p);

Returns true if the specified pointer is valid. It is invalid to pass NULL or an
empty pointer to IsPointerValid.
New Carbon Functions 37
Draft. Apple Computer, Inc. 4/30/99

C H A P T E R 2

Preparing Your Code For Carbon
Resource Chain Manipulation Functions 2

Three functions have been added to Resources.h to facilitate resource chain
manipulation in Carbon applications.

InsertResourceFile 2

OSErr InsertResourceFile(SInt16 refNum, RsrcChainLocation where);

If the file is already in the resource chain, it is removed and re-inserted at the
location specified by the where parameter. If the file has been detached, it is
added to the resource chain at the specified location. Returns resFNotFound if the
file is not currently open. Valid constants for the where parameter are:

// RsrcChainLocation constants for InsertResourceFile
enum short
{

kRsrcChainBelowAll = 0, /* Below all other app files in
the resource chain */

kRsrcChainBelowApplicationMap = 1, /* Below the application's
resource map */

kRsrcChainAboveApplicationMap = 2 /* Above the application's
resource map */

};

DetachResourceFile 2

OSErr DetachResourceFile(SInt16 refNum);

If the file is not currently in the resource chain, this function returns
resNotFound. Otherwise, the resource file is removed from the resource chain.
38 New Carbon Functions

Draft. Apple Computer, Inc. 4/30/99

C H A P T E R 2

Preparing Your Code For Carbon
FSpResourceFileAlreadyOpen 2

Boolean FSpResourceFileAlreadyOpen
(const FSSpec *resourceFile,
 Boolean *inChain, SInt16 *refNum);

This function returns true if the resource file is already open and known by the
Resource Manager (that is, if the file is either in the current resource chain or if
it’s a detached resource file). If the file is in the resource chain, the inChain
parameter is set to true on exit and the function returns true. If the file is open
but currently detached, inChain is set to false and the function returns true. If
the file is open, the refNum to the file is returned.
New Carbon Functions 39
Draft. Apple Computer, Inc. 4/30/99

C H A P T E R 2

Preparing Your Code For Carbon
40 New Carbon Functions

Draft. Apple Computer, Inc. 4/30/99

C H A P T E R 3

Contents

Draft. Apple Computer, Inc. 4/30/99

Contents
Figure 3-0
Listing 3-0
Table 3-0
3 Building Carbon Applications
Platform-Specific Considerations 43
Object File Formats: CFM and Mach-O 43
File System Formats: UFS and HFS Plus 43
Native Mac OS 8 vs. Blue Box 45

Implementation Issues 45
Spaces in Filenames on Mac OS X 45
Carbon on Mac OS X 45
PreCarbon.o 46

Development Scenarios 48
Using CodeWarrior to Build a CFM Carbon Application 48
Using CodeWarrior to Build a Mach-O Carbon Application 49
Using Project Builder to Build a Mach-O Carbon Application 49

Building a CFM Carbon Application with CodeWarrior 49
Preparing Your Development Environment 50
Building Your Application 50
Running Your Application on Mac OS 8 51
Running Your Application on Mac OS X 51

Building a Mach-O Carbon Application with CodeWarrior 52
Preparing Your Development Environment 52
Building Your Application 52
Running Your Application on Mac OS X 52

If the application is located on an HFS Plus disk 52
If the application is located on a UFS disk 53

Building a Mach-O Carbon Application with Project Builder 53
Debugging Your Application 53
41

C H A P T E R 3
42 Contents

Draft. Apple Computer, Inc. 4/30/99

C H A P T E R 3
Building Carbon Applications 3

This chapter describes how to use the tools and libraries provided with
the Mac OS X Developer Preview CD to build Carbon applications for both
Mac OS 8 (version 8.1 or later) and Mac OS X.

Platform-Specific Considerations 3

This section discusses some key differences between Mac OS 8 and Mac OS X,
and how they may affect your choice of development environments.

Object File Formats: CFM and Mach-O 3

On Mac OS 8, Carbon applications use the CFM runtime architecture, in which
code fragments are stored in PEF containers and managed by the Code
Fragment Manager.

While Mac OS X supports the Code Fragment Manager and the CFM runtime
architecture for Carbon applications, it also supports the Mach object file
format, known as Mach-O.

For Carbon applications that run on Mac OS 8, you must use the CFM object file
format. On Mac OS X, however, you may choose to create a Mach-O executable.

Besides being more familiar to Mac OS 8 developers, an advantage of CFM is
that a single executable file will run on both Mac OS 8 and Mac OS X. CFM also
provides support for existing plug-in architectures.

The primary advantage of Mach-O for Carbon developers is that it is currently
the best format for debugging your application on Mac OS X. Project Builder,
Apple’s integrated development environment for Mac OS X, supports symbolic
debugging of Mach-O executables using the GDB debugger.

Metrowerks is preparing a two-machine debugger for Mac OS X that may
provide another option for Carbon developers. Contact Metrowerks for more
information.

File System Formats: UFS and HFS Plus 3

Mac OS X currently uses the UFS volume format for the disk or partition
containing its system files. Because Mac OS 8 systems (including the Blue Box)
Platform-Specific Considerations 43
Draft. Apple Computer, Inc. 4/30/99

C H A P T E R 3

Building Carbon Applications
cannot directly access UFS disks, you’ll probably find it more convenient to do
your Carbon development and testing on an HFS Plus disk.

You can use the Workspace Manager on Mac OS X to transfer files between UFS
and HFS Plus disks, or you can transfer files over a network. However, if you
move an application from an HFS Plus disk to a UFS disk, the file’s resource
fork and Finder information will not be copied, because UFS does not provide
built-in support for these features.

To support development and testing of Carbon applications on UFS disks,
Apple has defined a directory structure and naming conventions for the files
that contain an application’s resources and Finder information. This standard,
which is depicted in Figure 3-1, requires that you create a directory with the
same name as your application but ending with three periods (...). Inside this
directory you must have a file named .Finfo that contains the Finder
information, and optionally a file named .Rsrc containing your application’s
resources.

Figure 3-1 Folder hierarchy for resources and Finder info on UFS disks

The “UFS Converter” tool, provided on the Developer Preview CD, is a
drag-and-drop application that you can use to create a resource folder and files
for your application. You can then transfer the application and its resource
folder to a UFS disk and launch your program.
44 Platform-Specific Considerations

Draft. Apple Computer, Inc. 4/30/99

C H A P T E R 3

Building Carbon Applications
Native Mac OS 8 vs. Blue Box 3

If you plan to build, run, and debug Carbon applications for both Mac OS 8 and
Mac OS X on a single system, the Blue Box provides a convenient environment
for running your development system. You can easily switch between the two
environments, and launch Carbon applications in either.

For performance reasons, however, you may prefer to develop on a native
Mac OS 8 system (that is, a computer running Mac OS 8 instead of Mac OS X),
as your development tools are likely to run somewhat slower in the Blue Box.
In this case you’ll need to reboot to run Mac OS X and test your Carbon
application in that environment.

If you have two computers, you might want to run Mac OS 8 on one computer
and Mac OS X on the other. You can connect the two computers using Ethernet,
and transfer files between them using FTP.

Implementation Issues 3

This section contains important information about the Mac OS X Developer
Preview release. These issues will be resolved in upcoming releases.

Spaces in Filenames on Mac OS X 3

On Mac OS X you cannot currently launch an application located on an HFS
Plus disk if the filename or pathname contains any spaces. If you plan to build
or run your application on Mac OS X, you should remove any spaces from the
name of the HFS Plus disk and the folders containing your project.

Carbon on Mac OS X 3

There is currently a disparity between the number of Carbon functions
implemented on Mac OS 8 and Mac OS X. Because Mac OS X does not yet
include support for all the Carbon functions provided in CarbonLib on
Mac OS 8, Apple is providing a stub library, LiteCarbonLib, that exports only
the entry points currently supported on Mac OS X. If you develop on Mac OS 8,
you can link against LiteCarbonLib to ensure that your application doesn’t call
any functions that aren’t yet supported on Mac OS X.
Implementation Issues 45
Draft. Apple Computer, Inc. 4/30/99

C H A P T E R 3

Building Carbon Applications
PreCarbon.o 3

The object file PreCarbon.o is provided for developers who have ported their
code to Carbon but also want to create a version of their application that does
not require the CarbonLib shared library at runtime. You will need to
conditionalize some of your sources (for example, you’ll need to initialize
Human Interface Toolbox managers when building a pre-Carbon version, and
you’ll have to package your defprocs as resources instead of using the new
custom definition creation functions), but PreCarbon.o will make the job of
back-porting easier.

If you are building a Carbon application you should not use PreCarbon.o.
Instead, you should link to the CarbonLib shared library. PreCarbon.o does not
include all the functions in CarbonLib, and Apple will not be actively supporting
or encouraging developers to use PreCarbon.o. Table 3-1 lists the Carbon
functions implemented in PreCarbon.o.

Table 3-1 Functions in PreCarbon.o

AEGetDescData AEGetDescDataSize

CreateNewPort DisableMenuItem

DisposePort EnableMenuItem

GetControlBounds GetControlColorTable

GetControlDataHandle GetControlDefinition

GetControlHilite GetControlOwner

GetControlPopupMenuHandle GetControlPopupMenuID

GetDialogCancelItem GetDialogDefaultItem

GetDialogFromWindow GetDialogKeyboardFocusItem

GetDialogPort GetDialogTextEditHandle

GetDialogWindow GetGlobalMouse

GetListActive GetListCellIndent

GetListCellSize GetListClickLocation

GetListClickLoop GetListClickTime

GetListDataBounds GetListDataHandle

GetListDefinition GetListFlags

GetListHorizontalScrollBar GetListMouseLocation

GetListPort GetListRefCon

GetListSelectionFlags GetListUserHandle

GetListVerticalScrollBar GetListViewBounds

GetListVisibleCells GetMenuHeight

GetMenuID GetMenuTitle
46 Implementation Issues

Draft. Apple Computer, Inc. 4/30/99

C H A P T E R 3

Building Carbon Applications
GetMenuWidth GetParamText

GetPixBounds GetPixDepth

GetPortBackColor GetPortBackPixPat

GetPortBackPixPatDirect GetPortBounds

GetPortChExtra GetPortClipRegion

GetPortFillPixPat GetPortForeColor

GetPortFracHPenLocation GetPortGrafProcs

GetPortHiliteColor GetPortOpColor

GetPortPenLocation GetPortPenMode

GetPortPenPixPat GetPortPenPixPatDirect

GetPortPenSize GetPortPenVisibility

GetPortPixMap GetPortPrintingReference

GetPortSpExtra GetPortTextFace

GetPortTextFont GetPortTextMode

GetPortTextSize GetPortVisibleRegion

GetQDGlobals GetQDGlobalsArrow

GetQDGlobalsBlack GetQDGlobalsDarkGray

GetQDGlobalsGray GetQDGlobalsLightGray

GetQDGlobalsRandomSeed GetQDGlobalsScreenBits

GetQDGlobalsThePort GetQDGlobalsWhite

GetRegionBounds GetTSMDialogDocumentID

GetTSMDialogPtr GetTSMDialogTextEditHandle

GetWindowFromPort GetWindowGoAwayFlag

GetWindowKind GetWindowPort

GetWindowPortBounds GetWindowSpareFlag

GetWindowStandardState GetWindowUserState

InvalWindowRect InvalWindowRgn

IsControlHilited IsPortOffscreen

IsPortPictureBeingDefined IsPortRegionBeingDefined

IsRegionRectangular IsWindowHilited

IsWindowUpdatePending IsWindowVisible

SetControlBounds SetControlColorTable

SetControlDataHandle SetControlOwner

SetControlPopupMenuHandle SetControlPopupMenuID

SetListCellIndent SetListClickLoop

SetListClickTime SetListFlags

Table 3-1 Functions in PreCarbon.o (continued)
Implementation Issues 47
Draft. Apple Computer, Inc. 4/30/99

C H A P T E R 3

Building Carbon Applications
Development Scenarios 3

There are a number of tools and processes you can use to build and debug
Carbon applications. This section describes three scenarios that Apple
recommends, and the advantages of each.

Using CodeWarrior to Build a CFM Carbon Application 3

This is the most likely scenario if you’re porting an existing Mac OS 8
application to Carbon, especially if you’re already using CodeWarrior. You’ll
continue to use the Mac OS development tools and processes you’re familiar
with, and you’ll create CFM applications that can run on both Mac OS 8 and
Mac OS X. The only difference is that you’ll include the CarbonLib shared library
in your CodeWarrior project.

SetListLastClick SetListPort

SetListRefCon SetListSelectionFlags

SetListUserHandle SetListViewBounds

SetMenuHeight SetMenuID

SetMenuTitle SetMenuWidth

SetPortBackPixPat SetPortBackPixPatDirect

SetPortBounds SetPortClipRegion

SetPortDialogPort SetPortFracHPenLocation

SetPortGrafProcs SetPortOpColor

SetPortPenMode SetPortPenPixPat

SetPortPenPixPatDirect SetPortPenSize

SetPortPrintingReference SetPortVisibleRegion

SetPortWindowPort SetQDGlobalsArrow

SetQDGlobalsRandomSeed SetTSMDialogDocumentID

SetTSMDialogTextEditHandle SetWindowKind

SetWindowStandardState SetWindowUserState

ValidWindowRect ValidWindowRgn

Table 3-1 Functions in PreCarbon.o (continued)
48 Development Scenarios

Draft. Apple Computer, Inc. 4/30/99

C H A P T E R 3

Building Carbon Applications
Using CodeWarrior to Build a Mach-O Carbon Application 3

Metrowerks has developed a cross-compiler that you can use to build Mach-O
applications with CodeWarrior on Mac OS 8. You may want to create a
Mach-O version of your application in order to debug it on Mac OS X using
Project Builder. However, if you have a second computer you may want to
investigate whether Metrowerks’ two-machine debugger better suits your
needs, as it can debug CFM applications on both platforms. Contact
Metrowerks for information about these products.

Using Project Builder to Build a Mach-O Carbon Application 3

Project Builder is Apple’s integrated development environment for Mac OS X. It
offers a comprehensive feature set that includes source-level debugging. Project
Builder is a good choice if your application will run only on Mac OS X, and you
want to take advantage of features available only on that platform. However,
you can’t use Project Builder to build a CFM application, so if you want your
program to run on both platforms you’ll need to use CodeWarrior or other tools
to create a CFM version for Mac OS 8.

Instructions for getting started with Project Builder are provided separately in
“Using Project Builder to Build and Debug a Carbon Application”
(MacOSXDevTools.pdf) on the Developer Preview CD.

Building a CFM Carbon Application with CodeWarrior 3

If you plan to use Metrowerks CodeWarrior, we recommend CodeWarrior Pro
version 4.0 or later. The Carbon project stationary provided on the Developer
Preview CD requires CodeWarrior Pro 4.0, but if you want to use an earlier
version of CodeWarrior you can use the BasicApp sample project, which builds
with CodeWarrior Pro 2.0 or later, as a starting point for your project.

You can run CodeWarrior on either a native Mac OS 8 system or in the Blue Box
on Mac OS X. You must install CodeWarrior on a disk or partition that uses the
HFS Plus volume format (“Mac OS Extended”) if you plan to run CodeWarrior
in the Blue Box.
Building a CFM Carbon Application with CodeWarrior 49
Draft. Apple Computer, Inc. 4/30/99

C H A P T E R 3

Building Carbon Applications
Preparing Your Development Environment 3

Before you start Carbon development with CodeWarrior, you’ll need to install
the tools and libraries provided with the Developer Preview CD.

1. Copy the Carbon Support folder from the Developer Preview CD to the
CodeWarrior Pro 4:Metrowerks CodeWarrior folder on your hard disk. The
Carbon Support folder must reside in the same folder as the CodeWarrior IDE
application.

2. Copy the Carbon project stationary folder from the Developer Preview CD to
your Metrowerks CodeWarrior:(Project Stationery) folder.

3. Copy the appropriate shared libraries from your CodeWarrior Pro 4:
Metrowerks CodeWarrior:Carbon Support:CarbonLib folder to your Extensions
folder. Note that you may want to keep only one type of Carbon library in
your Extensions folder at any time to ensure that the Code Fragment
Manager selects the correct library at runtime.

■ CarbonLib is the standard implementation of Carbon for Mac OS 8.1 or
later.

■ DebuggingCarbonLib is a debugging version of CarbonLib.

Building Your Application 3

To build a Carbon version of your application:

1. Open your project in CodeWarrior and add the following statement to one of
your source files before including any of the Carbon headers:

#define TARGET_CARBON 1

The TARGET_CARBON conditional specifies that the included header files should
allow only Carbon-compatible APIs and data structures. You can include this
conditional in a prefix file if you wish.
50 Building a CFM Carbon Application with CodeWarrior

Draft. Apple Computer, Inc. 4/30/99

C H A P T E R 3

Building Carbon Applications
Note
Moving a project from CodeWarrior Pro 4.0 to earlier
CodeWarrior versions will result in the loss of prefix file
information in the C/C++ Language Preferences panel.
Many of the code samples on the Developer Preview CD
make use of a prefix file (usually CarbonPrefix.h) to define
TARGET_CARBON, so if you try to build a sample on an older
CodeWarrior system, you may need to reinstate the prefix
file information. ◆

2. Add the CarbonLib library to your project.

3. Press the Make button.

Running Your Application on Mac OS 8 3

To launch your application from the Finder on a Mac OS 8 system (version 8.1
or later), you must install the CarbonLib or DebugCarbonLib shared library in the
System Folder or in the same folder as your application.

Running Your Application on Mac OS X 3

As long as your application resides on an HFS Plus disk, you can launch it from
the Mac OS X Workspace Manager by double-clicking its icon. If you move your
application to a UFS disk, you’ll need to create a resource directory as described
in “File System Formats: UFS and HFS Plus” (page 43). You cannot launch
applications from a standard HFS format disk on Mac OS X.

IMPORTANT

In the Developer Preview release of Mac OS X you cannot
execute a file on an HFS Plus disk if the filename or
pathname contains any spaces. Make sure that your HFS
Plus volume name and your project folder names do not
contain spaces. ▲

You can also use the command-line tool “LaunchCFMApp” to launch CFM
applications from a terminal window in Mac OS X. If the CFM application is in
the current working directory, the command is:

/usr/Carbon/bin/LaunchCFMApp filename
Building a CFM Carbon Application with CodeWarrior 51
Draft. Apple Computer, Inc. 4/30/99

C H A P T E R 3

Building Carbon Applications
If the application is in a different directory, you must specify the path.

Building a Mach-O Carbon Application with CodeWarrior 3

Before building a Mach-O version of your application with CodeWarrior, you
should follow the instructions in the previous section for building a CFM
Carbon application. After you’ve successfully built and tested a CFM version of
your application on Mac OS 8, you can use CodeWarrior to build a Mach-O
version for debugging on Mac OS X.

Preparing Your Development Environment 3

To build a Mach-O application with CodeWarrior, you’ll need to install the
Mach-O cross-compiler tools available from Metrowerks.

Building Your Application 3

Refer to your Metrowerks CodeWarrior documentation for instructions on
using the Mach-O cross-compiler.

Running Your Application on Mac OS X 3

If the application is located on an HFS Plus disk 3

CodeWarrior creates an executable Mach-O binary that includes a resource fork.
As long as this file resides on an HFS Plus disk, the resource fork remains intact
and you can launch the application from the Workspace Manger by
double-clicking on the application icon.

IMPORTANT

In the Developer Preview release of Mac OS X you cannot
execute a file on an HFS Plus disk if the filename or
pathname contains any spaces. Make sure that your HFS
Plus volume name and your project folder names do not
contain spaces. ▲
52 Building a Mach-O Carbon Application with CodeWarrior

Draft. Apple Computer, Inc. 4/30/99

C H A P T E R 3

Building Carbon Applications
If the application is located on a UFS disk 3

If you move your application to a UFS disk, you’ll need to create a resource
directory as described in “File System Formats: UFS and HFS Plus” (page 43).
You can then transfer the application file and resource directory to a UFS disk
using FTP, or by copying the file in the Workspace Manager if both disks are on
the same computer.

You can launch your application from the Workspace Manager by
double-clicking its icon, or from a terminal window by typing the application’s
name (including pathname if the file is not in the current directory).

If the file does not launch using either of these methods, make sure that the
executable permissions are set properly. With the file selected in the Workspace
Manager, type Command-4 or choose Tools>Inspector>Access from the menu.
Place checkmarks in each of the Execute boxes if they are not already checked.
Click OK and close the Inspector window.

Building a Mach-O Carbon Application with Project Builder 3

Project Builder and its documentation are included on the Mac OS X Developer
Preview CD. Instructions for building Carbon applications with Project Builder are
provided in “Using Project Builder to Build and Debug a Carbon Application”
(MacOSXDevTools.pdf).

Debugging Your Application 3

You can debug Carbon applications on Mac OS 8 using the Metrowerks
debugger. You can also use this debugger with two networked machines, one
running Mac OS 8 and the other running Mac OS X. Contact Metrowerks for
more information.

You can also debug Carbon applications on Mac OS X using GDB, which you
can run from a terminal window or the Project Builder development
environment. However, GDB provides only limited support for CFM
applications at this time. The techniques for debugging Carbon applications
with GDB are described in “Using Project Builder to Build and Debug a Carbon
Application” (MacOSXDevTools.pdf) on the Developer Preview CD.
Building a Mach-O Carbon Application with Project Builder 53
Draft. Apple Computer, Inc. 4/30/99

C H A P T E R 3

Building Carbon Applications
54 Debugging Your Application

Draft. Apple Computer, Inc. 4/30/99

	Introduction
	Understanding Carbon
	The Carbon Advantage
	Figure�1-1 The Carbon advantage

	An Easy Transition

	Carbon Today
	Carbon and the Mac OS Application Model
	Preemptive Scheduling and Application Threading
	Separate Application Address Spaces
	Virtual Memory
	Code Fragments and the Code Fragment Manager
	Mixed Mode Manager
	Printing
	The Trap Table
	Standard and Custom Definition Procedures
	Application-Defined Functions
	Data Structure Access

	Preparing Your Code For Carbon
	Carbon Dater
	Analyzing Your Application
	Reading the Report
	Analysis of Imports
	Analysis of Access to Low Memory Addresses
	Analysis of Resources Loaded into the System Heap

	Additional Reports

	Carbon Coding Guidelines
	Begin With the Current Universal Interfaces
	Compile Native PowerPC Code
	Review Your Mixed Mode Calls
	Avoid Using Low-Memory Globals
	Table 2-1 Summary of Carbon Low Memory Accessor Support�

	Do Not Patch Traps
	Draw Only Within Your Own Windows
	Manage Memory Efficiently

	New Carbon Functions
	Custom Definition Procedures
	Functions For Accessing Opaque Data Structures
	Casting Functions
	Accessor functions
	Listing�2-1 Example of unsupported data structure access
	1. Checking the visible field directly is not allowed because the WindowPeek type is no longer de...
	2. The currentWindow variable is treated as a GrafPort. You need to use the casting functions dis...
	3. GrafPorts are now opaque data structures, so you must use an accessor to get the port’s boundi...
	4. Accessing the nextWindow field directly from the WindowRecord is not allowed.
	Listing�2-2 Example using Carbon-compatible accessor functions

	Utility functions
	Table�2-2 Summary of Carbon Human Interface Toolbox Accessors (continued)

	Debugging Functions
	CheckAllHeaps
	IsHeapValid
	IsHandleValid
	IsPointerValid

	Resource Chain Manipulation Functions
	InsertResourceFile
	DetachResourceFile
	FSpResourceFileAlreadyOpen

	Building Carbon Applications
	Platform-Specific Considerations
	Object File Formats: CFM and Mach-O
	File System Formats: UFS and HFS Plus
	Figure�3-1 Folder hierarchy for resources and Finder info on UFS disks

	Native Mac OS 8 vs. Blue Box

	Implementation Issues
	Spaces in Filenames on Mac OS X
	Carbon on Mac OS X
	PreCarbon.o
	Table 3-1 Functions in PreCarbon.o (continued)

	Development Scenarios
	Using CodeWarrior to Build a CFM Carbon Application
	Using CodeWarrior to Build a Mach-O Carbon Application
	Using Project Builder to Build a Mach-O Carbon Application

	Building a CFM Carbon Application with CodeWarrior
	Preparing Your Development Environment
	1. Copy the Carbon Support folder from the Developer Preview CD to the CodeWarrior Pro�4:Metrower...
	2. Copy the Carbon project stationary folder from the Developer Preview CD to your Metrowerks�Cod...
	3. Copy the appropriate shared libraries from your CodeWarrior Pro 4: Metrowerks CodeWarrior:Carb...

	Building Your Application
	1. Open your project in CodeWarrior and add the following statement to one of your source files b...
	2. Add the CarbonLib library to your project.
	3. Press the Make button.

	Running Your Application on Mac OS 8
	Running Your Application on Mac OS X

	Building a Mach-O Carbon Application with CodeWarrior
	Preparing Your Development Environment
	Building Your Application
	Running Your Application on Mac OS X
	If the application is located on an HFS Plus disk
	If the application is located on a UFS disk

	Building a Mach-O Carbon Application with Project Builder
	Debugging Your Application

