
Apple Shared Library Manager
Developer’s Guide

Apple Computer, Inc.
This manual and the software described in it are
copyrighted, with all rights reserved. Under the
copyright laws, this manual or the software may not be
copied, in whole or part, without written consent of
Apple, except in the normal use of the software or to
make a backup copy of the software. The same
proprietary and copyright notices must be affixed to
any permitted copies as were affixed to the original.
This exception does not allow copies to be made for
others, whether or not sold, but all of the material
purchased (with all backup copies) may be sold, given,
or loaned to another person. Under the law, copying
includes translating into another language or format.

You may use the software on any computer owned by
you, but extra copies cannot be made for this purpose.

The Apple logo is a registered trademark of Apple
Computer, Inc. Use of the “keyboard” Apple logo
(Option-Shift-k) for commercial purposes without the
prior written consent of Apple may constitute
trademark infringement and unfair competition in
violation of federal and state laws.

Every effort has been made to ensure that the
information in this manual is accurate. Apple is not
responsible for printing or clerical errors.

© Apple Computer, Inc., 1993
20525 Mariani Avenue
Cupertino, CA 95014-6299
(408) 996-1010

Apple, the Apple logo, APDA, AppleLink, AppleTalk,
A/UX, LaserWriter, and Macintosh are trademarks of
Apple Computer, Inc., registered in the United States
and other countries.

Finder is a trademark of Apple Computer, Inc.

Adobe, Adobe Illustrator, and PostScript are trademarks
of Adobe Systems Incorporated, which may be
registered in certain jurisdictions.

Helvetica, Linotronic, and Times are registered
trademarks of Linotype Company.

Microsoft and MS-DOS are registered trademarks of
Microsoft Corporation.

NuBus is a trademark of Texas Instruments.

OS/2 is a registered trademark of International Business
Machines Corporation.

Windows is a registered trademark of UNIX System
Laboratories, Inc.

Simultaneously published in the United States and
Canada.

Mention of third-party products is for informational
purposes only and constitutes neither an endorsement
nor a recommendation. Apple assumes no
responsibility with regard to the performance or use of
these products.

Contents

Preface: About This Guide / xi

Part I Overview and Installation

1 Introduction to Shared Libraries / 1-1

Shared libraries / 1-1

Dynamic versus static linking / 1-2

Using shared libraries with object-oriented programs / 1-4

Updating code in shared libraries / 1-5

Modifying code in shared libraries / 1-6

2 Introducing the ASLM / 2-1

What the ASLM can do for you / 2-1

Some important terms and concepts / 2-3

Features of the ASLM / 2-5

3 ASLM Installation / 3-1

Installing the ASLM / 3-2
Installing the developer tools / 3-2
Installing the debugging tools / 3-3
Installing the examples / 3-4

Disk contents / 3-4
ASLM Installer disk / 3-4
ASLM Developer Tools disk / 3-5

Interfaces folder / 3-5
Libraries folder / 3-5
Tools folder / 3-6

ASLM Debugging Tools disk / 3-7
ASLM Examples disk / 3-8

Preparing to use the ASLM / 3-8

Part II Developing Clients and Shared Libraries

4 Writing and Building Clients / 4-1

Overview / 4-2

Writing a client / 4-2

Building a client / 4-5
Makefiles for building clients / 4-6

Calling shared library functions from Pascal / 4-7

Calling shared libraries from assembly language / 4-7

Creating instances and calling member functions of shared classes / 4-8

The current client / 4-10
Who needs to set the current client? / 4-10
Determining the current client / 4-11
Setting the current client / 4-11

The LibraryManager.o file / 4-14

5 Writing and Building Shared Libraries / 5-1

Overview / 5-2

Writing a shared library / 5-2

Building a shared library / 5-3

Build utilities / 5-5

Using BuildSharedLibrary / 5 -5

Building a shared library with circular dependencies / 5-12
Creating client object files and intermediate files / 5-12
Linking the shared library / 5-13

Creating symbol files / 5-13

Makefiles / 5-14
A makefile example / 5-14
Makefile example contents / 5-17
Executing a shared library makefile / 5-17

Writing an .exp file / 5-18
Library declaration / 5-18

Syntax / 5-18
Field descriptions / 5-19

Class declarations / 5-23
Syntax / 5-23
Field descriptions / 5-24

FunctionSet declarations / 5-27
Syntax / 5-28
Field descriptions / 5-28

iv Contents

Library environment flags / 5-31

Putting multiple libraries in a library file / 5-32

The LibraryManager.o file / 5-33
LibraryManager.debug.o and LibraryManager.debug.n.o / 5-33

Library heap support / 5-33

Log file support / 5-35

Speeding up builds / 5-36
Using the -keepClientFiles option / 5-36

Linking with model near code / 5-37

Using MPW libraries / 5-38

Segmentation and run-time architecture / 5-39

Support for explicit segment loading and unloading / 5-40

Keeping preloaded libraries loaded / 5-42

Library global variables / 5-42

Using static objects in shared libraries / 5-43

Registering shared library files / 5-43

6 Using the ASLM / 6-1

Loading shared libraries / 6-2

Using the ASLM under System 6 and System 7 / 6-3

Using shared libraries overview / 6-3

Creating objects / 6-5
Creating an object with the new operator / 6-5
Creating an object using NewObject / 6-6
Creating stack objects / 6-6
Creating static objects / 6-7
Creating an object by setting a class’s preload flag / 6-8

The TDynamic family of base classes / 6-8

Using the ASLM global new and delete operators / 6-9

Virtual functions / 6-11

Part III Reference

7 ASLM Utilities / 7-1

Registering shared library files and folders / 7-2
Registering and unregistering shared library file folders / 7-2

Registering a shared library file folder / 7-2
Unregistering a shared library file folder / 7-3

Contents v

How registered folders are tracked / 7-4
Registering folders with the Inspector / 7-4

Registering and unregistering shared library files / 7-4

Preloading all dependent libraries / 7-6

Loading and unloading shared libraries / 7-8

Client death watch notification / 7-12
How death watchers work / 7-13
The Notify function / 7-13

Global world functions / 7-14

Support for stand-alone code resources / 7-15

Creating and deleting the local library manager / 7-16
The InitLibraryManager function / 7-17
The CleanupLibraryManager function / 7-18

Getting the local library manager / 7-19

Calling functions by name / 7-19

Getting information about function sets / 7-21

Interrupt support / 7-23

Exception handling / 7-25
How to avoid raising exceptions / 7-26
Exception handling macros / 7-26
Using the exception handling macros / 7-28
Raising exceptions / 7-28
Rules and conventions for using exceptions / 7-29
Default exception handlers / 7-31
Exceptions and the current client / 7-31

Verifying an object’s type / 7-32

Verifying a class’s base class / 7-33

Using NewObject / 7 -34

Loading and unloading the ASLM / 7-35

Getting the ASLM version / 7-35

Sending output to the TraceMonitor window / 7-35

Entering and leaving system mode / 7-35

Library file and resource management / 7-37

Getting a library’s TLibrary object / 7-43

Getting a library file’s TLibraryFile object / 7-44

Per client data / 7-45

Debugging macros / 7-45

Using the Global TraceLog / 7-46

vi Contents

Specifying a library file / 7-46
TFileSpec / 7-46
TMacFileSpec / 7-47

Miscellaneous routines / 7-47
DestroyPointer / 7-47
SLMsprintf / 7-48
Word and byte functions / 7-48
Memory functions / 7-49
Atomic routines for getting and setting bits / 7-49

Registering C++ objects with the Inspector / 7-50

8 ASLM Utility Class Categories / 8-1

Collection classes / 8-2

Object arbitration classes / 8-2
Registering object with an arbitrator / 8-3
Looking up objects and claiming tokens / 8-4
Notification / 8-5
Grouping related objects / 8-6
Private and global arbitrators / 8-7
An example use of object arbitration / 8-7

Memory management classes / 8-8
The system pool / 8-9
The local pool / 8-9
The client pool / 8-10
The default pool / 8-10

Process management classes / 8-11

Miscellaneous classes / 8-12

9 Utility Classes and Member Functions / 9-1

Class descriptions / 9-2

MDynamic / 9 -3

TArbitrator / 9 -4

TArray / 9 -9

TArrayIterator / 9 -11

TAtomicBoolean / 9 -12

TBitMap / 9 -13

TChunkyPool / 9 -15

TClassID / 9 -18

TClassInfo / 9 -21

Contents vii

TCollection / 9 -25

TDoubleLong / 9 -30

TDynamic / 9 -33

TFastRandom / 9 -39

TFileSpec / 9 -41

TFileIDFileSpec / 9 -43

TFormattedStream / 9 -44

TFunctionSetID / 9 -45

TGrowOperation / 9 -46

THashDoubleLong / 9 -47

THashList / 9 -48

THashListIterator / 9 -52

THashObject / 9 -54

TInterruptScheduler / 9 -55

TIterator / 9 -57

TLibraryFile / 9 -59

TLibraryID / 9 -61

TLibraryManager / 9 -62

TLink / 9 -67

TLinkedList / 9 -69

TListIterator / 9 -71

TMacFileSpec / 9 -73

TMacSemaphore / 9 -74

TMatchObject / 9 -76

TMemoryPool / 9 -79

TMethodNotifier / 9 -86

TMicroseconds / 9 -88

TMilliseconds / 9 -89

TNotifier / 9 -90

TOperation / 9 -92

TPoolNotifier / 9 -99

TPriorityLink / 9-101

TPriorityList / 9-102

TPriorityScheduler / 9-104

viii Contents

TProcHashObject / 9-106

TProcMatchObject / 9-107

TProcNotifier / 9-109

TRequestToken / 9-110

TSCDynamic / 9-113

TScheduler / 9-115

TSeconds / 9-118

TSerialScheduler / 9-119

TSimpleDynamic / 9-120

TSimpleList / 9-121

TSimpleRandom / 9-125

TStandardPool / 9-126

TStdDynamic / 9-128

TStdSimpleDynamic / 9-130

TStopwatch / 9-131

TTaskScheduler / 9-132

TTestTool / 9-134

TThreadScheduler / 9-136

TTime / 9-137

TTimeScheduler / 9-139

TTimeStamp / 9-144

TToken / 9-145

TTokenNotification / 9-149

TTraceLog / 9-151

TUseCount / 9-153

Part IV Appendixes

Appendix A Header Files / A-1

LibraryManager.h / A-2

LibraryManagerClasses.h / A-2

LibraryManagerUtilities.h / A-2

GlobalNew.h / A-3

TestTool.h / A-3

Contents ix

Appendix B ASLM Utility Programs / B-1

LibraryManagerTest1 and LibraryManagerTest2 / B-2
How LibraryManagerTest1 and LibraryManagerTest2 Work / B-2
Running LibraryManagerTest1 or LibraryManagerTest2 / B-3

The Inspector application / B-4
Running the Inspector / B-5
How the Inspector works / B-5
Inspector menus / B-6

TestTool / B-8
Using TestTool / B-8
TestTool classes / B-9

The TraceMonitor application / B-9

Appendix C Using the Example Programs / C-1

The Sample Apps folder / C-2

The Sample INIT folder / C-2

The FunctionSetInfo folder / C-3

The Example Tools folder / C-3

Building the examples / C-4
Building .SYM files for clients, libraries, and tools / C-5

Appendix D Versioning / D-1

How versioning works / D-2

Version numbers and subclasses in C++ / D-3

x Contents

Preface About This Guide

The Apple Shared Library Manager Developer’s Guide documents
version 1.1 of the Apple Shared Library Manager (ASLM). The ASLM is a
set of software tools for developing and using shared libraries. The ASLM
allows multiple programs, or clients, to share code, data, and resources
stored in libraries. The ASLM supports applications and shared libraries
written in all MPW-compatible languages, such as C, C++, Pascal, and
assembly language.

To help developers create and use shared libraries, this guide contains
general information on developing and using shared libraries,
programming examples, and a reference of ASLM utility classes and
functions.

Audience

The Apple Shared Library Manager Developer’s Guide is intended for
software developers who want to:

use prewritten shared libraries

design and create shared libraries

To use prewritten shared libraries, a software developer must understand the
Macintosh Toolbox and Operating System, and know how to write
programs in an MPW-compatible language such as C, C++, Pascal, and
assembly language.

To design and create shared libraries, a software developer must also
understand the operation of the Macintosh Memory Manager, and know
how to write programs in MPW C++ (to write C++ classes).

Organization

The Apple Shared Library Manager Developer’s Guide is divided into four
parts:

Part I, “Overview and Installation,” which introduces shared library
concepts and the ASLM, and describes how to install the ASLM. Part I
consists of the following chapters:
—Chapter 1, “Introduction to Shared Libraries”
—Chapter 2, “Introducing the ASLM”
—Chapter 3, “ASLM Installation”

Part II, “Developing Clients and Shared Libraries,” which describes how
to write and build clients and shared libraries. It also includes
miscellaneous topics related to using the ASLM. Part II consists of the
following chapters:
—Chapter 4, “Writing and Building Clients”
—Chapter 5, “Writing and Building Shared Libraries”
—Chapter 6, “Using the ASLM”

Part III, “Reference,” which describes all of the ASLM utility functions
and classes. Part III consists of the following chapters:
—Chapter 7, “ASLM Utilities”
—Chapter 8, “ASLM Utility Class Categories”
—Chapter 9, “Utility Classes and Member Functions”

Part IV, “Appendixes,” which describes the following topics:
—Appendix A, “Header Files”
—Appendix B, “ASLM Utility Programs”
—Appendix C, “Using the Example Programs”
—Appendix D, “Versioning”

ii Preface

I Overview and Installation

1 Introduction to Shared Libraries

This chapter introduces the concept of shared libraries and explains the key
features and functions of a shared library. If you are already familiar with
shared libraries, you may want to skip ahead to Chapter 2, “Introducing
the ASLM,” for specific information about the Apple Shared Library
Manager (ASLM).

Shared libraries

A shared library is a library of functions or classes (for C++ programmers)
that are compiled, linked, and stored separately from the clients that use
them. By accessing the functions or classes that are stored in a shared
library, a client can call functions that are not part of its executable code.
Furthermore, functions or classes that are stored in a shared library can be
called by different applications that are running at the same time.

Because shared libraries can contain shared code and are loaded and linked
at run time, they save enormous amounts of RAM and disk space. Shared
libraries eliminate the necessity for keeping multiple copies of code in
memory when multiple applications use the same code.

Shared libraries help software developers design independent, modular,
compact libraries that applications can share. It also helps software
designers develop their products faster, and it makes the products easier to
improve and maintain.

A shared library file is a binary file that can contain object code for
functions, classes, methods (member functions), data, and resources. A
shared library file can contain one or more shared libraries. When a shared
library file is made available, developers can share, and dynamically link
with, the code stored in the shared library.

A client is any application or library that creates objects or uses methods or
functions that are implemented in shared libraries. Clients can include
applications, system extensions, INITs, CDEVs, XFCNs and XCMDs, other
kinds of stand-alone code resources, and even shared libraries themselves,
because shared libraries typically use other shared libraries.

A client written in a non–object-oriented language, such as C or Pascal, can
call routines that are stored in a shared library in the same way that it would
call any other function. A C++ client can instantiate object from classes that
are stored in the shared library in the same way that it would instantiate
objects from any class.

Dynamic versus static linking

Although clients can use functions and classes stored in shared libraries as
they would use functions or classes that are made available in ordinary
libraries, shared libraries are compiled and linked differently from
conventional applications and libraries. While applications and
conventional libraries are statically linked, shared libraries are dynamically
linked with the applications that use them.

1-2 Chapter 1 / Introduction to Shared Libraries

Static linking takes place when the linker combines object-modules
produced by a compiler into an executable program. Dynamic linking
takes place at run time; that is, when an application is executed.

If an application needs to call a function or instantiate a class from a
conventional library, the application must link with that library at the time
the application is created. In this kind of linking—static linking—a copy of
the library function that the application needs is placed in the application’s
executable file at link time. In this way, a separate copy of the library
function is placed in the executable file of each application that uses the
function. Figure 1-1 illustrates static linking.

Figure 1-1 Static linking

In contrast, when an application needs to call a function or instantiate a
class that is stored in a shared library, the shared library does not provide
the application with its own copy of the code needed to execute the
function or implement the class. Instead, at link time, a stub that tells the
application where it can find the object code of the function or class in the
shared library is placed in the application’s executable file. At run time, the
application uses this information to locate the function or class that is
stored in the shared library. That process is called dynamic linking.
Dynamic linking is illustrated in Figure 1-2.

Dynamic versus static linking 1-3

Figure 1-2 Dynamic linking

When applications and libraries are linked dynamically, multiple
applications can use a single copy of an executable module simultaneously.
As Figure 1-2 illustrates, the code in the shared library is stored separately
in memory from the applications that use it. A shared library can (and
usually does) contain multiple procedural-language functions or C++
classes, and any client can use any of these functions or classes as if they
were part of the client’s executable code. Therefore, shared libraries can
save memory space.

Using shared libraries with object-oriented programs

For programs written in C++, the ASLM supports code reuse by
dynamically linking and loading C++ class implementations and by
supporting dynamic inheritance.

Dynamic linking and loading, together with dynamic inheritance, let
multiple clients share the same implementation of a class. Dynamic linking
lets a code module make direct calls to another code module’s functions
when the two modules are not implemented in the same code resource or
object file. Dynamic loading also lets the shared library load the
implementation of a class, on demand, at run time. Dynamic inheritance
allows a subclass to be derived from a base class that is in another shared
library.

1-4 Chapter 1 / Introduction to Shared Libraries

These are some of the features of shared libraries used by C++ programs:

Dynamic class identification. When you create an object that is
implemented in a shared library, you do not have to hard-code its class
ID. This means that a configuration or installation process can determine
the specific class or set of classes to be used in a program.

Dynamic inheritance. A class that is implemented in a shared library can
inherit from a class that is not in the same shared library. This means
that a developer can create a class that inherits from another developer’s
class.

Class verification. A client can call a function to verify at run time that a
given object is derived from a particular base class.

Updating code in shared libraries

A shared library is a “black box” to the applications that use it because
shared libraries are kept separate from applications in memory and are
accessed by applications using stubs. Clients can use the functions in a
shared library without having access to the details of how the functions
work. So, when code in a shared library is updated, the changes to the code
have no effect on the applications that call the shared library; the changes
are transparent to the library’s clients, as long as the library’s interface
remains compatible.

Therefore, when you want to change a function or a class in a shared
library—to improve its execution speed, for example, or to add more
features—you can do so without recompiling or relinking the application.
In fact, an update supplied by the developer of a library can split functions
and classes that had previously been in one file into several files without
any impact on the client, and no recompilation is necessary. The update
can even occur while the client is running, provided the library is not
already loaded. (If the older library is already in use by a client, the newer
library is not used by current clients of the older library until the older
library is unloaded. New clients will always use the newest version.)
“Versioning” of libraries is used to determine which library is to be used
when the same function or class is implemented in more than one library.
(For more information about versioning, see Appendix D, “Versioning.”)

Updating code in shared libraries 1-5

Modifying code in shared libraries

Because shared libraries let you modify and enhance applications without
having to rebuild them, you can change the behavior of a client by simply
calling a different shared library. For example, if an application has access
to several shared libraries that display the same data in different formats on
the screen, the application can change from one screen display to another
by simply using a different shared library.

In contrast, when an application is statically linked with a conventional
library, the application must be relinked if there is any change in any
functionality in the library.

In one respect, shared libraries do add a level of complexity to a program’s
design. When an application uses functions stored in a shared library, the
library must be stored in memory in a separate module. At run time, if an
application cannot find the shared library in which the function is stored, it
cannot execute the function.

1-6 Chapter 1 / Introduction to Shared Libraries

2 Introducing the ASLM

This chapter introduces the features and benefits of the Apple Shared
Library Manager (ASLM). Use this chapter to familiarize yourself with
some important terms and features which will help you use the ASLM more
productively.

What the ASLM can do for you

The ASLM is designed for software developers who want to develop
libraries of routines (for non–object-oriented programs) or classes (for C++
programs) for use by multiple applications. The ASLM

saves time in program development and maintenance

simplifies the sharing of functions and C++ classes at run time, thus
encouraging software developers to reuse code by providing libraries of
functions and C++ classes that multiple clients can access simultaneously

allows applications to share, reuse, and dynamically link code

aids development of platform-independent applications

can be used with any application, extension, or device driver—including
an interrupt handler

supports object-oriented (C++) and non–object-oriented (C, Pascal, and
assembly) languages

provides developmental and diagnostic tools

offers expandability through the addition and use of new shared
libraries

Suppose, for example, that your company wanted to design a text editor, a
telecommunications program, and a fax modem driver. Text-editing
routines designed for use by both the text editor and the
telecommunications program could be placed in the same shared library.
Communications routines for both the telecommunications program and
the fax modem program could be placed in another shared library. Still
another shared library could contain menu and window manipulation
routines common to all three programs.

By giving your application access to these three shared libraries, you could
save time in program development. Since routines implemented in the
shared libraries could be shared by all three programs, customers running
your applications could save disk space and memory. Your programs
would also load faster, since they would share object code.

The ASLM significantly enhances the benefits offered by other shared
library implementations, such as dynamic linked libraries (DLLs), which
may be familiar to programmers who have worked in the Windows, OS/2,
and UNIX® operating systems.

The ASLM is intended to help software manufacturers produce products
that are better designed; easier to implement, test, and use; and after they
are shipped, easier to enhance and maintain.

2-2 Chapter 2 / Introducing the ASLM

Some important terms and concepts

The following important terms and concepts are used throughout the
document. They are explained in more detail in later chapters.

Client A client is any application, shared library, or stand-alone code
resource that makes use of shared libraries. Shared libraries are always
considered to be clients. Applications and stand-alone code resources
become clients by making a special call to register themselves as a client
with the ASLM.

Current client The current client is generally the currently executing
application, but other clients (such as shared libraries and stand-alone code
resources) have the ability to make themselves the current client also. The
current client is generally used to determine on whose behalf something is
done, such as allocating memory, opening a file, or setting up or making a
callback.

Function sets Function sets are a set of C or Pascal functions that are
implemented in a shared library and can be called from programs written
in C, C++, Pascal, or assembly language. Any function that a shared library
writer wishes to export must be placed in a function set.

Class ID The class ID is a C string that provides a unique identifier for a
given class. For example, the class ID of a class called TLinkedList might
be ASLM$TLinkedList,1.1. The class ID always starts with a four-
character developer ID to ensure that it is unique and is followed by a
dollar sign ($), text that helps describe the class (but does not have to be the
same as the class name), and usually ends with a version number. Class IDs
are used to determine which class a client should dynamically link with
when using a class exported by a shared library.

Function set ID Like classes, function sets are also given an ID which is a C
string that provides a unique identifier for a given function set. For
example, the function set ID of a function that provided routines for
maintaining a linked list my be called ASLM$LinkedListFSet. Like the
class ID, the function set ID always starts with a four-character developer ID
to ensure that it is unique and is followed by a dollar sign ($), text that
helps describe the function set, and usually ends with a version number.
Function set IDs are used to determine with which function set a client
should dynamically link when calling a function exported by a shared
library.

Some important terms and concepts 2-3

Client object file The client object file is a file that contains routines and
information that is necessary to dynamically link a client with a shared
library. Each shared library provides a client object file and most clients of
a shared library must link with the shared library’s client object file. The
client object file contains things like function stubs for exported routines,
including functions implemented in function sets and the methods of C++
classes. The client object file also contains the IDs of function sets and
classes to be used.

Function stubs Function stubs, also called “glue” routines, are responsible
for dynamically linking a client with a shared library. They are located in
the client object file, and have the same name as the routine they are
responsible for dynamically linking with. For example, if a C programmer
calls a routine called hello which is located in a shared library, he will
actually link with a stub routine called hello. The stub will take care of
making the dynamic link with the shared library that implements hello.

Library ID The library ID is similar to the function set ID and class ID,
except that it is used to represent a shared library. Library IDs are not used
very often and are not contained in the client object file, but it is necessary
for each shared library to have a unique library ID.

Library files Library files are files that contain one or more shared
libraries. Each shared library will have its own set of code resources and
other resources such as a 'libr' resource that provides information about
the shared library. It is important to realize that a shared library is not
represented by a file, but by a set of code resources located in the file and
the 'libr' resource that describes the shared library. A library file may
contain more than one shared library.

Model near and model far Model near and model far are terms used to
describe how executable code (such as an application, stand alone code
resource, or shared library) is built. In brief, model near executables use
16-bit A5 relative references to access global variables and to make
intersegment subroutine calls using the jump table. This means that A5
always needs to be set up properly before accessing globals and making an
intersegment call. This is the way all executables used to be built until
model far was introduced. Model far executables have all global and jump
table references resolved to absolute 32-bit addresses when the code
segment is loaded, so it is usually not necessary to have A5 set up, although
model far executables still require an A5 world (global world).

2-4 Chapter 2 / Introducing the ASLM

It is important to realize that all shared libraries are built using model far
and shared library clients can be model far or model near, although MPW
requires that all stand-alone code resources be model near. For more
information on model near and model far, refer to the latest MPW
documentation and release notes.

Features of the ASLM

This section introduces many of the important features and capabilities of
the ASLM.

Creating C++ objects by using class ID’s The ASLM supports creating a
C++ object by specifying the class id of the class that the object is an
instance of. This allows the programmer to decide at runtime which class to
instantiate .

Calling functions by name or index The ASLM supports calling a
function by supplying the function set ID plus either the function name or
the index of the function in the function set. This is useful for code ported
from other DLL solutions, and for applications such as spread-sheet macros
and scripting-language extensions.

Finding all classes with a common base class The ASLM allows you to
find all classes with a common base class. This allows you to decide at
runtime which classes are available to support your needs.

Finding all function sets with a common interface The ASLM allows you
to find all function sets with a common interface. This allows you to decide
at runtime which function sets are available to support your needs. When a
function set is built, it can specify an interface id. Function sets with a
common interface can share the same interface id. This allows you to locate
all the function sets with the same interface id so you can then choose
which function set you want to use.

Dynamic installation of libraries Libraries can be made available after
boot time by dragging the library’s library file into any registered library
file folder, including the Extensions folder.

Access to object meta information The ASLM allows you to access
information about a C++ object such as the class id of the parent(s) of the
object and what shared library the object is implemented in.

Multiple inheritance The ASLM fully supports multiple inheritance of
C++ classes.

Features of the ASLM 2-5

Client death notification The ASLM provides a notification facility that
you can use to determine when a client goes away. A client goes away when
a client application quits or a shared library is unloaded. To keep track of
when clients go away, you can register what is known as a death watch
notifier or death watcher.

Exception handling The ASLM provides exception-handling macros that
are used to catch exceptions that may be raised. The only time the ASLM
will raise an exception is if it fails to load a shared library or fails to load a
shared library’s code segment after the shared library has already been
loaded. The ASLM’s exception-handling macros match the DCE standard
and can be used from C.

Explicit segment unloading support The ASLM supports the explicit
loading and unloading of library segments by the library or library client.

Languages supported by the ASLM Shared libraries can contain function
sets for C, Pascal, and assembly language programs, as well as
implementations of C++ classes.

C++ programs can create objects and call methods that are implemented in
shared libraries. Programs written in non–object-oriented languages can
also call methods implemented in shared libraries, but only if the developer
of the shared library provides a special procedural interface for the class.

Library loading and unloading Explicit loading and unloading of
libraries is supported to ensure that a shared library is available.

Pascal header files The ASLM provides LibraryManager.p and
LibraryManagerUtilities.p interface files that list most of the routines that
are currently available to C programmers.

Per client data Per client data is supported by a simple mechanism that
allows a library to have a separate data structure for each client. A library
simply calls a routine to get the data structure for the current client and a
client can call a routine to get its data structure for a specified library.

Preloading all dependent libraries To facilitate the easy preloading of
libraries on which a client depends, the ASLM provides an MPW tool which
generates a resource containing information about all the dependent
libraries, and provides a routine that will load all libraries described in the
resource.

Registered library files The ASLM supports the registration of any file as a
shared library file.

2-6 Chapter 2 / Introducing the ASLM

Registered library file folders The registration of folders in which library
files can be located is supported. These folders support dynamic
installation of library files in the same way as the Extensions folder.

Snap-linking To speed up processing and to provide an efficient calling
mechanism, shared libraries are “snap-linked.” Snap-linking is an address-
caching technique in which binding overhead usually occurs only once.
After binding occurs, the target address is cached, so the link can be
“snapped” in the client.

This calling mechanism is very efficient and makes programs load and run
faster. It is particularly well suited for the kind of time-critical use that is
required by high-performance networking protocols or timing-dependent
device drivers.

System support The ASLM supports systems 6.0.5 and higher. There are
some limitation when using ASLM under System 6. See “Using the ASLM
Under System 6 and System 7” in Chapter 6 for more information.

Utility classes provided with the ASLM The ASLM comes with a collection
of utility classes that you can use in your own applications and shared
libraries. These utility classes can be divided into the following categories:

Memory-management classes are a set of memory allocation classes
called memory pools, which are special pools of memory that shared
libraries and clients can use in place of memory normally allocated by
the Macintosh Memory Manager. The particular advantage of these
classes is their speed and the fact that they are interrupt-safe.

Collection classes keep track of objects in different types of collections,
such as arrays, hash lists, and linked lists.

Object arbitration classes let multiple clients share named objects.

Process management classes let you schedule tasks to run during System
Task time, at interrupt time, or at predetermined intervals.

Library file and resource management classes allow clients and libraries
to access resources in a shared library’s file.

Miscellaneous classes include timing classes and other kinds of classes,
such as random number classes (used for generating random numbers in
a variety of different ways), that are used for essential operations by the
ASLM and can also be used by clients.

Versioning The ASLM enables the specification of the version numbers of
the shared library, function sets, and classes implemented in the shared
library or used by the client. The ASLM uses the function set or class with
the newest version number that is also compatible with the version specified
in the client object file with which the client linked.

Features of the ASLM 2-7

3 ASLM Installation

This chapter provides installation instructions for the ASLM and associated
development tools, and describes the contents of the ASLM disks.

The ASLM developer’s kit is distributed on the following four disks:

The ASLM Installer disk that contains the Shared Library Manager
extension file that oversees all the functions of the ASLM. It also
contains the installer script that installs the ASLM onto your system.

The ASLM Developer Tools disk that contains the tools, scripts, and
header files that you need to write, compile, and link your own shared
libraries and clients under MPW.

The ASLM Debugging Tools disk that contains debugging applications,
such as the Inspector application and the TraceMonitor application.

The ASLM Examples disk that contains example programs that can help
you learn how to develop and build shared libraries.

Installing the ASLM

To install the ASLM, run the Installer application located on the ASLM
Installer disk. The Installer places the Shared Library Manager extension
file in your System 7 Extensions folder (or System 6 System Folder). The
Installer also installs resources in the System file and performs other
essential house keeping operations. The Installer must make these
modifications to your System file before you can use the ASLM.

To install the ASLM, follow these steps:

1 Open the ASLM Installer disk and double-click the Installer icon.

2 Click Install.

The Installer places the Shared Library Manager extension file in your
System 7 Extensions folder (or System 6 System Folder) and performs
other essential installation operations.

3 Click Restart when the Installer is finished.

You can now execute any client; that is, any program that makes use of
shared libraries.

The Installer does not install the tools needed to develop and debug shared
libraries. You can install those tools as described in the following sections.

Installing the developer tools

To develop shared libraries, you must have MPW 3.2 or later installed on
your hard disk. If you are going to develop any shared classes, you must
also install MPW C++ 3.2 or 3.3. (Shared classes are classes that the ASLM
knows about because they are in a shared library.) Once MPW is installed,
you can copy the tools that are needed to develop shared libraries from the
ASLM Developer Tools disk into your MPW folder.

The ASLM Developer Tools disk contains a Read Me! file and three folders
with tools and utilities that you can use to develop your own shared
libraries. The Read Me! file contains information regarding the contents of
the disk. Some of the files in the three folders are essential for developing
shared libraries; others are utilities that you may find useful.

To copy the tools onto your hard disk, follow these steps:

1 Open the ASLM Developer Tools disk.

2 Open the Tools folder.

3 Drag the MPW scripts—BuildSharedLibrary and LinkSharedLibrary—into

the MPW Scripts folder.

3-2 Chapter 3 / ASLM Installation

4 Drag the MPW tools—LibraryBuilder and CreateLibraryLoadRsrc—into the

MPW Tools folder.

5 Open the Libraries folder.

6 Drag the five MPW libraries into the Libraries folder in your MPW Libraries folder.

The five libraries are LibraryManager.o, LibraryManager.n.o,
LibraryManager.debug.o, LibraryManager.debug.n.o, and TestTool.o. If
you are a THINK C/C++ user, drag the THINK Libraries onto your hard
drive.

7 Open the Interfaces folder.

8 Drag the files from the CIncludes folder into the MPW CIncludes folder.

9 Drag the files from the PInterfaces folder into the MPW PInterfaces folder.

10 Drag the files from the RIncludes folder into the MPW RIncludes folder.

You now have all the tools you need to develop your own shared libraries
and shared library clients.

Note: You do not have to install the ASLM tools, scripts, interfaces, and
MPW libraries into your MPW folder. However, you will have to set up
MPW and your makefiles to locate the ASLM files. This can include
adding the directory containing the tools and scripts to the MPW
{Commands} shell variable and specifying the location of the interface files
by using the -i option when compiling your code. Also, the
BuildSharedLibrary and LinkSharedLibrary scripts automatically
look in the {SLMTools} folder for the LibraryBuilder and
CreateLibraryLoadResource tools.

Installing the debugging tools

The ASLM Debugging Tools disk contains a Read Me! file, three folders,
the Shared Library Manager Debug extension, the ASLM Debugger Prefs
ResEdit document, and the TraceMonitor application. The Read Me! file
contains information regarding the contents of the disk. The files on this
disk are useful in debugging ASLM clients and shared libraries.

1 Open the ASLM Debugging Tool disk.

2 Drag the TraceMonitor application onto your hard disk. You will need to run this application

while debugging.

3 Copy the resources from the ASLM Debugger Prefs file into your MacsBug Debugger Prefs

file, which should be located in your System Folder.

You can use ResEdit or the MPW Rez tool to copy the resources. Perform
this step only if you use MacsBug.

Installing the ASLM 3-3

4 Open the Inspector folder.

5 Drag the shared libraries—InspectorLibrary and WindowStackerLibrary—into your

Extensions folder.

6 Drag the Inspector application to a place on your hard disk. You will need to run this application

while debugging.

7 Open the LibraryManagerTest folder.

8 Drag the ExampleLibrary into your Extensions folder.

9 Drag the MPW tool—LibraryManagerTest1—into your MPW Tools folder.

10 Open the TestTool folder.

11 Drag TestLibrary into your Extensions folder.

12 Drag the MPW tool—TestTool—into your MPW Tools folder.

13 If you want to use the debug version of the ASLM, drag the Shared Library Manager Debug file

into your Extensions folder, and remove the Shared Library Manager extension that was placed

in the Extensions folder by the Installer application.

You should have only one Shared Library Manager file in the Extensions
folder.

Installing the examples

The ASLM Examples disk contains a Read Me! file and source code
examples. If you want to use these examples, copy them onto your hard
drive.

Disk contents

This section describes the contents of the four ASLM disks.

ASLM Installer disk

This disk contains a variety of TeachText files, as well as the following files:

the Installer application

the Installer script

the Shared Library Manager files folder which contains the Shared
Library Manager extension and ASLM Resources file

3-4 Chapter 3 / ASLM Installation

ASLM Developer Tools disk

This disk contains a Read Me! file and three folders—Interfaces, Libraries,
and Tools.

Interfaces folder

The Interfaces folder on the ASLM Developer Tools disk contains three
folders:

The CIncludes folder contains C and C++ header files that you need in
order to develop C and C++ programs with the ASLM.

The PInterfaces folder contains Pascal interface files that provide Pascal
programmers with the interfaces needed to develop Pascal programs with
the ASLM. See “Calling Shared Library Functions from Pascal” in
Chapter 4 for more information on limitations when using the ASLM
from Pascal.

The RIncludes folder contains resource definition files. It also contains a
'libr' resource template that you can use to decompile 'libr'
resources with the MPW tool DeRez. This resource template can help
track down bugs that occur when function set, class, or library
definitions are assigned improperly. It is described in Chapter 5,
“Writing and Building Shared Libraries.”

Libraries folder

The Libraries folder contains five libraries and a folder entitled THINK
Libraries. The library files that end with the suffix .n.o are to be used with
model near clients, and the library files that end with the suffix .o are to be
used with model far clients. (For more information on the near and far
memory models, refer to the latest MPW documentation and release notes.)

You can build your shared libraries to be used with either model near
clients or model far clients, as explained in Chapter 4, “Writing and
Building Clients.” However, shared libraries are always created using the
far memory model.

The Libraries folder contains the following files and folders:

LibraryManager.o and LibraryManager.n.o are files that must be linked
with all shared libraries and all applications that use shared libraries.

LibraryManager.debug.o and LibraryManager.debug.n.o are debug
versions of LibraryManager.o. and LibraryManager.n.o, respectively.
They contain debugging symbols that may be useful when you debug
your application or library. It is highly recommended that you use them
during the development of your shared library or client application.

Disk contents 3-5

TestLibrary.o is a file that you must link with your applications and
shared libraries if you want to subclass the TTestTool class, which is
used in the TestTool example program on the ASLM Examples disk.

THINK Libraries (currently, support for THINK C/C++ 6.0 is only
experimental).

THINK C/C++ 6.0 users must use the libraries in the THINK Libraries
folder when writing ASLM clients. Refer to the Read Me! file on the
ASLM Developer Tools disk for the latest details regarding THINK
C/C++ 6.0 support.

THINK users should use LibraryManagerClient.o and
LibraryManagerUtils.o when linking clients instead of
LibraryManager.o, because LibraryManager.o contains references to
routines that are only present if you are linking a shared library.

The LibraryManagerClient.o and LibraryManagerUtils.o libraries do not
include the routines that refer to the nonexisting routines. The routines
that are removed are not needed by clients so clients will still be able to
link.

LibraryManagerUtils.o contains the client object files for the ASLM
libraries that implement classes having a class ID that starts with
slm:supp$. Like LibraryManager.o, there are also model near versions
and debug versions.

Tools folder

The tools in the Tools folder include the following files:

BuildSharedLibrary is an MPW script that builds shared libraries and
client object files.

CreateLibraryLoadRsrc is an MPW tool that lets clients and libraries
create a resource that includes information about all the function sets
and classes that they depend on so that they can be easily preloaded.

LibraryBuilder is an MPW tool that is executed by the
BuildSharedLibrary script and does most of the work when you
build a shared library.

LinkSharedLibrary is an MPW script that links shared libraries when
you choose not to have BuildSharedLibrary do the linking for you.

3-6 Chapter 3 / ASLM Installation

ASLM Debugging Tools disk

The ASLM Debugging Tools disk contains a Read Me! file and the
following tools and applications:

The ASLM Debugger Prefs file contains MacsBug debugger macros and
templates which are mainly used by ASLM engineers for debugging.
You can put the contents of this file in the MacsBug Debugger Prefs file.

The Inspector application, located in the Inspector folder, helps you
inspect objects that are implemented in shared libraries, lets you see
which function sets, classes, shared libraries, and shared library files the
ASLM currently knows about, and provides some useful information
about them. Appendix B, “ASLM Utility Programs,” has further
information on the Inspector application.

The Inspector folder also contains the InspectorLibrary and
WindowStackerLibrary files, which are used by the Inspector
application.

The TraceMonitor application creates a window where shared libraries
and clients can send traces to help assist with debugging code (see
Appendix B “ASLM Utility Programs” for more information).

The LibraryManagerTest1 file, located in the LibraryManagerTest
folder, is an MPW tool that performs a quick test of the ASLM.
Appendix B, “ASLM Utility Programs,” has further information on the
LibraryManagerTest1.

The LibraryManagerTest folder also contains the ExampleLibrary file
which is used by LibraryManagerTest1 and LibraryManagerTest2.

The TestTool file, located in the TestTool folder, is an MPW tool that is
used to test certain ASLM functions and utility classes. Appendix B,
“ASLM Utility Programs,” has further information on TestTool.

The TestTool folder also contains the TestLibrary file which is used by
TestTool.

The Shared Library Manager Debug file is a debug version of the
ASLM. To use this version, drag it into the Extensions folder and drag
the Shared Library Manager file out. Then reboot your machine. It is
highly recommended that you use the debug version of the Shared
Library Manager extension while developing your shared libraries and
shared library clients. It contains code that will notice many developer
errors and enter the MacsBug debugger with a message when it notices a
problem.

Disk contents 3-7

ASLM Examples disk

The ASLM Examples disk contains a Read Me! file and seven folders
containing source code example libraries and clients that help you learn
how to develop and build ASLM clients and shared libraries.

Example Tools

ExampleLibrary

FunctionSetInfo

Inspector

Sample Apps

Sample INIT

TestTools

Details of the contents of the ASLM Examples folder are given in
Appendix C, “Using the Example Program.” Information on the
ExampleLibrary, Inspector, and TestTool folders can also be found in
Appendix B, “ASLM Utility Programs.”

Preparing to use the ASLM

With the ASLM installed, you can install any shared library by registering
its library file or by simply dragging its library file into an appropriate
folder (the System 7 Extensions folder, the System 6 System Folder, or a
registered library file folder). Then, when an application needs to use the
shared library, the ASLM dynamically loads and links the library.

The Shared Library Manager extension loads at boot time and stays
loaded. When you have registered a library file or have dragged it into a
library file folder, you do not have to reboot to use the shared libraries
contained in the library file. It will be recognized immediately by the
ASLM.

The operating system ordinarily loads the Shared Library Manager
extension before it loads any other extensions. However, if you have
installed the System 7 Tuner 1.1.1 and have AppleTalk turned off, the
Shared Library Manager extension is not loaded and will not be usable.
This behavior is caused by a feature in the System 7 tuner. It is corrected in
system software version 7.1. If you do not have System 7.1, the
workaround is to have AppleTalk turned on.

3-8 Chapter 3 / ASLM Installation

II Developing Clients and
Shared Libraries

4 Writing and Building Clients

This chapter describes how to write a client, build a client, set up the current
client, call shared library functions from C, C++, Pascal, and assembly
languages, and create instances of classes that are implemented in shared
libraries.

Overview

A program that makes use of shared libraries is called a client. Clients fall
into three categories:

an application or some other kind of code that has called
InitLibraryManager

a shared library

the ASLM itself

Clients can use shared libraries that you write yourself, as well as the utility
libraries supplied with the ASLM and by third party developers. This
chapter explains how to write and compile clients, and how to dynamically
link clients with shared libraries.

To develop your own shared libraries, you must have MPW 3.2 (or later)
installed on your hard disk. For C++ development, you also need MPW
C++ version 3.2 or 3.3. You must also copy a number of header files and
tools as described in Chapter 3, “ASLM Installation.”

When you have set up your ASLM development system, you can write,
compile, and link your own shared libraries and clients.

Each time you create a shared library, you must make it accessible to the
clients that will use it. For information on how to make a shared library
accessible to clients, see “Registering Shared Library Files and Folders” in
Chapter 7, “ASLM Utilities,” or “Registering Shared Library Files” in
Chapter 5, “Writing and Building Shared Libraries.”

Writing a client

When you write a client there are three basic rules to follow:

Call InitLibraryManager in your client’s initialization section.

Make sure your client either preloads the shared libraries it will use or
uses exception handling to deal with shared libraries that may not exist
or be loadable.

Call CleanupLibraryManager before your client quits.

In the code between InitLibraryManager and
CleanupLibraryManager calls, you can do just about anything that
programs written in your language of choice can do, plus one thing that
ordinary programs cannot: you can call functions and create classes that
are implemented in shared libraries.

4-2 Chapter 4 / Writing and Building Clients

Before you can call a function implemented in a shared library, you must
link the file that contains your source code with an object file provided by
the developer of the shared library. This file, called a client object file, by
convention has the extension .cl.o. It contains stubs for all the functions
and classes implemented in the shared library. These stubs are responsible
for loading the shared library and calling the implementation of the
function or exported class non-virtual member functions. However, it does
not contain the implementation of any of the routines implemented in the
library. Note that virtual function calls are made through the object’s vtable
and present no additional overhead.

The following steps show how to write a shared library client in C that calls
functions that are implemented in a function set in a shared library. The
example assumes that the functions are contained in the function set whose
id is kCoolFunctionSetID and the interfaces for the functions are
contained in the header file “CoolLibrary.h”. The DoSomeThingGreat
and DoSomeThingGreater functions are both implemented in a shared
library.

#include <LibraryManager.h>

#include <CoolLibrary.h>

// get ready to use the ASLM

if (InitLibraryManager(

0, /* we don't need memory in our local pool */

kCurrentZone, /* use application zone = current zone */

kNormalMemory /* default memory type, no VM stuff */

) == kNoError)

{

// make sure that the shared library is loaded

if (LoadFunctionSet(kCoolFunctionSetID) == kNoError)

{

// call some functions

DoSomethingGreat();

DoSomethingGreater();

// call UnloadFunctionSet so the library can be unloaded

UnloadFunctionSet(kCoolFunctionSetID);

}

// now we’re all done using the ASLM

CleanupLibraryManager();

}

Writing a client 4-3

InitLibraryManager is called before shared libraries or other ASLM
facilities may be used. It creates the client’s local library manager object,
which is mainly used behind the scenes as the client’s interface to the
ASLM. CleanupLibraryManager is called when the client is finished
using the ASLM. The “Creating and Deleting the Local Library Manager”
section in Chapter 7 provides more information on the local library
manager object and also describes InitLibraryManager and
CleanupLibraryManager in detail.

The LoadFunctionSet call was made to make sure that the shared library
was already loaded before attempting to call the functions implemented in
the shared library. This prevents potential problems from arising if the
shared library cannot be found or loaded. LoadFunctionSet and
UnloadFunctionSet are explained in the “Loading and unloading shared
libraries” section of Chapter 6. Exception handling could also be used
instead of preloading the necessary shared libraries. Exception handling is
explained in the “Exception handling” section of Chapter 6.
kCoolFunctionSetID is a macro that defines the C string which is the
function set id of the function set that the functions are in. This macro will
always be located in the header file which declares the functions that you
are using. Function set id’s are explained in more detail in the
“TFunctionSetID” section of Chapter 9.

When the DoSomeThingGreat function is called, what is actually called is a
function stub that the client is statically linked with. This stub is responsible
for calling into the ASLM to make sure that the shared library
implementing DoSomeThingGreat is loaded and to store the address of the
DoSomeThingGreat in the stub’s cache. The stub can then call the actual
implementation of DoSomeThingGreat . On subsequent calls to
DoSomeThingGreat, the function address will already be cached with the
stub so it can be called with just a few instructions.

After the client is finished calling the functions in the shared library, the
client calls UnloadFunctionSet to undo the LoadFunctionSet call and
then calls CleanupLibraryManager. When a client finishes using the
ASLM, the client should always calls CleanupLibraryManager, although
it will be called automatically for application clients.

As you can see, other than some initial setting up, calling functions in a
shared library is no different than calling functions that the client is
statically linked with.

4-4 Chapter 4 / Writing and Building Clients

Building a client

Figure 4-1 shows the steps required to build a client. The file Client.c is the
source code for the client that is being built. C compiles Client.c, which
includes the header file XXLibrary.h and builds an object code module
named Client.c.o.

Once Client.c.o is built, it can be linked with the LibraryManager.o file and
the client object file XXLibrary.cl.o. The result of the build is the client
XXClient.

The XXLibrary is the shared library that the client will use. It must be
registered with the ASLM in order to use it.

The file XXLibrary.h is a shared library header file; that is, an interface file
that contains declarations of the functions and classes implemented in the
shared library. XXLibrary.h is needed by the client to identify the
functions and classes the library exports, and the interface to each.

The file XXLibrary.cl.o is the client object file; that is, a file that contains
information including stubs for constructors, destructors, function sets, and
any non-virtual methods that are exported by the shared library. The client
object file must be linked with the client if the client calls any exported
function or creates any objects implemented in the library. The exception
to this is clients that use NewObject to create objects and
GetFunctionPointer to call functions in function sets. These clients do
not need to link with the client object file.

Two of the files shown in shadowed boxes—XXLibrary.h and
XXLibrary.cl.o—are also needed to build shared libraries, as you will see
later in Figure 5-1, “Building a Shared Library.” These two files are
provided by the creator of the shared library.

Building a client 4-5

Figure 4-1 Building a client

Makefiles for building clients

You can learn how to write makefiles that build shared library clients by
examining the makefiles for the example programs that are supplied with
the ASLM. The example programs are located on the ASLM Examples disk
and are discussed in Appendix C “Using the Example Programs.”

Refer to “Makefiles” in Chapter 5, “Writing and Building Shared
Libraries,” for an example of a makefile that builds a client and an
associated shared library.

4-6 Chapter 4 / Writing and Building Clients

Calling shared library functions from Pascal

You can call ASLM routines from Pascal in the same way that you call
them from C. Pascal interface files are provided with the ASLM in the
PInterfaces folder.

To call routines from Pascal, the writer of the shared library must provide a
Pascal interface file (.p file) which contains the interface to functions
exported by the shared library. This Pascal interface file can be provided
instead of, or in addition to, the C-style include file (.h file), depending on
whether the shared library writer also wants to support C programmers.

The PInterfaces folder contains the Pascal interface files LibraryManager.p
and LibraryManagerUtilities.p, which provide Pascal programmers with all
interfaces that C programmers have access to, with the following
exceptions:

Exception handling macros are not supported, but you can still call
Fail. Because of this, all shared libraries to be used must be explicitly
loaded first, otherwise the client runs the risk of throwing an exception
when a shared library cannot be loaded for some reason. This will cause
the application to quit.

Trace is limited to one parameter: the string to output. No formatting is
supported.

AtomicSetBoolean, AtomicClearBoolean, and
AtomicTestBoolean are not supported.

All routines that take StringPtr parameters require the strings to be C
strings, not Pascal strings. These routines are Trace,
GetSharedNamedResource, GetSharedResourceInfo,
GetFunctionPointer, and Fail.

DebugBreak and related routines and macros are not supported.

Calling shared libraries from assembly language

Calling ASLM routines from assembly language does not introduce any
particular problems, except for the usual issues that arise when you
incorporate assembly-language code into programs written in other
languages. Make sure you use C/Pascal register conventions.

Calling shared libraries from assembly language4-7

Creating instances and calling member functions of shared classes

Using the ASLM from C++ is much the same as using it from C, except that
there are a couple of different things to be aware of. The following code
fragment shows how a C++ client can create objects that are instances of
classes that are implemented in shared libraries, and how the client can call
member functions of those objects. In this example, an instance of class
named TMyFirstClass is created. TMyFirstClass is implemented in a
shared library whose location the client need not be aware of. The interface
for TMyFirstClass is located in the “CoolLibrary.h” header file.

#include <LibraryManager.h>

#include <CoolLibrary.h>

// declare a variable to point to our object

TMyFirstClass* first = NULL;

// get ready to use the ASLM

if (InitLibraryManager() == kNoError)

{

// make sure that the shared library is loaded

if (LoadClass(kTMyFirstClassID) == kNoError)

{

// create an object

first = new TMyFirstClass;

// call a method

first->DoSomethingGreat();

// delete the object

delete first;

// call UnloadClass so the library can be unloaded

UnloadClass(kTMyFirstClassID);

}

// now we’re all done using the ASLM

CleanupLibraryManager();

}

Just as in the C example given earlier, the client must call
InitLibraryManager before using the ASLM and call
CleanupLibraryManager when finished using the ASLM. One difference
in this example is that the C++ client was able to take advantage of the
default parameters for InitLibraryManager and not explicitly pass any
to it.

4-8 Chapter 4 / Writing and Building Clients

Also, as was done in the C example given earlier, the client had to make
sure that the shared library to be used was loaded. This was done by calling
LoadClass and passing in the class ID of the class that will be used. The
class id is a C string the is declared in the class’ header file using the macro
k<classname>ID. Class id’s are described in detail in the “TClassID”
section of Chapter 9. LoadClass and UnloadClass are explained in the
“Loading and Unloading Shared Libraries” section of Chapter 6.
Exception handling could also be used instead of preloading the necessary
shared libraries. Exception handling is explained in the “Exception
Handling” section of Chapter 6.

After this client has called InitLibraryManager and LoadClass , an
instance of TMyFirstClass is created using the new operator and the
constructor for the class. The class’s constructor accepts parameters that are
passed in normal C++ fashion.

The constructor stub for each class is statically linked with the client. The
first time a stub is called to construct an object, it calls the ASLM which
takes care of loading the library if it is not loaded already and placing the
address of the constructor in the constructor stub’s function cache. The
stub can then call the constructor. Each subsequent time the stub is called, it
can directly jump to the constructor after first checking that the library was
not unloaded. The constructor increments the use count for the class each
time it is called. The destructor for each class then decrements the use
count so that the library can be unloaded when all objects in a given library
have been deleted.

After the client has created an instance of TMyFirstClass, a member
function is called and then the object is deleted. Finally, the client calls
UnloadClass to undo the LoadClass call and then calls
CleanupLibraryManager. When a client finishes using the ASLM, the
client should always calls CleanupLibraryManager, although it will be
called automatically for application clients.

As you can see, clients can create the objects and call their methods in
ordinary C++ fashion. The only extra conventions that the client must
observe are calling InitLibraryManager and CleanupLibraryManager
and also either preloading shared libraries to be used or use exception
handling in order to deal with shared libraries that are either missing or are
not loadable.

More information on creating instances of shared classes and calling
methods is discussed in Chapter 6. Topics include creating static objects
and stack objects, using NewObject to create an object with a given class
ID, using the ASLM global new and delete operators, and the advantages
that virtual functions have over non-virtual functions.

Creating instances and calling member functions of shared classes4-9

The current client

The current client is generally the currently executing application, but
other clients (such as shared libraries and stand-alone code resources) have
the ability to make themselves the current client also. The current client is
generally used to determine on whose behalf something is done, such as
allocating memory, opening a file, or setting up or making a callback.

The current client is important for a number of reasons. When a client or a
shared library built with the memory=client option allocates memory
using the default C++ new operator, the memory is allocated from the
current client’s local pool (also called the client pool). Also, when an
exception is raised, the ASLM uses the current client’s exception handling
chain to determine who should catch the exception. When a library file is
opened by calling PreFlight or OpenLibraryFile, the file is opened for
the current client. Lastly, the ASLM per client data facility relies on the
setting of the current client when deciding which client data “context” to
return when a shared library calls GetClientData.

For these reasons, it is not generally safe to make a call into a shared library
or into the ASLM unless the current client is defined.

Who needs to set the current client?

Any code that makes a call into a shared library or into the ASLM is
responsible for making sure that the current client is set properly unless
special arrangements have been made with the shared library so that it can
handle being called with an invalid current client. The current client is
invalid if the currently executing application is not an ASLM client and the
current client was not explicitly set.

Normally, when an application client is executing, it is also the current
client and does not have to do anything special to make sure that the
current client is set properly unless it is called asynchronously. If the
application client is called asynchronously, the current client may not be set
properly. In this case, it is up to the application client to make sure it is set
properly before the client calls a shared library or the ASLM. Setting up
the current client within a routine that handles asynchronous events is
usually handled by making sure the client that it wants set as the current
client is passed to the routine, which can then call the SetCurrentClient
function, which is described later in this section.

4-10 Chapter 4 / Writing and Building Clients

Shared libraries may want to change the current client so that default C++
memory allocations are made from the shared library’s local pool rather
than from the local pool of whoever is the current client when the library is
called. Also, a shared library may have to set up the current client because
it was called from code that did not set the current client to a valid client;
for example, if the code in the shared library is an interrupt service routine
or an I/O completion routine.

Determining the current client

The default setting of the current client is determined by the setting of the
Macintosh low-memory global CurrentA5. CurrentA5 is always set to the
current value of the global world of an application. Ordinarily, it is set to
the global world of the currently executing application. Therefore, the
application is normally also the current client. If the current client makes a
call into a shared library, the setting of CurrentA5 global does not change
so the application remains the current client.

Setting the current client

The ASLM provides several functions used to override the setting of the
CurrentA5 low-memory global, making it possible to specify the current
client. These functions do not change the value of CurrentA5, but rather
tell the ASLM to use a client other then the one specified by the setting of
CurrentA5 as the current client. They include the following:

SetCurrentClient makes the client passed as a parameter the current
client.

SetSelfAsClient makes the client issuing the call the current client.

SetClientToWorld makes the owner of the current global world the
current client.

The ASLM also provides the function GetCurrentClient, which returns
the current client. It is useful for getting and then saving the current client
so you can set up the current client sometime in the future. For example,
suppose your shared library is some sort of driver that may need to notify
one of its clients of an event at interrupt time. When the client is “setup,”
the driver can call GetCurrentClient. When the client needs to be
notified, the driver can then call SetCurrentClient. Thus the client does
not need to set the current client.

The current client 4-11

This is the syntax of these four calls:

TLibraryManager* GetCurrentClient(void);

TLibraryManager* SetCurrentClient(TLibraryManager*);

TLibraryManager* SetSelfAsClient(void);

TLibraryManager* SetClientToWorld(void);

The GetCurrentClient function returns the current client. The
SetCurrentClient, SetSelfAsClient, and SetClientToWorld
functions all return the previous current client. This client should be passed
to SetCurrentClient to restore the current client.

The current client is represented by the client’s local library manager, and,
therefore, all of the current client routines return a TLibraryManger*
object, and SetCurrentClient accepts as a parameter the
TLibraryManager* belonging to the client to be set as the current client.

You can also use EnterSystemMode to change the current client. It sets the
ASLM as the current client. The LeaveSystemMode function restores the
current client. For more information on EnterSystemMode, see “Entering
and Leaving System Mode” in Chapter 7, “ASLM Utilities.”

The GetClientPool function crashes when the CurrentA5 low-memory
global does not belong to a valid ASLM client and the current client has
not been set. Usually, GetClientPool is not called directly, but is called
automatically when you create an object that is implemented in a library
built with the memory=client option. The GetClientPool function can
crash when a non-ASLM client invokes code that is in an ASLM client. For
example, if you implement a HyperCard XCMD as an ASLM client, the
XCMD should call SetSelfAsClient immediately after it calls
InitLibraryManager, and should restore the current client immediately
before it calls CleanupLibraryManager. Otherwise, the ASLM considers
HyperCard the current client. A crash might then occur if the XCMD tries
to create objects or allocate memory.

4-12 Chapter 4 / Writing and Building Clients

WARNING If SetCurrentClient, SetSelfAsClient or
SetClientToWorld is called, it is necessary to restore the current
client before returning from the routine that set the current client. It is
imperative that if an application sets the client, it restores the current
client before calling EventAvail, GetNextEvent, or
WaitNextEvent. This also means that any other client or shared
library that sets the current client should restore the current client
before calling any routine that may result in EventAvail,
GetNextEvent, or WaitNextEvent being called. Normally
applications need to set the client only in callbacks (completion
routines, operation process procs, notifier notify procs, and so on) that
use the ASLM.

In the debug version of the ASLM, you will enter MacsBug with a
warning if the current client is not set to NULL when EventAvail,
GetNextEvent, or WaitNextEvent is called. This is done because if
the current client is not set to NULL when calling one of the above
traps, problems can occur. For example, suppose Client A is an ASLM
client that leaves the current client unset (so it will always be the
current client when it is running) and then calls WaitNextEvent.
Client B takes over, sets the current client, and calls WaitNextEvent.
Client A then regains control, but is no longer the current client
because Client B left it set to another client. If you know (or think) the
current client has been set and want to call one of the above traps, do
the following:

TLibraryManager* savedClient = SetCurrentClient(NULL);

WaitNextEvent(); // or EventAvail or

GetNextEvent

SetCurrentClient(savedClient);

You can use this same technique when calling a routine that calls one
of the above traps. In fact, if the routine you are calling knows
nothing about ASLM, it is the caller’s responsibility to make sure the
current client is set to NULL.

The current client 4-13

The LibraryManager.o file

The LibraryManager.o file illustrated in Figure 4-1 is an MPW library file
supplied for ASLM client and library developers. It contains

client object file code (.cl.o code) for shared libraries supplied with the
ASLM

routines defined in the ASLM header files (the client will dynamically
link with most of these routines)

other behind-the-scenes routines that are used internally

The LibraryManager.o file should be linked with all clients before any C
libraries are linked. It should also be linked before CPlusLib.o unless you
want to use the global new operator supplied by CPlusLib.o. See “Using
the ASLM Global new and delete Operators” in Chapter 6, “Using the
ASLM,” for more details.

The LibraryManager.n.o file is similar to the LibraryManager.o file, except
that it is meant only for model near clients and, therefore, is not compiled
with model far. LibraryManager.debug.o and LibraryManager.debug.n.o
are debug versions of the library files and contain debugger breaks and
MacsBugs symbols useful when trying to debug clients and shared
libraries.

4-14 Chapter 4 / Writing and Building Clients

5 Writing and Building Shared Libraries

This chapter describes how to write and build shared libraries, create
symbol files, use makefiles, and write exports files. It also discusses related
topics that you need to consider when creating shared libraries.

Overview

Before you can build a shared library, you need at least three source files:

One or more source files that contain the implementation of your
library’s classes and functions. The files that contain your library’s
implementation can be written in any language that is compatible with
MPW, such as C++, C, Pascal, or assembly language.

A header (or Pascal interface) file that provides declarations for the
functions and classes that your library will export. You may also have
one or more private header files for declarations that the user of your
library will not need. Header files written in C format always have
filenames that end with the suffix .h. Pascal interface files can end with
the suffix .p.

An export definition file (also called an exports file or .exp file) that
defines classes and function sets that are to be exported from a shared
library. An export definition file is always written in C-language style
and always has a filename ending in the suffix .exp.

When you have written the source files that are needed to create a shared
library, you must write and execute a makefile that compiles your source
files into object code files from which a shared library can be built.

For an example of a shared library makefile, see “Makefiles” later in this
chapter.

Writing a shared library

To write a shared library, you do not need to do anything special with the
source code. However, you do need to create an exports file, as described in
“Writing an .exp File” later in this chapter.

You can also use any of the many utility functions and classes that are
supplied with the ASLM to add extra power and functionality to your
programs. The sample programs in the ASLM Examples disk demonstrate
what you can do with the collection of ASLM utility functions and classes.

After you have written the source files, you must use the proper tools to
build the shared library. This is described in the next section.

5-2 Chapter 5 / Writing and Building Shared Libraries

Building a shared library

Figure 5-1 illustrates the process of building a shared library. To build a
shared library, you must provide two input files to the
BuildSharedLibrary script (the library builder):

An input object file (an object file named with the suffix .o) from which
a shared library can be created. In Figure 5-1, the input object file is
created by compiling XXLibrary.c, which includes XXLibrary.h. When
you have multiple source files that make multiple object files, you can
use the MPW Lib command to create one input object file.

An exports file, called XXLibrary.exp in Figure 5-1, which contains
important information about a particular shared library, including a
special kind of declaration called a library definition. A library
definition usually contains the library’s library ID and version number,
along with other kinds of information about the library—for example,
information about the pool from which the shared library allocates
memory. More information about the exports file is provided in
“Writing an .exp File” later in this chapter.

The two files in Figure 5-1, XXLibrary.h and XXLibrary.cl.o, are files that
are also needed to build a client. These two files also appear in Figure 4-1,
“Building a Client,” in Chapter 4, “Writing and Building Clients.”

The XXLibrary.c file is the source code for the implementation of the
library. The XXLibrary.h file is the same header file shown earlier in
Figure 4-1. A shared library header file is an interface file that contains the
declarations for classes and functions exported by the shared library. This
file is used by both the shared library source files and the client’s source
file.

The XXLibrary.cl.o file shown in Figure 5-1 is the same client object file
shown earlier in Figure 4-1. The client object file is a file that contains the
stubs that will dynamically link clients to your shared library. The client
object file must be linked with the client if the client calls any exported
function or creates any objects implemented in the library. The exception
to this is clients that use NewObject to create objects and
GetFunctionPointer to call functions in function sets. These clients do
not need to link with the client object file. Also, a shared library must link
with its own client object file if it exports any classes.

Building a shared library 5-3

When you build a shared library, two output files are generated; a shared
library file and a client object file:

The shared library file that is produced during the build process is an
actual shared library that can be placed in the Extensions folder. The
shared library file is always built using model far.

Client object files are files to which clients of a shared library must link.
A client object file usually has a filename that ends with the suffix .cl.o
or .cln.o, depending on whether the clients linking with your library will
be model near clients (.cln.o) or model far clients (.cl.o). You must
build a model far client object file if you want to let model far clients
use your library, or if your library exports C++ classes. You must build a
model near client object file if you want to let model near clients use
your library.

Figure 5-1 Building a shared library

5-4 Chapter 5 / Writing and Building Shared Libraries

Build utilities

The Tools folder on the ASLM Developer Tools disk contains four utilities
that you use to build a shared library: two MPW Tools and two MPW
scripts. Before using these utilities, the two scripts must be placed in the
MPW scripts folder and the two tools in the MPW tools folder. These are
the four utilities:

The BuildSharedLibrary script is an MPW script that builds a shared
library and a client object file from an input object file and an exports
file. The BuildSharedLibrary script calls the LibraryBuilder tool.

The LinkSharedLibrary script is an MPW script that links a shared
library. You can choose to use LinkSharedLibrary or
BuildSharedLibrary to do your linking. You must use the
LinkSharedLibrary script when you want to build two or more shared
libraries with circular dependencies (libraries that depend on each
other’s client object files).

The LibraryBuilder tool is an MPW tool that is executed by the
BuildSharedLibrary script. The LibraryBuilder tool creates an
interim script that is used in the build process, and also creates an interim
file called an initialization file. It uses these files, along with the input
object file and the exports file that you provide, to create a shared
library file and client object files. The LibraryBuilder tool does most
of the work when you build a shared library.

The CreateLibraryLoadRsrc tool is an MPW tool that allows ASLM
clients and libraries to create a resource that contains information about
the function sets and classes they depend on. The LoadLibraries
routine uses this resource to preload all libraries on which a client is
dependent.

Using BuildSharedLibrary

To build a shared library, you should make sure that all the modules in the
object file you are using were built using model far. Then make sure that
the LibraryBuilder tool is placed in your MPW Tools folder, and run the
BuildSharedLibrary script.

Using BuildSharedLibrary 5-5

The syntax of the BuildSharedLibrary command is:

BuildSharedLibrary InputObjectFile [-y ScratchPath]

-exp InputExportFile [-far OutputFarClientObjectFile]

[-near OutputNearClientObjectFile] [-macsbug]

[-privateFar OutputFarPrivateFile]

[-privateNear OutputNearPrivateFile] [-lib LibraryObjectName]

[-obj OutputObjectBaseName] [-restype codeResourceType]

[-resid n] [-thinkC] [-map MapFileName] [-sym SymbolOption]

[-symfile SymFileName] [-w1] [-w2] [-w#] [-p] [-v] [-c] [-e]

[-help] [-noMerge] [-noVirtualExports] [-keepClientFiles]

[-i IncludePath] [ObjectFilesToLinkWith...]

[-link LinkerOptions] [-logout OutputLogFileName]

[-log InputLogFileName] [-dolog]

where:

InputObjectFile

The first parameter on the command line that is not preceded by a hyphen
(-) is the name of the input object file—that is, an object file (which may be
the output of an MPW Lib command) that you want to convert into a
shared library. The input file itself is not affected by this command. This
parameter is mandatory.

It is best for this object file to include only the implementation of classes
and functions you export. Other routines that the exported classes and
functions depend on can be placed in object files specified with the -link
or ObjectFilesToLinkWith parameters. Although this procedure is not
required, it will help speed up builds and you should definitely avoid using
Lib to combine LibraryManager.o with the InputObjectFile.

-y ScratchPath

This optional parameter specifies the path name of a scratch folder for all
temporary files created during the build process. If you do not specify a
scratch path, the BuildSharedLibrary script places scratch files in the
folder specified by the MPW variable {TempFolder}. If no
{TempFolder} variable is defined, the BuildSharedLibrary script uses
the path name specified by the MPW variable {CPlusScratch}. If neither
of these variables is defined, scratch files are placed in the current
directory.

-exp InputExportFile

This mandatory parameter specifies the name and path of your exports file.
Normally, this file is named LibraryName.exp.

5-6 Chapter 5 / Writing and Building Shared Libraries

-far OutputFarClientObjectFile

This optional parameter allows you to link model far clients with your
shared library. The -far parameter specifies the path name of the client
object file that is generated by the build process (a file with a name that
ends with the suffix .cl.o). If your library exports C++ classes, you must use
the far parameter and link your shared library with the model far client
object file that is created. Otherwise, link errors are generated. Specifically,
references to constructors and destructors of exported classes will be
unresolved. You can use the -far option and the -near option in the
same command.

Note: -near and -far merely specify the kinds of clients that can link
with your library. They do not affect the library itself; shared libraries are
always built using model far.

-near OutputNearClientObjectFile

This optional parameter allows you to link model near clients with your
shared library. The -near parameter specifies the path name of your client
object file (a file with a name that ends with the suffix .cln.o). Model near
clients of your shared library must link with this file. You can use the
-near option and the -far option in the same command.

Note: -near and -far merely specify the kinds of clients that can link
with your library. They do not affect the library itself; shared libraries are
always built using model far.

-macsbug

This optional parameter places MacsBug symbols in the client object file. It
is useful when you are trying to debug your shared library or client. Stubs
for the exported routines will have MacsBug symbols that start with stub_.
The debug versions of LibraryManager.o are built in this manner.

-privateFar OutputFarPrivateFile

This optional parameter specifies an output object file for model far private
stubs. For more information, see the description of the private= option
for the Class and FunctionSet declarations in “Writing an .exp File”
later in this chapter.

-privateNear OutputNearPrivateFile

This optional parameter specifies an output object file for model near
private stubs. For more information, see the description of the private=
option for the Class and FunctionSet declarations in “Writing an .exp
File” later in this chapter.

Using BuildSharedLibrary 5-7

-lib LibraryName

This optional parameter specifies the name and path of the shared library
file that the build process produces. If -lib is missing,
BuildSharedLibrary creates only the client object files, and you need to
invoke the LinkSharedLibrary script later in order to actually create the
shared library. This mode is useful when you have two or more shared
libraries that are interdependent.

This library file normally contains two resource types: a 'libr' resource,
which contains a dictionary of the classes and function sets that your
library exports, and your library’s actual code segment resources
(normally 'code' resources). It may also contain a third resource type: a
'libi' resource, which contains a map of all of the function sets and
classes on which your library depends. If your library has no external
dependency, this resource is missing.

The BuildSharedLibrary command creates only one shared library file
at a time, but if you use different resource types for the code segments in
your library, and unique numbers for your 'libr' resources, you can use
the MPW Rez tool to rez multiple libraries together into a single library
file. (For more information related to this topic, see the -restype and
-resid parameters, below).

-obj ObjectFileBaseName

This optional parameter specifies the name and path for intermediate files.
If this parameter is missing, the intermediate files are deleted once the
library is created. The advantage of using this parameter is that if one of
the client files that your library depends on changes, you only need to
relink the library. However, if these files are not available,
BuildSharedLibrary must do a complete rebuild of your library, which
takes a longer time. You never need to deal with these files directly. They
are only used by BuildSharedLibrary and LinkSharedLibrary.

There are four intermediate files created, and they are named by appending
the following extension to your ObjectFileBaseName:

.lib.o A copy of InputOjbectFile with some module names
changed

.libr.r Resource to rez with the shared library including the
'libr', 'libi', and library code resources

.deps File used to create the 'libi' resource

.init.o Initialization code for the library

5-8 Chapter 5 / Writing and Building Shared Libraries

-restype codeResourceType

This optional parameter allows you to specify a resource type for your
shared library’s code resources. The default code resource type of a shared
library is 'code'. The -restype parameter is useful only if you plan to
rez multiple libraries together into a single library file.

-resid n

With this optional parameter, you can give your shared library’s 'libr'
resource a resource ID number. The default resource ID number of a
'libr' resource is 0. The -resid parameter is useful only if you plan to
rez multiple libraries together into a single library file. This resource ID is
also used if a 'libi' resource is generated for the library.

-thinkC

This optional parameter specifies that the InputObjectFile was compiled
with the Symantec C or C++ compilers for MPW.

-map MapFileName

This optional parameter generates a linker map file. It must be passed as a
LinkSharedLibrary parameter and not as a linker parameter in the
-link section. This parameter is only used if you also specify the -lib
parameter. Otherwise use it with LinkSharedLibrary instead.

-sym SymbolOption

This optional parameter causes symbols to be placed in the symbol file
specified with the -symfile option.

-symfile SymFileName

This optional parameter causes any SYM file created by linking the shared
library to be copied to the specified path.

-w1, -w2, and -w#

These optional parameters are used to specify the level of warning you
want produced.

-p (or -progress)

This optional parameter causes the BuildSharedLibrary script to run in
a progress mode, generating a brief progress report. It is useful for
debugging build problems.

Using BuildSharedLibrary 5-9

-v (or -verbose)

This optional parameter turns on a verbose mode during the build process.
The verbose mode provides more detailed progress information than the
progress mode. The report generated in verbose mode lists the names of
classes and global functions that were not exported. It is useful for
debugging build problems.

-c

This optional parameter informs the LibraryBuilder that your object
files contain no code written in C++. This parameter forces
BuildSharedLibrary to match function names exactly when function
names contain two consecutive underscore characters (_ _). C users can
always safely use this parameter, but they only need to use it if a function
to be exported contains two consecutive underscore characters.

This option is needed because normally BuildSharedLibrary only does
partial matching of function names up to the first occurrence of two
consecutive underscore characters. This is because C++ mangles function
names so parameter information can be encoded in the function name.
Mangled function names always start with the normal function name
followed by two consecutive underscore characters and then the encoded
parameter information. When the -c option is not used,
BuildSharedLibrary only compares the part of the function name
before the two consecutive underscore characters.

-e

This optional parameter forces BuildSharedLibrary to completely
rebuild the library. By default, BuildSharedLibrary checks whether the
modification date of the object file has changed since the library was last
built, and does not reprocess the object file if the modification date has not
changed.

-help

This optional parameter outputs a detailed list of all of the options to
BuildSharedLibrary.

-noMerge

This optional parameter prevents the link of the shared library from
merging all of the segments used by the MPW (or Symantec C/C++)
libraries into the Main code segment.

5-10 Chapter 5 / Writing and Building Shared Libraries

-noVirtualExports

Use this optional parameter if you do not want stubs generated for virtual
functions. This is easier than changing all your class export declarations to
include flags=noVirtualExports. You can still explicitly export some
virtual functions by using exports=. Also, you will still be able to make
virtual function calls through the object’s v-table.

-keepClientFiles

This optional parameter ensures that BuildSharedLibrary does not
change the modification date of client objects files if their contents have
not changed. It is explained in more detail in “Speeding Up Builds” later
in this chapter.

-i IncludePath

This optional parameter, which can occur multiple times on the command
line, supplies directory path names where the BuildSharedLibrary script
should search for files that you have included in your exports file using the
#include directive. You must provide a separate -i option for each search
path you specify.

ObjectFilesToLinkWith

When all parameters that start with hyphens (-) have been evaluated, any
other words that appear on the command line are assumed to be the names
of object files. The first filename that appears on the command line is
assumed to be the input object file. All other filenames are assumed to be
the names of object files that must be linked with your shared library. For
more information related to this topic, see the InputObjectFile entry
earlier in this list.

-link LinkerOptions

This optional parameter causes everything that appears after it to be passed
verbatim to the Link command that links your shared library. The -link
parameter can be useful when you want to pass commands on to Link,
such as commands to merge segments.

When BuildSharedLibrary links your shared library, it automatically
merges all code segments used by MPW libraries into the Main code
segment. If this is not what you want, you can override this feature by
specifying a linker option with the -link option.

Using BuildSharedLibrary 5-11

-logout OutputLogFileName

The logout switch specifies the output log file. The output log file is an
ASCII text file that shows where various functions, v-tables, and so on, are
being exported.

-log InputLogFileName

The log switch specifies an input log file. The log file is used to control the
generation of the new library.

-dolog

The dolog switch actually enables the logging operations. (This is so that
you can specify -logout or -log in your makefile, but nothing is done
until you alias BuildSharedLibrary to be BuildSharedLibrary
-dolog, or something similar.)

Building a shared library with circular dependencies

If you want to build a shared library that has a circular dependency with
another library, you cannot build your shared library until you have
created the client object file of the other shared library, and you cannot
build the other shared library until you have created the client object file
from the first library. (A circular dependency exists when there are two or
more shared libraries that depend on each other’s client object files.)

To build shared libraries with circular dependencies, you must split the
build of your shared library into two phases. The first phase creates all the
client object files that the build process requires. The second phase links
the shared libraries.

Creating client object files and intermediate files

To carry out the first phase, you need to run the BuildSharedLibrary
script as you normally would except omit the -lib, -link, and
ObjectFilesToLinkWith parameters. This will create the object files and
some intermediate files that will be needed to link the shared library, but it
does not link the shared library. Intermediate files are described with the
-obj option in the previous section.

5-12 Chapter 5 / Writing and Building Shared Libraries

Linking the shared library

After you create the client object files and intermediate files, you must run
the LinkSharedLibrary script to link your shared library.

The syntax of the LinkSharedLibrary command is:

LinkSharedLibrary -lib LibraryName -obj InputObjectBaseName

[-symfile SymFileName] [-map MapFileName]

[-noMerge] ObjectFilesToLinkWith... [-link LinkerOptions]

The -link, -map, -noMerge, and ObjectFilesToLinkWith parameters
are the same as for BuildSharedLibrary. These are descriptions of the
options and parameters that you can place on the LinkSharedLibrary
command line:

-lib LibraryName

This parameter specifies the name and path of the shared library to be built
and is the same as the -lib in BuildSharedLibrary. Either specify -lib
with BuildSharedLibrary, in which case you will not be using
LinkSharedLibrary, or omit it from BuildSharedLibrary and specify
it with LinkSharedLibrary.

-obj InputObjectBaseName

This parameter must be the same as the file specified by the -obj
ObjectFileBaseName parameter of the BuildSharedLibrary
command.

-symfile SymFileName

This optional parameter specifies where to put the .SYM file. You must also
use -sym on or -sym on,nolines in the -link section. For more
information see “Creating Symbol Files” later in this chapter.

Creating symbol files

The BuildSharedLibrary and LinkSharedLibrary commands use the
switch, -symfile SymFileName. If your link creates a .SYM file, it will be
copied to the file SymFileName.

If you are using BuildSharedLibrary to link your library, you must also
pass -sym on or -sym on,nolines to BuildSharedLibrary. Do not
pass the -sym option to the linker by including it after the -link option.
You should also use the -symfile option with BuildSharedLibrary.

Creating symbol files 5-13

If you are using LinkSharedLibrary to link your library then you
should pass -sym on or -sym on,nolines after the -link option and
include it with the options passed to BuildSharedLibrary. You also need
to use the -symfile option with LinkSharedLibrary, but not
BuildSharedLibrary.

For an example of creating a .SYM file using just BuildSharedLibrary,
look at the ExampleLibrary makefile. For an example of creating a .SYM
file using LinkSharedLibrary, look at the Inspector makefile. In both
cases the MPW {SymbolOption} variable should be set to -sym on or
-sym on,nolines to produce a .SYM file. It will not create one by
default. Notice that there is no harm in using the -symfile option even if
you are not going to produce a symbol file.

Makefiles

You can learn how to write makefiles that build shared libraries and clients
by examining the makefiles for the example programs that are supplied
with the ASLM. The example programs are provided in a number of
folders as described in Appendix C, “Building Examples.”

A makefile example

Listing 5-1 is a makefile that builds a client named CSample and an
associated shared library named CSampleLibrary. You can find the
makefile in the CSample folder inside the Sample Apps folder. The
makefile builds the shared library and its client from source files named
Sample.h, SampleLibrary.h, Sample.c, SampleLibrary.c, Sample.r,
SampleLibrary.exp, and SampleLibrary.r.

5-14 Chapter 5 / Writing and Building Shared Libraries

Listing 5-1 Makefile for the sample client and its shared library

#--

File: Makefile

#

Contains: This makefile creates CSampleLibrary and its client

application called CSample.

#

Build Command: BuildProgram CSample

#

Copyright: © 1993 by Apple Computer, Inc., all rights reserved.

#

#

SRC = :Sources:

OBJ = :Objects:

BLT = :Built:

SLMCIncludes = {SLMInterfaces}CIncludes:

SLMRIncludes = {SLMInterfaces}RIncludes:

#--

TARGETS

#--

TARGETS = "{OBJ}SampleLibrary.cl.o" ∂
"{BLT}CSampleLibrary" ∂
"{BLT}CSample"

#--

DEFAULT RULES

#--

.c.o ƒ .c

Echo "∂t∂tCompiling {Default}.c"
C {DepDir}{Default}.c -o {Targ} {COptions}

#--

COMPILER/ASSEMBLER OPTIONS

#--

AOptions = -model far -case on

COptions = -model far -i {SRC} -mbg on -sym full,nolines -mf -b2 -opt full ∂
-i "{SLMCIncludes}"

Continued on following page

Makefiles 5-15

#--

DEPENDENCIES

#--

"{OBJ}" ƒ "{SRC}"

CSample ƒ {TARGETS}

#--

CREATE SAMPLE SHARED LIBRARY

#--

"{OBJ}SampleLibrary.cl.o" ƒ "{OBJ}SampleLibrary.RSRC"

SetFile -m . {Targ}

"{OBJ}SampleLibrary.RSRC" ƒ "{OBJ}SampleLibrary.c.o" "{SRC}SampleLibrary.exp"

BuildSharedLibrary ∂
{OBJ}SampleLibrary.c.o ∂
-macsbug ∂
-lib "{OBJ}SampleLibrary.RSRC" ∂
-obj "{OBJ}CSampleLibrary" ∂
-far "{OBJ}SampleLibrary.cl.o" ∂
-exp "{SRC}SampleLibrary.exp" ∂
-i "{SRC}" -i "{SLMCIncludes}" -i "{CIncludes}" -p ∂
"{SLMLibraries}LibraryManager.o" ∂
"{Libraries}Runtime.o"

"{BLT}CSampleLibrary" ƒ {SRC}SampleLibrary.h {OBJ}SampleLibrary.c.o

 {OBJ}SampleLibrary.RSRC

Echo "∂t∂tRezzing {Targ}"
Rez -t libr -c OMGR -s "{OBJ}" ∂

-i "{SLMRIncludes}" -i "{SRC}" ∂
-o {Targ} "{SRC}SampleLibrary.r"

SetFile -a ib {Targ}

#--

CREATE SAMPLE APPLICATION(CLIENT)

#--

"{BLT}CSample" ƒƒ {SRC}Sample.h {OBJ}Sample.c.o {OBJ}SampleLibrary.cl.o

Echo "∂t∂tLinking {Targ}"
Link -w -model far ∂

"{OBJ}Sample.c.o" ∂
"{SLMLibraries}LibraryManager.o" ∂
"{Libraries}Runtime.o" ∂
"{Libraries}Interface.o" ∂
"{OBJ}SampleLibrary.cl.o" ∂
-o {Targ}

SetFile {Targ} -t APPL -c 'MOOS' -a B

5-16 Chapter 5 / Writing and Building Shared Libraries

"{BLT}CSample" ƒƒ {SRC}Sample.h {SRC}Sample.r {OBJ}Sample.c.o

{OBJ}SampleLibrary.cl.o

Echo "∂t∂tRezzing {Targ}"
Rez -i "{SRC}" -rd -o {Targ} "{SRC}"Sample.r -append

"{OBJ}SampleLibrary.c.o" ƒ "{SRC}SampleLibrary.h"

"{OBJ}Sample.c.o" ƒ "{SRC}SampleLibrary.h" "{SRC}Sample.h"

Makefile example contents

Here is a list of the contents of each file that the makefile in Listing 5-1
processes:

Sample.h contains declarations for the sample application.

SampleLibrary.h contains the declarations of the functions exported by
the shared library.

Sample.c contains client source code.

SampleLibrary.c contains the implementations of functions exported by
the shared library.

SampleLibrary.exp contains the library definition for the shared library,
and the definitions of any function sets that are exported.

SampleLibrary.r is the resource definition file for resources used by the
shared library.

Sample.r is the resource definition file for resources used by the client.

SampleLibrary.RSRC is the compiled and linked implementation of the
shared library.

CSampleLibrary is the shared library that is placed in the Extensions
folder. CSampleLibrary contains the resources in SampleLibrary.RSRC.

CSample is the client application that uses CSampleLibrary.

Executing a shared library makefile

To execute a shared library makefile, execute the following command from
the directory of the makefile:

make -f makefilename > make.out

make.out

Makefiles 5-17

Writing an .exp file

This section explains how to write the export definition (.exp) file needed
to create a shared library. The .exp file defines any classes and function
sets that you want to export from your shared library.

An exports file can contain comments (written in C-language comment
style), #include directives, #define directives, a Library declaration, and
any number of FunctionSet and Class declarations.

Library declaration

The Library declaration in a shared library’s exports file contains
important information about the library, including the library’s library ID
and the library’s version number. It can also contain other parameters for
configuring the library.

The following code fragment is an example of a Library declaration:

#define kLightLibID "appl:sample$TrafficLight,1.1"

Library {

 id = kLightLibID;

 version = 1.0b1;

 memory = client;

};

Syntax

The syntax of a full Library declaration is:

Library

{

id = <LibraryIDString>; /* required*/

version = <LibraryVersion>; /* required*/

initproc = <ProcName>; /* optional*/

cleanupProc = <ProcName>; /* optional*/

memory = <MemoryOption>; /* optional*/

heap = <HeapType>; /* optional*/

clientdata=<ClientData Option>; /* optional*/

flags = <FlagOptions>; /* optional*/

};

5-18 Chapter 5 / Writing and Building Shared Libraries

Field descriptions

The fields in a Library declaration have the following descriptions:

id = LibraryIDString

This declaration defines the library ID of your shared library. A library ID
normally takes the form xxyy$Name, as shown in the code fragment that
appears above. It also should include the library’s version number to
ensure that each library version will have a unique ID. See “TLibraryID”
in Chapter 9, “Utility Classes and Member Functions,” for more details on
the format of a library ID. The LibraryIDString parameter is a quoted
string, but it may include constants created with the #define directive as
part of its definition, provided your exports file includes the header files
that contain definitions that resolve the constants.

When there are multiple shared libraries with the same library ID, the
ASLM uses only one shared library. The others are marked as duplicates
and their contents are ignored.

version = LibraryVersion

This declaration contains the version of your shared library. Write the
version number in the standard Apple version number form: #.#[.#],
followed by either nothing or [dabf]# to specify the library’s release
status—for example, 1.0b2 or 1.1.2d5. The version number may be a
constant created with the #define directive.

initproc = ProcName

This declaration lets you specify the name of a C function that is called
immediately after your shared library is loaded and initialized. The
function that is specified in this declaration takes no parameters and returns
no value. The function can be in the A5Init segment; in this case, the
function is unloaded from memory after the library is loaded and
initialized.

cleanupProc = ProcName

This declaration lets you specify the name of a C function to be called just
before your shared library is unloaded from memory. The function that is
specified in this declaration takes no parameters and returns no value. The
function must not be in the A5Init segment.

Writing an .exp file 5-19

memory = client

This declaration specifies that when the C++ new operator is used to
allocate memory in your shared library, the memory is allocated from the
current client’s pool. If no memory parameter is specified, memory =
client is the default. For more information on client memory pools, see
“Memory Management Classes” in Chapter 8, “ASLM Utility Class
Categories.”

memory = local

This declaration specifies that any memory-allocation operations carried
out by the C++ new operator in the library being built will use the library’s
local pool. For more information on local memory pools, see “Memory
Management Classes” in Chapter 8, “ASLM Utility Class Categories.”

heap = default || temp || system || application [,hold][,#]

This tells the ASLM where you want your library to be loaded into
memory. Normally, you should not specify this attribute unless you have a
very good reason. However, if your library must run under virtual memory
and cannot move in memory (for instance, a network driver), you can
specify the hold attribute to inform the ASLM that you require the
memory where your library is loaded to be “held” under virtual memory.
Also, you can optionally specify the size of the heap that you want your
library to load into (this option only makes sense for default or temp).
This is useful if you are going to explicitly load and unload library code
segments. See “Support for Explicit Segment Loading and Unloading”
later in this chapter.

For more information on heap, see “Library Heap Support” later in this
chapter.

clientData = StructureName || #

This tells the ASLM that you require per-client static data. You can specify
either a number of bytes or the name of a structure. Then whenever you
call GetClientData, you will be returned a structure of the specified size.
The first time the structure is created for a given client, it will be zeroed.
After that, you will get back the structure corresponding to your current
client. If you specify a structure name, the object file must have the type
information available to determine the size of the structure, or an error will
be generated. To add type information to the object file, make sure the files
are compiled with -sym on or -sym on,nolines. For more information,
see “Per Client Data” in Chapter 7, “ASLM Utilities.”

5-20 Chapter 5 / Writing and Building Shared Libraries

flags = segUnload || !noSegUnload

This flag warns that clients may unload segments of your shared library.
Normally, the ASLM resolves all jump table references at library load time
and removes the jump table from memory. This flag overrides this
behavior. For more information, see “Support for Explicit Segment
Loading and Unloading” later in this chapter.

flags = noSegUnload || !segUnload

This flag specifies that the segments of the shared library will not be
unloaded by the client. This is the default setting of the segUnload flag.
The advantage of this option over segUnload is that your library uses less
memory when loaded (because the jump table is not needed) and calls that
would normally go through the jump table are faster. The disadvantage is
that it preloads all library code segments.

flags = preload

This flag causes the shared library to be loaded when the ASLM is loaded
at boot time. You can also specify noSegUnload or segUnload when
using this flag. For more information, see “Keeping Preloaded Libraries
Loaded” later in this chapter.

flags = loaddeps

This flag indicates that the ASLM should load all dependent libraries
whenever this library is loaded (based on the information in the 'libr'
resource created during the build process). Using this flag guarantees that
all libraries on which your library depends, exist and are loaded. It is
equivalent to calling LoadLibraries(false, false) within your
initproc except that you are not required to call UnloadLibraries to
allow your library to unload.

flags = forcedeps

This flag acts just like the loaddeps flag, but it also forces all of the code
segments in the dependent libraries to be loaded into memory. It is
equivalent to calling LoadLibraries(true, false) within your
initproc, except that you are not required to call UnloadLibraries to
allow your library to unload.

Writing an .exp file 5-21

flags = stayloaded

This flag forces your library to stay loaded. It requires a call to
UnloadLibraries from within your library to allow your library to
unload. It is equivalent to calling LoadLibraries(doForce, true)
within your initproc. The doForce parameter is true if the forcedeps
flag is set, otherwise it is false.

flags = system6 || !system7

This indicates that your library should not be registered if it is installed on
a Macintosh running System 7.x. No clients will be able to see any of the
classes or function sets in your library. This flag is useful if you have two
different versions of your library—one for System 6.x and one for
System 7.x.

flags = system7 || !system6

This indicates that your library should not be registered if it is installed on
a Macintosh running System 6. No clients will be able to see any of the
classes or function sets in your library. This flag is useful if you have two
different versions of your library—one for System 6 and one for System 7.

flags = vmOn || !vmOff

This indicates that your library should not be registered if it is installed on
a Macintosh with virtual memory (VM) turned off. No clients will be able
to see any of the function sets or classes in your library. This flag is useful
if you have two different versions of your library—one to use if virtual
memory is on and one to use if virtual memory is off.

flags = vmOff || !vmOn

This indicates that your library should not be registered if it is installed on
a Macintosh with virtual memory (VM) turned on. No clients will be able to
see any of the function sets or classes in your library. This flag is useful if
you have two different versions of your library—one to use if virtual
memory is on and one to use if virtual memory is off.

flags = fpuPresent || !fpuNotPresent

This indicates that your library should not be registered if it is installed on
a Macintosh that does not have a floating-point unit (FPU). No clients will
be able to see any of the function sets or classes in your library. This flag is
useful if you have two different versions of your library—one to use with
an FPU and one to use without an FPU.

5-22 Chapter 5 / Writing and Building Shared Libraries

flags = fpuNotPresent || !fpuPresent

This indicates that your library should not be registered if it is installed on
a Macintosh that has a floating-point unit (FPU). No clients will be able to
see any of the classes or function sets in your library. This flag is useful if
you have two different versions of your library—one to use with an FPU
and one to use without an FPU.

flags = mc68000 || mc68020 || mc68030 || mc68040

This indicates that your library should only be registered if it is installed on
a Macintosh that has the specified processors. You may specify more than
one processor. For example, flags = mc68000, mc68020 will cause
your library to be registered only on 68000 or 68020 processors.

flags = !mc68000 || !mc68020 || !mc68030 || !mc68040

This indicates that your library should not be registered if it is installed on
a Macintosh that does not have one of the specified processors. You may
specify more than one processor. For example, flags = !mc68000,
!mc68020 will cause your library to be registered only on Macintoshes
with a 68030 or higher processor. It is an error to mix not terms (!) with
non-not terms—for example, flags = mc68000,!mc68020.

Class declarations

The Class declarations in an exports file identify classes that you want
your shared library to export. The following code fragment is an example
of a Class declaration:

Class TLightClass {

 flags = newobject;

};

Syntax

The syntax of a full Class declaration is:

Class <ClassName>

{

version = <ClassVersion>;

flags = preload, newobject, noVirtualExports,

 noMethodExports, noExports;

exports = <ListOfFunctionNames>;

dontExport= <ListOfFunctionNames>

private = * | <ListOfFunctionNames>

};

Writing an .exp file 5-23

All fields in the above code fragment except the <ClassName> field are
optional. Therefore, the smallest possible class declaration has this syntax:

Class ClassName;

A #define must exist for your class’s class ID and should be of the form
kClassNameID. See “TClassID” in Chapter 9, “Utility Classes and
Member Functions,” for more details on class ID’s. Also, your exports file
must #include the files that contain the declaration of the C++ class and
its parent classes.

Field descriptions

The fields for the class declaration have the following descriptions:

ClassName

The name of the class that you want to export.

version = ClassVersion

This declaration defines the version of the class. The version number
should have the standard Apple version number form: #.#[.#]. The version
number that you use in this field may not include any special release
information (such as b2). It can be a constant defined in a #define
declaration. Also, the version number can be made up of a pair of version
numbers separated by either three dots (...) or an ellipse (option-;)
character. This is called a version range; it is used to specify the lowest
version number that the class being defined is backward-compatible with
and to specify the current version number of the class. If you do not
specify a version number, the version number contained in the class’s class
ID is used. If the class ID does not specify a version number then it is
assumed that the version number of the class is the same as the version
number specified in the Library declaration. See Appendix D,
“Versioning,” for more information on versioning and “TClassID” in
Chapter 9, “Utility Classes and Member Functions,” for more information
on class IDs.

flags = newobject

This flag specifies that clients are allowed to create an instance of the class
with the NewObject functions, using the class’s class ID. A warning is
issued at build time if this flag is set and one of the following is true:

The class being defined does not have a default constructor.

The class is abstract (has a pure virtual method).

The class size cannot be determined from the symbol information in the
object file.

5-24 Chapter 5 / Writing and Building Shared Libraries

flags = preload

This flag specifies that an instance of the class should be created whenever
the library is loaded. This flag implies the newobject flag. A warning is
issued at build time if this flag is set and one of the following is true:

The class being defined does not have a default constructor.

The class is abstract (has a pure virtual method).

The class size cannot be determined from the symbol information in the
object file.

See “Keeping Preloaded Libraries Loaded” later in this chapter.

flags = noExports

This flag specifies that no member functions of this class are to be
exported. A client can use this class only with the NewObject function if
this flag is set and you do not export constructors using the exports=
option. Also, a client can call only virtual functions in the class, unless you
explicitly export methods using the exports = option described below.

flags = noVirtualExports

This flag specifies that no virtual functions can be exported for this class.
This restriction effectively prevents subclasses in separate libraries from
explicitly calling inherited functions. It also prevents the calling of virtual
functions for stack objects unless the stack object is first dereferenced and
cast to a pointer. It does allow normal virtual function calls to be made
since they go through the v-table and do not need to be exported. You can
explicitly export some virtual functions using the exports = option
described below.

flags = noMethodExports

This flag specifies than no member functions of this class are to be
exported, with the exception of the destructor and the constructors. This
restriction effectively prevents the class from being subclassed from an
application and also prevents subclasses in separate libraries from explicitly
calling inherited functions. If also prevents the calling of virtual functions
for stack objects unless the stack object is first dereferenced and cast to a
pointer.

Writing an .exp file 5-25

exports = ListOfFunctionNames

This field contains a comma-separated list of member functions that you
want to export from the class being defined. It is normally used to override
the noExports, noMethodExports, or noVirtualExports flags for
individual methods. All you must specify in this field is the function’s
name—unless it is a Pascal function, in which case, you must precede the
function’s name with the keyword pascal. The BuildSharedLibrary
command regards all overloaded variants of a member function as the same
function, and therefore exports them all. To export operators, you can use
the C++ syntax for specifying operators (for example, operator+=). To
export constructors, you can use the name of the class. To export
destructors, you can use the standard format ~NameOfClass.

By default, static methods are not exported. To export static methods,
export them in a function set. If you want to export them using the
exports= option, you must omit the keyword static.

dontExport = ListOfFunctionNames

This field contains a comma-separated list of member functions that you
do not want to export from the class being defined. All you must specify in
this field is the function’s name—unless it is a Pascal function, in which
case, you must precede the function’s name with the keyword pascal. The
BuildSharedLibrary command regards all overloaded variants of a
member function as the same function, and therefore will not export any of
them. To prevent operators from being exported, use the C++ syntax for
specifying operators (for example, operator+=). To prevent constructors
from being exported, use the name of the class. To prevent destructors
from being exported, use the standard format ~NameOfClass.

private = ListOfFunctionNames

This declares a comma-separated list of member functions that you want to
export from the class privately. Any member functions specified in this list
are exported, but go into a separate client object file (defined by the
-privateNear and/or -privateFar command-line options to
BuildSharedLibrary).

5-26 Chapter 5 / Writing and Building Shared Libraries

private = *

This declares that all member functions that can be exported should be
exported privately. If you have set noMethodExports, then all virtual
methods are exported privately that are not either explicitly exported
publicly by the exports= option or that are specifically excluded from
being exported by a dontexport= option. If you have set
noVirtualExports, then all non-virtual member functions are exported
privately that are not either explicitly exported publicly by the exports=
option or specifically excluded from being exported by a dontexport=
option. If you have neither flag set, than all member functions of the class
are exported privately that are not either explicitly exported publicly by the
exports= option or specifically excluded from being exported by a
dontexport= option. It is an error to use this switch if the noExports flag
is set.

FunctionSet declarations

To export functions from your shared library, use FunctionSet
declarations in the exports file. The following code fragment is an example
of a FunctionSet declaration:

#define kLightFunctionSet "appl$TrafficLightFSet,1.1"

FunctionSet LightFSet {

 id = kLightFunctionSet;

 exports = NewTrafficLight,

 FreeTrafficLight,

 GetLight,

 SetLight,

 DrawLight,

 AdjustTrafficLightMenus,

 DoTrafficLightMenuCommand;

};

Writing an .exp file 5-27

The following code fragment is an example of a function set for functions
written in Pascal:

#define kLightFunctionSet "appl$TrafficLightFSet,1.1"

FunctionSet LightFSet {

 id = kLightFunctionSet;

 exports = pascal NewTrafficLight,

 pascal FreeTrafficLight,

 pascal GetLight,

 pascal SetLight,

 pascal DrawLight,

 pascal AdjustTrafficLightMenus,

 pascal DoTrafficLightMenuCommand;

};

Syntax

The syntax of a full function set declaration is:

FunctionSet <FunctionSetName>

{

id = <FunctionSetID>; /* required*/

interfaceID = <InterfaceIDString>; /* optional*/

version = <FunctionSetVersion>; /* optional*/

exports = <ListOfFunctionNames>; /* optional*/

dontexport = <ListOfFunctionNames>; /* optional*/

private = * | <ListOfFunctionNames>; /* optional*/

};

Field descriptions

The fields in a function set declaration have the following descriptions:

FunctionSet FunctionSetName

This field provides a unique name for your function set during the linking
process. This name is used in the client object file for module names
generated by BuildSharedLibrary. If the same FunctionSetName is
used by more than one function set, the client will only be able to link with
one of the function set’s client object files. For this reason you should
choose a unique name.

5-28 Chapter 5 / Writing and Building Shared Libraries

id = FunctionSetID

This declaration defines the ID of the function set. A function set ID
normally takes the form xxxx:yyyy$SomeName. It should also include the
function set’s version number. For more details on the format of a function
set ID, see “TFunctionSetID” in Chapter 9, “Utility Classes and Member
Functions.” This ID string is a quoted string, but it may include constants
created with the #define directive as part of its definition, provided you
include the header files containing the definitions that resolve the constants.
If you do not include an id = declaration in your function set declaration,
a search is made in included header files for constants (created with the
#define directive) with a name that matches kfunctionSetNameID. If
such a name is found, it is assumed to be the function set ID for the
function set. If the function set ID cannot be determined, an error occurs at
build time.

interfaceID = InterfaceIDString

This declaration establishes an interface for your function set. The format
of InterfaceIDString is the same as FunctionSetID. Normally, you
use this to specify which function sets have the same interface. You can
then use GetFunctionSetInfo to find all of the function sets with the
same interface. Combined with the GetFunctionPointer and
GetIndexedFunctionPointer functions, this allows you to choose which
function to call from among function sets with the same interface. For
more details, see “Getting Information about Function Sets” and “Calling
Functions by Name” in Chapter 7, “ASLM Utilities.”

version = FunctionSetVersion

This declaration defines the version of the function set. The version
number should have the standard Apple version number form: #.#[.#]. The
version number that you use in this field may not include any special
release information (such as b2). It can be a constant defined in #define
declaration. Also, the version number can be made up of a pair of version
numbers separated by either three dots (...) or an ellipse (option-;)
character. This is called a version range. It is used to specify the lowest
version number with which the function set is backward-compatible and to
specify the current version number of the function set. If you do not
specify a version number, the version number contained in the function
set’s function set ID is used. If the function set ID also does not specify a
version number, it is assumed that the version number of the function set is
the same as the version number specified in the Library declaration. See
Appendix D “Versioning” for more information on version numbers, and
“TFunctionSetID” in Chapter 9, “Utility Classes and Member Functions,”
for more details on the format of a function set ID.

Writing an .exp file 5-29

exports = ListOfFunctionNames

This field declares a comma-separated list of functions that you want to
export in this function set. All you must specify in this field is the
function’s name—unless it is a Pascal function, in which case, you must
precede the function’s name with the keyword pascal. If this field is
omitted, all functions in the InputObjectFile are exported automatically.

You may export a function by name by using the keyword external in
front of the function name. This allows the function to be used by
GetFunctionPointer. However, you may not export C++ class member
functions by name.

If you are exporting C++ functions, BuildSharedLibrary regards all
variants of an overloaded member function as the same function, and
therefore exports them all (unless you use the -c option on the
BuildSharedLibrary command line).

If you want to export C++ class member functions in a function set, you
should precede the name of the member function with the name of the
class, using the format ClassName::. The -c BuildSharedLibrary
option is ignored when exporting member functions and all overloaded
variants of the member function are exported. To export C++ operator
overloads, use the standard C++ syntax (for example, operator+=). To
export constructors, use ClassName::ClassName. To export destructors,
use the standard form ClassName::~ClassName.

If you want to export all member functions of a C++ class, use class
ClassName. If you want to export all static member functions of a C++
class, use static ClassName.

Exporting a class’s member functions through a function set can be useful
when the class has no constructor or destructor, or when the constructor or
destructor of the class is inline. In these cases, classes cannot be exported in
the normal way.

When exporting a static method of a class or a static function, omit the
keyword static.

You cannot export C++ global operators in a function set. You can export
C++ cast operators, but only if they are predefined. Cast operators that are
not predefined are not allowed.

5-30 Chapter 5 / Writing and Building Shared Libraries

dontexport = ListOfFunctionNames

This declares a comma-separated list of functions that you do not want to
export in this function set. It has the same syntax as the exports= option,
except that the static, class, and extern keywords are not valid.

This field is useful if you have omitted the exports= option (which causes
all functions in the InputObjectFile to be exported) and you want to
prevent certain functions from being exported.

private = ListOfFunctionNames

This declares a comma-separated list of methods that you want to export
from the function set privately. Any methods specified in this list are
exported, but go into a separate client object file (defined by the
-privateNear and/or -privateFar command-line options to
BuildSharedLibrary). If you have not defined an exports= or
dontExport= clause, then all other functions are exported publicly.

private = *

This declares that all functions that can be exported should be exported
privately. If you have not defined an exports= or dontExport= option,
then all of the functions are exported privately. If you have an exports=
option, then the functions declared there are exported publicly, and all
others are exported privately. If you have a dontExport= option, then the
functions declared there are not exported at all, and all others are exported
privately. If you have both options, those in the dontExport= option are
not exported, those in the exports= option are exported publicly, and all
others are exported privately.

Library environment flags

When you declare a library in the exports file, you can use the following
flags to define the environment that must exist for the ASLM to register the
library and its function sets and classes: vmOn, vmOff, System6, System7,
FPUpresent, FPUNotPresent, MC68000, MC68020, MC68030, and
MC68040. For example, the vmOn flag means that virtual memory must be
turned on, and System6 means that System 6 must be running. By using
these flags, you can create versions of a library that can be used in different
situations (such as one version for System 6 and another for System 7).

Library environment flags 5-31

The flags are broken up into four groups: the virtual memory group (vmOn
and vmOff), the system group (System6 and System7), the floating-point
unit group (FPUpresent and FPUNotPresent), and the processor group
(MC68000, MC68020, MC68030, and MC68040). If one or more flags from
the same group are specified, the library can be used only when the
condition specified by one of the mentioned flags exists. For example, if
you only specify MC68020 then your library will only run under the 68020
processor and no others. If you also want it to run under the 68030 then
you should also specify the MC68030 flag.

You can also specify that a library is not to be used in a particular
environment by using the construct !flagname. For example, a !MC68000
flag means the library can run on anything but an MC68000.

The individual flags are described in “Library Declaration” earlier in this
chapter.

Putting multiple libraries in a library file

Each shared library in a shared library file contains three types of
resources: a 'libr' resource, a 'libi' resource, and a set of three or
more code resources. The 'libr' resource describes the classes and
function sets in the library. The 'libi' resource describes the library’s
dependencies on other libraries. Code resources contain the
implementation of the library. Although a shared library file can contain
more than one shared library, each shared library has its own 'libr' and
'libi' resources and its own set of code resources.

Usually you use the MPW Rez command to create a library file that
contains multiple libraries. You must include each 'libr' resource, giving
each 'libr' and 'libi' resource a unique ID if there is more than one.
You will also need to give each code resource type a unique type. The
resource ID and code resource type must be specified when building the
library. They are BuildSharedLibrary options. Do not change the
resource ID of the 'libr' or 'libi' resource when using Rez to create
your shared library file. Also, do not change the resource type of the code
resources.

5-32 Chapter 5 / Writing and Building Shared Libraries

The LibraryManager.o file

The LibraryManager.o file illustrated in Figure 4-1, “Building a Client,” is
an MPW library file supplied for ASLM client and library developers. It
contains

client object file (.cl.o) code for shared libraries supplied with the ASLM

routines defined in the ASLM header files

the DynamicCodeEntry routine, which performs certain initializations
and must be linked with and be the entry point for shared libraries

other behind-the-scenes routines that are used internally

The LibraryManager.o file should be linked before any C libraries are
linked. It should also be linked before CPlusLib.o unless you want to use
the global new operator supplied by CPlusLib.o. See “Using the ASLM
Global new and delete Operators” in Chapter 6, “Using the ASLM,” for
more details.

The LibraryManager.n.o file is similar to the LibraryManager.o file, except
that it is meant only for model near clients and, therefore, is not compiled
with model far. Since shared libraries must always be compiled with model
far, they will never link with LibraryManager.n.o.

LibraryManager.debug.o and LibraryManager.debug.n.o

LibraryManager.debug.o and LibraryManager.debug.n.o are debug
versions of the library files and contain debugger breaks and MacsBug
symbols useful when trying to debug clients and shared libraries.

Library heap support

The following table shows that the time of the load and the heap= option
that was used in the Library declaration determines the heap into which a
shared library will load. The top row of the table specifies the possible load
times. The leftmost column specifies the heap= option that was used.

Preload time INIT time Single finder System 6 System 7

default System System Application temp temp

temp System System System temp temp

system System System System System System

application System Application Application Application Application

Library heap support 5-33

The following load times are possible (top row):

Preload Time is when the ASLM is loading at boot time and is
preloading libraries. In other words, the library is loading because it set
its preload flag, or because another preloaded library caused it to load.

INIT time means the library is loading because an INIT is using it
(directly or indirectly).

Single Finder is System 6 with MultiFinder turned off.

System 6 is System 6 with MultiFinder turned on.

System 7 is System 7.

Single Finder, System 6, and System 7 load times are all after the system
has finished booting. In other words Preload Time and INIT Time take
precedence over them.

The following heap= options are possible:

“System” is the System heap.

“temp” is a subheap of the MultiFinder (Process Manager) heap.

“Application” is the application heap.

Do not set a library to load into the system heap unless you know that it
will only be loaded when the system heap can grow or when there is
enough memory reserved for the library. The System heap does not grow
during INIT Time, or while running under System 6 (including Single
Finder). It will grow during preload time and under System 7.

Temp heaps are similar to application heaps in the way they are allocated
and where they exist in memory. They are somewhat misnamed because
there is nothing temporary about them. They are called temp heaps
because they are allocated using MultiFinder (also called the Process
Manager) temporary memory.

If you are debugging using MacsBug and your shared library is not loaded
in the system or application heap, it can sometimes be difficult to locate the
MacsBug symbols for your shared library. The best way to locate them is
to use the MacsBug hx command to switch to the MultiFinder heap so that
you can see all the symbols for any shared library loaded in temp memory.
You will also be able to see all the symbols for all currently running
applications, since they too are in subheaps of the MultiFinder heap. The
MultiFinder heap is always located immediately after the system heap in
memory. The best way to find it is to use the MacsBug hz command to list
all the heap zones, find the system heap in the list (it should be first), and
then add 1 to the value specified as the end of the system heap. This is the
value you want to pass to the hx command to switch to the MultiFinder
heap.

5-34 Chapter 5 / Writing and Building Shared Libraries

For more information on the heap= option, see “Library Declaration”
earlier in this chapter.

Log file support

Since exporting more functions, adding constructors to classes, adding
more non-virtual functions to classes, modifying or moving virtual
functions in classes, or changing the size of a class can cause incompatible
libraries to be built, a logging mechanism has been built into the build
procedure for a library. This allows the new library to be built in a
backward-compatible manner to the previous version of the library, if at all
possible. There are three switches to the BuildSharedLibrary script to
control logging.

-logout <OutputLogFileName>

-log <InputLogFileName>

-dolog

logout

The logout switch specifies the output log file. The output log file is an
ASCII text file that shows where various functions, v-tables, and so on, are
being exported.

log

The log switch specifies an input log file. The log file is used to control the
generation of the new library.

dolog

The dolog switch actually enables the logging operations. (This is so that
you can specify -logout or -log in your makefile, but nothing is done
until you alias BuildSharedLibrary to be BuildSharedLibrary
-dolog, or something similar.)

Your output library is built so that it is compatible with the version of the
library which created the input log file. Warnings tell you of any
incompatibilities between old and new libraries, as well as any versioning
problems. However, the build will never be aborted due to these warnings.
It is your library, and you may want to make nonconforming version
numbers known.

Log file support 5-35

Speeding up builds

The BuildSharedLibrary script only rebuilds the entire library if it
notices that the library’s input object file or exports file has changed.
Otherwise, BuildSharedLibrary merely links the shared library. Not
rebuilding the entire library is useful when an object file that must be
linked with a library has changed. In such a case, only relinking is needed.
You need to specify the -obj parameter if you want to use this feature.

If you are building a library in two steps—that is by executing both
BuildSharedLibrary and LinkSharedLibrary—this strategy yields no
benefit, since you do not have to call BuildSharedLibrary unless the
input object file or the exports file has changed.

If the library’s exports file or input object file does change,
BuildSharedLibrary builds the entire library; that is,
BuildSharedLibrary processes the exports file and input object file and
creates new client object files and intermediate files. (For an explanation of
intermediate files, see the -obj option in “Using BuildSharedLibrary”
earlier in this chapter.

Using the -keepClientFiles option

The BuildSharedLibrary command always creates new client object
files. However, if you use the -keepClientFiles option, it discards the
object files if they have the same contents as the existing ones. This
procedure does not really speed up the build of your library, but it does let
you rebuild your shared library without changing the modification dates of
the client object files. This means you do not have to relink clients that are
dependent upon your client object files.

Using -keepClientFiles is only useful if the clients do not share a
makefile with the library. Otherwise the clients will still be relinked even if
the client object file does not change. This is because the client is
dependent on the client object file, the client object file is dependent on the
library, and the library is dependent on the input object file and the exports
file. Thus if both the client and the library are in the same makefile, the
client object file appears out of date to the Make command whenever the
exports file or input object file changes. This results in the client being
rebuilt even if BuildSharedLibrary did not change the modification date
of the client object file.

5-36 Chapter 5 / Writing and Building Shared Libraries

Splitting up the makefile solves this problem because the client’s makefile
will not know what the client object file depends on. So the client’s
makefile relinks the client only if the client object file changes. This is
generally worth the effort only if you have a considerable number of
clients that depend on the library, or if it takes the client a long time to link.
The TestTool and Inspector programs that are provided on the ASLM
Examples disk provide examples of how to use -keepClientFiles and
write the makefile in this manner.

Linking with model near code

You must be careful when linking model near object files with shared
libraries. This can be a problem when you link with certain libraries
supplied by MPW, since MPW libraries are compiled using model near.
Normally, a shared library is not in its global world when it is called (that is,
the A5 world is not set up correctly for calls to the routines in the model
near MPW library to succeed). This means that the shared library must
enter its global world before it calls any model near code that contains
references to global variables or any model near code that makes a call to
code in another code segment (an intersegment call).

You can avoid the intersegment call problem by merging all your shared
library’s implementation code segments into one code segment using the
linker’s -sg option. But you still must enter the library’s global world
before you call model near code that has references to any global variables.

To enter the library’s global world so that you can call a function that is
compiled using model near, call OpenGlobalWorld before you call the
model near function, and call CloseGlobalWorld after the model near
function returns.

GlobalWorld saveworld;

saveworld = OpenGlobalWorld();

/* make model near call here */

CloseGlobalWorld(saveworld);

If you choose not to merge your implementation code segments into one
code segment, you must use the flags=segUnload option when you
declare your library in the library’s exports file. See “Writing an .exp
File” earlier in this chapter for an explanation of the flags=segUnload
option.

Linking with model near code5-37

Using MPW libraries

Shared libraries often run into problems when calling standard C library
functions—for example, sprintf, sscanf, malloc, atan2, and other
functions which require linking to the StdCLib.o library and other MPW
libraries. There are a few problems with using these routines:

They are not compiled using model far.

Some of them make callbacks into MPW.

Some of them allocate memory and never free it.

Some of them use globals.

The problems with linking with model near code are explained above in
“Linking With Model Near Code.” BuildSharedLibrary and
LinkSharedLibrary take care of the jump table problem by forcing all
of the MPW libraries to be merged into the Main code segment.

The problem with the MPW callbacks is that when they are called from a
shared library, the environment is not set up for them to work. Routines
that use MPW callbacks include any of the i/o routines such as fprintf
when they are used with stdout, or stderr unless they have been
redirected to a file. This includes the routines that use one of these by
default, such as printf. You might want to try using Trace instead to
display the output in the TraceMonitor’s Trace window. Another solution
is used by the ASLM’s TestTool example. It sets a print function for each
object that it creates. This print function exists in the MPW tool and simply
sends the output to stdout. This allows the object to essentially do a
printf. This print function is called myPrintFunc and can be found in
TestTool.cp.

The problem of some of the routines allocating memory that does not get
freed is one of the more annoying ones. Some of the routines cause some
memory to be allocated the first time one of the routines in a “family” is
called. A pointer to this memory is stored in a global so it can be reused on
successive calls. The libraries rely on the fact that when the application
quits, the memory automatically gets freed up when the application heap is
freed. If you call one of these routines from a shared library or any stand-
alone code resource, the memory gets allocated from the application heap
and is not freed up until the heap that it was allocated from goes away
(usually when the application quits).

One of the memory allocation offenders is sprintf and others in its
family (scanf, fprintf, sprintf, and so on). They all share a buffer that
gets allocated the first time one of them is called. Another offender is
malloc, which creates a big chunk of memory from which to allocate little
chunks.

5-38 Chapter 5 / Writing and Building Shared Libraries

Libraries that are shared could crash if they allocated the memory from
one application heap and then, while a second application is also using the
library, the first application quits. Now the pointer is invalid but the library
is not aware of this. Libraries that are only used by one application at a
time will show no memory leak once the application quits, so they do not
need to worry about this problem unless the application causes the library
to repeatedly load and unload.

Currently, there is no general solution to this problem. You can get around
the sprintf problem by using the ASLM sprintf routine. You can get
around the problem with malloc by using memory pools.

Segmentation and run-time architecture

Shared library classes are compiled and linked using model far and are
linked as multiple code resources, with a jump table for dispatching
between code resources similar to the Macintosh application segmentation
model. In the resource file, the jump table corresponds to the 'CODE' 0
segment of an application. In the case of a shared library, the resource type
is usually 'code' (spelled in lowercase letters), but that is up to the
developer. However, the resource type should never be 'CODE' (spelled in
uppercase letters); that may result in accidentally launching the library as
an application.

A shared library always has at least two code segments besides the jump
table: one that contains initialization code and one that contains the
implementation. A shared library can have as many code segments as you
wish; however, unless you plan to explicitly load and unload your library’s
code segments, it is generally best to have only one implementation
segment. See “Support for Explicit Segment Loading and Unloading”
later in this chapter for more details.

Figure 5-2 shows the segmentation of a shared library.

Figure 5-2 Code segments of a shared library

Segmentation and run-time architecture 5-39

Support for explicit segment loading and unloading

As Figure 5-2 illustrates, every shared library has at least three code
segments: a jump table (segment 0), an initialization segment (segment 1),
and an implementation segment (segment 2). However, a library can break
its implementation segment into more than one code segment so that its
entire implementation does not have to be in memory at the same time.

For example, when you design a shared library, you might put all code that
handles a certain task (for instance, printing) into a separate code segment.
You could call that segment code Segment 3. Then a call to any code in
Segment 3 automatically causes that segment to be loaded. Once a task in a
numbered code segment is completed, you can unload the segment by
calling UnloadSegmentByNumber.

Generally, a better method for unloading unneeded code is to put the code
that handles the task in a separate library and to encapsulate it with a C++
class. Then the code is loaded automatically when you instantiate its class
and is unloaded when you delete the class. If you do not want to use C++
or you do not feel that a task is big enough to warrant its own library (but it
is big enough to put in a separate code segment and unload when it is not
in use), then using segmentation as described above is an acceptable
alternative.

Note: When running under MultiFinder, by default a shared library is
loaded into a heap that is a subheap of the MultiFinder heap. One heap is
created for each shared library and each library’s heap is large enough to
hold all code segments of the library. This means that in the default case,
explicitly unloading code segments does not free up memory that can be
used for other purposes. In order to make unloading library code segments
worth while, you either need to specify that the library’s code load into the
system or application heap, or you need to specify the size that the
library’s heap should be. Both of these tasks are accomplished by using the
heap= option described in “Library Declaration” earlier in this chapter.

IMPORTANT If you call code in a segment that is not currently loaded and
there is not enough memory to load the segment, or the segment load
occurred at non-System Task time, an exception is raised. For this reason,
you should always have an exception handler installed before attempting to
call unloaded code. It is up to the library writer to decide if the library or
its clients should be in charge of installing the exception handler. To avoid
needing the exception handler, you should call one of the
LoadCodeSegmentXX routines. This ensures that the code is loaded before
you call the code. See “Exception Handling” in Chapter 7.

5-40 Chapter 5 / Writing and Building Shared Libraries

Library code segments can be explicitly loaded and unloaded by using the
following functions:

OSErr LoadCodeSegmentByNumber(TLibrary*, short segmentNumber);

OSErr LoadCodeSegmentByName(TLibrary*, ProcPtr theRoutine);

OSErr UnloadCodeSegmentByNumber(TLibrary*, short segmentNumber);

OSErr UnloadCodeSegmentByName(TLibrary*, ProcPtr theRoutine);

All four of these functions take a pointer to a library’s TLibrary object.
See “Getting a Library’s TLibrary’s Object” in Chapter 7, “ASLM
Utilities,” for details on how to get a library’s TLibrary object.

The LoadSegmentByNumber function takes a segmentNumber parameter
that specifies the segment to load. The LoadSegmentByName function
takes a ProcPtr parameter that holds the address of a function in the
segment to be loaded. Both LoadSegmentByNumber and
LoadSegmentByName return an OSErr data type. If the segment cannot be
loaded, a kCouldNotLoadCode or kOutOfMemory error is returned. If
kCouldNotLoadCode is returned, the specified code segment number is
invalid; kOutOfMemory means that there was not enough memory available
to load the code.

The UnloadSegmentByNumber function takes the segment number to
unload as a parameter. It returns kCodeNotLoaded if the segment number
is invalid or if the code segment is already loaded.

The UnloadSegmentByName function takes a ProcPtr parameter that
holds a pointer to the jump table entry of a function in the segment that
you want to unload. If the specified address is not in a loaded segment,
UnloadSegmentByName returns a kCodeNotLoaded value.

IMPORTANT The ProcPtr parameter of the UnloadSegmentByName
function is a pointer to the jump table entry for a function, not the address
of the function itself. So you must obtain the address of the function from
code that lies outside the code segment of the routine whose address you
want to obtain. In other words, you must make an intersegment reference to
the routine, not an intrasegment reference. This generally means that you
should not try to unload the code segment from within the code segment.
The LoadSegmentByName function has this same restriction, but this is
seldom a problem because you do not normally attempt to load a code
segment while code within that segment is being executed. However, if you
have just merged two code segments into one segment, you may find that
this is what you are trying to do.

Support for explicit segment loading and unloading5-41

Keeping preloaded libraries loaded

If a shared library’s preload flag is set, the ASLM loads the library at
boot time. However, unless you take special steps to keep the library
loaded, it unloads immediately afterwards. An easy way to keep the library
loaded is to call LoadLibraries from the library’s initproc, making
sure that the doSelf parameter in LoadLibraries is set to true. Then
your library will not unload until you call UnloadLibraries.

An easier way to keep a library loaded is to also set the library’s
stayLoaded flag. Setting a library’s stayLoaded flag has the same effect
as executing the following call from an initproc:

LoadLibraries(false, true)

If you also set the library’s forcedeps flag then it is the same as executing
the call:

LoadLibraries(true,true)

Another way to keep your shared library loaded is to call LoadClass or
LoadFunctionSet from the library’s initproc on a function set or class
implemented in the shared library. The shared library will stay loaded until
you call UnloadFunctionSet or UnloadClass.

Libraries with the preload flag set are preloaded only at boot time. If the
ASLM is loaded at any subsequent time, a library with the preload flag set
is not preloaded.

Having a preloaded class in your library is enough to keep the library
loaded until the instance of the class is deleted. You can also get the same
result by creating an object implemented in the shared library from within
the library’s initproc.

Library global variables

The ASLM allocates global variables for libraries from the global pointer
down. The jump table is above the global pointer (on the Macintosh, the
A5 register is used for the global pointer). Figure 5-3 shows the ASLM’s
global world. This is the same as the Macintosh application model for the
global world.

The global world’s memory is allocated and initialized automatically when
the library is loaded.

5-42 Chapter 5 / Writing and Building Shared Libraries

Figure 5-3 A shared library’s global world

Using static objects in shared libraries

Static objects in shared libraries can be either shared or unshared classes.
(Shared classes are classes that the ASLM knows about because they are
exported by a shared library.) Static objects in a shared library are
automatically constructed when the library is loaded and are automatically
destroyed when the library is unloaded. Static objects that are shared classes
are not permitted outside shared libraries, such as in INITs and
applications.

WARNING Do not attempt to merge the “Static_Constructors,”
“Static_Destructors,” or “%_Static_Constructor_Destructor_
Pointers” code segments into any other code segment in your shared
library. These code segments are all created automatically by C++
when your shared library uses static objects.

Registering shared library files

When you have written and built a shared library file, you can make it
accessible to clients in one of four ways:

If you are running System 7, you can place the shared library file in the
Extensions folder.

If you are running System 6, you can place the shared library file in the
System Folder.

You can place the shared library file in any folder that has been
registered as a shared library folder.

You can register a file as a shared library file. In this case the shared
library file can be located in any folder.

Registering shared library files 5-43

For information on registering files and folders, see “Registering Shared
Library Files and Folders” in Chapter 7, “ASLM Utilities.”

The easiest way to register a shared library is to place it in the System 7
Extensions folder or the System 6 System Folder. Then, at run time, when a
client calls a function implemented in the shared library, the ASLM can
find the function that was called and the function is executed.

5-44 Chapter 5 / Writing and Building Shared Libraries

6 Using the ASLM

This chapter provides details on certain runtime related topics that were not
appropriate for other chapters. These topics include:

loading shared libraries

using the ASLM under System 6 and 7

using shared libraries

creating objects

the TDynamic family of base classes

using global new and delete operators

virtual functions

Loading shared libraries

Shared libraries are loaded on demand:

When an C++ object implemented by a shared library is created.

When a shared library is loaded and it implements a class whose parent
class is in another shared library, then the parent class’s shared library is
loaded.

When a function in a function set is called.

When the library is explicitly loaded by LoadClass, LoadFunctionSet,
or LoadLibraries as described in “Loading and Unloading Shared
Libraries” in Chapter 7, “ASLM Utilities.”

At boot time, if the shared library’s preload flag is set. (If a shared library
is loaded at boot time because the library’s preload flag is set, you must
take steps to ensure that the library is not unloaded immediately afterwards.
For more information, see “Keeping Preloaded Libraries Loaded” in
Chapter 5, “Writing and Building Shared Libraries.”)

When a shared library is loaded, the ASLM initializes the shared library.
Initialization includes: calling the DynamicCodeEntry function supplied in
the LibraryManager.o file, allocating storage for library global variables,
initializing library global variables, initializing the library’s jump table, and
calling any static initializers for static objects that the library may have. The
code segments that implement the shared library may not actually be loaded
depending on how the shared library was built and why it was loaded.
However, the code segments will be loaded when the code within them is
actually called. (For more information on code segment loading see “Support
for Explicit Segment Loading and Unloading” in Chapter 5, “Writing and
Building Shared Libraries.”)

When a shared library is no longer being used, the ASLM unloads the code
from memory automatically. If the shared library is subsequently needed
again, it is reloaded and relinked automatically.

The ASLM keeps track of use counts for all exported classes so it can tell if all
instances of a class have been deleted and the class is no longer is use.
However, when function sets are used, they are considered to be in use until
the client calls the CleanupLibraryManager or ResetFunctionSet
function. The CleanupLibraryManager call is described in “Creating and
Deleting the Local Library Manager” in Chapter 7, “ASLM Utilities.” The
ResetFunctionSet call is described in “Loading and Unloading Shared
Libraries” in Chapter 7, “ASLM Utilities.”

The ASLM does not immediately unload unused libraries. On the Macintosh,
the ASLM attempts to unload libraries once each second at System Task time.

6-2 Chapter 6 / Using the ASLM

Using the ASLM under System 6 and System 7

The ASLM supports system software versions 6.0.5 through 6.0.8, as well as
system software versions 7.0 and 7.1.

Under System 6, the ASLM works with the Finder as well as with
MultiFinder. When running under Finder, any libraries that an application
causes to load are loaded into the application’s heap and are forced to unload
when the application quits, even if the application leaves some objects
undeleted.

Under System 6, the EnterSystemMode call does not prevent any files that
you have explicitly opened from being closed when the application that was
running when you opened the file quits. However, library files that are opened
by calling Preflight or OpenLibraryFile remain open when the
application that was running when you opened the file quits. (For more
information on Preflight and OpenLibraryFile, see “Library File and
Resource Management” in Chapter 7, “ASLM Utilities.” For more information
on EnterSystemMode, see “Entering and Leaving System Mode” in
Chapter 7, “ASLM Utilities.”)

Using shared libraries overview

The ASLM allows clients to use function sets and classes implemented in
shared libraries.

Shared libraries can export C++ classes that C++ programs can dynamically
link with. Clients written in non–object-oriented languages can also use the
C++ class as long as the developer of the shared library provides a procedural
interface to the classes.

Shared libraries that are intended to be used by clients written in non–object-
oriented languages can export dynamically linkable procedures and functions
by using function sets. Non–object-oriented programs can share function set
implementations in the same ways that object-oriented programs share classes.

Before a client can use the functions or classes that are implemented in a
shared library, the client must do the following:

Include the header file that defines the functions and classes that the shared
library contains.

Link statically with a client object file that contains the stubs that are
responsible for handling the dynamic linking of functions.

Using shared libraries overview 6-3

Make sure that the shared library is registered or is in a folder registered
with the ASLM at run time.

Register itself as an ASLM client by calling the ASLM function
InitLibraryManager.

When all of the above conditions are fulfilled, a client can create objects and
call functions implemented in shared libraries. The client can create objects
implemented in shared libraries by using the new operator (described in
“Creating Objects” later in this chapter) or by using automatic variables (that
is, stack variables). Alternatively, the client can create objects by calling the
NewObject function. The NewObject function creates objects by class ID.
When you create an object with NewObject, you do not need to link with the
client object file. See “Creating an Object Using NewObject” later in this
chapter and “Using NewObject” in Chapter 7, “ASLM Utilities,” for more
information on the NewObject function.

When a client creates an object or calls a function that is implemented in a
shared library, the ASLM checks to see if the shared library that implements
the desired object or function is loaded. If the shared library is not loaded, the
ASLM loads it. The loading of shared libraries is transparent to the client.

When a shared library is no longer being used and all clients using the library
have deleted all instances of classes that are implemented in the library, the
ASLM unloads the code from memory automatically. If the shared library is
subsequently needed again, it is reloaded and relinked automatically. See
“Loading Shared Libraries” above for more information on when shared
libraries are loaded and unloaded.

Sometimes a shared library may fail to load, either because the implementation
cannot be located or because there is not enough memory for the shared
library. If a shared library fails to load when a function in a function set is
called or when an instance of a class is created, the ASLM will raise an
exception that the client must catch. The default exception handler that
InitLibraryManager installs detects this condition and forces the
application to quit. A client can prevent this behavior by installing its own
exception handler or by preloading needed libraries. For more information
about exception handlers, see “Exception Handling” in Chapter 7, “ASLM
Utilities.”

6-4 Chapter 6 / Using the ASLM

Creating objects

A client can create an instance of a shared class dynamically by using the new
operator. A client can also allocate the object on the stack—that is, as an
automatic variable. Static instances of shared classes are also allowed, but only
within a shared library.

Creating an object with the new operator

When you create an instance of a shared class, you will normally use the
ASLM global new operator. You can use the ASLM global new operator with
or without specifying a memory pool. If you do not specify a pool, the ASLM
uses the default pool. (For more information on memory pools, see Chapter 8,
“ASLM Utility Class Categories.”)

All instances of classes that inherit from a class in the TDynamic family are
allocated with the TDynamic class’s new operator. All other objects are
allocated using the standard C++ library new operator, unless the GlobalNew.h
header file is included, in which case the ASLM global new operator is used
instead.

The TDynamic new operator is the same as the ASLM global new operator
that is declared in GlobalNew.h. It allocates memory from a memory pool. If a
pool is specified with the new operator, then that pool is used. Otherwise the
default pool is used.

It is highly recommended that all C++ shared libraries #include
GlobalNew.h so all memory allocation is done out of pools. Otherwise the
C++ memory allocator is used, and it can cause problems when used from a
shared library. For more information, see “Using the ASLM Global new and
delete Operators” later in this chapter.

When you create an object with the ASLM global new operator, you can
specify the memory pool from which you want to allocate the object, or you
can simply let the ASLM use the default pool. For example:

TMyClass* myObject = new (myPool) TMyFirstClass; // from myPool

TMyClass* myObject = new TMyClass; // from default pool

Creating objects 6-5

Creating an object using NewObject

You can call the NewObject function to create an object even if you do not
know the class of the object at compile time. The NewObject method takes a
class ID string as a parameter; the content of the string can be determined at
run time. (A class ID is a string that identifies the class to create.)

You can create an object using NewObject only if the newobject flag is set
for the class. The newobject flag is set on a per-class basis when a shared
library is built. (The newobject flag is described in “Class Declarations” in
Chapter 5, “Writing and Building Shared Libraries.”) For an object of a given
class to be created using newobject, the class must have a constructor with
an empty argument list.

For classes that require parameters to be passed to the constructor, the class
can also provide an initialization method that the NewObject caller must call
after creating the object.

The following is an example of NewObject:

object = (TBaseClass*) NewObject(ClassID("esd:sample$TMyFirstClass"));

As another example, a client can use theClassID as a parameter pointing to a
string like the one in the previous example:

object = (TBaseClass*) myLibManager-> NewObject(ClassID(theClassID));

The NewObject function is described in more detail in “Using NewObject” in
Chapter 7, “ASLM Utilities.”

Creating stack objects

You can create objects on the stack just as you normally do in C++: by
declaring class variables in your routines. You can also create objects that are
fields of another object. For example:

foo()

{

 TMyClass x;

 x.DoThisAndThat();

}

If you use the STACKOBJECTONLY macro in a class declaration, the macro
informs the compiler that instances of the class will be used only as stack
objects. This will make the class’s constructor and destructor much smaller
since they do not have to be concerned with allocating or freeing memory.

6-6 Chapter 6 / Using the ASLM

An example:

class TMyClass

{

STACKOBJECTONLY

public:

TMyClass ();

virtual ~TMyClass ();

virtual short Hello() const;

};

When you use stack objects, virtual function calls will not go through the v-
table. Instead, the implementation of the virtual function will be called
directly, since C++ knows the class type (polymorphism does not take place)
and exactly which member function to call. This requires that C++ clients
statically link with the implementation of the virtual function just as they do
with non-virtual functions. This is one reason you have the option of exporting
virtual function stubs when creating a shared library. The client using the stack
object will statically link with the virtual function stub so the virtual function
call will be made in a way similar to a function set call (this is how non-virtual
functions are called).

You can fool C++ into using the v-table for stack object virtual function calls
by dereferencing the stack object to make it a pointer. For example:
(&myStackObject)—>DoSomething. This is much more efficient than
making the call through a virtual function stub.

WARNING You must not create objects on the stack in the same routine
that calls InitLibraryManager unless the stack object is declared
after the call to InitLibraryManager. Also, you must not create stack
objects in the same routine that calls CleanupLibraryManager unless
the stack object is declared in a nested block that appears before the call
to CleanupLibraryManager.

Creating static objects

You cannot create static objects of shared classes outside a shared library. This
is because static objects are created when the global world is created—and this
always takes place before InitLibraryManager is called. However, static
objects are allowed in shared libraries for both shared and unshared classes.
They are automatically constructed when the library is loaded and are
automatically destroyed when the library is unloaded.

Creating objects 6-7

Creating an object by setting a class’s preload flag

If you want an instance of a class to be created automatically when a shared
library is loaded, you can set the preload flag for the class. If the preload
flag for a specific class in a shared library is set, an instance of the class is
created immediately after the library is loaded. (The preload flag is covered
in “Class Declarations” in Chapter 5, “Writing and Building Shared
Libraries.”)

The TDynamic family of base classes

The ASLM provides a number of base classes that force the v-table first (place
it at the beginning of the object) and provide routines that give the user access
to some of the objects’ meta information (for example, in which library the
object is implemented and the class IDs of the parents of the class). Some of
the base classes also provide additional member functions that are commonly
found in base classes such as IsValid and Flatten. All of these base classes
override the new and delete operators so they use the ASLM global new and
delete operators. For more information, see “Using the ASLM Global new
and delete Operators” later in this chapter.

The ASLM does not force you to use any of these base classes for your
exported classes. However, if you do not use them or use a base class that
forces the v-table first, you will not be able to call CastObject or
CastObjectToMain on instances of subclasses of your base class. You will
also not be able to call any of the global routines that provide meta
information. These routines start with “GetObjects” (for example,
GetObjectsClassID) and are simply global versions of the member
functions that are provided with ASLM base classes.

The original ASLM base class was the TDynamic class. It inherits from
SingleObject and forces the v-table to be first by not having any data
members and by providing at least one virtual function. TDynamic provides a
number of pure virtual member functions such as IsValid and Flatten and
also a number of inline member functions for accessing meta information
about the class. TDynamic also provides the ability to have instances of its
subclasses be registered with the Inspector. See “Registering C++ Objects with
the Inspector” in Chapter 7, “ASLM Utilities,” for more information on the
Inspector. See “TDynamic” in Chapter 9, “Utility Classes and Member
Functions,” for details on the available TDynamic member functions.

6-8 Chapter 6 / Using the ASLM

The TDynamic class has many virtual functions which causes subclasses to
have a larger v-table. The TSimpleDynamic base class was created to solve
this problem by getting rid of all the virtual functions except for the destructor.
This makes the v-table much smaller, but also means that you cannot use any
of the TDynamic virtual functions and you cannot register TSimpleDynamic
subclasses with the Inspector.

The TDynamic class also has the disadvantage of inheriting from
SingleObject, so it can not be used with multiple inheritance. This problem
was solved by adding the TStdDynamic base class, which is the same as
TDynamic except that it does not inherit from SingleObject. Since
TStdDynamic does not inherit from SingleObject, it does not have the
simple v-table format and, therefore, its v-table is not as efficient. It also
cannot have instances of its subclasses registered with the Inspector.

The TStdSimpleDynamic class combines the features of both TStdDynamic
and TSimpleDynamic. It does not inherit from SingleObject and does not
provide any additional virtual functions. Its v-table is small, but does not use
the simple v-table format. Also, it cannot have instances of its subclasses
registered with the Inspector.

Lastly MDynamic was created to be used as a mixin class for multiple
inheritance. It does not provide any of the TDynamic member functions for
accessing meta information. It only provides a virtual destructor to force the v-
table first.

Using the ASLM global new and delete operators

The ASLM has its own global new and delete operators that allocate
memory from pools. These are the same new and delete operators that are
used for any class that subclasses TDynamic.

The header file GlobalNew.h declares the new and delete operators as
follows:

void* operator new(size_t size, TMemoryPool*);

void* operator new(size_t);

void operator delete(void*);

If a client includes the header file GlobalNew.h, the ASLM uses the global
new and delete operators for all objects created and all memory allocated
with the global new operator.

Using the ASLM global new and delete operators 6-9

You can use new with a pool argument to allocate memory from a specific
pool, or without a pool argument to allocate memory from the default memory
pool (the default pool is explained in “Memory Management Classes” in
Chapter 8, “ASLM Utility Class Categories.”)

WARNING The ASLM global new operator cannot be used by a client
until InitLibraryManager has been called, but shared libraries may
(and should) always use it.

You must make certain that an object is both created and deleted using the
same new and delete operator pair since delete must know how new
allocated the memory. You cannot mix the ASLM new and delete operators
with the new and delete operators that are supplied with CPlusLib.o. If your
application has to delete objects created by a shared library using the ASLM
new operator, you must use the ASLM delete operator.

Shared libraries should never use the new and delete operators that are
supplied with CPlusLib.o since they rely on the C library memory
management when does not work well with shared libraries.

Allocating and freeing memory for an object is normally done in an object’s
constructor and destructor which are implemented in the shared library. Thus
the implementation of the library normally controls how objects are allocated
and freed. However, when an overloaded new operator is used (such as the
ASLM new operator that takes a memory pool parameter), the memory
allocation is actually done in the client’s code. This means that if the client
uses a new operator that is not compatible with the shared libraries delete
operator, then the object’s destructor will not now how to properly free the
memory and may crash. For this reason, and because the new and delete
operators in CPlusLib.o do not work well with shared libraries, it is strongly
advised that both clients and shared libraries always include GlobalNew.h so
the ASLM global new and delete operators are always used.

LibraryManager.o and LibraryManager.n.o also contain implementations of
the ASLM global new and delete operators. Basically these versions do the
same thing as the inline versions in GlobalNew.h. They are useful when for
some reason the code that calls new or delete cannot be compiled with
GlobalNew.h. For example, when creating an array of objects with new,
CFront generates code to allocate the memory for the array using the new
operator and to call the constructor of each object in the array. This means that
it uses the implementation of whichever global new operator it links with, even
if you include GlobalNew.h. This causes problems if you are declaring the
class in a shared library and you link with the global new operator in
CPlusLib.o, which uses calloc to allocate the memory.

6-10 Chapter 6 / Using the ASLM

Link with LibraryManager.o first if you want to use the ASLM global new
operator. Link with CPlusLib.o first if you want to use the default C++ global
new operator. Be careful when linking LibraryManager.o first. If you try to
create an object using new before calling InitLibraryManager, you will
crash. Wait until you have called InitLibraryManager to perform
operations such as using streams (cout, cin, and so on) that use new when
they are first called. It is generally best to link LibraryManager.o first for
shared libraries. Link either one first for applications, depending on whether
the application needs to use the new operator before calling
InitLibraryManager.

Virtual functions

In a C++ class, you can declare any member function to be a virtual function.
In C++, a virtual function is called by a single indirection through a table of
pointers to the functions. This table is called the v-table, or virtual function
table.

In the ASLM implementation of virtual functions, a shared library contains the
virtual functions implemented by one or more C++ classes. The v-table that is
used to call the functions is built at run time so that references can be resolved
when a shared library is dynamically loaded and linked.

There is only one copy of a shared class’ v-table. It is stored in the global
world of the shared library that implements that shared class. This help reduce
memory footprint when multiple clients make use of the same shared class.

Figure 6-1 shows how the ASLM uses v-tables to call virtual functions.

Figure 6-1 Virtual function tables

Virtual functions 6-11

Since the call to a virtual function is indirect—through a pointer to an object—
the code for the implementation of a virtual function does not have to be in the
same code segment as the caller of the virtual function. In Figure 6-3, the
implementation of TMyFirstClass is in a shared library. The method
theObject->DoThisAndThat is a virtual function of the object called
theObject. If DoThisAndThat is the third virtual function in the v-table
shown in the diagram, then the highlighted code that implements function 3 is
called.

V-table based function calls provide the fastest possible way to call a
dynamically linked function. This is one of the benefits you get when
exporting functions by implementing them as member functions of a shared
class rather than as functions in a function set. It also shows an advantage of
virtual member functions over non-virtual member functions for exported
classes. Since non-virtual member function calls must go through a function
stub just like function set function calls do, they are not as fast as virtual
function calls.

In some instances virtual function calls do not go through the v-table. This
includes virtual function calls for stack objects and calls you explicitly make to
inherited functions. In these cases, the client object file must contain a stub for
the virtual function or the client will not link. For more information, see
“Creating Stack Objects” earlier in this chapter.

6-12 Chapter 6 / Using the ASLM

III Reference

7 ASLM Utilities

This chapter describes the ASLM utility functions that you can use to
perform a number of tasks including:

registering shared library files and folders

preloading dependent libraries

loading and unloading shared libraries

client death watch notification

setting up global worlds

using the local library manager

calling functions by name

getting information about function sets

using interrupts

handling exceptions

verifying an object’s type

verifying a class’s base class

loading and unloading the ASLM

entering and leaving system mode

Registering shared library files and folders

Several utility functions allow you to register shared library files and
folders in the following manner:

You can register a folder as a shared library file folder and then place
library files in the folder.

You can register a file as a shared library file. In this case the shared
library file can be located in any folder.

Registering and unregistering shared library file folders

You can make a shared library file accessible to clients by placing it in any
folder that is registered as a shared library file folder. When you register a
folder as a shared library file folder, the ASLM keeps track of shared
library files that are dragged into and out of the folder. All shared library
files that are in the folder are available to clients. You can drag library files
into or remove library files from a registered folder at any time you
choose. You can also rename or delete library files that are stored in the
registered folder.

If you decide that you no longer want to use a folder as a registered folder,
you can unregister it. The ASLM keeps a use count for all registered
folders, so multiple users can register the same folder without fear of it
becoming unregistered by another user.

Registering a shared library file folder

You can register a folder as a shared library file folder by calling the
RegisterLibraryFileFolder function. The syntax of the
RegisterLibraryFileFolder function is:

OSErr RegisterLibraryFileFolder(const TFileSpec*);

The RegisterLibraryFileFolder call takes a TFileSpec parameter
that specifies the location of the folder being registered. (See “Specifying
a Library File” later in this chapter for more information on TFileSpec.)
Currently, TMacFileSpec is the only TFileSpec type that is supported.
The ASLM returns a kNotSupported error if you pass the
RegisterLibraryFileFolder function another type.

The RegisterLibraryFileFolder call returns a kNoError result if it
is successfully executed, and returns kFileNotFound if it cannot find
the specified directory. If the folder is already registered, a registered
count for the folder is incremented. This prevents the folder from being
unregistered if another user attempts to unregister it by calling
UnregisterLibraryFileFolder.

7-2 Chapter 7 / ASLM Utilities

Unregistering a shared library file folder

You can delete the registration of a folder—unregister the folder—by
calling the UnregisterLibraryFileFolder function. The syntax of the
UnregisterLibraryFileFolder function is:

OSErr UnregisterLibraryFileFolder(const TFileSpec*,

 Boolean forceUnload);

UnregisterLibraryFileFolder takes a TFileSpec parameter that
specifies the folder to unregister. When a folder is unregistered, the
registered count for the folder is decremented. If the count has reached 0,
the folder is actually unregistered. Otherwise, the folder remains registered.
This procedure prevents the folder from being unregistered while it is still
registered by another client.

If the count has reached 0 and one or more clients are still using a library
file in the folder, the kFolderInUse error is returned. To avoid this error,
all clients must do the following:

Call ResetFunctionSet(NULL) if they have used any function sets.
This forces a client to release a function set so that the shared library
containing the function set can be unloaded. (This is done automatically
when a client calls CleanupLibraryManager.)

Explicitly close any library file they have opened before calling
UnregisterLibraryFileFolder. A client opens library files when it
calls PreFlight or OpenLibraryFile and closes library files when it
calls CloseLibraryFile. (This is done automatically when a client
calls CleanupLibraryManager.)

The UnregisterLibraryFileFolder function also accepts a
forceUnload parameter. If the value of forceUnload is true, the
UnregisterLibraryFileFolder function forces all loaded libraries in
the folder to be unloaded, even if they are in use. It also forces all open
instances of the library file to be closed. Therefore, the kFolderInUse
error will never be returned. Unless you are certain that all loaded libraries
in a registered folder can be safely unloaded, the value of the forceUnload
parameter should be false. If UnregisterLibraryFileFolder is called
with a forceUnload value of false, no library files that the specified
folder contains are deleted until all the libraries in the folder are unloaded.
If the folder’s registered count has not reached 0, the forceUnload
parameter has no effect.

Registering shared library files and folders 7-3

How registered folders are tracked

If a registered folder is moved or renamed, the ASLM tracks the folder’s
new name and location. However, when you want to unregister the folder,
you must specify its new name and location. For this reason it is best to use
a TMacFileSpec that does not specify a folder name. The TMacFileSpec
can specify vRefNum and dirID, since these remain the same even when
the folder is moved or renamed.

Registering folders with the Inspector

The Inspector application that is shipped with the ASLM provides examples
of how folders can be registered and unregistered. When Inspector is
running, you can register and unregister folders by choosing commands
from the Commands menu. The Inspector is described in Appendix B
“ASLM Utility Programs.”

Registering and unregistering shared library files

If you do not want to register a folder that contains a shared library file,
you can register the shared library file that is inside the folder.

When you have registered an individual shared library file without
registering the folder in which it resides, the ASLM can find the registered
file and make it accessible to clients in the same way it would if it were
placed in the System 7 Extensions folder, the System 6 System Folder, or a
registered folder.

When an individual file is registered as a shared library file, it is available
for any client to use; it is not private to the user that registered it.

The ASLM maintains a registered count on each registered shared library
file so that more than one user can register a file without it becoming
unregistered when just one user attempts to unregister it.

You can register a shared library file by calling the RegisterLibraryFile
function. You can unregister a library file by calling
UnregisterLibraryFile or UnregisterLibraryFileByFileSpec.
The syntax for the RegisterLibraryFile, UnregisterLibraryFile,
and UnregisterLibraryFileByFileSpec functions is:

OSErr RegisterLibraryFile(const TFileSpec*, TLibraryFile**);

OSErr UnregisterLibraryFile(TLibraryFile*, Boolean forceUnload);

OSErr UnregisterLibraryFileByFileSpec(const TFileSpec*,

 Boolean forceUnload);

7-4 Chapter 7 / ASLM Utilities

The RegisterLibraryFile function takes a TFileSpec parameter that
specifies the location of the library file being registered. Currently,
TMacFileSpec is the only TFileSpec type that is supported. If the
RegisterLibraryFile call is successful, the call returns a result of
kNoError and a pointer to the TLibraryFile object that it has created.
This TLibraryFile object is stored in the TLibraryFile** parameter. If
you pass NULL in this parameter, the TLibraryFile object is not returned.
If the ASLM cannot find or open the file, the RegisterLibraryFile
function returns a result of kFileNotFound. If there is not enough
memory to process the file, the call returns a result of kOutOfMemory. If
the file is already registered, the ASLM increments the registered count for
the file.

The UnregisterLibraryFile function takes a TLibraryFile parameter
that specifies the file to unregister. This parameter should be the same as
the TLibraryFile that was returned by RegisterLibraryFile when the
file was registered.

The UnregisterLibraryFileByFileSpec function takes a TFileSpec
parameter that specifies the file to unregister. Currently, TMacFileSpec is
the only TFileSpec type that is supported.

When you call UnregisterLibraryFileByFileSpec or
UnregisterLibraryFile, the ASLM decrements the registered count for
the file. If a file’s registered count has reached 0 when the function is
called, the ASLM unregisters the file and deletes the file’s associated
TLibraryFile object. If the file’s registered count is more than 0 when
the function is called, the file remains registered.

Both UnregisterLibraryFile and
UnregisterLibraryFileByFileSpec accept a forceUnload parameter.
If the value of forceUnload is true, the functions force all loaded
libraries in the file to be unloaded, even if they are in use. Therefore, unless
you are certain that all loaded libraries in a registered file can be safely
unloaded, the value of the forceUnload parameter should be false. If
forceUnload has a value of false, the library file is not unregistered until
all the libraries in the file are unloaded. If the file’s registered count has
not reached zero, the forceUnload parameter has no effect.

If you keep track of the TLibraryFile object returned by
RegisterLibraryFile, you can unregister a file by calling
UnregisterLibraryFile. You can also unregister a file by calling
UnregisterLibraryFileByFileSpec and specify the TFileSpec of the
file to be unregistered. This is useful if you want to let the user choose
which file to unregister.

Registering shared library files and folders 7-5

If you want to unregister a file by calling UnregisterLibraryFile, you
should make sure that the file cannot be deleted, because that would cause
the TLibraryFile object to be deleted, resulting in a crash later on when
you call UnregisterLibraryFile. To prevent the library file from being
deleted, simply call OpenLibraryFile after you register the file, and call
CloseLibraryFile after you unregister the file. If your client is going to
terminate after registering the library file, the client should call
OpenLibraryFile and CloseLibraryFile while in system mode.

If a registered file is dragged into a registered folder or the folder that the
file is in becomes registered, the file still maintains its identity as a
registered file and is not unregistered even if its folder is unregistered.

You can register a file that is in a registered folder. It then remains
registered even if its folder is unregistered. If you unregister a file that is in
a registered folder by calling UnregisterLibraryFile, it remains
registered (since it is still in a registered folder).

The Inspector application that comes with the ASLM provides examples of
how files can be registered and unregistered. When the Inspector is
running, you can register and unregister shared library files by choosing
commands from the Commands menu.

Preloading all dependent libraries

The MPW tool CreateLibraryLoadRsrc that is provided with the ASLM,
creates a resource for preloading all libraries that a client depends on. To
use the CreateLibraryLoadRsrc tool, you must link your client or
library using the -map option, which causes a link map to be generated.
The CreateLibraryLoadRsrc tool creates a resource of type 'libi' in
source code form that you can Rez into your application or shared library.
This 'libi' resource is used by the ASLM routines LoadLibraries and
UnloadLibraries, described in “Loading and Unloading Shared
Libraries” later in this chapter. The 'libi' resource contains information
about which function sets and classes the client is dependent on. It does not
include dynamic dependencies (such as, those created using NewObject or
GetFunctionPointer).

The BuildSharedLibrary and LinkSharedLibrary scripts
automatically invoke the CreateLibraryLoadRsrc tool to create a
'libi' resource for each library that they create, so generally only non-
library writers need to explicity use this tool.

7-6 Chapter 7 / ASLM Utilities

The syntax of the CreateLibraryLoadRsrc command is:

CreateLibraryLoadRsrc -map <MapFileName> -o <Output .r file name>

[-p] [-v] [-a] [-resid #] [-not <class>] [-only <class>]

where:

-p

This option writes a progress report.

-v

This option writes verbose output.

-a

This option causes the resource information to be appended to the output .r
file instead of overwriting the output file.

-resid #

This option forces the resource ID number of the 'libi' resource. You
should not normally use this switch. It is used by the
BuildSharedLibrary and LinkSharedLibrary scripts when they create
shared libraries. Clients such as applications or tools that call
InitLibraryManager must leave the resource ID number at 0.

-not <class>

This option lets you specify function sets and classes that you do not want
included in the 'libi' resource. It can be used multiple times on the
command line.

-only <class>

This option lets you specify that only a particular function set or class
should be included in the 'libi' resource. It can be used multiple times
on the command line.

Preloading all dependent libraries 7-7

Loading and unloading shared libraries

Shared libraries load and unload automatically as you use them. However,
you may want to explicitly load a shared library so it can be used at
interrupt time or so that you do not have to worry about exception
handling if the shared library cannot be loaded when needed. The
following routines help provide further control over loading and unloading
shared libraries:

OSErr LoadClass(const TClassID, BooleanParm forceAll);

OSErr UnloadClass(const TClassID);

Boolean IsClassLoaded(const TClassID);

OSErr LoadFunctionSet(const TFunctionSetID, BooleanParm forceAll);

OSErr UnloadFunctionSet(const TFunctionSetID);

Boolean IsFunctionSetLoaded(const TFunctionSetID);

OSErr LoadLibraries(BooleanParm forceAll, BooleanParm doSelf);

OSErr UnloadLibraries(void);

void ResetFunctionSet(const TFunctionSetID);

IsFunctionSetLoaded
IsClassLoaded

Use the IsFunctionSetLoaded and IsClassLoaded functions to check
whether the function set or class is loaded. The IsFunctionSetLoaded
function returns true if the implementation of the specified function set
ID is loaded. The IsClassLoaded function returns true if the
implementation of the specified class ID and all of its parent classes are
loaded.

The IsFunctionSetLoaded and IsClassLoaded functions indicate if the
library implementing the function set or class (and the class’s parents) is
loaded, but give no indication of whether or not the code segments of the
library or any other libraries that the library depends on are loaded. There
are two ways to ensure that all code segments and all dependent libraries
are also loaded. The first is to call LoadFunctionSet or LoadClass and
pass in true for the forceAll parameter. The second way is to make sure
that all the dependent libraries are built with flags=segUnload (the
default) and the library in which the class or function set is implemented is
built with flags=forcedeps and flags=segUnload.

7-8 Chapter 7 / ASLM Utilities

LoadLibraries
UnLoadLibraries

The CreateLibraryLoadRsrc function, described in “Preloading All
Dependent Libraries,” earlier in this chapter can create a 'libi' resource
that describes all of the function sets and classes that a client or shared
library uses.

The LoadLibraries function reads the caller’s 'libi' resource and then
calls LoadFunctionSet to load the function sets and LoadClass to load
the classes described in the 'libi' resource.

For non-library clients, LoadLibraries reads the 'libi' #0 resource. In
this case, the 'libi' resource must be created and Rezed into your client
using the CreateLibraryLoadRsrc tool described under the previous
heading.

For shared libraries, LoadLibraries reads the 'libi' resource that has the
same resource ID as the 'libr' resource for the library. In this case, the
resource is created and Rezed into your shared library automatically by the
BuildSharedLibrary and LinkSharedLibrary scripts.

WARNING LoadLibraries is not interrupt-safe.

When you call LoadLibraries, the forceAll parameter is used to force
all of the code segments belonging to the dependent libraries to load. It is
the same as the forceAll parameter passed to LoadFunctionSet and
LoadClass .

The doSelf parameter is used only for libraries. If doSelf is true, it
forces the library to load itself. This prevents the library from unloading
until the library makes an explicit UnloadLibraries call, even if the
library has no clients. If a false doSelf parameter is passed, the library
unloads when it has no clients, and an UnloadLibraries call is made
automatically.

You can pass a true doSelf parameter to LoadLibraries when a library
is preloaded (has its preload flag set) and you want to make sure that the
library stays loaded, even if it has no clients. In this situation, you normally
call LoadLibraries from your library’s Initproc. Remember that a
library that is preloaded will immediately unload unless it keeps itself
loaded. For example, a library can keep itself loaded by calling
LoadLibraries. You can get similar results by setting the library’s
stayLoaded flag (described in “Library Declaration” in Chapter 5,
“Writing and Building Shared Libraries.”)

Loading and unloading shared libraries7-9

You can pass a false doSelf parameter when a library must make sure
that all of the other libraries that it depends on are loaded, but still requires
them to be unloaded when it has no clients. Once again, you normally call
LoadLibraries from your library’s Initproc, but a better alternative is
to set the library’s loaddeps flag or forcedeps flag (described in
“Library Declaration” in Chapter 5, “Writing and Building Shared
Libraries.”)

The LoadLibraries function returns an error code if it cannot find any
of the dependent libraries that it requires (or if it cannot load them if it is
requested to do so). It also returns an error if it cannot find or load the
'libi' resource that it requires.

You can instruct the shared library to call LoadLibraries when your
library is loaded by setting your library’s loaddeps flag, forcedeps flag,
or stayLoaded flag. All these flags cause LoadLibraries to be called,
but forcedeps also causes a forceAll parameter of true to be passed,
and stayLoaded causes a doSelf parameter of true to be passed. If you
set the stayLoaded flag to true, your library must explicitly call
UnloadLibraries to be unloaded.

The UnloadLibraries function calls UnloadFunctionSet or
UnloadClass for every function set or class loaded by LoadLibraries. It
also clears out any cached information in the caller for any library that was
being used and was unloaded by the call to UnloadLibraries.

It is not necessary to call UnloadLibraries unless LoadLibraries was
called with true passed to the doself parameter. When a client calls
CleanupLibraryManager or a library is being unloaded,
UnloadLibraries is automatically called to unload any libraries that have
been loaded by a LoadLibraries call.

LoadClass
UnloadClass

The LoadClass function loads the shared library or shared libraries
needed for the implementation of a specified class ID. The ID of the class
to be loaded is passed to LoadClass as a parameter. If a class depends on
other classes in other shared libraries, those shared libraries are also loaded.
If the required libraries are already loaded, LoadClass increments their
use counts. The LoadClass method returns kNoError if the specified class
and all dependent classes are successfully loaded. If the call is unsuccessful,
an error is returned. If the forceLoad parameter is set to true, all the code
segments of the target libraries are loaded. This procedure ensures that
interrupt-safe calls can be made to the specified shared library.

7-10 Chapter 7 / ASLM Utilities

When LoadClass is called, all dependencies of the library are loaded, not
just the parent classes. The only exceptions are dependencies created by
functions that are called by name, or objects that are created by calling
NewObject.

The ASLM keeps track of all LoadClass calls and calls UnloadClass
automatically when a client calls CleanupLibraryManager. Therefore, it
is not necessary to balance LoadClass calls with calls to UnloadClass.
However, you should still call UnloadClass when you have finished using
a class. By doing so, you can make sure that the class library is unloaded if
the library is no longer in use and you do not plan to call
CleanupLibraryManager soon (for example, when the LoadClass call is
the only thing keeping the library loaded).

WARNING LoadClass is not interrupt-safe.

The UnloadClass function, unlike LoadClass, is interrupt-safe. The
UnloadClass function returns kNoError if the specified class and all
dependent classes are successfully unloaded. If the call is unsuccessful, an
error is returned.

The UnloadClass function returns kNotAllowedNow if the current client
has not made a corresponding LoadClass call, and returns kNotFound if
the specified TClassID object is not a valid class ID.

LoadFunctionSet
UnloadFunctionSet

LoadFunctionSet and UnloadFunctionSet work exactly like
LoadClass and UnloadClass, except they are used to load and unload a
function set instead of a class. LoadFunctionSet loads the shared library
or shared libraries needed for the implementation of a specified function
set. The ID of the function set to be loaded is passed to LoadFunctionSet
and UnloadFunctionSet as a parameter.

WARNING LoadFunctionSet is not interrupt-safe.

Loading and unloading shared libraries7-11

ResetFunctionSet

ResetFunctionSet clears all cached information in the client’s function
stubs for the specified function set. When a function in a function set is
called for the first time, the function stub linked with the caller looks up the
address of the function and places the address in its cache. This process
causes the function set’s library to be loaded if it is not already loaded, and
also increments the library’s use count. The only way to decrement the
library’s use count and cause the library to be unloaded is to call
ResetFunctionSet, passing it the TFunctionSetID of the function set
that you want to reset. This causes all cached information for the function
set in the client’s function stubs to be cleared out, allowing the library’s use
count to be decremented. If the library’s use count is decremented to zero,
the library is unloaded.

You can reset all function sets that a client uses by passing NULL to
ResetFunctionSet. All function sets are reset automatically when the
client quits (by calling CleanupLibraryManager) or unloads (in the case
of a library).

Client death watch notification

The ASLM provides a notification facility that you can use to determine
when a client goes away. A client goes away when it calls
CleanupLibraryManager or when a shared library unloads (since shared
libraries are also considered clients).

To keep track of when clients go away, you can register a death watch
notifier, also called a death watcher. To register a death watcher, you can
call the InstallDeathWatcher function. When you no longer want to be
notified of clients that have gone away, you can call the
RemoveDeathWatcher function.

There are several reasons for installing a death watcher. For example, you
may have written an application or library that makes callbacks to its clients
when certain conditions exist. By maintaining a death watcher, you can
avoid attempting to make a callback to a client that has gone away.

Another reason for installing a death watcher is to make sure that your
application is notified when it is going away (probably because it has
crashed). The Inspector application provides an example of using death
watchers in this manner. Before going away, Inspector makes sure certain
objects are deleted. The Inspector application is described in Appendix B
“ASLM Utility Programs.”

7-12 Chapter 7 / ASLM Utilities

How death watchers work

The syntax of InstallDeathWatcher and RemoveDeathWatcher is:

Boolean InstallDeathWatcher(TNotifier* notifier);

Boolean RemoveDeathWatcher(TNotifier* notifier);

Both InstallDeathWatcher and RemoveDeathWatcher take a
TNotifier object as a parameter. When InstallDeathWatcher has been
called, the specified TNotifier object’s Notify function is called each
time a client goes away.

For more information on the TNotifier class and its member functions,
see Chapter 9, “Utility Classes and Member Functions.”

The InstallDeathWatcher call returns true if it is successfully
executed; otherwise, it returns false . However, InstallDeathWatcher
cannot fail unless the ASLM runs out of memory—which is unlikely.

The Notify function

When the specified TNotifier object’s Notify function is called, the
method’s notifyData parameter contains a pointer to the
TLibraryManager object of the client that is going away, and the
method’s EventCode parameter contains kDeathEvent.

If a client is being notified about its own death, the TLibraryManager
pointer that is passed to its TNotifier object’s Notify function is the
same as the one returned by GetLocalLibraryManager.

When the specified TNotifier object’s Notify function is called, the
method’s OSErr parameter contains one of three values: kNoError if a
client called CleanupLibraryManager, kCodeNotLoaded if a library is
being unloaded, and kLibraryManagerNotLoaded if the ASLM is being
unloaded. You never have to worry about a kLibraryManagerNotLoaded
error code unless you want to add debugging code to your client so it can
handle the ASLM being reloaded from the Inspector application or from
an explicit UnloadLibraryManger call in your own code (which should
be there for debugging purposes only). The Inspector does check for the
kLibraryManagerNotLoaded error code, providing an example of this
kind of checking.

Client death watch notification 7-13

Global world functions

The ASLM provides a number of routines for setting up a client’s global
world:

GlobalWorld GetGlobalWorld();

GlobalWorld OpenGlobalWorld();

void CloseGlobalWorld(GlobalWorld oldWorld);

GlobalWorld SetCurrentGlobalWorld(GlobalWorld newWorld);

GlobalWorld GetCurrentGlobalWorld(void);

The GetCurrentGlobalWorld and SetCurrentGlobalWorld functions
deal with the current global world setting. They are the same as the
Macintosh GetA5 and SetA5 routines and are used to get and set the
current global world, which is represented by the A5 register on the
Macintosh.

The OpenGlobalWorld, CloseGlobalWorld, and GetGlobalWorld
functions deal with the global world belonging to a library or model far
client. Thus, the global world returned by GetGlobalWorld may not be
the same as the current global world.

The GetGlobalWorld function returns the global world pointer for the
client making the call. The global world returned by GetGlobalWorld
may not be the same as the current global world. Use GetGlobalWorld to
get the global world for the library or application client making the call.
This can be useful if you need to pass the global world to code that may
need to set it at a later time.

The OpenGlobalWorld function simply calls GetGlobalWorld and passes
the result to SetCurrentGlobalWorld. The CloseGlobalWorld function
performs the same operation as SetCurrentGlobalWorld, except that it
does not return a result.

The CloseGlobalWorld function reverts to the global world that was
current before calling OpenGlobalWorld. When you call
CloseGlobalWorld, you must pass it the global world that was returned
by OpenGlobalWorld. It is the same as calling
SetCurrentGlobalWorld(oldWorld) except that it does not return a
global world.

7-14 Chapter 7 / ASLM Utilities

You can call EnterSystemMode to make the ASLM global world the
current global world. Although there is generally no reason to make the
ASLM global world the current global world, you should be aware that this
is a side effect of calling EnterSystemMode. If you want to enter system
mode but do not want the current global world changed, call
GetCurrentGlobalWorld before calling EnterSystemMode and pass the
result to SetCurrentGlobalWorld after calling EnterSystemMode. For
additional information on EnterSystemMode, see “Entering and Leaving
System Mode” later in this chapter.

Since libraries are always compiled with model far, it is not necessary to call
OpenGlobalWorld before using globals or making intersegment calls.

Note: Only libraries and model far clients should call GetGlobalWorld,
OpenGlobalWorld, and CloseGlobalWorld.

Support for stand-alone code resources

A number of routines are provided to make it easier to set up a global
world for stand-alone code resources and make the code resource the
current client. (These routines are called by stand-alone code only.)

OSErr InitGlobalWorld(void);

void FreeGlobalWorld(void);

OSErr InitCodeResource(void);

void EnterCodeResource(void);

void LeaveCodeResource(void);

The InitGlobalWorld function creates and initializes the global world for
stand-alone code on the Macintosh Operating System—for example, INITs
and CDEVs. It also calls SetCurrentGlobalWorld. The
FreeGlobalWorld function frees the memory used by the global world
created by InitGlobalWorld.

The InitCodeResource function calls InitGlobalWorld to set up a
global world for code resources and to store the pointer to the global world
in a PC-relative location so that it can be used later.

The EnterCodeResource function is used to set the global world of code
resources as the current global world and to make the code resource the
current client. It uses the global-world pointer saved by
InitCodeResource. It is most useful when the code resource only calls
InitLibraryManager once but may be reentered multiple times before
calling CleanupLibraryManager. The LeaveCodeResource function
will undo what EnterCodeResource does. These two routines are not
reentrant.

Support for stand-alone code resources 7-15

When initializing the code resource, you should do the following:

GlobalWorld savedWorld = GetCurrentGlobalWorld();

InitCodeResource();

InitLibraryManager();

/* Do anything else you want before returning. If */

/* you make ASLM calls then you must also use */

/* Enter/LeaveCodeResource.

SetCurrentGlobalWorld(savedWorld);

Each time you reenter the code resource, you should do the following:

EnterCodeResource()

/* do ASLM related stuff */

LeaveCodeResource()

When you have finished, do the following:

EnterCodeResource()

CleanupLibraryManager();

LeaveCodeResource();

Creating and deleting the local library manager

All clients of the ASLM are required to have a TLibraryManager object
installed. This TLibraryManager object is referred to as the local library
manager. For shared libraries, the local library manager is created and
installed when the library is loaded and is deleted when the library is
unloaded. For non-library clients, the local library manager is created by
InitLibraryManager and is deleted by CleanupLibraryManager
(discussed in Chapter 4).

The local library manager is used behind the scenes when clients make
many ASLM calls including calling functions in a function set and creating
C++ objects when there is no information cached about the function or C++
class. It is also used when calling most of the ASLM utility functions. It
provides the link between the client and the ASLM.

The local library manager is also used by the ASLM to represent a client.
As explained in “The Current Client,” in Chapter 4, the local library
manager is returned from and passed as a parameter to the functions that
are used to set and get the current client.

The local library manager is also used as the keeper of the client’s local
pool pointer. See “Memory Management Classes” in Chapter 8, “ASLM
Utility Class Categories” for more information on the local pool.

7-16 Chapter 7 / ASLM Utilities

The InitLibraryManager function

When a non-library client wants to create an object that is implemented in a
shared library, or wants to use a function that is implemented in a shared
library, the client must call InitLibraryManager first. The
InitLibraryManager function creates a local instance of the
TLibraryManager class (which can be accessed by calling
GetLocalLibraryManager).

The InitLibraryManager function is declared in the LibraryManager.h
file as follows:

#ifdef __cplusplus

OSErr InitLibraryManager(size_t poolsize = 0,

 ZoneType = kCurrentZone,

 MemoryType = kNormalMemory);

#else

OSErr InitLibraryManager(size_t poolsize, short zoneType,

short memType);

#endif

In the above declaration, InitLibraryManager creates a local memory
pool of size poolsize. The memory for the pool is obtained from the
zone of type ZoneType and is of type MemoryType. The ZoneType and
MemoryType parameters are declared in the LibraryManager.h file and are
explained in Chapter 9, “Utility Classes and Member Functions.”

Non-C++ users do not need to be concerned with InitLibraryManager
parameters unless they are making calls to C++ code that may want to
allocate objects or memory out of the client’s local pool. Normally non-
C++ users should just pass 0 for poolsize, kCurrentZone for ZoneType,
and kNormalMemory for MemoryType. However, clients that make use of
the ASLM at interrupt time should pass kHoldMemory for MemoryType.

The pool that InitLibraryManager creates serves as the local library
manager’s object pool, which is the pool used to allocate memory for
objects that are created using NewObject. You can access the pool by
calling TLibraryManager::GetObjectPool. The pool is also called the
local memory pool and can be accessed by calling GetLocalPool.

The InitLibraryManager function always creates a local memory pool,
even if you pass it a pool of size zero (0). An object of class
TPoolNotifier is attached to the pool so that the pool can grow instead
of returning an error if it runs out of memory. The TPoolNotifier class
can assist in automatically “growing” a pool when the pool comes
dangerously close to running out of memory.

Creating and deleting the local library manager7-17

When InitLibraryManager creates a TLibraryManager object, the new
TLibraryManager object and the new TPoolNotifier object are
allocated from the local pool. The overhead for these two classes is added
to the pool size passed to InitLibraryManager.

For more information on memory pools and the TPoolNotifier class, see
Chapter 9, “Utility Classes and Member Functions.”

WARNING The InitLibraryManager call is not interrupt-safe. You
must be in your global world to call it.

The CleanupLibraryManager function

When you finish using the ASLM, you must call
CleanupLibraryManager. The CleanupLibraryManager function
deletes the local TLibraryManager object, its initial local pool (the pool
created by InitLibraryManager), and the pool’s TPoolNotifier. It
also does some other house cleaning, including releasing any function sets
that were used and closing any library files that were explicitly opened.
Any LoadClass, LoadFunctionSet, and LoadLibraries calls are also
undone. CleanupLibraryManager is only called by clients that called
InitLibraryManager. Shared libraries should never call
CleanupLibraryManager.

The CleanupLibraryManager function is declared in the header file
LibraryManager.h. as follows:

void CleanupLibraryManager();

The CleanupLibraryManager function is called automatically for
application clients that either crash or do not call it before quitting. This
means that if an application crashes, it releases any function sets it was
using and closes any library files that it explicitly opened. However, it does
not release any classes for which all instances were not deleted. The
libraries that these classes are in remain loaded and in use until the
computer is restarted.

WARNING The CleanupLibraryManager function is not interrupt-
safe, and you must be in your global world when you call it.

7-18 Chapter 7 / ASLM Utilities

Getting the local library manager

The function GetLocalLibraryManager returns the currently installed
local library manager. For shared libraries, the local library manager is
created and installed when the library is loaded and is deleted when the
library is unloaded. For non-library clients, the local library manager is
created by InitLibraryManager. The GetLocalLibraryManager
function returns NULL if InitLibraryManager failed or has not been
called yet. It is declared as follows:

TLibraryManager* GetLocalLibraryManager;

A client can call GetLocalLibraryManager to test whether
InitLibraryManager has been called successfully.

For more information on InitLibraryManager and the local library
manager, see “Creating and Deleting the Local Library Manager” above.

Calling functions by name

The ASLM supports exporting and calling C functions by name. To make
use of this capability, you must modify your client’s .exp file. Any
functions in your function set that you want to be exported by name should
be preceded by the keyword extern. You can then call the
GetFunctionPointer to obtain a pointer to the function. Of course, you
can call the function in the usual manner as well.

The ASLM also supports calling functions by specifying the function’s
index in the function set. The GetIndexedFunctionPointer function is
used for this and does not require that the function name be preceded by
the extern keyword in the .exp file.

The syntax of these two functions is:

ProcPtr GetFunctionPointer(const TFunctionSetID,

 const char* funcName, OSErr*);

ProcPtr GetIndexedFunctionPointer(const TFunctionSetID,

 unsigned int index, OSErr*);

The GetFunctionPointer function returns a pointer to a function, and
takes the name of the function in the function set. The
GetIndexedFunctionPointer function returns a pointer to a function,
and takes the index of the function in the function set. The
TFunctionSetID parameter is the ID of the function’s function set and
funcName is the name of the function.

Calling functions by name7-19

If an error occurs while GetFunctionPointer or
GetIndexedFunctionPointer is trying to obtain a function pointer, the
call returns NULL and the appropriate error code is placed in the OSErr*
parameter.

One possible use for GetFunctionPointer is to extend scripting
languages. You can let the user specify the name of the function (and
perhaps even the function set ID), and you can then call
GetFunctionPointer to obtain the implementation of the function. This
is similar to the way XCMDs work in HyperCard.

Another possible use for GetFunctionPointer or
GetIndexedFunctionPointer is to allow the same routine to be
implemented in more than one function set, with the option of choosing
which function set is used. If you call the function directly, the function set
whose client object (.cl.o) file you have linked with determines which
function set is used. Using GetFunctionPointer or
GetIndexedFunctionPointer allows you to choose at run time which
function set to use.

By placing an interfaceID=FunctionSetID line in a client’s export
(.exp) file, you can associate a function set with an interface. It allows you
to specify a common interface for your function sets that implement the
same functions. You can then create multiple function sets with the same
interface ID, and you can use the GetFunctionSetInfo function to find
all such function sets with the same interface ID and then use
GetFunctionPointer or GetIndexedFunctionPointer to get the
correct function in the correct function set. All that is required is that each
function set implement the same functions and that any given function has
the same interface and either the same index or the same name in each
function set. The GetFunctionSetInfo function is described in the next
section.

The following is an example of a declaration of a function set that exports
a function by name:

FunctionSet ExampleFSet

{

id = kExampleFunctionSet;

exports = extern Hello;

};

7-20 Chapter 7 / ASLM Utilities

This example shows how you might call a function named Hello by name.

ProcPtr helloPtr;

helloPtr = GetFunctionPointer(kExampleFunctionSet, "Hello",

NULL);

*helloPtr();

The above example does not include error checking, which should be
added. It may also be necessary to cast the result of GetFunctionPointer
to a different function pointer.

WARNING Although GetFunctionPointer and
GetIndexedFunctionPointer cause the shared library
implementing the function to be loaded, they do not increment the
shared library’s use count. This means that unless something else is
done to increment the library’s use count, it will be unloaded the next
time SystemTask is called. If you call the function returned
immediately after the call to GetFunctionPointer or
GetIndexedFunctionPointer then you do not have to worry
(unless the function allows SystemTask to be called). However, if you
plan on using the function pointer returned at a later time, you
normally will call LoadFunctionSet immediately before or after the
GetFunctionPointer or the GetIndexedFunctionPointer call
and then call UnloadFunctionSet when you are done with the
function pointer. This will ensure that the shared library stays loaded
until you are done with the function pointer.

Getting information about function sets

The GetFunctionSetInfo function, the C interface to the TClassInfo
class, is used to provide information about a function set or a series of
function sets that have a common interface ID. In the latter case it is used to
iterate over all function sets with the given interface ID. The
GetFunctionSetInfo function returns a TFunctionSetInfo structure
that is passed to other routines to get information about the function set.
You free up TFunctionSetInfo by calling FreeFunctionSetInfo. The
following routines are used in conjunction with GetFunctionSetInfo
(these routines are C versions of the TClassInfo member functions):

TFunctionSetInfo* GetFunctionSetInfo(TFunctionSetID, OSErr*);

void FreeFunctionSetInfo(TFunctionSetInfo*);

void FSInfoReset(TFunctionSetInfo*);

TFunctionSetID FSInfoNext(TFunctionSetInfo*);

Getting information about function sets 7-21

Boolean FSInfoIterationComplete(TFunctionSetInfo*);

TFunctionSetID FSInfoGetFunctionSetID(TFunctionSetInfo*);

TFunctionSetID FSInfoGetParentID(TFunctionSetInfo*, size_t idx);

TLibrary* FSInfoGetLibrary(TFunctionSetInfo*);

TLibraryFile* FSInfoGetLibraryFile(TFunctionSetInfo*);

unsigned short FSInfoGetVersion(TFunctionSetInfo*);

unsigned short FSInfoGetMinVersion(TFunctionSetInfo*);

After calling GetFunctionSetInfo, you can pass the
TFunctionSetInfo object to any of the other routines. Most of them
provide information about the current function set. Others are used to
iterate over all function sets with the specified interface ID, if you passed an
interface ID to GetFunctionSetInfo instead of an actual function set ID.

The first function set looked at is always the one specified when you called
GetFunctionSetInfo. If you specified an interface ID, you need to call
FSInfoNext to start iterating over all the function sets that have the
specified interface ID. You can continue calling FSInfoNext until it
returns NULL, gathering information about each function set as you
proceed. The FSInfoNext function changes the function set being looked
at to the next function set and returns the TFunctionSetID object of the
next function set.

If you allowed calls to SystemTask or WaitNextEvent while iterating
over the function set, the TFunctionSetInfo object may become invalid
if the user has added or removed a shared library file from a registered
folder. In this case, FSInfoNext will return NULL and
FSIterationComplete will return false. If this happens you can call
FSInfoReset and start the iteration over.

Use FSInfoGetFunctionSetID to get the TFunctionSetID of the
current function set.

Use FSInfoGetParentID to get the interface ID of the current function
set. The idx parameter should always be 0 and is there for historical
reasons. A better name for this function is FSInfoGetInterfaceID,
however, it is named FSInfoGetParentID for historical reasons.

The FSInfoGetLibrary function returns the TLibrary object in charge
of the library that the current function set is implemented in. The
FSInfoGetLibraryFile function returns the TLibraryFile object in
charge of the library file that the current function set’s library is in. Both
the TLibrary and TLibraryFile objects have uses in other ASLM
routines.

7-22 Chapter 7 / ASLM Utilities

The FSInfoGetVersion function returns the version of the current
function set and the FSInfoGetMinVersion function returns the
minimum version that the current function set supports.

There is an example of how to use GetFunctionSetInfo on the ASLM
Examples disk in the FunctionSetInfo folder.

Note: You can use TClassInfo to iterate over function sets and the
routines mentioned above to iterate over classes.

Interrupt support

For some parts of the ASLM to work properly at interrupt time—for
example, for memory to be allocated from memory pools and for objects
to be created—the ASLM must be aware that the procedures are being
executed during interrupts. You can call the EnterInterrupt function to
inform the ASLM that you are executing code at interrupt time, and you
can call LeaveInterrupt when you have finished. The
AtInterruptLevel function returns true if EnterInterrupt has been
called without a matching LeaveInterrupt call. Otherwise it returns
false.

If your code is being executed because you have scheduled an operation
on an ASLM scheduler such as TTimeScheduler or
TIterruptScheduler, the ASLM is already aware that you are executing
at interrupt time, so there is no need to call EnterInterrupt. (For more
information on the ASLM scheduler classes, see “Process Management
Classes” in Chapter 8, “ASLM Utility Class Categories.”)

You do not have to call EnterInterrupt before you schedule an
operation on a TInterruptScheduler. This means that if your interrupt
code only puts a TOperation on a TInterruptScheduler, you never
have to call EnterInterrupt. However, if you use the new operator to
allocate memory for the TOperation or any other object, you do need to
call EnterInterrupt. The ASLM also provides an
InInterruptScheduler function that can tell you if the
TInterruptScheduler is currently running.

Virtually all ASLM calls and member functions of classes provided by the
ASLM are interrupt-safe, with these exceptions:

InitLibraryManager and CleanupLibraryManager

LoadLibraryManager and UnloadLibraryManager

InitCodeResource, InitGlobalWorld, and FreeGlobalWorld

routines to load and unload library code segments

RegisterLibraryFileFolder and UnregisterLibraryFileFolder

Interrupt support 7-23

RegisterLibraryFile, UnregisterLibraryFile, and
UnregisterLibraryFileByFileSpec

calls to TMemoryPool::AddMemoryToPool or
TMemoryPool::DownsizePool to create a new pool or add memory to
a pool. (AddMemoryToPool and DownsizePool return errors if they are
called at interrupt time.)

TLibraryFile resource management calls

toolbox and operating system calls that are not interrupt-safe because
they move or purge memory

calls that cause a library to be loaded by creating an object (including
stack objects)

calls to a function in a function set that is not already loaded

calls to GetFunctionPointer or GetIndexedFunctionPointer for a
function in a function set that is not already loaded

LoadClass, LoadFunctionSet, or LoadLibraries

You can verify that a class is loaded by calling IsClassLoaded. You can
load a library while your client is executing in the foreground by calling
LoadClass, LoadFunctionSet, or LoadLibraries. This will allow you
to safely use the library at interrupt time.

EnterInterrupt
LeaveInterrupt

These functions should be called when you are in an interrupt service
routine or a deferred task and you want to do something that will cause
ASLM code to be executed such as allocating pool memory or creating an
object. The ASLM needs to know that it is at interrupt time so it does not
do anything harmful like trying to allocate Macintosh Memory Manager
memory or load library code. This does not mean that all ASLM calls are
safe at interrupt time, just that the ones that claim to be safe will only be
safe if you do an EnterInterrupt call first.

You do not need to use these routines when your interrupt service routine
is scheduling an operation on a TInterruptScheduler, when the
operation gets executed at deferred task time, or when a TTimeScheduler
operation gets executed. In the former case the ASLM realizes that you are
at interrupt time and in the later two cases the ASLM does an
EnterInterrupt before calling your operation and a LeaveInterrupt
when your operation returns.

void EnterInterrupt(void);

void LeaveInterrupt(void);

7-24 Chapter 7 / ASLM Utilities

AtInterruptLevel

This function returns true if you are currently executing at non-System
Task time.

Boolean AtInterruptLevel(void);

InInterruptScheduler

This function returns true if you are currently running an interrupt
scheduler.

Boolean InInterruptScheduler(void);

Exception handling

The ASLM provides exception handling macros that are used to catch
exceptions that may be raised. Exceptions are raised by calling the RAISE,
Fail, FailNull, DebugFail, and DebugFailNull functions (described
later in this section). The only time the ASLM raises an exception is if it
fails to load a shared library or fails to load a shared library’s code
segment after the shared library has already been loaded.

The ASLM will never raise an exception when calls are made that could
return an error code instead, such as LoadFunctionSet. The strategy used
is that if something useful cannot be done, such as returning an error code,
an exception must be raised. For example, an exception is raised if a shared
library cannot be loaded when a class is created or a function in a function
set is called. The most common reason a library would fail to load is either
it cannot be located or there is not enough memory for it.

Another reason an exception might be raised is if a library is loaded, but
not all of its code segments are loaded. If a call is made to a member
function or function implemented in an unloaded code segment and the
code segment cannot be loaded because there is not enough memory, an
exception is raised.

Of course shared libraries that a client uses may also raise exceptions for
other reasons, but this is up to the developer of the shared library.

Exception handling 7-25

How to avoid raising exceptions

All shared libraries and clients must guard against raising exceptions. One
way is to make sure that a library is loaded, along with all of its code
segments, before trying to use it. You can use the LoadClass,
LoadFunctionSet, and LoadLibraries functions for this. You can also
specify certain flags when declaring a library in the library’s .exp file that
make sure all libraries that the library depends on are loaded when the
library is loaded. If the libraries it depends on cannot be loaded, the library
will fail to load.

The other way of guarding against raising exceptions is to use exception
handling macros to catch any exceptions that are raised.

Exception handling macros

The ASLM exception handling macros match the DCE standard and are
usable from C. Here is the syntax for handling exceptions:

TRY

try_block

[CATCH (errcode)

handler_block] ...

[CATCH_ALL

handler_block]

[FINALLY

final_block]

ENDTRY

The following macros are used for exception handling. They all conform
to the DCE standard for exception handling.

TRY starts a block of code that may end up raising an exception that you
want to catch.

A try_block or a handler_block is a sequence of statements, the first
of which may be declarations, as in a normal block. If an exception is
raised in the try_block, the catch clauses are evaluated to see if any
match the current exception.

CATCH(errcode) catches errcode if it is raised, and CATCH_ALL
catches anything that CATCH has not caught.

The CATCH or CATCH_ALL clauses absorb an exception; they catch an
exception propagating out of the try_block, and direct execution into
the associated handler_block. By default, the exception stops
propagating. Within the lexical scope of a handler, it is possible to
explicitly cause the same exception to resume propagating (this is called
reraising the exception). It is also possible to raise a new exception.

7-26 Chapter 7 / ASLM Utilities

RERAISE reraises an exception that has been caught.

The RERAISE statement is allowed in any handler statements and causes
the current exception to be reraised. The exception resumes
propagating.

FINALLY contains code that you want executed whether an exception
has been raised or not. It should not be used in conjunction with the
CATCH or CATCH_ALL macros.

ENDTRY ends the exception handling block.

RAISE (exception_name) is allowed anywhere and causes a particular
exception to start propagating. Valid exception names are any error
code you wish to pass to the exception handler. See “Raising
Exceptions” below for more details.. (RAISE is not shown in the above
syntax since it is normally in the try_block or in code called by the
try_block.)

This example shows how an ASLM client can use exception handling:

TRY

DoThisAndThat(); // this function may raise an exception

CATCH(kOutOfMemory)

prinf("Ran out of memory but continuing on\n");

CATCH_ALL

printf("Unexpected error. Passing it to next guy up\n");

RERAISE

ENDTRY

In the previous example, if a kOutofMemory exception propagates out of
the TRY block, the first printf is executed. If any other exception
propagates out of TRY block, the second printf is executed. In this case,
the exception resumes propagating because of the RERAISE statement. (If
the code is unable to fully recover from the error, or does not understand
the error, it needs to further propagate the error to its caller.)

The following is the syntax for using the FINALLY macro:

TRY

try_block

[FINALLY

final_block]

ENDTRY

Exception handling 7-27

The final_block is executed whether or not the try_block executes to
completion without raising an exception. If an exception is raised in the
try_block, propagation of the exception is resumed after executing the
final_block. In other words, if an exception is raised in the try_block,
it will automatically be reraised after the final_block has executed. A
CATCH_ALL handler and RERAISE could be used to do this, but the
final_block code would then have to be duplicated in two places, as
follows:

TRY

try_block

CATCH_ALL

final_block

RERAISE;

ENDTRY

{ final_block }

A FINALLY statement has exactly this meaning, but avoids code
duplication.

Note: The behavior of FINALLY along with CATCH or CATCH_ALL clauses is
undefined. Do not combine them for the same try_block.

Using the exception handling macros

You can use the macros for more than just catching exceptions that are
raised by others. For example, if you are entering a section of code that
needs to continually check to see whether what you just tried was
successful, and if not, to clean up and quit, you can use exception handling
to make it easier. Simply put all the code that is “trying to do things” in
the TRY section and raise an exception by calling Fail if anything you try
fails. Put your cleanup code in the CATCH_ALL or FINALLY section
depending on whether you want to execute it even if you do not fail.

Raising exceptions

Exceptions are raised by calling either RAISE, Fail, FailNULL,
DebugFail, or DebugFailNULL. The prototypes of these functions are:

void RAISE(long errorCode);

void Fail(long errorCode, const char* message);

void FailNULL(void* testValue, long errorCode,

 const char* message);

void DebugFail(long errorCode, const char* message);

void DebugFailNULL(void* testValue, long errorCode,

 const char* message);

7-28 Chapter 7 / ASLM Utilities

The errorCode parameter is the error code that is passed to the exception
handler. The exception handler can retrieve the error code by using the
ErrorCode macro in the CATCH or CATCH_ALL sections. Likewise, the
message parameter is the message string that is passed to the exception
handler and can be retrieved with the ErrorMesssage macro. The message
parameter can be set to NULL if no message is desired. It defaults to NULL
for C++ users.

When calling Fail (or one of its variants), no exception will be raised if the
error code kNoError is passed.

When calling Fail (or one of its variants), if a message is passed in the
message parameter and you are running the debug version of ASLM
(Shared Library Manger Debug), you enter the debugger and the message
is displayed.

FailNULL is the same as Fail, except that it only raises an exception if the
testValue parameter is NULL.

DebugFail and DebugFailNULL are macros that simply call Fail and
FailNULL, except that the message parameter will automatically be set to
NULL if qDebug is undefined or is #defined to be 0. This allows you to
automatically have the non-debug version of your software omit any
message text by simply changing the value of qDebug from 1 to 0.

RAISE is a macro that calls the Fail function and passes NULL for the
message parameter. This is the only way to raise an exception that
conforms to the DCE standard. All variants of the Fail function are
extensions that ASLM has added and are not part of the DCE standard. The
ErrorCode and ErrorMessage macros are also extensions added by
ASLM.

Rules and conventions for using exceptions

The following rules ensure that exceptions are used in a modular way (so
that independent software components can be written without requiring
knowledge of each other):

Avoid putting code in a try_block that belongs before it.

The TRY macro only guards statements for which the statements in the
FINALLY, CATCH, or CATCH_ALL clauses are always valid.

A common misuse of TRY is to put code in the try_block that needs to
be placed before TRY. The following example demonstrates this misuse and
assumes that open_file will raise an exception if it fails:

Exception handling 7-29

TRY

handle = open_file (file_name);

/* Statements that may raise an exception here */

FINALLY

close (handle);

ENDTRY

The code under FINALLY assumes that no exception is raised by
open_file. This is because the code accesses an invalid identifier in the
FINALLY section when open_file is modified to raise an exception. The
preceding example should be rewritten as follows:

handle = open_file (file_name);

TRY

{

/* Statements that may raise an exception here */

}

FINALLY

close (handle);

ENDTRY

The code that opens the file belongs prior to TRY, and the code that closes
the file belongs in the FINALLY section. (If open_file raises exceptions, it
may need a separate try_block.)

Do not place a return or nonlocal goto between TRY and ENDTRY.

It is invalid to return, goto, or leave by any other means a TRY, CATCH,
CATCH_ALL, or FINALLY block. Special code is generated by the ENDTRY
macro, and it must be executed.

Variables that are read or written by exception handling code must be declared volatile.

Any variable that is declared outside of the exception handling block, is
changed from within the TRY section, and then is referenced later on,
should be made volatile by using the Volatile macro. This will prevent
the variable from ever being placed in a register. Otherwise you run the risk
of having the variable being placed in a register while executing in the TRY
section, but after the exception is raised, having the value of the register
change.

Storing local variables in registers is a problem because the TRY macro
saves the values of most of the 68000 registers and then when an exception
is raised the registers are restored to their saved values. This means that if a
variable was stored in a register and was changed in the TRY section, its
value will be lost when the exception is raised.

Generally you do not have to worry about variables that are not referenced
frequently, but the only way to be sure that a variable is safe is to look at
the compiled code.

7-30 Chapter 7 / ASLM Utilities

Below is an example of how to use the Volatile macro:

int temp;

Volatile(temp);

Note: The ANSI C volatile attribute would normally be used to
accomplish this, but is does not work with MPW C++ so the ASLM defines
the Volatile macro to do the job.

Default exception handlers

When you call InitLibraryManager, it installs a default exception
handler that catches any exception that is raised and not caught by the
client. The default exception handlers are set up and executed by using the
C setjmp/longjmp facility. When you end up in the default exeception
handler, your code is executing within the InitLibraryManager routine.
This does not mean that you entered the default exception handler by
calling InitLibraryManager. It means that sometime after calling
InitLibraryManager your application did something that caused an
exception to be raised (like trying to call a function in a function set that
was not available or could not load), and your application did not set up an
exception handler to catch this exception.

The default exception handler will force the application to quit when it
catches an exception, and the user will see no warning as to why this
happened. If you are running the debug version of the ASLM, you will
first end up in the debugger with the message “An exception was thrown
and the application did not catch it.” When execution continues, the
application is forced to quit.

Exceptions and the current client

Exceptions are always passed to (or caught by) the exception handler at the
top of the exception handling chain of the current client. Normally, the
application that is currently executing is the current client and this is
usually the client to which you pass an exception if an exception is raised.
If a shared library is made the current client, that shared library must have
an exception handler installed if anything is done that can cause an
exception to be raised. Unlike clients that call InitLibraryManager,
shared libraries do not have default exception handlers installed.

Raising an exception when there is no exception handler installed usually
results in a crash. When using the debug version of the ASLM, you will first
go into the debugger with the message “One too many PopException
calls!”

Exception handling 7-31

When an exception handler is installed, it is always placed on the exception
handling chain of the current client. For this reason it is important that the
current client be the same when the exception handler is removed. This
means that if you change the current client within the TRY section, you
must restore it before entering the FINALLY or ENDTRY sections. When an
exception is raised, the current client is automatically restored to the client
that was current when the exception handler was installed. Therefore, there
is no need to worry about restoring the current client before entering the
CATCH or CATCH_ALL sections.

Verifying an object’s type

When you create an object, you may want to verify the object’s interface
(identify its base class) so that you can use the object safely. Otherwise, you
cannot safely call any member functions. This is especially true when you
use NewObject or are given an object that someone else created. The
CastObject and the IsDerivedFrom functions can be used to verify an
object’s type.

void* CastObject(const void* object,

 const TClassID parentID, OSErr* err);

void* CastToMainObject(const void*);

Boolean IsDerivedFrom(const void*, const TClassID&);

The CastObject function casts the object to the specified class and returns
a pointer to the object if successful. When using single inheritance, this is
always the pointer to the original object. For classes that use multiple
inheritance, the object pointer returned may be different.

The object parameter is the object that you want to cast and the
parentID parameter is the class ID of the class to which you want to cast
the object. If an error occurs, CastObject returns NULL and the OSErr
parameter contains the appropriate error code. Possible error codes include
kNotFound (when parentID is not a valid class ID) and kNotRelated
(when object is not related to parentID).

Any object that you pass to CastObject must have the v-table first. (An
object that has its v-table first is an object derived from a base class that has
at least one virtual function and no data members. This is true of objects
that inherit from the TDynamic, TSimpleDynamic, TStdSimpleDynamic,
and TStdDynamic classes.)

7-32 Chapter 7 / ASLM Utilities

CastObject can be called after an object is created to verify its type. For
example:

// Somebody gave me "theObject", is it really what I asked for?

if (CastObject(theObject, kTMyFirstClassID))

{

// OK, now it's safe to call theObject methods

theObject->DoSomethingForMe();

}

The IsDerivedFrom function returns true if the object is derived from
the specified TClassID. Call IsDerivedFrom only on an object that is
implemented in a shared library and is a shared class.

You can use CastToMainObject to obtain the original object pointer
without knowing the type of the object. This allows you to get the real
object when you were given a pointer to one of its multiply-inherited
parents.

Verifying a class’s base class

Use VerifyClass to verify a class’s inheritance. A client can call the
VerifyClass function to verify at run time that a given object is derived
from a particular base class. If you are using NewObject, you can also do
this same verification by passing the required base class type to
NewObject. The VerifyClass function allows you to verify a class’s
interface before actually creating an instance of the class.

OSErr VerifyClass(const TClassID, const TClassID parentID);

In the following example, VerifyClass verifies that the class with the ID
myClassID is derived from the class TParentClass with the ID
kMyParentClassID:

if (VerifyClass(myClassID, kMyParentClassID))

{

 // now we can use NewObject and safely cast to

 // TMyParentClass

 TMyFirstClass* myObject;

 myObject = (TMyParentClass*) NewObject(myClassID);

 if (myObject != NULL) // was object created?

 {

// now it is safe to call methods

myObject->DoThisAndThat();

 }

}

Verifying a class’s base class 7-33

Alternatively, you can call NewObject with a second parameter specifying
the required base class, as follows:

TMyFirstClass* myObject;

myObject = (TMyParentClass*)

NewObjectWithParent(myClassID, kMyParentClassID);

if (myObject != NULL) myObject->DoThisAndThat();

Using NewObject

The global NewObject function is a C interface to the
TLibraryManager::NewObject member function. There are three
NewObject functions:

void* NewObject(const TClassID, OSErr*, TStandardPool*);

void* NewObjectWithParent(const TClassID, const TClassID

 parentID,OSErr*, TStandardPool*);

void NewObjectFromStream(const TFormattedStream*,OSErr*,

 TStandardPool*);

NewObject creates an object of the class identified by the specified
ClassID. If NewObject cannot find the class, it returns NULL and returns
an appropriate error code in the OSErr parameter. You can pass an
optional parent class ID to NewObject to verify that the object you are
instantiating inherits from the given parent class. The object’s newobject
flag must be set so that the object can be instantiated with a call to
NewObject. The newobject flag for the class is set by the library writer
by specifying flags=newobject when exporting the class. The only
classes shipped with the ASLM that have the newobject flag are the
TCollection and TScheduler subclasses. Also, NewObject takes an
optional pool parameter that you can specify if you do not want to allocate
memory for the object from the TLibraryManager’s object pool.

The NewObjectWithParent function works like NewObject, but will only
create the object if it is a subclass of the parent specified in parentID. If it
is not a subclass of the parent specified in parentID, the error code
kNotRelated is returned.

The NewObjectFromStream function is not supported in version 1.1 of
the ASLM.

7-34 Chapter 7 / ASLM Utilities

Loading and unloading the ASLM

Use UnloadLibraryManager and LoadLibraryManager only for testing
purposes. The IsLibraryManagerLoaded function checks if the ASLM is
loaded. These functions are useful for “resetting” the ASLM, especially if
a library remains loaded because a client crashed and you want to get the
library unloaded. The Inspector application uses these routines to load and
unload the ASLM when requested.

The LoadLibraryManager function returns true if successful or if the
ASLM is already loaded.

Boolean IsLibraryManagerLoaded(void);

Boolean LoadLibraryManager(void);

void UnloadLibraryManager(void);

Getting the ASLM version

The GetSLMVersion function returns the version of the installed ASLM in
the ‘vers’ resource format (the first 4 bytes only). If the ASLM extension
is not installed, GetSLMVersion returns zero.

unsigned long GetSLMVersion(void);

Sending output to the TraceMonitor window

Trace is an I/O method that accepts the same parameters that can be passed
to the stdio.h printf function in C. It formats unformatted text and sends
it to a specified output, usually the TraceMonitor’s Trace window.

void Trace(const char *formatStr, ...);

Note: Pascal users can only pass a single parameter to Trace (the string to
be output).

Entering and leaving system mode

The Macintosh Operating System keeps track of all files opened and closes
files used by an application when the application quits. However, an
application sometimes makes an operating system call that can cause a file
to be opened that should not always be closed when the application quits.
An application causing a library file to be opened so that it can be loaded is
an example of this. The Macintosh Operating System provides a system
mode to prevent a file from being closed at the wrong time.

Entering and leaving system mode7-35

When the Macintosh is in system mode, files that have been opened by an
application are not closed when the application terminates. The ASLM goes
into system mode when there is a need to open a file that should not be
closed when the application quits.

This example illustrates how system mode is used: Assume that you have
two applications running at the same time. The first application creates an
object that causes a library file to be opened and the library’s code to be
loaded. From the point of view of the operating system, the application has
opened the file.

Now a second application creates an object in the same library. The library
file is already open and the necessary code is already loaded, so nothing
more needs to be done. If the first application then quits, the operating
system ordinarily unloads the library’s code and closes the library file.
This obviously causes problems for the second application. To avoid this,
the ASLM goes into system mode when it opens library files so that they
are not closed when the application that is being serviced quits.

You can use EnterSystemMode if a library needs to open a file, but wants
the file to remain open after the current client quits. In this case, the code to
open the file should be preceded by a call to EnterSystemMode and
followed by a call to LeaveSystemMode.

The EnterSystemMode function puts the system into system mode. It
makes the system heap the current heap, the ASLM the current client, and
the ASLM world the current global world. The original heap, current client,
and the global world are restored when LeaveSystemMode is called.
Therefore, every EnterSystemMode call must be balanced by a call to
LeaveSystemMode. You can nest EnterSystemMode calls. The void*
returned by EnterSystemMode must be passed to the balancing call to
LeaveSystemMode.

void* EnterSystemMode();

void LeaveSystemMode(void*);

WARNING Since EnterSystemMode changes your global world, model
near clients must save their global world by calling
GetCurrentGlobal before calling EnterSystemMode and then
restore their global world by calling SetCurrentGlobalWorld after
calling EnterSystemMode. If this is not done, the next call to an
exported ASLM routine, including LeaveSystemMode, or any call
that goes through the jump table, will cause a crash.

7-36 Chapter 7 / ASLM Utilities

Library file and resource management

The ASLM lets you link multiple function sets and classes together into a
single shared library, and lets you combine multiple shared libraries into a
single file called a library file. Along with the code resources that
implement shared libraries, other resources can also be stored in the library
file. The ASLM provides a number of routines that are used to open and
close library files and also get resources from them in a such a way that
they can be shared between multiple clients. Also, routines are provided to
add and remove the library file from the resource chain, since the library
file is automatically removed from the resource chain once it is opened.
This allows users to get resources from the library file by using Macintosh
Resource Manager calls.

The library file and resource management functions are declared in the
LibraryManagerUtilities.h file. Each routine takes a TLibraryFile*
parameter that is a pointer to an object that is in charge of the library file.
Although it is a C++ object, it can also be retrieved and used by non-C++
users. The TLibraryFile object can be retrieved in a number of ways,
which are documented in “Getting a Library File’s TLibraryFile Object”
later in this chapter.

The library file and resource management functions can be used to place
the library file’s resource fork in the resource chain so Resource Manager
calls can work. There are also functions that serve as a front end to certain
Resource Manager calls. These functions keep track of the use of resources
so clients and libraries can share the resources.

Routines for opening and closing library files and getting the refNum for
an open library file are also provided.

OSErr Preflight(TLibraryFile*, long* savedRefNum);

OSErr Postflight(TLibraryFile*, long savedRefNum);

OSErr OpenLibraryFile(TLibraryFile*);

OSErr CloseLibraryFile(TLibraryFile*);

TFileSpec* GetFileSpec(TLibraryFile*);

long GetRefNum(TLibraryFile*);

Ptr GetSharedResource(TLibraryFile*, ResType, int theID,

 OSErr*);

Ptr GetSharedIndResource(TLibraryFile*, ResType,

 int index, OSErr*);

Ptr GetSharedNamedResource(TLibraryFile*, ResType,

 const char* name, OSErr*);

void ReleaseSharedResource(TLibraryFile*, Ptr);

long CountSharedResources(TLibraryFile*, ResType);

Library file and resource management7-37

size_t GetSharedResourceUseCount(TLibraryFile*, Ptr);

OSErr GetSharedResourceInfo(TLibraryFile*, Ptr,

 size_t* theSize,

 short* theID, ResType*,

 char* theName);

Preflight
Postflight

The Preflight function places the library file’s resource fork in the
resource chain so that Resource Manager calls can work. It calls
UseResFile to make the library file the current resource file and returns
the previous current resource file in savedRefNum. The Preflight
function puts the library file just above the system file in the resource
chain. (In System 7.1 and later, it is placed just above the System Enabler
files.)

Every Preflight call must be balanced by a Postflight call, which
removes the shared library from the resource chain and calls UseResFile
on the file passed to it. This should be the file returned by Preflight.

Both Preflight and Postflight take long parameters for the refNum
rather than a short. This is because in future releases, different
TLibraryFile types may require longs for refNums, especially on
different platforms.

You must call Preflight before you access any of your shared library’s
resources. You can then make normal Resource Manager calls. You must
also call Preflight before you make any operating system calls that may
try to load a resource from your shared library, such as GetNewWindow,
GetMHandle, and GetItem.

If you want to share any resources that you have retrieved with operating
system calls, you must keep a use count of them yourself and make sure
that they stay loaded and locked until the use count reaches 0.

You can nest Preflight calls. If they are nested, the shared library file is
not removed from the resource chain until the outermost Postflight is
called. However, each nested Preflight still causes UseResFile to be
called for the shared library file, and each nested Postflight still causes a
UseResFile call to be made for the file that was returned by CurResFile
before the Preflight call.

Calling Preflight can cause a shared library file to be opened for a client,
so it is possible to have the library file opened multiple times, once for each
client. This is necessary if a library wants to read in a separate copy of a
resource for each client that it has.

7-38 Chapter 7 / ASLM Utilities

If the shared library is loaded, it is already opened, with the ASLM (also
called the system client) as the client. If a library calls EnterSystemMode,
the system client is used by Preflight. In this case, any resources that are
loaded are shared among all clients. The library must keep track of shared
resources itself unless it uses the shared resource calls described later.

If the current client is not the system client, Preflight opens the library
file on behalf of the client. Any resources loaded are loaded into the
current heap zone and cannot be shared with other clients. The library file
remains open for the client until the client calls CleanupLibraryManager,
calls CloseLibraryFile, or is unloaded (in the case of a shared library
that is a client).

It is important to keep Preflight and Postflight calls properly
balanced. You should not, for example, set up the following situation:

1 Library A calls Preflight, and then calls Library B. Library B calls
Preflight and returns before doing a Postflight. Library A calls
Postflight and then calls back to Library B so Library B can make its
Postflight call.

2 When library B calls Postflight, it calls UseResFile on library A,
since library A was the current resource file when Library B made its
Preflight call. This UseResFile call fails because Library A is no
longer in the resource chain.

Although the above example is not fatal, and may not even cause any
problems, it may spark trouble if the client calling the library is relying on
the current resource file still being set up properly when the call returns.

Another resource chain problem can arise if a library opens a file for its
client after calling Preflight. The library must call UseResFile on this
file after the outermost Postflight call if it wants the file to be in the
visible resource chain of the client (or the client can do a UseResFile on
the opened file). Even this does not guarantee that the file will be in the
visible resource chain. For example, it will not remain in the chain if the
library that opened it was called by another library that had already called
Preflight. In this situation, it is best to require that the client call
UseResFile on the opened file.

You do not have to call Preflight to get a resource from a client. Clients
are already in the resource chain, so GetResource calls work as expected.
However, if you call Preflight first, the client is not in the visible resource
chain because Preflight calls UseResFile on the library file—which, as
noticed above, is placed just above the System file and therefore below the
client.

Library file and resource management7-39

In this situation, you must save CurResFile before calling Preflight.
Then, after Preflight is called, you must call UseResFile to make the
client visible again. Note that this always causes the Resource Manager to
check all the client files for a resource before checking the library file. This
operation may be desirable if you want to allow the client to override
resources in the library.

The Preflight function acts on the current client’s instance of an open
library file (see OpenLibraryFile below for more information). If the
library file is not already opened for the current client, then
OpenLibraryFile will be called automatically to open the library file for
the current client. This means that it is possible to have the library file
opened multiple times, once for each client. This is necessary if each client
wants its own copy of a resource.

Even if Preflight caused the library file to be opened, it will not be
closed automatically when Postflight is called (See CloseLibraryFile,
described below, to see when the library file will be closed.).

If the shared library is loaded, its library file is already opened, with the
ASLM as the client. If EnterSystemMode is called, the ASLM client is
used by Preflight. In this case, any resources that are loaded will be
loaded into the system heap and will be shared among all clients. Users
must keep track of shared resources unless they use the shared resource
calls described below. If the current client is not the ASLM client, any
resources loaded are loaded into the current heap zone and cannot be
shared with other clients.

OpenLibraryFile
CloseLibraryFile

The OpenLibraryFile and CloseLibraryFile functions are used for
opening and closing library files.

The OpenLibraryFile function allows you to open a library file for the
current client. However, the file will not be in the resource chain until you
call Preflight. The shared library file is opened with read-only access.
You can never write a resource to a library file or change a library file
resource.

When OpenLibraryFile is called, it will open the library file on behalf of
the current client. This allows each client of a shared library to have a
separate open “instance” of the library file, which allows each client to get
resources from the library file that will not be shared. For example, if two
different clients call OpenLibraryFile on the same library file, the library
file will be opened twice, and if each client calls Get1Resource on the
same resource, they will each get their own copy of the resource.

7-40 Chapter 7 / ASLM Utilities

If OpenLibraryFile is called and the library file is already opened for the
current client, then all OpenLibraryFile does is increment the “open
count” for the library file.

The CloseLibraryFile function closes the library file for the current
client. It only closes the library file if decrementing the open count results
in the open count reaching zero. CloseLibraryFile can be useful if a
client has opened a library file by calling Preflight and then
Postflight, but does not want the library file to remain open until the
client calls CleanupLibraryManager. In such a case, do not try to close
the file by using the refNum returned by GetRefNum; call
CloseLibraryFile instead.

When a client quits, CloseLibraryFile is called automatically for any
library file that was opened for the client. This means that the library file
will be closed automatically when a client that is a shared library is
unloaded or when a non-library client calls CleanupLibraryManager.

GetFileSpec

The GetFileSpec function returns TFileSpec for the TLibraryFile. In
version 1.1 of the ASLM, only the TMacFileSpec type will be returned.
For more information, see “Specifying a Library File” later in this chapter.

GetRefNum

The GetRefNum function returns the refNum for the open library file for
the current client. The refNum is cast to a long so that on non-Macintosh
systems, it can be a pointer to a structure. Since the refNum is a reference
to an open file, it lets you perform actions such as reading from the file.
You should never attempt to close the file by using the refNum.

GetSharedResource
GetSharedIndResource
GetSharedNamedResource

The GetSharedResource, GetSharedIndResource, and
GetSharedNamedResource functions keep track of the use of resources
so clients and libraries can share the resources. They return a pointer to a
shared copy of a specified resource. These calls work just like the Resource
Manager’s Get1Resource, Get1IndResource, and Get1NamedResource
calls, except that the first time they try to get a given resource

they call EnterSystemMode and Preflight before getting a resource

they call Postflight and LeaveSystemMode after getting the resource

they keep track of the resource, so that the next time they try to get the
resource, there is nothing more to do but increment the use count and
return the pointer to the resource

Library file and resource management7-41

All of the GetSharedResource routines return a pointer to the resource
instead of a handle. This is so that there is a chance of getting these
routines to port when moving to a system that does not have handles. If
you want to obtain a strictly Macintosh resource and do not plan to share it,
then you should just call the Macintosh Resource Manager directly after
doing a Preflight. But if you want to write a portable call to get a
resource, or you want to share the resource, you should call one of the
GetSharedResource functions. Then, instead of treating the result as a
resource, you can simply treat it as a pointer to data.

Once you have a pointer, it is possible to call RecoverHandle so that you
can use your resource to make Memory Manager and Resource Manager
calls. However, your code will not be portable and may be unusable by
other clients that are sharing the resource—especially if you make
Macintosh Toolbox or Operating System calls such as ReleaseResource,
DetachResource, or HUnlock.

The GetSharedResource routines have OSErr* parameters, so you can
tell if the routine failed because the resource was not found or because
there was not enough memory to read in the resource. You can pass NULL
for the OSErr* parameter if you are not interested in the error.

WARNING GetSharedNamedResource takes a C string for the
resource name rather than a Pascal string.

The ASLM always locks shared resources using the HLock call. Do
not unlock shared resources unless you are certain that neither your
client nor any other clients depend on the resources being locked.

Note: The shared resource calls will only work if the library file has been
opened while the ASLM is in system mode. There are two ways to
accomplish this. The first is to simply make sure that a shared library in the
library file is currently loaded. This means that it is always safe for code
within a shared library to get a shared resource from the shared library’s
library file. The other way is to first enter system mode by calling
EnterSystemMode and then call OpenLibraryFile to open the library
file. See “Entering and leaving system mode” in Chapter 7, “ASLM
Utilities” for more details on system mode.

ReleaseSharedResource

The ReleaseSharedResource function releases a resource obtained by
GetSharedResource, GetSharedIndResource, or GetSharedNamedResource.
It decrements the resource’s use count. If the use count reaches 0,
ReleaseSharedResource calls ReleaseResource to release the resource.

7-42 Chapter 7 / ASLM Utilities

CountSharedResources

The CountSharedResources function works like Count1Resource,
except that it calls EnterSystemMode and Preflight before it calls
Count1Resource.

GetSharedResourceInfo

The GetSharedResourceInfo call returns the name, type, size, and flags
of a shared resource. You can pass NULL to any of the function’s
parameters if you are not interested in the information it returns.

GetSharedResourceUseCount

The GetSharedResourceUseCount function returns the use count of a
shared resource.

Getting a library’s TLibrary object

The ASLM provides a number of functions that allow you to obtain a
library’s TLibrary object. The main purpose of obtaining a library’s
TLibrary object is so that a client can call GetLibraryClientData to
retrieve its own client data for the given library. It is also used for the
routines that allow you to explicitly load and unload a library’s code
segments. See “Per Client Data” in Chapter 7, “ASLM Utilities,” for more
information on GetLibraryClientData and “Support for Explicit
Segment Unloading” in Chapter 5, “Writing and Building Shared
Libraries,” for more information on loading and unloading library code
segments.

Although TLibrary is a C++ object, it is also useful for non-C++
programmers, since they can still pass the TLibrary object pointer into
routines such as GetLibraryClientData.

TLibrary* GetLocalLibrary();

TLibrary* LookupLibrary(const TLibraryID);

TLibrary* LookupLibraryWithClassID(const TClassID);

TLibrary* LookupLibraryWithFunctionSetID(const TFunctionSetID);

TLibrary* GetObjectsLocalLibrary(const void* object);

A library can call GetLocalLibrary to get its own TLibrary object.
The LookupLibrary function returns the TLibrary object for the
library with the given library ID. The LookupLibraryWithClassID
function returns the TLibrary object for the library that implements the
given class ID and LookupLibraryWithFunctionSetID returns the
TLibrary object for the library that implements the given function set

Getting a library’s TLibrary object 7-43

ID. The GetObjectsLocalLibrary function returns the TLibrary
object for the library that implements the given object. See “TDynamic”
in Chapter 9, “Utility Classes and Member Functions,” for more details
on GetObjectsLocalLibrary.

The GetClassInfo and GetFunctionSetInfo functions can also be used
to get the TLibrary object for a library. They both provide a way for
getting the TLibrary object for the function set or class for which you are
currently requesting information. See “TClassInfo” in Chapter 9, “Utility
Classes and Member Functions,” for more information on GetClassInfo
and “Getting Information About Function Sets” earlier in this chapter for
more information on GetFunctionSetInfo.

Getting a library file’s TLibraryFile object

The ASLM provides a number of functions that allow you to obtain a
library file’s TLibraryFile object. The main purpose of obtaining a
library file’s TLibraryFile object is to make ASLM calls to open the
library file and get resources from it. These calls are described in detail in
“Library File and Resource Management” earlier in this chapter.

TLibraryFile* GetLocalLibraryFile();

TLibraryFile* GetLibraryFile(TLibrary*);

TLibraryFile* GetObjectsLocalLibraryFile(const void*

 object);

A library can call GetLocalLibraryFile to get the TLibraryFile
object for the library file that the library is in. The GetLibraryFile
function returns the TLibraryFile object for the library file that the
library passed to it is in. The GetObjectsLocalLibraryFile function
returns the TLibraryFile for the library that implements the given object.
See “TDynamic” in Chapter 9, “Utility Classes and Member Functions,”
for more details on the GetObjectsLocalLibraryFile function.

The GetClassInfo and GetFunctionSetInfo functions can also be used
to get the TLibraryFile object for a library file. They both provide a way
of getting the TLibraryFile object for the library that implements the
function set or class for which you are currently requesting information.
See “TClassInfo” in Chapter 9, “Utility Classes and Member Functions,”
for more information on GetClassInfo and “Getting Information About
Function Sets” earlier in this chapter for more information on
GetFunctionSetInfo.

7-44 Chapter 7 / ASLM Utilities

Per client data

The ASLM provides some support for per client data. This is done by
allowing a shared library to maintain a separate data structure for each of
its clients. In order for a shared library to have per client data, it must use
the clientdata= clause in its Library declaration in the exports file. This
allows the library writer to specify either the name of the structure to be
used for per client data or the size of the structure to be used.

The GetClientData function is used by the implementation of the library
and returns a pointer to the per client data structure for the current client. If
this is the first time that this function is called for a given client, the
structure is allocated from the client’s local pool, and the memory is
zeroed. The structure is automatically deallocated when the client
terminates or the library is unloaded. Never delete this structure. This call
should only be made by libraries, and will return NULL if called from an
application or stand-alone code resource.

The GetLibraryClientData function may be used by any client to get
its client data for a given shared library. It returns NULL if the library does
not support client data. See “Getting a Library’s TLibrary Object” earlier
in this chapter for information on how you can get the TLibrary object
for a shared library.

void* GetClientData(void);

void* GetLibraryClientData(TLibrary*);

Debugging macros

The DebugBreak, DebugStr, DebugTest, and DebugBreak macros are
designed to be used while debugging. The DebugBreak macro calls
DebugStr with a specified string. The DebugTest macro calls DebugStr
with a specified string if the val parameter is true. (DebugStr, an A-trap
that puts you in the debugger, is documented in Inside Macintosh.)

Note: This routine is not available to Pascal users.

Both DebugTest and DebugBreak generate code only if the variable
qDebug is defined as 1. (You can define qDebug to be 0 or 1 as needed).

With DebugTest and DebugBreak, you can make a DebugStr call that is
compiled only when you want debugging on without the inconvenience of
having to place DebugStr in an #if statement each time you want it called.
These macros take a C string as a parameter instead of a Pascal string.

#define DebugBreak(str)

#define DebugTest(val, str)

Debugging macros 7-45

Using the Global TraceLog

The GetGlobalTraceLog and SetGlobalTraceLog functions get and set
the global TTraceLog that belongs to the ASLM.

The Trace routine accepts the same parameters that can be passed to the
stdio.h printf function in C. It formats unformatted text and sends it to a
specified output, usually the TraceMonitor’s Trace window.

TTraceLog* GetGlobalTraceLog();

void SetGlobalTraceLog(TTraceLog*);

void Trace(const char *formatStr, ...);

For more information on the TraceMonitor, see “The TraceMonitor
Application” in Appendix B.

Specifying a library file

TFileSpec

TFileSpec is a data structure that is used for specifying the location of a
library file (TLibraryFile) in a file system or OS independent way. The
TFileSpec struct is used to compare library files and to pass them around
without worrying how the library file is actually specified for the OS or file
system being used. The details of the library file’s location are stored in a
struct that has the TFileSpec struct as its first field. This struct is often
referred to as a “subclass” of TFileSpec. On the Macintosh, the
TMacFileSpec subclass is used for this specifying the location of library
files.

There is also a TFileSpec class (and subclasses) for C++ users. C++ users
should refer to the “TFileSpec” section of Chapter 9 for details.

Generally you do not need to be concerned with TFileSpecs unless you are
going to call RegisterLibraryFile, RegisterLibraryFileFolder, or
GetFileSpec.

typedef unsigned int FileSpecType;

#define kUnknownType ((FileSpecType)0)

#define kMacType ((FileSpecType)1)

#define kMaxType ((FileSpecType)255)

Boolean IsFileSpecTypeSupported(FileSpecType);

Boolean CompareFileSpecs(const void* f1, const void* f2);

7-46 Chapter 7 / ASLM Utilities

struct TFileSpec

{

unsigned char fType; /* FileSpec type */

unsigned char fSize; /* size of struct */

};

IsFileSpecTypeSupported is used to check if the given FileSpecType
is supported. Generally you will not have a need to use this function.

CompareFileSpecs is used to compare two file specs to see if they
represent the same file. Note that only a byte compare of the file spec is
done. If each file spec represents the same file in different ways,
CompareFileSpecs will still return false.

TMacFileSpec

The TMacFileSpec class keeps track of a library file by using a filename,
volume refNum, and directory ID. You must use InitMacFileSpec to
initialize the file spec and make sure that the length is set properly.

struct TMacFileSpec

{

unsigned char fType; /* FileSpec type */

unsigned char fSize; /* size of struct */

short fVRefNum; /* volume refNum of volume

 file is on */

long fParID; /* dirID of the folder file

 is in */

Str63 fName; /* name of the file */

};

void InitMacFileSpec(TMacFileSpec *spec, int vRefNum, long

 parID, Str63 name);

Miscellaneous routines

DestroyPointer

The DestroyPointer function is used to delete an object when all you
know about the object is the PointerType. It ensures that if the object is a
C++ object, its destructor is called and the proper v-table dispatching is
carried out to call the destructor. If the object is not a C++ object, its
memory is simply freed. It is used by TCollection subclasses to dispose
of objects in the collection when DeleteAll has been called. You may also
find a similar use for it in any routine you write that will destroy objects,
and it is left to the user to pass in the PointerType of the objects to the
routine.

Miscellaneous routines7-47

The valid PointerTypes are

kVoidPointer for objects that are not C++ objects (so no destructor
will be called)

kTDynamicPointer for objects that descend from SingleObject and
have their v-table first (such as subclasses of TDynamic and
TSimpleDynamic)

kTStdDynamicPointer for objects that do not descend from
SingleObject and have their v-table first (such as subclasses of
TStdDynamic and TStdSimpleDynamic)

kTSCDynamicPointer for objects that are Symantec C++ objects (such
as subclasses of TSCDynamic)

Note: DestroyPointer does not work for objects that do not have their
v-table first.

typedef int PointerType;

#define kVoidPointer ((PointerType)0) /* a non–object pointer */

#define kTDynamicPointer ((PointerType)1) /* SingleObject with

 vtable first */

#define kTSCDynamicPointer ((PointerType)2) /* a Think C++ object */

#define kTStdDynamicPointer ((PointerType)3) /* non-SingleObject with

 vtable first */

void DestroyPointer(void*, PointerType);

SLMsprintf

The SLMsprintf function is a special version of the stdio.h sprintf
function used in C. In code intended to be linked with a shared library, you
should use SLMsprintf instead of the stdio.h sprintf function because
SLMsprintf is interrupt-safe and because the stdio.h sprintf function
does not work with shared libraries.

int SLMsprintf(char *outString, const char *argp, ...);

Note: This function is not available to Pascal users.

Word and byte functions

The HighWord function returns the high word of a long data type, and
LowWord returns the low word of a long data type.

The HighByte function returns the high byte of a word, and LowByte
returns the low byte of a word.

#define HighWord(x) ((unsigned short)((x) >> 16))

#define LowWord(x) (((unsigned short)(x)))

7-48 Chapter 7 / ASLM Utilities

#define HighByte(x) ((unsigned char)((x) >> 8))

#define LowByte(x) (((unsigned char)(x)))

Memory functions

The SLMmemcpy, SLMmemmove, and SLMmemset functions are equivalent to
the C memcpy, memmove, and memset routines. They are exported by
ASLM and are faster than the C versions.

void ZeroMem(void* dest, size_t nBytes);

void* SLMmemcpy(void* dest, const void* src, size_t nBytes);

void* SLMmemmove(void* dest, const void* src, size_t nBytes);

void* SLMmemset (void *dest, int c, size_t n);

Atomic routines for getting and setting bits

The AtomicSetBoolean, AtomicClearBoolean, and
AtomicTestBoolean functions are inline routines that will atomically set,
clear, or test a Boolean. A pointer to the boolean is passed as a parameter.
The AtomicSetBoolean function returns true if you were the “setter”
and AtomicClearBoolean returns true if you were the “clearer”.
AtomicTestBoolean returns the current value of the Boolean.

Boolean AtomicSetBoolean(unsigned char*);

Boolean AtomicClearBoolean(unsigned char*);

Boolean AtomicTestBoolean(unsigned char*);

The SetBit, ClearBit, and TestBit functions are similar to the atomic
boolean routines above, except that they act on bit strings rather than
Booleans and SetBit and ClearBit return the previous value of the bit
rather than whether you were the “setter” or “clearer”. The bit string may
be any length. The SetBit function sets the nth bit of a specific block of
memory. The ClearBit function clears the nth bit. Both SetBit and
ClearBit return the value of the bit before it was set or cleared. The
TestBit function returns the value of the nth bit. Each of these routines
takes a pointer to the specified block of memory as a parameter. The
bitno parameter is a zero-based index into the array of bits.

Boolean SetBit(void* mem, size_t bitno);

Boolean ClearBit(void* mem, size_t bitno);

Boolean TestBit(const void* mem, size_t bitno);

Miscellaneous routines7-49

Registering C++ objects with the Inspector

Developers can register C++ objects that they create with the Inspector
application so that useful information about the object can be displayed.
For each type of object that is registered, the Inspector displays a separate
window. The title in the window is the class ID of the object. Each window
displays all objects with the given class ID that have been registered. The
information for each object is obtained by calling the object’s
GetVerboseName member function. See “TDynamic” in Chapter 9,
“Utility Classes and Member Functions,” for more information on
GetVerboseName. See “The Inspector Application” in Appendix B for
more information on the Inspector application.

Users register objects with the Inspector by calling
RegisterDynamicObject and unregister them by calling
UnregisterDynamicObject. Only subclasses of TDynamic may be
registered with the Inspector, although you can provide your own base
class that forces the v-table first and provides the GetVerboseName
member function in the same v-table slot as TDynamic does. In this
case, the object will need to be cast to a TDynamic* when it is registered
or unregistered.

Objects registered with the Inspector are always added to the beginning of
the list in the window. The Inspector updates the contents of any window
that has changed each time it gets background or foreground time.

void RegisterDynamicObject(TDynamic*);

void UnregisterDynamicObject(TDynamic*);

7-50 Chapter 7 / ASLM Utilities

8 ASLM Utility Class Categories

This chapter describes the following categories of ASLM utility classes:

collection classes that manage objects organized into lists, arrays, and
other kinds of collections

object arbitration classes that handle the sharing of objects among
ASLM clients

memory management classes that provide memory pools and other aids
to memory management

process management classes that let clients and libraries defer tasks for
asynchronous processing

miscellaneous classes that do not belong to any of the other categories
and are often used by ASLM clients and by shared libraries

For a complete description of the utility classes that are distributed with the
ASLM, see Chapter 9, “Utility Classes and Member Functions.”

Collection classes

The ASLM provides a family of classes that maintain collections of objects.
A collection is a data structure such as a linked list or an array, along with a
set of routines that can manipulate the collection. The TCollection class
is the base class for all collections. It provides an interface that lets you use
objects in a collection without you having to know any details about the
collection.

The TCollection class and its subclasses (TSimpleList,
TLinkedList, TPriorityList, TArray, and THashList) provide
access to objects that belong to different kinds of collections. The
TCollection class and its subclasses also provide member functions for
manipulating objects in collections. For example, the Add member function
adds an object to a collection, and the Member member function can tell
you if a specified object is in a collection.

Certain TCollection member functions such as AddUnique and Member
have versions that take a TMatchObject parameter. This parameter gives
the collection a user-defined way to compare objects rather than just
comparing object pointers, which is what TCollection does by default.

When you call TCollection member functions that add objects to
collections, the data type that you add to collections is void*, but you can
actually add any data type that fits into sizeof(void*) bytes, provided
you use a type cast.

The TIterator class lets you iterate through all objects in a
TCollection. You need an iterator when you do not know what kind of
data structure is being used for a TCollection or you do not have access
to the actual data (which should always be the case unless you are
implementing a TCollection subclass). You can call the
TCollection::CreateIterator function to create a TIterator object
for a collection.

Object arbitration classes

Object arbitration is a mechanism for accessing objects by id. It provides
functions for registering an object by id and subsequently claiming the
object by id for exclusive or shared access. When an object is registered
by id—for example, “ACME:DRAW$RECT” — then it can be claimed by
any ASLM client using this same id provided it has not already been
claimed for exclusive access. When the object is registered with an
arbitrator, it is attached to a token, which is a "carrier" for the object and
associates the object with the id. It is this token which is returned when the
object is claimed.

8-2 Chapter 8 / ASLM Utility Class Categories

Object arbitration is intended to be used to manage access to system or
application resources. For example a resource might be a specific physical
resource or device driver such as the serial port, or a set of such resources
such as all the serial ports on the machine. The owner of a system resource
registers an object which provides the interface to the resource and then
clients can claim the resource for shared or exclusive access. The choice of
shared or exclusive access depends on the service provided by the object
and is defined as part of the access protocol by the service. This access
protocol should be adhered to by clients of the service.

The primary class which provides the arbitration functionality is
TArbitrator. A TArbitrator object is a repository of identified objects
that are registered with the arbitrator and are thus available for shared or
exclusive access. Any object that has access to a particular instance of the
TArbitrator class, and can provide the ID of a registered object, can then
request an object or can register its own objects by id.

There are several classes that get involved in object arbitration. These
classes are described later in this section, but the full descriptions can be
found in Chapter 9, “Utility Classes and Member Functions”). The classes
used in object arbitration are:

TArbitrator

TToken

TRequestToken

TNotifier

TMethodNotifier

TProcNotifier

TTokenNotification

Registering object with an arbitrator

An object is registered using TArbitrator::RegisterObject. The
TArbitrator creates a TToken and stores a pointer to it in an internal
hash list. Alternatively a TToken can be created first using
TArbitrator::NewToken, given the object and object id, and then the
token can be registered using TArbitrator:: RegisterToken.

Once it is registered, the token maintains the following information about
the registered object:

a pointer to the registered object

the ID under which the object is registered (this ID is used to look up the
object)

Object arbitration classes 8-3

a pointer back to the TArbitrator object with which the object is
registered

the use count (the number of clients that have claimed the object)

a TNotifier object that can notify the exclusive owner of the token (if
there is one) when there is a request from someone else to claim the
token

Object ID’s (also called token ID’s) have to be of a certain format in order
to avoid naming conflicts and also in order to group resources (objects) of
the same type together. See “Grouping related objects” below and the
TToken section in Chapter 9 for more information on the format of an
object ID.

Looking up objects and claiming tokens

An owner of a token is anyone who has successfully requested a token for
either shared access (a shared owner) or exclusive access (an exclusive
owner). When requesting a token, a request type (of type
TokenRequestType, which is either kSharedTokenRequest or
kExclusiveTokenRequest) is given to request either shared or exclusive
access.

This easiest way to lookup an object registered with an arbitrator is to use
the TArbitrator::LookupObject member function. It returns the actual
object that you want to lookup rather than the token. It always does a
shared request and simply returns NULL if the request cannot be satisfied.

There are also three functions which can be used to request a token:
GetToken, PassiveRequest, and ActiveRequest. The
TArbitrator::GetToken function requests a token and if the token is
available it is returned, otherwise GetToken returns NULL. The token is
available if the request type is kExclusiveTokenRequest and the token
has not been claimed for either exclusive or shared access (the use count is
0) or if the request type is kSharedTokenRequest and the token is not
already claimed for exclusive access (the use count is >= 0). If the token is
claimed for exclusive access then it is not available (the use count is -1).

The other two functions, TArbitrator::PassiveRequest and
TArbitrator:: ActiveRequest, are used to post a request for a token
which may not be available. Using these functions, the client can "wait in
line" for the token. If you use ActiveRequest and the token is not
available, the exclusive owner will be notified that there is a request for the
object (more on notification later). PassiveRequest will not notify the
owner. In either case, when the owner releases the token it will then be
available to the first requester in line. The request will remain outstanding
until it is satisfied or the request token is deleted.

8-4 Chapter 8 / ASLM Utility Class Categories

Both PassiveRequest and ActiveRequest return a TRequestToken
which is the context for the request. There are two possible states of the
request token: either the request succeeded and the token is claimed for the
requester, or the request is still pending. A TRequestToken object is a
registered token while a request is pending. You can temporarily suspend a
request by claiming it exclusively using its Get member function. It
remains registered until it is deleted. A TRequestToken is created and
returned even if the requested token is not registered. You can call
TRequestToken:: IsTokenRegistered to check if the token has been
registered already. Also, you can force the TArbitrator to create, register,
and claim the token by passing true in the registerIfFirst parameter.

There are two ways of waiting for a pending request: polling and
notification. To poll for completion of the request you can call
TRequestToken::Exchange periodically and if it returns a non-null
pointer you are done. The TRequestToken::Exchange member
function is used to "trade-in" the request for the real token. Exchange
will return NULL if the token is not available, otherwise it will return the
real token and delete the request token. Alternatively you can use
TRequestToken::GetObject to poll. This will return the token if it is
available but will not delete the request token.

If you want to be notified synchronously when the request completes, you
can provide a TNotifier when you call PassiveRequest or
ActiveRequest. As the owner of a token, if you want to be notified of a
pending request then supply the token with a notifier by calling
TToken::SetNotifier.

There are two ways an owner can give up ownership. You can call
TToken:: Release at any time, or you can call TRequestToken:: Give

when you are notified. If you call Release, it will check for an outstanding
request and call the Give member function of the request token for you.
The requester is notified when the Give member function is called.

Notification

There are two cases where notification is made use of: when an exclusive
owner of a token is notified that a request has been made for the token, and
when the requester of a token is notified when the request can be satisfied.
In both cases, the notification is delivered via a TNotifier object. The
token owner sets up his notifier by calling TToken::SetNotifier. The
token requester sets up his notifier by passing a TNotifier object to
TArbitrator::PassiveRequest or TArbitrator:: ActiveRequest

The TNotifier class is a general-purpose class that provides “object-
oriented” callback capability. There are two subclasses of TNotifier
provided: TProcNotifier and TMethodNotifier.

Object arbitration classes 8-5

When using a TProcNotifier, you provide a notification function of type
NotifyProc and optionally a refPtr (as a context pointer). If you use a
TMethodNotifier, you provide an object pointer and a member function
pointer of type NotifyMethod. The TMethodNotifier calls your
member function using your object.

As the owner of a token, when your notification function is called the
refPtr is passed as a parameter, and a TTokenNotification is passed as
the notifyData parameter. Use TTokenNotification:: GetToken to
get the token and TTokenNotification:: GetRequestToken to get the
request token. If you want to give up the token then call the request token's
Give member function. You should not keep the request token unless you
have an agreement with the client as part of your access protocol, and you
must not keep the TTokenNotification.

As the requester of a token, when your notification function is called the
TTokenNotification is passed as the notifyData parameter. You can
get the request token by calling TTokenNotification::
GetRequestToken. When you are notified, the token you requested has
already been claimed and is available by calling the Exchange or
GetObject member functions of the request token as discussed above.

Grouping related objects

It is possible to manage a set of related objects using the arbitration classes.
You can use an object id of the form “<typeID>$<instanceID>”. A
request can specify only the <typeID>$ portion of the id, in which case the
first available object of that type will satisfy the request. In this case it
doesn't matter what the <instanceID> portion is of the token that satisfies
the request is.

If you have several objects with the same <typeID> (the portion up to the
“$”), and more than all of these are claimed exclusively, then a request
using ActiveRequest will notify each owner until one gives up the token
or they have all been notified. If your access protocol allows owners to
keep request tokens, then the first owner that calls TRequestToken::Give
will get true back as the result and any subsequent call to Give with the
same request token will return false indicating there is no longer an
outstanding request.

The owner of a request token may want more than one member of a type,
in which case, after the first request is satisfied (you get the first token you
requested using TRequestToken::GetObject), you can call
TRequestToken::RequestAgain and this will start another active request
using the same request token.

8-6 Chapter 8 / ASLM Utility Class Categories

Private and global arbitrators

There are two ways to register objects with an arbitrator. One way is to
create a private TArbitrator object that is recognized only within a
specific library or application, or by any other client that knows how to
access the arbitrator. The other way is to use the global arbitrator that is
supplied by the ASLM. This global arbitrator is a TArbitrator object that
you can retrieve by calling GetGlobalArbitrator and that a client or a
library can use to register objects for global access.

The GetGlobalArbitrator function obtains a global TArbitrator
object. With a TArbitrator object, you can register objects so other
clients can look them up.

TArbitrator* GetGlobalArbitrator();

A client can obtain the global arbitrator by calling GetGlobalArbitrator
in the following manner:

TArbitrator* arbitrator = GetGlobalArbitrator();

An example use of object arbitration

The ASLM does not provide serial port arbitration, but the ASLM object
arbitration feature could be used to implement serial port arbitration. As an
example of how object arbitration works, suppose an application needs to
access a serial port, the ASLM’s object arbitration features make it possible
to:

Ask for any available serial port (you might do this if, for example, all
serial ports have dial-out modems attached and you don’t care which
one you get).

Obtain notification when another client wants to use the serial port that
you are using. (Assume, for instance, that you are listening for an
incoming call and another application wants to dial out. You can then
choose to give up your port.)

Request a specific serial port.

Ask for a serial port, even though none is currently available, and receive
notification when a serial port becomes available.

Obtain a group of serial ports (this may be desirable if, for instance, you
want to listen for incoming calls on a group of ports dedicated to dial-in
modems).

Object arbitration classes 8-7

In this example, when you choose your object ids, the <set id> could be
“ Serport” and <member id> could be “SLOT0:A” o r “SLOT0:B” or
“ SLOT1:A” or “SLOT1:B” and so on for multiple serial ports on the main
board or on NuBus cards. Then you would have several serial port objects
which can be claimed by giving a complete object id to claim a specific
port such as “Serport$SLOT0:A”. Alternatively you might have an
application which wants to claim a serial port but doesn't care which one
(e.g. they are all connected to outgoing modems). In the latter case you
can supply only the set id “Serport$” as the object id when making a
request and your request will be satisfied by the first serial port available.

More arbitration examples can be found in the ExampleTools folder on the
ASLM Examples Disk.

Memory management classes

The ASLM provides memory management classes called memory pools that
let you allocate memory at interrupt time—an ability that the Macintosh
Memory Manager does not have. The ASLM implements memory pools
with the TMemoryPool class—an abstract base class that provides the
interface for all pool classes (see Chapter 9, “Utility Classes and Member
Functions” for details). Most of TMemoryPool’s member functions are
pure virtual member functions that subclasses must override.

Two other classes, TStandardPool and TChunkyPool, are derived from
the TMemoryPool class. Both classes support interrupt-safe memory
allocation. The TStandardPool class lets you allocate variable-size
chunks, and TChunkyPool allocates only fixed-size chunks, see Chapter 9
“ASLM Utility Classes and Member Functions” for details.

Besides pools that you can create for your own use, there are also several
pools created by the ASLM. These include

the system pool

the local pool

the client pool

the default pool

Sometimes these pools overlap so that the same pool has more than one
name. For example, the client pool may be the current client’s local pool.

8-8 Chapter 8 / ASLM Utility Class Categories

The system pool

The ASLM creates the system pool for use by all ASLM clients. The
system pool is allocated out of the system heap and will grow as needed if
there is room for it to grow. When you want to allocate memory for system
use, you can allocate the memory from the system pool. The system pool
can be used for

objects and memory used by a library that is shared by more than one
client

objects and memory that a shared library keeps for its own private use

When a shared library is loaded, the ASLM automatically sets the library’s
local pool to the system pool, as explained in the next section, “The Local
Pool.”

Note: Memory that is allocated for the client’s own use—especially if the
client is responsible for disposing of the memory—should generally be
allocated from the client pool, which is described later in the section, “The
Client Pool.”

The prototype of the related function is:

TStandardPool* GetSystemPool();

The local pool

The local pool is the pool that is attached to the local library manager and
is also referred to as the library manager’s object pool. When a shared
library is loaded, the ASLM installs the system pool as the local pool. When
a client calls InitLibraryManager, a new memory pool is created for the
client’s own use and is installed as the client’s local pool. The
TLibraryManager class uses the local pool to allocate memory for classes
created with NewObject unless you also pass a pool to NewObject. There
are also other times when a local pool is used for default memory
allocations. These situations are described later in “The Client Pool” and
“The Default Pool.”

You can change the current local pool by calling SetLocalPool or by
calling TLibraryManager::SetObjectPool. This is useful mainly for
shared libraries that do not want to use the system pool as their local pool.
They can create their own pool and use it as the local pool instead. It can
even be shared among a family of libraries.

Memory management classes8-9

You should never delete the initial local pool (the one installed by
InitLibraryManager) since it is deleted automatically when
CleanupLibraryManager is called. You also should never delete the
current local pool, since an attempt to allocate memory from it may be
made at a later point. When you have changed the current local pool, you
can delete the pool that previously was the local pool as long as it was not
the initial local pool. You must make sure that no objects are still allocated
from any pool you delete or you will never be able to safely delete those
objects.

The prototype of the related functions are:

TStandardPool* GetLocalPool();

void SetLocalPool(TStandardPool*);

The client pool

The client pool is the current client’s local pool. The current client is
normally the currently running application, but also may be set to a shared
library or other client by making the proper calls. (Refer to “The Current
Client” in Chapter 4, “Writing and Building Clients.”

When a shared library needs to allocate memory for a client, the shared
library can allocate the memory from the client’s local pool rather than
from the system pool or from a pool that belongs to the shared library. If a
shared library uses the memory=client option in its Library declaration
in its exports file, the shared library allocates memory from the client pool
by default.

The GetClientPool function returns the client pool.

IMPORTANT The client pool is inaccessible if the current client has not been
set up to be an ASLM client. Interrupt and callback routines must make
sure that the current client is set up properly before they use the client
pool. This is also true of stand-alone code resources that are called from
non-ASLM clients.

The prototype of the related function is:

TStandardPool* GetClientPool();

The default pool

The default pool is the pool that the ASLM uses for default memory
allocations; that is, when the new operator is used and a pool is not
specified. The default pool is used by the global new operator (defined in
GlobalNew.h) and by the TDynamic new operator.

8-10 Chapter 8 / ASLM Utility Class Categories

The purpose of the default pool is to permit a library to choose whether it
wants default memory allocations to come from the library’s local pool or
the current client’s local pool. If the default pool is NULL, the current
client’s pool is used.

The prototype of the related functions are:

TStandardPool* GetDefaultPool();

void SetDefaultPool(TStandardPool*);

The GetDefaultPool function gets the default pool and
SetDefaultPool sets the default pool. For libraries, the default pool is
initially set to NULL if the library was built with the memory=client
option; otherwise it is set to the system pool.

If the default pool is set to NULL when GetDefaultPool is called,
GetDefaultPool returns the pool that belongs to the current client’s local
library manager. This is the same as the pool returned by GetClientPool.
If the default pool is not NULL when GetDefaultPool is called, the current
default pool is returned.

Note: If a library is built using the memory=client option and the default
pool is then changed to something besides NULL, the client pool is no
longer used for default memory allocation. In other words, the
memory=client option causes the initial value of the default pool to be
NULL only when the library is loaded. The flag has no other effect on
memory allocation afterward.

Process management classes

Sometimes clients and libraries must defer tasks for asynchronous
processing, possibly for one of the following reasons:

You need to perform a task that takes a significant amount of time and
you want to defer the task for a time when it will be less disruptive.

You want to do something that involves the operating system, but you
are currently executing at interrupt level.

You want a task to execute after a certain amount of time.

You want a task to execute while your application is in a certain state
(for example, in the foreground or in an event loop).

You want to accumulate tasks to be executed at the same time for the
sake of efficiency.

Process management classes8-11

The ASLM provides two base classes that can be used for asynchronous
task processing: TOperation and TScheduler. A TOperation object
contains the implementation of a task to be performed. A TScheduler
object schedules a TOperation for later execution and controls when the
TOperation is executed.

The TScheduler class has a number of subclasses that can be used to
process operations based on their priority or schedule them to be processed
after a certain amount of time has passed, at system task time, or at deferred
task time.

The TScheduler subclasses are as follows:

TTimeScheduler, which implements a scheduler that processes
TOperation objects when a requested amount of time has elapsed.

TInterruptScheduler, which is used by interrupt service routines to
defer processing.

TSerialScheduler, which ensures FIFO (first in, first out) processing
of the tasks.

TPriorityScheduler, which implements a scheduler that lets you
serialize tasks by establishing their priorities.

TThreadScheduler, which implements a lightweight “thread”
scheduler.

TTaskScheduler, which implements a heavyweight task scheduler.

The most important TScheduler member functions are Schedule, which
schedules a TOperation, and Run, which processes all scheduled
TOperations. For more information on the TOperation and
TScheduler classes, and their subclasses and member functions, see
Chapter 9, “Utility Classes and Member Functions.”

Miscellaneous classes

The miscellaneous classes provided with the ASLM are the TDynamic,
TLibraryManager, TClassID, TClassInfo, TMacSemaphore,
TTraceLog, and TTime classes. For further details on these classes, consult
the alphabetical listings in Chapter 9, “Utility Classes and Member
Functions.”

8-12 Chapter 8 / ASLM Utility Class Categories

9 Utility Classes and Member Functions

This chapter describes all the ASLM utility classes and their member
functions. The declaration of each utility class does not include the private
and protected member functions or the data members. Also, the
implementation of inline functions is not included. Private and protected
functions are used internally by the classes and should not be used by
clients.

Class descriptions

The following table shows the inheritance of all the utility classes.

MDynamic

TAtomicBoolean

TClassID

TDynamic TBitmap

TCollection TArray

THashList

TSimpleList TLinkedList
TPriorityList

TFastRandom TSimpleRandom

THashObject TArbitrator
THashDoubleLong
TProcHashObject

TIterator TListIterator
THashListIterator
TArrayIterator
TClassInfo

TLibraryFile

TLibraryManager

TMacSemaphore

TMatchObject TProcMatchObject

TToken TRequestToken

TDoubleLong TTime TMilleseconds

TSeconds

TTimeStamp TStopWatch

TMicroseconds

TMemoryPool TChunkyPool
TStandardPool

TNotifier TProcNotifier
TMethodNotifier
TPoolNotifier

TOperation TGrowOperation

TScheduler TTimeScheduler

TPriorityScheduler TSerialScheduler
TThreadScheduler
TTaskScheduler
TInterruptScheduler

TTestTool

TTraceLog

TFileSpec TFileIDFileSpec
TMacFileSpec

TFunctionSetID

TLibraryID

TLink TPriorityLink

TSCDynamic

TStdDynamic

TStdSimpleDynamic

TSimpleDynamic

TTokenNotification

TUseCount

9-2 Chapter 9 / Utility Classes and Member Functions

MDynamic

The MDynamic class is a base class for shared library classes, which has one
virtual function (the destructor). It is meant to be used with multiple
inheritance to force the v-table to be at the front of the object when mixing
classes. An object that has its v-table first is an object derived from a base
class that has at least one virtual function and no data members. For more
information on MDynamic, see “The TDynamic Family of Base Classes” in
Chapter 6, “Using the ASLM.”

This class is not a shared class.

Declarations virtual ~MDynamic();

MDynamic 9-3

TArbitrator

The TArbitrator class is used in object arbitration to request and register
shared objects.

TArbitrator has the following inheritance:

TDynamic --> THashObject --> TArbitrator

Description The TArbitrator class is a repository of identified objects that are
registered with the arbitrator and are available for shared or exclusive
access. An object can access the TArbitrator class with the ID of a
registered object, and request or register its own objects.

Object arbitration is a mechanism for sharing named objects among ASLM
clients. The TArbitrator class is a shared data manager, which provides
functions for registering and accessing shared data. Programs that make
use of shared libraries can share data structures and instances of classes by
registering them by name with a TArbitrator. The TArbitrator class
provides facilities for registering data by name, and for requesting shared
or exclusive access to the data.

Object arbitration is made possible by an object called a token, which
maintains and provides information about objects. A token contains a
pointer to the object it represents and the ID that the object was registered
with. Tokens are registered with TArbitrator objects. The TArbitrator
class is one of a set of classes that are provided with the ASLM to support
object arbitration. The others include TNotifier, TMethodNotifier,
TProcNotifier, TRequestToken, TToken, and TTokenNotification.

For more information on TArbitrator and object arbitration, see “Object
Arbitration Classes” in Chapter 8, “ASLM Utility Class Categories.” The
descriptions of the member functions below assume that you have already
read this section and understand how object arbitration works. For details
on the other classes used in object arbitration, see “TNotifier,”
“TMethodNotifier,” “TProcNotifier,” “TRequestToken,” “TToken,”
and “TTokenNotification” in this chapter.

9-4 Chapter 9 / Utility Classes and Member Functions

Declarations #define kTArbitratorID "!$arbt,1.1"

#define kRequestIDPrefix '?'

#define kRequestIDPrefixSize 1

typedef int TokenRequestType;

#define kInvalidTokenRequest ((TokenRequestType)0)

#define kRequestTokenRequest ((TokenRequestType)1)

#define kExclusiveTokenRequest ((TokenRequestType)2)

#define kSharedTokenRequest ((TokenRequestType)3)

TArbitrator(TStandardPool* = NULL,

size_t defSize = 0);

virtual ~ TArbitrator();

virtual OSErr RegisterObject(const char* theID, void* theObject);

virtual void* UnregisterObject(const char* theID);

virtual void* LookupObject(const char* theID);

virtual OSErr RegisterToken(TToken*);

virtual TToken* GetToken(const char* theID, TokenRequestType);

virtual TRequestToken* PassiveRequest(const char* theID,

TokenRequestType, TNotifier* = NULL,

BooleanParm registerIfFirst = false);

virtual TRequestToken* ActiveRequest(const char* theID,

TokenRequestType, TNotifier* = NULL,

BooleanParm registerIfFirst = false);

virtual TRequestToken* GetRequest(const char* theID);

virtual Boolean NotifyOwners(TRequestToken* theRequest);

virtual unsigned long Hash(const void*) const;

virtual TToken* NewToken(const char* theID, void* = NULL);

Continued on following page

TArbitrator 9-5

Member functions ActiveRequest

The ActiveRequest member function registers a request for a token and
notifies the current owner (or owners) that a request is pending. Then
ActiveRequest returns a TRequestToken object. The ActiveRequest
object works just like PassiveRequest, except that the current owner (or
group of owners) is notified of the request. More than one owner can be
notified if there is more than one token registered with the same type ID. If
an owner gives up the token, no more owners are notified. See “Object
Arbitration Classes” in Chapter 8, “ASLM Utility Class Categories,” for
more information on type IDs.

The TNotifier parameter is used to provide a notifier that will be called
when the requested token becomes available.

If the registerIfFirst parameter is true, then if the requested token is
not already registered, it will be created, registered, and claimed
automatically. This solves the race condition problem that will occur if a
client wants to register an object only if it is not already registered, but it
may be interrupted by another client that wants to do the same thing. If the
interrupt comes in after the first client calls PassiveRequest (and
discovers that the token is not registered already), and before the first client
calls RegisterObject or RegisterToken, then the same object is
registered twice.

GetRequest

GetRequest returns the request token that is being used to handle an
outstanding request. The theID parameter is used to specify the ID of the
token being requested, not the ID of the request token. If there are more
than one outstanding requests for the same token, then the first request in
line to be satisfied will be returned.

GetToken

The GetToken member function looks up a token and returns it if it is
immediately available. It does not register a request. It returns NULL if the
token is not available. The TokenRequestType parameter is the request
type kExclusiveTokenRequest or kSharedTokenRequest. The
exclusive owner of a token can delete the token. This procedure unregisters
the token but does not delete the object.

Hash

The Hash member function obtains the hash value used for storing the
TToken. It is public in case you want to subclass TArbitrator and change
the hashing algorithm.

9-6 Chapter 9 / Utility Classes and Member Functions

LookUpObject

The LookupObject member function returns the object that has been
registered with a specified ID. LookupObject calls GetToken with a
request type of kSharedTokenRequest and then returns the result of
TToken::GetObject.

NewToken

NewToken is used to create a token that can then be registered by calling
RegisterToken. The token’s ID and a pointer to the token’s object are
passed to NewToken.

NotifyOwners

NotifyOwners is used to notify owners of a request for a token after
PassiveRequest has been called and an active request is desired. For
example, initially you may only want a token if no one else has claimed it
already. However, if at a later point you decide that you would like to
request that owners of the token give up the token, then NotifyOwners
can be called, passing as a parameter the TRequestToken returned by
PassiveRequest.

PassiveRequest

The PassiveRequest member function registers a request for a token and
returns a TRequestToken. It is the same as ActiveRequest except that
current owners of the token are not notified of the request.

RegisterToken

The RegisterToken member function registers a token that was created
using NewToken. If there is an outstanding request for the token then it will
be claimed by the requester before NewToken returns. If you wish to claim
the token before registering it, call TToken::Get.

RegisterObject

You can use RegisterObject to register an object without having to deal
with tokens. A token is automatically created to hold the object. The theID
parameter is a string that identifies the object. If there is an outstanding
request for the object (actually the token created for the object), then it will
be claimed by the requester before RegisterObject returns.

Continued on following page

TArbitrator 9-7

UnregisterObject

You can use UnregisterObject to unregister a previously registered
object. The theID parameter is a string that identifies the object. If the
object is successfully unregistered, a pointer to the object is returned.
Otherwise, UnregisterObject returns NULL. If the caller plans to delete
the object, the caller first needs to make sure that no one is using the object.
If this cannot be ensured, the client should instead exclusively claim the
object’s token first by calling ActiveRequest to obtain the token that
owns the object, and then delete the token or call UnregisterToken.

UnregisterToken

You can use UnregisterToken to unregister a previously registered
token. The normal way to unregister a token is to exclusively claim the
token and then delete it. Using UnregisterToken allows you to re-use the
token.

See also TNotifier

TMethodNotifier

TProcNotifier

TRequestToken

TToken

TTokenNotification

“Object Arbitration Classes” in Chapter 8, “ASLM Utility Class
Categories”

TArbitratorExample1, TArbitratorExample2, and TArbitratorExample3 on
the ASLM Examples disk

9-8 Chapter 9 / Utility Classes and Member Functions

TArray

The TArray class implements an array collection.

The TArray class has the following inheritance:

TDynamic --> TCollection --> TArray

Description The TArray objects can provide efficient and quick indexing into a
collection and have the ability to grow as needed. A TArrayIterator
class is provided to iterate through the array.

All TArrays are zero-based arrays. Also, there are never any gaps in the
array. Removing an object moves all higher-indexed objects down by one
index number (for example, if the fifth object in the array is removed, the
objects after it all move down one slot to fill in the hole). This also means
that you cannot explicitly set or remove the nth object in the array. You
can think of a TArray as being like a TLinkedList, except it allows you
to quickly index objects in the collection.

The TArray constructor’s growBy parameter specifies the amount by
which a full array should grow. If the number is negative, it represents the
percentage by which the array should grow. If the number is positive, it
represents the number of cells to add to the array. The initial size of the
array is also passed to the constructor, along with the pool that is used to
allocate the storage for the array.

Declarations #define kTArrayID "slm:coll$arry,1.1"

TArray();

TArray(size_t size, TStandardPool* = NULL,

 int growBy = 0);

virtual ~ TArray();

TStandardPool* GetGrowPool() const;

virtual TIterator* CreateIterator(TStandardPool*);

virtual Boolean Remove(void*);

virtual void* Remove(const TMatchObject&);

virtual Boolean Member(const void*);

virtual void* Member(const TMatchObject&);

virtual void* GetIndexedObject(size_t) const;

Continued on following page

TArray 9-9

Member functions CreateIterator

The CreateIterator member function returns a TArrayIterator
object for the array (see “TArrayIterator” later in this chapter).

GetGrowPool

The GetGrowPool member function returns the pool that the TArray
object will use when it needs to grow to support more entries.

GetIndexedObject

The GetIndexedObject member function is described in “TCollection”
later in this chapter.

Member

The Member member function is described in “TCollection” later in this
chapter.

Remove

The Remove member function is described in “TCollection” later in this
chapter.

See also TMatchObject

TArrayIterator

TCollection

TArrayExample on the ASLM Examples disk

9-10 Chapter 9 / Utility Classes and Member Functions

TArrayIterator

The TArrayIterator class iterates through a TArray collection.

The TArrayIterator class has the following inheritance:

TDynamic --> TIterator --> TArrayIterator

Description For information on TArrayIterator, see “TIterator” later in this
chapter.

Declarations #define kTArrayIteratorID "slm:coll$aitr,1.1"

TArrayIterator(TArray*);

virtual ~ TArrayIterator();

virtual void Reset();

virtual void* Next();

virtual Boolean IterationComplete() const;

virtual Boolean RemoveCurrentObject();

Member functions IterationComplete

The IterationComplete function is described in “TIterator” later in this
chapter.

Next

The Next function is described in “TIterator” later in this chapter.

RemoveCurrentObject

The RemoveCurrentObject function is described in “TIterator” later in
this chapter.

Reset

The Reset function is described in “TIterator” later in this chapter.

See also TIterator

TArray

TArrayExample on the ASLM Examples disk

TArrayIterator 9-11

TAtomicBoolean

The TAtomicBoolean class atomically sets, clears, and tests a Boolean
value.

The TAtomicBoolean class has no parent class.

Description The TAtomicBoolean class is simply an inline class to the atomic Boolean
routines mentioned in “Atomic Routines for Getting and Setting Bits” in
Chapter 7, “ASLM Utilities.” It will set or clear a Boolean and return
whether or not you were the setter or clearer. This is all done in an
“atomic” matter. In other words, it will work properly even if interrupted
by code that tries to set or clear the same Boolean.

Declarations struct TAtomicBoolean

{

void Init();

Boolean Set();

Boolean Clear();

Boolean Test();

unsigned char fFlag;

};

Member functions Init

The Init member function is used to initialize the TAtomicBoolean and
set it to false.

Set

The Set member function sets the Boolean to true and returns true if
you were the setter of the Boolean.

Clear

The Clear member function sets the Boolean to false and returns true if
you were the clearer of the Boolean.

Test

The Test member function returns the current value of the Boolean.

9-12 Chapter 9 / Utility Classes and Member Functions

TBitMap

The TBitMap class is used to store and manipulate a string of bits.

The TBitMap class has the following inheritance:

TDynamic --> TBitMap

Description You can use the TBitMap member functions to test, set, and clear the value
of specific bits in a block of memory. The member functions are all
interrupt safe so no problems arise if you try to set or clear a bit before an
interrupt tries to set or clear the same bit. You will always be reliably told
the previous value of the bit before you set or cleared it. The bit map array
is zero based so the first bit is at index zero.

Both constructors allow you to specify the number of bits in the bit map.
The constructor that takes the pool parameter allows you to specify the
memory pool out of which to allocate the bit map. The other constructor
allows you to specify the block of memory to use for the bit map.

Declarations #define kTBitmapID "slm:supp$bmap,1.1"

TBitmap(size_t numBits, TMemoryPool* pool);

TBitmap(void* bits, size_t nBits);

virtual ~ TBitmap();

virtual Boolean IsValid() const;

virtual Boolean SetBit(size_t);

virtual Boolean ClearBit(size_t);

virtual Boolean TestBit(size_t);

virtual long SetFirstClearBit();

virtual long SetFirstClearBit(size_t, size_t);

Member functions ClearBit

The ClearBit member function clears the nth bit. It returns the value of
the bit before it was cleared. The ClearBit function does not check to
make sure that the index passed to it within range.

IsValid

The IsValid member function returns true if the TBitMap object was
initialized properly after it was created. It returns false if initialization was
not successful. This can happen if there was not enough memory to
allocate the block of memory used for the bitmap.

Continued on following page

TBitMap 9-13

SetBit

The SetBit member function sets the nth bit of a specific block of
memory. It returns the value of the bit before it was set. The SetBit
function does not check to make sure that the index passed to it within
range.

SetFirstClearBit

The SetFirstClearBit member function sets the first cleared bit. It will
return -1 if there are no cleared bits. Otherwise it returns the index of the
bit that was set. The version of SetFirstClearBit that takes two size_t
parameters allows you to specify the range that the bit to set should be in.

TestBit

The TestBit member function returns the value of the nth bit. It does not
check to make sure that the index passed to it within range.

9-14 Chapter 9 / Utility Classes and Member Functions

TChunkyPool

The TChunkyPool class allocates memory of a certain size, called the
pool’s chunk size.

The TChunkyPool class has the following inheritance:

TDynamic --> TMemoryPool --> TChunkyPool

Description The TChunkyPool class supports interrupt-safe memory allocation and can
be useful when you want to allocate many objects of the same size. One of
the more common uses of a TChunkyPool is as the link pool for a
TSimpleList, TLinkedList, or TPriorityList.

The TChunkyPool objects are more efficient than TStandardPool objects
because they use seven fewer bytes of overhead in each chunk allocated
than TStandardPool objects. They also increase processing speed because
they make it easier to find free chunks in the pool.

The TChunkyPool class provides a constant named
kChunkyPoolChunkOverhead that can help you determine the amount of
overhead that each chunk allocated from a pool will require. You should
consider the value of this constant when you decide how big a pool you
will need.

The definition of kChunkyPoolChunkOverhead is:

#define kChunkyPoolChunkOverhead 4

The following example shows how to create a TChunkyPool object that has
enough memory for 200 TLink objects:

size_t poolsize = 200 * (sizeof(TLink) +

kChunkyPoolChunkOverhead);

TChunkyPool* myPool = new (poolsize, kSystemZone)

TChunkyPool(sizeof(TLink));

The chunk size is always rounded up to a multiple of four, after adding in
the required kChunkyPoolChunkOverhead. The size of the pool is
rounded down to a multiple of the chunk size. Therefore, if you ask for a
100-byte pool with a chunk size of 72, the pool size is 80.

Continued on following page

TChunkyPool 9-15

Declarations #define kChunkyPoolChunkOverhead 4

#define kTChunkyPoolID "!$chkp,1.1"

TChunkyPool(size_t chunkSize);

virtual TChunkyPool();

virtual Boolean IsValid() const;

// TMemoryPool Overrides

virtual void* Allocate(size_t size);

virtual void* Reallocate(void*, size_t);

virtual void Free(void*);

virtual size_t GetSize(void*) const;

virtual Boolean CheckPool() const;

virtual size_t GetLargestBlockSize() const;

size_t GetChunkSize() const;

size_t GetNumberOfChunks() const;

Member functions Allocate

The Allocate member function allocates a block of memory from the
pool. When you call Allocate, pass the size of the block you want as a
parameter.

CheckPool

The CheckPool member function returns true if no problems are found
with the pool. When you are debugging code, it is advisable to call
CheckPool periodically to make sure that you are not corrupting the pool.

Free

The Free member function returns to the pool the block passed to it.

GetChunkSize

The GetChunkSize member function returns the pool’s chunk size. When
you create a pool, you pass the desired chunk size of the pool to the
constructor that creates the pool. This value is passed in the constructor’s
chunkSize parameter.

GetLargestBlockSize

9-16 Chapter 9 / Utility Classes and Member Functions

GetNumberOfChunks

The GetNumberOfChunks member function returns the number of free
chunks available in the pool.

GetSize

The GetSize member function returns the size of the block passed to it.

Reallocate

Memory from a TChunkyPool object cannot be reallocated to a different
size. Therefore, Reallocate returns either NULL if a bad memory size is
passed (the memory size is greater than the pool’s chunk size), or the block
of memory passed to it if the size is valid.

TChunkyPool 9-17

TClassID

The TClassID class represents the class IDs that you use to identify classes
implemented in a shared library.

The TClassID class has no parent class.

Description Class IDs are assigned to classes in the library’s exports file and are used
by clients to specify a class when using routines such as NewObject and
LoadClass.

A TClassID object is a simple C string and can be treated as such. When
you pass a TClassID object to a routine expecting a C string it will be cast
to a C string automatically. However, the opposite is not true. C strings must
be explicitly cast to a TClassID object when needed, such as when calling
NewObject.

Class IDs take the form xxxx$yyyy. Usually xxxx is related to the
developer of the class and yyyy is related to the name of the class.

Adding xxxx ensures that, when combined with yyyy, the class ID will
always be unique. Otherwise there would be a lot of classes with a class ID
of “TLinkedList” or “TDocument.” The xxxx part of the class ID should
always start with your four character creator ID, which is assigned by DTS.
This is the same creator ID used for applications and documents. Using the
creator ID ensures that each developer has a unique ID. You can optionally
put something after the creator ID. For example, Apple’s DTS group may
want to always use “appl:dts” so it only needs to ensure that the yyyy part
of the class ID is unique within DTS, but not within all of Apple.

The yyyy part can simply be the class name, such as “TLinkedList,” or it
can be some sort of abbreviation for the class name, such as “list.” The
only rule is that when combined with xxxx , it must form a class ID that
you know is unique.

Generally your class’s class ID will only be found in one place: your
library’s interface file where a constant of the form k<classname>ID is
placed. All users of the class ID will just use this constant, including the
exports file. In fact, a constant of this form for every class being exported
must be made available to the exports file. Since users will usually be using
the constant, your class ID does not have to make it clear which class it
represents. However, since the class ID appears in the class list of the
Inspector, it may be beneficial to give class IDs a descriptive name. This
makes debugging easier.

9-18 Chapter 9 / Utility Classes and Member Functions

You can (and should) use a version number in your IDs. This allows you to
specify a version of a class when you call a function that takes a TClassID
as a parameter. See Appendix D, “Versioning,” for more details on using
version numbers. If you use version numbers, your class ID will look
something like this:

#define kTListID "appl:dts$TList,1.1"

If you are defining many classes with the same version, you may want to do
something like this:

#define kMyLibaryVersion "1.1"

#define kTListID "appl:dts$TList," kMyLibraryVersion

Commas are not allowed in class IDs except at the start of the version
number.

Declarations #define kMaxClassIDSize 255

#ifdef __cplusplus

void* operator new(size_t, size_t strLen, TMemoryPool* thePool = NULL)

void* operator new(size_t)

void operator delete(void* obj, size_t)

TClassID();

TClassID(const TClassID&);

operator const char*() const; // cast to a const char *

Version ExtractVersion() const;

size_t GetLength() const;

TClassID& operator=(const TClassID&);

Boolean operator==(const TClassID&) const;

Boolean operator!=(const TClassID&) const;

Continued on following page

TClassID 9-19

There are also global compare operators for comparing a TClassID object
with a C string and a TClassID function for casting a C string to a
TClassID object.

const TClassID& ClassID(const char* str); // cast a char* to a TClassID

Boolean operator==(const TClassID&, const char *);

Boolean operator!=(const TClassID&, const char *);

Boolean operator==(const char *, const TClassID&);

Boolean operator!=(const char *, const TClassID&);

If you create a TClassID object by invoking the new operator (something
that you will probably never need to do) you must pass in the size of the
class ID string, not including the terminating NULL.

When C++ users pass a C string to a routine expecting a TClassID , they
must cast it to a TClassID first. You can use the ClassID function to do
this. This example shows how you can perform a cast when you call
NewObject on a TLinkedList :

TLinkedList* list = (TLinkedList*)NewObject (ClassID(kTLinkedListID));

Member functions ExtractVersion

The ExtractVersion member function extracts version information from
the TClassID object.

GetLength

The GetLength member function obtains the length of a class ID, not
including the version information. The maximum size of a TClassID is
255 object characters.

operator==
operator!=

The operator== and operator== member functions strip off the
version numbers when they compare TClassID objects. If you want to
include the version number when comparing, then use strcmp. You should
use strcmp when comparing TClassID objects for ordering purposes (that
is, using >, <. >=, and <=).

See also Appendix D, “Versioning,” for more details on using version numbers in
class IDs

9-20 Chapter 9 / Utility Classes and Member Functions

TClassInfo

The TClassInfo class iterates through subclasses of a specified base class,
providing information for each subclass.

The TClassInfo class has the following inheritance:

TDynamic --> TIterator --> TClassInfo

Description To use the TClassInfo class, you must first create an instance of the class
by calling the global GetClassInfo function and passing it the ID of the
base class through which you want to iterate. Each call to Next returns a
class ID of a class that inherits from the base class. You can call other
TClassInfo member functions to get information about the class returned
by the last call to Next. When you are finished with the TClassInfo
object, delete it in normal C++ fashion.

For more information on GetClassInfo, see “TLibraryManager” later in
this chapter.

Using TClassInfo with function sets

The TClassInfo class works with both function sets and classes. To make
TClassInfo work with a function set that is used by a client, you can give
the function set an interface ID by placing the ID in a client’s export file.
The interface ID is treated like a class’s parent class ID. This ID (which is
entirely fictional, and does not represent a real function set or class) can be
used by TClassInfo to iterate through all function sets that have the same
interface ID. This strategy is useful in conjunction with the
GetFunctionPointer function. If all function sets with the same interface
ID implement the same functions (such as a set of database routines), you
can use a TClassInfo object to obtain a list of all function sets that
implement the desired routines. Then you can let the user choose which
one to use.

For more information on interface IDs, see “Getting Information About
Function Sets” in Chapter 7, “ASLM Utilities.”

WARNING If the interface ID of a function set conflicts with the
TClassID of a class or another function set, the function set that is
assigned the new interface ID cannot be iterated by a TClassInfo
object.

Continued on following page

TClassInfo 9-21

Declarations #define kTClassInfoID "slm:supp$clif,1.1"

virtual ~ TClassInfo();

virtual void Reset();

virtual void* Next(); // safe to cast to

TClassID* or char*

virtual Boolean IterationComplete() const;

virtual Boolean RemoveCurrentObject(); // do nothing

instead

void SetBaseClassID(const TClassID& classID);

TClassID* GetClassID();

virtual TClassID* GetParentID(size_t idx = 0);

TLibrary* GetLibrary() const;

TLibraryFile* GetLibraryFile() const;

unsigned short GetVersion() const;

unsigned short GetMinVersion() const;

Boolean GetNewObjectFlag() const;

Boolean GetPreloadFlag() const;

Boolean GetFunctionSetFlag() const;

size_t GetSize() const;

Member functions GetClassID

The GetClassID member function returns the TClassID object of the
class.

GetFunctionSetFlag

The GetFunctionSetFlag member function returns true if the class is
actually a function set.

GetLibrary

The GetLibrary member function returns the TLibrary object in charge
of the library that the class is in.

GetLibraryFile

The GetLibraryFile member function returns the TLibraryFile object
for the library that the class is in.

9-22 Chapter 9 / Utility Classes and Member Functions

GetMinVersion

The GetMinVersion member function returns the minimum version that
the class supports. This value corresponds to the version range you specify
when you export a function set or class. When used in conjunction with
GetVersion, the version range supported by the class can be obtained.

GetNewObjectFlag

The GetNewObjectFlag member function returns true if the class has its
newobject flag set.

GetParentID

The GetParentID member function returns the parent IDs of the class.
Since GetParentID works with classes using multiple inheritance, it is
necessary to pass in the index of the parent you are interested in. The index
is zero-based and defaults to zero. The GetParentID function will return
NULL if the index is out of range, and only returns immediate parents, not
parents that are more than one generation away.

GetPreloadFlag

The GetPreloadFlag member function returns the preload flag. (See
“Writing an .exp File” in Chapter 5, “Writing and Building Shared
Libraries,” for more information on the preload flag.)

GetSize

The GetSize member function returns the size of the class in bytes. It
returns zero if the library in which the class is implemented was not built
using the -sym option (symbolic debugging symbols enabled).

GetVersion

The GetVersion member function returns the version of the class. When
used in conjunction with GetMinVersion, the version range supported by
the class can be obtained.

IterationComplete

The IterationComplete member function returns true only when Next
returns NULL and the iteration is complete; that is, if the iterator has not
become invalid (see “TIterator” later in this chapter for more information
on this topic). The iterator can become invalid if SystemTask or
GetNextEvent is called and a shared library is dragged in or out of the
Extensions folder, thus adding or removing classes from the system.

Continued on following page

TClassInfo 9-23

Next

The Next member function obtains the next subclass, if there is one. The
void* that is returned may be cast to a TClassID or to a char*.

RemoveCurrentObject

The RemoveCurrentObject member function is overridden to do
nothing.

Reset

The Reset member function starts another iteration, beginning with the
base class. The base class is the class that was specified when
GetClassInfo was called to create the TClassInfo object, but it can be
changed by calling SetBaseClassID.

SetBaseClassID

The SetBaseClassID member function changes the base class through
which you are iterating and resets the iterator. This is useful if you have
more than one base class through which you want to iterate. If you use
SetBaseClassID, you do not need to call GetClassInfo for each base
class.

See also TIterator

GetClassInfo

“Getting Information About Function Sets” and “Getting a Library’s
TLibrary Object” in Chapter 7, “ASLM Utilities”

TClassInfoExample on the ASLM Examples disk

9-24 Chapter 9 / Utility Classes and Member Functions

TCollection

The TCollection class allows you to use objects in a collection without
knowing any details about the collection.

The TCollection class has the following inheritance:

TDynamic --> TCollection

Description The TCollection class is the base class for all ASLM collection classes.
The TCollection class and its subclasses (TSimpleList, TLinkedList,
TPriorityList, TArray, and THashList) provide access to objects that
belong to different kinds of collections. TCollection and its subclasses
also provide member functions for manipulating objects in collections. For
example, the Add member function adds an object to a collection, and the
Member member function can tell you if a specified object is in a
collection.

Most TCollection member functions are pure virtual functions, so they
must be implemented in subclasses of the TCollection class. The
TCollection classes provided by the ASLM are thread-safe and interrupt-
safe, so there is no problem if multiple threads try to change the collection
at the same time.

The TCollection member functions such as AddUnique and Member
have versions that take a TMatchObject parameter. This parameter gives
the collection a user-defined way to compare objects rather than just
comparing object pointers, which is what TCollection does by default.

When you call TCollection member functions that add objects to
collections, the data type that you add to the collections is void*, but you
can add any data type that fits into sizeof(void*) bytes, provided you
use a typecast.

Declarations typedef int PointerType;

#define kVoidPointer ((PointerType)0) /* a non-object

 pointer */

#define kTDynamicPointer ((PointerType)1) /* SingleObject with

 v-table first */

#define kTSCDynamicPointer ((PointerType)2) /* a Think C++ object */

#define kTStdDynamicPointer ((PointerType)3) /* non-SingleObject with

 v-table first */

Continued on following page

TCollection 9-25

#define kTCollectionID "!$coll,1.1"

virtual ~ TCollection();

size_t Count() const;

Boolean IsEmpty() const;

virtual TIterator* CreateIterator(TStandardPool*) = 0;

virtual OSErr Add(void*);

virtual OSErr AddUnique(void*, const TMatchObject&);

virtual OSErr AddUnique(void*);

virtual void RemoveAll();

virtual void DeleteAll(PointerType = kTDynamicPointer);

virtual void* Remove(const TMatchObject&) = 0;

virtual void* Member(const TMatchObject&) = 0;

virtual Boolean Remove(void*) = 0;

virtual Boolean Member(const void*) = 0;

virtual void* GetIndexedObject(size_t) const;

void* operator[](size_t);

long GetSeed() const;

void Grab();

void Release();

Member functions Add

The Add member function adds to the collection the object that was passed
to it. It returns an OSErr. If the object is successfully added to the
collection, kNoError is returned in OSErr. If the add does not succeed, an
error code is returned in OSErr. The most likely error is kOutOfMemory,
although other errors may be possible, depending on the subclass
implementation.

AddUnique

The AddUnique member function adds a specified object to the collection
if the object is not already in the collection. It returns an OSErr. If the
object is successfully added to the collection, kNoError is returned in
OSErr. If the add does not succeed, an error code is returned in OSErr.
The most likely error is kOutOfMemory, although other errors may be
possible, depending on the subclass implementation.

9-26 Chapter 9 / Utility Classes and Member Functions

Count

The Count member function returns the number of objects in the
collection.

CreateIterator

The CreateIterator member function returns an iterator for the
collection (see “TIterator” later in this chapter).

DeleteAll

The DeleteAll member function removes and deletes all objects from the
collection. It takes a PointerType parameter that specifies the type of the
objects in the collection. Then, if necessary, the objects can be cast to the
proper type so the destructors will be called properly. Use kVoidPointer
if the objects are not C++ objects (so no destructor will be called). Use
kTDynamicPointer for objects that descend from SingleObject and
have their v-table first. Use kTStdDynamicPointer for objects that do not
descend from SingleObject and have their v-table first. Use
kTSCDynamicPointer for objects that are Symantec C++ objects. You
cannot call DeleteAll if the collection contains objects that do not have
their v-table first. You should instead remove the objects one at a time and
delete them yourself. If the collection does not contain pointers—because,
for example, you have put long data types in the collection—then you
should not call DeleteAll because DeleteAll treats each object as a
pointer to memory and attempts to free the memory. Call RemoveAll
instead.

If you subclass TCollection, you can use the DestroyPointer function
to take care of deleting the pointer for each object in the collection. See
“Miscellaneous Routines” in Chapter 7, “ASLM Utilities,” for more
information.

WARNING Do not call DeleteAll if the objects in the collection were
not allocated using the ASLM global new operator defined in the
header file GlobalNew.h. Objects that inherit from TDynamic are
always allocated using the ASLM global new operator unless the
subclass overrides the new operator. Also, do not call DeleteAll for
stack objects or for objects that are defined as data members of a class
because these objects are not allocated using the ASLM global new
operator. Call RemoveAll instead.

Continued on following page

TCollection 9-27

GetIndexedObject

The GetIndexedObject member function returns the nth object in the
collection. The default implementation of GetIndexedObject obtains this
information by creating an iterator for the collection and counting as the
iterator iterates through the collection until the nth object is found.
TCollection subclasses should override GetIndexedObject if there is a
more efficient way of getting the nth object. The C++ array operator
(operator[]) simply calls GetIndexedObject.

GetSeed

The GetSeed member function returns the current seed value (this value
changes each time the collection is changed).

Grab

The Grab member function grabs the collection’s semaphore. It is
generally used only by the implementation of TCollection and its
subclasses.

IsEmpty

The IsEmpty member function returns true if the collection is empty.

Member

The Member member function returns true if the object passed to it is in
the collection. The TMatchObject version of Member returns the object
that matches the TMatchObject. (For more information about the
TMatchObject class, see “TMatchObject” later in this chapter.)

operator[]

The operator[] member function calls GetIndexedObject.

Release

The Release member function releases the collection and semaphore.

Remove

The Remove member function removes the object passed to it (or, in the
TMatchObject version of Remove, the object that matches a specified
TMatchObject). Remove removes only the first object that matches the
object or TMatchObject passed to it. (For more information about the
TMatchObject class, see “TMatchObject” later in this chapter.)

9-28 Chapter 9 / Utility Classes and Member Functions

RemoveAll

The RemoveAll member function removes all objects from the collection.
The user is responsible for making sure that the objects are also deleted if
necessary.

See also TMatchObject

TIterator

TCollection 9-29

TDoubleLong

The TDoubleLong class implements a double long (64 bits) integer class
that handles all the math functionality of the TTime class.

The TDoubleLong class has the following inheritance:

TDynamic --> TMatchObject --> TDoubleLong

Description Normally TDoubleLong is used as a superclass for some other class which
has a 64-bit value as its comparable/hashing value (the default hash value is
the low 32-bits). Its main purpose is as the base class for the TTime class. It
provides all the operators that are commonly used for integer math.

Declarations #define kTDoubleLongID "slm:supp$dbll,1.1"

TDoubleLong(const TDoubleLong&);

TDoubleLong(unsigned long low, long hi);

TDoubleLong(long l);

TDoubleLong();

virtual ~ TDoubleLong();

virtual OSErr Inflate(TFormattedStream&);

virtual OSErr Flatten(TFormattedStream&) const;

virtual Boolean IsEqual(const void*) const;

virtual unsigned long Hash() const;

virtual double ConvertToDouble() const;

operator double() const;

operator unsigned long() const;

virtual TDoubleLong& Add(const TDoubleLong&);

virtual TDoubleLong& Subtract(const TDoubleLong&);

virtual TDoubleLong& Multiply(const TDoubleLong&);

virtual TDoubleLong& Divide(const TDoubleLong&);

virtual TDoubleLong& Modulo(const TDoubleLong&);

virtual TDoubleLong RShift(unsigned int) const;

virtual TDoubleLong LShift(unsigned int) const;

virtual TDoubleLong& Negate();

virtual short Compare(const void*) const;

9-30 Chapter 9 / Utility Classes and Member Functions

TDoubleLong& operator=(const TDoubleLong&);

TDoubleLong& operator+=(const TDoubleLong&);

TDoubleLong& operator-=(const TDoubleLong&);

TDoubleLong& operator*=(const TDoubleLong&);

TDoubleLong& operator/=(const TDoubleLong&);

TDoubleLong& operator%=(const TDoubleLong&);

TDoubleLong& operator&=(const TDoubleLong&);

TDoubleLong& operator|=(const TDoubleLong&);

TDoubleLong& operator^=(const TDoubleLong&);

TDoubleLong operator+(const TDoubleLong&) const;

TDoubleLong operator-(const TDoubleLong&) const;

TDoubleLong operator*(const TDoubleLong&) const;

TDoubleLong operator/(const TDoubleLong&) const;

TDoubleLong operator%(const TDoubleLong&) const;

TDoubleLong operator&(const TDoubleLong&) const;

TDoubleLong operator|(const TDoubleLong&) const;

TDoubleLong operator^(const TDoubleLong&) const;

TDoubleLong operator~() const;

TDoubleLong operator-() const;

TDoubleLong operator<<(unsigned int) const;

TDoubleLong operator>>(unsigned int) const;

Boolean operator>(const TDoubleLong&) const;

Boolean operator<(const TDoubleLong&) const;

Boolean operator<=(const TDoubleLong&) const;

Boolean operator>=(const TDoubleLong&) const;

Boolean operator==(const TDoubleLong&) const;

Boolean operator!=(const TDoubleLong&) const;

Member functions This section describes the member functions that are not self explanatory.

Compare

The Compare member function returns zero if the object passed to it
matches the comparison criteria that are specified for TDoubleLong. It
returns -1 if the match object is considered to be “greater” and 1 if the
object passed to Compare is considered to be “greater.” It is normally
only used when the TDoubleLong object is being used as a
TMatchObject.

ConvertToDouble

The ConvertToDouble member function converts the TDoubleLong
object to a double.

Continued on following page

TDoubleLong 9-31

operator double

This member function performs the same operation as ConvertToDouble.
It allows for implicit casts to a double.

Hash

The Hash member function returns the lower 32 bits of the TDoubleLong.
It is only used when the TDoubleLong object is being used with a hash list.
It can be overridden by a subclass if a different hash function is needed.

Inflate
Flatten

The Inflate and Flatten member functions may be useful when streams
are supported by future versions of the ASLM.

IsEqual

The IsEqual member function returns true if the TDoubleLong object
and the object passed to it are equal. If this not the case, IsEqual returns
false.

RShift
LShift

The RShift and LShift member functions shift the TDoubleLong object
the specified number of bits to the left or to the right. The shift is an
arithmetic one so there is no rollover.

See also TMatchObject

9-32 Chapter 9 / Utility Classes and Member Functions

TDynamic

The TDynamic class is a base class that forces the v-table first, overrides
new and delete to use memory pools, and provides some non-virtual
member functions that provide information about the object.

The TDynamic class has no parent class.

Description The TDynamic class has some advantages over the TSimpleDynamic class.
For example, you can register TDynamic objects with the Inspector and
control their tracing. The TDynamic class also provides some member
functions that are common in C++ base classes. These member functions
(which must be overridden to be useful) include IsValid, which you can
use to verify that an object is constructed properly; Clone, which you can
use to clone objects; and Inflate and Flatten, which may be useful
when streams are supported by future versions of the ASLM.

The main disadvantage of TDynamic is that it has a larger v-table—a
wasteful characteristic if you do not take advantage of any of the class’s
virtual member functions.

For more information on TDynamic, see “The TDynamic Family of Base
Classes” in Chapter 6, “Using the ASLM.”

Declarations These are declarations of the TDynamic member functions:

typedef int TraceControlType;

#define kTraceStatus ((TraceControlType)1)

#define kTraceOn ((TraceControlType)2)

#define kTraceOff ((TraceControlType)3)

#define kTDynamicID "!$dyna,1.1"

virtual ~ TDynamic;

void* operator new(size_t size, TMemoryPool*);

// from specified pool

void* operator new(size_t); // from default pool

void operator delete(void* obj, size_t)

{ SLMDeleteOperator(obj); }

Continued on following page

TDynamic 9-33

const TClassID& GetObjectsClassID() const;

const TClassID& GetObjectsParentClassID() const;

size_t GetObjectsSize() const;

TLibrary* GetObjectsLocalLibrary() const;

TLibraryFile* GetObjectsLocalLibraryFile() const;

TStandardPool* GetObjectsLocalPool() const;

void SetObjectsLocalPool(TStandardPool*) const;

virtual Boolean IsValid() const;

virtual OSErr Inflate(TFormattedStream&);

virtual OSErr Flatten(TFormattedStream&) const;

virtual TDynamic* Clone(TStandardPool*) const;

virtual char* GetVerboseName(char*) const;

virtual void Dump() const;

void Trace(char *formatStr, ...) const;

virtual Boolean TraceControl(TraceControlType) const;

Boolean IsTraceOn() const;

Boolean TraceOn() const;

Boolean TraceOff() const;

Boolean IsDerivedFrom(const TClassID&) const;

9-34 Chapter 9 / Utility Classes and Member Functions

Member functions WARNING The following routines may be called only for an object
that is implemented in a shared library and is a shared class. If a non-
library client implements a class, calling one of these routines on an
instance of the class may cause a crash, even if the class inherits from
a class that forces the v-table first (even if it inherits from a shared
class).

IsDerivedFrom

GetObjectsClassID

GetObjectsParentClassID

GetObjectsSize

GetObjectsLocalLibrary

GetObjectsLocalLibraryFile

GetObjectsLocalPool

SetObjectsLocalPool

An object that has its v-table first is an object derived from a base class
that has at least one virtual function and no data members. This is true
of objects that belong to the TDynamic, TSimpleDynamic,
TStdSimpleDynamic, and TStdDynamic classes.

Clone

The Clone member function is used to clone objects. It must be overridden
by the subclass to be useful.

Dump

The Dump member function displays information about a specified object
in the TraceMonitor’s Trace window. The TDynamic implementation of
this member function traces the string returned by GetVerboseName. You
may want your TDynamic subclass to do a formatted trace of all the fields
in the object.

Continued on following page

TDynamic 9-35

GetObjectsClassID

The GetObjectsClassID member function returns an object’s TClassID
object. The TClassID class is a C string class, so it can be treated as an
ordinary C string. If you call GetObjectsClassID from a constructor or a
destructor, GetObjectsClassID returns the TClassID object for the class
whose constructor or destructor calls GetObjectsClassID, not for the
subclass. For example, if TSquare inherits from TShape and the
constructor for TShape calls GetObjectsClassID, then when you create a
TSquare object, the call by the constructor for TShape returns the TShape
class ID, and the call by the constructor for TSquare returns the TSquare
class ID.

GetObjectsLocalLibrary

The GetObjectsLocalLibrary member function returns the TLibrary
object for the library in which the object is implemented. If you call
GetObjectsLocalLibrary to obtain information for a polymorphic
object, the member function always returns TLibrary for the subclass, not
TLibrary for the base class. For example, if your object is a TSquare
subclass, but all you know is that it has TShape as a base class,
GetObjectsLocalLibrary returns the TLibrary object for TSquare, not
the TLibrary object for TShape. If you are in a constructor or destructor
when you call GetObjectsLocalLibrary, the member function returns
TLibrary for the library of the class whose constructor or destructor you
are in, not TLibrary for the subclass. This behavior is similar to that of
GetObjectsClassID, above.

GetObjectsLocalLibraryFile

The GetObjectsLocalLibraryFile member function returns the
TLibraryFile object for the library in which the object is implemented. If
you call GetObjectsLocalLibraryFile to obtain information for a
polymorphic object, the member function always returns the
TLibraryFile for the subclass, not the TLibraryFile for the base class.
This is similar to the behavior of GetObjectLocalLibrary. If you are in
a constructor or destructor when you call GetObjectsLocalLibrary, the
member function returns TLibraryFile for the library of the class whose
constructor or destructor you are in, not TLibraryFile for the subclass.
This behavior is similar to that of GetObjectsClassID.

9-36 Chapter 9 / Utility Classes and Member Functions

GetObjectsLocalPool

The GetObjectsLocalPool member function is similar to
GetObjectsLocalLibraryFile except that it returns the local pool for
the object’s shared library. If you are in a constructor or destructor when
you call GetObjectsLocalPool, GetObjectsLocalPool returns the
local pool for the library of the class whose constructor or destructor you
are in, not the local pool for the subclass. This behavior is similar to that of
GetObjectsClassID.

GetObjectsParentClassID

The GetObjectsParentClassID member function returns the TClassID
object for the parent class of the object. If you are executing a constructor
or destructor when you call GetObjectsParentClassID, what you obtain
is TClassID for the parent class of the class whose constructor or
destructor you are in, not the subclass. This behavior is similar to that of
GetObjectsClassID.

GetObjectsSize

The GetObjectsSize member function returns the size of the object in
bytes. It returns zero if the library in which the class is implemented was
not built using the -sym option (symbolic debugging symbols enabled).

GetVerboseName

The GetVerboseName member function returns a string that describes the
object. You must pass a pointer to 256 bytes of memory as a parameter to
GetVerboseName. The member function returns information about the
object in that 256-byte parameter. (The TDynamic implementation of the
member function returns a string containing the address of the object.) If
you override GetVerboseName, make sure that the information which
GetVerboseName generates fits on one line and is 256 characters or less in
length, including the terminating NULL character.

Inflate
Flatten

The Inflate and Flatten member functions may be useful when streams
are supported by future versions of the ASLM.

IsDerivedFrom

The IsDerivedFrom member function returns true if the object is
derived from the specified TClassID object.

Continued on following page

TDynamic 9-37

IsValid

The IsValid member function returns true if the object was initialized
properly after it was created. Some classes always initialize properly, but
others may need to allocate memory or get resources during construction.
Classes whose construction can fail must override IsValid to return false
if construction fails; otherwise, IsValid always returns true.

SetObjectsLocalPool

The SetObjectsLocalPool member function sets the local pool for the
object’s shared library. For more information see “Memory Management
Classes” in Chapter 8, “ASLM Utility Class Categories.”

Trace

The Trace member function sends output to the TraceMonitor’s Trace
window. The Trace function, like printf, takes an unformatted string with
multiple parameters. For more information see “Sending Output to the
TraceMonitor Window” in Chapter 7, “ASLM Utilities.”

TraceControl

The TraceControl member function turns an object’s tracing on and off.
It takes only one parameter: a constant that specifies what the member
function should do. If the kTraceStatus constant is specified as a
parameter, TraceControl returns true if tracing is on and returns false
if tracing is off. The constant kTraceOn turns tracing on and returns the
tracing state before it was turned on. The constant kTraceOff turns tracing
off and returns the tracing state to the state it was in before it was turned
off. The TraceControl function was created so that only one virtual
function (instead of three) would be needed to handle IsTraceOn,
TraceOn, and TraceOff.

IsTraceOn
TraceOn
TraceOff

The IsTraceOn, TraceOn, and TraceOff member functions call
TraceControl with the appropriate argument. The IsTraceOn function
returns true if tracing is on for the object. The TraceOn and TraceOff
functions turn tracing on and off for the object. Note that the TDynamic
implementation of TraceControl does not support turning tracing on and
off. In the TDynamic implementation, tracing is always on. The TDynamic
subclass must override TraceControl to turn off tracing for the object.
The TDynamic::IsTraceOn function always returns true. You may want
to override TraceControl in your TDynamic subclass and maintain a
trace flag.

9-38 Chapter 9 / Utility Classes and Member Functions

TFastRandom

The TFastRandom class returns a random number computed with 32-bit
arithmetic.

The TFastRandom class has the following inheritance:

TDynamic --> TFastRandom

Description The TFastRandom class creates random numbers according to the
following algorithm (using the current time stamp as the initial seed):

Seed = (Seed*2416 + 374441) % 1771875.

Declarations #define kTFastRandomID "slm:supp$frnd,1.1"

const unsigned long kMaxFastRandom = 1771874;

TFastRandom();

TFastRandom(unsigned long seed);

virtual TFastRandom();

virtual void SetSeed(unsigned long seed);

virtual void SetSeed();

unsigned long GetSeed() const;

virtual unsigned long GetRandom();

virtual unsigned long GetRandomNumber(unsigned long lo,

unsigned long hi);

Member functions TFastRandom

The TFastRandom member function creates an object, using the current
time stamp as the seed. TFastRandom(unsigned long seed) creates the
object using seed as the seed.

GetRandom

The GetRandom member function returns a random number ranging from
0 to kMaxFastRandom, inclusive. You should not normally use this
member function; instead, use GetRandomNumber.

GetRandomNumber

The GetRandomNumber member function returns the a random number
ranging from lo to hi, inclusive.

Continued on following page

TFastRandom 9-39

GetSeed

The GetSeed member function returns the current seed value. The seed
value changes each time GetRandom is called.

SetSeed

The SetSeed member function sets the random number seed using the
current time stamp.

9-40 Chapter 9 / Utility Classes and Member Functions

TFileSpec

The TFileSpec class is a base class for specifying the location of a library
file (a TLibraryFile object) in a file system-independent or OS-
independent way.

The TFileSpec class has no parent class.

Description The subclasses of TFileSpec contain the details of a library file’s location.
The TFileSpec base class is used to compare TLibraryFile objects to
see if they represent the same file and also so a file specification can be
passed around without worrying about the contents.

The TFileSpec class has two subclasses: TMacFileSpec and
TFileIDFileSpec. The TMacFileSpec class keeps track of files by
volume refNum, directory ID, and filename. The TFileIDFileSpec class
keeps track of files by volume refNum and file ID.

There are also C struct and Pascal Record versions of TFileSpec and its
subclasses for C and Pascal users.

In version 1.1 of the ASLM, only the TMacFileSpec subclass is supported,
since the ASLM currently uses the TMacFileSpec subclass to keep track
of library files on the Macintosh Operating System.

The TFileSpec class provides cast operators to automatically cast a
TFileSpec object to TMacFileSpec or TFileIDFileSpec. It is your
responsibility to ensure that this cast is a legal one. You can call
TFileSpec::GetType to get the type of the TFileSpec object.

Generally, you do not have to be concerned with TFileSpecs unless you
plan to call RegisterLibraryFile, RegisterLibraryFileFolder, or
GetFileSpec.

Declarations typedef unsigned int FileSpecType;

#define kUnknownFileSpecType ((FileSpecType)0)

#define kMacType ((FileSpecType)1)

#define kFileIDType ((FileSpecType)2)

#define kMaxFileSpecType ((FileSpecType)255)

class TFileSpec;

class TMacFileSpec;

class TFileIDFileSpec;

extern "C" Boolean IsFileSpecTypeSupported(FileSpecType);

extern "C" Boolean CompareFileSpecs(const void* f1, const void* f2);

Continued on following page

TFileSpec 9-41

void* operator new(size_t size, TMemoryPool *thePool)

void* operator new(size_t size)

void operator delete(void* obj, size_t)

FileSpecType GetType() const;

unsigned char GetSize() const;

// compare operators

Boolean operator==(const TFileSpec&) const;

Boolean operator!=(const TFileSpec&) const;

// cast operators

operator const TMacFileSpec&() const;

operator const TFileIDFileSpec&() const;

unsigned char fType;

unsigned char fSize;

Member functions operator == and operator !=

The operator member functions can be used to compare two file
specifications. It does not matter whether the two file specs are of the same
subclass.

GetSize

The GetSize member function returns the size of the TFileSpec data
structure.

GetType

The GetType member function returns the type of the TFileSpec data
structure.

See also TFileIDFileSpec

TMacFileSpec

9-42 Chapter 9 / Utility Classes and Member Functions

TFileIDFileSpec

The TFileIDFileSpec class is a TFileSpec subclass that keeps track of
library files by file ID and volume refNum.

The TFileIDFileSpec class has the following inheritance:

TFileSpec --> TFileIDFileSpec

Description In version 1.1, the ASLM uses the TMacFileSpec subclass to keep track of
library files on the Macintosh Operating System.

You can use the TFileIDFileSpec for your own purposes if you wish, but
do not pass them to any ASLM routines. See “TFileSpec” for more
information.

Declarations // Some macros to make accessing fields without doing a cast easier

#define GetFileIDFromFileSpec(x) (((const TFileIDFileSpec&)x).fFileID)

#define GetVRefNumFromFileSpec(x) (((const TFileIDFileSpec&)x).fVRefNum)

extern "C" void InitFileIDFileSpec(TFileIDFileSpec *spec, int vRefNum,

long fileID);

TFileIDFileSpec(const TFileIDFileSpec&);

TFileIDFileSpec(int vRefNum, long fileID);

short fVRefNum; // volume refNum

long fFileID; // FileID

See also TFileSpec

TFileIDFilepec 9-43

TFormattedStream

TFormattedStream is not yet implemented.

9-44 Chapter 9 / Utility Classes and Member Functions

TFunctionSetID

The TFunctionSetID class is a class that you can use to identify function
sets implemented in a shared library.

The TFunctionSetID class has no parent class.

Description A TFunctionSetID object, like a TClassID object, is a C string made up
of a developer ID and a class name separated by a dollar sign ($), and
optionally followed by version information.

Function set IDs are assigned to function sets in the library’s exports file
and are used by clients to specify a function set when using routines such
as GetFunctionPointer and LoadFunctionSet. For C users, there is
also a TFunctionSetID typedef.

Function-set IDs are written in this format:

xxxx$MyFunctionSet[,1.2.3]

Although TFunctionSetID objects work exactly like TClassID objects
(the two can be used interchangeably), TFunctionSetID makes it clearer
what parameters are expected for certain routines. For example, function
set users can call LoadFunctionSet(TFunctionSetID*) instead of
LoadClass(TClassID*), but either can be used to perform the task of
loading a function set.

The FunctionSetID functions perform casts in a way similar to the
ClassID function. It is only used by (and required by) C++ users. For
example, you can call LoadFunctionSet using the following format:

OSErr err = LoadFunctionSet FunctionSetID(kMyFunctionSetID));

See “TClassID” earlier in this chapter for details on TFunctionSetIDs.
All the information provided for TClassID objects is also true of
TFunctionSetID objects, but keep in mind that TClassID member
functions are meaningless to C users.

Declarations TFunctionSetID is typedef’d to be the same as TClassID.

#define TFunctionSetID TClassID

See also TClassID

TFunctionSetID 9-45

TGrowOperation

TGrowOperation objects are used to automatically increase a pool’s size
when the pool comes dangerously close to running out of memory.

The TGrowOperation class has the following inheritance:

TDynamic --> TOperation --> TGrowOperation

Description This class is used automatically by TPoolNotifier when it needs to
increase the pool size at interrupt time, in which case it schedules a
TGrowOperation on the global TTaskScheduler.

The TGrowOperation is not processed at interrupt time so it is always safe
for it to grow the pool.

This class is only used by the ASLM; you will never need to use this class
in your programs.

Declarations #define kTGrowOperationID "!$gwop,1.1"

TGrowOperation();

virtual ~ TGrowOperation();

virtual void Process();

size_t fGrowBy;

Boolean* fOpInUse;

9-46 Chapter 9 / Utility Classes and Member Functions

THashDoubleLong

The THashDoubleLong class is used to hash a TDoubleLong.

The THashDoubleLong class has the following inheritance:

TDynamic --> THashObject --> THashDoubleLong

Description The THashDoubleLong class should be subclassed to provide a useful
Hash member function. It has no use in ASLM version 1.1. However, if
subclassed, it can be used as a Hash object for a TDoubleHashList if you
write one.

Declarations #define kTHashDoubleLongID "slm:supp$hdbl,1.1"

THashDoubleLong();

virtual ~ THashDoubleLong();

virtual unsigned long Hash(const void*) const;

Member functions Hash

The Hash member function returns the pointer to the object that is passed
to it. It should never be overridden by a subclass. The const void*
parameter is a pointer to a TDoubleLong object.

THashDoubleLong 9-47

THashList

The THashList class implements a hash list as a TCollection subclass.

The THashList class has the following inheritance:

TDynamic --> TCollection --> THashList

Description The hash list implemented by THashList is a chained hash list. The hash
list has an array of buckets. When only one object hashes to a particular
bucket, then the bucket contains a pointer to the object. If more than one
object hashes to the same bucket then the bucket will contain a pointer to a
linked list of objects that hash to that bucket.

The THashList class implements all of the standard TCollection
member functions, plus the extra member functions listed in the declaration
below.

Using a hash list

To make a hash list useful, you must create a subclass of TMatchObject
that is aware of the kinds of objects added to the hash list. When you call
member functions that use a TMatchObject, such as
Member(TMatchObject&), the Hash member function of the match object
is called to get the hash key for each object.

Each object in the hash list that also has the same hash key is passed to the
match objects’ Compare member function to determine whether it matches
the match object. For example, if a hash list contains objects that are hashed
by a name contained in the object (such as a person’s name), the match
object should also contain a name field that it can match with the name.
Also, the object’s Hash member function should return the hash value of
that name using the same hashing function that is used by the
THashObject belonging to the THashList.

To make things easier, you can use the TProcHashObject and
TProcMatchObject classes and set their HashProc to the same function.

9-48 Chapter 9 / Utility Classes and Member Functions

Declarations struct HashListInfo

{

size_t emptySlots; // number of empty slots in

// the hash list

size_t singleSlots; // number of slots with only

// one entry

size_t numChains; // number of slots with more

// than one entry

size_t longestChain; // the longest chain

size_t avgChain; // the average length of a chain

};

#define kTHashListID "!$hsls,1.1"

THashList(BooleanParm);

THashList();

THashList(THashObject*,

size_t initialSize,

TMemoryPool* = NULL);

virtual ~ THashList();

virtual OSErr Grow(size_t newSize);

OSErr Rehash();

void SetHashObject(THashObject*);

TMemoryPool* GetLinkPool() const;

THashObject* GetHashObject() const;

size_t GetTableSize() const;

void SetLinkPool(TMemoryPool*);

virtual void GetHashListInfo(HashListInfo&) const;

// TCollection Overrides

virtual TIterator* CreateIterator(TStandardPool*);

virtual void* Remove(const TMatchObject&);

virtual void* Member(const TMatchObject&);

virtual Boolean Remove(void*);

virtual Boolean Member(const void*);

Continued on following page

THashList 9-49

Member functions CreateIterator

The CreateIterator member function returns an iterator for the
collection (see “TIterator” later in this chapter).

GetHashListInfo

The GetHashListInfo member function returns information about the
hash list in a HashListInfo data structure. The HashListInfo data
structure includes the following fields:

emptySlots is the number of empty hash buckets in the hash table.

singleSlots is the number of hash buckets with only one entry.

numChains is the number of hash buckets with more than one entry,
thus requiring the hash bucket to point to a list of entries rather than
pointing directly to the entry.

longestChain is the longest chain hanging off a hash bucket, in other
words, the most entries that hash to the same hash bucket.

avgChain is the average length of a chain. Hash buckets with 0 or 1
entries are not included in this average.

Use this information to determine if your hash list is big enough and if you
are using a good hash function. If the proportion of empty hash buckets to
hash buckets that require chaining (especially long chains) is high, then
your hash function is not very good. The ideal hash function would result
in each hash bucket getting one entry before chaining is started (an
impossible task with random data). The worst hash function would hash all
entries into the same hash bucket.

GetHashObject

The GetHashObject member function returns the THashObject being
used by the THashList.

GetLinkPool

The GetLinkPool member function returns the pool in which TLink
objects will be allocated when chaining is required.

GetTableSize

The GetTableSize member function returns the number of hash buckets
in the THashList object.

Grow

The Grow member function changes the number of buckets in the
THashList. This member function can be called only at System Task time,
unless you have already forced the THashListGrower class to be loaded.

9-50 Chapter 9 / Utility Classes and Member Functions

The Grow function is interrupt-safe, but not reentrant. The error code
kNotAllowedNow is returned if the THashList is already being grown.
The other possible error return value is kOutOfMemory.

Member

The Member function is described in “TCollection” earlier in this chapter.

Rehash

The Rehash member function forces the THashList to rehash itself. This
is not necessary in the current implementation of THashList, but was
required in an earlier version of the ASLM by a class named
TDoubleHashList. If the TDoubleHashList class is ever reactivated, it
will require this member function. Error return values and caveats for
Rehash are the same as for Grow.

Remove

The Remove function is described in “TCollection” earlier in this chapter.

SetHashObject

The SetHashObject member function sets the THashObject that the
THashList should use for hashing.

SetLinkPool

The SetLinkPool member function sets the pool that will be used when
allocating links for chaining is required. By default, the pool passed to the
constructor is used as the initial link pool.

THashList

The empty THashList constructor uses an initialSize of 103, the
current client’s pool, and does not set the hash object. Its hash function
simply takes the address of the object to be hashed.

The second THashList constructor creates a hash list whose hash table is
the size specified in initialSize. The constructor allocates the hash table
from the specified pool, and allocates the links for the chains from the
same pool. The THashObject passed to the constructor is used to do the
hashing.

See also THashObject

TMatchObject

TCollection

THashListIterator

THashList 9-51

THashListIterator

The THashListIterator class iterates a THashList collection and most
subclasses of a THashList.

The THashListIterator class has the following inheritance:

TDynamic --> TIterator --> THashListIterator

Description The THashListIterator interface is the same as all other iterators. A
TMatchObject may be used if you only want to look at objects in a single
hash bucket. The TMatchObject must have overridden the Hash member
function, and must use the same hashing algorithm used by the
THashObject given to the THashList. The overridden Hash member
function is only called once by the iterator to get the hash value of the
match object. Only objects in the hash list that hash to this same value and
are considered by the match object to be equal to the match object are
returned by the iterator.

For more information, see “TIterator,” “TMatchObject,” and
“THashList” in this chapter.

Declarations #define kTHashListIteratorID "!$hsit,1.1"

THashListIterator(THashList*,

TMatchObject* = NULL);

virtual ~ THashListIterator();

// TIterator Overrides

virtual void Reset();

virtual void* Next();

virtual Boolean IterationComplete() const;

virtual Boolean RemoveCurrentObject();

Member functions Next

The Next member function returns the next object in the hash list. If a
match object was given to the iterator then only objects that match the
match object and hash to the same bucket as the match object will be
returned. See “TIterator” in this chapter for more information.

9-52 Chapter 9 / Utility Classes and Member Functions

IterationComplete

The IterationComplete member function returns true if the iteration
completed successfully. See “TIterator” in this chapter for more
information.

RemoveCurrentObject

The RemoveCurrentObject member function removes the current object
(the one just returned by Next) from the hash list. See “TIterator” in this
chapter for more information.

Reset

The Reset member function will reset the iterator so the entire hash list can
be iterated over again. See “TIterator” in this chapter for more
information.

See also TIterator

THashList

TMatchObject

THashListIterator 9-53

THashObject

The THashObject class is the base class for all objects that “know” how
to hash another object.

The THashObject class has the following inheritance:

TDynamic --> THashObject

Description The THashObject class is normally subclassed to provide a hashing
function for a particular type of data or class. The most common use of a
THashObject is with the THashList which requires the user to pass it a
THashObject that it will use to get a hash value for objects added to the
hash list. In this case, the THashObject subclass’s Hash member function
must know what type of objects are being added to the hash list so it can
cast the object past to it to the proper type and calculate the hash value for
the object. Normally this involves looking at a field of the object and
calculating the hash value based on what is in the field. For example, a class
called TPersonRecord might have an fName field that is simply a C string.
The Hash member function could simply return the sum of the ASCII
characters as the hash value.

Declarations virtual ~ THashObject();

virtual unsigned long Hash(const void*) const = 0;

Member functions Hash

The Hash member function will return the hash value for the object passed
to it. The Hash member function must know what type of object is passed
to it so it can cast it properly.

See also THashList

9-54 Chapter 9 / Utility Classes and Member Functions

TInterruptScheduler

The TInterruptScheduler class is used by interrupt service routines to
defer processing.

The TInterruptScheduler class has the following inheritance:

TDynamic --> TScheduler --> TPriorityScheduler --> TInterruptScheduler

Description On the Macintosh, TInterruptScheduler is a front end to the Deferred
Task Manager. Operations scheduled on the TInterruptScheduler
execute at deferred task time.

The TInterruptScheduler cannot be used on a MacPlus when System 6
is running. The problem is that the Deferred Task Manager does not exist
in this situation, and since the TInterruptScheduler is just a front end to
the Deferred Task Manager, it cannot operate without it. In this case the
Schedule member function will not do anything and IsValid will return
false.

The TInterruptScheduler provides an alternate constructor that takes
another TScheduler as a parameter. When this constructor is used,
operations that are ready to be processed are scheduled on the second
scheduler rather than being processed immediately.

Declarations #define kTInterruptSchedulerID "slm:sked$insk,1.1"

TInterruptScheduler();

TInterruptScheduler(TScheduler*,

unsigned long priority);

virtual ~ TInterruptScheduler();

virtual Boolean IsValid() const;

virtual void Schedule(TOperation*);

Member functions IsValid

The IsValid member function returns true if the
TInterruptScheduler object was initialized properly after it was created.
Call IsValid after creating a TInterruptScheduler to verify that it was
constructed correctly. If it returns false, the scheduler should be deleted
and not used. This will be the case when creating a
TInterruptScheduler on a MacPlus running System 6.

Continued on following page

TInterruptScheduler 9-55

Schedule

The Schedule member function schedules a TOperation object. The
newly scheduled TOperation object will not be processed until deferred
task time.

See also TOperation

TScheduler

TInterrupt

TPriorityScheduler

SchedulerExample on the ASLM Examples disk

9-56 Chapter 9 / Utility Classes and Member Functions

TIterator

The TIterator class lets you iterate through all objects in a TCollection
object.

The TIterator class has the following inheritance:

TDynamic --> TIterator

Description You need to use TIterator when you do not know what kind of data
structure is being used for a TCollection or do not have access to the
actual data (which should always be the case unless you are implementing a
TCollection subclass). You can call the
TCollection::CreateIterator member function to create a
TIterator object for a collection. All TCollection subclasses have a
TIterator subclass that is capable of iterating over the collection.

By using an object of the TMatchObject class—which can tell you
whether two objects are equal—you can determine which objects an iterator
should return. For example, assume that you want an iterator to return only
employee records for employees in a certain pay range. To carry out this
operation, you can set the TMatchObject for the iterator to a
TMatchObject whose Compare member function looks at the employee’s
salary and returns 0 (0 indicates a match) only for employees within the
specified pay range. The TIterator Next member function passes each
employee in the collection to the TMatchObject Compare member
function and returns the first object for which the Compare member
function returns 0. This lets TMatchObject act as a filter for TIterator.
If you want your iterator to use a match object, you can call
SetMatchObject to set TMatchObject for the iterator.

Declarations #define kTIteratorID "!$iter,1.1"

virtual ~ TIterator();

virtual void Reset() = 0;

virtual void* Next() = 0;

virtual Boolean IterationComplete() const = 0;

virtual Boolean RemoveCurrentObject() = 0;

void SetMatchObject(TMatchObject*);

TMatchObject* GetMatchObject() const;

Continued on following page

TIterator 9-57

Member functions GetMatchObject

The GetMatchObject member function returns the match object that was
set with SetMatchObject.

IterationComplete

The IterationComplete member function returns true if the iterator
has finished iterating, and returns false if an iteration has stopped because
the iterator has become invalid. A TIterator becomes invalid if there is a
change in the contents of the TCollection object while iteration is in
progress. The contents of the TCollection object can be changed by an
interrupt that takes place during iteration. The contents of a collection can
also be changed by the code that is doing the iterating. However, a call to
RemoveCurrentObject does not make the iterator invalid, even though it
changes the contents of the collection. If the iterator does become invalid,
you can call Reset and restart the iteration.

Next

The Next member function returns the next object in the iteration, or NULL
if the iteration is complete or has become invalid.

Since collections are thread-safe, when the Next member function returns
NULL, you should call IterationComplete. If it returns true, then you
were returned NULL because the iterator was done. Otherwise, you were
returned NULL because the underlying collection changed.

RemoveCurrentObject

The RemoveCurrentObject member function removes the current object
in the iteration (the object that Next most recently returned).
RemoveCurrentObject returns false if the removal failed (most likely
because the collection has changed and the iterator has become invalid.)

Reset

The Reset member function restarts an iteration from the beginning. You
can call Reset when a TIterator object becomes invalid or when you just
want to iterate through a TCollection object again.

SetMatchObject

The SetMatchObject member function sets the TMatchObject for
TIterator.

See also TMatchObject

9-58 Chapter 9 / Utility Classes and Member Functions

TLibraryFile

This is the C++ front-end for the C routines that let a shared library access
the resources in the shared library’s file.

The TLibraryFile class has the following inheritance:

TDynamic --> TLibraryFile

Description The TLibraryFile class allows you to access the resources in the shared
library’s file. It contains member functions to place the library file’s
resource fork in the resource chain so Resource Manager calls can work.
The TLibraryFile class also provides member functions that serve as a
front end to some operating system Resource Manager calls. These
member functions keep track of the use of resources so clients and libraries
can share the resources.

IMPORTANT The TLibraryFile resource management calls are not
interrupt-safe and are not meant to be portable; in fact, they may not exist
on non-Macintosh systems.

Declarations #define kTLibraryFileID "!$lfil,1.1"

virtual Ptr GetSharedResource(ResType, int the ID,

 OSErr* = NULL) = 0;

virtual Ptr GetSharedIndResource(ResType, int index,

OSErr* = NULL) = 0;

virtual Ptr GetSharedNamedResource(ResType,

const char* name,

OSErr* = NULL) = 0;

virtual void ReleaseSharedResource(Ptr) = 0;

virtual long CountSharedResources(ResType) = 0;

virtual size_t GetSharedResourceUseCount(Ptr) const = 0;

virtual OSErr GetSharedResourceInfo(Ptr,

size_t* theSize = NULL,

short* theID = NULL, ResType* = NULL,

char* theName = NULL) const = 0;

virtual long GetRefNum() const = 0;

virtual TFileSpec* GetFileSpec() const = 0;

Continued on following page

TLibraryFile 9-59

virtual OSErr OpenLibraryFile() = 0;

virtual OSErr CloseLibraryFile() = 0;

virtual OSErr Preflight(long& savedRefNum) = 0;

virtual OSErr Postflight(long savedRefNum) = 0;

Member functions The C versions of the member functions are described in “Library File and
Resource Management” in Chapter 7, “ASLM Utilities.” They have the
same names and parameters as the TLibraryFile member functions,
except that they require you to pass the TLibraryFile to act on as a
parameter.

9-60 Chapter 9 / Utility Classes and Member Functions

TLibraryID

The TLibraryID class is used to identify shared libraries.

The TLibraryID class has no parent class.

Description A TLibraryID object, like a TClassID object, is a C string made up of a
developer ID and a library name separated by a dollar sign ($), and
optionally followed by version information.

Library IDs are written in this format:

xxxx$MyLibrary[,1.2.3]

Although the version is not required, your library ID should contain a
version number so each release of your library will have unique library ID.
It also allows you to reuse the same library ID (with a new version number)
with a future version of the library. See Appendix D, “Versioning,” for
more information on version numbers in library IDs.

Declarations TLibraryID is typedef’d to be the same as TClassID.

#define TLibraryID TClassID

See also TClassID

Appendix D, “Versioning”

TLibraryID 9-61

TLibraryManager

The TLibraryManager class is the interface that clients and shared
libraries use to access many ASLM functions.

The TLibraryManager class has the following inheritance:

TDynamic --> TLibaryManager

Description “Creating and Deleting the Local Library Manager” in Chapter 7,
“ASLM Utilities,” provides more information on how to create and delete
a TLibraryManager object and how it is used.

All TLibraryManager member functions have C-language equivalents.
These C functions have the same names and parameters as the
TLibraryManager member functions, with the exception of the
NewObject and GetFunctionPointer functions. Since there is more than
one version of each of these functions, different names are needed for the
C-language equivalents.

Most of the member functions of this class are described in Chapter 7,
“ASLM Utilities,” using the C-language equivalents. All the C versions of
TLibraryManager member functions use the local library manager.

Declarations #ifdef __cplusplus

#define kTLibraryManagerID "!$lmgr,1.1"

virtual void* NewObject(const TClassID& classID,

OSErr* = NULL, TStandardPool* = NULL)

const;

virtual void* NewObject(const TClassID& classID,

const TClassID& baseClassID,

OSErr* = NULL, TStandardPool* = NULL)

const;

virtual void* NewObject(const TFormattedStream&,

OSErr* = NULL, TStandardPool* = NULL)

const;

virtual TClassInfo* GetClassInfo(const TClassID&, OSErr* = NULL)

const;

9-62 Chapter 9 / Utility Classes and Member Functions

virtual OSErr VerifyClass(const TClassID& classID,

const TClassID& baseClassID) const;

virtual void* CastObject(const void* obj,

const TClassID& parentID,

OSErr* = NULL) const;

virtual void* CastToMainObject(const void* obj) const;

virtual OSErr LoadClass(const TClassID&,

BooleanParm loadAll = false);

virtual OSErr UnloadClass(const TClassID&);

virtual Boolean IsClassLoaded(const TClassID&) const;

OSErr LoadFunctionSet(const TFunctionSetID&,

BooleanParm loadAll = false);

OSErr UnloadFunctionSet(const TFunctionSetID&);

Boolean IsFunctionSetLoaded(const TFunctionSetID&)

const;

virtual ProcPtr GetFunctionPointer(const TFunctionSetID&,

const char* funcName, OSErr* = NULL);

virtual ProcPtr GetFunctionPointer(const TFunctionSetID&,

unsigned int index, OSErr* = NULL);

virtual OSErr LoadLibraries(BooleanParm forceAll = true,

BooleanParm doSelf = true);

virtual OSErr UnloadLibraries();

virtual void ResetFunctionSet

(const TFunctionSetID* = NULL);

virtual Boolean TraceLogOn();

virtual Boolean TraceLogOff();

virtual void RegisterDynamicObject(TDynamic*);

virtual void UnregisterDynamicObject(TDynamic*);

void SetObjectPool(TStandardPool*);

TStandardPool* GetObjectPool() const;

void SetDefaultPool(TStandardPool*);

TStandardPool* GetDefaultPool() const;

GlobalWorld GetGlobalWorld() const;

virtual TLibrary* GetLibrary() const;

virtual TLibraryFile* GetLibraryFile() const;

Continued on following page

TLibraryManager 9-63

Member functions CastObject
CastToMainObject

The CastObject and CastToMainObject member functions are
described in “Verifying an Object’s Type” in Chapter 7, “ASLM
Utilities.”

Dump

The Dump member function displays a list of all known classes in the
TraceMonitor Trace window.

GetClassInfo

The GetClassInfo member function returns information about a base
class and the classes that inherit from it. It returns a TClassInfo object,
which is a TIterator subclass and is used to iterate through the desired
subclasses. See “TClassInfo” for more information on GetClassInfo.

GetDefaultPool
SetDefaultPool

For information about GetDefaultPool and SetDefaultPool, see
“Memory Management Classes” in Chapter 8, “ASLM Utility Class
Categories.”

GetFunctionPointer

The GetFunctionPointer member function obtains a pointer to a
function. For more information about GetFunctionPointer, see
“Calling Functions by Name” in Chapter 7, “ASLM Utilities.” Since
GetFunctionPointer is overloaded, there are two C-language
equivalents: GetFunctionPointer and GetIndexedFunctionPointer.

GetGlobalWorld

The GetGlobalWorld member function returns the global world for the
client owning the TLibraryManager object. For additional information,
see “Global World Functions” in Chapter 7, “ASLM Utilities.”

GetLibrary

The GetLibrary member function returns the TLibrary object for the
shared library owning the TLibraryManager object. It returns NULL when
it is called for a TLibraryManager object that was created for a non-
shared library client, such as an application.

9-64 Chapter 9 / Utility Classes and Member Functions

GetLibraryFile

The GetLibraryFile member function returns the TLibraryFile object
for the shared Library owning the TLibraryManager object. It returns
NULL when it is called for a TLibraryManager object that was created for
a non-shared library client, such as an application.

IsClassLoaded
IsFunctionSetLoaded
LoadClass
UnloadClass
LoadFunctionSet
UnloadFunctionSet
LoadLibraries
UnloadLibraries

These member functions are all described in “Loading and Unloading
Shared Libraries” in Chapter 7, “ASLM Utilities.”

NewObject

The NewObject member function is described in “Using NewObject” in
Chapter 7, “ASLM Utilities.” Since NewObject is overloaded, there are
three C-language equivalents: NewObject, NewObjectWithParent, and
NewObjectWithStream. Like its TLibraryManager equivalent,
NewObjectWithStream is not yet supported in version 1.1 of the ASLM.

RegisterDynamicObject
UnregisterDynamicObject

The RegisterDynamicObject and UnregisterDynamicObject
member functions register any object that is to appear in the Inspector
application. These member functions are described in “Registering C++
Objects With the Inspector” in Chapter 7, “ASLM Utilities.”

ResetFunctionSet

The ResetFunctionSet member function is described in the “Loading
and Unloading Shared Libraries” in Chapter 7, “ASLM Utilities.”

SetObjectPool
GetObjectPool

The SetObjectPool and GetObjectPool member functions set and get
the object pool associated with the TLibraryManager object. This pool is
the same as the local pool. For more information, see “Memory
Management Classes” in Chapter 8, “ASLM Utility Class Categories.”

Continued on following page

TLibraryManager 9-65

TraceLogOn
TraceLogOff

The TraceLogOn and TraceLogOff member functions control the global
TTraceLog object’s tracing operations. When tracing is on, the output of
Trace is displayed in the TraceMonitor Trace window.

VerifyClass

The VerifyClass member function is described in “Verifying a Class’s
Base Class” in Chapter 7, “ASLM Utilities.”

9-66 Chapter 9 / Utility Classes and Member Functions

TLink

The TLink class implements a link object that can be placed on a linked
list.

The TLink class has no parent class.

Description The TLink class is used primarily to maintain TLinkedList objects. It
holds a pointer to an object and a pointer to the next link in the list.

Because TLink is completely non-virtual and is only eight bytes long, it is
very fast and efficient. A TLink object is often a field of the object to
which it points.

Declarations TLink(void* value);

TLink(TLink* link, void* value);

TLink(BooleanParm);

TLink();

~TLink();

void* operator new(size_t size, TMemoryPool*); // default size from a

// pool

void* operator new(size_t); // from default pool

void operator delete(void* mem);

void SetNext(TLink* link);

TLink* GetNext() const;

void* GetValue() const;

void SetValue(void*);

void Append(TLink* newLink); // append newLink after this

void Remove(TLink* previous); // remove nextLink from list

Member functions Append
Remove

The Append member function inserts the link passed to it into the list, and
the Remove member function removes the link from the list. When you call
Remove, you must specify in a parameter the link that precedes the link to
be removed.

Continued on following page

TLink 9-67

SetNext
GetNext
SetValue
GetValue

A TLink object has two fields: an fNext field that points to the next TLink
object in a list, and an fValue field that points to the object. SetNext and
GetNext set and get the fNext field, and GetValue and SetValue set and
get the fValue field.

Instead of using SetValue to set the link’s fValue, you can pass the
object to the TLink constructor. If you do not want the constructor to
initialize the link, you can pass false to the constructor. This makes
constructing the link slightly faster.

See also TLinkedList

9-68 Chapter 9 / Utility Classes and Member Functions

TLinkedList

The TLinkedList class is a TSimpleList subclass that adds the ability to
do things with a linked list based on “after” or “before” rules.

The TLinkedList class has the following inheritance:

TDynamic --> TCollection --> TSimpleList --> TLinkedList

Description The TLinkedList class provides several member functions in addition to
those belonging to the TSimpleList class. Their names are intuitive and
largely self-explanatory. TLinkedList does not have its own TIterator
class because the TListIterator class also works for TLinkedLists. The
TListIterator class iterates through the linked list.

Declarations #define kTlinkedListID “slm:coll$11st, 1.1”

TLinkedList();

TLinkedList(TMemoryPool*);

TLinkedList(TSimpleList*);

virtual ~ TLinkedList();

// New member functions

virtual void* After(const void* obj) const;

virtual void* After(const TMatchObject&) const;

virtual void* Before(const void* obj) const;

virtual void* Before(const TMatchObject&) const;

virtual Boolean AddLinkAfter(TLink*, const TMatchObject&);

virtual Boolean AddLinkAfter(TLink*, const void* obj);

virtual Boolean AddLinkBefore(TLink*, const TMatchObject&);

virtual Boolean AddLinkBefore(TLink*, const void* obj);

virtual OSErr AddAfter(void*, const TMatchObject&);

virtual OSErr AddAfter(void*, const void* obj);

virtual OSErr AddBefore(void*, const TMatchObject&);

virtual OSErr AddBefore(void*, const void* obj);

Member functions AddAfter
AddBefore

The AddAfter and AddBefore member functions return error codes other
than kNoError if they fail to add the object to the list.

Continued on following page

TLinkedList 9-69

AddLinkAfter
AddLinkBefore

The AddLinkAfter and AddLinkBefore member functions return false
if the link to be added before or after cannot be found.

After
Before

The After and Before member functions return the object that is located
immediately after or before the object passed to it in the list.

See also TListIterator

TMatchObject

TSimpleList

TCollection

TLinkedListExample on the ASLM Examples disk

9-70 Chapter 9 / Utility Classes and Member Functions

TListIterator

The TListIterator class is used to iterate all collection classes
descending from TSimpleList, including TLinkedList and
TPriorityList.

The TListIterator class has the following inheritance:

TDynamic --> TIterator --> TListIterator

Description For information on TListIterator, see “TIterator” earlier in this
chapter.

Declaration #define kTListIteratorID “!$litr, 1.1”

TListIterator(TSimpleList*);

virtual ~ TListIterator();

// TIterator Overrides

virtual void Reset();

virtual void* Next();

virtual Boolean IterationComplete() const;

virtual Boolean RemoveCurrentObject();

// New member functions

virtual TLink* GetCurrentLink() const;

void SetList(TSimpleList*);

Member functions GetCurrentLink

The GetCurrentLink member function returns the TLink object of the
current object (the object just returned by Next).

IterationComplete
Next
RemoveCurrentObject
Reset

For information on these functions, see “TIterator” earlier in this chapter.

Continued on following page

TListIterator 9-71

SetList

The SetList member function is used to change the list you want to
iterate over. It automatically calls Reset after changing the list.

See also TIterator

TSimpleList

TSimpleListExample on the ASLM Examples disk

9-72 Chapter 9 / Utility Classes and Member Functions

TMacFileSpec

The TMacFileSpec class keeps track of files by using a filename, volume
refNum, and directory ID.

The TMacFileSpec class has the following inheritance:

TFileSpec --> TMacFileSpec

Description The TMacFileSpec class is the only TFileSpec subclass supported in
ASLM 1.1.

You can directly access or change the three fields used to specify the
location of the library file. You can also use InitMacFileSpec to change
the fields after creating the TMacFileSpec object.

For more information see “TFileSpec” earlier in this chapter.

Declaration void InitMacFileSpec(TMacFileSpec *spec, int vRefNum, long parID,

Str63 name);

TMacFileSpec(const TMacFileSpec&);

TMacFileSpec(int vRefNum, long parID, Str63 name);

void* operator new(size_t, size_t fileNameLen,

TMemoryPool *thePool = NULL)

void* operator new(size_t size)

void operator delete(void* obj)

short fVRefNum; // volume refNum of volume file is on

long fParID; // dirID of the folder file is in

Str63 fName; // name of the file

Member functions operator new

The TMacFileSpec class provides an operator new override that allows
you to specify the length of the filename (the default size is 63). This is
useful for reducing the amount of memory TMacFileSpec occupies.

See also TFileSpec

TMacFileSpec 9-73

TMacSemaphore

The TMacSemaphore class implements a simple semaphore that can
prevent data from being changed by another process while a client is trying
to access it.

The TMacSemaphore class has the following inheritance:

TDynamic --> TMacSemaphore

Description A semaphore is a flag that can protect a critical piece of data from being
unexpectedly accessed by more than one process at the same time. The
TMacSemaphore class provides a semaphore that can prevent data from
being changed by interrupts.

Since the Macintosh Operating System supports only one thread of
execution, the only way that data can be changed while you are trying to
access it is for the data to be changed by an interrupt. Therefore, on the
Macintosh, semaphores work by simply locking out interrupts.

Although this solution is simple, it can be dangerous. It means that you
should never hold (or “grab”) the ASLM semaphore for more than a very
short period of time. If you do, interrupts might be locked out for a
dangerously long time—causing problems such as loss of network data.

This code fragment is an example of how you can use a TMacSemaphore
object in an ASLM client:

TMacSemaphore* semaphore = new TMacSemaphore;

semaphore->Grab();

if (count == 0)

count++;

semaphore->Release();

In this example, it is assumed that the client wants to increment count only
if count is equal to 0. If the semaphore were not used in the example,
count could be changed by an interrupt after it has been determined that
count == 0 but before the code in the example increments count in the
statement count++.

If an interrupt changed the value of count in this way, the code shown in
the example would increment count again. Thus, count would end up
being equal to 2, when you really want it to be equal to 1.

By using the semaphore as shown in the example, you can prevent
interrupts from occurring and performing unwanted actions such as
unexpectedly changing the value of count when you do not want the value
changed.

9-74 Chapter 9 / Utility Classes and Member Functions

Declarations #define kTMacSemaphoreID "!$sema,1.1"

TMacSemaphore();

virtual ~ TMacSemaphore();

virtual void Grab();

virtual void Release();

virtual Boolean GrabNoWait();

Member functions Grab

The Grab member function grabs the semaphore which causes the
interrupts to be blocked out.

GrabNoWait

The GrabNoWait member function grabs the semaphore if it is not already
grabbed and returns true if the grab is successful. On the Macintosh
Operating System, Grab never blocks, so GrabNoWait never fails. Since the
Macintosh Operating System has only a single thread of execution, it is
impossible to try to grab the same semaphore more than once from outside
the same thread of code.

Release

The Release member function releases the semaphore and reenables
interrupts by returning the interrupt level to the state it was in before the
matching grab was called. You must call Release for every Grab.

See also TMacSemaphoreExample on the ASLM Examples disk

TMacSemaphore 9-75

TMatchObject

The TMatchObject class gives users of a collection a way to determine
whether two objects are equal, rather than just having the collection
compare object pointers.

The TMatchObject class has the following inheritance:

TDynamic-->TMatchObject

Description This object is the base class for any object which “knows” how to hash a
specific object, as well as how to compare a second object to the specific
object.

Using TMatchObject to determine whether two objects are equal can
prevent, for example, two objects with the same name from appearing in a
collection. Objects of the TMatchObject class can also be used to filter out
objects that you do not want returned to you by a TIterator object.

Objects of the TMatchObject class can be useful when you want to
perform operations such as AddUnique or Member on a TCollection
object, but want something other than the object’s pointer to determine
whether two objects are equal. TCollection member functions such as
AddUnique and Member have versions that use a TMatchObject parameter
to help determine if the object is already in the collection.

The TMatchObject subclass should know about a specific type of object
that will be added to the collection that the TMatchObject subclass will be
used with. An example of how to do this is given with the IsEqual
member function description below.

Declarations #define kTMatchObjectID "!$mobj,1.1"

virtual TMatchObject();

// Default implementation is to return 0

virtual unsigned long Hash() const;

// Default implementation is to compare

// address of "this" with address of the object

virtual short Compare(const void*) const;

// Default implementation is to call Compare

virtual Boolean IsEqual(const void*) const;

9-76 Chapter 9 / Utility Classes and Member Functions

Member functions Compare

The Compare member function returns zero if the object passed to it
matches comparison criteria that are specified for the TMatchObject. It
returns -1 if the match object is considered to be “greater,” and 1 if the
object passed to Compare is considered to be “greater.” Subclasses of
TMatchObject must override the Compare member function so it can
properly compare the object passed to it with the information stored in the
match object (such as a name).

IMPORTANT The implementation of Compare and IsEqual should be
designed to execute as fast as possible, since a semaphore is held when
Compare and Equal are called—and, on the Macintosh, this disables
interrupts.

Hash

The Hash member function is used to speed up hash list operations that use
match objects. For example, when used by the THashListIterator, it
tells the iterator which hash buckets to examine. It will be used in a similar
way by the THashList:: Member member function to speed up searches.
See “THashListIterator” and “THashList” for more information
regarding hash functions.

IsEqual

The TCollection member functions such as AddUnique pass each object
in the collection to the match object’s IsEqual member function (one at a
time) to see if the object is already in the collection. Also, TIterator
subclasses pass each object in the collection to the match object’s IsEqual
member function (one at a time) for filtering purposes.

The IsEqual member function returns true if the match object and the
object passed are considered to be equal, and returns false otherwise. The
default implementation of IsEqual is to simply call Compare and return
true if Compare returns 0 and false otherwise. For this reason, you
normally do not need to override IsEqual. However, since interrupts are
normally disabled when IsEqual is called, you should override IsEqual if
comparing objects for equality is a lot faster than calling Compare.

Continued on following page

TMatchObject 9-77

Suppose, for example, that you had a collection of TName objects and
wanted to make sure that all the names in the collection were always
unique. If you called AddUnique(void*) to add TName objects to the
collection, the same name might appear in the collection more than once
because more than one TName object might have the same name. That is
because AddUnique(void*) uses object pointers to determine whether two
objects are the same, and a collection does not know anything about names.
You can do the following to avoid this problem:

1 Subclass TMatchObject. (For example, you can create a subclass
named TNameMatchObject.)

2 Add a name field to your subclass and set the name field to the name of
the TName object that you want to add to the collection.

3 Have the TMatchObject subclass’s Compare member function compare
the name field to the name in the TName object passed to it, returning 0
if they are equal, -1 if the match object’s name is greater, and 1 if the
TName object’s name is greater. (Compare must cast the void* passed to
it to a TName*.)

4 Call the member function TCollection::AddUnique(void*,
TMatchObject&) to add the object to the collection. (Note that
AddUnique(void*) uses object pointers to determine if two objects are
the same.)

As TCollection::AddUnique iterates through TCollection, it passes
each object to your TNameMatchObject::IsEqual member function.
The IsEqual function compares its TNameMatchObject’s name with the
name of the TName object passed to it (usually by calling the Compare
member function), returning true if the objects are equal and returning
false if they are not.

If TNameMatchObject::IsEqual returns false for all TName objects
passed to it, AddUnique adds the object to the TCollection.

See also TArrayExample and TLinkedListExample on the ASLM Examples disk

9-78 Chapter 9 / Utility Classes and Member Functions

TMemoryPool

The TMemoryPool class is the abstract class from which memory allocators
should descend.

The TMemoryPool class has the following inheritance:

TDynamic --> TMemoryPool

Descriptions The TMemoryPool class is an abstract class used for all pools. Some
TMemoryPool member functions are pure virtual member functions that
must be overridden. Memory pools are used for high seed interrupt safe
memory allocation. For more information on memory pools see “Memory
Management Classes” in Chapter 8, “ASLM Utility Class Categories.”

On the Macintosh, TMemoryPool subclasses always allocate their pools by
using NewPtr and then blocks of memory are allocated out of these pools
whenever the user calls one of the member functions that allocates
memory.

Creating and deleting pools

When you create a memory pool using the TMemoryPool new operator,
you pass the amount of memory that you want to be made available from
the pool in the poolSize parameter (the second size_t parameter of
new). The size of the pool object is automatically passed in the first size_t
parameter of new. The pool object and the pool memory that are available
for allocation coexist in the same physical block of memory.

Remember that each chunk you allocate from the pool requires some
overhead. The TMemoryPool subclasses define a constant for the chunk
overhead size. You should estimate how many chunks you will want to
allocate from the pool, multiply this by the constant, and add the result to
the poolSize parameter when the pool is created. If you do not add
enough overhead to cover the number of chunks that you intend to allocate
from the pool, you may not be able to allocate all of them.

Continued on following page

TMemoryPool 9-79

WARNING You cannot create pools at interrupt time, and you cannot
add memory to pools by calling AddMemoryToPool at interrupt time.
This is because AddMemoryToPool makes calls to the Macintosh
Memory Manager that are not interrupt-safe. If the ASLM knows it is
being used at interrupt time (usually when a call to EnterInterrupt
is made), the AddMemoryToPool function does not attempt to
“grow” the pool.

TMemoryPool subclasses must be created using the new operator. A
pool should never be created as a stack object or as a data member of
a class.

Another parameter that is required when you create a pool is the zone from
which memory is allocated for the pool. The first version of new accepts a
zone type. Possible zone types are kSystemZone, kKernelZone,
kApplicZone, kCurrentZone, and kTempZone. The kSystemZone and
kKernelZone types are the same; they cause memory allocations from the
pool to be made from the system heap. The kTempZone uses temporary
memory, and kApplicZone uses the application zone. The kCurrentZone
type uses memory from the current zone. On the Macintosh Operating
System, this is normally the application zone of the currently executing
application. You can get and set the current zone by using the Macintosh
Memory Manager calls GetZone and SetZone.

The second version of new accepts a pointer to a heap zone (a THz* on the
Macintosh). If a NULL pointer is passed for this parameter, the ASLM uses
temporary memory.

An optional parameter that you can specify when you create a pool is
MemoryType. The value of MemoryType is either kNormalMemory,
kHoldMemory, kLockMemory, or kLockMemoryContiguous.

The names of all these constants are based on virtual memory terms. Held
memory is memory that is never paged out to disk. Locked memory is
memory that is held and never moved in physical memory. Locked
contiguous memory is memory that is locked and is also stored
contiguously in physical memory. If the MemoryType parameter is not
specified, the ASLM uses kNormalMemory by default.

When you delete a TMemoryPool object, the ASLM frees all the memory
allocated for the pool, including any additional blocks of memory that may
have been added by AddMemoryToPool calls.

9-80 Chapter 9 / Utility Classes and Member Functions

Using pool notifiers

The TMemoryPool class provides a facility for notifying clients when the
amount of available memory falls below or exceeds a certain level. You can
use this facility to expand (grow) your pool by calling AddMemoryToPool
or to shrink your pool by calling DownSizePool.

ASLM provides the TPoolNotifier class to assist in growing pools when
they are low on memory. Subclasses of TPoolNotifier can be created to
either change the behavior of the notifier when the pool is low on memory
and to do something when the pool has too much free memory. For more
information on pool notifiers and how they are used, see the description of
the Allocate member function below and the TPoolNotifier class later
in this chapter.

WARNING The TMemoryPool objects often fail to allocate or grow on
memory for machines with virtual memory turned on when you
specify kLockMemoryContiguous MemoryType, especially if the
machine has little real memory. It may not be possible to make the
range of memory physically contiguous if any of the pages in the
range are already locked, or if there is not a contiguous block in real
memory that is large enough. Therefore, if you must have a pool with
locked contiguous memory, allocate it as early as possible, preferably
at system startup, to increase the likelihood of finding enough
contiguous memory. The pool may not be able to grow at a later time.

Declarations #define kTMemoryPoolID "!$pool,1.1"

virtual ~ TMemoryPool();

void* operator new(size_t size, size_t poolSize,

ZoneType zType, MemoryType mType = kNormalMemory)

void* operator new(size_t size, size_t poolSize, void* zone,

MemoryType mType = kNormalMemory)

void* operator new(size_t size)

void operator delete(void* ptr)

virtual void* Allocate(size_t) = 0;

virtual void* Reallocate(void*, size_t) = 0;

virtual void Free(void*) = 0;

virtual size_t GetSize(void*) const = 0;

Continued on following page

TMemoryPool 9-81

virtual Boolean CheckPool() const = 0;

virtual void GetPoolInfo(PoolInfo&) const;

virtual void TracePoolInfo() const;

virtual Boolean AddMemoryToPool(size_t);

virtual void DownSizePool();

virtual size_t GetLargestBlockSize() const = 0;

size_t GetCurrentPoolSize() const;

void SetNotifier(TPoolNotifier*);

TPoolNotifier* GetNotifier() const;

void SetNotifyMarks(size_t low,

size_t high = (size_t)-1L);

static TMemoryPool* RecoverPool(void*);

static void* AllocateMemory(size_t);

static void* AllocateMemory(TMemoryPool*, size_t);

static void* ReallocateMemory(void*, size_t);

static void FreeMemory(void*);

static size_t GetMemorySize(void*);

Member functions AddMemoryToPool

The AddMemoryToPool member function adds a specified amount of
memory to the memory available to the pool. It allocates the memory that
is added to the pool from the heap that was specified when the pool was
created. The AddMemoryToPool object also uses the MemoryType specified
when the pool was created. On the Macintosh Operating System, the
memory to be added to the pool is allocated by calling NewPtr.

Allocate

The Allocate member function allocates a block of memory from the
pool. When you call Allocate, you pass the size of the block you want as
a parameter. If Allocate cannot find enough memory, it calls the pool’s
TNotifier object, and the notifier then has the option of freeing some
memory. Allocate will continue to call the TPoolNotifier object’s
Notify member function as long as it continues to free up memory and
there is still not enough memory for the allocation. If the pool notifier does
not free up enough memory and Allocate was not called at interrupt time,
then it will immediately grow the pool so it has enough memory, otherwise
it will return NULL. See “TPoolNotifier” later in this chapter for more
information on pool notifiers.

9-82 Chapter 9 / Utility Classes and Member Functions

AllocateMemory
ReallocateMemory
FreeMemory
GetMemorySize

The AllocateMemory member function works like Allocate, but is a
static function that takes the pool from which to allocate as a parameter.
There is also a version of AllocateMemory that uses the pool returned by
GetDefaultPool instead of taking the pool as a parameter. Other
TMemoryPool static functions include ReallocateMemory (similar to
Reallocate), FreeMemory (similar to Free), and GetMemorySize
(similar to Size).

DownSizePool

The DownSizePool member function frees all memory that was added to
the pool with AddMemoryToPool and does not currently have any blocks
of memory allocated from it.

Free

The Free member function returns to the pool the block that is passed to
it.

GetCurrentPoolSize

The GetCurrentPoolSize member function returns the current size of
the pool.

GetSize

The GetSize member function returns the size of the block passed to it.

GetLargestBlockSize

The GetLargestBlockSize member function returns the largest block
size that is available for allocation.

CheckPool

The CheckPool member function returns true if no problems are found
with the pool. When you are debugging code, it is good practice to call
CheckPool now and then to make sure that you are not corrupting the
pool.

Continued on following page

TMemoryPool 9-83

GetPoolInfo

The GetPoolInfo member function returns a PoolInfo data structure
that contains the number of free bytes in the pool (fFreeBytes), the size
of the largest block in the pool (fLargestBlock), the “high-water mark”
that shows the most memory that has been used at the same time from the
pool (fMaxUsage), and the current size of the pool, including both free
and allocated blocks (fCurSize).

Note: To see if you have enough memory to allocate a block, you must
check fLargestBlock—not fFreeBytes—because the pool’s memory
may be fragmented. The value stored in fMaxUsage is the maximum
amount of memory that has been allocated from the pool at any one time,
including per-block overhead and the extra memory that must be allocated
during a Reallocate call. You can use the value of fMaxUsage as a
guideline to help you figure out how big your pool should be. In deciding
how big to make your pool, you also should consider how fragmented
your pool may become. The pool may become fragmented during the
normal course of allocating and reallocating blocks because pool memory
is non-relocatable and cannot be compacted.

Reallocate

The Reallocate member function reallocates a block of memory to a new
size that can be larger or smaller than the original size. When you call
Reallocate, you pass the member function two parameters: a pointer to
the block that you want to reallocate and the new size that you want
allocated. A Reallocate call can fail if there is not enough memory in the
pool for both the original block and the new block.

When you call Reallocate to reallocate memory to a larger block, the
Reallocate function attempts to merge the block with any free block
before or after it. If this is not possible, Reallocate must be able to store
both the original block and the new block in memory at the same time.

RecoverPool

The RecoverPool member function returns the TMemoryPool object that
was used to allocate a specified block of memory.

9-84 Chapter 9 / Utility Classes and Member Functions

SetNotifyMarks
SetNotifier
GetNotifier

The SetNotifyMarks member function sets the low and high free
memory marks that the pool’s notifier will be warned about. The
SetNotifier function specifies the TPoolNotifier object to use for
notification when the low or high mark is reached. The GetNotifier
function returns the TPoolNotifier for the pool. When your notifier is
called, you can schedule a TOperation on a TTaskScheduler to allocate
more memory. For more information on pool notifiers, see “Using Pool
Notifiers” earlier in this section.

TracePoolInfo

The TracePoolInfo member function writes the information obtained by
GetPoolInfo to the TraceMonitor’s Trace window.

See also TPoolNotifier

TStandardPool

TChunkyPool

TPoolNotifierExample on the ASLM Examples disk

TMemoryPool 9-85

TMethodNotifier

The TMethodNotifier class is the base class for notifiers that call a
member function in an object.

The TMethodNotifier class has the following inheritance:

TDynamic --> TNotifier --> TMethodNotifier

Descriptions A TMethodNotifier object uses a member function of an object as the
callback, so it is more object–oriented than TProcNotifier. The
constructor takes a pointer to the member function to call for notification
and the object that the member function belongs to. Although the object
passed to the constructor is declared as a TDynamic*, the only requirement
is that it inherit from SingleObject and that it have its v-table first.

Declarations #define kTMethodNotifierID "!$mnot,1.1"

TMethodNotifier(TDynamic*, NotifyMethod);

TMethodNotifier(const TMethodNotifier&);

virtual ~ TMethodNotifier();

virtual void Notify(EventCode, OSErrParm = kNoError,

void* notifyData = NULL);

TDynamic* GetObject() const;

Member functions GetObject

The GetObject member function returns the object associated with the
TMethodNotifier object. A TMethodNotifier object has an object
pointer that is attached by the creator of the notifier and is returned as a
TDynamic* by calling GetObject. The TMethodNotifier’s
NotifyMethod must point to a member function of the object associated
with the notifier.

Notify

The Notify member function calls the NotifyMethod that was passed to
the constructor when the object was created. The Notify function sets the
global world to the global world stored with the TMethodNotifier object
when it was created and sets the current client to the client that owns the
global world. It then calls the NotifyMethod that was set up when the
TMethodNotifier object was created.

9-86 Chapter 9 / Utility Classes and Member Functions

See also TNotifier

TProcNotifier

TMethodNotifierExample on the ASLM Examples disk

TMethodNotifier 9-87

TMicroseconds

This TTime subclass is used to specify an initial time value in
microseconds—that is, it provides a constructor that takes a time value in
microseconds.

The TMicroseconds class has the following inheritance:

TDynamic --> TMatchObject --> TDoubleLong -->

TTime --> TMicroseconds

Description For additional information, see “TTime” later in this chapter.

Declarations #define kTMicrosecondsID "slm:supp$mics,1.1"

TMicroseconds();

TMicroseconds(unsigned long msecs);

~ TMicroseconds();

operator unsigned long() const;

virtual double ConvertToDouble() const;

operator double() const;

Member functions operator unsigned long

The operator unsigned long member function returns the number of
microseconds in an unsigned long.

ConvertToDouble

The ConvertToDouble member function converts the time to a double
containing the number of microseconds.

operator double

The operator double member function returns the number of
microseconds in a double by calling ConvertToDouble.

See also TTime

TTimeExample on the ASLM Examples disk

9-88 Chapter 9 / Utility Classes and Member Functions

TMilliseconds

This TTime subclass is used to specify an initial time value in
milliseconds—that is, it provides a constructor that takes a time value in
milliseconds.

The TMilliseconds class has the following inheritance:

TDynamic --> TMatchObject --> TDoubleLong -->

TTime --> TMilliseconds

Description For additional information, see “TTime” later in this chapter.

Declarations #define kTMillisecondsID "slm:supp$mils,1.1"

TMilliseconds();

TMilliseconds(unsigned long msecs);

~ TMilliseconds();

operator unsigned long() const;

virtual double ConvertToDouble() const;

operator double() const;

Member functions operator unsigned long

The operator unsigned long member function returns the number of
milliseconds in an unsigned long.

ConvertToDouble

The ConvertToDouble member function converts the time to a double
containing the number of milliseconds.

operator double

The operator double member function returns the number of
milliseconds in a double by calling ConvertToDouble.

See also TTime

TTimeExample on the ASLM Examples disk

TMilliseconds 9-89

TNotifier

The TNotifier class and its subclasses are used for asynchronous
notification of events.

The TNotifier class has the following inheritance:

TDynamic --> TNotifier

Description The TNotifier class is used as a base class for classes that are used for
asynchronous notification of events. The ASLM provides two general
purpose TNotifier subclasses: TProcNotifier and TMethodNotifier.
The TProcNotifier handles notification by calling a C function that is
passed to the TProcNotifier object when it was constructed. The
TMethodNotifier handles notification by calling a method of an object,
both of which are passed to the TMethodNotifier object when it is
constructed. The ASLM also provides the TPoolNotifier class which is
used by TMemoryPool subclasses for notification when the memory pool
has either too little or too much free memory.

The TNotifier constructor saves the current global world in a field that
can then be accessed by the TNotifier subclass. Its main use is by the
Notify member function for setting up the global world and the current
client.

Declarations typedef unsigned long EventCode;

#define kTNotifierID "!$noti,1.1"

TNotifier();

virtual ~ TNotifier();

virtual void Notify(EventCode, OSErrParm = kNoError,

void* = NULL) = 0;

Member functions Notify

The Notify member function is called to notify the TNotifier subclass
of an asynchronous event. The contents of the three parameters passed to
Notify are up to the caller, but usually there will be some agreement
between the caller and the TNotifier subclass on what the parameters will
contain.

9-90 Chapter 9 / Utility Classes and Member Functions

The TNotifier has a GlobalWorld field that is set up to be equal to the
current global world when an instance of the TNotifier subclass is
created. This is handled automatically by the TNotifier constructor. The
subclass’s Notify member function can use this field to set up the global
world and current client when it is called.

See also TMethodNotifier

TProcNotifier

TProcNotifierExample and TMethodNotifierExample on the ASLM
Examples disk

TNotifier 9-91

TOperation

A TOperation object contains the implementation of a task to be
performed.

The TOperation class has the following inheritance:

TDynamic --> TOperation

Description The TOperation objects (containing the implementation of a task to be
performed) are normally placed on TScheduler objects so that they can
be executed at a later time. But they also have other uses, such as being
used in place of callback procedures.

When an operation is ready to be processed, its Process member function
is called. It is up the scheduler that the operation is on to decide when it
should be processed. The default implementation of the Process member
function is to call the operation’s ProcessProc if it has one. The
ProcessProc is simply a C function that is set up when the operation is
constructed. Subclasses of TOperation may choose to make the Process
member function do all the work rather than calling the ProcessProc. See
Process below for more information.

TOperation objects can have reference data stored with them so the
operation has some context when it is called. Often this reference data is
simply a pointer to the object that created the TOperation .

Setting up a global world for an operation

TOperation objects have the ability to have their global world (or any
other global world) be set up as the current global world when the
operation is processed. There are two ways to set up the global world for an
operation. One strategy is to store the global world with the operation. The
other way is to store the global world with an ASLM scheduler such as
TTimeScheduler or TInterruptScheduler. In either case, the scheduler
sets up the global world before processing the operation, and then restores
it afterwards. It will also set the current client to the client that owns the
global world by using the SetClientToWorld routine. (For more
information about the ASLM scheduler classes, see “Process Management
Classes” in Chapter 8, “ASLM Utility Class Categories.”)

If the global world of the scheduler that you use is set to the constant
kInvalidWorld (which is the default), the scheduler sets the current global
world to the operation’s global world before processing the operation,
unless the operation’s global world is also set to kInvalidWorld. Then,
the current global world is not changed. If the scheduler’s global world is
not set to kInvalidWorld, the scheduler sets the global world to the
scheduler’s global world before processing the operation.

9-92 Chapter 9 / Utility Classes and Member Functions

All operations have their saved global world set to the current global world
when they are created. You can set an operation’s saved global world by
calling SetSavedGlobalWorld. You can retrieve an operation’s saved
global world by calling GetSavedGlobalWorld.

Setting a scheduler’s global world

All schedulers have their global world set to the constant kInvalidWorld
when they are created. You change a scheduler’s global world by calling
TScheduler::SetSchedulerWorld. You can retrieve the scheduler’s
global world by calling TScheduler::GetSchedulerWorld.
TScheduler::IsSchedulerWorldValid returns false if the
scheduler’s global world is set to kInvalidWorld. Otherwise,
TScheduler::IsSchedulerWorldValid returns true.

Since the default is for schedulers to have their global world set to
kInvalidWorld and for operations to have their global world set to the
world that was current when they were created, the ASLM default behavior
is for an operation to be processed in the world that was current when it was
created.

Usually, this default behavior is satisfactory; that is, you can usually create
your TScheduler and TOperation objects without doing anything special
to get the global world set up properly when your operation is processed.
However, you might want to change an operation’s global world if the
implementation of the ProcessProc is in a different global world than the
code that created the operation.

For example, someone might give you an operation whose ProcessProc
you get to set before scheduling it. Also, you might want to set the
scheduler’s global world if the scheduler is run by one client, the
operations on the scheduler were created by a second client, and the
operation’s ProcessProc or Process member function calls code
belonging to the first client. If the operation’s ProcessProc or Process
member function does not care about the global world, but the code that it
calls in the first client does care, then the first client should set the
scheduler’s global world to its own world. This is a rare case, but it does
sometimes turn up—for example, in the Inspector application.

Declarations #define kTOperationID "!$oper,1.1"

#define kRemovedInProcess ((TPriorityLink*)-1L)

Continued on following page

TNotifier 9-93

TOperation();

TOperation(long creatorData);

TOperation(void* creatorPtr);

TOperation(ProcessProc, long creatorData);

TOperation(ProcessProc, void* creatorPtr);

TOperation(const TOperation&);

virtual ~ TOperation();

TPriorityLink* GetLink();

virtual void Reset();

virtual void Process();

Boolean WasRemovedInProcess() const;

void ClearRemovedInProcess();

void SetDeleteWhenDone();

Boolean IsBeingRerun() const;

void SetProcessProc(ProcessProc);

ProcessProc GetProcessProc() const;

// Timer and Priority are just two different ways

// of looking at the same field.

void SetTime(const TTime&);

void SetTime(unsigned long msecs);

void SetPriority(unsigned long pri);

unsigned long GetTime() const;

unsigned long GetPriority() const;

// CreatorData and CreatorPtr are just 2 different ways

// of looking at the same field.

void* GetCreatorPtr() const;

long GetCreatorData() const;

void SetCreatorPtr(void*);

void SetCreatorData(long);

GlobalWorld GetSavedGlobalWorld() const;

void SetSavedGlobalWorld(GlobalWorld);

9-94 Chapter 9 / Utility Classes and Member Functions

Member functions GetLink

All TOperation objects have a TLink field that is automatically initialized
to point to the TOperation object. GetLink returns a pointer to this
TLink. Normally it is only used by TScheduler subclasses for keeping the
operation on a list of operations. Since the TOperation has only one
TLink field, it can only be on one scheduler at a time.

GetTime
SetTime
GetPriority
SetPriority

The TOperation objects can be associated with a time if they are on a
TTimeScheduler object or with a priority if they are on a
TPriorityScheduler object (both of these classes are described later in
this chapter). You can get and set the time by calling SetTime and
GetTime. You can get and set the priority by calling GetPriority and
SetPriority. A TOperation object cannot have both a time and a
priority because the two values are stored in the same field.

Process

When you want to schedule a TOperation, you can pass the TOperation
object to the TScheduler::Schedule member function. At some point,
the TScheduler::Run member function is called, causing each
TOperation to be removed from TScheduler and the
TOperation::Process member function to be called for each operation.

IMPORTANT A TOperation cannot be scheduled a second time until it has
been removed from the scheduler. This is because scheduled operations are
maintained on a linked list and the link is part of the TOperation object.
Therefore, a TOperation object can be on only one linked list at a time. A
TOperation object can be rescheduled in its ProcessProc or Process
member function because the object will already be removed when the
ProcessProc or Process is called. Alternatively, a TOperation object
can be rescheduled at any time after the operation has been processed.

There are two ways to control what a TOperation does when its Process
member function is called.

You can subclass TOperation and override its Process member
function. This also gives you the opportunity to add more fields to the
TOperation.

You can set the TOperation object’s ProcessProc.

Continued on following page

TNotifier 9-95

The ProcessProc is a function that is called when the TOperation is
processed. The default behavior of TOperation::Process is to call the
TOperation object’s ProcessProc. In fact, it is an error not to set the
ProcessProc if you have not overridden the Process member function.

You can set the ProcessProc by either passing the appropriate parameter
to the constructor or by calling SetProcessProc. The purpose of the
ProcessProc is to let you use TOperation without having to subclass it
and override the Process member function. In general, if you want to
subclass TOperation to add more fields, you should override the Process
member function, not set the ProcessProc.

Note: You can delete a TOperation object in its Process member
function or its ProcessProc. Then the operation’s creator does not need
to keep track of the operation.

Reset

The Reset member function sets the operation’s ProcessProc to NULL so
that it will not be called when the operation is processed.

SetCreatorPtr
GetCreatorPtr
SetCreatorData
GetCreatorData

Each TOperation has a user data field, which you can use for any purpose
you like. You can get and set the contents of the user data field by calling
SetCreatorPtr and GetCreatorPtr, with a Ptr type passed as a
parameter. Alternatively, you can get and set the user data field by calling
SetCreatorData or GetCreatorData, with a long data type passed as a
parameter. The SetCreatorPtr and SetCreatorData functions set the
same field in a TOperation object.

One common use of the user data field is to set it to point to an object,
possibly the one that created the TOperation object. You can also set the
user data field by passing the appropriate parameter or parameters to the
constructor.

SetProcessProc
GetProcessProc

The SetProcessProc member function is used to set the operation’s
ProcessProc, and GetProcessProc returns the operation’s
ProcessProc. You can also set the ProcessProc by passing the
appropriate parameters to the constructor.

9-96 Chapter 9 / Utility Classes and Member Functions

The purpose of the ProcessProc is to let you use TOperation objects
without having to subclass them and override the Process member
function. In general, if you want to subclass TOperation to add more
fields, you should override the Process member function, not set the
ProcessProc.

SetSavedGlobalWorld
GetSavedGlobalWorld

All TOperation subclasses have a global world associated with them that is
set by the TOperation constructor to be equal to the current global world
at the time of the operation’s construction. GetSavedGlobalWorld is
used to get this global world and SetSavedGlobalWorld is used to
change its value. See “Setting up a Global World for an Operation” and
“Setting up a Scheduler’s Global World” earlier in this section to see how
the global world is used.

WasRemovedInProcess
ClearRemovedInProcess
SetDeleteWhenDone
IsBeingRerun

These four member functions are used by clients of the TTimeScheduler
class to coordinate removal of an operation-in-progress.

The WasRemovedInProcess function returns a flag that shows whether the
current TOperation object was removed from its TTimeScheduler object
while its Process routine was executing.

You can call ClearRemovedInProcess when a TOperation client
determines that an operation that is in process has been removed from the
TTimeScheduler object, and the TOperation object intends to delete
itself.

You can call SetDeleteWhenDone when a TOperation object needs to be
deleted. The SetDeleteWhenDone function should be called only when
auto-rescheduling is true and the object being deleted has not been
removed in process. (The object should first ensure that its time field is
zero.)

You can call IsBeingRerun when it is important that the
TTimeScheduler object does not look at a TOperation object’s memory
when the call returns. Typically, IsBeingRerun is called when
TOperation is an embedded object and the parent object is to be deleted.
In this case, TOperation should delete only the parent object when
IsBeingRerun returns true.

Continued on following page

TNotifier 9-97

The WasRemovedInProcess, ClearRemovedInProcess,
SetDeleteWhenDone, and IsBeingRerun functions are described in more
detail in “TTimeScheduler” later in this chapter.

See also TScheduler

9-98 Chapter 9 / Utility Classes and Member Functions

TPoolNotifier

The TPoolNotifier class is used by TMemoryPool objects so that they
can be notified when the pool reaches a low or high mark.

The TPoolNotifier class has the following inheritance:

TDynamic --> TNotifier --> TPoolNotifier

Description The TPoolNotifier class can assist in automatically increasing the size of
(growing) a pool when the pool comes dangerously close to running out of
memory.

When you create a TPoolNotifier object, you pass to the constructor the
percentage by which you want the pool to grow and the minimum number
of bytes by which it should grow. You can then attach the notifier to one
pool by calling the TMemoryPool::SetNotifier member function.

If you omit both constructor parameters, a default 10 percent “grow by”
is used, with a 128-byte minimum grow.

See also TGrowOperation for information on “growing” a pool.

IMPORTANT A TPoolNotifier object can be attached to only one pool.

Declarations #define kTPoolNotifierID "!$plnt,1.1"

TPoolNotifier(unsigned int growBy = 10,

unsigned int minGrow = 128);

virtual ~ TPoolNotifier();

virtual void Notify(EventCode, OSErrParm = kNoError,

void* = NULL);

virtual size_t GrowBy(TMemoryPool*, size_t);

Member functions GrowBy

If a pool has a notifier attached to it and the pool does not have enough
memory for Allocate, then Allocate attempts to grow the pool
immediately if it is not interrupt time. The Allocate function calls
TMemoryPool::AddMemoryToPool and uses the
TPoolNotifier::GrowBy member function to determine the number of
bytes to add to the pool.

Continued on following page

TPoolNotifier 9-99

The GrowBy member function returns the largest of these three sizes:

the size passed to GrowBy

the minimum amount the pool should grow by

the percentage that the pool should grow by times the current size of the
pool

The latter two sizes are determined by the parameters passed to the
TPoolNotifier object’s constructor.

The size passed to GrowBy is the size passed to the Allocate member
function. This behavior ensures that the pool always grows by at least the
amount by which the notifier would have grown the pool. It also makes
sure that the pool grows by enough to handle the size being allocated.

Notify

You can call TMemoryPool::SetNotifyMarks to tell the pool when it
should call the notifier’s Notify member function to indicate that pool has
reached a low or high mark.

The TPoolNotifier subclass only handles events in the category
kLowPoolMemoryEvent (which occurs when the amount of memory in the
pool goes below the low mark). The default behavior of the Notify
member function for this event is to grow the pool immediately if it is not
being called at interrupt time. If the member function is called at interrupt
time, it schedules a TGrowOperation on the global TTaskScheduler. The
TGrowOperation will then grow the pool at System Task time. If you want
to do something special for kHighPoolMemoryEvent, you can subclass
TPoolNotifier and override the Notify member function .

The TPoolNotifier subclass’s Notify member function has the option
of freeing up memory before resorting to growing the pool. If the Notify
member function cannot free enough memory then it must schedule a
TGrowOperation if it is called at interrupt time (you can call
AtInterruptLevel to check on whether an interrupt is in progress) or
just immediately grow the pool otherwise. The recommended way of doing
this is to make the TPoolNotifier subclass’ Notify member function
call TPoolNotifer::Notify directly if the notifier is not going to free up
any memory.

See also TMemoryPool

TGrowOperation

TTaskScheduler

TPoolNotifierExample on the ASLM Examples disk

9-100 Chapter 9 / Utility Classes and Member Functions

TPriorityLink

The TPriorityLink class implements a link object which can be placed
on a linked list, and can hold a timer or priority value.

The TPriorityLink class has the following inheritance:

TLink --> TPriorityLink

Description The TPriorityLink class is a TLink subclass that is designed primarily
for use with the TPriorityList (described later in this chapter).

The TPriorityLink class adds an fPriority field to the TLink class,
and adds two member functions for accessing the field: SetPriority and
GetPriority. When a link is added to the list, the priority that is placed in
the fPriority field determines where in the list the link will go.

Priorities used in the fPriority field are always unsigned long data types,
three of which are predefined: kNormalPriority, kHighestPriority,
and kLowestPriority. (The higher priority a link has, the lower is the
value placed in the fPriority field.) To lower a link’s priority, you can
add the value kToLowerPriority to the value in the fPriority field.

Declarations #define kNormalPriority (((unsigned long)-1L) >> 1)

#define kHighestPriority 0

#define kLowestPriority ((unsigned long)-1L)

#define kToLowerPriority 1

TPriorityLink(BooleanParm);

TPriorityLink(void* value);

TPriorityLink(TLink* link, void* value);

TPriorityLink();

void SetPriority(unsigned long);

unsigned long GetPriority() const;

Member functions SetPriority
GetPriority

The SetPriority and GetPriority member functions access the
fPriority field.

See also TPriorityList

TLink

TPriorityLink 9-101

TPriorityList

The TPriorityList class keeps lists sorted in order of priority.

The TPriorityList class has the following inheritance:

TDynamic --> TCollection --> TSimpleList -->

TPriorityList

Description The TPriorityList class is a subclass of TSimpleList and is maintained
by TPriorityLink.

When a link is added to the list, the priority that is set for the link
determines where in the list the link will go. The TPriorityList subclass
adds two member functions to the TSimpleList subclasses:
AddPrioritized and AddLink. The TPriorityList class does not have
its own TIterator class, since the TListIterator class also works for
TPriorityLists.

IMPORTANT TLink objects cannot be used on a TPriority list; only
TPriorityLink objects can be used on a TPriorityList.

Declarations #define kTPriorityListID "!$plst,1.1"

TPriorityList();

TPriorityList(TMemoryPool*);

TPriorityList(TPriorityList*);

virtual ~ TPriorityList();

// TLinkedList overrides

virtual OSErr AddFirst(void*);

virtual OSErr AddLast(void*);

virtual void AddLinkFirst(TLink*);

virtual void AddLinkLast(TLink*);

// New member functions

virtual OSErr AddPrioritized(void*, unsigned long pri);

virtual void AddLink(TPriorityLink*);

9-102 Chapter 9 / Utility Classes and Member Functions

Member functions AddFirst
AddLinkFirst
AddLast
AddLinkLast

You can use any of the TSimpleList member functions to add objects to
a list. The Add member function adds the object to the list with
kLowestPriority. Both AddFirst and AddLinkFirst set the priority of
the link to kHighestPriority. Both AddLast and AddLinkLast set the
priority of the link to kLowestPriority.

AddLink
AddPrioritized

The only TPriorityList member functions that are not in the
TSimpleList class are AddLink and AddPrioritized. You can call
AddLink to add a link that already has its priority set, and you can call
AddPrioritized to add an object with the priority that you pass to
AddPrioritized.

See also TCollection

TSimpleList

TPriorityListExample on the ASLM Examples disk

TPriorityList 9-103

TPriorityScheduler

The TPriorityScheduler class implements a scheduler that lets you
serialize tasks by establishing their priorities.

The TPriorityScheduler class has the following inheritance:

TDynamic --> TScheduler --> TPriorityScheduler

Description The TPriorityScheduler class allows you to schedule tasks to be
processed in order of priority. The priority of the operation is set by
calling the operation’s SetPriority member function. The priority of an
operation must be set before it is scheduled.

The TPriorityScheduler’s constructor takes an ifAutoRun parameter
which allows you to force the scheduler to be run automatically as long it
has any operations scheduled. See the description of the Run member
function below for information on the autorun option.

Declarations #define kTPrioritySchedulerID "!$prsk,1.1"

TPriorityScheduler(); //autoRun default to false

TPriorityScheduler(BooleanParm ifAutoRun);

virtual ~ TPriorityScheduler();

virtual Boolean IsValid() const;

virtual Boolean Remove(TOperation*);

virtual TOperation* Remove(const TMatchObject&);

virtual TOperation* RemoveNext();

virtual Boolean IsEmpty() const;

virtual void Run();

virtual void Schedule(TOperation*);

virtual void SetAutoRun(BooleanParm);

Member functions IsEmpty

The IsEmpty member function checks to see if all scheduled operations
have been executed.

IsValid

The IsValid member function returns true if the object was initialized
properly after it was created. You should call IsValid after constructing a
TPriorityScheduler object and delete the object if it returns false.

9-104 Chapter 9 / Utility Classes and Member Functions

Remove

See TScheduler::Remove for information on the Remove member
function.

RemoveNext

See TScheduler::RemoveNext for information on the RemoveNext
member function.

Run

Ordinarily, you must explicitly call the scheduler’s Run member function
to process the operations on the scheduler. However, if you construct a
TPriorityScheduler object by passing a true value in the ifAutoRun
parameter, you do not have to call the scheduler’s Run member function.
This is because Schedule will automatically call Run if the scheduler is set
up for autorun mode and it is not currently running. If the scheduler is
running, it will finish processing the current operation and then continue
processing operations left on the scheduler including those that were added
while it was processing the operation that just finished processing. The
autorun option can be useful when you schedule operations at interrupt
time.

When in non-autorun mode, anything scheduled after Run is called will not
be processed until Run is called again.

Schedule

The Schedule member function schedules a TOperation. For
information on when the operation will be processed, see the description of
the Run member function above.

SetAutoRun

The SetAutoRun member function sets the autorun option, which can be
useful when you schedule operations at interrupt time. For more
information, see the description of the Run member function above.

See also TOperation

TScheduler

TPrioritySchedulerExample on the ASLM Examples disk

TPriorityScheduler 9-105

TProcHashObject

This is a THashObject subclass that uses a C procedure to hash objects.

The TProcHashObject class has the following inheritance:

TDynamic --> THashObject --> TProcHashObject

Description The TProcHashObject class allows you to use THashObject class without
having to subclass it. To use the TProcHashObject class, you can either
pass the HashProc to the constructor or set the HashProc by calling
SetHashProc. If the HashProc is NULL, the Hash member function will
simply return the object pointer passed to it. Otherwise it will call the
HashProc.

Declarations typedef unsigned long (*HashProc)(const void*);

#define kTProcHashObjectID "!$phob,1.1"

TProcHashObject(HashProc);

virtual ~ TProcHashObject();

virtual unsigned long Hash(const void*) const;

void SetHashProc(HashProc);

HashProc GetHashProc() const;

Member functions Hash

If the HashProc is NULL, the Hash member function will simply return the
object pointer passed to it. Otherwise it will call the HashProc.

SetHashProc
GetHashProc

The SetHashProc and GetHashProc member functions set and get the
object’s HashProc .

See also THashObject

9-106 Chapter 9 / Utility Classes and Member Functions

TProcMatchObject

This is a TMatchObject subclass that takes a reference pointer and
pointers to C functions to do the matching/hashing job.

TProcMatchObject has the following inheritance:

TDynamic --> TMatchObject --> TProcMatchObject

Description The TProcMatchObject class allows you to use the TMatchObject class
without having to subclass it. To use the TProcMatchObject class, you
must pass to the constructor pointers to the HashProc, CompareProc, and
IsEqualProc functions or set these functions later on by calling
SetHashProc, SetCompareProc, and SetIsEqualProc. If any of these
functions are set to NULL, the default functionality is used. The default
action of Hash is to return the object pointer passed to it. For IsEqual, the
default action is to call Compare, and for Compare the default is to
compare object pointers.

Declarations typedef unsigned long (*HashProc)(const void*);

typedef Boolean (*IsEqualProc)(const void* ref,

const void* toComp);

typedef int (*CompareProc)(const void* ref,

const void* toComp);

#define kTProcMatchObjectID "!$pmob,1.1"

TProcMatchObject(const void* ref, HashProc = 0,

 CompareProc = 0, IsEqualProc = 0);

virtual ~ TProcMatchObject();

virtual unsigned long Hash() const;

virtual short Compare(const void*) const;

virtual Boolean IsEqual(const void*) const;

void SetReferencePointer(const void*);

void SetHashProc(HashProc);

void SetCompareProc(CompareProc);

void SetIsEqualProc(IsEqualProc);

const void* GetReferencePointer() const;

HashProc GetHashProc() const;

CompareProc GetCompareProc() const;

IsEqualProc GetIsEqualProc() const;

Continued on following page

TProcMatchObject 9-107

Member functions Compare

If the CompareProc is NULL, the Compare member function will simply
compare object pointers. Otherwise it will call the CompareProc.

Hash

If the HashProc is NULL, the Hash member function will simply return the
object pointer passed to it. Otherwise it will call the HashProc.

IsEqual

If the IsEqualProc is NULL, the IsEqual member function will simply
call Compare. Otherwise it will call the IsEqualProc.

SetReferencePointer
GetReferencePointer

A TProcMatchObject object has a reference pointer (refPtr) that is
attached by the creator of the match object. The GetReferencePointer
function returns this pointer as a void*. The SetReferencePointer
function sets the pointer. This pointer can be used for anything the user
wants to use it for.

SetHashProc
GetHashProc

The SetHashProc and GetHashProc member functions set and get the
HashProc to be called when the object is hashed.

SetCompareProc
GetCompareProc

The SetCompareProc and GetCompareProc member functions set and
get the CompareProc to be called when the object is compared.

SetEqualProc
GetEqualProc

The SetEqualProc and GetEqualProc member functions set and get the
IsEqualProc to be called when the object is tested for equality.

See also TMatchObject

9-108 Chapter 9 / Utility Classes and Member Functions

TProcNotifier

The TProcNotifier class is the base class for notifiers that call a C
procedure for notification.

The TProcNotifier class has the following inheritance:

TDynamic --> TNotifier --> TProcNotifier

Description The TProcNotifier class uses a pointer to a callback function and a
reference pointer—an operation that works more like a traditional callback,
although it is delivered via an object.

If the reference pointer is left NULL, it is replaced with a pointer to the
TProcNotifier object itself. It is initially set by passing it to the
TProcNotifier constructor in the refPtr parameter.

Declarations #define kTProcNotifierID "!$pnot,1.1"

TProcNotifier(NotifyProc, void* refPtr = NULL);

TProcNotifier(const TProcNotifier&);

virtual ~ TProcNotifier();

virtual void Notify(EventCode, OSErrParm = kNoError,

void* notifyData = NULL);

Member functions Notify

The Notify member function sets the global world to the global world
stored with the TProcNotifier and sets the current client to the client that
owns the global world. It then calls the NotifyProc that was set up when
the TProcNotifier object was created. The notifyData parameter
contains the reference pointer that was set up when the notifier was
constructed.

See also TNotifier

TProcNotifier 9-109

TRequestToken

The TRequestToken class keeps track of an outstanding (unfilled) request
for a token.

The TRequestToken class has the following inheritance:

TDynamic --> TMatchObject --> TToken -->

TRequestToken

Description The TRequestToken class is the context for a request for a registered
token while the request is outstanding and delivers the requested token
when the request is satisfied. A TRequestToken object is a registered token
itself while a request is pending. It remains registered until it is unregistered
or deleted. If the request has been satisfied, the object associated with the
TRequestToken is the token that was requested. Until this point, the
request token has no object associated with it (GetObject will return
NULL).

For more information on TRequestToken and object arbitration, see
“Object Arbitration Classes” in Chapter 8, “ASLM Utility Class
Categories.” The descriptions of the member functions below assume that
you have already read this section and understand how object arbitration
works. For details on the other object arbitration classes, see
“TArbitrator,” “TNotifier,” “TMethodNotifier,” “TProcNotifier,” and
“TToken,” in this chapter.

Declarations #define kTRequestTokenID "!$rqtk,1.1"

virtual ~ TRequestToken();

// TMatchObject member functions

virtual Boolean IsEqual(const void*) const;

virtual unsigned long Hash() const;

// new member functions

virtual Boolean Give(TToken* theToken);

virtual TToken* Exchange();

virtual void RequestAgain();

virtual TokenRequestType GetRequestType() const;

virtual void SetRequestType(TokenRequestType);

Boolean IsTokenRegistered() const;

9-110 Chapter 9 / Utility Classes and Member Functions

Member functions Exchange

The Exchange member function polls for the requested token. Exchange
returns NULL for as long as the request is not satisfied. When the request is
satisfied, Exchange deletes the TRequestToken object and returns the
requested token.

Give

The Give member function is used to give up the specified token to the
TRequestToken object. If TRequestToken has a TNotifier object,
TRequestToken calls its Notify member function to notify the requester
that the request has been satisfied. The notifyData parameter in the
Notify call is a TTokenNotification object containing the request
token and the requested token.

Hash

The Hash member function is used internally by TArbitrator in order to
determine which hash bucket the requested token can be found in (the
TArbitrator uses a THashList to store registered tokens).

IsEqual

The IsEqual member function is used internally by TArbitrator in
order to determine which tokens match the token that the request token is
requesting.

IsTokenRegistered

The IsTokenRegistered member function is used to determine whether
the token that was requested is actually registered already. Even if the token
is not registered yet, the request token will still be notified when the token is
registered.

RequestAgain

If you want to use a TRequestToken for multiple requests of the same
token id, you can call TToken::GetObject to poll for the requested
token. If GetObject returns a token, you can call RequestAgain to
request another token using the same TRequestToken. You can use this
technique to get several tokens of the same type—but do not release any of
them until the process is complete. If a token is released before you call
RequestAgain, the same token is returned.

Continued on following page

TRequestToken 9-111

SetRequestType
GetRequestType

SetRequestType is used to set the request type of the request token and
GetRequestType will return the request type of the request token. There is
normally no reason to change a request token’s request type since request
tokens are created for you when you when you request a token from a
TArbitrator and are deleted when you call Exchange.

See also TNotifier

TMethodNotifier

TProcNotifier

TToken

TTokenNotification

“Object arbitration classes” in Chapter 8, “ASLM Utility Class
Categories.”

TArbitratorExample1, TArbitratorExample2, and TArbitratorExample3
examples on the ASLM Examples disk.

9-112 Chapter 9 / Utility Classes and Member Functions

TSCDynamic

The TSCDynamic class provides the same capabilities as TStdDynamic.
However, it is only used for Symantec C++ implementations.

Description The TSCDynamic class is the base class for shared library classes with a set
of common capabilities.

For more information on TSCDynamic and TStdDynamic, see “The
TDynamic Family of Base Classes” in Chapter 6, “Using the ASLM.”

Declarations #define kTSCDynamicID "!$scdy,1.1"

virtual ~TSCDynamic();

void* operator new(size_t size, TMemoryPool*);

// from specified pool

void* operator new(size_t); // from default pool

void operator delete(void* obj, size_t)

{ SLMDeleteOperator(obj); }

const TClassID& GetObjectsClassID() const;

const TClassID& GetObjectsParentClassID() const;

size_t GetObjectsSize() const;

TLibrary* GetObjectsLocalLibrary() const;

TLibraryFile* GetObjectsLocalLibraryFile() const;

TStandardPool* GetObjectsLocalPool() const;

void SetObjectsLocalPool(TStandardPool*) const;

virtual Boolean _cdecl IsValid() const;

virtual OSErr _cdecl Inflate(TFormattedStream&);

virtual OSErr _cdecl Flatten(TFormattedStream&) const;

virtual TSCDynamic* _cdecl Clone(TStandardPool*) const;

virtual char* _cdecl GetVerboseName(char*) const;

virtual void _cdecl Dump() const;

void Trace(char *formatStr, ...) const;

virtual Boolean _cdecl TraceControl(TraceControlType) const;

Boolean IsTraceOn() const;

Boolean TraceOn() const;

Boolean TraceOff() const;

Boolean IsDerivedFrom(const TClassID&) const;

Continued on following page

TSCDynamic 9-113

Member functions See “TDynamic” for information on the member functions of
TSCDynamic.

9-114 Chapter 9 / Utility Classes and Member Functions

TScheduler

The TScheduler objects are used to schedule TOperations for later
execution and to control when the TOperations are executed (processed).

The TScheduler class has the following inheritance:

TDynamic --> TScheduler

Description The TScheduler class, the base class for all schedulers, is an abstract class
that you must inherit from in order to use. The ASLM provides a number
of schedulers for you including TTaskScheduler,
TInterruptScheduler, TTimeScheduler, TThreadScheduler,
TSerialScheduler, and TPriorityScheduler. Some general
information about schedulers can be found in “Process Management
Classes” in Chapter 8, “ASLM Utility Class Categories.”

For instructions on setting up a global world for an operation and setting a
scheduler’s global world, see “TOperation” earlier in this chapter.

Declarations #define kTSchedulerID "!$sked,1.1"

virtual ~ TScheduler();

virtual Boolean Remove(TOperation*) = 0;

virtual TOperation* Remove(const TMatchObject&) = 0;

virtual TOperation* RemoveNext() = 0;

virtual Boolean IsEmpty() const = 0;

virtual void Schedule(TOperation*) = 0;

virtual void Run() = 0;

Boolean IsSchedulerWorldValid() const;

GlobalWorld GetSchedulerWorld() const;

void SetSchedulerWorld(GlobalWorld);

Member functions IsEmpty

The IsEmpty member function checks to see if all scheduled operations
have been executed.

Continued on following page

TScheduler 9-115

IsSchedulerWorldValid
GetSchedulerWorld
SetSchedulerWorld

A scheduler has a global world associated with it that is used to set up the
global world for operations before they are processed. See “TOperation”
earlier in this chapter for more information on setting up the global world
for operations.

The IsSchedulerWorldValid member function returns true if the
scheduler’s world is set to a valid one (anything but kInvalidWorld). By
default the scheduler’s global world is set to kInvalidWorld.

The GetSchedulerWorld and SetSchedulerWorld member functions
are used to get and set the scheduler’s global world.

Remove

When a TOperation is scheduled, you can remove it by calling the
Remove member function. Calling Remove(TOperation*) returns true if
the operation is removed. Remove(const TMatchObject&) returns the
object that was removed, otherwise it returns NULL

RemoveNext

Remove removes only the first operation that matches the operation or
TMatchObject object that is passed to it. To remove the next TOperation
object to be processed, you can call RemoveNext. RemoveNext will return
NULL if there are no more operations on the scheduler.

Schedule
Run

The most important TScheduler member functions are Schedule, which
schedules a TOperation, and Run, which processes all scheduled
TOperations. Processing includes removing TOperation objects from
the TScheduler object as they are processed. If you want to reschedule a
TOperation object that has just been processed, you must reschedule it
yourself.

9-116 Chapter 9 / Utility Classes and Member Functions

To reschedule a TOperation object that has just been processed, call
Schedule. The newly scheduled TOperation will not be processed again
until the TScheduler object’s Run member function is called again. The
creator of the TScheduler object is responsible for determining when the
object’s Run member function is called, although some TSchedule
subclasses have an autoRun feature that causes them to be run every time
you try to schedule a TOperation object. Also, some schedulers determine
for themselves when they should be run. For example, the
TTaskScheduler processes its operations automatically at System Task
time.

See also TOperation

TTaskScheduler

TTInterruptScheduler

TTimeScheduler

TThreadScheduler

TSerialScheduler

TPriorityScheduler

TScheduler 9-117

TSeconds

This TTime subclass is used to specify an initial time value in seconds—that
is, it provides a constructor that takes a time value in seconds.

The TSeconds class has the following inheritance:

TDynamic --> TMatchObject --> TDoubleLong -->

 TTime --> TSeconds

Description For additional information, see “TTime” later in this chapter.

Declarations #define kTSecondsID "slm:supp$secs,1.1"

TSeconds();

TSeconds(unsigned long secs);

~ TSeconds();

operator unsigned long() const;

virtual double ConvertToDouble() const;

operator double() const;

Member functions operator unsigned long

The operator unsigned long member function returns the number of
seconds in an unsigned long.

ConvertToDouble

The ConvertToDouble member function converts the time to a double
containing the number of seconds.

operator double

The operator double member function returns the number of seconds
in a double by calling ConvertToDouble.

See also TTimeExample on the ASLM Examples disk

9-118 Chapter 9 / Utility Classes and Member Functions

TSerialScheduler

The TSerialScheduler class is a TPriorityScheduler subclass that
ensures FIFO (first in, first out) processing of the TOperation class.

The TSerialScheduler class has the following inheritance:

TDynamic --> TScheduler --> TPriorityScheduler -->

TSerialScheduler

Description The TSerialScheduler class works like a TPriorityScheduler, but
always sets the operation’s priority to kNormalPriority before
scheduling it.

Declarations #define kTSerialSchedulerID "!$srsk,1.1"

TSerialScheduler(); // autoRun default to false

TSerialScheduler(BooleanParm ifAutoRun);

virtual ~ TSerialScheduler();

virtual void Schedule(TOperation*);

Member functions Schedule

The Schedule member function schedules a TOperation. It overrides
TPriorityScheduler::Schedule to set the operation’s priority to
kNormalPriority. Otherwise it behaves the same as
TPriorityScheduler::Schedule.

See also TScheduler

TPriorityScheduler

TSerialSchedulerExample on the ASLM Examples disk

TSerialScheduler 9-119

TSimpleDynamic

The TSimpleDynamic class forces the v-table first.

The TSimpleDynamic class has no parent class.

Description The TSimpleDynamic class is base class for shared-library classes that has
no virtual functions. This class is not a shared class, since it is intended to
be a class that just forces the v-table to be at the front of the object.

The TSimpleDynamic class inherits from SingleObject and only has
one virtual member function: its destructor. This feature gives
TSimpleDynamic a small, simple v-table.

For more information on TSimpleDynamic, see “The TDynamic Family
of Base Classes” in Chapter 6, “Using the ASLM.”

Declarations virtual ~ TSimpleDynamic();

void* operator new(size_t size, TMemoryPool*);

// from specified pool

void* operator new(size_t); // from default pool

void operator delete(void* obj, size_t)

{ SLMDeleteOperator(obj); }

const TClassID& GetObjectsClassID() const;

const TClassID& GetObjectsParentClassID() const;

size_t GetObjectsSize() const;

TLibrary* GetObjectsLocalLibrary() const;

TLibraryFile* GetObjectsLocalLibraryFile() const;

TStandardPool* GetObjectsLocalPool() const;

void SetObjectsLocalPool(TStandardPool*) const;

Boolean IsDerivedFrom(const TClassID&) const;

Member functions See “TDynamic” earlier in this chapter for a description of the
TSimpleDynamic member functions.

9-120 Chapter 9 / Utility Classes and Member Functions

TSimpleList

The TSimpleList class is a TCollection subclass that implements a
linked list that can have objects added at the front or the back.

The TSimpleList class has the following inheritance:

TDynamic --> TCollection --> TSimpleList

Description The TSimpleList class is used to maintain a list of objects. It uses TLinks
to maintain the list and is a very efficient collection class when objects do
not need to be looked up or removed from the middle of the list.

The ASLM provides two TSimpleList subclasses. The TLinkedList
provides a couple of useful additional methods and the TPriorityList is
used to maintain a list of objects sorted by priority.

A TListIterator class is provided to iterate through the linked list. The
TSimpleList class provides some member functions besides those that
belong to the TCollection class. The names of the member functions
provided by TSimpleList are intuitive and largely self-explanatory.

The constructor that takes a TMemoryPool* parameter is used to specify
the pool (called the link pool) to be used when TLink objects need to be
allocated for objects added to the pool. It is recommended that you use a
TChunkyPool for the link pool since it is more efficient than a
TStandardPool at allocating blocks of memory of the same size. TLinks
are allocated out of the link pool automatically whenever an object (as
opposed to a link) is added to the list. They are also deleted automatically
whenever an object is removed or deleted from the list.

When you remove or delete objects from a linked list, the TLink objects are
deleted only if the link pool has been set. However, when you remove links
(by calling RemoveFirstLink or RemoveLastLink), the TLink is
returned and not deleted, and you are responsible for deleting them.

IMPORTANT It is not safe to set the link pool and call AddLinkFirst or
AddLinkLast unless you have explicitly allocated the link from a pool
yourself. Adding TLink objects that are stack objects or class data
members is not allowed if the link pool has been set.

Continued on following page

TSimpleList 9-121

Declarations #define kTSimpleListID "!$slst,1.1"

TSimpleList();

TSimpleList(TMemoryPool*);

TSimpleList(TSimpleList*);

virtual ~ TSimpleList();

// TCollection overrides

virtual TIterator* CreateIterator(TStandardPool*);

virtual void* Remove(const TMatchObject&);

virtual void* Member(const TMatchObject&);

virtual Boolean Remove(void*);

virtual Boolean Member(const void*);

// New members

virtual TLink* MemberLink(const void*);

virtual TLink* MemberLink(const TMatchObject&);

virtual TLink* RemoveLink(void*);

virtual TLink* RemoveLink(const TMatchObject&);

virtual TLink* FirstLink() const;

virtual TLink* LastLink() const;

virtual TLink* RemoveFirstLink();

virtual TLink* RemoveLastLink();

virtual void AddLinkFirst(TLink*);

virtual void AddLinkLast(TLink*);

virtual void* First() const;

virtual void* Last() const;

virtual void* RemoveFirst();

virtual void* RemoveLast();

virtual OSErr AddFirst(void*);

virtual OSErr AddLast(void*);

void SetLinkPool(TMemoryPool*);

TMemoryPool* GetLinkPool() const;

Member functions Add
AddUnique

The Add and AddUnique member functions are described in
“TCollection” earlier in this chapter.

9-122 Chapter 9 / Utility Classes and Member Functions

AddFirst
AddLast

The AddFirst member function adds the object to the beginning of the
list, and the AddLast member function adds the object to the end of the
list. The AddFirst and AddLast member functions return error codes
other than kNoError if they fail to add the object to the list.

AddLinkFirst
AddLinkLast

The AddLinkFirst member function adds the link to the beginning of the
list, and the AddLinkLast member function adds the link to the end of the
list. If you do not set the link pool, the only TSimpleList member
functions you can use to add links to the list are AddLinkFirst and
AddLinkLast. The AddLinkFirst and AddLinkLast member functions
can be useful when an object you want to add to the linked list has a TLink
field that points to itself.

CreateIterator

The CreateIterator member function returns an iterator for a
TSimpleList object. For additional information, see “TListIterator”
earlier in this chapter.

First
Last

The First member function returns the first object in the list, and the
Last member function returns the last object in the list.

FirstLink
LastLink

The FirstLink member function returns the link for the first object in the
list, and the LastLink member function returns the link for the last object
in the list.

GetLinkPool
SetLinkPool

The GetLinkPool member function returns the link pool for the list. The
SetLinkPool member function sets the link pool for the list.

Continued on following page

TSimpleList 9-123

The TLink objects are used to maintain linked lists. The ASLM allocates
TLink objects when you call Add, AddUnique, AddFirst, or AddLast.
However, before you call any of these member functions, you must set the
TMemoryPool from which you want your TLink objects to allocate
memory. You can do this by passing the TMemoryPool object to the
constructor or by calling SetLinkPool.

Member

The Member member function is described in “TCollection” earlier in this
chapter.

MemberLink

The MemberLink member function returns the TLink of the object passed
if it is in the collection. It searches for the object in the same manner as
Member.

RemoveFirstLink
RemoveLastLink

The RemoveFirstLink member function removes the first link from the
collection, and the RemoveLastLink member function removes the last
link from the collection.

RemoveFirst
RemoveLast

The RemoveFirst member function removes the first object from the list,
and the RemoveLast member function removes the last object from the
list.

See also TCollection

TSimpleListExample on the ASLM Examples disk

9-124 Chapter 9 / Utility Classes and Member Functions

TSimpleRandom

The TSimpleRandom class returns a random number computed with 64-bit
arithmetic.

The TSimpleRandom class has the following inheritance:

TDynamic --> TFastRandom --> TSimpleRandom

Description The TSimpleRandom class generates better random numbers over a 32-bit
range than TFastRandom does.

Declarations #define kTSimpleRandomID "slm:supp$srnd,1.1"

const unsigned long kMaxSimpleRandom = 2145740624;

TSimpleRandom();

TSimpleRandom(unsigned long seed);

TSimpleRandom(unsigned long im,

unsigned long ia, unsigned long ic);

virtual ~ TSimpleRandom();

virtual unsigned long GetRandom();

virtual unsigned long GetRandomNumber(unsigned long lo,

unsigned long hi);

Member functions GetRandom
GetRandomNumber

The GetRandom member function returns a random number from 0 to
kMaxSimpleRandom, inclusive. The GetRandomNumber member function
returns the a random number from lo to hi, inclusive. You should
normally use GetRandomNumber instead of GetRandom.

TSimpleRandom

The TSimpleRandom member function creates an object, using the current
time stamp as the seed.

The TSimpleRandom(unsigned long seed) function creates the object
using the value of seed as the seed

The TSimpleRandom(unsigned long im, unsigned long ia,
unsigned long ic) function creates the object using the current time
stamp as the seed, and the parameters as the random number generator
using a standard congruency generator:

seed = (seed*ia + ic) % im;

TSimpleRandom 9-125

TStandardPool

The TStandardPool class provides a general purpose, interrupt-safe
memory allocator.

The TStandardPool class has the following inheritance:

TDynamic --> TMemoryPool --> TStandardPool

Description The TStandardPool class is a TMemoryPool subclass that implements a
general purpose, interrupt-safe memory allocator. Besides being interrupt-
safe, it is also much faster than other common memory allocators such as
the Macintosh Memory Manager and C calloc and malloc functions. See
“TMemoryPool” earlier in this chapter for more information on memory
pools.

The TStandardPool class provides a constant named
kStandardPoolChunkOverhead that can help you determine the amount
of overhead that each chunk allocated from a pool will require. Use this
constant to help you decide how big a pool you will need.

The following code fragment shows how to create a standard pool, add
some additional memory to it, and then destroy it (In this example, the
system zone is used for the memory pool.):

TStandardPool* myPool = new (kMyPoolSize,kSystemZone)

TStandardPool;

myPool->AddMemoryToPool(kMyExtraMemorySize);

delete myPool;

The following is an example of how the constant
kStandardPoolChunkOverhead can be used. If you expect to allocate
100 blocks from a pool, and you estimate that the blocks will occupy no
more than 5000 bytes of memory, you can create the pool by writing these
two statements:

size_t poolsize = 100 * kStandardPoolChunkOverhead + 5000;

TStandardPool* myPool = new (poolsize, kSystemZone)

TStandardPool;

When memory is allocated, block sizes are always rounded up to be a
multiple of 8. This needs to be taken into account when determining how
large a pool you need.

9-126 Chapter 9 / Utility Classes and Member Functions

Declarations #define kStandardPoolChunkOverhead 12

#define kTStandardPoolID "!$stdp,1.1"

TStandardPool();

virtual ~ TStandardPool();

virtual Boolean IsValid() const;

// TMemoryPool Overrides

virtual void* Allocate(size_t);

virtual void* Reallocate(void*, size_t);

virtual void Free(void*);

virtual size_t GetSize(void*) const;

virtual Boolean CheckPool() const;

virtual size_t GetLargestBlockSize() const;

Member functions The member functions are described in “TMemoryPool” earlier in this
chapter.

IsValid

The IsValid member function returns false if the pool is corrupt or was
not created properly. It should not be used in this case.

TStandardPool 9-127

TStdDynamic

The TStdDynamic class is the base class for shared-library classes with a set
of common capabilities.

The TStdDynamic class has no parent class.

Description The TStdDynamic class is similar to TDynamic, except it does not inherit
from SingleObject. It has the same functionality as TDynamic, except it
cannot be registered with the Inspector application. It is useful when you
do not want to inherit from SingleObject, but you do want most of the
extra methods that TDynamic provides. It also forces the v-table to be first.

For more information on TStdDynamic, see “The TDynamic Family of
Base Classes” in Chapter 6, “Using the ASLM.”

Declarations #define kTStdDynamicID "!$sdyn,1.1"

virtual ~ TStdDynamic();

void* operator new(size_t size, TMemoryPool*);

// from specified pool

void* operator new(size_t); // from default pool

void operator delete(void* obj, size_t)

{ SLMDeleteOperator(obj); }

const TClassID& GetObjectsClassID() const;

size_t GetObjectsSize() const;

TLibrary* GetObjectsLocalLibrary() const;

TLibraryFile* GetObjectsLocalLibraryFile() const;

TStandardPool* GetObjectsLocalPool() const;

void SetObjectsLocalPool(TStandardPool*) const;

virtual Boolean IsValid() const;

virtual OSErr Inflate(TFormattedStream&);

virtual OSErr Flatten(TFormattedStream&) const;

virtual TDynamic* Clone(TStandardPool*) const;

virtual char* GetVerboseName(char*) const;

virtual void Dump() const;

9-128 Chapter 9 / Utility Classes and Member Functions

void Trace(char *formatStr, ...) const;

virtual Boolean TraceControl(TraceControlType) const;

Boolean IsTraceOn() const;

Boolean TraceOn() const;

Boolean TraceOff() const;

Boolean IsDerivedFrom(const TClassID&) const;

Member functions See “TDynamic” earlier in this chapter for a description of the
TStdDynamic member functions.

TStdDynamic 9-129

TStdSimpleDynamic

The TStdSimpleDynamic class is the base class for shared-library classes
that have no virtual functions.

The TStdSimpleDynamic class has no parent class.

Description This class is not shared, since it is a class that just forces the v-table to be at
the front of the object.

The TStdSimpleDynamic class works like TSimpleDynamic, except that it
does not inherit from SingleObject. The TStdSimpleDynamic class, like
TSimpleDynamic, has a small v-table, but it is not simple because it does
not inherit from SingleObject. It is useful if you want some of the non-
virtual member functions that TDynamic provides that give you meta
information about the object.

For more information on TStdSimpleDynamic, see “The TDynamic
Family of Base Classes” in Chapter 6, “Using the ASLM.”

Declarations virtual ~ TStdSimpleDynamic();

void* operator new(size_t size, TMemoryPool*);

//from specified pool

void* operator new(size_t); // from default pool

void operator delete(void* obj, size_t)

{ SLMDeleteOperator(obj); }

const TClassID& GetObjectsClassID() const;

size_t GetObjectsSize() const;

TLibrary* GetObjectsLocalLibrary() const;

TLibraryFile* GetObjectsLocalLibraryFile() const;

TStandardPool* GetObjectsLocalPool() const;

void SetObjectsLocalPool(TStandardPool*) const;

Boolean IsDerivedFrom(const TClassID&) const;

Member functions See “TDynamic” earlier in this chapter for a complete description of the
TStdSimpleDynamic member functions.

9-130 Chapter 9 / Utility Classes and Member Functions

TStopwatch

The TStopwatch class is used to determine the time that has elapsed since
the TStopwatch object was initialized.

The TStopwatch class has the following inheritance:

TDynamic --> TMatchObject --> TDoubleLong -->

TTime --> TTimeStamp --> TStopwatch

Description The TStopwatch class is a TTimeStamp subclass that remembers a time
stamp when it is initialized and compares that time stamp to a new time
stamp that is taken each time one of the “elapsed” routines, such as
ElapsedSeconds, is called. A TStopwatch object is initialized when it is
constructed and whenever Reset is called.

Declarations #define kTStopwatchID "slm:supp$stpw,1.1"

TStopwatch();

virtual ~ TStopwatch();

virtual void Reset();

virtual unsigned long ElapsedMicroseconds() const;

virtual unsigned long ElapsedMilliseconds() const;

virtual unsigned long ElapsedSeconds() const;

Member functions ElapsedMicroseconds
ElapsedMilliseconds
ElapsedSeconds

The ElapsedMicroseconds, ElapsedMilliseconds, and
ElapsedSeconds member functions return the number of microseconds,
milliseconds, or seconds that have elapsed since TStopwatch was created
or last reset.

Reset

The Reset function restarts the stopwatch by setting the time stamp to the
current time.

See also TTime

TTimeExample on the ASLM Examples disk

TStopWatch 9-131

TTaskScheduler

The TTaskScheduler class implements a scheduler for heavyweight tasks.

The TTaskScheduler class has the following inheritance:

TDynamic --> TScheduler --> TPriorityScheduler -->

TTaskScheduler

Description The TTaskScheduler class is a TPriorityScheduler subclass that can
be useful for scheduling heavyweight tasks (that is, tasks that consume a
great amount of CPU time or use system resources). Specifically,
TTaskScheduler schedules TOperation objects to run at System Task
time.

The ASLM has a global TTaskScheduler class that clients can use instead
of creating their own scheduler. You can access the global
TTaskScheduler class by calling GetGlobalTaskScheduler. You
should call the IsValid member function before you use a newly created
TTaskScheduler to verify that it was initialized properly and can be used.

TTaskScheduler* GetGlobalTaskScheduler();

For more information on schedulers, see “Process Management Classes”
in Chapter 8, “ASLM Utility Class Categories,” and “TScheduler” earlier
in this chapter.

Declarations #define kTTaskSchedulerID "!$task,1.1"

TTaskScheduler();

TTaskScheduler(unsigned long priority,

BooleanParm runToEmpty = false);

virtual ~ TTaskScheduler();

virtual void Schedule(TOperation*);

virtual void SetPriority(unsigned long);

void SetRunToEmpty(Boolean);

Member functions Schedule

The Schedule member function schedules a TOperation object. The
operation will be run at the next System Task time.

9-132 Chapter 9 / Utility Classes and Member Functions

SetPriority

The TTaskScheduler objects have priorities. These priorities determine
the order in which each TTaskScheduler is processed at System Task
time. The priority of a TTaskScheduler is either passed in the constructor
or set by the SetPriority member function. The default priority of every
TTaskScheduler object is kNormalPriority. The ASLM global task
scheduler has a priority one higher than kNormalPriority, so it is
processed first, unless you give your TTaskScheduler a higher priority.

SetRunToEmpty

The TTaskScheduler objects also have a flag named runToEmpty. If this
flag is true, operations that are scheduled while the TTaskScheduler is
already running are run during the current System Task time rather than
waiting for the next System Task time. The runToEmpty flag defaults to
false. It can be set in the constructor, or it can be set by calling
SetRunToEmpty.

See also TScheduler

TSchedulerExample on the ASLM Examples disk

TTaskScheduler 9-133

TTestTool

The TTestTool class is a class used by the MPW tool TestTool, provided
with the ASLM.

The TTestTool class has the following inheritance:

TDynamic --> TTestTool

Description TestTool is a tool for writing ASLM classes that can be used as test
modules. The test modules are run by TestTool, an MPW tool provided
with ASLM. TestTool is described in Appendix B, “ASLM Utility
programs.”

Declarations #define kTTestToolID kTestToolPrefix "TTestTool,1.1"

TTestTool();

TTestTool(TStandardPool* thePool);

virtual ~TTestTool();

virtual void SetPrintf(PrintfFunc);

virtual void Printf(const char*, ...) const;

virtual void InitTest(Boolean verbose, Boolean debug, int argc,

char** argv) = 0;

virtual void RunTestIteration(Boolean verbose, Boolean debug) = 0;

virtual void EndTest(Boolean verbose, Boolean debug) = 0;

void SetPool(TStandardPool* thePool);

TStandardPool* GetPool();

Member functions EndTest

The EndTest member function is called when the MPW tool TestTool has
finished running the test. At this point you should clean up.

InitTest

The InitTest member function is called just before the MPW tool
TestTool starts running the test. At this point, you should do most of your
setting up for the test.

Printf

The Printf member function is the same as the C Printf routine, except
that it works with a shared library, allowing TestTool to send text to the
MPW Worksheet.

9-134 Chapter 9 / Utility Classes and Member Functions

RunTestIteration

The RunTestIteration member function runs one iteration of the test.

SetPool

The SetPool member function sets the pool out of which your test should
allocate memory. It is usually called by the MPW tool TestTool.

SetPrintf

The SetPrintf member function sets the routine to call for Printf. It is
usually set by the MPW tool TestTool.

TTestTool 9-135

TThreadScheduler

The TThreadScheduler class is a TPriorityScheduler subclass that
implements a lightweight “thread” scheduler.

The TThreadScheduler class has the following inheritance:

TDynamic --> TScheduler --> TPriorityScheduler -->

TThreadScheduler

Description In the Macintosh implementation, TThreadScheduler works like
TPriorityScheduler with the autorun option on. A thread is a
lightweight task that has no operating system calls. You must call the
IsValid member function to verify that the scheduler was initialized
properly and can be used.

The Run member function of TThreadScheduler is private and should
never be called. It is provided so that if the Macintosh someday has real
threads, or if the ASLM is ported to an operating system with threads, users
of TThreadScheduler automatically get this functionality.

Declarations #define kTThreadSchedulerID "slm:sked$thsk,1.1"

TThreadScheduler();

virtual ~ TThreadScheduler();

virtual void Schedule(TOperation*);

Member functions Schedule

The Schedule member function schedules the operation and calls Run if it
is not already running. It behaves the same as TPriorityScheduler with
the autorun option on.

See also TScheduler

TPriorityScheduler

9-136 Chapter 9 / Utility Classes and Member Functions

TTime

The TTime class is the base class for all time-related classes.

The TTime class has the following inheritance:

TDynamic --> TMatchObject --> TDoubleLong --> TTime

Description The ASLM provides several special data-type classes to help libraries and
clients perform “time math.” The TTime class obtains a time value from
the CPU’s time-generating system and provides all the routines for
accessing that value. You can use a TTimeStamp to initialize a TTime with a
time. Since TTime is a TDoubleLong subclass, you can perform all the 64-
bit integer math operations on it also.

Internally, all times are stored as microseconds, and the casting operators
for the TTime class return values converted to other time units. The
TMicroSeconds, TMilliSeconds, and TSeconds subclasses are used to
provide an initial time in microseconds, milliseconds, or seconds.

Declarations #define kTTimeID "slm:supp$time,1.1"

TTime();

TTime(unsigned long microseconds);

TTime(const TDoubleLong&);

TTime(const TTime&);

virtual ~ TTime();

void SetTime(const TTime&);

void SetMicroseconds(unsigned long);

virtual void SetMilliseconds(unsigned long);

virtual void SetSeconds(unsigned long);

unsigned long GetMicroseconds() const;

virtual unsigned long GetMilliseconds() const;

virtual unsigned long GetSeconds() const;

Member functions GetMicroseconds
GetMilliseconds
GetSeconds

These three member functions get the time in microseconds, milliseconds,
and seconds.

Continued on following page

TTime 9-137

SetMicroseconds
SetMilliseconds
SetSeconds

The SetMicroseconds, SetMilliseconds, and SetSeconds member
functions set the time in microseconds, milliseconds, and seconds.

SetTime

The SetTime member function sets the time based on the TTime object
passed to it.

See also TTimeStamp

TStopWatch

TMillisconds

TMicroSeconds

TSeconds

TTimeExample on the ASLM Examples disk

9-138 Chapter 9 / Utility Classes and Member Functions

TTimeScheduler

The TTimeScheduler class implements a scheduler that processes
TOperation objects when a requested amount of time has elapsed.

The TTimeScheduler class has the following inheritance:

TDynamic --> TScheduler --> TPriorityScheduler -->

TTimeScheduler

Description You must call the TOperation::SetTime member function before
scheduling a TOperation object to determine when the TOperation will
be processed. On the Macintosh, TTimeScheduler is a front end to the
Time Manager. Operations scheduled on a TTimeScheduler object
execute at interrupt time.

Schedulers within schedulers

All TTimeScheduler objects can be combined with other kinds of
schedulers to handle operations that otherwise would be processed
immediately. The most common use of this capability is to provide a
TTimeScheduler object with a TInterruptScheduler object. Then,
when a TTimeScheduler operation fires, it is automatically placed on a
TInterruptScheduler object so it can be processed at deferred task time
rather than immediately at interrupt time. You can provide a
TTimeScheduler object with another scheduler by passing it to the
constructor.

Member functions for handling interrupts

The ASLM provides four member functions that can be useful when you
want to remove a TOperation object from a TTimeScheduler object at
interrupt time. These four member functions—
DeleteInProcessOperation, RerunInProcessOperation,
Reschedule, and SetAutoReschedule—give you some amount of
control over the problem of removing a TOperation object while its
Process routine is being called.

The DeleteInProcessOperation, RerunInProcessOperation,
Reschedule, and SetAutoReschedule member functions are provided
because Remove calls that are invoked at interrupt time can remove a
TOperation object that is in the process of being executed. (The Remove
member function is inherited from the TScheduler class.) Ordinarily,
deleting or rescheduling a TOperation object that is in process can be
disastrous.

Continued on following page

TTimeScheduler 9-139

When you have a client that needs to remove a TOperation object while an
interrupt is in progress, you can call the
TOperation::WasRemovedInProcess member function to determine if
it was removed while it was in the Process member function.

If WasRemovedInProcess returns false, you are free to do whatever you
want with the TOperation object. If WasRemovedInProcess returns
true, you must decide what you want to do with the in-process
TOperation. You can call either DeleteInProcessOperation, which
informs the scheduler that it should delete the TOperation when it returns
from the Process call, or you can call RerunInProcessOperation,
which causes the scheduler to call Process again immediately after
returning from the Process member function.

A TOperation object can call the TOperation member function
WasRemovedInProcess to determine whether it has been removed. It may
then modify its behavior accordingly. If a TOperation has been removed
while it is in process, it can delete itself, provided it calls
TOperation::ClearRemovedInProcess so that TTimeScheduler does
not do anything with the deleted TOperation object.

It is important to remember, however, that the behavior of the “remover”
and TOperation must be coordinated. If the TOperation deletes itself
when it detects that it was removed, then you can probably call either
DeleteInProcessOperation or RerunInProcessOperation, since in
either case, the TOperation is deleted. However, if the TOperation must
do something more complicated, then you should use
RerunInProcessOperation to give the TOperation a chance to do
whatever it has to do.

If a TOperation object detects that it was removed in process, and is about
to act on it itself, then it should call the TOperation member function
ClearRemovedInProcess to keep TTimeScheduler from either deleting
the operation or rerunning it (depending on what the “remover” asked
for).

If a TOperation object wants to delete itself when auto-rescheduling is
true, and it has not been removed in process, it should ensure that its time
field is 0 and then call SetDeleteWhenDone. This operation informs the
TTimeScheduler that a TOperation object wants to be deleted. If your
TOperation is removed before SetDeleteWhenDone returns to the
TTimeScheduler, the rules governing removal in process take effect.

A TOperation object may also delete itself by calling the
TTimeScheduler Remove member function and, if that succeeds, calling
the DeleteInProcessOperation member function. But this requires that
you know which TTimeScheduler the TOperation object is on. The
previous technique does not require this knowledge.

9-140 Chapter 9 / Utility Classes and Member Functions

A particularly tricky situation can occur when a TOperation is an
embedded object. In this case, you want to delete the object in which the
TOperation is embedded, not the TOperation itself.

The only way to do this safely is to call the RerunInProcessOperation
member function. To do that, you can place code like this in your
Process member function:

If (WasRemovedInProcess())

{

// Do your standard stuff, but be aware that you

// might come here twice.

if (IsBeingRerun())

{

delete parentObject;

}

return;

}

// Here, do your normal thing.

This technique requires that the “remover” of your operation call
RerunInProcessOperation whenever it detects that your TOperation
object was removed in process.

The DeleteInProcessOperation, RerunInProcessOperation, and
SetAutoReschedule member functions are described in more detail in
“Member Functions” below.

Declarations #define kMaxScheduledTime ((unsigned long)-1L)

#define kTTimeSchedulerID "slm:sked$skti,1.1"

TTimeScheduler();

TTimeScheduler(void* data);

TTimeScheduler(TScheduler*,

unsigned long priority);

virtual ~ TTimeScheduler();

virtual Boolean IsValid() const;

Continued on following page

TTimeScheduler 9-141

virtual Boolean Remove(TOperation*);

virtual TOperation* Remove(const TMatchObject&);

virtual TOperation* RemoveNext();

virtual void Schedule(TOperation*);

virtual Boolean IsEmpty() const;

virtual Boolean Reschedule(TOperation*,

unsigned long time);

virtual void SetAutoReschedule(BooleanParm);

virtual Boolean DeleteInProcessOperation(TOperation* op);

virtual Boolean RerunInProcessOperation(TOperation* op);

Member functions DeleteInProcessOperation

The DeleteInProcessOperation member function causes the
TTimeScheduler to delete the current TOperation object when it returns
from the Process call that has been interrupted. Uses of the
DeleteInProcessOperation are described in more detail below.

IsEmpty

The IsEmpty member function returns true if the scheduler is empty.

IsValid

The IsValid member function returns false if the scheduler was not
constructed correctly. It should be called after creating the scheduler to
verify that it constructed correctly. If it returns false, the scheduler should
be deleted and not used.

RerunInProcessOperation

The RerunInProcessOperation member function causes
TTimeScheduler to rerun the Process function for the current
TOperation object when it returns from the Process call that has been
interrupted. Uses of the RerunInProcessOperation are described in
more detail below.

Reschedule

The Reschedule member function reschedules the operation on the
TTimeScheduler object. Use Reschedule when an operation is already
scheduled and you want to change the time that it will be fired. Using
Reschedule avoids the necessity of going through the steps of first
removing the operation, then setting its time, and then calling Schedule.

9-142 Chapter 9 / Utility Classes and Member Functions

Remove

The Remove member function returns the specified operation from the
scheduler.

Schedule

The Schedule member function schedules the specified operation. It will
be run at the time specified in the operation.

SetAutoReschedule

The SetAutoReschedule member function sets the TTimeScheduler
mode flag to enable or disable the TTimeScheduler class’s auto-
reschedule feature. Auto-rescheduling makes it possible for a TOperation
object to reschedule itself automatically for another timer period simply by
changing its own time field to a nonzero value.

Auto-rescheduling can be useful when an operation must perform multiple
retries or simply wants to repeat the given operation. This strategy is
sometimes convenient because TOperation objects that use the auto-
reschedule feature do not have to know which TTimeScheduler they are
on. A possible shortcoming of this strategy is that a TOperation object
which is on an auto-reschedule TTimeScheduler can delete itself only
under very controlled conditions.

The default state of the auto-reschedule feature is false, or disabled. When
the auto-reschedule feature is disabled, a TOperation object is responsible
for rescheduling itself.

See also TScheduler

TOperation

TTimeSchedulerExample on the ASLM Examples disk

TTimeScheduler 9-143

TTimeStamp

The TTimeStamp class is used to get a time stamp of the CPU's current
clock value.

The TTimeStamp class has the following inheritance:

TDynamic --> TMatchObject --> TDoubleLong -->

TTime --> TTimeStamp

Description The time stamp value is set whenever the TTimeStamp object is constructed
or whenever the SetTimeStamp member function is called. You can use
TTimeStamp to compare the elapsed time between two time stamps by
simply subtracting one from the other. The resolution of the time stamp is
determined by the hardware. Some older machines only give a resolution
of 1/60 second.

Since TTimeStamp is a TTime subclass, it can perform 64-bit time math to
calculate the difference between two TTimeStamps.

Declarations #define kTTimeStampID "slm:supp$tstm,1.1"

TTimeStamp();

virtual ~ TTimeStamp();

virtual void SetTimeStamp();

Member functions SetTimeStamp

The SetTimeStamp member function sets the time stamp value to the
current time.

See also TTime

TTimeExample on the ASLM Examples disk

9-144 Chapter 9 / Utility Classes and Member Functions

TToken

The TToken class carries an object and gives it an ID.

The TToken class has the following inheritance:

TDynamic --> TMatchObject --> TToken

Description Object arbitration is made possible by an object called a token, which
maintains and provides information about objects. A token ID is an object
made up of a type ID and an instance ID.

The type ID is determined by the developer of the shared library in which
the token ID is used. To avoid name collisions, a token ID should uniquely
identify the type of the token that it identifies in the context of the
TArbitrator object for which the token registered. If more than one
token of the same type is registered, an instance ID should be used to
identify each instance. The type and instance IDs are separated by a dollar
sign ($). Tokens registered with the global TArbitrator should have type
IDs that are registered with Apple Computer’s Developer Technical
Support (DTS). It is sufficient to register a creator ID—for example, you
might register the creator ID 'eesp' for the an organization called the
Excellent Enterprise Systems Protocols group.

Suppose, for example, that eesp:sport$A and eesp:sport$B are token
IDs for the A and B serial ports on the Macintosh. In this case,
eesp:sport$ is the token for a serial port, and is the keyword that is used
when the tokens are registered. Thus, a request for eesp:sport$ is
satisfied by either port. However, a request for eesp:sport$A is satisfied
only by serial port A.

Normally, TToken objects are created automatically by calling
TArbitrator:: RegisterObject, but they can also be created by calling
TArbitrator:: NewToken, in which case the token can only be used with
the arbitrator that created it. Deleting a TToken will cause it to be
automatically unregistered from the arbitrator that it is registered with. This
is the way tokens are normally unregistered.

For more information on TToken and object arbitration, see “Object
Arbitration Classes” in Chapter 8, “ASLM Utility Class Categories.” The
descriptions of the member functions below assume that you have already
read this section and understand how object arbitration works. For details
on the other object arbitration classes, see “TArbitrator,”
“TMethodNotifier,” “TNotifier,” “TProcNotifier,” and
“TRequestToken” in this chapter.

Continued on following page

TToken 9-145

Declarations #define kTTokenID "!$tokn,1.1"

TToken();

TToken(const char*);

virtual ~ TToken();

// TMatchObject member functions

virtual Boolean IsEqual(const void*) const;

virtual unsigned long Hash() const;

// new member functions

virtual Boolean Get(TokenRequestType);

virtual void Release();

virtual Boolean Request(TRequestToken*);

virtual Boolean Notify(TRequestToken*);

virtual TokenRequestType GetRequestType() const;

virtual void SetID(const char*);

const char* GetID() const;

void* GetObject() const;

void SetObject(void* theObject);

TNotifier* GetNotifier() const;

void SetNotifier(TNotifier*);

long GetUseCount() const;

Member functions Get

The Get member function is used to claim the token. When you already
have a pointer to the token, it can be used instead of requesting the token
from its arbitrator. It can be useful if you have a token but do not have it
claimed yet. You will want to do this when you are about to register a token
using TArbitrator::RegisterToken, and you do not want to give up
the token to anyone who already has an outstanding request for it. You
might also do this if you do not have the token claimed, but you want to
delete it if no one has it claimed already. In this case you will need to use a
TokenRequestType of kExclusiveTokenRequest.

9-146 Chapter 9 / Utility Classes and Member Functions

GetID
SetID

Each token has an ID associated with it called the object ID or token ID.
The id string is allocated automatically when the token is created by calling
TArbitrator:: RegisterObject or TArbitrator::NewToken. If a
token is not currently registered with an arbitrator, you can change its id by
calling SetID. This will automatically delete the old id string and allocate a
new one. Do not ever change the id string while the token is currently
registered. You can also retrieve the id string at any time by calling GetID.

GetObject
SetObject

The GetObject and SetObject member functions get and set the object
associated with the token. If the token is actually a TRequestToken, the
object returned will be the requested token if the request has been satisfied.
NULL is returned if the request has not been satisfied yet. There is normally
no reason to call SetObject.

GetNotifier
SetNotifier

Tokens have a TNotifier object associated with them so that the token
owner can be notified of certain events. If the token is actually a
TRequestToken, the notifier is used to notify the requester that the
requested token is available. If the token is a normal TToken registered
with an arbitrator, the notifier is used to notify the token owner when an
active request has been made for the token. Token owners normally setup a
notifier for the token if they have exclusive access to the token and they are
willing to give up the token if someone else requests it.

Token owners can set the token’s notifier by calling SetNotifier. Before
giving up a token, token owners should call SetNotifier(NULL) to
remove the notifier.

Token requesters can set the notifier of their TRequestToken by calling
SetNotifier or by passing the TNotifier object to
TArbitrator::PassiveRequest or TArbitrator::ActiveRequest.

GetUseCount

GetUseCount returns the number of shared owners of the token. If the
token is owned exclusively by someone, -1 is returned.

Continued on following page

TToken 9-147

GetRequestType

GetRequestType is used to determine if the TToken object is actually a
TRequestToken object, and if it is a TRequestToken object, to determine
what the request type of the token is. It is mainly used internally by
TToken.

Notify

Notify is used to notify the exclusive owner of the token that there is a
request for the token. The TRequestToken parameter passed in is the
requester of the token. It returns true if the owner of the token had
attached a notifier to the token and returns false otherwise.
TRequestToken::GetObject can be used to determine if the owner gave
up the token. Notify is mainly used internally by the object arbitration
classes and does not have much use otherwise.

Release

Release is used to release a token. It releases the owner’s claim on the
token.

Request

Request is used to claim the token for the requester specified by the
TRequestToken parameter. If it returns true, then either the token was
successfully claimed or the token is already claimed and the owner had a
notifier and was notified about the request. In this case, you should call the
request token’s GetObject method to see if the token was successfully
claimed. This routine is mainly used internally by the object arbitration
classes. It is only useful if you have both the token to be claimed and a
request token that wants to claim the token.

See also TNotifier

TMethodNotifier

TProcNotifier

TRequestToken

TTokenNotification

“Object arbitration classes” in Chapter 8, “ASLM Utility Class
Categories.”

TArbitratorExample1, TArbitratorExample2, and TArbitratorExample3
examples on the ASLM Examples disk

9-148 Chapter 9 / Utility Classes and Member Functions

TTokenNotification

The TTokenNotification class is used with object arbitration to pass
information to a client’s notification function.

The TTokenNotification class has no parent class.

Description The TTokenNotification class is a simple inline class that is used to
return notification information to a client using object arbitration. It is
passed in the notifyData parameter of the notifier’s notify function.

When notifying a token owner that the token is being requested, GetToken
is used to retrieve the requested token and GetRequestToken is used to
retrieve the token that was used for the outstanding request. If you want to
give up the token then call the request token's Give member function. You
should not keep the request token unless you have an agreement with the
client as part of your access protocol, and you must not keep the
TTokenNotification.

When notifying the requester of a token that the token is available,
GetRequestToken is used to retrieve the token that was used for the
outstanding request. The token that was requested has already been claimed
and is available by calling the Exchange or GetObject member functions
of the request token.

For a full description of object arbitration and how TTokenNotification
objects are used with object arbitration, see the “Object Arbitration
Classes” section of Chapter 8, “ASLM Utility Class Categories.”

Declarations TTokenNotification(TToken*, TRequestToken*);

~TTokenNotification();

TToken* GetToken();

TRequestToken* GetRequestToken();

Member functions GetToken

This function returns the token that was requested. This is true whether the
owner of the token or the requester of the token is being notified.

GetRequestToken

This function returns the request token that is being used to handle the
request.

Continued on following page

TTokenNotification 9-149

See also TNotifier

TMethodNotifier

TProcNotifier

“Object arbitration classes” in Chapter 8, “ASLM Utility Class
Categories.”

TArbitratorExample1, TArbitratorExample2, and TArbitratorExample3
examples on the ASLM Examples disk.

9-150 Chapter 9 / Utility Classes and Member Functions

TTraceLog

The TTraceLog abstract class can help you in debugging.

The TTraceLog class has the following inheritance:

TDynamic --> TTraceLog

Description The TTraceLog class provides a Trace member function that has a
parameter list equivalent to that of the C-language printf subroutine.
When you send unformatted text to Trace, the text is formatted and is
usually sent to a window, but this depends on the implementation of the
TTraceLog subclass.

The GetGlobalTraceLog function provides a TTraceLog subclass that
will send traces to the TraceMonitor’s Trace window. The
SetGlobalTraceLog function can be used to change the global
TTraceLog to your own TTraceLog subclass.

Declarations #define kTTraceLogID "slm:dbug$tlog,1.1"

TTraceLog();

virtual ~ TTraceLog();

virtual void Trace(char *formatStr, ...) const;

// New member functions

Boolean IsTraceLogOn() const;

void TraceLogOn();

void TraceLogOff();

virtual void TraceFormatted(char* outstr) const = 0;

virtual void TraceUnformatted(void* argp) const;

Member functions IsTraceLogOn

The IsTraceLogOn member function returns true if tracing is turned on
for the TTraceLog object.

Trace

The Trace member function calls TraceUnformatted and passes the
address of the FormatStr parameter as the parameter for
TraceUnformatted. The Trace member function, like printf, takes an
unformatted string with multiple parameters.

Continued on following page

TTraceLog 9-151

TraceFormatted

The TraceFormatted member function displays the trace string passed to
it. This is the only member function that a TTraceLog subclass must
implement. The default global trace log sends the trace to the
TraceMonitor’s Trace window.

TraceUnformatted

The TraceUnformatted member function formats the trace to get the
actual string to output. It then calls TraceFormatted to output the trace
string.

TraceLogOn
TraceLogOff

You can turn a TTraceLog object’s tracing on and off by calling the
TraceLogOn and TraceLogOff member functions. You can also turn
tracing on and off for any object that inherits from TDynamic by calling
TDynamic::TraceOn and TDynamic::TraceOff, but only if the TDynamic
subclass implements TraceOn, TraceOff, and IsTraceOn. By default,
TraceOn and TraceOff do nothing, and IsTraceOn always returns true.

9-152 Chapter 9 / Utility Classes and Member Functions

TUseCount

The TUseCount class is a data structure for maintaining a use-count value.

The TUseCount class has no parent class.

Description The TUseCount class is defined inline and has only one field, the fValue
field, so it requires no more overhead than any other use-count field unless
a short was used instead of a long.

The TUseCount class returns true if Increment is called for the first time
(that is, when the use count goes from 0 to 1) and when Decrement is
called for the last time (when the use count goes from 1 to 0, or goes
negative). Generally, when Decrement is called for the last time, that is a
signal that some action must be taken. For example, if you want to delete
an object after its use count goes to 0, a program can execute a statement
such as:

if (myObject.fUseCount->Decrement()) delete myObject;

The advantage of using the TUseCount class is that the increment and
decrement tests are atomic. If a program does not use the TUseCount class
, but instead executes a statement such as:

if (--useCount <= 0)

The MPW compiler decrements the location of useCount, and then makes
a separate test of the location. If the use count is changed at interrupt time
after the first instruction is issued, but before the second, other routines
may assume that they have incremented the use count from 0 to 1 or have
decremented it from 1 to 0, which can cause problems.

In order to work, TUseCount must store a value that is one less then the
actual use count. Thus, when the use count is 0, the value stored is actually
-1. Therefore, SetUseCount is used to set the use count and SetValue is
used to set the value (the use count -1).

Continued on following page

TUseCount 9-153

Declarations struct TUseCount

{

void SetValue(long);

void SetUseCount(long);

long GetValue() const;

long GetUseCount() const;

void Init();

Boolean Increment(); // Returns True if first time

Boolean Decrement(); // Returns True if back to unused

Boolean IsUnused() const;

long fValue;

};

Member functions Increment
Decrement

The TUseCount member function returns true if Increment is called for
the first time and when Decrement is called for the last time. When
Decrement is called for the last time, it is a signal that some action must be
taken.

Init

The Init member function is used to reset the use count to “unused.” In
other words, the use count is set to 0 (value set to -1).

IsUnused

The IsUnused member function returns true if the use count is currently
“unused” (the use count is 0).

SetValue
GetValue

The SetValue and GetValue member functions are used to set and get
the value (the use count -1).

SetUseCount
GetUseCount

The SetUseCount and GetUseCount member functions are used to set
and get the use count.

9-154 Chapter 9 / Utility Classes and Member Functions

IV Appendixes

Appendix A Header Files

To use the ASLM, a client must include certain ASLM header files. Five
header files are provided with the ASLM:

LibraryManager.h

LibraryManagerClasses.h

LibraryManagerUtilities.h

GlobalNew.h

TestTool.h

This appendix provides a general description of the contents of the ASLM
header files.

LibraryManager.h

The LibraryManager.h header file contains essential interfaces for using
the ASLM. Declarations in LibraryManager.h include the
TLibraryManager, TDynamic, and TClassID classes; error codes; macros
for exception handling; and some function declarations, including the
declarations of InitLibraryManager and NewObject. The
TLibraryManager, TDynamic, and TClassID classes are described in
Chapter 9, “Utility Classes and Member Functions.” The C interface for
TLibraryManager is described in Chapter 7 “ASLM Utilities.”

You can include the LibraryManager.h file in both C and C++ programs.

LibraryManagerClasses.h

The LibraryManagerClasses.h header file contains all the ASLM classes
that are not defined in LibraryManager.h. If you write an application that
uses or subclasses any classes declared in LibraryManagerClasses.h, the
application must include the LibraryManagerClasses.h file. The
LibraryManagerClasses.h file also contains function declarations that deal
with certain classes defined in the file, such as GetGlobalArbitrator and
GetGlobalTaskScheduler.

You can include the LibraryManagerClasses.h file in both C and C++
programs. However, most C programs will not need this file.

LibraryManagerUtilities.h

The LibraryManagerUtilities.h header file contains the interface to many of
the utility functions and macros provided with the ASLM. The functions
and declarations included in the LibraryManagerUtilities.h header file are
described in Chapter 7, “ASLM Utilities”.

You can include the LibraryManagerUtilities.h file in both C and C++
programs.

A-2 Appendix A / Header Files

GlobalNew.h

The GlobalNew.h header file contains the interface to the ASLM global
new and delete operators, which allocate memory from pools rather than
from the free store conventionally used in C++ programs. For more details
on memory pools and the new and delete operators, see “Memory
Management Classes” in Chapter 8 and “Using the ASLM Global new and
delete Operators” in Chapter 6.

You can include the GlobalNew.h file only in C++ programs.

TestTool.h

The TestTool.h header file contains the interface to the TTestTool class, a
class used by the MPW tool TestTool provided with the ASLM. TTestTool
is a base class used for writing ASLM classes that can be used as test
modules. TestTool creates and executes TTestTool subclasses. TestTool
allows you to load and unload the ASLM, and load and run tests
implemented by classes descended from TTestTool. You can also specify
options to be passed on to the loaded objects.

TestTool is provided in executable form in the Tools folder on the ASLM
Developer Tools disk, and is provided in source code form on the ASLM
Examples disk. For instructions on building and using TestTool, see
Appendix B, “ASLM Utility Programs.”

You can include the TestTool.h file only in C++ programs.

Test Tool.h A-3

Appendix B ASLM Utility Programs

The ASLM includes several utility programs that demonstrate how shared
libraries work and perform a variety of useful tasks. The source code for
these programs has been provided in case you want to examine them or
make use of them in your own clients and shared libraries.

The ASLM’s utility programs are located on the ASLM Debugging Tools
and the source code can be found on the ASLM Examples disks. This
appendix describes the following utility programs and explains how to use
them:

LibraryManagerTest1

LibraryManagerTest2

Inspector

TestTool

TraceMonitor

For information on how to build the utility programs, refer to the section
“Building the Examples” in Appendix C “Using the Example
Programs.”

LibraryManagerTest1 and LibraryManagerTest2

LibraryManagerTest1 and LibraryManagerTest2 are MPW tools that
demonstrate how you can write shared libraries and clients in C++ and C.
These tools can also perform a quick test of the ASLM so that you can tell
whether the ASLM is working properly. Source code for the tools are
provided in the ExampleLibrary folder on the ASLM Examples disk. The
executable code is in the LibraryManagerTest folder on the ASLM
Dubugging Tools disk.

Both LibraryManagerTest1 and LibraryManagerTest2 rely on a shared
library named ExampleLibrary. The source code that builds
ExampleLibrary is on the ASLM Examples disk, along with the source code
for the two tools. A copy of the library that is already built is on the ASLM
Debugging Tools disk, along with the executable LibraryManagerTest1
MPW tool.

To run the LibraryManagerTest1 and LibraryManagerTest2 tools, you
must copy them into your MPW Tools folder. You must also copy the
ExampleLibrary file into your system Extensions folder. This is described
in “Installing the Debugging Tools” in Chapter 3, “ASLM Installation.”

The makefile in the ExampleLibrary folder builds two MPW tools:
LibraryManagerTest1, which tests ExampleLibrary, and
LibraryManagerTest2, a C version of LibraryManagerTest1. The same
makefile builds a shared library named ExampleLibrary, which is used by
the LibraryManagerTest1 and LibraryManagerTest2 tools.

The LibraryManagerTest1 and ExampleLibrary files supplied on the ASLM
Debugging Tools disk are identical to the ones built using the makefile in
the ExampleLibrary folder.

How LibraryManagerTest1 and LibraryManagerTest2 Work

Functionally, LibraryManagerTest1 and LibraryManagerTest2 are almost
identical. LibraryManagerTest1 is written in C++, while
LibraryMangerTest2 is written in C and shows how to call methods of
classes from C.

Both tools instantiate objects in the ExampleLibrary and call functions that
are implemented in a function set in the ExampleLibrary file.

B-2 Appendix B / ASLM Utility Programs

The syntax of the LibraryManagerTest1 and LibraryManagerTest2
commands is:

LibraryManagerTest1 [-v] [-t 0|1] [-c nReps] [-s] [-l] [-x]

-i classID

LibraryManagerTest2 [-v] [-t 0|1] [-c nReps] [-s] [-l] [-x]

-i classID

where:

-v Turns on verbose mode, which prints progress messages
in the MPW worksheet. Default is off.

-t Turns on tracing. Default is off.

-c nReps Sets the number of times a test loop will run. The nReps
variable is a positive integer that can be set to the
number of times the test will iterate its while loop.

-s Unloads the ASLM.

-l Loads the ASLM.

-x Turns on debugging.

-i classID Tests GetClassInfo with the specified class ID.

Running LibraryManagerTest1 or LibraryManagerTest2

You can run the LibraryManagerTest1 file located in either the ASLM
Debugging Tools disk or the ASLM Examples disk. Before running
LibraryManagerTest1 or LibraryManagerTest2 do the following.

Drag LibraryManagerTest1 or LibraryManagerTest2 into your MPW
Tools folder.

Drag the ExampleLibrary from the Built folder file into your Extensions
folder.

To run the LibraryManagerTest1 tool, execute the LibraryManagerTest1
command by entering this command:

LibraryManagerTest1

LibraryManagerTest1 and LibraryManagerTest2 B-3

If the ASLM is installed in your system and is operating properly,
LibraryManagerTest1 prints an analysis similar to the following:

Hello(ulong&):Hello

startticks = 283301

Hello(ulong*):Hello

startticks = 283309

HelloC(ulong*):Hello

startticks = 283316

HelloPascal(ulong&):Hello

startticks = 283323

100000 Iterations of Hello: 180

100000 Iterations of local Hello: 144

Elapsed ticks (according to 'C' interface): 151

Elapsed ticks: (according to Pascal interface): 155

The LibraryManagerTest2 tool also tests the ASLM and provides output
similar to that of the LibraryManagerTest1 tool shown earlier. To run the
LibraryManagerTest2 tool enter the command:

LibraryManagerTest2

The Inspector application

The Inspector is an application that helps you debug shared libraries. The
Inspector lets you inspect objects that are implemented in shared libraries
and is a good example of how to write a shared library that displays
windows, menus, and dialog boxes. The source code is in the Inspector
folder on the ASLM Examples disk. The Inspector also allows you to load
or unload the ASLM, register a shared library file, or register a shared
library file folder.

The makefile in the Inspector folder builds the Inspector application along
with InspectorLibrary and WindowStackerLibrary (two shared libraries
required by the Inspector application).

In case you do not choose to build the Inspector example, an executable
copy of the Inspector application and its libraries—InspectorLibrary and
WindowStackerLibrary— can be found, already built, on the ASLM
Debugging Tools disk.

For information on how to register C++ objects with the Inspector, see
“Registering C++ Objects with the Inspector” in Chapter 7, “ASLM
Utilities.”

B-4 Appendix B / ASLM Utility Programs

Running the Inspector

Before running the Inspector, you must drag the InspectorLibrary and
WindowStackerLibrary files into your system Extensions file.

To run the Inspector:

1 Run the Inspector by double-clicking the application icon in the Finder.

2 If the ASLM is loaded, the Inspector starts and displays three or more
windows.

How the Inspector works

Each window that the Inspector displays represents a C++ class. The title of
each window is the class ID for the class that the window represents.

In the content region of each window, there is a list of instantiated objects
that belong to the class represented by the window. These objects are
registered by calling RegisterDynamicObject.

Next to the name of each object, there is a text string. These strings are
returned by each object’s GetVerboseName method. The GetVerboseName
method is a TDynamic class method that can be overridden by its subclasses.
(For more information about the TDynamic class and its methods, see
Chapter 9, “Utility Classes and Member Functions.”)

The Inspector always displays at least three windows, each of which
represents a class used internally by the ASLM. The three main windows that
the Inspector displays can be useful when you want to see which shared
libraries, shared library files, and classes are currently recognized by the
ASLM. The windows also provide some useful information about each class:

The !$file window contains one object for each shared library file. The
information supplied for the object includes the object’s filename,
directory ID, and volume refNum.

The !$libr window contains one object for each shared library. The
information in this window includes the use count for the library (a use
count of 0 means the library is not in use and is not loaded), the
library’s unformatted version number, and information about the
library’s library file.

The !$clss window contains one object for each class in a shared library.
The information presented in this window includes the class’ flags, use
count, and class ID. Function sets are also displayed in this window.

The use count in the !$clss window is not necessarily the number of
instances of the class. Although the use count is incremented each time an
instance is created, it is also incremented each time a library containing a
subclass of the class is loaded, even if the subclass is not instantiated.

The Inspector application B-5

Here are the flags you see in the Inspector. Flags are in hex. The values in
the inspector are also in hex and represent the sum of all the flags that are
set.

The following are the flags for the !$clss window:

1: the class has the preload flag set

2: the class has the NewObject flag set

4: the class is actually a function set

8: the class has a virtual destructor

10: the class is a dummy function set resulting from the use of
the interfaceID= option for function sets

40: the class uses multiple inheritance

80: the class is an ASLM root class

The following are the flags for the !$libr window:

1: the library is built with flags=preload

2: the library is built with memory=client rather than
memory=local.

4: the library is built with flags=noSegUnload rather than
flags=segUnload

8: the library is built with flags=loaddeps or
flags=forcedeps

10: the library is built with flags=forcedeps

20: the library is built with flags=loadself

80: the library uses per client data

100: the library is built with heap=temp

200: the library is built with heap=system

400: the library is built with heap=HOLD

100 and 200: the library is built with heap=application

Inspector menus

The Inspector has the standard Macintosh File and Edit menus (although
the Edit menu is not activated), a Windows menu, and a Commands menu.
From the Windows menu, you can select and stack windows. The Tile
Windows command under the Windows menu is currently not
implemented.

B-6 Appendix B / ASLM Utility Programs

The Commands menu contains commands to reload and unload the ASLM,
to turn tracing on and off, and to switch from the Inspector’s normal mode
to a bare-bones simple program mode that has only a File menu and an
Edit menu and that does not display windows. When in this mode, the
Inspector does not require its shared libraries and does not require that the
ASLM be loaded.

The Unload Library Manager command and the Reload Library Manager
commands are used mainly for testing purposes.

WARNING Choosing Unload Library Manager during normal use of
the ASLM can cause any client currently using the ASLM to crash.

The Goto Simple Program command in the Commands menu places the
Inspector in its simple program mode, which does not display windows and
does not require the ASLM to be loaded. This mode lets you launch the
Inspector without having the ASLM present. You can then load the ASLM
from within the Inspector.

Choosing the Goto Simple Program command is not the only way to put
the Inspector into simple program mode. If the ASLM is not loaded when
you launch the Inspector application, the Inspector goes into simple
program mode automatically. Another way to put the Inspector into simple
program mode is to unload the ASLM while the Inspector is running. You
can do that by choosing the Unload Library Manager command.

When the Inspector is in simple program mode, only the File menu is
active. If the ASLM is loaded, you can take the Inspector out of Simple
Program mode by choosing Goto Real Program (the mode with windows),
or you can unload the ASLM by choosing Unload Library Manager (see
the warning above). If the ASLM is not loaded, you can load it, but only if
it was loaded at boot time and has since been unloaded.

The Register Folder menu item will register the folder you select as a
registered library file folder by using the RegisterLibraryFileFolder
function. You can unregister the folder by using Unregister Folder.
Likewise, Register File registers the library file you select with the ASLM
by using the RegisterLibraryFile function, and Unregister File allows
you to unregister the library file.

The Inspector application B-7

TestTool

TestTool is an MPW tool that allows you to load and unload the ASLM and
test classes included with the ASLM and shared libraries that you develop
yourself.

The makefile in the TestTools folder builds TestTool and a shared library
named TestLibrary. The source code files that are used to build TestTool
and TestLibrary are on the ASLM Examples disk.

The TestTool file and the TestLibrary file that are built using the makefile
on the ASLM Examples disk are identical to the executable copies of
TestTool and TestLibrary that are supplied in the TestTool folder on the
ASLM Debugging Tools Disk.

Using TestTool

Before running TestTool, drag the TestTool file into your MPW Tools
folder, and the TestLibrary file into your system Extensions folder.

You can run TestTool by executing the TestTool command. To execute the
TestTool command, pass the name of the class to do the testing as a
parameter on the command line. TestTool then runs the tests by calling the
object’s methods. The class must inherit from the TTestTool class, which
is declared in the TestTool.h header file. You can write your own
TTestTool subclasses if you like.

The syntax of the TestTool command is:

TestTool [v] [-t0|1] [-n nReps] [-s] [-l] [-x] [-p]

[-c ClassID] [-a]

where:

-v Turns on verbose mode, which prints progress messages
in the MPW worksheet. Default is off.

-t Turns on tracing Default is off.

-n nReps Sets the number of times a test loop will run. The
nReps variable is a positive integer that can be set to the
number of times the test will iterate its while loop.

-s Unloads the ASLM.

-l Loads the ASLM.

-x Turns on debugging.

-p Does not allow the memory pool to grow.

B-8 Appendix B / ASLM Utility Programs

-c classID Runs tests using the specified class.

-o Remaining arguments are passed to
<YourTestTool>::InitTest

-a Runs all tests.

This is an example of a TestTool command:

TestTool -v -t -n 5 -c TTestTaskScheduler

TestTool classes

The class ID variable that you specify in the -c option should not contain a
prefix because all TTestTool subclasses use a class ID with the slm:test$
prefix. Note that the class ID variable is case sensitive. (For more
information on class IDs, see “TClassID” in Chapter 9, “Utility Classes
and Member Functions.”)

The TestLibrary contains the following classes that you can use with
TestTool:

TTestAbitrator TTestNoVTable

TTestTaskScheduler TTestRandom

TTestTimeScheduler TTestStandardPool

TTestTimeStamp TTestTimings

TTestExceptions TTestPriorityList

TTestFSet TTestAllocLinkedList

TTestHashList TTestLinkedList

TTestMisc

The TraceMonitor application

The TraceMonitor application displays traces that are sent by ASLM clients
using the Trace routine. The Trace routine sends output to the currently
installed global trace log. The global trace log that the ASLM installs, sends
the traces to the TraceMonitor application which displays them in its main
window. Traces can be useful for debugging shared libraries since they do
not have access to any other type of debugging window. For more
information, see “Using the Global TraceLog” in Chapter 7, “ASLM
Utilities.”

The TraceMonitor application B-9

Appendix C Using the Example Programs

The ASLM package contains a collection of example programs that can
help you create and build clients and shared libraries. Source code is
provided so that you can examine, and then compile and link into
executable clients and shared libraries. Some of the code samples in this
document are taken from these examples.

The examples are in seven folders on the ASLM Examples Disk:

Example Tools

ExampleLibrary

FunctionSetInfo

Inspector

Sample INIT

Sample Apps

TestTools

The examples in the folders ExampleLibrary, Inspector, and TestTools are
utilities described in Appendix B “ASLM Utility Programs.”

The programs in the folders Sample Apps, Sample INIT, ExampleTools,
and FunctionSetInfo are examples of clients and shared libraries written in
C++, C, and Pascal, and a sample Extension (INIT) that makes use of the
ASLM.

Each of the example folders contains a makefile and a set of three folders
named Sources (containing the source files), Objects (containing the object
files), and Built (containing the built files). The Example Tools folder has a
BuildExample script instead of a makefile. If an example has more than
one makefile, execute the makefile that builds the shared libraries first and
the tools or applications second.

The Sample Apps folder

The sample programs in the Sample Apps folder are patterned after the
Sample.c and Sample.p programs that are supplied with MPW. Like
Sample.c and Sample.p, each sample program in the Sample Apps folder
displays a single window on the screen. The window contains a picture of a
traffic light. By either clicking inside the picture or selecting a menu item,
you can make the traffic light switch back and forth between red and green
(or between two different patterns if you do not have a color Macintosh).

Each version of the program provided with the ASLM is divided into two
parts: a client and a shared library. Code that is not likely to be useful in
other programs (in the opinion of its author) was placed in the client section
of each program. Code that was believed more likely to find its way into
other programs was placed the shared library associated with each client.

The sample programs in the Sample Apps folder are

CSample, a client and shared library written in C

CPlusSample, a client and shared library written in C++

CCPlusSample, a client written in C and a shared library written in C++

PSample, a client and shared library written in Pascal

Before running any of the sample applications, the shared library file that is
built with the application must be placed in the Extensions folder.

The Sample INIT folder

The Sample INIT folder contains an example of an INIT that uses a shared
library. The example includes a shared library that implements the
ShowINIT function commonly used by INITs. The INIT in this example
calls the ShowINIT function in the shared library.

The source files in the Sample INIT folder include

SampleINIT.c, a C-language example that shows how Extensions
(INITs) can use the ASLM

SampleINIT.r

ShowINITLibrary.c

ShowINITLibrary.exp

ShowINITLibrary.h

ShowINITLibrary.r

Before rebooting your machine, the SampleINIT and ShowINITLibrary
files must be placed in your Extensions folder.

C-2 Appendix C / Using the Example Programs

The FunctionSetInfo folder

The FunctionSetInfo folder contains an example of how to find all
function sets that have a common interface ID by using the
GetFunctionSetInfo function. In the example, there are two function
sets, MathFSetAdd and MathFSetSub, which share a common interface.
The TestMathSet MPW tool uses GetFunctionSetInfo to find these
function sets and then calls the MathFunction1 and MathFunction2
functions in each function set by using GetFunctionPointer. After
building the example, the MathLibrary file must be placed in the
Extensions folder before running the TestMathFSet tool.

The source files in the FunctionSetInfo folder include

TestMathSet.c, which is an MPW tool that demonstrates how to use
GetFunctionSetInfo

MathFSetAdd.c, which is the implementation of the MathFSetAdd
function set

MathFSetSub.c, which is the implementation of the MathFSetSub
function set

The Example Tools folder

The Example Tools folder contains a large assortment of tools that
demonstrate how you can use the utility classes supplied with the ASLM in
your clients and shared libraries.

The example tools that are built have file names that are, for the most part,
self-explanatory. The programs are

LibraryManagerExample TPoolNotifierExample

TArbitratorExample1 TPriorityListExample

TArbitratorExample2 TPrioritySchedulerExample

TArbitratorExample3 TProcNotifierExample

TArrayExample TSerialSchedulerExample

TClassInfoExample TSimpleListExample

TInterruptSchedulerExample TTaskSchedulerExample

TLinkedListExample TTimeExample

TMacSemaphoreExample TTimeSchedulerExample

TMethodNotifierExample TTokenExample

The Example Tools folder C-3

Building the examples

When you build an example you must always copy its shared library (if it
has one) into the Extensions folder before running the example (unless
you want to see an example of ASLM exception handling).

To build the example programs, do the following:

1 Set {SLMInterfaces} to the directory where the ASLM interface files are
located, and export SLMInterfaces.

2 Set {SLMLibraries} to the folder where the ASLM MPW libraries are
located, and export SLMLibraries.

3 Either add the directory where the ASLM tools are located to your
{Commands} path or copy the tools into the MPW Scripts and Tools
folders.

The following sample code builds the example programs. This sample
assumes that the ASLM Developer Tools disk is located on a hard drive
named HD:

set SLMInterfaces "HD:ASLM1.1: Developer Tools:Interfaces:"

export SLMInterfaces

set SLMLibraries "HD:ASLM1.1: Developer Tools:Libraries:"

export SLMLibraries

set Commands "HD:ASLM1.1: Developer Tools:Tools:,{Commands}"

You must be in the directory containing the makefile for the example to
build. If you want to build all the examples at once, set the current
directory to the ASLM Examples folder and then execute the following:

directory :ExampleLibrary

make > make.out

make.out

directory ::Inspector

make -f makefile.libs > make.out

make.out

make > make.out

make.out

directory ::TestTools

make > make.out

make.out

make -f makefile.tools > make.out

make.out

C-4 Appendix C / Using the Example Programs

directory '::Sample INIT:'

make > make.out

make.out

directory '::FunctionSetInfo:'

make > make.out

make.out

directory '::Example Tools:'

BuildExample -a

directory '::Sample Apps:'

directory ':CSample:'

make > make.out

make.out

directory '::PSample:'

make > make.out

make.out

directory '::CCPlusSample:'

make > make.out

make.out

directory '::CPlusSample:'

make > make.out

make.out

Building .SYM files for clients, libraries, and tools

To build the example programs with .SYM files, you must execute the
following command before running the makefiles for the examples.

Set SymbolOption "-sym on"; export SymbolOption

The .SYM files that you create in this manner are placed in the Built folder
of the example that you are building. This will only work for the Inspector,
ExampleLibrary, and TestTools examples.

Building the examples C-5

Appendix D Versioning

When you write a shared library or a client, you can specify the version
numbers of function sets and classes implemented in the shared library or
used by the client. You can place both the current version and the
minimum supported version of a function set or class in the exports file of
the library that you are writing. The class version information that you
place in an exports file is represented by a range of numbers. For example,
1.0...1.2, indicates the oldest version (1.0) and the most recent version (1.2)
supported by the class. Version numbers are referred to in terms of major,
minor, and bug-fix. A period separates the major, minor, and bug-fix
numbers. In version 3.5.2, the major number is 3, the minor number is 5,
and the bug-fix number is 2.

When you create an object or call a function that is implemented in a
shared library, the ASLM uses the class or function set with the newest
version number that is also compatible with the version specified in the
client object file with which the client linked.

When a client uses the NewObject function to create an instance of a class,
the ASLM uses the class with the newest version number that is also
compatible with the version specified in the class ID passed to NewObject.
If the class ID contains no version number then the latest version is always
used. The same is true when you use the GetFunctionPointer routine to
get a pointer to a function in a function set. The function set ID determines
which version of the function set will be used.

You can place version information in function set IDs and class IDs. In fact,
both function set IDs and class IDs should contain version numbers. For
more information on this topic, see “TClassID” in Chapter 9, “Utility
Classes and Member Functions.”

Shared libraries also have version numbers. When you are developing a
shared library, you can assign version numbers to progressive versions of a
shared library. The version number should also be part of the library ID so
that each version of the shared library will have a unique library ID. The
library’s version number also serves as the default version for function sets
and classes that do not specify a version. Therefore, when you assign a
version number to a shared library, each function set and class in the
library that does not have its own version number is assigned the version
number of its shared library.

When there are multiple shared libraries with the same library ID, the
ASLM registers all of the shared libraries, however, only the function sets
and classes in one of the libraries will be used. The others are marked as
duplicates and are not used, even if different version numbers are used for
the libraries, function sets, or classes.

How versioning works

When a shared library is built, information about the version of each
function set and class is placed in the library’s client object (.cl.o) file.
Therefore, the client object file with which a client links determines which
version of the function set or class is used by the client. For example,
assume that a .cl.o file contains a function set or class that is designated as
version 1.2. When the class is created (or when a function in the function
set is called) the ASLM looks for the function set or class with the highest
version number that supports the version in the .cl.o file that the client
linked with—in this case, version 1.2.

Now assume that three versions of a class exist: version 1.2 (which supports
versions 1.0…1.2), version 1.4 (which supports versions 1.1…1.4), and
version 1.5 (which supports versions 1.3…1.5). If a client links with the
client object file for the 1.2 version of the function set or class, the ASLM
chooses version 1.4 because it is newer than version 1.2, and because
version 1.5 does not support version 1.2. If the client linked with the client
object file for the 1.0 version of the function set or class, version 1.2 of the
function set or class is used because it is the only one that supports
version 1.0.

It is possible for multiple versions of a function set or class to be in use at the
same time. This can happen if the version ranges of the classes do not
completely overlap (for example, if the available version ranges are 1.1…1.4
and 1.3…1.5) or if an older version of a function set or class is in use when a
new version is made available. The older version of the function set or class
continues to be used by its existing clients but the newer version is used by
any new clients that start up after the new function set or class is added.

D-2 Appendix D / Versioning

Note: If a class does not have a virtual destructor, only one version of the
class can be used at a time. This restriction is needed to ensure that the
proper destructor is called when instances of the class are deleted.

Function sets can maintain backwards compatibility by always listing the
function to be exported in the same order in the exports file and not
changing the interfaces of existing functions. If this is done, new functions
may be added to the function set and the version range of the function set
can continue to include older version numbers.

Version numbers and subclasses in C++

If new data members or virtual member functions are added to a class, the
user of the class is unaffected because the v-table offsets of the functions
and the locations of the data members of the class that the user knows
about remain the same.

However, subclassing a class that has added virtual member functions or
data members has a definite impact on the subclass. If virtual member
functions are added to a base class, they will be overwritten by the new
virtual functions of the subclass. This is not necessarily a problem, provided
the parent class does not call any of the new functions itself. If you pass an
object that is an instance of the subclass to a function holding the new
definition of the base class, the function may attempt to call new member
functions of the class. Since this will probably fail, the function will then
call the overwritten function in the subclass. Similar problems may arise
when data members are added to a class.

To prevent this problem, a change in a class’s major version number
indicates that the class is no longer subclass compatible with previous
versions of the class. Clients linked with the older version’s client object file
may instantiate the class and get the new class if the new class is backwards
compatible. However, auto (stack) objects, objects created with the
nondefault new operator, imbedded objects, and objects that are instances
of the subclass whose major version number changed, can only use the
class with the same major version number as the version number for the
class contained in the client object file that the client or shared library
linked with.

If the base class has its version numbers set correctly, subclass compatibility
is all handled automatically. For example, assume you implemented
version 1.0 of a class called TFoo that is subclassed by a class called
TSubFoo (which is in another shared library), and then a newer version of
TFoo is introduced that has added some virtual functions, but is otherwise
compatible with version 1.0. As a result, the major version of TFoo must
change, and you must use version 1.0…2.0 (not 1.0…1.1). When someone

Version numbers and subclasses in C++D-3

creates an instance of TSubFoo, TSubFoo will automatically use version 1.0
of TFoo since it was linked with version 1.0 of the client object file
containing TFoo and it knows that version 2.0 is not subclass compatible.

Using the example above, if a client was linked with version 1.0 of the
client object file containing TFoo, then it would automatically use version
2.0 of TFoo when it creates instances of TFoo using the default new
operator. However, if the client created an instance of TFoo using a
nondefault new operator (such as one where you explicitly specify the pool
out of which to allocate memory) or if the object is a stack object then
version 1.0 of TFoo is used automatically.

The reason version 1.0 is used in this instance is because the memory for
the object is allocated by the client, and not by the constructor of the object
as it is when using the default new operator. Since the client will not have
any idea that the size of the object has grown, it needs to play it safe and
only use a version that it knows is subclass compatible.

If there is a version incompatibility (that is, if there is no shared class with a
compatible version), an exception is raised using the error code
kVersionError or the error code kNotFound.

WARNING The sizeof function always returns the size of the class
declared in the interface files with which a library or a client is
compiled. However, if you use the new operator to create an instance
of the class, you may get an object back that is bigger then the result
of the sizeof function. This is possible if a newer version of the
class exists, the newer version adds new data members, and indicates
how to be compatible with the class you requested. This will not occur
if the object created is a stack object or an embedded object. In this
case, you get an object of the correct size. To ensure that you get the
correct size of a class, call GetObjectsSize after creating an
instance of the class.

D-4 Appendix D / Versioning

The following table summarizes how to handle your class version numbers
when you make changes to the class:

Change made to the class Action needed for versioning

Virtual functions deleted Change the class ID of the class

Data members deleted Change the class ID of the class

Virtual functions added after the Increase the major version of the class
last virtual function

Data members added after the Increase the major version of the class
last data member

Implementation changed Increase the minor or bug-fix version of the
class

Non-virtual methods added Increase the minor or bug-fix version of the
class

A new constructor added after the Increase the minor or bug-fix version of the
last constructor class

Change made to a data member If the data member is the same size, and you
have no inline functions to it, just increase the
minor or bug-fix version of the class.
Otherwise, you need to change the class ID of
the class.

Version numbers and subclasses in C++D-5

