g
' Apple Shared Library Manager
Developer’s Guide

< Apple Computer, Inc.

This manual and the software described in it are
copyrighted, with all rights reserved. Under the
copyright laws, this manual or the software may not be
copied, in whole or part, without written consent of
Apple, except in the normal use of the software or to
make a backup copy of the software. The same
proprietary and copyright notices must be affixed to
any permitted copies as were affixed to the original.
This exception does not allow copies to be made for
others, whether or not sold, but all of the material
purchased (with all backup copies) may be sold, given,
or loaned to another person. Under the law, copying
includes translating into another language or format.

Y ou may use the software on any computer owned by
you, but extra copies cannot be made for this purpose.

The Apple logo is aregistered trademark of Apple
Computer, Inc. Use of the “keyboard” Apple logo
(Option-Shift-k) for commercial purposes without the
prior written consent of Apple may constitute
trademark infringement and unfair competition in
violation of federal and state laws.

Every effort has been made to ensure that the
information in this manual is accurate. Apple is not
responsible for printing or clerical errors.

© Apple Computer, Inc., 1993
20525 Mariani Avenue
Cupertino, CA 95014-6299
(408) 996-1010

Apple, the Apple logo, APDA, AppleLink, AppleTalk,
A/UX, LaserWriter, and Macintosh are trademarks of
Apple Computer, Inc., registered in the United States
and other countries.

Finder is atrademark of Apple Computer, Inc.

Adobe, Adobe Illustrator, and PostScript are trademarks
of Adobe Systems Incorporated, which may be
registered in certain jurisdictions.

Helvetica, Linotronic, and Times are registered
trademarks of Linotype Company.

Microsoft and MS-DOS are registered trademarks of
Microsoft Corporation.

NuBus is atrademark of Texas Instruments.

0S/2 is aregistered trademark of International Business
Machines Corporation.

Windows is aregistered trademark of UNIX System
Laboratories, Inc.

Simultaneously published in the United States and
Canada.

Mention of third-party products is for informational
purposes only and constitutes neither an endorsement
nor a recommendation. Apple assumes no
responsibility with regard to the performance or use of
these products.

Contents

Preface: About This Guide / xi

Part| Overview and Installation

1 Introduction to Shared Libraries / 1-1
Shared libraries / 1-1
Dynamic versus static linking / 1-2
Using shared libraries with object-oriented programs / 1-4
Updating code in shared libraries / 1-5
Modifying code in shared libraries / 1-6

2 Introducing the ASLM / 2-1
What the ASLM can do for you / 2-1
Some important terms and concepts / 2-3
Features of the ASLM [/ 2-5

3 ASLM Installation / 3-1

Installing the ASLM / 3-2
Installing the developer tools / 3-2
Installing the debugging tools / 3-3
Installing the examples / 3-4

Disk contents / 3-4
ASLM Installer disk / 3-4

ASLM Developer Toolsdisk / 3-5
Interfaces folder / 3-5
Librariesfolder / 3-5
Tools folder / 3-6

ASLM Debugging Tools disk / 3-7
ASLM Examplesdisk / 3-8

Preparing to usethe ASLM / 3-8

Part Il Developing Clients and Shared Libraries

4 Writing and Building Clients / 4-1
Overview / 4-2
Writing aclient / 4-2
Building aclient / 4-5
Makefiles for building clients / 4-6
Calling shared library functions from Pascal / 4-7
Calling shared libraries from assembly language / 4-7
Creating instances and calling member functions of shared classes / 4-8

The current client / 4-10
Who needs to set the current client? / 4-10
Determining the current client / 4-11
Setting the current client / 4-11

The LibraryManager.o file / 4-14

5 Writing and Building Shared Libraries / 5-1
Overview / 5-2
Writing a shared library / 5-2
Building a shared library / 5-3
Build utilities / 5-5
Using Bui | dShar edLi brary / 5-5

Building a shared library with circular dependencies / 5-12
Creating client object files and intermediate files / 5-12
Linking the shared library / 5-13

Creating symbol files / 5-13

Makefiles / 5-14
A makefile example / 5-14
Makefile example contents / 5-17
Executing a shared library makefile / 5-17

Writing an .exp file / 5-18

Li br ary declaration / 5-18
Syntax / 5-18
Field descriptions / 5-19

d ass declarations / 5-23
Syntax / 5-23
Field descriptions / 5-24

Functi onSet declarations / 5-27
Syntax / 5-28
Field descriptions / 5-28

iv Contents

Part lll
7

Library environment flags / 5-31
Putting multiple librariesin alibrary file / 5-32

The LibraryManager.o file / 5-33
LibraryManager.debug.o and LibraryManager.debug.n.o / 5-33

Library heap support / 5-33
Log file support / 5-35

Speeding up builds / 5-36
Using the - keepd i ent Fi | es option / 5-36

Linking with model near code / 5-37

Using MPW libraries / 5-38

Segmentation and run-time architecture / 5-39

Support for explicit segment loading and unloading / 5-40
Keeping preloaded libraries loaded / 5-42

Library global variables / 5-42

Using static objects in shared libraries / 5-43

Registering shared library files / 5-43

Using the ASLM / 6-1

Loading shared libraries / 6-2

Using the ASLM under System 6 and System 7 / 6-3
Using shared libraries overview / 6-3

Creating objects / 6-5
Creating an object with the new operator / 6-5
Creating an object using NewObj ect / 6-6
Creating stack objects / 6-6
Creating static objects / 6-7
Creating an object by setting aclass's preload flag / 6-8

TheTDynani ¢ family of base classes / 6-8
Using the ASLM globa newand del et e operators / 6-9
Virtual functions / 6-11

Reference

ASLM Utilities / 7-1

Registering shared library files and folders / 7-2

Registering and unregistering shared library file folders / 7-2
Registering a shared library file folder / 7-2
Unregistering a shared library file folder / 7-3

Contents

How registered folders are tracked / 7-4
Registering folders with the Inspector / 7-4

Registering and unregistering shared library files / 7-4
Preloading all dependent libraries / 7-6
Loading and unloading shared libraries / 7-8

Client death watch notification / 7-12
How death watcherswork / 7-13
The Not i fy function / 7-13

Global world functions / 7-14
Support for stand-alone code resources / 7-15

Creating and deleting the local library manager / 7-16
Thel ni t Li braryManager function / 7-17
The C eanuplLi br ar yManager function / 7-18

Getting the local library manager / 7-19
Calling functions by name / 7-19

Getting information about function sets / 7-21
Interrupt support / 7-23

Exception handling / 7-25
How to avoid raising exceptions / 7-26
Exception handling macros / 7-26
Using the exception handling macros / 7-28
Raising exceptions / 7-28
Rules and conventions for using exceptions / 7-29
Default exception handlers / 7-31
Exceptions and the current client / 7-31

Verifying an object’stype / 7-32

Verifying aclass' s base class / 7-33

Using Newoj ect /| 7-34

Loading and unloading the ASLM / 7-35

Getting the ASLM version / 7-35

Sending output to the TraceMonitor window / 7-35
Entering and leaving system mode / 7-35

Library file and resource management / 7-37
Getting alibrary’sTLi brary object / 7-43

Getting alibrary file'sTLi braryFi | e object / 7-44
Per client data / 7-45

Debugging macros / 7-45

Using the Global TraceLog / 7-46

vi Contents

Specifying alibrary file / 7-46
TFi | eSpec / 7-46
TMacFi | eSpec | 7-47

Miscellaneous routines / 7-47
Dest royPoi nter [/ 7-47
SLMsprintf / 7-48
Word and byte functions / 7-48
Memory functions / 7-49
Atomic routines for getting and setting bits / 7-49

Registering C++ objects with the Inspector / 7-50

ASLM Utility Class Categories / 8-1
Collection classes / 8-2

Object arbitration classes / 8-2
Registering object with an arbitrator / 8-3
Looking up objects and claiming tokens / 8-4
Notification / 8-5
Grouping related objects / 8-6
Private and global arbitrators / 8-7
An example use of object arbitration / 8-7

Memory management classes / 8-8
The system pool / 8-9
The local pool / 8-9
The client pool / 8-10
The default pool / 8-10

Process management classes / 8-11
Miscellaneous classes / 8-12

Utility Classes and Member Functions / 9-1
Class descriptions / 9-2
Mdynanmic / 9-3
TArbitrator / 9-4
TArray / 9-9
TArraylterator / 9-11
TAt omi cBool ean / 9-12
TBitMap / 9-13
TChunkyPool [/ 9-15
TG assID / 9-18

TC assinfo / 9-21

Contents vii

TCol l ection / 9-25
TDoubl eLong / 9-30
TDynamic / 9-33

TFast Random / 9-39

TFi | eSpec / 9-41

TFi | el DFi | eSpec / 9-43
TFormattedStream / 9-44
TFunctionSetID / 9-45
TG owperation / 9-46
THashDoubl eLong / 9-47
THashList / 9-48
THashListlterator / 9-52
THashQoj ect / 9-54
TInterrupt Schedul er / 9-55
Tliterator / 9-57
TLibraryFile / 9-59
TLibrarylD / 9-61

TLi braryManager /| 9-62
TLink / 9-67

TLi nkedList / 9-69
TListlterator / 9-71
TMacFi | eSpec / 9-73
TMacSemaphore / 9-74
TMat chObj ect / 9-76
TMenoryPool [/ 9-79

TMet hodNotifier / 9-86
TM croseconds / 9-88
TM I liseconds / 9-89
TNotifier / 9-90
TOperation / 9-92

TPool Notifier / 9-99
TPriorityLink / 9-101
TPriorityList / 9-102
TPriorityScheduler / 9-104

viii

Contents

Part IV
Appendix A

TProcHashObject / 9-106
TProcMat chQbj ect / 9-107
TProcNotifier / 9-109
TRequest Token / 9-110
TSCDynanmic / 9-113
TScheduler / 9-115
TSeconds / 9-118

TSerial Scheduler / 9-119
TSi mpl eDynanic / 9-120
TSimpleList / 9-121

TSi mpl eRandom / 9-125
TSt andar dPool / 9-126
TStdDynamic / 9-128

TSt dSi npl eDynanic / 9-130
TStopwatch / 9-131
TTaskScheduler / 9-132
TTest Tool / 9-134
TThreadSchedul er / 9-136
TTime /[9-137

TTi meScheduler / 9-139
TTimeStamp / 9-144
TToken / 9-145
TTokenNotification / 9-149
TTraceLog / 9-151
TUseCount / 9-153

Appendixes

Header Files / A-1
LibraryManager.h / A-2
LibraryManagerClasses.h / A-2
LibraryManagerUtilities.h / A-2
GlobalNew.h / A-3
TestTool.h / A-3

Contents

Appendix B ASLM Utility Programs / B-1

LibraryManagerTestl and LibraryManagerTest2 / B-2
How LibraryManagerTestl and LibraryManagerTest2 Work / B-2
Running LibraryManagerTestl or LibraryManagerTest2 / B-3

The Inspector application / B-4
Running the Inspector / B-5
How the Inspector works / B-5
Inspector menus / B-6

TestTool / B-8
Using TestTool / B-8
TestTool classes / B-9

The TraceMonitor application / B-9

Appendix C Using the Example Programs / C-1
The Sample Apps folder / C-2
The Sample INIT folder / C-2
The FunctionSetinfo folder / C-3
The Example Toolsfolder / C-3

Building the examples / C-4
Building .SYM filesfor clients, libraries, and tools / C-5

Appendix D Versioning / D-1
How versioning works / D-2
Version numbers and subclassesin C++ / D-3

X Contents

Preface

About This Guide

The Apple Shared Library Manager Developer’s Guide documents

version 1.1 of the Apple Shared Library Manager (ASLM). The ASLM isa
set of software tools for developing and using shared libraries. The ASLM
allows multiple programs, or clients, to share code, data, and resources
stored in libraries. The ASLM supports applications and shared libraries
written in all MPW-compatible languages, such as C, C++, Pascal, and
assembly language.

To help developers create and use shared libraries, this guide contains
general information on developing and using shared libraries,
programming examples, and a reference of ASLM utility classes and
functions.

Audience

The Apple Shared Library Manager Developer’s Guide is intended for
software devel opers who want to:

m use prewritten shared libraries
m design and create shared libraries

To use prewritten shared libraries, a software developer must understand the
Macintosh Toolbox and Operating System, and know how to write
programs in an MPW-compatible language such as C, C++, Pascal, and
assembly language.

To design and create shared libraries, a software developer must also
understand the operation of the Macintosh Memory Manager, and know
how to write programsin MPW C++ (to write C++ classes).

Organization

The Apple Shared Library Manager Developer’s Guide is divided into four
parts:

Part |, “Overview and Installation,” which introduces shared library
concepts and the ASLM, and describes how to install the ASLM. Part |
consists of the following chapters:

—Chapter 1, “Introduction to Shared Libraries”

—Chapter 2, “Introducing the ASLM”

—Chapter 3, “ASLM Installation”

Part 11, “Developing Clients and Shared Libraries,” which describes how
to write and build clients and shared libraries. It also includes
miscellaneous topics related to using the ASLM. Part Il consists of the
following chapters:

—Chapter 4, “Writing and Building Clients”

—Chapter 5, “Writing and Building Shared Libraries’

—Chapter 6, “Using the ASLM”

Part 111, “Reference,” which describes all of the ASLM utility functions
and classes. Part I11 consists of the following chapters:

—Chapter 7, “ASLM Utilities”

—Chapter 8, “ASLM Utility Class Categories’

—Chapter 9, “Utility Classes and Member Functions’

Part 1V, “Appendixes,” which describes the following topics:
—Appendix A, “Header Files”

—Appendix B, “ASLM Utility Programs”

—Appendix C, “Using the Example Programs”
—Appendix D, “Versioning”

Preface

I Overview and Installation

Introduction to Shared Libraries

This chapter introduces the concept of shared libraries and explains the key
features and functions of a shared library. If you are already familiar with
shared libraries, you may want to skip ahead to Chapter 2, “Introducing
the ASLM,” for specific information about the Apple Shared Library
Manager (ASLM).

Shared libraries

A shared library isalibrary of functions or classes (for C++ programmers)
that are compiled, linked, and stored separately from the clients that use
them. By accessing the functions or classes that are stored in a shared
library, aclient can call functions that are not part of its executable code.
Furthermore, functions or classes that are stored in a shared library can be
called by different applications that are running at the same time.

Because shared libraries can contain shared code and are loaded and linked
at run time, they save enormous amounts of RAM and disk space. Shared
libraries eliminate the necessity for keeping multiple copies of codein
memory when multiple applications use the same code.

Shared libraries help software devel opers design independent, modular,
compact libraries that applications can share. It also helps software
designers develop their products faster, and it makes the products easier to
improve and maintain.

A shared library fileis a binary file that can contain object code for
functions, classes, methods (member functions), data, and resources. A
shared library file can contain one or more shared libraries. When a shared
library file is made available, developers can share, and dynamically link
with, the code stored in the shared library.

A client is any application or library that creates objects or uses methods or
functions that are implemented in shared libraries. Clients can include
applications, system extensions, INITs, CDEV's, XFCNs and XCMDs, other
kinds of stand-alone code resources, and even shared libraries themselves,
because shared libraries typically use other shared libraries.

A client written in a non—object-oriented language, such as C or Pascal, can
call routines that are stored in a shared library in the same way that it would
call any other function. A C++ client can instantiate object from classes that
are stored in the shared library in the same way that it would instantiate
objects from any class.

Dynamic versus static linking

Although clients can use functions and classes stored in shared libraries as
they would use functions or classes that are made available in ordinary
libraries, shared libraries are compiled and linked differently from
conventional applications and libraries. While applications and
conventional libraries are statically linked, shared libraries are dynamically
linked with the applications that use them.

1-2 Chapter 1/ Introduction to Shared Libraries

Static linking takes place when the linker combines object-modules
produced by a compiler into an executable program. Dynamic linking
takes place at run time; that is, when an application is executed.

If an application needs to call afunction or instantiate a class from a
conventional library, the application must link with that library at the time
the application is created. In this kind of linking—static linking—a copy of
the library function that the application needs is placed in the application’s
executable file at link time. In this way, a separate copy of the library
function is placed in the executable file of each application that uses the
function. Figure 1-1 illustrates static linking.

Chject-code modue Corwertiond lbrany

Applicahion
Eling rodine :I Sidic ke
Shered lbrany rodine

Figure 1-1 Static linking

In contrast, when an application needs to call afunction or instantiate a
classthat is stored in a shared library, the shared library does not provide
the application with its own copy of the code needed to execute the
function or implement the class. Instead, at link time, a stub that tells the
application where it can find the object code of the function or classin the
shared library is placed in the application’s executable file. At run time, the
application uses this information to locate the function or classthat is
stored in the shared library. That processis called dynamic linking.
Dynamic linking isillustrated in Figure 1-2.

Dynamic versus static linking 1-3

Chjecd-code modue Coppentiordl [bran

Spplication Opnsmicdink Fhared libery
m@ling rodine b 3 rodine

Figure 1-2 Dynamic linking

When applications and libraries are linked dynamically, multiple
applications can use a single copy of an executable module simultaneously.
AsFigure 1-2 illustrates, the code in the shared library is stored separately
in memory from the applications that useit. A shared library can (and
usually does) contain multiple procedural-language functions or C++
classes, and any client can use any of these functions or classes as if they
were part of the client’ s executable code. Therefore, shared libraries can
save memory space.

Using shared libraries with object-oriented programs

For programs written in C++, the ASLM supports code reuse by
dynamically linking and loading C++ class implementations and by
supporting dynamic inheritance.

Dynamic linking and loading, together with dynamic inheritance, let
multiple clients share the same implementation of a class. Dynamic linking
lets a code module make direct calls to another code module’s functions
when the two modules are not implemented in the same code resource or
object file. Dynamic loading also lets the shared library load the
implementation of a class, on demand, at run time. Dynamic inheritance
allows a subclass to be derived from a base class that is in another shared
library.

1-4 Chapter 1/ Introduction to Shared Libraries

These are some of the features of shared libraries used by C++ programs:

m Dynamic class identification. When you create an object that is
implemented in a shared library, you do not have to hard-code its class
ID. This means that a configuration or installation process can determine
the specific class or set of classes to be used in a program.

m Dynamic inheritance. A class that isimplemented in a shared library can
inherit from aclass that is not in the same shared library. This means
that a developer can create a class that inherits from another developer’s
class.

m Classverification. A client can call afunction to verify at run time that a
given object is derived from a particular base class.

Updating code in shared libraries

A shared library is a*black box” to the applications that use it because
shared libraries are kept separate from applications in memory and are
accessed by applications using stubs. Clients can use the functionsin a
shared library without having access to the details of how the functions
work. So, when code in a shared library is updated, the changes to the code
have no effect on the applications that call the shared library; the changes
are transparent to the library’ s clients, as long as the library’ s interface
remains compatible.

Therefore, when you want to change a function or aclassin a shared
library—to improve its execution speed, for example, or to add more
features—you can do so without recompiling or relinking the application.
In fact, an update supplied by the developer of alibrary can split functions
and classes that had previously been in onefile into several files without
any impact on the client, and no recompilation is necessary. The update
can even occur while the client is running, provided the library is not
already loaded. (If the older library is already in use by a client, the newer
library is not used by current clients of the older library until the older
library is unloaded. New clients will always use the newest version.)
“Versioning” of librariesis used to determine which library isto be used
when the same function or class is implemented in more than one library.
(For more information about versioning, see Appendix D, “Versioning.”)

Updating code in shared libraries 1-5

Modifying code in shared libraries

Because shared libraries let you modify and enhance applications without
having to rebuild them, you can change the behavior of aclient by simply
calling a different shared library. For example, if an application has access
to several shared libraries that display the same data in different formats on
the screen, the application can change from one screen display to another
by simply using a different shared library.

In contrast, when an application is statically linked with a conventional
library, the application must be relinked if there is any change in any
functionality in the library.

In one respect, shared libraries do add a level of complexity to a program’s
design. When an application uses functions stored in a shared library, the
library must be stored in memory in a separate module. At run time, if an
application cannot find the shared library in which the function is stored, it
cannot execute the function.

1-6 Chapter 1/ Introduction to Shared Libraries

Introducing the ASLM

This chapter introduces the features and benefits of the Apple Shared
Library Manager (ASLM). Use this chapter to familiarize yourself with
some important terms and features which will help you use the ASLM more
productively.

What the ASLM can do for you

The ASLM is designed for software devel opers who want to develop
libraries of routines (for non—object-oriented programs) or classes (for C++
programs) for use by multiple applications. The ASLM

m savestimein program development and maintenance

m simplifies the sharing of functions and C++ classes at run time, thus
encouraging software developers to reuse code by providing libraries of
functions and C++ classes that multiple clients can access simultaneously

m allows applications to share, reuse, and dynamically link code
m aids development of platform-independent applications

m can be used with any application, extension, or device driver—including
an interrupt handler

m supports object-oriented (C++) and non—object-oriented (C, Pascal, and
assembly) languages

m provides developmental and diagnostic tools

m offers expandability through the addition and use of new shared
libraries

Suppose, for example, that your company wanted to design a text editor, a
telecommunications program, and a fax modem driver. Text-editing
routines designed for use by both the text editor and the
telecommunications program could be placed in the same shared library.
Communications routines for both the telecommunications program and
the fax modem program could be placed in another shared library. Still
another shared library could contain menu and window manipulation
routines common to all three programs.

By giving your application access to these three shared libraries, you could
save time in program development. Since routines implemented in the
shared libraries could be shared by all three programs, customers running
your applications could save disk space and memory. Y our programs
would also load faster, since they would share object code.

The ASLM significantly enhances the benefits offered by other shared
library implementations, such as dynamic linked libraries (DLLSs), which
may be familiar to programmers who have worked in the Windows, 0S/2,
and UNIX® operating systems.

The ASLM isintended to help software manufacturers produce products
that are better designed; easier to implement, test, and use; and after they
are shipped, easier to enhance and maintain.

2-2 Chapter 2/ Introducing the ASLM

Some important terms and concepts

The following important terms and concepts are used throughout the
document. They are explained in more detail in later chapters.

Client A client is any application, shared library, or stand-alone code
resource that makes use of shared libraries. Shared libraries are always
considered to be clients. Applications and stand-alone code resources
become clients by making a special call to register themselves as a client
with the ASLM.

Current client The current client is generally the currently executing
application, but other clients (such as shared libraries and stand-alone code
resources) have the ability to make themselves the current client also. The
current client is generally used to determine on whose behalf something is
done, such as allocating memory, opening afile, or setting up or making a
callback.

Function sets Function sets are a set of C or Pascal functions that are
implemented in a shared library and can be called from programs written
in C, C++, Pascal, or assembly language. Any function that a shared library
writer wishes to export must be placed in a function set.

ClassID Theclass D isaC string that provides a unique identifier for a
given class. For example, the class ID of aclasscalled TLi nkedLi st might
be ASLMBTLI nkedLi st, 1. 1. The class ID always starts with a four-
character developer ID to ensure that it is unique and is followed by a
dollar sign ($), text that helps describe the class (but does not have to be the
same as the class name), and usually ends with a version number. Class IDs
are used to determine which class a client should dynamically link with
when using a class exported by a shared library.

Function set ID Like classes, function sets are also given an ID whichisaC
string that provides a unique identifier for a given function set. For
example, the function set ID of afunction that provided routines for
maintaining alinked list my be called ASLM5Li nkedLi st FSet . Like the
class ID, the function set ID always starts with a four-character developer ID
to ensure that it is unique and is followed by adollar sign ($), text that
helps describe the function set, and usually ends with a version number.
Function set IDs are used to determine with which function set a client
should dynamically link when calling a function exported by a shared
library.

Some important terms and concepts 2-3

Client object file The client object fileis afile that contains routines and
information that is necessary to dynamically link a client with a shared
library. Each shared library provides a client object file and most clients of
ashared library must link with the shared library’s client object file. The
client object file contains things like function stubs for exported routines,
including functions implemented in function sets and the methods of C++
classes. The client object file also contains the I1Ds of function sets and
classes to be used.

Function stubs Function stubs, also called “glue” routines, are responsible
for dynamically linking a client with a shared library. They are located in
the client object file, and have the same name as the routine they are
responsible for dynamically linking with. For example, if a C programmer
callsaroutine called hel | o which islocated in a shared library, he will
actually link with a stub routine called hel | 0. The stub will take care of
making the dynamic link with the shared library that implements hel | o.

Library ID Thelibrary ID issimilar to the function set ID and class ID,
except that it is used to represent a shared library. Library 1Ds are not used
very often and are not contained in the client object file, but it is necessary
for each shared library to have aunique library ID.

Library files Library files are files that contain one or more shared
libraries. Each shared library will have its own set of code resources and
other resourcessuch asa' | i br' resource that provides information about
the shared library. It isimportant to realize that a shared library is not
represented by afile, but by a set of code resources located in the file and
the' i br' resource that describes the shared library. A library file may
contain more than one shared library.

Model near and model far Model near and model far are terms used to
describe how executable code (such as an application, stand alone code
resource, or shared library) is built. In brief, model near executables use
16-bit A5 relative references to access global variables and to make
intersegment subroutine calls using the jump table. This means that A5
always needs to be set up properly before accessing globals and making an
intersegment call. Thisisthe way all executables used to be built until
model far was introduced. Model far executables have all global and jump
table references resolved to absolute 32-bit addresses when the code
segment isloaded, so it isusually not necessary to have A5 set up, although
model far executables still require an A5 world (global world).

2-4 Chapter 2/ Introducing the ASLM

It isimportant to realize that all shared libraries are built using model far
and shared library clients can be model far or model near, although MPW
requires that all stand-alone code resources be model near. For more
information on model near and model far, refer to the latest MPW
documentation and release notes.

Features of the ASLM

This section introduces many of the important features and capabilities of
the ASLM.

Creating C++ objects by using classID’s The ASLM supports creating a
C++ object by specifying the class id of the class that the object is an
instance of. This allows the programmer to decide at runtime which class to
instantiate .

Calling functions by name or index The ASLM supports calling a
function by supplying the function set ID plus either the function name or
the index of the function in the function set. Thisis useful for code ported
from other DLL solutions, and for applications such as spread-sheet macros
and scripting-language extensions.

Finding all classes with a common base class The ASLM allows you to
find al classes with a common base class. This allows you to decide at
runtime which classes are available to support your needs.

Finding all function sets with a common interface The ASLM allows you
to find all function sets with a common interface. This allows you to decide
at runtime which function sets are available to support your needs. When a
function set is built, it can specify an interface id. Function sets with a
common interface can share the same interface id. This allows you to locate
all the function sets with the same interface id so you can then choose
which function set you want to use.

Dynamic installation of libraries Libraries can be made available after
boot time by dragging the library’s library file into any registered library
file folder, including the Extensions folder.

Access to object meta information The ASLM allows you to access
information about a C++ object such as the classid of the parent(s) of the
object and what shared library the object isimplemented in.

Multipleinheritance The ASLM fully supports multiple inheritance of
C++ classes.

Features of the ASLM 2-5

Client death notification The ASLM provides a notification facility that
you can use to determine when a client goes away. A client goes away when
aclient application quits or a shared library is unloaded. To keep track of
when clients go away, you can register what is known as a death watch
notifier or death watcher.

Exception handling The ASLM provides exception-handling macros that
are used to catch exceptions that may be raised. The only time the ASLM
will raise an exception isif it failsto load a shared library or failsto load a
shared library’s code segment after the shared library has already been
loaded. The ASLM'’ s exception-handling macros match the DCE standard
and can be used from C.

Explicit segment unloading support The ASLM supports the explicit
loading and unloading of library segments by the library or library client.

Languages supported by the ASLM Shared libraries can contain function
setsfor C, Pascal, and assembly language programs, as well as
implementations of C++ classes.

C++ programs can create objects and call methods that are implemented in
shared libraries. Programs written in non—object-oriented |languages can
also call methods implemented in shared libraries, but only if the developer
of the shared library provides a special procedural interface for the class.

Library loading and unloading Explicit loading and unloading of
libraries is supported to ensure that a shared library is available.

Pascal header files The ASLM provides LibraryManager.p and
LibraryManagerUrtilities.p interface files that list most of the routines that
are currently available to C programmers.

Per client data Per client datais supported by a simple mechanism that
allows alibrary to have a separate data structure for each client. A library
simply calls aroutine to get the data structure for the current client and a
client can call aroutine to get its data structure for a specified library.

Preloading all dependent libraries To facilitate the easy preloading of
libraries on which a client depends, the ASLM provides an MPW tool which
generates a resource containing information about all the dependent
libraries, and provides a routine that will load all libraries described in the
resource.

Registered library files The ASLM supports the registration of any fileasa
shared library file.

2-6 Chapter 2/ Introducing the ASLM

Registered library file folders The registration of foldersin which library
files can be located is supported. These folders support dynamic
installation of library filesin the same way as the Extensions folder.

Snap-linking To speed up processing and to provide an efficient calling
mechanism, shared libraries are “snap-linked.” Snap-linking is an address-
caching technique in which binding overhead usually occurs only once.
After binding occurs, the target address is cached, so the link can be
“snapped” in the client.

This calling mechanism is very efficient and makes programs load and run
faster. It is particularly well suited for the kind of time-critical use that is
required by high-performance networking protocols or timing-dependent
device drivers.

System support The ASLM supports systems 6.0.5 and higher. There are
some limitation when using ASLM under System 6. See “Using the ASLM
Under System 6 and System 7” in Chapter 6 for more information.

Utility classes provided with the ASLM The ASLM comes with a collection
of utility classes that you can use in your own applications and shared
libraries. These utility classes can be divided into the following categories:

m Memory-management classes are a set of memory allocation classes
called memory pools, which are special pools of memory that shared
libraries and clients can use in place of memory normally allocated by
the Macintosh Memory Manager. The particular advantage of these
classesistheir speed and the fact that they are interrupt-safe.

m Collection classes keep track of objectsin different types of collections,
such as arrays, hash lists, and linked lists.

m Object arbitration classes let multiple clients share named objects.

m Process management classes | et you schedule tasks to run during System
Task time, at interrupt time, or at predetermined intervals.

m Library file and resource management classes allow clients and libraries
to access resources in a shared library’ sfile.

m Miscellaneous classes include timing classes and other kinds of classes,
such as random number classes (used for generating random numbersin
avariety of different ways), that are used for essential operations by the
ASLM and can also be used by clients.

Versioning The ASLM enables the specification of the version numbers of
the shared library, function sets, and classes implemented in the shared
library or used by the client. The ASLM uses the function set or class with
the newest version number that is also compatible with the version specified
in the client object file with which the client linked.

Features of the ASLM 2-7

ASLM Installation

This chapter provides installation instructions for the ASLM and associated
development tools, and describes the contents of the ASLM disks.

The ASLM developer’s kit is distributed on the following four disks:

m The ASLM Installer disk that contains the Shared Library Manager
extension file that oversees all the functions of the ASLM. It also
contains the installer script that installs the ASLM onto your system.

m The ASLM Developer Tools disk that contains the tools, scripts, and
header files that you need to write, compile, and link your own shared
libraries and clients under MPW.

m The ASLM Debugging Tools disk that contains debugging applications,
such as the Inspector application and the TraceMonitor application.

m The ASLM Examples disk that contains example programs that can help
you learn how to develop and build shared libraries.

Installing the ASLM

Toinstall the ASLM, run the Installer application located on the ASLM
Installer disk. The Installer places the Shared Library Manager extension
file in your System 7 Extensions folder (or System 6 System Folder). The
Installer also installs resources in the System file and performs other
essential house keeping operations. The Installer must make these
modifications to your System file before you can use the ASLM.

Toinstall the ASLM, follow these steps:
1 Open the ASLM Installer disk and double-click the Installer icon.

2 Click Install.

The Installer places the Shared Library Manager extension file in your
System 7 Extensions folder (or System 6 System Folder) and performs
other essential installation operations.

3 Click Restart when the Installer is finished.

Y ou can how execute any client; that is, any program that makes use of
shared libraries.

The Installer does not install the tools needed to develop and debug shared
libraries. Y ou can install those tools as described in the following sections.

Installing the developer tools

To develop shared libraries, you must have MPW 3.2 or later installed on
your hard disk. If you are going to develop any shared classes, you must
also install MPW C++ 3.2 or 3.3. (Shared classes are classes that the ASLM
knows about because they are in a shared library.) Once MPW isinstalled,
you can copy the tools that are needed to develop shared libraries from the
ASLM Developer Tools disk into your MPW folder.

The ASLM Developer Tools disk contains a Read Me! file and three folders
with tools and utilities that you can use to develop your own shared
libraries. The Read Me! file contains information regarding the contents of
the disk. Some of the filesin the three folders are essential for developing
shared libraries; others are utilities that you may find useful.

To copy the tools onto your hard disk, follow these steps:
1 Open theASLM Developer Toolglisk.

2 Open the Tools folder.

3 Drag the MPW scripts—Bui | dShar edLi br ary andLi nkShar edLi br ar y —into
the MPW Scripts folder.

3-2 Chapter 3/ASLM Installation

10

Drag the MPW tools—Li br ar yBui | der andCr eat eLi br ar yLoadRsr c —into the
MPW Tools folder.

Open the Libraries folder.

Drag the five MPW libraries into the Libraries folder in your MPW Libraries folder.

The fivelibraries are LibraryManager.o, LibraryManager.n.o,
LibraryManager.debug.o, LibraryManager.debug.n.o, and TestTool.o. If
you are a THINK C/C++ user, drag the THINK Libraries onto your hard
drive.

Open the Interfaces folder.
Drag the files from the Cincludes folder into the MPW Cincludes folder.
Drag the files from the Pinterfaces folder into the MPW Plinterfaces folder.

Drag the files from the Rincludes folder into the MPW Rincludes folder.

Y ou now have all the tools you need to develop your own shared libraries
and shared library clients.

Note: You do not have to install the ASLM tools, scripts, interfaces, and
MPW librariesinto your MPW folder. However, you will have to set up
MPW and your makefiles to locate the ASLM files. This can include
adding the directory containing the tools and scripts to the MPW
{Commands} shell variable and specifying the location of the interface files
by using the -i option when compiling your code. Also, the

Bui | dShar edLi brary and Li nkShar edLi br ary scripts automatically
look inthe {SLMTools} folder for the Li br ar yBui | der and

Cr eat eLi br ar yLoadResour ce tools.

Installing the debugging tools

The ASLM Debugging Tools disk contains a Read Me! file, three folders,
the Shared Library Manager Debug extension, the ASLM Debugger Prefs
ResEdit document, and the TraceMonitor application. The Read Me! file
contains information regarding the contents of the disk. The files on this
disk are useful in debugging ASLM clients and shared libraries.

Open theASLM Debugging Tootlisk.

Drag the TraceMonitor application onto your hard disk. You will need to run this application
while debugging.

Copy the resources from the ASLM Debugger Prefs file into your MacsBug Debugger Prefs
file, which should be located in your System Folder.

Y ou can use ResEdit or the MPW Rez tool to copy the resources. Perform
this step only if you use MacsBug.

Installing the ASLM 3-3

10
11
12
13

Disk contents

Open the Inspector folder.

Drag the shared libraries—InspectorLibrary and WindowStackerLibrary—into your
Extensions folder.

Drag the Inspector application to a place on your hard disk. You will need to run this application
while debugging.

Open the LibraryManagerTest folder.

Drag the ExampleLibrary into your Extensions folder.

Drag the MPW tool—LibraryManagerTest1—into your MPW Tools folder.
Open the TestTool folder.

Drag TestLibrary into your Extensions folder.

Drag the MPW tool—TestTool—into your MPW Tools folder.

If you want to use the debug version of the ASLM, drag the Shared Library Manager Debug file
into your Extensions folder, and remove the Shared Library Manager extension that was placed
in the Extensions folder by the Installer application.

Y ou should have only one Shared Library Manager file in the Extensions
folder.

Installing the examples

The ASLM Examples disk contains a Read Me! file and source code
examples. If you want to use these examples, copy them onto your hard
drive.

This section describes the contents of the four ASLM disks.

ASLM Installer disk

This disk contains avariety of TeachText files, as well as the following files:
m theInstaller application
m the Installer script

m the Shared Library Manager files folder which contains the Shared
Library Manager extension and ASLM Resources file

3-4 Chapter 3/ASLM Installation

ASLM Developer Tools disk

This disk contains a Read Me! file and three folders—Interfaces, Libraries,
and Tools.

Interfaces folder

The Interfaces folder on the ASLM Developer Tools disk contains three
folders:

m The Cincludes folder contains C and C++ header files that you need in
order to develop C and C++ programs with the ASLM.

m The Pinterfaces folder contains Pascal interface files that provide Pascal
programmers with the interfaces needed to develop Pascal programs with
the ASLM. See “Calling Shared Library Functions from Pascal” in
Chapter 4 for more information on limitations when using the ASLM
from Pascal.

m The Rincludes folder contains resource definition files. It also contains a
"l'i br' resource template that you can use to decompile' I'i br'
resources with the MPW tool DeRez. This resource template can help
track down bugs that occur when function set, class, or library
definitions are assigned improperly. It is described in Chapter 5,
“Writing and Building Shared Libraries.”

Libraries folder

The Libraries folder contains five libraries and a folder entitled THINK
Libraries. The library files that end with the suffix .n.o are to be used with
model near clients, and the library files that end with the suffix .0 are to be
used with model far clients. (For more information on the near and far
memory models, refer to the latest MPW documentation and rel ease notes.)

Y ou can build your shared libraries to be used with either model near
clients or model far clients, as explained in Chapter 4, “Writing and
Building Clients.” However, shared libraries are always created using the
far memory model.

The Libraries folder contains the following files and folders:

m LibraryManager.o and LibraryManager.n.o are files that must be linked
with all shared libraries and all applications that use shared libraries.

m LibraryManager.debug.o and LibraryManager.debug.n.o are debug
versions of LibraryManager.o. and LibraryManager.n.o, respectively.
They contain debugging symbols that may be useful when you debug
your application or library. It is highly recommended that you use them
during the development of your shared library or client application.

Disk contents 3-5

m TestLibrary.oisafilethat you must link with your applications and
shared librariesif you want to subclass the TTest Tool class, whichis
used in the TestTool example program on the ASLM Examples disk.

m THINK Libraries (currently, support for THINK C/C++ 6.0 isonly
experimental).

THINK C/C++ 6.0 users must use the libraries in the THINK Libraries
folder when writing ASLM clients. Refer to the Read Me! file on the
ASLM Developer Tools disk for the latest details regarding THINK
C/C++ 6.0 support.

THINK users should use LibraryManagerClient.o and
LibraryManagerUtils.o when linking clients instead of
LibraryManager.o, because LibraryManager.o contains references to
routines that are only present if you are linking a shared library.

The LibraryManagerClient.o and LibraryManagerUtils.o libraries do not
include the routines that refer to the nonexisting routines. The routines
that are removed are not needed by clients so clients will still be able to
link.

LibraryManagerUtils.o contains the client object files for the ASLM
libraries that implement classes having aclass ID that starts with

s| m supp$. Like LibraryManager.o, there are also model near versions
and debug versions.

Tools folder
Thetoolsin the Tools folder include the following files:

m Bui | dShar edLi brary isan MPW script that builds shared libraries and
client object files.

m CreatelibraryLoadRsrc isan MPW tool that lets clients and libraries
create a resource that includes information about all the function sets
and classes that they depend on so that they can be easily prel oaded.

m Li braryBuil der isan MPW tool that is executed by the
Bui | dShar edLi br ary script and does most of the work when you
build a shared library.

m Li nkShar edLi brary isan MPW script that links shared libraries when
you choose not to have Bui | dShar edLi br ary do the linking for you.

3-6 Chapter 3/ASLM Installation

ASLM Debugging Tools disk

The ASLM Debugging Tools disk contains a Read Me! file and the
following tools and applications:

The ASLM Debugger Prefs file contains MacsBug debugger macros and
templates which are mainly used by ASLM engineers for debugging.
Y ou can put the contents of thisfile in the MacsBug Debugger Prefs file.

The Inspector application, located in the Inspector folder, helps you
inspect objects that are implemented in shared libraries, lets you see
which function sets, classes, shared libraries, and shared library files the
ASLM currently knows about, and provides some useful information
about them. Appendix B, “ASLM Utility Programs,” has further
information on the Inspector application.

The Inspector folder also contains the InspectorLibrary and
WindowStackerLibrary files, which are used by the Inspector
application.

The TraceMonitor application creates a window where shared libraries
and clients can send traces to help assist with debugging code (see
Appendix B “ASLM Utility Programs” for more information).

The LibraryManagerTest1 file, located in the LibraryManagerTest
folder, isan MPW tool that performs a quick test of the ASLM.
Appendix B, “ASLM Utility Programs,” has further information on the
LibraryManagerTest1.

The LibraryManagerTest folder also contains the ExampleLibrary file
which is used by LibraryManagerTest1 and LibraryManagerTest2.

The TestTool file, located in the TestTool folder, isan MPW tool that is
used to test certain ASLM functions and utility classes. Appendix B,
“ASLM Utility Programs,” has further information on TestTool.

The TestTool folder also contains the TestLibrary file which is used by
TestTool.

The Shared Library Manager Debug file is a debug version of the
ASLM. To usethisversion, drag it into the Extensions folder and drag
the Shared Library Manager file out. Then reboot your machine. It is
highly recommended that you use the debug version of the Shared
Library Manager extension while developing your shared libraries and
shared library clients. It contains code that will notice many developer
errors and enter the MacsBug debugger with a message when it notices a
problem.

Disk contents ~ 3-7

ASLM Examples disk

The ASLM Examples disk contains a Read Mel! file and seven folders
containing source code example libraries and clients that help you learn
how to develop and build ASLM clients and shared libraries.

m Example Tools
m ExampleLibrary
m FunctionSetinfo
m [nspector

m Sample Apps

m Sample INIT

m TestTools

Details of the contents of the ASLM Examples folder are given in
Appendix C, “Using the Example Program.” Information on the
ExampleLibrary, Inspector, and TestTool folders can also be found in
Appendix B, “ASLM Utility Programs.”

Preparing to use the ASLM

With the ASLM installed, you can install any shared library by registering
its library file or by simply dragging its library file into an appropriate
folder (the System 7 Extensions folder, the System 6 System Folder, or a
registered library file folder). Then, when an application needs to use the
shared library, the ASLM dynamically loads and links the library.

The Shared Library Manager extension loads at boot time and stays
loaded. When you have registered alibrary file or have dragged it into a
library file folder, you do not have to reboot to use the shared libraries
contained in the library file. It will be recognized immediately by the
ASLM.

The operating system ordinarily loads the Shared Library Manager
extension before it loads any other extensions. However, if you have
installed the System 7 Tuner 1.1.1 and have AppleTalk turned off, the
Shared Library Manager extension is not loaded and will not be usable.
This behavior is caused by afeature in the System 7 tuner. It is corrected in
system software version 7.1. If you do not have System 7.1, the
workaround is to have AppleTalk turned on.

3-8 Chapter 3/ASLM Installation

I I Developing Clients and
Shared Libraries

Writing and Building Clients

This chapter describes how to write aclient, build a client, set up the current
client, call shared library functions from C, C++, Pascal, and assembly
languages, and create instances of classes that are implemented in shared
libraries.

Overview

A program that makes use of shared librariesis called aclient. Clients fall
into three categories:

m an application or some other kind of code that has called
I ni t Li braryManager

m ashared library
m the ASLM itself

Clients can use shared libraries that you write yourself, as well as the utility
libraries supplied with the ASLM and by third party developers. This
chapter explains how to write and compile clients, and how to dynamically
link clients with shared libraries.

To develop your own shared libraries, you must have MPW 3.2 (or later)
installed on your hard disk. For C++ development, you also need MPW
C++ version 3.2 or 3.3. You must also copy a number of header files and
tools as described in Chapter 3, “ASLM Installation.”

When you have set up your ASLM development system, you can write,
compile, and link your own shared libraries and clients.

Each time you create a shared library, you must make it accessible to the
clients that will useit. For information on how to make a shared library
accessible to clients, see “Registering Shared Library Files and Folders” in
Chapter 7, “ASLM Utilities,” or “Registering Shared Library Files’ in
Chapter 5, “Writing and Building Shared Libraries.”

Writing a client

When you write a client there are three basic rules to follow:
m Cdl I nitLibraryManager inyour client’sinitialization section.

m Make sure your client either preloads the shared libraries it will use or
uses exception handling to deal with shared libraries that may not exist
or be loadable.

m Cdl d eanupLi br ar yManager before your client quits.

In the code between | ni t Li br ar yManager and

d eanuplLi br ar yManager calls, you can do just about anything that
programs written in your language of choice can do, plus one thing that
ordinary programs cannot: you can call functions and create classes that
are implemented in shared libraries.

4-2 Chapter 4 / Writing and Building Clients

Before you can call a function implemented in a shared library, you must
link the file that contains your source code with an object file provided by
the devel oper of the shared library. Thisfile, called a client object file, by
convention has the extension .cl.o. It contains stubs for all the functions
and classes implemented in the shared library. These stubs are responsible
for loading the shared library and calling the implementation of the
function or exported class non-virtual member functions. However, it does
not contain the implementation of any of the routines implemented in the
library. Note that virtual function calls are made through the object’ s vtable
and present no additional overhead.

The following steps show how to write a shared library client in C that calls
functions that are implemented in afunction set in a shared library. The
example assumes that the functions are contained in the function set whose
idis kCool Functi onSet | D and the interfaces for the functions are
contained in the header file “CoolLibrary.h”. The DoSonmeThi ngG eat
and DoSoneThi ngG eat er functions are both implemented in a shared
library.

#i ncl ude <Li br ar yManager . h>

#i ncl ude <Cool Li brary. h>

// get ready to use the ASLM
i f (InitLibraryManager (

0, /* we don't need nenory in our |ocal pool */
kCQur r ent Zone, /* use application zone = current zone */
kNor mal Merror y /* default nermory type, no W stuff */
) == kNoError)
{
/1 make sure that the shared library is | oaded
i f (LoadFuncti onSet (kGool FunctionSet| D) == kNoError)
{
/1 call some functions
DoSonet hi ngQ eat () ;
DoSoret hi ngG eater ();
// call WnloadFunctionSet so the |library can be unl oaded
Unl oadFunct i onSet (kCool FunctionSet | D);
}
// nowwe're all done using the ASLM
d eanupli br ar yManager () ;
}

Writing a client 4-3

I nitLibraryManager iscalled before shared libraries or other ASLM
facilities may be used. It creates the client’slocal library manager object,
which is mainly used behind the scenes as the client’ s interface to the
ASLM. d eanupLi br ar yManager is called when the client is finished
using the ASLM. The “Creating and Deleting the Local Library Manager”
section in Chapter 7 provides more information on the local library
manager object and also describes | ni t Li br ar yManager and

Cl eanuplLi br ar yManager in detail.

The LoadFunct i onSet call was made to make sure that the shared library
was already loaded before attempting to call the functions implemented in
the shared library. This prevents potential problems from arising if the
shared library cannot be found or loaded. LoadFuncti onSet and

Unl oadFuncti onSet are explained in the “Loading and unloading shared
libraries” section of Chapter 6. Exception handling could also be used
instead of preloading the necessary shared libraries. Exception handling is
explained in the “Exception handling” section of Chapter 6.

kCool Functi onSet | Disamacro that defines the C string which is the
function set id of the function set that the functions are in. This macro will
always be located in the header file which declares the functions that you
are using. Function set id’s are explained in more detail in the
“TFunctionSetID” section of Chapter 9.

When the DoSoneThi ngGr eat function is called, what is actually called isa
function stub that the client is statically linked with. This stub is responsible
for calling into the ASLM to make sure that the shared library
implementing DoSoneThi ngG eat isloaded and to store the address of the
DoSoneThi ngG eat inthe stub’s cache. The stub can then call the actual
implementation of DoSormeThi ngGr eat . On subsequent calls to
DoSonmeThi ngG eat , the function address will already be cached with the
stub so it can be called with just afew instructions.

After the client is finished calling the functions in the shared library, the
client calls Unl oadFunct i onSet to undo the LoadFuncti onSet call and
then calls Cl eanupLi br ar yManager . When aclient finishes using the
ASLM, the client should always calls C eanupLi br ar yManager , athough
it will be called automatically for application clients.

Asyou can see, other than some initial setting up, calling functionsin a
shared library is no different than calling functions that the client is
statically linked with.

4-4 Chapter 4 / Writing and Building Clients

Building a client

Figure 4-1 shows the steps required to build a client. Thefile Client.c isthe
source code for the client that is being built. C compiles Client.c, which
includes the header file XXLibrary.h and builds an object code module
named Client.c.o.

Once Client.c.o is built, it can be linked with the LibraryManager.o file and
the client object file XXLibrary.cl.o. The result of the build is the client
XXClient.

The XXLibrary isthe shared library that the client will use. It must be
registered with the ASLM in order to useit.

Thefile XXLibrary.h isashared library header file; that is, an interface file
that contains declarations of the functions and classes implemented in the
shared library. XXLibrary.h is needed by the client to identify the
functions and classes the library exports, and the interface to each.

Thefile XXLibrary.cl.o isthe client object file; that is, afile that contains
information including stubs for constructors, destructors, function sets, and
any non-virtual methods that are exported by the shared library. The client
object file must be linked with the client if the client calls any exported
function or creates any objects implemented in the library. The exception
to thisis clients that use NewChj ect to create objects and

Get Funct i onPoi nt er to call functions in function sets. These clients do
not need to link with the client object file.

Two of the files shown in shadowed boxes—XXLibrary.h and
XXLibrary.cl.o—are also needed to build shared libraries, as you will see
later in Figure 5-1, “Building a Shared Library.” These two files are
provided by the creator of the shared library.

Building a client 4-5

HLibrang.h

t.-—"'j' Hew der &g

[y
o £ [
7 = 5L —F

ot
L oil
adl oil iaD
ioD
ik 21D eae
Librarykanager.o Chente.o HlLibrary.cLo

N1 o=

M5
=}
Link
;@ € | =
HH e nt ¥Libran
Ll e pafed g Shesed Mg

Figure 4-1 Building a client

Makefiles for building clients

Y ou can learn how to write makefiles that build shared library clients by
examining the makefiles for the example programs that are supplied with
the ASLM. The example programs are located on the ASLM Examples disk
and are discussed in Appendix C “Using the Example Programs.”

Refer to “Makefiles” in Chapter 5, “Writing and Building Shared
Libraries,” for an example of a makefile that builds a client and an
associated shared library.

4-6 Chapter 4 / Writing and Building Clients

Calling shared library functions from Pascal

You can call ASLM routines from Pascal in the same way that you call
them from C. Pascal interface files are provided with the ASLM in the
Plnterfaces folder.

To call routines from Pascal, the writer of the shared library must provide a
Pascal interface file (.p file) which contains the interface to functions
exported by the shared library. This Pascal interface file can be provided
instead of, or in addition to, the C-style include file (.h file), depending on
whether the shared library writer also wants to support C programmers.

The Pinterfaces folder contains the Pascal interface files LibraryManager.p
and LibraryManagerUtilities.p, which provide Pascal programmers with all
interfaces that C programmers have access to, with the following
exceptions:

m Exception handling macros are not supported, but you can still call
Fai | . Because of this, all shared libraries to be used must be explicitly
loaded first, otherwise the client runs the risk of throwing an exception
when a shared library cannot be loaded for some reason. This will cause
the application to quit.

m Trace islimited to one parameter: the string to output. No formatting is
supported.

m At omi cSet Bool ean, At oni cd ear Bool ean, and
At oni cTest Bool ean are not supported.

m All routines that take St ri ngPt r parameters require the stringsto be C
strings, not Pascal strings. These routines are Tr ace,
CGet Shar edNanmedResour ce, Get Shar edResour cel nf o,
Get Funct i onPoi nt er, and Fai | .

m DebugBr eak and related routines and macros are not supported.

Calling shared libraries from assembly language

Calling ASLM routines from assembly language does not introduce any
particular problems, except for the usual issues that arise when you
incorporate assembly-language code into programs written in other
languages. Make sure you use C/Pascal register conventions.

Calling shared libraries from assembly language4-7

Creating instances and calling member functions of shared classes

Using the ASLM from C++ is much the same as using it from C, except that
there are a couple of different things to be aware of. The following code
fragment shows how a C++ client can create objects that are instances of
classes that are implemented in shared libraries, and how the client can call
member functions of those objects. In this example, an instance of class
named TMyFi r st C ass iscreated. TWyFi r st d ass isimplemented in a
shared library whose location the client need not be aware of. The interface
for TMyFi rst d ass islocated in the “CoolLibrary.h” header file.

#i ncl ude <Li br aryManager . h>
#i ncl ude <Cool Li brary. h>

// declare a variable to point to our object
TM/Firstd ass* first = NULL;

// get ready to use the ASLM
if (InitLibraryManager() == kNoError)
{
// make sure that the shared library is | oaded
if (Loadd ass(kTM/Firstd assl D) == kNoError)
{
/1l create an object
first = new TM/Fi rstd ass;

// call a nethod
first->DoSoret hi ngGeat ();

I/ del ete the object
delete first;

// call Wl oadd ass so the library can be unl oaded
Unl oadd ass(kTM/Firstd assl D) ;

}

// nowwe're all done using the ASLM
d eanupli br ar yManager () ;

}

Just asin the C example given earlier, the client must call

I nitLibraryManager beforeusing the ASLM and call

d eanuplLi br ar yManager when finished using the ASLM. One difference
in this example is that the C++ client was able to take advantage of the
default parameters for | ni t Li br ar yManager and not explicitly pass any
toit.

4-8 Chapter 4 / Writing and Building Clients

Also, aswas done in the C example given earlier, the client had to make
sure that the shared library to be used was loaded. This was done by calling
Loadd ass and passing in the class ID of the class that will be used. The
classidisaC string the is declared in the class’ header file using the macro
k<classname>ID. Classid's are described in detail in the “TClassID”
section of Chapter 9. Loadd ass and Unl oadCl ass are explained in the
“Loading and Unloading Shared Libraries’ section of Chapter 6.
Exception handling could also be used instead of preloading the necessary
shared libraries. Exception handling is explained in the “Exception
Handling” section of Chapter 6.

After thisclient hascalled | ni t Li br ar yManager and Loaddl ass , an
instance of TMyFi r st O ass is created using the new operator and the
constructor for the class. The class's constructor accepts parameters that are
passed in normal C++ fashion.

The constructor stub for each classis statically linked with the client. The
first time astub is called to construct an object, it calls the ASLM which
takes care of loading the library if it is not loaded already and placing the
address of the constructor in the constructor stub’s function cache. The
stub can then call the constructor. Each subsequent time the stub is called, it
can directly jump to the constructor after first checking that the library was
not unloaded. The constructor increments the use count for the class each
timeitis caled. The destructor for each class then decrements the use
count so that the library can be unloaded when all objectsin agiven library
have been deleted.

After the client has created an instance of TM/Fi r st Ol ass, a member
function is called and then the object is deleted. Finally, the client calls
Unl oadd ass to undo the Loadd ass call and then calls

d eanuplLi br ar yManager . When aclient finishes using the ASLM, the
client should always calls Cl eanupLi br ar yManager , although it will be
called automatically for application clients.

Asyou can seg, clients can create the objects and call their methods in
ordinary C++ fashion. The only extra conventions that the client must
observe arecalling | ni t Li br ar yManager and Cl eanuplLi br ar yManager
and also either preloading shared libraries to be used or use exception
handling in order to deal with shared libraries that are either missing or are
not |oadable.

More information on creating instances of shared classes and calling
methods is discussed in Chapter 6. Topics include creating static objects
and stack objects, using NewObj ect to create an object with a given class
ID, using the ASLM global new and del et e operators, and the advantages
that virtual functions have over non-virtual functions.

Creating instances and calling member functions of shared classes4-9

The current client

The current client is generally the currently executing application, but
other clients (such as shared libraries and stand-alone code resources) have
the ability to make themselves the current client also. The current client is
generally used to determine on whose behalf something is done, such as
allocating memory, opening afile, or setting up or making a callback.

The current client is important for a number of reasons. When aclient or a
shared library built with the menor y=cl i ent option allocates memory
using the default C++ new operator, the memory is allocated from the
current client’s local pool (also called the client pool). Also, when an
exception is raised, the ASLM uses the current client’ s exception handling
chain to determine who should catch the exception. When alibrary fileis
opened by calling Pr eFl i ght or OpenLi brar yFi | e, the file is opened for
the current client. Lastly, the ASLM per client data facility relies on the
setting of the current client when deciding which client data “context” to
return when a shared library calls Get O i ent Dat a.

For these reasons, it is not generally safe to make a call into a shared library
or into the ASLM unless the current client is defined.

Who needs to set the current client?

Any code that makes a call into a shared library or into the ASLM is
responsible for making sure that the current client is set properly unless
special arrangements have been made with the shared library so that it can
handle being called with an invalid current client. The current client is
invalid if the currently executing application is not an ASLM client and the
current client was not explicitly set.

Normally, when an application client is executing, it is aso the current
client and does not have to do anything special to make sure that the
current client is set properly unlessit is called asynchronously. If the
application client is called asynchronously, the current client may not be set
properly. In this case, it is up to the application client to make sure it is set
properly before the client calls a shared library or the ASLM. Setting up
the current client within aroutine that handles asynchronous eventsis
usually handled by making sure the client that it wants set as the current
client is passed to the routine, which can then call the Set Current d i ent
function, which is described later in this section.

4-10 Chapter 4 / Writing and Building Clients

Shared libraries may want to change the current client so that default C++
memory allocations are made from the shared library’s local pool rather
than from the local pool of whoever is the current client when the library is
called. Also, a shared library may have to set up the current client because
it was called from code that did not set the current client to avalid client;
for example, if the code in the shared library is an interrupt service routine
or an |/O completion routine.

Determining the current client

The default setting of the current client is determined by the setting of the
Macintosh low-memory global Curr ent A5. Cur r ent A5 is aways set to the
current value of the global world of an application. Ordinarily, it is set to
the global world of the currently executing application. Therefore, the
application is normally also the current client. If the current client makes a
call into a shared library, the setting of Cur r ent A5 global does not change
so the application remains the current client.

Setting the current client

The ASLM provides several functions used to override the setting of the
Cur r ent A5 low-memory global, making it possible to specify the current
client. These functions do not change the value of Cur r ent A5, but rather
tell the ASLM to use a client other then the one specified by the setting of
Cur r ent A5 as the current client. They include the following:

m Set Current d i ent makesthe client passed as a parameter the current
client.

m Set Sel f Asd i ent makes the client issuing the call the current client.

m Set dient Towr | d makes the owner of the current global world the
current client.

The ASLM also provides the function Get Current d i ent , which returns
the current client. It is useful for getting and then saving the current client
S0 you can set up the current client sometime in the future. For example,
suppose your shared library is some sort of driver that may need to notify
one of its clients of an event at interrupt time. When the client is * setup,”
the driver can call Get Current O i ent . When the client needs to be
notified, the driver can then call Set Current d i ent . Thusthe client does
not need to set the current client.

The current client 4-11

Thisisthe syntax of these four calls:

TLi br ar yManager * GetCurrentdient(void);

TLi br ar yManager * Set Current C i ent (TLi braryManager *) ;
TLi br ar yManager * Set Sel f AsC i ent (voi d);

TLi br ar yManager * Set d i ent Towsr | d(voi d);

The Get Current C i ent function returns the current client. The

Set Currentdient, Set Sel f AsCl i ent,and Set O i ent Towor | d
functions all return the previous current client. This client should be passed
to Set Current C i ent to restore the current client.

The current client is represented by the client’s local library manager, and,
therefore, all of the current client routines return a TLi br ar yManger *
object, and Set Cur rent C i ent accepts as a parameter the

TLi br ar yManager * belonging to the client to be set as the current client.

Y ou can also use Ent er Syst emvbde to change the current client. It sets the
ASLM asthe current client. The LeaveSyst emivbde function restores the
current client. For more information on Ent er Syst emvbde, see “Entering
and Leaving System Mode” in Chapter 7, “ASLM Utilities.”

The Get d i ent Pool function crashes when the Cur r ent A5 low-memory
global does not belong to avalid ASLM client and the current client has
not been set. Usually, Get O i ent Pool isnot called directly, but is called
automatically when you create an object that isimplemented in alibrary
built with the menor y=cl i ent option. The Get d i ent Pool function can
crash when anon-ASLM client invokes code that isin an ASLM client. For
example, if you implement a HyperCard XCMD as an ASLM client, the
XCMD should call Set Sel f AsCl i ent immediately after it calls

I nitLibraryManager, and should restore the current client immediately
before it calls C eanupLi br ar yManager . Otherwise, the ASLM considers
HyperCard the current client. A crash might then occur if the XCMD tries
to create objects or allocate memory.

4-12 Chapter 4 / Writing and Building Clients

WARNING If Set Currentd i ent,Set Sel f AsCl i ent or

Set d i ent Towor | d iscalled, it is necessary to restore the current
client before returning from the routine that set the current client. Itis
imperative that if an application sets the client, it restores the current
client before calling Event Avai | , Get Next Event , or

Wai t Next Event . This also means that any other client or shared
library that sets the current client should restore the current client
before calling any routine that may result in Event Avai | ,

CGet Next Event , or Wi t Next Event being called. Normally
applications need to set the client only in callbacks (completion
routines, operation process procs, notifier notify procs, and so on) that
use the ASLM.

In the debug version of the ASLM, you will enter MacsBug with a
warning if the current client is not set to NULL when Event Avai | ,

Get Next Event , or Wai t Next Event iscalled. Thisis done because if
the current client is not set to NULL when calling one of the above
traps, problems can occur. For example, suppose Client A isan ASLM
client that leaves the current client unset (so it will always be the
current client when it is running) and then calls Wai t Next Event .
Client B takes over, sets the current client, and calls Wai t Next Event .
Client A then regains control, but is no longer the current client
because Client B left it set to another client. If you know (or think) the
current client has been set and want to call one of the above traps, do
the following:

TLi braryManager* savedC ient = SetCurrentCient (NULL);
Wai t Next Event () ; /1 or EventAvail or

Get Next Event

Set CurrentClient (saveddient);

Y ou can use this same technique when calling a routine that calls one
of the above traps. In fact, if the routine you are calling knows
nothing about ASLM, it isthe caller’ s responsibility to make sure the
current client is set to NULL.

The current client 4-13

The LibraryManager.o file

The LibraryManager.o fileillustrated in Figure 4-1 isan MPW library file
supplied for ASLM client and library developers. It contains

m client object file code (.cl.o code) for shared libraries supplied with the
ASLM

m routines defined in the ASLM header files (the client will dynamically
link with most of these routines)

m other behind-the-scenes routines that are used internally

The LibraryManager.o file should be linked with all clients before any C

libraries are linked. It should also be linked before CPlusLib.o unless you
want to use the global new operator supplied by CPlusLib.o. See “Using

the ASLM Global new and del et e Operators” in Chapter 6, “Using the
ASLM,” for more details.

The LibraryManager.n.o file is similar to the LibraryManager.o file, except
that it is meant only for model near clients and, therefore, is not compiled
with model far. LibraryManager.debug.o and LibraryManager.debug.n.o
are debug versions of the library files and contain debugger breaks and
MacsBugs symbols useful when trying to debug clients and shared
libraries.

4-14 Chapter 4 / Writing and Building Clients

Writing and Building Shared Libraries

This chapter describes how to write and build shared libraries, create
symbol files, use makefiles, and write exportsfiles. It also discusses related
topics that you need to consider when creating shared libraries.

Overview

Before you can build a shared library, you need at least three source files:

m One or more source files that contain the implementation of your
library’s classes and functions. The files that contain your library’s
implementation can be written in any language that is compatible with
MPW, such as C++, C, Pascal, or assembly language.

m A header (or Pascal interface) file that provides declarations for the
functions and classes that your library will export. Y ou may also have
one or more private header files for declarations that the user of your
library will not need. Header files written in C format always have
filenames that end with the suffix .h. Pascal interface files can end with
the suffix .p.

m An export definition file (also called an exports file or .exp file) that
defines classes and function sets that are to be exported from a shared
library. An export definition file is always written in C-language style
and always has a filename ending in the suffix .exp.

When you have written the source files that are needed to create a shared
library, you must write and execute a makefile that compiles your source
files into object code files from which a shared library can be built.

For an example of a shared library makefile, see “Makefiles” later in this
chapter.

Writing a shared library

To write ashared library, you do not need to do anything special with the
source code. However, you do need to create an exports file, as described in
“Writing an .exp File” later in this chapter.

Y ou can also use any of the many utility functions and classes that are
supplied with the ASLM to add extra power and functionality to your
programs. The sample programs in the ASLM Examples disk demonstrate
what you can do with the collection of ASLM utility functions and classes.

After you have written the source files, you must use the proper tools to
build the shared library. Thisis described in the next section.

5-2 Chapter 5/ Writing and Building Shared Libraries

Building a shared library

Figure 5-1 illustrates the process of building a shared library. To build a
shared library, you must provide two input files to the
Bui | dShar edLi br ary script (the library builder):

m An input object file (an object file named with the suffix .0) from which
ashared library can be created. In Figure 5-1, the input object fileis
created by compiling XXLibrary.c, which includes XX Library.h. When
you have multiple source files that make multiple object files, you can
use the MPW Li b command to create one input object file.

m Anexportsfile, called XXLibrary.exp in Figure 5-1, which contains
important information about a particular shared library, including a
special kind of declaration called alibrary definition. A library
definition usually contains the library’s library 1D and version number,
along with other kinds of information about the library—for example,
information about the pool from which the shared library allocates
memory. More information about the exportsfile is provided in
“Writing an .exp File” later in this chapter.

Thetwo filesin Figure 5-1, XX Library.h and XXLibrary.cl.o, are files that
are also needed to build a client. These two files also appear in Figure 4-1,
“Building a Client,” in Chapter 4, “Writing and Building Clients.”

The XXLibrary.c file is the source code for the implementation of the
library. The XXLibrary.h file is the same header file shown earlier in
Figure 4-1. A shared library header file is an interface file that contains the
declarations for classes and functions exported by the shared library. This
fileis used by both the shared library source files and the client’s source
file.

The XXLibrary.cl.o file shown in Figure 5-1 is the same client object file
shown earlier in Figure 4-1. The client object fileis afile that contains the
stubs that will dynamically link clients to your shared library. The client
object file must be linked with the client if the client calls any exported
function or creates any objects implemented in the library. The exception
to thisis clients that use NewChj ect to create objects and

Get Funct i onPoi nt er to call functionsin function sets. These clients do
not need to link with the client object file. Also, a shared library must link
with its own client object fileif it exports any classes.

Building a shared library 5-3

When you build a shared library, two output files are generated; a shared
library file and a client object file:

m The shared library file that is produced during the build processis an
actual shared library that can be placed in the Extensions folder. The
shared library file is always built using model far.

m Client object files are files to which clients of a shared library must link.
A client object file usually has a filename that ends with the suffix .cl.o
or .cln.o, depending on whether the clients linking with your library will
be model near clients (.cIn.o) or model far clients (.cl.0). Y ou must
build amodel far client object file if you want to let model far clients
use your library, or if your library exports C++ classes. You must build a
model near client object file if you want to let model near clients use
your library.

-t

¥RLibrarye

¥ branh
J' / Hegder fe
My
=P
G

HCHLibrany eap ¥Libran.o
Exanrtiiefoida F St Clyipe ke

“‘\._H_y E:.’_,.—f"'

=

BuildSha redLibirany

e Ty

(=} 8 |.

it (=
WrLibrany.clo HrLibrary
Cigand niyeet e Sheed idery

Figure 5-1 Building a shared library

5-4 Chapter 5/ Writing and Building Shared Libraries

Build utilities

The Tools folder on the ASLM Developer Tools disk contains four utilities
that you use to build a shared library: two MPW Tools and two MPW
scripts. Before using these utilities, the two scripts must be placed in the
MPW scripts folder and the two tools in the MPW tools folder. These are
the four utilities:

The Bui | dShar edLi br ary script isan MPW script that builds a shared
library and a client object file from an input object file and an exports
file. The Bui | dShar edLi br ary script callsthe Li br ar yBui | der tool.

The Li nkShar edLi br ary script isan MPW script that links a shared
library. You can choose to use Li nkShar edLi brary or

Bui | dShar edLi brary to do your linking. Y ou must use the

Li nkShar edLi brary script when you want to build two or more shared
libraries with circular dependencies (libraries that depend on each
other’s client object files).

The Li brar yBui | der tool isan MPW tool that is executed by the

Bui | dShar edLi brary script. The Li br ar yBui | der tool creates an
interim script that is used in the build process, and also creates an interim
file called an initialization file. It uses these files, along with the input
object file and the exports file that you provide, to create a shared
library file and client object files. The Li br ar yBui | der tool does most
of the work when you build a shared library.

The Cr eat eLi br ar yLoadRsr ¢ tool isan MPW tool that allows ASLM
clients and libraries to create a resource that contains information about
the function sets and classes they depend on. The LoadLi brari es
routine uses this resource to preload all libraries on which aclient is
dependent.

UsingBui | dShar edLi brary

To build a shared library, you should make sure that all the modules in the
object file you are using were built using model far. Then make sure that
the Li br ar yBui | der tool is placed in your MPW Tools folder, and run the
Bui | dShar edLi br ary script.

Using Bui | dShar edLi brary 5-5

The syntax of the Bui | dShar edLi brary command is:

Bui | dShar edLi brary | nput GhjectFile [-y ScratchPat h]
-exp InputExportFile [-far QutputFardient hjectFile]
[-near QutputNeardient(hjectFile] [-macsbug]
[-privateFar QutputFarPrivateFile]
[-privateNear QutputNearPrivateFile] [-1ib LibraryChject Nane]
[-obj QutputChj ect BaseNane] [-restype codeResour ceType]
[-resid n] [-thinkd [-map MapFil eNane] [-sym Synbol Opti on]
[-synfile SynFileNane] [-wi] [-w2] [-w#] [-p] [-v] [-c] [-€]
[-hel p] [-noMerge] [-noVirtual Exports] [-keepQientFiles]
[-i IncludePath] [CbjectFilesToLi nkWth...]
[-1ink LinkerQotions] [-]ogout QutputLogFileName]
[-10g I nputLogFil| eNarre] [-dol og]

where:

| nput Cbj ectFile

The first parameter on the command line that is not preceded by a hyphen
(-) isthe name of the input object file—that is, an object file (which may be
the output of an MPW Li b command) that you want to convert into a
shared library. The input file itself is not affected by this command. This
parameter is mandatory.

It is best for this object file to include only the implementation of classes
and functions you export. Other routines that the exported classes and
functions depend on can be placed in object files specified with the - 1 i nk
or Obj ect Fi | esToLi nkW t h parameters. Although this procedure is not
required, it will help speed up builds and you should definitely avoid using
Li b to combine LibraryManager.o with the | nput Obj ect Fi | e.

-y ScratchPat h

This optional parameter specifies the path name of a scratch folder for all
temporary files created during the build process. If you do not specify a
scratch path, the Bui | dShar edLi br ary script places scratch files in the
folder specified by the MPW variable { TenpFol der}. If no

{ TenpFol der} variableis defined, the Bui | dShar edLi br ary script uses
the path name specified by the MPW variable { CPl usScr at ch} . If neither
of these variables is defined, scratch files are placed in the current
directory.

-exp | nput ExportFil e

This mandatory parameter specifies the name and path of your exportsfile.
Normally, thisfile is named LibraryName.exp.

5-6 Chapter 5/ Writing and Building Shared Libraries

-far Qutput FarCdientObjectFile

This optional parameter allows you to link model far clients with your
shared library. The - f ar parameter specifies the path name of the client
object file that is generated by the build process (afile with a name that
ends with the suffix .cl.o). If your library exports C++ classes, you must use
the far parameter and link your shared library with the model far client
object file that is created. Otherwise, link errors are generated. Specifically,
references to constructors and destructors of exported classes will be
unresolved. You can usethe-f ar option and the - near option in the
same command.

Note: - near and - f ar merely specify the kinds of clients that can link
with your library. They do not affect the library itself; shared libraries are
always built using model far.

-near QutputNeardientObjectFile

This optional parameter allows you to link model near clients with your
shared library. The - near parameter specifies the path name of your client
object file (afile with a name that ends with the suffix .cln.o). Model near
clients of your shared library must link with thisfile. Y ou can use the

- near option and the - far option in the same command.

Note: - near and - f ar merely specify the kinds of clients that can link
with your library. They do not affect the library itself; shared libraries are
always built using model far.

- macshbug

This optional parameter places MacsBug symbolsin the client object file. It
is useful when you are trying to debug your shared library or client. Stubs

for the exported routines will have MacsBug symbols that start with st ub_.
The debug versions of LibraryManager.o are built in this manner.

-privateFar QutputFarPrivateFile

This optional parameter specifies an output object file for model far private
stubs. For more information, see the description of the pri vat e= option
for the d ass and Funct i onSet declarationsin “Writing an .exp File”
later in this chapter.

-privateNear QutputNearPrivateFile

This optional parameter specifies an output object file for model near
private stubs. For more information, see the description of thepri vat e=
option for the G ass and Funct i onSet declarationsin “Writing an .exp
File" later in this chapter.

Using Bui | dShar edLi brary 57

-li b LibraryNane

This optional parameter specifies the name and path of the shared library
file that the build process produces. If - 1 i b ismissing,

Bui | dShar edLi br ary creates only the client object files, and you need to
invoke the Li nkShar edLi br ary script later in order to actually create the
shared library. This mode is useful when you have two or more shared
libraries that are interdependent.

Thislibrary file normally contains two resource types: a' | i br' resource,
which contains a dictionary of the classes and function sets that your
library exports, and your library’s actual code segment resources
(normally ' code' resources). It may also contain athird resource type: a
"libi' resource, which contains a map of all of the function sets and
classes on which your library depends. If your library has no external
dependency, this resource is missing.

The Bui | dShar edLi br ary command creates only one shared library file
at atime, but if you use different resource types for the code segmentsin
your library, and unique numbers for your ' | i br' resources, you can use
the MPW Rez tool to r ez multiple libraries together into asingle library
file. (For more information related to this topic, see the - r est ype and

- r esi d parameters, below).

-obj nj ectFil eBaseNane

This optional parameter specifies the name and path for intermediate files.
If this parameter is missing, the intermediate files are deleted once the
library is created. The advantage of using this parameter isthat if one of
the client files that your library depends on changes, you only need to
relink the library. However, if these files are not available,

Bui | dShar edLi br ary must do a complete rebuild of your library, which
takes alonger time. Y ou never need to deal with these files directly. They
are only used by Bui | dShar edLi brary and Li nkShar edLi brary.

There are four intermediate files created, and they are named by appending
the following extension to your Obj ect Fi | eBaseNane:

lib.o A copy of InputQOjbectFile with some module names
changed

dibr.r Resource to r ez with the shared library including the
Tibr',"mibi",andlibrary code resources

.deps File used to create the 'l i bi ' resource

.init.o Initialization code for the library

5-8 Chapter 5/ Writing and Building Shared Libraries

-restype codeResour ceType

This optional parameter allows you to specify aresource type for your
shared library’s code resources. The default code resource type of a shared
library is'code' . The - r est ype parameter is useful only if you plan to

r ez multiple libraries together into asingle library file.

-resid n

With this optional parameter, you can give your shared library’s' | i br'
resource aresource ID number. The default resource ID number of a
"l'ibr' resourceisO. The-resi d parameter is useful only if you plan to
r ez multiple libraries together into asingle library file. Thisresource ID is
alsousedif a'libi' resourceisgenerated for the library.

-t hi nkC

This optional parameter specifies that the | nput Obj ect Fi | e was compiled
with the Symantec C or C++ compilers for MPW.

-map MapFi | eNane

This optional parameter generates a linker map file. It must be passed as a
Li nkShar edLi br ary parameter and not as a linker parameter in the

- 1'i nk section. This parameter isonly used if you also specify the-1i b
parameter. Otherwise use it with Li nkShar edLi br ary instead.

-sym Synbol Opti on

This optional parameter causes symbols to be placed in the symbol file
specified with the - synfi | e option.

-synfile SynfFil eNane

This optional parameter causes any SYM file created by linking the shared
library to be copied to the specified path.

-wl,-w2, and - w#

These optional parameters are used to specify the level of warning you
want produced.

-p (or-progress)

This optional parameter causes the Bui | dShar edLi br ary script to runin
aprogress mode, generating a brief progress report. It is useful for
debugging build problems.

Using Bui | dShar edLi brary 5-9

-v (or -ver bose)

This optional parameter turns on a verbose mode during the build process.
The verbose mode provides more detailed progress information than the
progress mode. The report generated in verbose mode lists the names of
classes and global functions that were not exported. It is useful for
debugging build problems.

-C

This optional parameter informs the Li br ar yBui | der that your object
files contain no code written in C++. This parameter forces

Bui | dShar edLi br ary to match function names exactly when function
names contain two consecutive underscore characters (__). C users can
always safely use this parameter, but they only need to use it if afunction
to be exported contains two consecutive underscore characters.

This option is needed because normally Bui | dShar edLi br ary only does
partial matching of function names up to the first occurrence of two
consecutive underscore characters. This is because C++ mangles function
names so parameter information can be encoded in the function name.
Mangled function names always start with the normal function name
followed by two consecutive underscore characters and then the encoded
parameter information. When the -c option is not used,

Bui | dShar edLi br ary only compares the part of the function name
before the two consecutive underscore characters.

-e

This optional parameter forces Bui | dShar edLi br ary to completely
rebuild the library. By default, Bui | dShar edLi br ar y checks whether the
modification date of the object file has changed since the library was last
built, and does not reprocess the object file if the modification date has not
changed.

-hel p

This optional parameter outputs a detailed list of all of the options to
Bui | dShar edLi brary.

- noMer ge

This optional parameter prevents the link of the shared library from
merging all of the segments used by the MPW (or Symantec C/C++)
libraries into the Main code segment.

5-10 Chapter 5/ Writing and Building Shared Libraries

-noVi rtual Exports

Use this optional parameter if you do not want stubs generated for virtual
functions. Thisis easier than changing all your class export declarations to
includefl ags=noVi rt ual Exports. You can still explicitly export some
virtual functions by using expor t s=. Also, you will still be able to make
virtual function calls through the object’ s v-table.

-keepCientFiles

This optional parameter ensures that Bui | dShar edLi br ar y does not
change the modification date of client objects filesif their contents have
not changed. It is explained in more detail in “ Speeding Up Builds” later
in this chapter.

-i I'ncludePat h

This optional parameter, which can occur multiple times on the command
line, supplies directory path names where the Bui | dShar edLi br ary script
should search for files that you have included in your exports file using the
#i ncl ude directive. You must provide a separate - i option for each search
path you specify.

oj ect Fi l esToLi nkW th

When all parameters that start with hyphens (-) have been evaluated, any
other words that appear on the command line are assumed to be the names
of object files. The first filename that appears on the command lineis
assumed to be the input object file. All other filenames are assumed to be
the names of object files that must be linked with your shared library. For
more information related to thistopic, see the | nput Obj ect Fi | e entry
earlier in thislist.

-1ink Li nker Opti ons

This optional parameter causes everything that appears after it to be passed
verbatim to the Li nk command that links your shared library. The -1 i nk
parameter can be useful when you want to pass commands on to Li nk,
such as commands to merge segments.

When Bui | dShar edLi br ary links your shared library, it automatically
merges all code segments used by MPW libraries into the Main code
segment. If thisis not what you want, you can override this feature by
specifying a linker option with the - i nk option.

Using Bui | dShar edLi brary 5-11

-1 ogout Qut put LogFi | eNane

The | ogout switch specifies the output log file. The output log fileis an
ASCII text file that shows where various functions, v-tables, and so on, are
being exported.

-1 og I nput LogFi | eName

The | og switch specifies an input log file. The log file is used to control the
generation of the new library.

- dol og

The dol og switch actually enables the logging operations. (Thisis so that
you can specify - | ogout or -1 og inyour makefile, but nothing is done
until you alias Bui | dShar edLi brary to be Bui | dShar edLi brary

- dol og, or something similar.)

Building a shared library with circular dependencies

If you want to build a shared library that has a circular dependency with
another library, you cannot build your shared library until you have
created the client object file of the other shared library, and you cannot
build the other shared library until you have created the client object file
from the first library. (A circular dependency exists when there are two or
more shared libraries that depend on each other’ s client object files.)

To build shared libraries with circular dependencies, you must split the
build of your shared library into two phases. The first phase creates all the
client object files that the build process requires. The second phase links
the shared libraries.

Creating client object files and intermediate files

To carry out the first phase, you need to run the Bui | dShar edLi brary
script as you normally would except omit the-1i b,-1i nk, and

Qbj ect Fi | esToLi nkW t h parameters. Thiswill create the object files and
some intermediate files that will be needed to link the shared library, but it
does not link the shared library. Intermediate files are described with the

- obj option in the previous section.

5-12 Chapter 5/ Writing and Building Shared Libraries

Linking the shared library

After you create the client object files and intermediate files, you must run
the Li nkShar edLi br ary script to link your shared library.

The syntax of the Li nkShar edLi br ary command is:

Li nkSharedLi brary -1ib Li braryNane -obj | nput Cbj ect BaseNane
[-synfile SynFileNarre] [-map MapFi | eNane]
[-noMerge] (bjectFilesToLi nkWth... [-link LinkerQtions]

The-li nk, - map, - noMer ge, and Qbj ect Fi | esToLi nkW t h parameters
are the same as for Bui | dShar edLi br ary. These are descriptions of the
options and parameters that you can place on the Li nkShar edLi brary
command line:

-l'i b LibraryNane

This parameter specifies the name and path of the shared library to be built
and isthe same asthe-1i b in Bui | dShar edLi br ary. Either specify -1i b
with Bui | dShar edLi br ary, in which case you will not be using

Li nkShar edLi br ary, or omit it from Bui | dShar edLi br ary and specify
it with Li nkShar edLi brary.

-obj I nput Obj ect BaseNane

This parameter must be the same as the file specified by the - obj
Obj ect Fi | eBaseNane parameter of the Bui | dShar edLi brary
command.

-synfile SynfFil eNane

This optional parameter specifies where to put the .SYM file. Y ou must also
use - symon or - sym on, nol i nes inthe-1Ii nk section. For more
information see “Creating Symbol Files” later in this chapter.

Creating symbol files

The Bui | dShar edLi brary and Li nkShar edLi br ary commands use the
switch, - synfile SynFil eNane. If your link creates a.SYM file, it will be
copied to the file Synti | eNane.

If you are using Bui | dShar edLi br ary to link your library, you must also
pass - sym on or - sym on, nol i nes to Bui | dShar edLi brary. Do not
pass the - symoption to the linker by including it after the - 1 i nk option.

Y ou should also use the - synfi | e option with Bui | dShar edLi brary.

Creating symbol files 5-13

If you are using Li nkShar edLi br ary to link your library then you
should pass - sym on or - sym on, nol i nes after the-1i nk option and
include it with the options passed to Bui | dShar edLi brary. You also need
tousethe - synfi | e option with Li nkShar edLi br ary, but not

Bui | dShar edLi brary.

For an example of creating a.SY M file using just Bui | dShar edLi brary,
look at the ExampleLibrary makefile. For an example of creating a.SYM
file using Li nkShar edLi brary, look at the Inspector makefile. In both
cases the MPW {Synbol Opti on} variable should be set to - sym on or
-sym on, nol i nes to produce a.SYM file. It will not create one by
default. Notice that thereisno harmin using the - synfi | e option even if
you are not going to produce a symbol file.

Makefiles

Y ou can learn how to write makefiles that build shared libraries and clients
by examining the makefiles for the example programs that are supplied
with the ASLM. The example programs are provided in a number of
folders as described in Appendix C, “Building Examples.”

A makefile example

Listing 5-1 is a makefile that builds a client named CSample and an
associated shared library named CSampleLibrary. You can find the
makefile in the CSample folder inside the Sample Apps folder. The
makefile builds the shared library and its client from source files named
Sample.h, SampleLibrary.h, Sample.c, SampleLibrary.c, Sample.r,
SampleLibrary.exp, and SampleLibrary.r.

5-14 Chapter 5/ Writing and Building Shared Libraries

Listing 5-1 Makefile for the sample client and its shared library

H o o m o e o e e o o e e e e o e e o e e o e e e e e e e e e e mmmmmme—eoo o
File Makefil e

#

Cont ai ns: This makefile creates CSanpl eLibrary and its client
application called CSanple.

#

Bui | d Command: Bui | dProgram CSanpl e

#

Copyri ght : © 1993 by Apple Computer, Inc., all rights reserved.
#

#

SRC = : Sour ces:
cBJ = :(hj ect s:
BLT = :Built:

SLMO ncl udes = {SLM nt erf aces}d ncl udes:
SLMRI ncludes = {SLM nterfaces}R ncl udes:
He o o o o o e e e o e e o e e e e o e e o o e e o e e e e e e e e mmmmmmemeoo o
TARGETS
He o o o o o e e e o e e o e e e e o e e o o e e o e e e e e e e e mmmmmmemeoo o
TARCGETS = "{OBJ} Sanpl eLi brary.cl.o" |
"{BLT}CSanpl eLi brary" 1
"{BLT} Csanpl e"
He o o m o m o e e o e e e o e mmmemee—— oo
DEFAULT RULES
He o o m o m o e e o e e e o e mmmemee—— oo
c.o f .C
Echo "t Mt Conpi ling {Default}.c"
C {DepDir}{Default}.c -o {Targ} {Qptions}
He o o m e o e e o e meaa—os
OCOWPl LER ASSEMBLER CPTI ONS
He o o m e o e e o e meaa—os
Apti ons = -nodel far -case on
Qpt i ons = -model far -i {SRGQ -nbg on -symfull,nolines -nf -b2 -opt full |

-i "{SLMJ ncl udes}"

Continued on following page »

Makefiles 5-15

DEPENDENC! ES

B o o e e e e e e e e e e e e eeeeeaao-
{ GBI} f "{SRG

CSanpl e f { TARGETS}

o o e o edeeee e

CREATE SAVPLE SHARED LI BRARY

o o e o edeeee e

"{OBJ} Sanpl eLi brary. cl.o" f "{CBJ}Sanpl eLi brary. RSRC'
SetFile -m. {Targ}

"{CBJ} Sanpl eLi brary. RSRC' f "{BJ}Sanpl eLi brary. c. 0" "{SRC Sanpl eLi brary. exp"
Bui | dShar edLi brary 1
{®BJ}Sanpl eLibrary.c.o 1
-macshug 1
-lib "{OBJ} Sanpl eLi brary. RSRC' |
-obj "{OBJ}CSanpl eLi brary" 1
-far "{OBJ}Sanpl eLi brary.cl.o" |
-exp "{SRG Sanpl eLi brary. exp" 1
-i "{SRG" -i "{SLMJ ncludes}" -i "{dncludes}" -p v
"{SLM.i brari es}Li braryManager. 0"
"{Libraries}Runtime. 0"

"{BLT} CSanpl eLi brary" f {SRC Sanpl eLi brary. h {OBJ} Sanpl eLi brary.c. o
{@BJ} Sanpl eLi brary. RSRC
Echo "t Mt Rezzing {Targ}"
Rez -t libr -c OMR -s "{@BI}" 1
-i "{SLMR ncludes}" -i "{SRG" 1
-0 {Targ} "{SRG Sanpl eLi brary.r"
SetFile -a ib {Targ}

U
CREATE SAMPLE APPLI CATI O\(CLI ENT)
U
"{BLT} Csanpl e" ff {SRG Sanpl e. h {BJ} Sanpl e.c. 0o {CBJ}Sanpl eLi brary.cl.o

Echo "ftftLinking {Targ}"

Link -w -nodel far
"{OBJ}Sanpl e.c. 0"
"{SLM.i brari es}Li braryManager. 0" 1
"{Libraries}Runtine.o" ¢
"{Libraries}Interface.o"
"{OBJ} Sanpl eLi brary.cl.o" |
-0 {Targ}

SetFile {Targ} -t APPL -c "MXOS -a B

5-16 Chapter 5/ Writing and Building Shared Libraries

" { BLT} CSanpl e"

ff {SRG Sanpl e.h {SRG Sanpl e.r {BJ}Sanple.c.o

{®BJ}Sanpl eLibrary.cl.o

Echo "t Mt Rezzing {Targ}"

Rez -i "{SRG" -rd -o {Targ} "{SRCG"Sanpl e.r -append
"{OBJ} Sanpl eLi brary.c. 0" f "{SRG Sanpl eLi brary. h"

"{OBJ} Sanpl e. c. 0"

f "{SRG Sanpl eLi brary. h" "{SRCG Sanpl e. h"

Makefile example contents

Hereisalist of the contents of each file that the makefilein Listing 5-1
Processes:

Sample.h contains declarations for the sample application.

SampleLibrary.h contains the declarations of the functions exported by
the shared library.

Sample.c contains client source code.

SampleLibrary.c contains the implementations of functions exported by
the shared library.

SampleLibrary.exp contains the library definition for the shared library,
and the definitions of any function sets that are exported.

SampleLibrary.r is the resource definition file for resources used by the
shared library.

Sample.r isthe resource definition file for resources used by the client.

SampleLibrary.RSRC is the compiled and linked implementation of the
shared library.

CSampleLibrary is the shared library that is placed in the Extensions
folder. CSampleLibrary contains the resources in SampleLibrary.RSRC.

CSampleisthe client application that uses CSampleLibrary.

Executing a shared library makefile

To execute a shared library makefile, execute the following command from
the directory of the makefile:

make -f nmkefil enane > nake. out
make. out

Makefiles 5-17

Writing an .exp file

This section explains how to write the export definition (.exp) file needed
to create a shared library. The .exp file defines any classes and function
sets that you want to export from your shared library.

An exports file can contain comments (written in C-language comment
style), #i ncl ude directives, #def i ne directives, aLi br ary declaration, and
any number of Functi onSet and Cl ass declarations.

Li br ary declaration

The Li br ary declaration in a shared library’ s exports file contains
important information about the library, including the library’s library 1D
and the library’s version number. It can also contain other parameters for
configuring the library.

The following code fragment is an example of aLi br ary declaration:

#define kLi ghtLi bl D "appl : sanpl e$TrafficLight, 1. 1"
Li brary {

id = kLi ghtLiblD;

version = 1.0bl;

menory = client;

1

Syntax

The syntax of afull Li brary declarationis:

Li brary

{
id = <LibrarylDString>; /* required*/
version = <Li braryVersi on>; [* required*/
i nitproc = <ProcNane>; /* optional */
cl eanupProc = <ProcName>; /* optional */
menory = <MenoryQOpti on>; /* optional */
heap = <HeapType>; /* optional */
clientdata=<CientData Option>; /* optional */
flags = <Fl agOpti ons>; /* optional*/

1

5-18 Chapter 5/ Writing and Building Shared Libraries

Field descriptions
Thefieldsin alLi brary declaration have the following descriptions:

id = Libraryl DString

This declaration defines the library ID of your shared library. A library 1D
normally takes the form xxyy$Nane, as shown in the code fragment that
appears above. It also should include the library’ s version number to
ensure that each library version will have aunique ID. See “TLibrarylD”
in Chapter 9, “Utility Classes and Member Functions,” for more details on
the format of alibrary ID. The Li braryl DSt ri ng parameter is a quoted
string, but it may include constants created with the #def i ne directive as
part of its definition, provided your exports file includes the header files
that contain definitions that resolve the constants.

When there are multiple shared libraries with the same library 1D, the
ASLM uses only one shared library. The others are marked as duplicates
and their contents are ignored.

version = LibraryVersion

This declaration contains the version of your shared library. Write the
version number in the standard Apple version number form: #.#[.#],
followed by either nothing or [dabf] # to specify the library’ s release
status—for example, 1.0b2 or 1.1.2d5. The version number may be a
constant created with the #def i ne directive.

initproc = ProcNane

This declaration lets you specify the name of a C function that is called
immediately after your shared library isloaded and initialized. The
function that is specified in this declaration takes no parameters and returns
no value. The function can be in the A51 ni t segment; in this case, the
function is unloaded from memory after the library is loaded and
initialized.

cl eanupProc = ProcNane

This declaration lets you specify the name of a C function to be called just
before your shared library is unloaded from memory. The function that is
specified in this declaration takes no parameters and returns no value. The
function must not be in the ASI ni t segment.

Writing an .exp file 5-19

menory = client

This declaration specifies that when the C++ new operator is used to
allocate memory in your shared library, the memory is allocated from the
current client’s pool. If no nenory parameter is specified, menory =

cl i ent isthe default. For more information on client memory pools, see
“Memory Management Classes” in Chapter 8, “ASLM Utility Class
Categories.”

menory = | ocal

This declaration specifies that any memory-allocation operations carried
out by the C++ new operator in the library being built will use the library’s
local pool. For more information on local memory pools, see “Memory
Management Classes” in Chapter 8, “ASLM Utility Class Categories.”

heap = default || tenp || system || application [,hold][, #]

Thistellsthe ASLM where you want your library to be loaded into
memory. Normally, you should not specify this attribute unless you have a
very good reason. However, if your library must run under virtual memory
and cannot move in memory (for instance, a network driver), you can
specify the hol d attribute to inform the ASLM that you require the
memory where your library is loaded to be “held” under virtual memory.
Also, you can optionally specify the size of the heap that you want your
library to load into (this option only makes sense for def aul t or t enp).
Thisis useful if you are going to explicitly load and unload library code
segments. See “ Support for Explicit Segment Loading and Unloading”
later in this chapter.

For more information on heap, see “Library Heap Support” later in this
chapter.

clientData = StructureNane || #

Thistellsthe ASLM that you require per-client static data. Y ou can specify
either a number of bytes or the name of a structure. Then whenever you
call Get d i ent Dat a, you will be returned a structure of the specified size.
The first time the structure is created for a given client, it will be zeroed.
After that, you will get back the structure corresponding to your current
client. If you specify a structure name, the object file must have the type
information available to determine the size of the structure, or an error will
be generated. To add type information to the object file, make sure the files
are compiled with - sym on or - sym on, nol i nes. For more information,
see “Per Client Data’ in Chapter 7, “ASLM Utilities.”

5-20 Chapter 5/ Writing and Building Shared Libraries

flags = segUnl oad || !noSegUunl oad

This flag warns that clients may unload segments of your shared library.
Normally, the ASLM resolves all jump table references at library load time
and removes the jump table from memory. This flag overrides this
behavior. For more information, see “ Support for Explicit Segment
Loading and Unloading” later in this chapter.

flags = noSegUnl oad || !segUnl oad

This flag specifies that the segments of the shared library will not be
unloaded by the client. Thisis the default setting of the segunl oad flag.
The advantage of this option over segUunl oad isthat your library uses less
memory when loaded (because the jump table is not needed) and calls that
would normally go through the jump table are faster. The disadvantage is
that it preloads all library code segments.

flags = prel oad

This flag causes the shared library to be loaded when the ASLM is loaded
at boot time. Y ou can also specify noSegunl oad or segunl oad when
using this flag. For more information, see “Keeping Preloaded Libraries
Loaded” later in this chapter.

flags = | oaddeps

This flag indicates that the ASLM should load all dependent libraries
whenever this library isloaded (based on the information inthe' I i br'
resource created during the build process). Using this flag guarantees that
all libraries on which your library depends, exist and are loaded. It is
equivalent to calling LoadLi brari es(fal se, fal se) withinyour

i ni t proc except that you are not required to call Unl oadLi brari es to
allow your library to unload.

flags = forcedeps

Thisflag acts just like the | oaddeps flag, but it also forces all of the code
segments in the dependent libraries to be loaded into memory. It is
equivalent to calling LoadLi brari es(true, fal se) withinyour

i ni t proc, except that you are not required to call Unl oadLi brari es to
allow your library to unload.

Writing an .exp file 5-21

flags = stayl oaded

This flag forces your library to stay loaded. It requires a call to

Unl oadLi brari es from within your library to allow your library to
unload. It is equivalent to calling LoadLi br ari es(doForce, true)
withinyour i ni t proc. The doFor ce parameter ist r ue if thef or cedeps
flag is set, otherwiseitisf al se.

flags = systenb || !systenv

Thisindicates that your library should not be registered if it isinstalled on
a Macintosh running System 7.x. No clients will be able to see any of the
classes or function setsin your library. This flag is useful if you have two
different versions of your library—one for System 6.x and one for
System 7.x.

flags = systenv || !systenb

Thisindicates that your library should not be registered if it isinstalled on
a Macintosh running System 6. No clients will be able to see any of the
classes or function setsin your library. Thisflag is useful if you have two
different versions of your library—one for System 6 and one for System 7.

flags = vnOn || !vnOXf

Thisindicates that your library should not be registered if it isinstalled on
a Macintosh with virtual memory (VM) turned off. No clients will be able
to see any of the function sets or classes in your library. This flag is useful
if you have two different versions of your library—one to use if virtual
memory is on and one to use if virtual memory is off.

flags = vnOFf || !vmOn

This indicates that your library should not be registered if it isinstalled on
a Macintosh with virtual memory (VM) turned on. No clients will be able to
see any of the function sets or classes in your library. This flag is useful if
you have two different versions of your library—one to use if virtual
memory is on and one to use if virtual memory is off.

flags = fpuPresent || !fpuNotPresent

Thisindicates that your library should not be registered if it isinstalled on
a Macintosh that does not have afloating-point unit (FPU). No clients will
be able to see any of the function sets or classes in your library. Thisflag is
useful if you have two different versions of your library—one to use with
an FPU and one to use without an FPU.

5-22 Chapter 5/ Writing and Building Shared Libraries

flags = fpuNotPresent || !fpuPresent

Thisindicates that your library should not be registered if it isinstalled on
a Macintosh that has a floating-point unit (FPU). No clients will be able to
see any of the classes or function setsin your library. Thisflag is useful if
you have two different versions of your library—one to use with an FPU
and one to use without an FPU.

flags = nc68000 || nc68020 || nc68030 || nc68040

Thisindicates that your library should only be registered if it isinstalled on
a Macintosh that has the specified processors. Y ou may specify more than
one processor. For example, f 1 ags = nc68000, nc68020 will cause
your library to be registered only on 68000 or 68020 processors.

flags = ! mc68000 || !nmc68020 || !mc68030 || ! nc68040

This indicates that your library should not be registered if it isinstalled on
a Macintosh that does not have one of the specified processors. Y ou may
specify more than one processor. For example, f1 ags = ! nc68000,

I nt68020 will cause your library to be registered only on Macintoshes
with a 68030 or higher processor. It is an error to mix not terms (1) with
non-not terms—for example, f | ags = nc68000, ! nt68020.

Cl ass declarations

The C ass declarations in an exports file identify classes that you want
your shared library to export. The following code fragment is an example
of ad ass declaration:

Gl ass TLightd ass {
fl ags = newobj ect;

b

Syntax
The syntax of afull O ass declarationis:

Cl ass < assNanme>

{
version = <d assVer si on>;
fl ags = prel oad, newobject, noVirtual Exports,
noMet hodExports, noExports;
exports = <Li st O Funct i onNames>;
dont Export = <Li st Of Funct i onNanes>
private = * | <ListO FunctionNames>
1

Writing an .exp file 5-23

All fields in the above code fragment except the <Cl assNane> field are
optional. Therefore, the smallest possible class declaration has this syntax:

Cl ass C assNane;

A #def i ne must exist for your class's class ID and should be of the form
kd assNanel D. See “TClassID” in Chapter 9, “Utility Classes and
Member Functions,” for more details on class ID’s. Also, your exports file
must #i ncl ude the files that contain the declaration of the C++ class and
its parent classes.

Field descriptions
Thefields for the class declaration have the following descriptions:

Cl assNane

The name of the class that you want to export.

version = Cl assVersion

This declaration defines the version of the class. The version number
should have the standard Apple version number form: #.#[.#]. The version
number that you use in this field may not include any special release
information (such as b2). It can be a constant defined in a#def i ne
declaration. Also, the version number can be made up of a pair of version
numbers separated by either three dots (. . .) or an ellipse (option-;)
character. Thisis called aversion range; it is used to specify the lowest
version number that the class being defined is backward-compatible with
and to specify the current version number of the class. If you do not
specify aversion number, the version number contained in the class's class
ID isused. If the class ID does not specify a version number theniit is
assumed that the version number of the classis the same as the version
number specified in the Li br ary declaration. See Appendix D,
“Versioning,” for more information on versioning and “TClassID” in
Chapter 9, “Utility Classes and Member Functions,” for more information
on class IDs.

fl ags = newobj ect

This flag specifies that clients are allowed to create an instance of the class
with the NewCbj ect functions, using the class's class ID. A warning is
issued at build time if thisflag is set and one of the following is true:

m The class being defined does not have a default constructor.
m Theclassis abstract (has a pure virtual method).

m The class size cannot be determined from the symbol information in the
object file.

5-24 Chapter 5/ Writing and Building Shared Libraries

flags = prel oad

This flag specifies that an instance of the class should be created whenever
the library isloaded. This flag implies the newobj ect flag. A warningis
issued at build time if thisflag is set and one of the following is true:

m The class being defined does not have a default constructor.
m Theclassis abstract (has a pure virtual method).

m The class size cannot be determined from the symbol information in the
object file.

See “Keeping Preloaded Libraries Loaded” later in this chapter.

flags = noExports

This flag specifies that no member functions of this class are to be
exported. A client can use this class only with the NewObj ect function if
thisflag is set and you do not export constructors using the export s=
option. Also, aclient can call only virtual functionsin the class, unless you
explicitly export methods using the exports = option described below.

flags = noVirtual Exports

This flag specifies that no virtual functions can be exported for this class.
Thisrestriction effectively prevents subclasses in separate libraries from
explicitly calling inherited functions. It also prevents the calling of virtual
functions for stack objects unless the stack object is first dereferenced and
cast to a pointer. It does allow normal virtual function calls to be made
since they go through the v-table and do not need to be exported. Y ou can
explicitly export some virtual functions using the exports = option
described below.

flags = noMet hodExports

This flag specifies than no member functions of this class are to be
exported, with the exception of the destructor and the constructors. This
restriction effectively prevents the class from being subclassed from an
application and also prevents subclasses in separate libraries from explicitly
calling inherited functions. If also prevents the calling of virtual functions
for stack objects unless the stack object isfirst dereferenced and cast to a
pointer.

Writing an .exp file 5-25

exports = ListCOf Functi onNanes

Thisfield contains a comma-separated list of member functions that you
want to export from the class being defined. It is normally used to override
the noExport s, noMet hodExports, or noVi rt ual Exports flags for
individual methods. All you must specify in thisfield is the function’s
name—unlessit is a Pascal function, in which case, you must precede the
function’s name with the keyword pascal . The Bui | dShar edLi brary
command regards all overloaded variants of a member function as the same
function, and therefore exports them all. To export operators, you can use
the C++ syntax for specifying operators (for example, oper at or +=). To
export constructors, you can use the name of the class. To export
destructors, you can use the standard format ~NameOf Cl ass.

By default, static methods are not exported. To export static methods,
export them in afunction set. If you want to export them using the
expor t s= option, you must omit the keyword st ati c.

dont Export = Li st Of Functi onNanes

Thisfield contains a comma-separated list of member functions that you
do not want to export from the class being defined. All you must specify in
thisfield is the function’s name—unless it is a Pascal function, in which
case, you must precede the function’s name with the keyword pascal . The
Bui | dShar edLi br ary command regards all overloaded variants of a
member function as the same function, and therefore will not export any of
them. To prevent operators from being exported, use the C++ syntax for
specifying operators (for example, oper at or +=). To prevent constructors
from being exported, use the name of the class. To prevent destructors
from being exported, use the standard format ~NaneCf C ass.

private = List O Functi onNanmes

This declares a comma-separated list of member functions that you want to
export from the class privately. Any member functions specified in this list
are exported, but go into a separate client object file (defined by the
-privateNear and/or-privateFar command-line optionsto

Bui | dShar edLi brary).

5-26 Chapter 5/ Writing and Building Shared Libraries

private = *

This declares that all member functions that can be exported should be
exported privately. If you have set noMet hodExport s, then all virtual
methods are exported privately that are not either explicitly exported
publicly by the export s= option or that are specifically excluded from
being exported by a dont expor t = option. If you have set

noVi rt ual Export s, then all non-virtual member functions are exported
privately that are not either explicitly exported publicly by the export s=
option or specifically excluded from being exported by a dont export =
option. If you have neither flag set, than all member functions of the class
are exported privately that are not either explicitly exported publicly by the
export s= option or specifically excluded from being exported by a

dont export = option. It isan error to use this switch if the noExport s flag
iS set.

Functi onSet declarations

To export functions from your shared library, use Funct i onSet
declarations in the exports file. The following code fragment is an example
of aFuncti onSet declaration:

#defi ne kLi ght Functi onSet "appl $Traffi cLi ght FSet, 1. 1"
Functi onSet Light FSet {

id = kLi ght Functi onSet ;
exports = NewTr af fi cLi ght,
FreeTraf ficLi ght,
Get Li ght
Set Li ght
DrawLi ght

Adj ust Traf fi cLi ght Menus,
DoTr af fi cLi ght MenuConmand;

Writing an .exp file 5-27

The following code fragment is an example of a function set for functions
written in Pascal:

#defi ne kLi ght Functi onSet "appl $Traffi cLi ght FSet, 1. 1"
FunctionSet Light FSet {
id = kLi ght Functi onSet ;
exports = pascal NewTrafficLight,
pascal FreeTrafficLight,
pascal GCetlLight,
pascal SetlLight,
pascal Drawli ght,
pascal Adjust TrafficLi ght Menus,
pascal DoTrafficLi ght MenuComand;

b

Syntax
The syntax of afull function set declaration is:

Functi onSet <Functi onSet Nanme>

{
id= <Functi onSet | D>, /* required*/
interfacel D = <Interfacel D& ring>; /* optional */
version = <Funct i onSet \er si on>; /* optional */
exports = <Li st @ Funct i onNanes>; /* optional */
dont export = <Li st 0 Funct i onNanges>; /* optional */
private = * | <Li st Functi onNanes>; /* optional */

b

Field descriptions

Thefieldsin a function set declaration have the following descriptions:

Functi onSet Functi onSet Name

This field provides a unique name for your function set during the linking
process. This name is used in the client object file for module names
generated by Bui | dShar edLi brary. If the same Funct i onSet Nane is
used by more than one function set, the client will only be able to link with
one of the function set’s client object files. For this reason you should
choose a unique name.

5-28 Chapter 5/ Writing and Building Shared Libraries

id = FunctionSet| D

This declaration defines the ID of the function set. A function set ID
normally takes the form xxxx: yyyy$SoneNane. It should also include the
function set’s version number. For more details on the format of afunction
set ID, see “TFunctionSetID” in Chapter 9, “Utility Classes and Member
Functions.” This ID string is a quoted string, but it may include constants
created with the #def i ne directive as part of its definition, provided you
include the header files containing the definitions that resolve the constants.
If you do not include ani d = declaration in your function set declaration,
asearch is made in included header files for constants (created with the
#def i ne directive) with a name that matches kf unct i onSet Nanel D. If
such aname isfound, it is assumed to be the function set ID for the
function set. If the function set ID cannot be determined, an error occurs at
build time.

interfacelD = Interfacel DStri ng

This declaration establishes an interface for your function set. The format
of I nterfacel DSt ri ng isthe same as Funct i onSet | D. Normally, you
use this to specify which function sets have the same interface. Y ou can
then use Get Funct i onSet | nf o to find all of the function sets with the
same interface. Combined with the Get Funct i onPoi nt er and

Get | ndexedFunct i onPoi nt er functions, this allows you to choose which
function to call from among function sets with the same interface. For
more details, see “ Getting Information about Function Sets” and “Calling
Functions by Name” in Chapter 7, “ASLM Utilities.”

versi on = Functi onSet Ver si on

This declaration defines the version of the function set. The version
number should have the standard Apple version number form: #.#[.#]. The
version number that you use in this field may not include any special
release information (such as b2). It can be a constant defined in #def i ne
declaration. Also, the version number can be made up of a pair of version
numbers separated by either three dots (...) or an ellipse (option-;)
character. Thisis called aversion range. It is used to specify the lowest
version number with which the function set is backward-compatible and to
specify the current version number of the function set. If you do not
specify aversion number, the version number contained in the function
set’s function set ID is used. If the function set ID also does not specify a
version number, it is assumed that the version number of the function set is
the same as the version number specified in the Li br ar y declaration. See
Appendix D “Versioning” for more information on version numbers, and
“TFunctionSetID” in Chapter 9, “Utility Classes and Member Functions,”
for more details on the format of afunction set ID.

Writing an .exp file 5-29

exports = ListCOf Functi onNanes

Thisfield declares a comma-separated list of functions that you want to
export in this function set. All you must specify in thisfield isthe
function’s name—unlessit is a Pascal function, in which case, you must
precede the function’s name with the keyword pascal . If thisfield is
omitted, all functionsin the | nput Obj ect Fi | e are exported automatically.

Y ou may export a function by name by using the keyword ext er nal in
front of the function name. This allows the function to be used by

Get Funct i onPoi nt er . However, you may not export C++ class member
functions by name.

If you are exporting C++ functions, Bui | dShar edLi br ary regards all
variants of an overloaded member function as the same function, and
therefore exports them all (unless you use the - ¢ option on the

Bui | dShar edLi br ary command line).

If you want to export C++ class member functions in a function set, you
should precede the name of the member function with the name of the
class, using the format G assNane: : . The - ¢ Bui | dShar edLi brary
option isignored when exporting member functions and all overloaded
variants of the member function are exported. To export C++ operator
overloads, use the standard C++ syntax (for example, oper at or +=). To
export constructors, use Cl assNane: : O assNane. To export destructors,
use the standard form d assNane: : ~Cl assNane.

If you want to export all member functions of a C++ class, use cl ass
d assNane. If you want to export all static member functions of a C++
class, usest ati ¢ C assNane.

Exporting a class's member functions through a function set can be useful

when the class has no constructor or destructor, or when the constructor or

destructor of the classisinline. In these cases, classes cannot be exported in
the normal way.

When exporting a static method of a class or a static function, omit the
keyword st ati c.

Y ou cannot export C++ global operators in afunction set. Y ou can export
C++ cast operators, but only if they are predefined. Cast operators that are
not predefined are not allowed.

5-30 Chapter 5/ Writing and Building Shared Libraries

dont export = ListOf Functi onNames

This declares a comma-separated list of functions that you do not want to
export in this function set. It has the same syntax as the expor t s= option,
except that the st ati c,cl ass, and ext er n keywords are not valid.

Thisfield is useful if you have omitted the expor t s= option (which causes
all functionsin the | nput bj ect Fi | e to be exported) and you want to
prevent certain functions from being exported.

private = List O Functi onNanes

This declares a comma-separated list of methods that you want to export
from the function set privately. Any methods specified in thislist are
exported, but go into a separate client object file (defined by the

- privat eNear and/or - pri vat eFar command-line options to

Bui | dShar edLi brary). If you have not defined an exports= or

dont Export = clause, then all other functions are exported publicly.

private = *

This declares that all functions that can be exported should be exported
privately. If you have not defined an export s= or dont Export = option,
then all of the functions are exported privately. If you have an export s=
option, then the functions declared there are exported publicly, and all
others are exported privately. If you have adont Expor t = option, then the
functions declared there are not exported at all, and all others are exported
privately. If you have both options, those in the dont Expor t = option are
not exported, those in the expor t s= option are exported publicly, and all
others are exported privately.

Library environment flags

When you declare a library in the exports file, you can use the following
flags to define the environment that must exist for the ASLM to register the
library and its function sets and classes: vinOn, vinX f , Sy st en6, Syst ent,
FPUpr esent , FPUNot Pr esent , MC68000, MC68020, MC68030, and
MC68040. For example, the vimOn flag means that virtual memory must be
turned on, and Syst en6 means that System 6 must be running. By using
these flags, you can create versions of alibrary that can be used in different
situations (such as one version for System 6 and another for System 7).

Library environment flags 5-31

The flags are broken up into four groups: the virtual memory group (vimOn
and v £), the system group (Syst en6 and Syst en¥), the floating-point
unit group (FPUpr esent and FPUNot Pr esent), and the processor group
(MC68000, MC68020, MC68030, and MC68040). If one or more flags from
the same group are specified, the library can be used only when the
condition specified by one of the mentioned flags exists. For example, if
you only specify MC68020 then your library will only run under the 68020
processor and no others. If you also want it to run under the 68030 then
you should also specify the MC68030 flag.

Y ou can also specify that alibrary is not to be used in a particular
environment by using the construct !flagname. For example, a! MC68000
flag means the library can run on anything but an MC68000.

Theindividual flags are described in “Library Declaration” earlier in this
chapter.

Putting multiple libraries in a library file

Each shared library in a shared library file contains three types of
resources. a' | i br' resource, a'libi' resource, and a set of three or
more code resources. The' i br' resource describes the classes and
function setsin the library. The' 1i bi ' resource describes the library’s
dependencies on other libraries. Code resources contain the
implementation of the library. Although a shared library file can contain
more than one shared library, each shared library hasitsown' | i br' and
"li bi' resources and its own set of code resources.

Usually you use the MPW Rez command to create alibrary file that
contains multiple libraries. You must include each ' I i br* resource, giving
each' libr' and'libi"' resourceaunique ID if thereis more than one.
Y ou will also need to give each code resource type a unique type. The
resource ID and code resource type must be specified when building the
library. They are Bui | dShar edLi br ary options. Do not change the
resource ID of the' I'i br' or'libi' resourcewhen using Rez to create
your shared library file. Also, do not change the resource type of the code
resources.

5-32 Chapter 5/ Writing and Building Shared Libraries

The LibraryManager.o file

The LibraryManager.o file illustrated in Figure 4-1, “Building a Client,” is
an MPW library file supplied for ASLM client and library developers. It
contains

m client object file (.cl.0) code for shared libraries supplied with the ASLM
m routines defined in the ASLM header files

m the Dynami cCodeEnt ry routine, which performs certain initializations
and must be linked with and be the entry point for shared libraries

m other behind-the-scenes routines that are used internally

The LibraryManager.o file should be linked before any C libraries are
linked. It should also be linked before CPlusLib.o unless you want to use
the global new operator supplied by CPlusLib.o. See “Using the ASLM
Global newand del et e Operators” in Chapter 6, “Using the ASLM,” for
more details.

The LibraryManager.n.o file is similar to the LibraryManager.o file, except
that it is meant only for model near clients and, therefore, is not compiled
with model far. Since shared libraries must always be compiled with model
far, they will never link with LibraryManager.n.o.

LibraryManager.debug.o and LibraryManager.debug.n.o

LibraryManager.debug.o and LibraryManager.debug.n.o are debug
versions of the library files and contain debugger breaks and MacsBug
symbols useful when trying to debug clients and shared libraries.

Library heap support

The following table shows that the time of the load and the heap= option
that was used in the Li br ar y declaration determines the heap into which a
shared library will load. The top row of the table specifies the possible load
times. The leftmost column specifies the heap= option that was used.

Preload time INIT time Single finder System 6 System 7
default System System Application temp temp
temp System System System temp temp
system System System System System System
application ~ System Application Application Application Application

Library heap support 5-33

The following load times are possible (top row):

m Preload Timeiswhen the ASLM isloading at boot time and is
preloading libraries. In other words, the library is loading because it set
its preload flag, or because another preloaded library caused it to load.

m INIT time means the library isloading because an INIT isusing it
(directly or indirectly).

m Single Finder is System 6 with MultiFinder turned off.
m System 6 is System 6 with MultiFinder turned on.
m System 7is System 7.

Single Finder, System 6, and System 7 load times are all after the system
has finished booting. In other words Preload Time and INIT Time take
precedence over them.

The following heap= options are possible:

m “System” isthe System heap.

m “temp” is asubheap of the MultiFinder (Process Manager) heap.
m “Application” isthe application heap.

Do not set alibrary to load into the system heap unless you know that it
will only be loaded when the system heap can grow or when thereis
enough memory reserved for the library. The System heap does not grow
during INIT Time, or while running under System 6 (including Single
Finder). It will grow during preload time and under System 7.

Temp heaps are similar to application heaps in the way they are allocated
and where they exist in memory. They are somewhat misnamed because
there is nothing temporary about them. They are called temp heaps
because they are allocated using MultiFinder (also called the Process
Manager) temporary memory.

If you are debugging using MacsBug and your shared library is not loaded
in the system or application heap, it can sometimes be difficult to locate the
MacsBug symbols for your shared library. The best way to locate them is
to use the MacsBug hx command to switch to the MultiFinder heap so that
you can see all the symbols for any shared library loaded in temp memory.
Y ou will aso be able to see all the symbols for all currently running
applications, since they too are in subheaps of the MultiFinder heap. The
MultiFinder heap is always located immediately after the system heap in
memory. The best way to find it is to use the MacsBug hz command to list
al the heap zones, find the system heap in the list (it should be first), and
then add 1 to the value specified as the end of the system heap. Thisisthe
value you want to pass to the hx command to switch to the MultiFinder

heap.

5-34 Chapter 5/ Writing and Building Shared Libraries

For more information on the heap= option, see “Library Declaration”
earlier in this chapter.

Log file support

Since exporting more functions, adding constructors to classes, adding
more non-virtual functions to classes, modifying or moving virtual
functions in classes, or changing the size of a class can cause incompatible
libraries to be built, alogging mechanism has been built into the build
procedure for alibrary. This allows the new library to be built in a
backward-compatible manner to the previous version of the library, if at all
possible. There are three switches to the Bui | dShar edLi br ary script to
control logging.

-1 ogout <CQut put LogFi | eNane>
-1 og <I nput LogFi | eNanme>
- dol og

| ogout

Thel ogout switch specifies the output log file. The output log fileis an
ASCII text file that shows where various functions, v-tables, and so on, are
being exported.

| og

Thel og switch specifies an input log file. The log file is used to control the
generation of the new library.

dol og

The dol og switch actually enables the logging operations. (Thisis so that
you can specify - | ogout or -1 og inyour makefile, but nothing is done
until you alias Bui | dShar edLi brary to be Bui | dShar edLi brary

- dol og, or something similar.)

Y our output library is built so that it is compatible with the version of the
library which created the input log file. Warnings tell you of any
incompatibilities between old and new libraries, as well as any versioning
problems. However, the build will never be aborted due to these warnings.
Itisyour library, and you may want to make nonconforming version
numbers known.

Log file support 5-35

Speeding up builds

The Bui | dShar edLi br ary script only rebuilds the entire library if it
notices that the library’ s input object file or exports file has changed.
Otherwise, Bui | dShar edLi br ary merely links the shared library. Not
rebuilding the entire library is useful when an object file that must be
linked with alibrary has changed. In such a case, only relinking is needed.
Y ou need to specify the - obj parameter if you want to use this feature.

If you are building alibrary in two steps—that is by executing both

Bui | dShar edLi brary and Li nkShar edLi br ar y—this strategy yields no
benefit, since you do not have to call Bui | dShar edLi br ary unlessthe
input object file or the exports file has changed.

If the library’s exports file or input object file does change,

Bui | dShar edLi br ary buildsthe entire library; that is,

Bui | dShar edLi br ary processes the exports file and input object file and
creates new client object files and intermediate files. (For an explanation of
intermediate files, see the - obj option in “Using BuildSharedLibrary”
earlier in this chapter.

Using the - keepCl i ent Fi | es option

The Bui | dShar edLi br ary command always creates new client object
files. However, if you use the - keepd i ent Fi | es option, it discards the
object filesif they have the same contents as the existing ones. This
procedure does not really speed up the build of your library, but it does let
you rebuild your shared library without changing the modification dates of
the client object files. This means you do not have to relink clients that are
dependent upon your client object files.

Using - keepd i ent Fi | es isonly useful if the clients do not share a
makefile with the library. Otherwise the clients will still be relinked even if
the client object file does not change. Thisis because the client is
dependent on the client object file, the client object file is dependent on the
library, and the library is dependent on the input object file and the exports
file. Thusif both the client and the library are in the same makefile, the
client object file appears out of date to the Make command whenever the
exports file or input object file changes. This resultsin the client being
rebuilt even if Bui | dShar edLi br ary did not change the modification date
of the client object file.

5-36 Chapter 5/ Writing and Building Shared Libraries

Splitting up the makefile solves this problem because the client’s makefile
will not know what the client object file depends on. So the client’s
makefile relinks the client only if the client object file changes. Thisis
generally worth the effort only if you have a considerable number of
clients that depend on the library, or if it takes the client along time to link.
The TestTool and Inspector programs that are provided on the ASLM
Examples disk provide examples of how to use -keepd i ent Fi | es and
write the makefile in this manner.

Linking with model near code

Y ou must be careful when linking model near object files with shared
libraries. This can be a problem when you link with certain libraries
supplied by MPW, since MPW libraries are compiled using model near.
Normally, ashared library is not in its global world when it is called (that is,
the A5 world is not set up correctly for calls to the routines in the model
near MPW library to succeed). This means that the shared library must
enter its global world before it calls any model near code that contains
references to global variables or any model near code that makes a call to
code in another code segment (an intersegment call).

Y ou can avoid the intersegment call problem by merging all your shared
library’ s implementation code segments into one code segment using the
linker's - sg option. But you still must enter the library’s global world
before you call model near code that has references to any global variables.

To enter the library’s global world so that you can call afunction that is
compiled using model near, call Opend obal Wor | d before you call the
model near function, and call G osed obal Wor | d after the model near
function returns.

d obal Wrl d savewor| d;
savewor |l d = Opend obal Worl d();

/* make nodel near call here */
G osed obal Wor | d(savewor| d);

If you choose not to merge your implementation code segments into one
code segment, you must use the f | ags=segunl oad option when you
declare your library in the library’s exports file. See “Writing an .exp
File” earlier in this chapter for an explanation of the f | ags=segUnl oad
option.

Linking with model near codeb-37

Using MPW libraries

Shared libraries often run into problems when calling standard C library
functions—for example, spri ntf,sscanf,mal | oc, at an2, and other
functions which require linking to the StdCLib.o library and other MPW
libraries. There are afew problems with using these routines:;

m They are not compiled using model far.

m Some of them make callbacks into MPW.

m Some of them allocate memory and never free it.
m Some of them use globals.

The problems with linking with model near code are explained above in
“Linking With Model Near Code.” Bui | dShar edLi br ary and

Li nkShar edLi br ar y take care of the jump table problem by forcing all
of the MPW libraries to be merged into the Main code segment.

The problem with the MPW callbacks is that when they are called from a
shared library, the environment is not set up for them to work. Routines
that use MPW callbacks include any of thei/o routines such asf pri nt f
when they are used with st dout , or st der r unless they have been
redirected to afile. Thisincludes the routines that use one of these by
default, such aspri nt f. You might want to try using Tr ace instead to
display the output in the TraceMonitor’s Trace window. Another solution
is used by the ASLM’s TestTool example. It sets a print function for each
object that it creates. This print function exists in the MPW tool and simply
sends the output to st dout . This allows the object to essentially do a
printf. Thisprint function iscalled myPri nt Func and can be found in
TestTool.cp.

The problem of some of the routines allocating memory that does not get
freed is one of the more annoying ones. Some of the routines cause some
memory to be allocated the first time one of the routinesin a“family” is
called. A pointer to this memory is stored in aglobal so it can be reused on
successive calls. Thelibraries rely on the fact that when the application
quits, the memory automatically gets freed up when the application heap is
freed. If you call one of these routines from a shared library or any stand-
alone code resource, the memory gets allocated from the application heap
and is not freed up until the heap that it was allocated from goes away
(usually when the application quits).

One of the memory allocation offendersisspri ntf and othersin its
family (scanf ,fprintf,sprintf, and soon). They all share a buffer that
gets allocated the first time one of them is called. Another offender is

mal | oc, which creates a big chunk of memory from which to allocate little
chunks.

5-38 Chapter 5/ Writing and Building Shared Libraries

Libraries that are shared could crash if they allocated the memory from
one application heap and then, while a second application is also using the
library, the first application quits. Now the pointer isinvalid but the library
is not aware of this. Libraries that are only used by one application at a
time will show no memory leak once the application quits, so they do not
need to worry about this problem unless the application causes the library
to repeatedly load and unload.

Currently, there is no general solution to this problem. Y ou can get around
the sprintf problem by using the ASLM sprintf routine. You can get
around the problem with mal | oc by using memory pools.

Segmentation and run-time architecture

Shared library classes are compiled and linked using model far and are
linked as multiple code resources, with a jump table for dispatching
between code resources similar to the Macintosh application segmentation
model. In the resource file, the jump table corresponds to the' CODE' 0
segment of an application. In the case of a shared library, the resource type
isusualy ' code' (spelled in lowercase letters), but that is up to the
developer. However, the resource type should never be' CODE' (spelled in
uppercase letters); that may result in accidentally launching the library as
an application.

A shared library always has at |east two code segments besides the jump
table: one that contains initialization code and one that contains the
implementation. A shared library can have as many code segments as you
wish; however, unless you plan to explicitly load and unload your library’s
code segments, it is generally best to have only one implementation
segment. See “Support for Explicit Segment Loading and Unloading”
later in this chapter for more details.

Figure 5-2 shows the segmentation of a shared library.

Jurnp table age’
Initia ization code age’ f
seqment Jidoe dod’ ofler ey
& jaielize)]

Implementation code | g 7
seqment

Figure 52 Code segments of a shared library

Segmentation and run-time architecture 5-39

Support for explicit segment loading and unloading

As Figure 5-2 illustrates, every shared library has at |east three code
segments: ajump table (segment 0), an initialization segment (segment 1),
and an implementation segment (segment 2). However, alibrary can break
its implementation segment into more than one code segment so that its
entire implementation does not have to be in memory at the same time.

For example, when you design a shared library, you might put all code that
handles a certain task (for instance, printing) into a separate code segment.
Y ou could call that segment code Segment 3. Then a call to any codein
Segment 3 automatically causes that segment to be loaded. Once atask in a
numbered code segment is completed, you can unload the segment by
calling Unl oadSegnent By Nunber .

Generally, a better method for unloading unneeded code is to put the code
that handles the task in a separate library and to encapsulate it with a C++
class. Then the code is loaded automatically when you instantiate its class
and is unloaded when you delete the class. If you do not want to use C++
or you do not feel that atask is big enough to warrant its own library (but it
is big enough to put in a separate code segment and unload when it is not
in use), then using segmentation as described above is an acceptable
alternative.

Note: When running under MultiFinder, by default a shared library is
loaded into a heap that is a subheap of the MultiFinder heap. One heap is
created for each shared library and each library’s heap is large enough to
hold all code segments of the library. This means that in the default case,
explicitly unloading code segments does not free up memory that can be
used for other purposes. In order to make unloading library code segments
worth while, you either need to specify that the library’s code load into the
system or application heap, or you need to specify the size that the
library’s heap should be. Both of these tasks are accomplished by using the
heap= option described in “Library Declaration” earlier in this chapter.

IMPORTANT If you call code in a segment that is not currently loaded and
there is not enough memory to load the segment, or the segment load
occurred at non-System Task time, an exception is raised. For this reason,
you should always have an exception handler installed before attempting to
call unloaded code. It isup to the library writer to decide if the library or
its clients should be in charge of installing the exception handler. To avoid
needing the exception handler, you should call one of the
LoadCodeSegnent XX routines. This ensures that the code is loaded before
you call the code. See “Exception Handling” in Chapter 7.

5-40 Chapter 5/ Writing and Building Shared Libraries

Library code segments can be explicitly loaded and unloaded by using the
following functions:

CeErr LoadGodeSegnent ByNunber (TLi brary*, short segnent Nunter) ;
CeErr Load(odeSegnent ByNane(TLi brary*, ProcPtr theRoutine);
CsErr Uhl oadGodeSegnent ByNunber (TLi brary*, short segnent Nunber) ;
CeErr - Whl cadGodeSegnent ByNane(TLi brary*, ProcPtr theRoutine);

All four of these functions take a pointer to alibrary’s TLi br ary object.
See “Getting a Library’s TLibrary’s Object” in Chapter 7, “ASLM
Utilities,” for details on how to get alibrary’s TLi br ary object.

The LoadSegnent ByNunber function takes a segnment Nunber parameter
that specifies the segment to load. The LoadSegnent ByNane function
takesaProcPt r parameter that holds the address of a function in the
segment to be loaded. Both LoadSegnent ByNurber and

LoadSegnent ByNane return an OSEr r data type. If the segment cannot be
loaded, a kCoul dNot LoadCode or kQut Of Menor y error is returned. If
kCoul dNot LoadCode is returned, the specified code segment number is
invalid; kQut Of Menor y means that there was not enough memory available
to load the code.

The Unl oadSegnent ByNunber function takes the segment number to
unload as a parameter. It returns kCodeNot Loaded if the segment number
isinvalid or if the code segment is already loaded.

The Unl oadSegnent ByName function takes a Pr ocPt r parameter that
holds a pointer to the jump table entry of afunction in the segment that
you want to unload. If the specified address is not in aloaded segment,
Unl oadSegnent ByNane returns a kCodeNot Loaded value.

IMPORTANT The Pr ocPt r parameter of the Unl oadSegnent By Nane
function is a pointer to the jump table entry for a function, not the address
of the function itself. So you must obtain the address of the function from
code that lies outside the code segment of the routine whose address you
want to obtain. In other words, you must make an intersegment reference to
the routine, not an intrasegment reference. This generally means that you
should not try to unload the code segment from within the code segment.
The LoadSegnent By Nane function has this same restriction, but thisis
seldom a problem because you do not normally attempt to load a code
segment while code within that segment is being executed. However, if you
have just merged two code segments into one segment, you may find that
thisiswhat you are trying to do.

Support for explicit segment loading and unloadingg-41

Keeping preloaded libraries loaded

If ashared library’s pr el oad flag is set, the ASLM loads the library at
boot time. However, unless you take special steps to keep the library
loaded, it unloads immediately afterwards. An easy way to keep the library
loaded isto call LoadLi brari es from the library’si ni t pr oc, making
sure that the doSel f parameter in LoadLi brari es issetto true. Then
your library will not unload until you call Unl oadLi brari es.

An easier way to keep alibrary loaded is to also set the library’s
st ayLoaded flag. Setting alibrary’s st ayLoaded flag has the same effect
as executing the following call from ani ni t proc:

LoadLi braries(fal se, true)

If you also set the library’ s f or cedeps flag then it is the same as executing
the call:

LoadLi braries(true,true)

Another way to keep your shared library loaded isto call Loadd ass or
LoadFunct i onSet from thelibrary’si nit proc on afunction set or class
implemented in the shared library. The shared library will stay loaded until
you call Unl oadFuncti onSet or Unl oadd ass.

Libraries with the pr el oad flag set are preloaded only at boot time. If the
ASLM isloaded at any subsequent time, alibrary with the pr el oad flag set
is not preloaded.

Having a preloaded class in your library is enough to keep the library
loaded until the instance of the classis deleted. Y ou can also get the same
result by creating an object implemented in the shared library from within
the library’si ni t pr oc.

Library global variables

The ASLM allocates global variables for libraries from the global pointer
down. The jump table is above the global pointer (on the Macintosh, the
Ab register is used for the global pointer). Figure 5-3 showsthe ASLM’s
global world. Thisis the same as the Macintosh application model for the
global world.

The global world’s memory is allocated and initialized automatically when
the library is loaded.

5-42 Chapter 5/ Writing and Building Shared Libraries

Jrmp table

feeee sing Shared [brany globals
Priesses

Figure 5-3 A shared library’s global world

Using static objects in shared libraries

Zthpke pep
Joa andugal

_l—E:hﬁnﬂ'hr.'b'

ST eyl dermg
SN b e Merinns iy

Static objects in shared libraries can be either shared or unshared classes.
(Shared classes are classes that the ASLM knows about because they are
exported by a shared library.) Static objects in a shared library are
automatically constructed when the library is loaded and are automatically
destroyed when the library is unloaded. Static objects that are shared classes
are not permitted outside shared libraries, such asin INITs and

applications.

WARNING Do not attempt to merge the “ Static_Constructors,”
“Static_Destructors,” or “%_Static_Constructor_Destructor
Pointers” code segments into any other code segment in your shared
library. These code segments are all created automatically by C++
when your shared library uses static objects.

Registering shared library files

When you have written and built a shared library file, you can make it
accessible to clients in one of four ways:

m If you are running System 7, you can place the shared library file in the

Extensions folder.

m If you are running System 6, you can place the shared library file in the

System Folder.

m You can place the shared library file in any folder that has been

registered as a shared library folder.

m You can register afile asashared library file. In this case the shared
library file can be located in any folder.

Registering shared library files 5-43

For information on registering files and folders, see “Registering Shared
Library Files and Folders” in Chapter 7, “ASLM Utilities.”

The easiest way to register ashared library isto placeit in the System 7
Extensions folder or the System 6 System Folder. Then, at run time, when a
client calls afunction implemented in the shared library, the ASLM can
find the function that was called and the function is executed.

5-44 Chapter 5/ Writing and Building Shared Libraries

Using the ASLM

This chapter provides details on certain runtime related topics that were not
appropriate for other chapters. These topicsinclude:

loading shared libraries

using the ASLM under System 6 and 7
using shared libraries

creating objects

the TDynamic family of base classes
using global new and del et e operators
virtual functions

Loading shared libraries

Shared libraries are loaded on demand:
m When an C++ object implemented by a shared library is created.

m When ashared library is loaded and it implements a class whose parent
classisin another shared library, then the parent class's shared library is
loaded.

m When afunction in afunction set is called.

m Whenthelibrary isexplicitly loaded by Loadd ass, LoadFunct i onSet ,
or LoadLi brari es asdescribed in “Loading and Unloading Shared
Libraries’ in Chapter 7, “ASLM Utilities.”

m At boot time, if the shared library’s pr el oad flag is set. (If ashared library
isloaded at boot time because the library’s pr el oad flag is set, you must
take steps to ensure that the library is not unloaded immediately afterwards.
For more information, see “Keeping Preloaded Libraries Loaded” in
Chapter 5, “Writing and Building Shared Libraries.”)

When a shared library isloaded, the ASLM initializes the shared library.
Initialization includes: calling the Dynani cCodeEnt ry function supplied in
the LibraryManager.o file, allocating storage for library global variables,
initializing library global variables, initializing the library’s jump table, and
calling any static initializers for static objects that the library may have. The
code segments that implement the shared library may not actually be loaded
depending on how the shared library was built and why it was loaded.
However, the code segments will be loaded when the code within themis
actually caled. (For more information on code segment loading see “ Support
for Explicit Segment Loading and Unloading” in Chapter 5, “Writing and
Building Shared Libraries.”)

When a shared library is no longer being used, the ASLM unloads the code
from memory automatically. If the shared library is subsequently needed
again, it isreloaded and relinked automatically.

The ASLM keeps track of use counts for all exported classes so it can tell if all
instances of a class have been deleted and the classis ho longer is use.
However, when function sets are used, they are considered to be in use until
the client callsthe C eanupLi br ar yManager or Reset Functi onSet
function. The d eanuplLi br ar yManager call is described in “Creating and
Deleting the Local Library Manager” in Chapter 7, “ASLM Utilities.” The
Reset Functi onSet call isdescribed in “Loading and Unloading Shared
Libraries’ in Chapter 7, “ASLM Utilities.”

The ASLM does not immediately unload unused libraries. On the Macintosh,
the ASLM attempts to unload libraries once each second at System Task time.

6-2 Chapter 6 / Using the ASLM

Using the ASLM under System 6 and System 7

The ASLM supports system software versions 6.0.5 through 6.0.8, as well as
system software versions 7.0 and 7.1.

Under System 6, the ASLM works with the Finder as well aswith
MultiFinder. When running under Finder, any libraries that an application
causes to load are loaded into the application’ s heap and are forced to unload
when the application quits, even if the application leaves some objects

undel eted.

Under System 6, the Ent er Syst enmvbde call does not prevent any files that
you have explicitly opened from being closed when the application that was
running when you opened the file quits. However, library files that are opened
by calling Pref | i ght or QpenLi brar yFi | e remain open when the
application that was running when you opened the file quits. (For more
information on Pr ef | i ght and QpenLi braryFi | e, see“Library File and
Resource Management” in Chapter 7, “ASLM Utilities.” For more information
on Ent er Syst emvbde, see “Entering and Leaving System Mode” in

Chapter 7, “ASLM Utilities.”)

Using shared libraries overview

The ASLM allows clients to use function sets and classes implemented in
shared libraries.

Shared libraries can export C++ classes that C++ programs can dynamically
link with. Clients written in non—object-oriented languages can al so use the
C++ class aslong as the devel oper of the shared library provides a procedural
interface to the classes.

Shared libraries that are intended to be used by clients written in non—object-
oriented languages can export dynamically linkable procedures and functions
by using function sets. Non—object-oriented programs can share function set
implementations in the same ways that object-oriented programs share classes.

Before aclient can use the functions or classes that are implemented in a
shared library, the client must do the following:

m Include the header file that defines the functions and classes that the shared
library contains.

m Link statically with aclient object file that contains the stubs that are
responsible for handling the dynamic linking of functions.

Using shared libraries overview — 6-3

m Make sure that the shared library isregistered or isin afolder registered
with the ASLM at run time.

m Register itself asan ASLM client by calling the ASLM function
I ni t Li braryManager.

When all of the above conditions are fulfilled, a client can create objects and
call functions implemented in shared libraries. The client can create objects
implemented in shared libraries by using the new operator (described in
“Creating Objects’ later in this chapter) or by using automatic variables (that
is, stack variables). Alternatively, the client can create objects by calling the
NewObj ect function. The NewObj ect function creates objects by class ID.
When you create an object with NewCbj ect , you do not need to link with the
client object file. See “Creating an Object Using NewObject” later in this
chapter and “Using NewObject” in Chapter 7, “ASLM Utilities,” for more
information on the NewChj ect function.

When aclient creates an object or calls afunction that isimplemented in a
shared library, the ASLM checksto seeif the shared library that implements
the desired object or function isloaded. If the shared library is not loaded, the
ASLM loadsit. The loading of shared libraries is transparent to the client.

When a shared library is no longer being used and al clients using the library
have deleted all instances of classes that are implemented in the library, the
ASLM unloads the code from memory automatically. If the shared library is
subsequently needed again, it is reloaded and relinked automatically. See
“Loading Shared Libraries’ above for more information on when shared
libraries are loaded and unloaded.

Sometimes ashared library may fail to load, either because the implementation
cannot be located or because there is not enough memory for the shared
library. If ashared library fails to load when afunction in afunction set is
called or when an instance of aclassis created, the ASLM will raise an
exception that the client must catch. The default exception handler that

I nitLibraryManager installs detects this condition and forces the
application to quit. A client can prevent this behavior by installing its own
exception handler or by preloading needed libraries. For more information
about exception handlers, see “Exception Handling” in Chapter 7, “ASLM
Utilities.”

6-4 Chapter 6 / Using the ASLM

Creating objects

TWd ass* nmyoj
TWd ass* nmyoj

A client can create an instance of a shared class dynamically by using the new
operator. A client can aso alocate the object on the stack—that is, asan
automatic variable. Static instances of shared classes are also allowed, but only
within ashared library.

Creating an object with the new operator

When you create an instance of a shared class, you will normally use the
ASLM global new operator. Y ou can use the ASLM global new operator with
or without specifying a memory pool. If you do not specify a pool, the ASLM
uses the default pool. (For more information on memory pools, see Chapter 8,
“ASLM Utility Class Categories.”)

All instances of classes that inherit from a classin the TDynani ¢ family are
allocated with the TDynani ¢ class s new operator. All other objects are
alocated using the standard C++ library new operator, unless the GlobalNew.h
header fileisincluded, in which case the ASLM global new operator is used
instead.

The TDynani ¢ new operator is the same as the ASLM global new operator
that is declared in GlobalNew.h. It allocates memory from amemory pool. If a
pool is specified with the new operator, then that pool is used. Otherwise the
default pool is used.

It is highly recommended that all C++ shared libraries#i ncl ude
GlobalNew.h so all memory alocation is done out of pools. Otherwise the
C++ memory alocator is used, and it can cause problems when used from a
shared library. For more information, see “Using the ASLM Global newand
del et e Operators’ later in this chapter.

When you create an object with the ASLM global new operator, you can
specify the memory pool from which you want to allocate the object, or you
can simply let the ASLM use the default pool. For example:

ect = new (myPool) TMyFirstd ass; // from nyPool

ect = new TMyd ass; /1 fromdefault pool

Creating objects 6-5

Creating an object using Newbj ect

Y ou can call the NewObj ect function to create an object even if you do not
know the class of the object at compile time. The NewObj ect method takes a
class ID string as a parameter; the content of the string can be determined at
runtime. (A class D isastring that identifies the class to create.)

Y ou can create an object using NewObj ect only if the newobj ect flagisset
for the class. The newobj ect flagis set on a per-class basis when a shared
library isbuilt. (The newobj ect flagisdescribed in “Class Declarations’ in
Chapter 5, “Writing and Building Shared Libraries.”) For an object of agiven
classto be created using newobj ect , the class must have a constructor with
an empty argument list.

For classes that require parameters to be passed to the constructor, the class
can also provide an initialization method that the Newbj ect caller must call
after creating the object.

The following is an example of NewChj ect :
obj ect = (TBaseC ass*) NewObj ect (Cl assl D("esd: sanpl e$TMW/Fi rst Cl ass"));

As another example, aclient can uset hed ass| D as a parameter pointing to a
string like the one in the previous example:

obj ect = (TBaseC ass*) nyLi bvanager-> New(bj ect (d assl D(t hed assID));

The NewObj ect function is described in more detail in “Using NewObject” in
Chapter 7, “ASLM Utilities.”

Creating stack objects

Y ou can create objects on the stack just as you normally do in C++: by
declaring class variables in your routines. Y ou can also create objectsthat are
fields of another object. For example:

foo()
{
TWd ass X;
x. DoThi sAndThat () ;

}

If you use the STACKOBJECTONLY macro in a class declaration, the macro
informs the compiler that instances of the class will be used only as stack
objects. Thiswill make the class' s constructor and destructor much smaller
since they do not have to be concerned with allocating or freeing memory.

6-6 Chapter 6 / Using the ASLM

An example:
cl ass TWd ass

{
STACKOBJECTONLY
public:
TWd ass ();
vi rtual ~TMyCd ass ();
virtual short Hel | o() const;
1

When you use stack objects, virtual function calls will not go through the v-
table. Instead, the implementation of the virtual function will be called
directly, since C++ knows the class type (polymorphism does not take place)
and exactly which member function to call. This requires that C++ clients
statically link with the implementation of the virtual function just as they do
with non-virtual functions. Thisis one reason you have the option of exporting
virtual function stubs when creating a shared library. The client using the stack
object will statically link with the virtual function stub so the virtual function
call will be made in away similar to afunction set call (thisis how non-virtual
functions are called).

You can fool C++ into using the v-table for stack object virtual function calls
by dereferencing the stack object to make it a pointer. For example:

(&ny St ackObj ect) —=DoSonet hi ng. Thisis much more efficient than
making the call through avirtual function stub.

WARNING Y ou must not create abjects on the stack in the same routine
that calls| ni t Li br ar yManager unlessthe stack object is declared
after thecall to I ni t Li br ar yManager . Also, you must not create stack
objectsin the same routine that calls O eanupLi br ar yManager unless
the stack object is declared in a nested block that appears before the call
to d eanupli br ar yManager .

Creating static objects

Y ou cannot create static objects of shared classes outside a shared library. This
is because static objects are created when the global world is created—and this
alwaystakes place before | ni t Li br ar yManager iscaled. However, static
objects are allowed in shared libraries for both shared and unshared classes.
They are automatically constructed when the library isloaded and are
automatically destroyed when the library is unloaded.

Creating objects 6-7

Creating an object by setting a class’s preload flag

If you want an instance of a classto be created automatically when a shared
library isloaded, you can set the pr el oad flag for the class. If the pr el oad
flag for a specific classin ashared library is set, an instance of the classis
created immediately after the library isloaded. (The pr el oad flag is covered
in “Class Declarations’ in Chapter 5, “Writing and Building Shared
Libraries.”)

The TDynani c family of base classes

The ASLM provides a number of base classes that force the v-table first (place
it at the beginning of the object) and provide routines that give the user access
to some of the objects' metainformation (for example, in which library the
object isimplemented and the class IDs of the parents of the class). Some of
the base classes also provide additional member functions that are commonly
found in base classes such as| sVval i d and FI at t en. All of these base classes
overridethe newand del et e operators so they use the ASLM global newand
del et e operators. For more information, see “Using the ASLM Global new
and del et e Operators’ later in this chapter.

The ASLM does not force you to use any of these base classes for your
exported classes. However, if you do not use them or use a base class that
forces the v-table first, you will not be able to call Cast Chj ect or

Cast Qbj ect ToMai n on instances of subclasses of your base class. Y ou will
also not be able to call any of the global routines that provide meta
information. These routines start with “ GetObjects’ (for example,

Get bj ect sd assl D) and are simply global versions of the member
functions that are provided with ASLM base classes.

The original ASLM base class was the TDynami ¢ class. It inherits from

Si ngl eObj ect and forces the v-table to be first by not having any data
members and by providing at least one virtual function. TDynani ¢ providesa
number of pure virtual member functions such as1 sVval i d and Fl at t en and
also anumber of inline member functions for accessing meta information
about the class. TDynani ¢ also provides the ability to have instances of its
subclasses be registered with the Inspector. See “ Registering C++ Objects with
the Inspector” in Chapter 7, “ASLM Utilities,” for more information on the
Inspector. See “TDynani ¢” in Chapter 9, “Utility Classes and Member
Functions,” for details on the available TDynani ¢ member functions.

6-8 Chapter 6 / Using the ASLM

The TDynami c class has many virtual functions which causes subclasses to
have alarger v-table. The TSi npl eDynani ¢ base class was created to solve
this problem by getting rid of all the virtual functions except for the destructor.
This makes the v-table much smaller, but also means that you cannot use any
of the TDynani c virtual functions and you cannot register TSi npl eDynanmi ¢
subclasses with the Inspector.

The TDynani ¢ class aso has the disadvantage of inheriting from

Si ngl eObj ect, soit can not be used with multiple inheritance. This problem
was solved by adding the TSt dDynanmi ¢ base class, which isthe same as
TDynani ¢ except that it does not inherit from Si ngl eObj ect . Since

TSt dDynani ¢ does not inherit from Si ngl eoj ect , it does not have the
simple v-table format and, therefore, its v-table is not as efficient. It also
cannot have instances of its subclasses registered with the Inspector.

The TSt dSi npl eDynani ¢ class combines the features of both TSt dDynami ¢
and TSi npl eDynanmi c. It does not inherit from Si ngl eObj ect and does not
provide any additional virtual functions. Itsv-table is small, but does not use
the simple v-table format. Also, it cannot have instances of its subclasses
registered with the Inspector.

Lastly MDynami ¢ was created to be used as amixin class for multiple
inheritance. It does not provide any of the TDynamni ¢ member functions for
accessing metainformation. It only provides avirtual destructor to force the v-
tablefirst.

Using the ASLM global newand del et e operators

The ASLM hasits own global newand del et e operators that allocate
memory from pools. These are the same new and del et e operators that are
used for any class that subclasses TDynani c.

The header file GlobalNew.h declares the new and del et e operators as
follows:

voi d* operator new(size t size, TMenoryPool *);
voi d* operator new(size t);
void operator del ete(void*);

If aclient includes the header file GlobalNew.h, the ASLM uses the global

newand del et e operators for all objects created and all memory allocated
with the global new operator.

Using the ASLM global newand del et eoperators 6-9

Y ou can use new with a pool argument to allocate memory from a specific
pool, or without a pool argument to alocate memory from the default memory
pool (the default pool is explained in “Memory Management Classes’ in
Chapter 8, “ASLM Utility Class Categories.”)

WARNING The ASLM globa new operator cannot be used by a client
until I ni t Li br ar yManager has been called, but shared libraries may
(and should) always useit.

Y ou must make certain that an object is both created and deleted using the
same new and del et e operator pair since del et e must know how new
allocated the memory. Y ou cannot mix the ASLM new and del et e operators
with the newand del et e operators that are supplied with CPlusLib.o. If your
application has to del ete objects created by a shared library using the ASLM
new operator, you must use the ASLM del et e operator.

Shared libraries should never use the newand del et e operators that are
supplied with CPlusLib.o since they rely on the C library memory
management when does not work well with shared libraries.

Allocating and freeing memory for an object is normally done in an object’s
constructor and destructor which are implemented in the shared library. Thus
the implementation of the library normally controls how objects are allocated
and freed. However, when an overloaded new operator is used (such asthe
ASLM new operator that takes a memory pool parameter), the memory
alocation is actually done in the client’s code. This means that if the client
uses anew operator that is not compatible with the shared libraries del et e
operator, then the object’ s destructor will not now how to properly free the
memory and may crash. For this reason, and because the newand del et e
operatorsin CPlusLib.o do not work well with shared libraries, it is strongly
advised that both clients and shared libraries aways include Globa New.h so
the ASLM global newand del et e operators are always used.

LibraryManager.o and LibraryManager.n.o also contain implementations of
the ASLM global newand del et e operators. Basically these versions do the
same thing as the inline versions in GlobalNew.h. They are useful when for
some reason the code that calls new or del et e cannot be compiled with
GlobalNew.h. For example, when creating an array of objects with new,
CFront generates code to allocate the memory for the array using the new
operator and to call the constructor of each object in the array. This means that
it uses the implementation of whichever globa new operator it links with, even
if you include GlobalNew.h. This causes problems if you are declaring the
classin ashared library and you link with the global new operator in
CPlusLib.o, which usescal | oc to allocate the memory.

6-10 Chapter 6 / Using the ASLM

Link with LibraryManager.o first if you want to use the ASLM global new
operator. Link with CPlusLib.o first if you want to use the default C++ global
new operator. Be careful when linking LibraryManager.o first. If you try to
create an object using new before calling I ni t Li br ar yManager , you will
crash. Wait until you have called | ni t Li br ar yManager to perform
operations such as using streams (cout , ci n, and so on) that use new when
they arefirst called. It isgenerally best to link LibraryManager.o first for
shared libraries. Link either onefirst for applications, depending on whether
the application needs to use the new operator before calling

I ni tLi braryManager.

Virtual functions

In a C++ class, you can declare any member function to be avirtual function.
In C++, avirtual function is called by a single indirection through atable of
pointers to the functions. Thistable is called the v-table, or virtual function
table.

In the ASLM implementation of virtual functions, a shared library contains the
virtual functionsimplemented by one or more C++ classes. The v-table that is
used to call the functionsis built at run time so that references can be resolved
when ashared library is dynamically loaded and linked.

Thereis only one copy of ashared class' v-table. It is stored in the global
world of the shared library that implements that shared class. This help reduce
memory footprint when multiple clients make use of the same shared class.

Figure 6-1 shows how the ASLM uses v-tables to call virtual functions.
TrirEirstClass* thelbject = new TMyTirstClass;

theObj ect=>DoTHi sAHATBa £ [y idget] ;
dd now thelbject points to object of class TyfirseClass

u-ab ke pir 3 1]

funedion 1

Dt funcsion &

function 3

[

funcsion 4

thelbject i-table for dasz Library code rezourdz for
THyFirstCluss dasz TyE icstl lass
[and pozsibly other dazge 4.

Figure 6-1 Virtual function tables

Virtual functions 6-11

Since the call to avirtual function isindirect—through a pointer to an object—
the code for the implementation of avirtual function does not haveto bein the
same code segment as the caller of the virtual function. In Figure 6-3, the
implementation of TMyFi r st d ass isin ashared library. The method

t heQbj ect - >DoThi sAndThat isavirtual function of the object called

t heObj ect . If DoThi sAndThat isthethird virtual function in the v-table
shown in the diagram, then the highlighted code that implements function 3 is
called.

V-table based function calls provide the fastest possible way to call a
dynamically linked function. Thisis one of the benefits you get when
exporting functions by implementing them as member functions of a shared
class rather than as functionsin afunction set. It also shows an advantage of
virtual member functions over non-virtual member functions for exported
classes. Since non-virtual member function calls must go through a function
stub just like function set function calls do, they are not as fast as virtual
function calls.

In some instances virtual function calls do not go through the v-table. This
includes virtual function callsfor stack objects and calls you explicitly maketo
inherited functions. In these cases, the client object file must contain a stub for
the virtual function or the client will not link. For more information, see
“Creating Stack Objects’ earlier in this chapter.

6-12 Chapter 6 / Using the ASLM

I I I Reference

ASLM Utilities

This chapter describes the ASLM utility functions that you can use to
perform a number of tasks including:

m registering shared library files and folders
m preloading dependent libraries

m |oading and unloading shared libraries
m client death watch notification

m setting up global worlds

m using thelocal library manager

m calling functions by name

m getting information about function sets
m using interrupts

m handling exceptions

m Vverifying an object’ s type

m verifying aclass's base class

m |oading and unloading the ASLM

m entering and leaving system mode

Registering shared library files and folders

Several utility functions allow you to register shared library files and
foldersin the following manner:

m You can register afolder as a shared library file folder and then place
library filesin the folder.

m You can register afile as ashared library file. In this case the shared
library file can be located in any folder.

Registering and unregistering shared library file folders

Y ou can make a shared library file accessible to clients by placing it in any
folder that is registered as a shared library file folder. When you register a
folder as a shared library file folder, the ASLM keeps track of shared
library files that are dragged into and out of the folder. All shared library
filesthat are in the folder are available to clients. You can drag library files
into or remove library files from aregistered folder at any time you
choose. You can also rename or delete library files that are stored in the
registered folder.

If you decide that you no longer want to use afolder as a registered folder,
you can unregister it. The ASLM keeps a use count for all registered
folders, so multiple users can register the same folder without fear of it
becoming unregistered by another user.

Registering a shared library file folder

Y ou can register afolder as a shared library file folder by calling the
Regi st er Li brar yFi | eFol der function. The syntax of the
Regi st er Li brar yFi | eFol der functionis:

OSErr Regi sterLibraryFil eFol der (const TFi | eSpec*);

The Regi st er Li braryFi | eFol der call takesaTFi | eSpec parameter
that specifies the location of the folder being registered. (See “ Specifying
alLibrary File” later in this chapter for more information on TFi | eSpec.)
Currently, TMacFi | eSpec isthe only TFi | eSpec type that is supported.
The ASLM returns akNot Support ed error if you pass the

Regi st er Li brar yFi | eFol der function another type.

The Regi st er Li braryFi | eFol der call returnsakNoEr r or result if it
is successfully executed, and returns kFi | eNot Found if it cannot find
the specified directory. If the folder is already registered, a registered
count for the folder isincremented. This prevents the folder from being
unregistered if another user attempts to unregister it by calling

Unr egi st erLi braryFi |l eFol der.

7-2 Chapter 7 / ASLM Utilities

Unregistering a shared library file folder

Y ou can delete the registration of a folder—unregister the folder—by
calling the Unr egi st er Li brar yFi | eFol der function. The syntax of the
Unr egi st er Li brar yFi | eFol der functionis:

OSErr Unr egi st erLi braryFil eFol der (const TFi |l eSpec*,
Bool ean forceUnl oad);

Unr egi st er Li brar yFi | eFol der takesaTFi | eSpec parameter that
specifies the folder to unregister. When afolder is unregistered, the
registered count for the folder is decremented. If the count has reached 0,
the folder is actually unregistered. Otherwise, the folder remains registered.
This procedure prevents the folder from being unregistered while it is still
registered by another client.

If the count has reached 0 and one or more clients are still using alibrary
filein the folder, the kFol der | nUse error is returned. To avoid this error,
al clients must do the following:

m Cal Reset Functi onSet (NULL) if they have used any function sets.
Thisforces aclient to release a function set so that the shared library
containing the function set can be unloaded. (This is done automatically
when aclient callsd eanuplLi br ar yManager .)

m Explicitly close any library file they have opened before calling
Unr egi st er Li braryFi | eFol der . A client opens library files when it
callsPr eFl i ght or OpenLi br aryFi | e and closes library files when it
callsd oselLi braryFi | e. (Thisis done automatically when a client
callsd eanupLi br ar yManager .)

The Unr egi st er Li br ar yFi | eFol der function also accepts a

forceUnl oad parameter. If the value of f or ceUnl oad ist r ue, the

Unr egi st er Li brar yFi | eFol der function forces all loaded librariesin
the folder to be unloaded, even if they arein use. It also forces all open
instances of the library file to be closed. Therefore, the kFol der | nUse
error will never be returned. Unless you are certain that all loaded libraries
in aregistered folder can be safely unloaded, the value of the f or ceUnl oad
parameter should be f al se. If Unr egi st erLi braryFi | eFol der iscaled
with af or ceUnl oad value of f al se, no library filesthat the specified
folder contains are deleted until all the libraries in the folder are unloaded.
If the folder’ s registered count has not reached 0, the f or ceUnl oad
parameter has no effect.

Registering shared library files and folders 7-3

How registered folders are tracked

If aregistered folder is moved or renamed, the ASLM tracks the folder’'s
new name and location. However, when you want to unregister the folder,
you must specify its new name and location. For thisreason it is best to use
aTMacFi | eSpec that does not specify afolder name. The TMacFi | eSpec
can specify vRef Numand di r | D, since these remain the same even when
the folder is moved or renamed.

Registering folders with the Inspector

The Inspector application that is shipped with the ASLM provides examples
of how folders can be registered and unregistered. When Inspector is
running, you can register and unregister folders by choosing commands
from the Commands menu. The Inspector is described in Appendix B
“ASLM Utility Programs.”

Registering and unregistering shared library files

If you do not want to register afolder that contains a shared library file,
you can register the shared library file that is inside the folder.

When you have registered an individual shared library file without
registering the folder in which it resides, the ASLM can find the registered
file and make it accessible to clients in the same way it would if it were
placed in the System 7 Extensions folder, the System 6 System Folder, or a
registered folder.

When an individual file isregistered as a shared library file, it is available
for any client to use; it is not private to the user that registered it.

The ASLM maintains aregistered count on each registered shared library
file so that more than one user can register a file without it becoming
unregistered when just one user attempts to unregister it.

Y ou can register ashared library file by calling the Regi st erLi braryFi |l e
function. You can unregister alibrary file by calling

Unr egi sterLi braryFil e or Unregi sterLi braryFil eByFi | eSpec.
The syntax for the Regi st er Li braryFi | e, Unregi sterLibraryFile,
and Unr egi st er Li braryFi | eByFi | eSpec functionsis:

OSErr Regi sterlLibraryFile(const TFi | eSpec*, TLibraryFile**);
CsErr Unregi sterLibraryFil e(TLi braryFil e*, Bool ean forceUnl oad);

CBErr Unregi sterlLibraryFi| eByFi | eSpec(const TFi | eSpec*,
Bool ean forcelnl oad);

7-4 Chapter 7 / ASLM Utilities

The Regi st er Li brar yFi | e function takes a TFi | eSpec parameter that
specifies the location of the library file being registered. Currently,

TMacFi | eSpec isthe only TFi | eSpec type that is supported. If the

Regi st er Li brar yFi | e call issuccessful, the call returns aresult of
kNoEr r or and a pointer to the TLi br ar yFi | e object that it has created.
This TLi br ar yFi | e object isstored inthe TLi br ar yFi | e** parameter. If
you pass NULL in this parameter, the TLi br ar yFi | e object is not returned.
If the ASLM cannot find or open the file, the Regi st erLi braryFi |l e
function returns aresult of kFi | eNot Found. If there is not enough
memory to process the file, the call returns aresult of kQut Of Menory. If
the fileis already registered, the ASLM increments the registered count for
thefile.

The Unr egi st er Li brar yFi | e function takesa TLi br ar yFi | e parameter
that specifies the file to unregister. This parameter should be the same as
the TLi br ar yFi | e that was returned by Regi st er Li br ar yFi | e when the
file was registered.

The Unr egi sterLi braryFi | eByFi | eSpec function takesa TFi | eSpec
parameter that specifies the file to unregister. Currently, TMacFi | eSpec is
the only TFi | eSpec type that is supported.

When you call Unr egi st er Li braryFi | eByFi | eSpec or

Unr egi st er Li braryFi | e, the ASLM decrements the registered count for
the file. If afile’ s registered count has reached 0 when the function is
called, the ASLM unregisters the file and deletes the file' s associated

TLi braryFi | e object. If the file’'s registered count is more than 0 when
the function is called, the file remains registered.

Both Unr egi st erLi braryFil e and

Unr egi st erLi braryFi | eByFi | eSpec accept af or ceUnl oad parameter.
If the value of f or ceUnl oad ist r ue, the functions force all loaded
librariesin the file to be unloaded, even if they are in use. Therefore, unless
you are certain that all loaded librariesin aregistered file can be safely
unloaded, the value of the f or ceUnl oad parameter should bef al se. If

f or ceUnl oad hasavalue of f al se, the library file is not unregistered until
al thelibrariesin the file are unloaded. If the file's registered count has
not reached zero, the f or ceUnl oad parameter has no effect.

If you keep track of the TLi br ar yFi | e object returned by

Regi st er Li brar yFi | e, you can unregister afile by calling

Unr egi st er Li braryFi | e. You can also unregister afile by calling

Unr egi st er Li braryFi | eByFi | eSpec and specify the TFi | eSpec of the
file to be unregistered. Thisis useful if you want to let the user choose
which file to unregister.

Registering shared library files and folders 7-5

If you want to unregister afile by calling Unr egi st er Li brar yFi | e, you
should make sure that the file cannot be deleted, because that would cause
the TLi br ar yFi | e object to be deleted, resulting in a crash later on when
you call Unr egi st erLi braryFil e. To prevent the library file from being
deleted, simply call OpenLi br ar yFi | e after you register the file, and call
Cl oseli brar yFi | e after you unregister the file. If your client is going to
terminate after registering the library file, the client should call

OpenLi braryFi | e and d oseli braryFi | e while in system mode.

If aregistered file is dragged into a registered folder or the folder that the
fileisin becomes registered, the file still maintainsits identity as a
registered file and is not unregistered even if its folder is unregistered.

You can register afilethat isin aregistered folder. It then remains
registered even if its folder is unregistered. If you unregister afilethat isin
aregistered folder by calling Unr egi st er Li braryFi | e, it remains
registered (sinceit is still in aregistered folder).

The Inspector application that comes with the ASLM provides examples of
how files can be registered and unregistered. When the Inspector is
running, you can register and unregister shared library files by choosing
commands from the Commands menu.

Preloading all dependent libraries

The MPW tool Cr eat eLi br ar yLoadRsr ¢ that is provided with the ASLM,
creates a resource for preloading all libraries that a client depends on. To
use the Cr eat eLi br ar yLoadRsr ¢ tool, you must link your client or
library using the - map option, which causes a link map to be generated.
The Cr eat eLi br aryLoadRsr c tool creates aresource of type'l i bi ' in
source code form that you can Rez into your application or shared library.
This'l'i bi ' resource is used by the ASLM routines LoadLi brari es and
Unl oadLi brari es, described in “Loading and Unloading Shared
Libraries” later in this chapter. The' |i bi ' resource contains information
about which function sets and classes the client is dependent on. It does not
include dynamic dependencies (such as, those created using NewCbj ect or
Get Funct i onPoi nt er).

The Bui | dShar edLi brary and Li nkShar edLi brary scripts
automatically invoke the Cr eat eLi br ar yLoadRsr ¢ tool to create a
"1ibi" resourcefor each library that they create, so generally only non-
library writers need to explicity use this tool.

7-6 Chapter 7 / ASLM Utilities

The syntax of the Cr eat eLi br ar yLoadRsr ¢ command is:

O eat eli braryLoadRsrc -nmap <MapFi |l eName> -0 <Qutput .r file nane>
[-p] [-Vv] [-a] [-resid #] [-not <class>] [-only <class>]

where:

-p

This option writes a progress report.

-V

This option writes verbose output.

-a

This option causes the resource information to be appended to the output .r
file instead of overwriting the output file.

-resid #

This option forces the resource ID number of the' |i bi ' resource. You
should not normally use this switch. It is used by the

Bui | dShar edLi brary and Li nkShar edLi br ar y scripts when they create
shared libraries. Clients such as applications or tools that call

I nitLibraryManager must leave the resource ID number at O.

-not <cl ass>

This option lets you specify function sets and classes that you do not want
included inthe' I'i bi* resource. It can be used multiple times on the
command line.

-only <cl ass>

This option lets you specify that only a particular function set or class
should beincluded inthe' | i bi' resource. It can be used multiple times
on the command line.

Preloading all dependent libraries 7-7

Loading and unloading shared libraries

Shared libraries load and unload automatically as you use them. However,
you may want to explicitly load a shared library so it can be used at
interrupt time or so that you do not have to worry about exception
handling if the shared library cannot be loaded when needed. The
following routines help provide further control over loading and unloading

shared libraries:

CsErr Loadd ass(const TA assl D, Bool eanParm forceAl |);

CSErr Unl oadd ass(const Td assl D);

Bool ean | sA assLoaded(const Td assl D);

CSErr LoadFunct i onSet (const TFunctionSet| D, Bool eanParmforceA l);
CsErr Unl oadFuncti onSet (const TFunctionSet|D);

Bool ean | sFunct i onSet Loaded(const TFuncti onSet|D);

CsErr LoadLi brari es(Bool eanParm forceAl |, Bool eanPar m doSel f);
CsErr Unl oadLi brari es(voi d);

voi d Reset Functi onSet (const TFunctionSet|D);

| sFuncti onSet Loaded
| sC assLoaded

Usethe I sFuncti onSet Loaded and | sd assLoaded functions to check
whether the function set or classisloaded. Thel sFunct i onSet Loaded
function returnst r ue if the implementation of the specified function set
ID isloaded. Thel sd assLoaded function returnst r ue if the
implementation of the specified class ID and all of its parent classes are
|oaded.

The |l sFuncti onSet Loaded and | sC assLoaded functionsindicate if the
library implementing the function set or class (and the class’'s parents) is
loaded, but give no indication of whether or not the code segments of the
library or any other libraries that the library depends on are loaded. There
are two ways to ensure that all code segments and all dependent libraries
are also loaded. Thefirst isto call LoadFunct i onSet or LoadC ass and
passin true for theforceAl | parameter. The second way isto make sure
that all the dependent libraries are built with f | ags=segUunl oad (the
default) and the library in which the class or function set isimplemented is
built with f | ags=f or cedeps and f | ags=segunl oad.

7-8 Chapter 7/ ASLM Utilities

LoadLi brari es
UnLoadLi brari es

The Cr eat eLi br ar yLoadRsr ¢ function, described in “Preloading All
Dependent Libraries,” earlier in this chapter can createa’ 1i bi ' resource
that describes all of the function sets and classes that a client or shared
library uses.

The LoadLi brari es function readsthe caller’s' | i bi ' resource and then
cdlsLoadFuncti onSet toload the function sets and Loadd ass to load
the classes described inthe' | i bi ' resource.

For non-library clients, LoadLi brari es readsthe' i bi' #0 resource. In
thiscase, the' |'i bi ' resource must be created and Rezed into your client
using the Cr eat eLi br ar yLoadRsr ¢ tool described under the previous
heading.

For shared libraries, LoadLi brari es readsthe'l i bi ' resource that has the
same resource ID asthe'l i br' resource for the library. In this case, the
resource is created and Rezed into your shared library automatically by the
Bui | dShar edLi brary and Li nkShar edLi brary scripts.

WARNING LoadLi brari es is not interrupt-safe.

When you call LoadLi brari es, thef orceAl | parameter is used to force
all of the code segments belonging to the dependent libraries to load. It is
the same asthef or ceAl | parameter passed to LoadFuncti onSet and
LoadCl ass .

The doSel f parameter is used only for libraries. If doSel f istrue, it
forcesthe library to load itself. This prevents the library from unloading
until the library makes an explicit Unl oadLi br ari es cal, evenif the
library has no clients. If af al se doSel f parameter is passed, the library
unloads when it has no clients, and an Unl oadLi br ari es call is made
automatically.

Youcan passatrue doSel f parameter to LoadLi br ari es when alibrary
is preloaded (hasits pr el oad flag set) and you want to make sure that the
library stays loaded, even if it has no clients. In this situation, you normally
call LoadLi brari es from your library’s1 ni t pr oc. Remember that a
library that is preloaded will immediately unload unlessit keeps itsel f
loaded. For example, alibrary can keep itself loaded by calling

LoadLi brari es. You can get similar results by setting the library’s

st ayLoaded flag (described in “Library Declaration” in Chapter 5,
“Writing and Building Shared Libraries.”)

Loading and unloading shared libraries7-9

You can passaf al se doSel f parameter when alibrary must make sure
that all of the other libraries that it depends on are loaded, but still requires
them to be unloaded when it has no clients. Once again, you normally call
LoadLi brari es from your library’s | ni t pr oc, but a better alternativeis
to set the library’s| oaddeps flag or f or cedeps flag (described in
“Library Declaration” in Chapter 5, “Writing and Building Shared
Libraries.”)

The LoadLi brari es function returns an error code if it cannot find any
of the dependent libraries that it requires (or if it cannot load them if itis
requested to do so). It also returns an error if it cannot find or load the
"l'i bi' resourcethat it requires.

Y ou can instruct the shared library to call LoadLi br ari es when your
library isloaded by setting your library’s| oaddeps flag, f or cedeps flag,
or st ayLoaded flag. All these flags cause LoadLi br ari es to be called,
but f or cedeps also causes af or ceAl | parameter of t r ue to be passed,
and st ayLoaded causesadoSel f parameter of t r ue to be passed. If you
set the st ayLoaded flag tot r ue, your library must explicitly call

Unl oadLi brari es to be unloaded.

The Unl oadLi brari es function calls Unl oadFuncti onSet or
Unl oadd ass for every function set or class loaded by LoadLi brari es. It
also clears out any cached information in the caller for any library that was
being used and was unloaded by the call to Unl oadLi brari es.

It is not necessary to call Unl oadLi br ari es unless LoadLi br ari es was
called with t r ue passed to the dosel f parameter. When aclient calls

C eanuplLi br ar yManager or alibrary is being unloaded,

Unl oadLi brari es isautomatically called to unload any libraries that have
been loaded by a LoadLi br ari es call.

Loadd ass
Unl oadd ass

The Loadd ass function loads the shared library or shared libraries
needed for the implementation of a specified class ID. The ID of the class
to be loaded is passed to LoadC ass as a parameter. If a class depends on
other classesin other shared libraries, those shared libraries are also loaded.
If the required libraries are already loaded, LoadCl ass increments their
use counts. The Loadd ass method returns kNoEr r or if the specified class
and all dependent classes are successfully loaded. If the call is unsuccessful,
an error isreturned. If the f or ceLoad parameter isset tot r ue, all the code
segments of the target libraries are loaded. This procedure ensures that
interrupt-safe calls can be made to the specified shared library.

7-10 Chapter 7 / ASLM Utilities

When Loadd ass iscalled, al dependencies of the library are loaded, not
just the parent classes. The only exceptions are dependencies created by
functions that are called by name, or objects that are created by calling
Newbj ect .

The ASLM keeps track of all Loadd ass callsand calls Unl oadCl ass
automatically when aclient calls Cl eanupLi br ar yManager . Therefore, it
is not necessary to balance Loadd ass callswith calsto Unl oadd ass.
However, you should still call Unl oadCl ass when you have finished using
aclass. By doing so, you can make sure that the class library is unloaded if
the library is no longer in use and you do not plan to call

C eanuplLi br ar yManager soon (for example, when the Loadd ass cal is
the only thing keeping the library loaded).

WARNING Loaddl ass is not interrupt-safe.

The Unl oadd ass function, unlike Loadd ass, isinterrupt-safe. The
Unl oadC ass function returns kNoEr r or if the specified class and all
dependent classes are successfully unloaded. If the call is unsuccessful, an
error is returned.

The Unl oadd ass function returns kNot Al | owedNow if the current client
has not made a corresponding Loadd ass call, and returns kNot Found if
the specified TO assl Dobject isnot avalid class ID.

LoadFunct i onSet
Unl oadFunct i onSet

LoadFunct i onSet and Unl oadFuncti onSet work exactly like

Loadd ass and Unl oadd ass, except they are used to load and unload a
function set instead of a class. LoadFunct i onSet loads the shared library
or shared libraries needed for the implementation of a specified function
set. The ID of the function set to be loaded is passed to LoadFunct i onSet
and Unl oadFunct i onSet as a parameter.

WARNING LoadFuncti onSet isnot interrupt-safe.

Loading and unloading shared librarie&-11

Reset Funct i onSet

Reset Funct i onSet clears all cached information in the client’s function
stubs for the specified function set. When a function in a function set is
called for the first time, the function stub linked with the caller looks up the
address of the function and places the address in its cache. This process
causes the function set’ s library to be loaded if it is not already loaded, and
also increments the library’ s use count. The only way to decrement the
library’s use count and cause the library to be unloaded isto call

Reset Funct i onSet , passing it the TFunct i onSet | D of the function set
that you want to reset. This causes all cached information for the function
set in the client’s function stubs to be cleared out, allowing the library’s use
count to be decremented. If the library’ s use count is decremented to zero,
the library is unloaded.

Y ou can reset all function sets that a client uses by passing NULL to

Reset Funct i onSet . All function sets are reset automatically when the
client quits (by calling C eanupLi br ar yManager) or unloads (in the case
of alibrary).

Client death watch notification

The ASLM provides a notification facility that you can use to determine
when a client goes away. A client goes away when it calls

Cl eanuplLi br ar yManager or when a shared library unloads (since shared
libraries are also considered clients).

To keep track of when clients go away, you can register a death watch
notifier, also called a death watcher. To register a death watcher, you can
call thel nst al | Deat hwat cher function. When you no longer want to be
notified of clients that have gone away, you can call the

RenoveDeat hwat cher function.

There are several reasons for installing a death watcher. For example, you
may have written an application or library that makes callbacks to its clients
when certain conditions exist. By maintaining a death watcher, you can
avoid attempting to make a callback to a client that has gone away.

Another reason for installing a death watcher is to make sure that your
application is notified when it is going away (probably because it has
crashed). The Inspector application provides an example of using death
watchers in this manner. Before going away, Inspector makes sure certain
objects are deleted. The Inspector application is described in Appendix B
“ASLM Utility Programs.”

7-12 Chapter 7 / ASLM Utilities

How death watchers work

The syntax of | nst al | Deat hWat cher and RenoveDeat hWat cher is:
Bool ean I nstal |l Deat hWat cher (TNotifier* notifier);
Bool ean RenobveDeat hWat cher (TNotifier* notifier);

Both | nst al | Deat hwat cher and RenoveDeat hWat cher take a

TNot i fi er object as a parameter. When | nst al | Deat h\Wat cher has been
called, the specified TNot i fi er object’s Not i fy function is called each
time a client goes away.

For more information on the TNot i fi er class and its member functions,
see Chapter 9, “Utility Classes and Member Functions.”

The | nst al | Deat hWat cher call returnst r ue if it is successfully
executed; otherwise, it returnsf al se . However, | nst al | Deat hWat cher
cannot fail unless the ASLM runs out of memory—which is unlikely.

The Not i fy function

When the specified TNot i fi er object’s Noti fy function is called, the
method’ s not i f yDat a parameter contains a pointer to the

TLi br ar yManager object of the client that is going away, and the
method’ s Event Code parameter contains kDeat hEvent .

If aclient is being notified about its own death, the TLi br ar yManager
pointer that is passed to its TNot i fi er object’sNoti fy function isthe
same as the one returned by Get Local Li br ar yManager .

When the specified TNot i fi er object’s Noti fy function is called, the
method’s OSEr r parameter contains one of three values: kNoEr r or if a
client called d eanupLi br ar yManager , kCodeNot Loaded if alibrary is
being unloaded, and kLi br ar yManager Not Loaded if the ASLM isbeing
unloaded. Y ou never have to worry about akLi br ar yManager Not Loaded
error code unless you want to add debugging code to your client so it can
handle the ASLM being reloaded from the Inspector application or from
an explicit Unl oadLi br ar yManger call in your own code (which should
be there for debugging purposes only). The Inspector does check for the
kLi br ar yManager Not Loaded error code, providing an example of this
kind of checking.

Client death watch notification 7-13

Global world functions

The ASLM provides a number of routines for setting up a client’s global
world:

G obal Wor | d Get d obal Wor 1l d();

G obal Wor | d Opend obal Worl d();

void Cl osed obal Wor | d(d obal Worl d ol dworl d);

G obal Wor | d Set Current d obal Wor | d(d obal Worl d newr | d);
G obal Wor | d Get Current d obal Worl d(voi d);

The Get Current d obal Wor | d and Set Cur r ent @ obal Wor | d functions
deal with the current global world setting. They are the same as the
Macintosh Get A5 and Set A5 routines and are used to get and set the
current global world, which is represented by the A5 register on the
Macintosh.

The Opend obal Wor | d, Gl osed obal Wor | d, and Get G obal Wor | d
functions deal with the global world belonging to alibrary or model far
client. Thus, the global world returned by Get d obal Wor | d may not be
the same as the current global world.

The Get @ obal Wor | d function returns the global world pointer for the
client making the call. The global world returned by Get d obal Wor | d
may not be the same as the current global world. Use Get d obal Wrl d to
get the global world for the library or application client making the call.
This can be useful if you need to pass the global world to code that may
need to set it at alater time.

The Opend obal Wr | d function simply calls Get G obal Wor | d and passes
the result to Set Curr ent d obal Wor | d. The Cl osed obal Wor | d function
performs the same operation as Set Cur r ent G obal Wor | d, except that it
does not return a result.

The Cl osed obal Wor | d function reverts to the global world that was
current before calling Opend obal Wr | d. When you call

C osed obal Wr | d, you must pass it the global world that was returned
by Opend obal Wr | d. It isthe same as calling

Set Cur rent G obal Wor | d(ol dWor | d) except that it does not return a
global world.

7-14 Chapter 7 / ASLM Utilities

You can call Ent er Syst emvbde to make the ASLM global world the
current global world. Although there is generally no reason to make the
ASLM global world the current global world, you should be aware that this
isaside effect of calling Ent er Syst envbde. If you want to enter system
mode but do not want the current global world changed, call

Get Cur rent d obal Wor | d before calling Ent er Syst emvbde and pass the
result to Set Cur r ent G obal Wor | d after calling Ent er Syst envbde. For
additional information on Ent er Syst em\bde, see “Entering and Leaving
System Mode” later in this chapter.

Since libraries are always compiled with model far, it is not necessary to call
Opend obal Wor | d before using globals or making intersegment calls.

Note: Only libraries and model far clients should call Get @ obal Wer | d,
Opend obal Wor | d,and O osed obal Wr |l d.

Support for stand-alone code resources

A number of routines are provided to make it easier to set up a global
world for stand-alone code resources and make the code resource the
current client. (These routines are called by stand-alone code only.)

OSErr I nitd obal Worl d(voi d);
voi d Freed obal Wor | d(voi d);
OSErr I ni t CodeResource(void);
voi d Ent er CodeResour ce(voi d) ;
voi d LeaveCodeResour ce(voi d);

The | ni t @ obal Wor | d function creates and initializes the global world for
stand-alone code on the Macintosh Operating System—for example, INITs
and CDEVs. It aso calls Set Current @ obal Worl d. The

Freed obal Wor | d function frees the memory used by the global world
created by 1 ni t G obal Worl d.

The | ni t CodeResour ce function calls| ni t G obal Wor | d to set up a
global world for code resources and to store the pointer to the global world
in a PC-relative location so that it can be used later.

The Ent er CodeResour ce function is used to set the global world of code
resources as the current global world and to make the code resource the
current client. It uses the global-world pointer saved by

I ni t CodeResour ce. It ismost useful when the code resource only calls

I nitLibraryManager once but may be reentered multiple times before
calling C eanupLi br ar yManager . The LeaveCodeResour ce function
will undo what Ent er CodeResour ce does. These two routines are not
reentrant.

Support for stand-alone code resources 7-15

When initializing the code resource, you should do the following:

A obal Wrl d savedWorl d = Get Current d obal Worl d();

I ni t CodeResource();

I nitLibraryManager();

/* Do anything else you want before returning. If */
/* you make ASLM calls then you nust al so use */

/* Enter/LeaveCodeResour ce.

Set Current G obal Wor | d(savedwWor | d) ;

Each time you reenter the code resource, you should do the following:

Ent er CodeResour ce()
/* do ASLMrel ated stuff */
LeaveCodeResour ce()

When you have finished, do the following:

Ent er CodeResour ce()
G eanuplLi br aryManager () ;
LeaveCodeResource();

Creating and deleting the local library manager

All clients of the ASLM are required to have a TLi br ar yManager object
installed. This TLi br ar yManager object is referred to asthe local library
manager. For shared libraries, the local library manager is created and
installed when the library is loaded and is deleted when the library is
unloaded. For non-library clients, the local library manager is created by
I ni t Li braryManager and is deleted by O eanupLi br ar yManager
(discussed in Chapter 4).

Thelocal library manager is used behind the scenes when clients make
many ASLM callsincluding calling functions in a function set and creating
C++ objects when there is no information cached about the function or C++
class. It is also used when calling most of the ASLM utility functions. It
provides the link between the client and the ASLM.

The local library manager is also used by the ASLM to represent aclient.
Asexplained in “The Current Client,” in Chapter 4, the local library
manager is returned from and passed as a parameter to the functions that
are used to set and get the current client.

Thelocal library manager is also used as the keeper of the client’s local
pool pointer. See “Memory Management Classes” in Chapter 8, “ASLM
Utility Class Categories’ for more information on the local pool.

7-16 Chapter 7 / ASLM Utilities

The I ni t Li br ar yManager function

When a non-library client wants to create an object that is implemented in a
shared library, or wants to use a function that is implemented in a shared
library, the client must call | ni t Li br ar yManager first. The

I ni t Li braryManager function creates alocal instance of the

TLi br ar yManager class (which can be accessed by calling

Get Local Li brar yManager).

Thel ni t Li braryManager function is declared in the LibraryManager.h
fileasfollows:

#i fdef __cpl uspl us
CsErr I ni tLi braryManager (si ze_t pool size = 0,
ZoneType = kQurrent Zone,
Meror yType = kNor nal Menory) ;
el se
CsErr I ni tLi braryManager (si ze_t pool size, short zoneType,
short menType);
#endi f

In the above declaration, | ni t Li br ar yManager creates alocal memory
pool of size pool si ze. The memory for the pool is obtained from the
zone of type ZoneType and is of type Menor yType. The ZoneType and
Menor yType parameters are declared in the LibraryManager.h file and are
explained in Chapter 9, “Utility Classes and Member Functions.”

Non-C++ users do not need to be concerned with I ni t Li br ar yManager
parameters unless they are making calls to C++ code that may want to
allocate objects or memory out of the client’s local pool. Normally non-
C++ users should just pass O for pool si ze, kCur r ent Zone for ZoneType,
and kNor mal Menory for Menor yType. However, clients that make use of
the ASLM at interrupt time should pass kHol dMenor y for Menor yType.

The pool that | ni t Li br ar yManager creates serves asthe local library
manager’ s object pool, which is the pool used to allocate memory for
objects that are created using NewObj ect . Y ou can access the pool by
calling TLi br ar yManager : : Get Obj ect Pool . The pool is also called the
local memory pool and can be accessed by calling Get Local Pool .

The I ni t Li braryManager function always creates alocal memory pool,
even if you passit a pool of size zero (0). An object of class

TPool Not i fi er isattached to the pool so that the pool can grow instead
of returning an error if it runs out of memory. The TPool Not i fi er class
can assist in automatically “growing” a pool when the pool comes
dangerously close to running out of memory.

Creating and deleting the local library managei/-17

When | ni t Li br ar yManager createsaTLi br ar yManager object, the new
TLi br ar yManager object and the new TPool Not i fi er object are
allocated from the local pool. The overhead for these two classes is added
to the pool size passed to | ni t Li br ar yManager .

For more information on memory pools and the TPool Noti fi er class, see
Chapter 9, “Utility Classes and Member Functions.”

WARNING Thel ni t Li braryManager call isnot interrupt-safe. You
must be in your global world to call it.

The Cl eanuplLi br ar yManager function

When you finish using the ASLM, you must call

Cl eanuplLi br ar yManager . The C eanuplLi br ar yManager function
deletesthe local TLi br ar yManager object, itsinitial local pool (the pool
created by I ni t Li br ar yManager), and the pool’s TPool Noti fi er. It
also does some other house cleaning, including releasing any function sets
that were used and closing any library files that were explicitly opened.
Any Loadd ass, LoadFuncti onSet , and LoadLi br ari es callsare also
undone. C eanupLi br ar yManager isonly called by clients that called

I ni t Li brar yManager . Shared libraries should never call

Cl eanuplLi br aryManager .

The Cl eanupLi br ar yManager function is declared in the header file
LibraryManager.h. as follows:

voi d Cl eanuplLi braryManager () ;

The d eanuplLi br ar yManager function is called automatically for
application clients that either crash or do not call it before quitting. This
means that if an application crashes, it releases any function sets it was
using and closes any library files that it explicitly opened. However, it does
not release any classes for which all instances were not deleted. The
libraries that these classes are in remain loaded and in use until the
computer is restarted.

WARNING The d eanupLi br ar yManager function is not interrupt-
safe, and you must be in your global world when you call it.

7-18 Chapter 7 / ASLM Utilities

Getting the local library manager

The function Get Local Li br ar yManager returns the currently installed
local library manager. For shared libraries, the local library manager is
created and installed when the library is loaded and is deleted when the
library is unloaded. For non-library clients, the local library manager is
created by I ni t Li brar yManager . The Get Local Li br ar yManager
function returns NULL if | ni t Li br ar yManager failed or has not been
called yet. It is declared as follows:

TLi br ar yManager * CGet Local Li br aryManager ;

A client can call Get Local Li br ar yManager to test whether
I nitLibraryManager hasbeen called successfully.

For more information on | ni t Li br ar yManager and the local library
manager, see “Creating and Deleting the Local Library Manager” above.

Calling functions by name

The ASLM supports exporting and calling C functions by name. To make
use of this capability, you must modify your client’s .exp file. Any
functions in your function set that you want to be exported by name should
be preceded by the keyword ext er n. Y ou can then call the

Get Funct i onPoi nt er to obtain a pointer to the function. Of course, you
can call the function in the usual manner as well.

The ASLM also supports calling functions by specifying the function’s
index in the function set. The Get | ndexedFunct i onPoi nt er functionis
used for this and does not require that the function name be preceded by
the ext er n keyword in the .exp file.

The syntax of these two functionsis:

ProcPtr Get Funct i onPoi nt er (const TFuncti onSet | D,
const char* funcNanme, CSErr*);

ProcPtr Get | ndexedFunct i onPoi nt er (const TFuncti onSet | D,
unsi gned int index, CSErr*);

The Get Funct i onPoi nt er function returns a pointer to a function, and
takes the name of the function in the function set. The

Get | ndexedFunct i onPoi nt er function returns a pointer to a function,
and takes the index of the function in the function set. The

TFunct i onSet | D parameter is the ID of the function’s function set and
f uncNane is the name of the function.

Calling functions by name7-19

If an error occurs while Get Funct i onPoi nt er or

Get I ndexedFunct i onPoi nt er istrying to obtain afunction pointer, the
call returns NULL and the appropriate error code is placed in the CSEr r *
parameter.

One possible use for Get Funct i onPoi nt er isto extend scripting
languages. Y ou can let the user specify the name of the function (and
perhaps even the function set ID), and you can then call

Get Funct i onPoi nt er to obtain the implementation of the function. This
is similar to the way XCMDs work in HyperCard.

Another possible use for Get Funct i onPoi nt er or

Get | ndexedFunct i onPoi nt er isto alow the same routine to be
implemented in more than one function set, with the option of choosing
which function set is used. If you call the function directly, the function set
whose client object (.cl.o) file you have linked with determines which
function set is used. Using Get Funct i onPoi nt er or

Get I ndexedFunct i onPoi nt er allows you to choose at run time which
function set to use.

By placing ani nt er f acel D=Functi onSet I Dlinein aclient’s export
(.exp) file, you can associate a function set with an interface. It allows you
to specify a common interface for your function sets that implement the
same functions. Y ou can then create multiple function sets with the same
interface ID, and you can use the Get Funct i onSet | nf o function to find
all such function sets with the same interface ID and then use

Get Funct i onPoi nt er or Get | ndexedFunct i onPoi nt er to get the
correct function in the correct function set. All that is required is that each
function set implement the same functions and that any given function has
the same interface and either the same index or the same name in each
function set. The Get Funct i onSet | nf o function is described in the next
section.

The following is an example of a declaration of afunction set that exports
afunction by name:

Functi onSet Exanpl eFSet

{
i d = kExanpl eFuncti onSet ;

exports = extern Hello;

7-20 Chapter 7 / ASLM Utilities

This example shows how you might call afunction named Hel | o by name.

ProcPtr helloPtr;
hel | oPtr = Get Functi onPoi nt er (kExanpl eFuncti onSet, "Hell o",
NULL) ;

*hel | oPtr();

The above example does not include error checking, which should be
added. It may also be necessary to cast the result of Get Funct i onPoi nt er
to a different function pointer.

WARNING Although Get Funct i onPoi nter and

Get I ndexedFunct i onPoi nt er cause the shared library
implementing the function to be loaded, they do not increment the
shared library’ s use count. This means that unless something elseis
done to increment the library’ s use count, it will be unloaded the next
time Syst enirask is called. If you call the function returned
immediately after the call to Get Funct i onPoi nter or

CGet | ndexedFunct i onPoi nt er then you do not have to worry
(unless the function allows Syst enfTfask to be called). However, if you
plan on using the function pointer returned at a later time, you
normally will call LoadFuncti onSet immediately before or after the
Get Funct i onPoi nt er or the Get | ndexedFunct i onPoi nt er call
and then call Unl oadFuncti onSet when you are done with the
function pointer. Thiswill ensure that the shared library stays loaded
until you are done with the function pointer.

Getting information about function sets

The Get Funct i onSet | nf o function, the C interface to the TO assl nf o
class, is used to provide information about a function set or a series of
function sets that have a common interface ID. In the latter case it is used to
iterate over all function sets with the given interface ID. The

Get Funct i onSet | nf o function returns a TFunct i onSet | nf o structure
that is passed to other routines to get information about the function set.
You free up TFuncti onSet | nf o by calling Fr eeFuncti onSet | nf 0. The
following routines are used in conjunction with Get Funct i onSet | nf o
(these routines are C versions of the TCl ass| nf o member functions):

TFunct i onSet | nf o* Get Functi onSet | nfo(TFunctionSet| D, CSErr*);
voi d Fr eeFunct i onSet | nf o(TFuncti onSet | nf 0*) ;

voi d FSI nf oReset (TFuncti onSet | nf o*) ;
TFunctionSet| D FSI nf oNext (TFunct i onSet | nf 0*) ;

Getting information about function sets 7-21

Bool ean FSI nf ol t er at i onConpl et e(TFunct i onSet | nf o*) ;
TFunctionSet| D FSI nf oGet Funct i onSet | D(TFunct i onSet | nf o*) ;
TFunctionSet| D FSI nf oGet Par ent | D{ TFunct i onSet | nf o*, size_ t idx);
TLi brary* FSI nf oGet Li br ary(TFunct i onSet | nf o*) ;

TLi braryFi | e* FSI nf oGet Li braryFi | e(TFuncti onSet | nf 0*) ;

unsi gned short FSI nf 0Get Ver si on(TFunct i onSet | nf o*) ;

unsi gned short FSI nf 0Get M nVer si on(TFunct i onSet | nf 0*) ;

After calling Get Funct i onSet | nf o, you can pass the

TFuncti onSet | nf o object to any of the other routines. Most of them
provide information about the current function set. Others are used to
iterate over all function sets with the specified interface ID, if you passed an
interface ID to Get Functi onSet | nf o instead of an actual function set ID.

The first function set looked at is always the one specified when you called
Get Funct i onSet | nf 0. If you specified an interface 1D, you need to call
FSI nf oNext to start iterating over all the function sets that have the
specified interface ID. Y ou can continue calling FSI nf oNext until it
returns NULL, gathering information about each function set as you
proceed. The FSI nf oNext function changes the function set being looked
at to the next function set and returns the TFunct i onSet | D object of the
next function set.

If you allowed callsto Syst enifask or Wai t Next Event whileiterating
over the function set, the TFunct i onSet | nf o object may become invalid
if the user has added or removed a shared library file from aregistered
folder. In this case, FSI nf oNext will return NULL and

FSIt erationConpl et e will return f al se. If this happens you can call
FSI nf oReset and start the iteration over.

Use FSI nf oGet Funct i onSet | Dto get the TFunct i onSet | D of the
current function set.

Use FSI nf oGet Par ent | Dto get the interface ID of the current function
set. Thei dx parameter should always be 0 and is there for historical
reasons. A better name for thisfunction isFSI nf oGet | nt er f acel D,
however, it is named FSI nf oGet Par ent | D for historical reasons.

The FSI nf oGet Li br ary function returns the TLi br ar y object in charge
of the library that the current function set isimplemented in. The

FSI nf oGet Li br ar yFi | e function returnsthe TLi br ar yFi | e objectin
charge of the library file that the current function set’s library isin. Both
the TLi brary and TLi br ar yFi | e objects have usesin other ASLM
routines.

7-22 Chapter 7 / ASLM Utilities

Interrupt support

The FSI nf oGet Ver si on function returns the version of the current
function set and the FSI nf oGet M nVer si on function returns the
minimum version that the current function set supports.

There is an example of how to use Get Funct i onSet I nf o on the ASLM
Examples disk in the FunctionSetInfo folder.

Note: You can use TCl assl nf o to iterate over function sets and the
routines mentioned above to iterate over classes.

For some parts of the ASLM to work properly at interrupt time—for
example, for memory to be allocated from memory pools and for objects
to be created—the ASLM must be aware that the procedures are being
executed during interrupts. You can call the Ent er | nt er rupt function to
inform the ASLM that you are executing code at interrupt time, and you
can call Leavel nt errupt when you have finished. The

At | nterrupt Level functionreturnstrue if Enter| nterrupt hasbeen
called without amatching Leavel nt er r upt call. Otherwise it returns

fal se.

If your code is being executed because you have scheduled an operation
on an ASLM scheduler such as TTi neSchedul er or

Tl t errupt Schedul er, the ASLM is already aware that you are executing
at interrupt time, so thereisno need to call Ent er I nt er r upt . (For more
information on the ASLM scheduler classes, see “Process Management
Classes” in Chapter 8, “ASLM Utility Class Categories.”)

Y ou do not haveto call Ent er I nt err upt before you schedule an
operation on a Tl nt er r upt Schedul er. This means that if your interrupt
code only puts a TOper ati on on aTl nt er r upt Schedul er, you never
haveto call Ent er I nt er r upt . However, if you use the new operator to
allocate memory for the TOper at i on or any other object, you do need to
cal Enterlnterrupt. The ASLM aso provides an

I nl nt errupt Schedul er function that can tell you if the

TI nt er r upt Schedul er is currently running.

Virtually all ASLM calls and member functions of classes provided by the
ASLM are interrupt-safe, with these exceptions:

m | nitLi braryManager and Cl eanupLi br ar yManager

m LoadLi braryManager and Unl oadLi br ar yManager

m | ni t CodeResource, I nitd obal Wrl d, and Freed obal Worl d

m routines to load and unload library code segments

Regi st er Li brar yFi | eFol der and Unr egi st er Li brar yFi | eFol der

Interrupt support 7-23

m RegisterLibraryFile,UnregisterLibraryFile,and
Unregi sterlLibraryFil eByFi | eSpec

m callsto TMenor yPool : : AddMenor yToPool or
TMenor yPool : : Downsi zePool to create a new pool or add memory to
a pool. (AddMenor yToPool and Downsi zePool return errorsif they are
called at interrupt time.)

m TLi braryFi | e resource management calls

m toolbox and operating system calls that are not interrupt-safe because
they move or purge memory

m callsthat cause alibrary to be loaded by creating an object (including
stack objects)

m callsto afunction in afunction set that is not already loaded

m callsto Get Functi onPoi nt er or Get | ndexedFunct i onPoi nt er for a
function in afunction set that is not already |oaded

m Loadd ass, LoadFuncti onSet, or LoadLi brari es

Y ou can verify that a classisloaded by calling | sCl assLoaded. You can
load alibrary while your client is executing in the foreground by calling

Loadd ass, LoadFuncti onSet, or LoadLi brari es. Thiswill alow you
to safely use the library at interrupt time.

Enterlnterrupt
Leavel nt errupt

These functions should be called when you are in an interrupt service
routine or a deferred task and you want to do something that will cause
ASLM code to be executed such as allocating pool memory or creating an
object. The ASLM needsto know that it is at interrupt time so it does not
do anything harmful like trying to allocate Macintosh Memory Manager
memory or load library code. This does not mean that all ASLM calls are
safe at interrupt time, just that the ones that claim to be safe will only be
safeif you do an Ent er I nt er rupt call first.

Y ou do not need to use these routines when your interrupt service routine
is scheduling an operation on a Tl nt er r upt Schedul er, when the
operation gets executed at deferred task time, or when a TTi meSchedul er
operation gets executed. In the former case the ASLM realizes that you are
at interrupt time and in the later two cases the ASLM does an

Ent er | nt errupt before calling your operation and aLeavel nt er r upt
when your operation returns.

void Enterlnterrupt(void);

voi d Leavelnterrupt(void);

7-24 Chapter 7 / ASLM Utilities

At I nterrupt Level

Thisfunction returnst r ue if you are currently executing at non-System
Task time.

Bool ean AtlnterruptLevel (void);

I nl nt err upt Schedul er

Thisfunction returnst r ue if you are currently running an interrupt
scheduler.

Bool ean I nlnterrupt Schedul er(void);

Exception handling

The ASLM provides exception handling macros that are used to catch
exceptions that may be raised. Exceptions are raised by calling the RAI SE,
Fai | ,Fai | Nul | , DebugFai | , and DebugFai | Nul | functions (described
later in this section). The only time the ASLM raises an exception isif it
failsto load a shared library or fails to load a shared library’s code
segment after the shared library has already been loaded.

The ASLM will never raise an exception when calls are made that could
return an error code instead, such as LoadFunct i onSet . The strategy used
isthat if something useful cannot be done, such as returning an error code,
an exception must be raised. For example, an exception israised if a shared
library cannot be loaded when a class is created or afunction in afunction
set is called. The most common reason alibrary would fail to load is either
it cannot be located or there is not enough memory for it.

Another reason an exception might be raised isif alibrary isloaded, but
not all of its code segments are loaded. If a call is made to a member
function or function implemented in an unloaded code segment and the
code segment cannot be loaded because there is not enough memory, an
exception is raised.

Of course shared libraries that a client uses may also raise exceptions for
other reasons, but thisis up to the developer of the shared library.

Exception handling 7-25

How to avoid raising exceptions

All shared libraries and clients must guard against raising exceptions. One
way isto make sure that alibrary isloaded, along with all of its code
segments, before trying to useit. You can use the Loadd ass,

LoadFunct i onSet , and LoadLi br ari es functions for this. You can also
specify certain flags when declaring alibrary in the library’ s .exp file that
make sure all libraries that the library depends on are loaded when the
library isloaded. If the libraries it depends on cannot be loaded, the library
will fail to load.

The other way of guarding against raising exceptions is to use exception
handling macros to catch any exceptions that are raised.

Exception handling macros

The ASLM exception handling macros match the DCE standard and are
usable from C. Here is the syntax for handling exceptions:

TRY
try_bl ock

[CATCH (errcode)
handl er _bl ock]

[CATCH _ALL

handl er bl ock]
[FI NALLY

final _bl ock]
ENDTRY

The following macros are used for exception handling. They all conform
to the DCE standard for exception handling.

m TRY starts a block of code that may end up raising an exception that you
want to catch.

A try_bl ock or ahandl er _bl ock isasequence of statements, the first
of which may be declarations, asin a normal block. If an exception is
raised inthetry_bl ock, the catch clauses are evaluated to seeif any
match the current exception.

m CATCH(errcode) catcheserrcode if itisraised, and CATCH ALL
catches anything that CATCH has not caught.

The CATCH or CATCH_ALL clauses absorb an exception; they catch an
exception propagating out of thetry_bl ock, and direct execution into
the associated handl er _bl ock. By default, the exception stops
propagating. Within the lexical scope of a handler, it is possible to
explicitly cause the same exception to resume propagating (thisis called
reraising the exception). It is also possible to raise a new exception.

7-26 Chapter 7 / ASLM Utilities

m RERAI SE reraises an exception that has been caught.

The RERAI SE statement is allowed in any handler statements and causes
the current exception to be reraised. The exception resumes

propagating.
m FI NALLY contains code that you want executed whether an exception

has been raised or not. It should not be used in conjunction with the
CATCH or CATCH_ALL macros.

m ENDTRY ends the exception handling block.

m RAI SE (excepti on_nane) isallowed anywhere and causes a particular
exception to start propagating. Valid exception names are any error
code you wish to pass to the exception handler. See “Raising
Exceptions” below for more details.. (RAl SE is not shown in the above
syntax sinceitisnormally inthetry_bl ock or in code called by the
try_bl ock.)

This example shows how an ASLM client can use exception handling:

TRY
DoThi sAndThat (); // this function may rai se an exception
CATCH(kQut Of Menory)
prinf("Ran out of nenory but continuing on\n");
CATCH_ALL
printf("Unexpected error. Passing it to next guy up\n");
RERAI SE
ENDTRY

In the previous example, if akQut of Menory exception propagates out of
the TRY block, thefirst pri nt f is executed. If any other exception
propagates out of TRY block, the second pri nt f isexecuted. In this case,
the exception resumes propagating because of the RERAI SE statement. (If
the code is unable to fully recover from the error, or does not understand
the error, it needs to further propagate the error to its caller.)

The following is the syntax for using the FI NALLY macro:

TRY

try bl ock
[FI NALLY

final _bl ock]
ENDTRY

Exception handling 7-27

Thefinal _bl ock isexecuted whether or not thet ry_bl ock executesto
completion without raising an exception. If an exception israised in the
try_bl ock, propagation of the exception is resumed after executing the
final _bl ock. In other words, if an exceptionisraisedinthetry_bl ock,
it will automatically be reraised after the f i nal _bl ock has executed. A
CATCH_ALL handler and RERAI SE could be used to do this, but the

fi nal _bl ock code would then have to be duplicated in two places, as

follows:
TRY
try bl ock
CATCH_ALL
final bl ock
RERAI SE;
ENDTRY

{ final _block }

A FI NALLY statement has exactly this meaning, but avoids code
duplication.

Note: The behavior of FI NALLY along with CATCH or CATCH_ALL clausesis
undefined. Do not combine them for the sametry_bl ock.

Using the exception handling macros

Y ou can use the macros for more than just catching exceptions that are
raised by others. For example, if you are entering a section of code that
needs to continually check to see whether what you just tried was
successful, and if not, to clean up and quit, you can use exception handling
to make it easier. Simply put all the code that is “trying to do things” in
the TRY section and raise an exception by calling Fai | if anything you try
fails. Put your cleanup code in the CATCH_ALL or FI NALLY section
depending on whether you want to execute it even if you do not fail.

Raising exceptions

Exceptions are raised by calling either RAI SE, Fai | , Fai | NULL,
DebugFai | , or DebugFai | NULL. The prototypes of these functions are:
voi d RAI SE(| ong error Code);

void Fail (long errorCode, const char* nessage);

voi d Fail NULL(voi d* testVal ue, |ong errorCode,
const char* nessage);

voi d DebugFail (1 ong errorCode, const char* nessage);

voi d DebugFai | NULL(voi d* testVal ue, |ong errorCode,
const char* nessage);

7-28 Chapter 7 / ASLM Utilities

The err or Code parameter is the error code that is passed to the exception
handler. The exception handler can retrieve the error code by using the

Er r or Code macro in the CATCH or CATCH_ALL sections. Likewise, the
message parameter is the message string that is passed to the exception
handler and can be retrieved with the Er r or Messsage macro. The message
parameter can be set to NULL if no message is desired. It defaults to NULL
for C++ users.

When calling Fai | (or one of its variants), no exception will be raised if the
error code kNoEr r or is passed.

When calling Fai | (or one of its variants), if a message is passed in the
message parameter and you are running the debug version of ASLM
(Shared Library Manger Debug), you enter the debugger and the message
isdisplayed.

Fai | NULL isthe same as Fai | , except that it only raises an exception if the
t est Val ue parameter is NULL.

DebugFai | and DebugFai | NULL are macros that simply call Fai | and
Fai | NULL, except that the message parameter will automatically be set to
NULL if gDebug isundefined or is#def i ned to be 0. This allows you to
automatically have the non-debug version of your software omit any
message text by simply changing the value of qDebug from 1 to O.

RAI SE is amacro that callsthe Fai | function and passes NULL for the
message parameter. Thisisthe only way to raise an exception that
conforms to the DCE standard. All variants of the Fai | function are
extensions that ASLM has added and are not part of the DCE standard. The
Er r or Code and Er r or Message macros are also extensions added by
ASLM.

Rules and conventions for using exceptions

The following rules ensure that exceptions are used in a modular way (so
that independent software components can be written without requiring
knowledge of each other):

Avoid putting code in ary_bl ock that belongs before it.

The TRY macro only guards statements for which the statementsin the
FI NALLY, CATCH, or CATCH_ALL clauses are always valid.

A common misuse of TRY isto put codeinthetry_bl ock that needsto
be placed before TRY. The following example demonstrates this misuse and
assumes that open_fi | e will raise an exception if it fails:

Exception handling 7-29

TRY

handl e = open_file (file_nane);

/* Statenents that may rai se an exception here */
FI NALLY

cl ose (handl e);
ENDTRY

The code under FI NALLY assumes that no exception is raised by
open_fil e. Thisis because the code accesses an invalid identifier in the
FI NALLY section when open_fi | e is modified to raise an exception. The
preceding example should be rewritten as follows:

handl e = open_file (file_nane);
TRY
{

/* Statenents that may rai se an exception here */
}

FI NALLY
cl ose (handl e);

ENDTRY

The code that opens the file belongs prior to TRY, and the code that closes
the file belongs in the FI NALLY section. (If open_fi | e raises exceptions, it
may need a separatetry_bl ock.)

m Do not place a et ur n or nonlocajot o betweenTRY andENDTRY.

Itisinvalidtoret urn, got o, or leave by any other means a TRY, CATCH,
CATCH_ALL, or FI NALLY block. Special code is generated by the ENDTRY
macro, and it must be executed.

m Variables that are read or written by exception handling code must be declared volatile.

Any variable that is declared outside of the exception handling block, is
changed from within the TRY section, and then is referenced later on,
should be made volatile by using the Vol at i | e macro. Thiswill prevent
the variable from ever being placed in aregister. Otherwise you run the risk
of having the variable being placed in aregister while executing in the TRY
section, but after the exception is raised, having the value of the register
change.

Storing local variablesin registersis a problem because the TRY macro
saves the values of most of the 68000 registers and then when an exception
israised the registers are restored to their saved values. This meansthat if a
variable was stored in aregister and was changed in the TRY section, its
value will be lost when the exception is raised.

Generally you do not have to worry about variables that are not referenced
frequently, but the only way to be sure that a variable is safe isto ook at
the compiled code.

7-30 Chapter 7 / ASLM Utilities

Below is an example of how to use the Vol ati | e macro:

int tenp;
Vol atil e(tenp);

Note: The ANSI Cvol atil e attribute would normally be used to
accomplish this, but is does not work with MPW C++ so the ASLM defines
the Vol at i | e macro to do the job.

Default exception handlers

When you call | ni t Li br ar yManager , it installs a default exception
handler that catches any exception that is raised and not caught by the
client. The default exception handlers are set up and executed by using the
Csetj mp/ ongj np facility. When you end up in the default exeception
handler, your code is executing within the I ni t Li br ar yManager routine.
This does not mean that you entered the default exception handler by
calling | ni t Li br ar yManager . It means that sometime after calling

I ni t Li braryManager your application did something that caused an
exception to be raised (like trying to call afunction in afunction set that
was not available or could not load), and your application did not set up an
exception handler to catch this exception.

The default exception handler will force the application to quit when it
catches an exception, and the user will see no warning as to why this
happened. If you are running the debug version of the ASLM, you will
first end up in the debugger with the message “An exception was thrown
and the application did not catch it.” When execution continues, the
application is forced to quit.

Exceptions and the current client

Exceptions are always passed to (or caught by) the exception handler at the
top of the exception handling chain of the current client. Normally, the
application that is currently executing is the current client and thisis
usually the client to which you pass an exception if an exception is raised.
If ashared library is made the current client, that shared library must have
an exception handler installed if anything is done that can cause an
exception to be raised. Unlike clients that call | ni t Li br ar yManager ,
shared libraries do not have default exception handlers installed.

Raising an exception when there is no exception handler installed usually
results in a crash. When using the debug version of the ASLM, you will first
go into the debugger with the message “ One too many PopException
calls!”

Exception handling 7-31

When an exception handler isinstalled, it is always placed on the exception
handling chain of the current client. For this reason it isimportant that the
current client be the same when the exception handler is removed. This
means that if you change the current client within the TRY section, you
must restore it before entering the FI NALLY or ENDTRY sections. When an
exception israised, the current client is automatically restored to the client
that was current when the exception handler was installed. Therefore, there
is no need to worry about restoring the current client before entering the
CATCH or CATCH_ALL sections.

Verifying an object’s type

When you create an object, you may want to verify the object’ s interface
(identify its base class) so that you can use the object safely. Otherwise, you
cannot safely call any member functions. Thisis especially true when you
use NewObj ect or are given an object that someone else created. The

Cast Qbj ect and the | sDer i vedFr omfunctions can be used to verify an

object’ s type.
voi d* Cast Obj ect (const voi d* obj ect,
const TCl asslID parentI D, CSErr* err);
voi d* Cast ToMai nQbj ect (const voi d*);
Bool ean | sDeri vedFrom(const void*, const TC assl D&);

The Cast Obj ect function casts the object to the specified class and returns
a pointer to the object if successful. When using single inheritance, thisis
always the pointer to the original object. For classes that use multiple
inheritance, the object pointer returned may be different.

The obj ect parameter is the object that you want to cast and the

par ent | D parameter is the class ID of the class to which you want to cast
the object. If an error occurs, Cast Obj ect returns NULL and the OSEr r
parameter contains the appropriate error code. Possible error codes include
kNot Found (when par ent | Disnot avalid class ID) and kNot Rel at ed
(when obj ect isnot related to parent | D) .

Any object that you pass to Cast Cbj ect must have the v-table first. (An
object that has its v-table first is an object derived from a base class that has
at least one virtual function and no data members. Thisis true of objects
that inherit from the TDynani ¢, TSi npl eDynani ¢, TSt dSi npl eDynani c,
and TSt dDynani ¢ classes.)

7-32 Chapter 7 / ASLM Utilities

Cast Qbj ect can be called after an object is created to verify itstype. For
example:

// Sonebody gave ne "the(hject", is it really what | asked for?
if (Cast(hject(thehject, kTM/Firstd asslD))
{

/1 OK nowit's safe to call theCbject methods

t hehj ect - >DoSonet hi ngFor Me() ;

}

The | sDer i vedFr omfunction returnst r ue if the object is derived from
the specified TA assl D. Cal | sDer i vedFr omonly on an object that is
implemented in a shared library and is a shared class.

Y ou can use Cast ToMai nObj ect to obtain the original object pointer
without knowing the type of the object. This allows you to get the real
object when you were given a pointer to one of its multiply-inherited
parents.

Verifying a class’s base class

Use Veri f yQ ass to verify aclass sinheritance. A client can call the
Veri f yd ass function to verify at run time that a given object is derived
from a particular base class. If you are using NewChj ect , you can also do
this same verification by passing the required base class type to

NewObj ect . The Veri f yd ass function allows you to verify aclass's
interface before actually creating an instance of the class.

OSErr VerifyC ass(const Td assl D, const TC assl D parentlD);

In the following example, Ver i f yQ ass verifies that the class with the ID
nyd assl Disderived from the class TPar ent O ass with the D
kMyPar ent Cl assl Dt

if (Verifydass(nyd assl D, kMyParentC assl D))
{
/1 now we can use NewObj ect and safely cast to
/1 TMyParent d ass
TWMYFi rst d ass* nmyQoj ect ;
myQbj ect = (TMyParent C ass*) Newbj ect (nyd asslID);

if (myQoject !'= NULL) /1 was object created?
{

// nowit is safe to call nethods
my Qbj ect - >DoThi sAndThat () ;

Verifying a class’s base class 7-33

Alternatively, you can call New(hj ect with a second parameter specifying
the required base class, as follows:

TWFi rstd ass* nmyQoj ect ;
nmyQObj ect = (TMyParent Cl ass*)

NewObj ect Wt hPar ent (nyCd assl D, kMyParent O assl D) ;
if (myQoject !'= NULL) nyQObject->DoThi sAndThat ();

UsingNewQbj ect

The global NewObj ect function isa C interface to the
TLi br ar yManager : : NewObj ect member function. There are three
NewChj ect functions:

voi d* New(hj ect (const Td assI D, OSErr*, TStandardPool *);

voi d* NewChj ect Wt hParent (const Td assl D, const Td assl D
parent | D, C8Err*, TSt andar dPool *);

void NewCbj ect FronStrean(const TFormattedStreant, CSErr*,
TSt andar dPool *) ;

NewCbj ect creates an object of the class identified by the specified

Cl assl| D. If NewObj ect cannot find the class, it returns NULL and returns
an appropriate error code in the OSEr r parameter. Y ou can pass an
optional parent class ID to NewObj ect to verify that the object you are
instantiating inherits from the given parent class. The object’s newobj ect
flag must be set so that the object can be instantiated with a call to

NewCbj ect . The newobj ect flag for the classis set by the library writer
by specifying f | ags=newobj ect when exporting the class. The only
classes shipped with the ASLM that have the newobj ect flag are the
TCol | ecti on and TSchedul er subclasses. Also, NewObj ect takes an
optional pool parameter that you can specify if you do not want to allocate
memory for the object from the TLi br ar yManager ' s object pool.

The NewObj ect W t hPar ent function works like NewQbj ect , but will only
create the object if it is a subclass of the parent specified in par ent I D. If it
is not a subclass of the parent specified in par ent | D, the error code

kNot Rel at ed is returned.

The NewQoj ect Fr onst r eamfunction is not supported in version 1.1 of
the ASLM.

7-34 Chapter 7 / ASLM Utilities

Loading and unloading the ASLM

Use Unl oadLi br ar yManager and LoadLi br ar yManager only for testing
purposes. The | sLi br ar yManager Loaded function checksif the ASLM is
loaded. These functions are useful for “resetting” the ASLM, especially if
alibrary remains loaded because a client crashed and you want to get the
library unloaded. The Inspector application uses these routines to load and
unload the ASLM when requested.

The LoadLi br ar yManager function returnst r ue if successful or if the
ASLM isaready loaded.

Bool ean | sLi braryManager Loaded(voi d);

Bool ean LoadLi br aryManager (voi d);

voi d Unl oadLi br aryManager (voi d) ;

Getting the ASLM version

The Get SLWer si on function returns the version of the installed ASLM in
the ‘vers’ resource format (the first 4 bytes only). If the ASLM extension
isnot installed, Get SLMVer si on returns zero.

unsi gned | ong Get SLMVersi on(voi d);

Sending output to the TraceMonitor window

Trace isan I/O method that accepts the same parameters that can be passed
to the stdio.h pri nt f function in C. It formats unformatted text and sends
it to a specified output, usually the TraceMonitor’s Trace window.

void Trace(const char *formatStr, ...);

Note: Pascal users can only pass a single parameter to Tr ace (the string to
be output).

Entering and leaving system mode

The Macintosh Operating System keeps track of all files opened and closes
files used by an application when the application quits. However, an
application sometimes makes an operating system call that can cause afile
to be opened that should not always be closed when the application quits.
An application causing alibrary file to be opened so that it can be loaded is
an example of this. The Macintosh Operating System provides a system
mode to prevent afile from being closed at the wrong time.

Entering and leaving system mode7-35

When the Macintosh isin system mode, files that have been opened by an
application are not closed when the application terminates. The ASLM goes
into system mode when there is a need to open afile that should not be
closed when the application quits.

This example illustrates how system mode is used: Assume that you have
two applications running at the same time. The first application creates an
object that causes a library file to be opened and the library’s code to be
loaded. From the point of view of the operating system, the application has
opened thefile.

Now a second application creates an object in the same library. The library
fileis already open and the necessary code is already loaded, so nothing
more needs to be done. If the first application then quits, the operating
system ordinarily unloads the library’s code and closes the library file.
This obviously causes problems for the second application. To avoid this,
the ASLM goes into system mode when it opens library files so that they
are not closed when the application that is being serviced quits.

Y ou can use Ent er Syst enivbde if alibrary needs to open afile, but wants
the file to remain open after the current client quits. In this case, the code to
open the file should be preceded by a call to Ent er Syst emvbde and
followed by acall to LeaveSyst envbde.

The Ent er Syst emvbde function puts the system into system mode. It
makes the system heap the current heap, the ASLM the current client, and
the ASLM world the current global world. The original heap, current client,
and the global world are restored when LeaveSyst envbde is called.
Therefore, every Ent er Syst emivbde call must be balanced by acall to
LeaveSyst emivbde. You can nest Ent er Syst emvbde calls. The voi d*
returned by Ent er Syst emvbde must be passed to the balancing call to
LeaveSyst enVode.

voi d* Ent er Syst envbde() ;
voi d LeaveSyst enode(voi d*) ;

WARNING Since Ent er Syst emvbde changes your global world, model
near clients must save their global world by calling

Get Current d obal before calling Ent er Syst emvbde and then
restore their global world by calling Set Cur r ent d obal Wr | d after
calling Ent er Syst emvbde. If thisis not done, the next call to an
exported ASLM routine, including LeaveSyst enivbde, or any call
that goes through the jump table, will cause a crash.

7-36 Chapter 7 / ASLM Utilities

Library file and resource management

The ASLM lets you link multiple function sets and classes together into a
single shared library, and lets you combine multiple shared librariesinto a
single file called alibrary file. Along with the code resources that
implement shared libraries, other resources can also be stored in the library
file. The ASLM provides a number of routines that are used to open and
closelibrary files and also get resources from them in a such away that
they can be shared between multiple clients. Also, routines are provided to
add and remove the library file from the resource chain, since the library
file is automatically removed from the resource chain once it is opened.
This allows users to get resources from the library file by using Macintosh
Resource Manager calls.

The library file and resource management functions are declared in the
LibraryManagerUtilities.h file. Each routine takesa TLi br ar yFi | e*
parameter that is a pointer to an object that isin charge of the library file.
Although it is a C++ object, it can also be retrieved and used by non-C++
users. The TLi br ar yFi | e object can be retrieved in a number of ways,
which are documented in “ Getting a Library File's TLibraryFile Object”
later in this chapter.

The library file and resource management functions can be used to place
the library file's resource fork in the resource chain so Resource Manager
calls can work. There are also functions that serve as afront end to certain
Resource Manager calls. These functions keep track of the use of resources
so clients and libraries can share the resources.

Routines for opening and closing library files and getting the r ef Numfor
an open library file are also provided.

OSErr Preflight (TLi braryFile*, |ong* savedRef Num ;

CSErr Postflight(TLi braryFile*, |ong savedRef Num ;

CSErr QpenLi braryFi |l e(TLi braryFi |l e*);

OSErr O oseli braryFil e(TLi braryFil e*);

TFi | eSpec* CGet Fi | eSpec(TLi braryFi |l e*);

| ong Get Ref Num(TLi braryFi | e*);

Ptr Get SharedResour ce(TLi braryFil e*, ResType, int thelD,
CSErr*);

Ptr Get Shar edl ndResour ce(TLi braryFi | e*, ResType,
int index, OSErr*);
Ptr Get Shar edNanmedResour ce(TLi braryFil e*, ResType,
const char* name, OSErr*);

voi d Rel easeShar edResour ce(TLi braryFile*, Ptr);
| ong Count Shar edResour ces(TLi braryFi |l e*, ResType);

Library file and resource managemenf/-37

si ze_t CGet Shar edResour ceUseCount (TLi braryFil e*, Ptr);
OSEr r Get Shar edResour cel nfo(TLi braryFil e*, Ptr,
size t* theSize,
short* thel D, ResType*,
char* theNane);

Preflight
Postfli ght

The Preflight function placesthe library file' s resource fork in the
resource chain so that Resource Manager calls can work. It calls
UseResFi | e to make the library file the current resource file and returns
the previous current resource filein savedRef Num The Pref | i ght
function puts the library file just above the system file in the resource
chain. (In System 7.1 and later, it is placed just above the System Enabler
files.)

Every Prefli ght call must be balanced by aPost fli ght call, which
removes the shared library from the resource chain and calls UseResFi | e
on the file passed to it. This should be the file returned by Prefli ght .

Both Prefli ght and Post fli ght take long parameters for the r ef Num
rather than a short. Thisis because in future releases, different

TLi brar yFi | e types may require longs for r ef Nuns, especially on
different platforms.

Youmust call Preflight beforeyou access any of your shared library’s
resources. You can then make normal Resource Manager calls. Y ou must
asocal Preflight beforeyou make any operating system calls that may
try to load a resource from your shared library, such as Get NewW ndow,
Get MHandl e, and Get I t em

If you want to share any resources that you have retrieved with operating
system calls, you must keep a use count of them yourself and make sure
that they stay loaded and locked until the use count reaches 0.

You can nest Pref | i ght calls. If they are nested, the shared library fileis
not removed from the resource chain until the outermost Post f | i ght is
called. However, each nested Pr ef | i ght still causes UseResFi | e to be
called for the shared library file, and each nested Post f | i ght still causesa
UseResFi | e call to be made for the file that was returned by Cur ResFi | e
before the Prefli ght call.

Cdlling Pref | i ght can cause a shared library file to be opened for a client,
so it is possible to have the library file opened multiple times, once for each
client. Thisis necessary if alibrary wantsto read in a separate copy of a
resource for each client that it has.

7-38 Chapter 7 / ASLM Utilities

If the shared library isloaded, it is already opened, with the ASLM (also
called the system client) asthe client. If alibrary calls Ent er Syst em\bde,
the system client is used by Pref | i ght . In this case, any resources that are
loaded are shared among all clients. The library must keep track of shared
resources itself unless it uses the shared resource calls described later.

If the current client is not the system client, Pr ef | i ght opens the library
file on behalf of the client. Any resources loaded are loaded into the
current heap zone and cannot be shared with other clients. The library file
remains open for the client until the client calls eanupLi br ar yManager ,
calsd oselLi braryFi | e, or isunloaded (in the case of a shared library
that isaclient).

It isimportant to keep Pref | i ght and Post f | i ght calls properly
balanced. Y ou should not, for example, set up the following situation:

1 Library A callsPreflight, andthen calls Library B. Library B calls
Prefl i ght and returns before doing aPost fli ght. Library A calls
Post f1i ght and then calls back to Library B so Library B can make its
Post fli ght call.

2 Whenlibrary B callsPost f 1 i ght, it calsUseResFi | e on library A,
since library A was the current resource file when Library B made its
Preflight cal. ThisUseResFi | e call fails because Library A isno
longer in the resource chain.

Although the above example is not fatal, and may not even cause any
problems, it may spark trouble if the client calling the library is relying on
the current resource file still being set up properly when the call returns.

Another resource chain problem can arise if alibrary opens afile for its
client after calling Pr ef | i ght . The library must call UseResFi | e on this
file after the outermost Post f | i ght call if it wantsthe file to bein the
visible resource chain of the client (or the client can do aUseResFi | e on
the opened file). Even this does not guarantee that the file will be in the
visible resource chain. For example, it will not remain in the chain if the
library that opened it was called by another library that had already called
Preflight.Inthissituation, it isbest to require that the client call
UseResFi | e on the opened file.

Y ou do not haveto call Prefli ght to get aresource from aclient. Clients
are already in the resource chain, so Get Resour ce calls work as expected.
However, if you call Pref | i ght first, the client is not in the visible resource
chain because Pr ef | i ght calls UseResFi | e on the library file—which, as
noticed above, is placed just above the System file and therefore below the
client.

Library file and resource managemenf/-39

In this situation, you must save Cur ResFi | e before calling Pref | i ght .
Then, after Pref | i ght iscalled, you must call UseResFi | e to make the
client visible again. Note that this always causes the Resource Manager to
check all the client files for aresource before checking the library file. This
operation may be desirable if you want to allow the client to override
resources in the library.

The Preflight function acts on the current client’s instance of an open
library file (see OpenLi br ar yFi | e below for more information). If the
library file is not already opened for the current client, then

OpenLi brar yFi | e will be called automatically to open the library file for
the current client. This means that it is possible to have the library file
opened multiple times, once for each client. Thisis necessary if each client
wants its own copy of aresource.

Even if Prefli ght caused thelibrary file to be opened, it will not be
closed automatically when Post f | i ght iscalled (See C oseLi braryFil e,
described below, to see when the library file will be closed.).

If the shared library isloaded, its library file is already opened, with the
ASLM astheclient. If Ent er Syst envbde iscalled, the ASLM client is
used by Pref i ght. Inthiscase, any resources that are loaded will be
loaded into the system heap and will be shared among all clients. Users
must keep track of shared resources unless they use the shared resource
calls described below. If the current client is not the ASLM client, any
resources loaded are loaded into the current heap zone and cannot be
shared with other clients.

QopenlLi braryFil e
C oseLi braryFile

The OpenLi braryFi | e and d oselLi brar yFi | e functions are used for
opening and closing library files.

The OpenlLi br ar yFi | e function allows you to open alibrary file for the
current client. However, the file will not be in the resource chain until you
call Preflight. The shared library file is opened with read-only access.
Y ou can never write aresource to alibrary file or change alibrary file
resource.

When OpenLi braryFi | e iscalled, it will open thelibrary file on behalf of
the current client. This allows each client of a shared library to have a
separate open “instance” of the library file, which allows each client to get
resources from the library file that will not be shared. For example, if two
different clients call OpenLi br ar yFi | e on the same library file, the library
file will be opened twice, and if each client calls Get 1Resour ce on the
same resource, they will each get their own copy of the resource.

7-40 Chapter 7 / ASLM Utilities

If OpenLi braryFil e iscalled and the library fileis already opened for the
current client, then all OpenLi br ar yFi | e doesis increment the “open
count” for the library file.

The C oselLi braryFi | e function closes the library file for the current
client. It only closes the library file if decrementing the open count results
in the open count reaching zero. d oseLi brar yFi | e can be useful if a
client has opened alibrary file by calling Pref | i ght and then

Post f 1 i ght, but does not want the library file to remain open until the
client calls C eanuplLi br ar yManager . In such a case, do not try to close
the file by using the r ef Numreturned by Get Ref Nuny call

Cl oseli braryFi | e instead.

When aclient quits, G oselLi brar yFi | e is called automatically for any
library file that was opened for the client. This means that the library file
will be closed automatically when a client that is a shared library is
unloaded or when a non-library client calls d eanupLi br ar yManager .

Get Fi | eSpec

The Get Fi | eSpec function returns TFi | eSpec for the TLi braryFil e. In
version 1.1 of the ASLM, only the TMacFi | eSpec type will be returned.
For more information, see “ Specifying a Library File” later in this chapter.

Cet Ref Num

The Get Ref Numfunction returns the r ef Numfor the open library file for
the current client. The r ef Numis cast to along so that on non-Macintosh
systems, it can be a pointer to a structure. Since ther ef Numis areference
to an open file, it lets you perform actions such as reading from the file.
Y ou should never attempt to close the file by using the r ef Num

Cet Shar edResour ce
Get Shar edl ndResour ce
Get Shar edNanedResour ce

The Get Shar edResour ce, Get Shar edl ndResour ce, and

Get Shar edNanmedResour ce functions keep track of the use of resources
so clients and libraries can share the resources. They return a pointer to a
shared copy of a specified resource. These calls work just like the Resource
Manager’s Get 1Resour ce, Get 11 ndResour ce, and Get 1NanedResour ce
calls, except that the first time they try to get a given resource

m they call Ent er Syst emvbde and Pref | i ght before getting a resource
m they call Post fli ght and LeaveSyst envbde after getting the resource

m they keep track of the resource, so that the next time they try to get the
resource, there is nothing more to do but increment the use count and
return the pointer to the resource

Library file and resource managemen7-41

All of the Get Shar edResour ce routines return a pointer to the resource
instead of ahandle. Thisis so that there is a chance of getting these
routines to port when moving to a system that does not have handles. If
you want to obtain a strictly Macintosh resource and do not plan to share it,
then you should just call the Macintosh Resource Manager directly after
doing aPreflight. Butif you want to write a portable call to get a
resource, or you want to share the resource, you should call one of the

Get Shar edResour ce functions. Then, instead of treating the result as a
resource, you can simply treat it as a pointer to data.

Once you have a pointer, it is possible to call Recover Handl e so that you
can use your resource to make Memory Manager and Resource Manager
calls. However, your code will not be portable and may be unusable by
other clients that are sharing the resource—especially if you make
Macintosh Toolbox or Operating System calls such as Rel easeResour ce,
Det achResour ce, or HUnl ock.

The Get Shar edResour ce routines have CSEr r * parameters, So you can
tell if the routine failed because the resource was not found or because
there was not enough memory to read in the resource. Y ou can pass NULL
for the OSEr r * parameter if you are not interested in the error.

WARNING Get Shar edNanedResour ce takes a C string for the
resource name rather than a Pascal string.

The ASLM always locks shared resources using the HLock call. Do
not unlock shared resources unless you are certain that neither your
client nor any other clients depend on the resources being locked.

Note: The shared resource calls will only work if the library file has been
opened while the ASLM isin system mode. There are two ways to
accomplish this. Thefirst isto simply make sure that a shared library in the
library fileis currently loaded. This means that it is always safe for code
within a shared library to get a shared resource from the shared library’s
library file. The other way isto first enter system mode by calling

Ent er Syst emvbde and then call OpenLi br ar yFi | e to open the library
file. See “Entering and leaving system mode” in Chapter 7, “ASLM
Utilities” for more details on system mode.

Rel easeShar edResour ce

The ReleaseSharedResource function releases a resource obtained by
GetSharedResource, GetSharedlndResource, or GetSharedNamedResource.
It decrements the resource’ s use count. If the use count reaches 0,
ReleaseSharedResource calls ReleaseResource to release the resource.

7-42 Chapter 7 / ASLM Utilities

Count Shar edResour ces

The Count Shar edResour ces function works like Count 1Resour ce,
except that it calls Ent er Syst envbde and Pr ef | i ght beforeit calls
Count 1Resour ce.

CGet Shar edResour cel nfo

The Get Shar edResour cel nf o call returns the name, type, size, and flags
of a shared resource. Y ou can pass NULL to any of the function’s
parameters if you are not interested in the information it returns.

CGet Shar edResour ceUseCount

The Get Shar edResour ceUseCount function returns the use count of a
shared resource.

Getting a library’s TLi br ar y object

The ASLM provides a number of functions that allow you to obtain a
library’s TLi br ar y object. The main purpose of obtaining alibrary’s

TLi brary object isso that aclient can call Get Li braryCl i ent Datato
retrieve its own client data for the given library. It is also used for the
routines that allow you to explicitly load and unload a library’s code
segments. See “Per Client Data” in Chapter 7, “ASLM Utilities,” for more
information on Get Li braryd i ent Dat a and “ Support for Explicit
Segment Unloading” in Chapter 5, “Writing and Building Shared
Libraries,” for more information on loading and unloading library code
segments.

Although TLi brary isa C++ object, it isaso useful for non-C++
programmers, since they can still passthe TLi br ar y object pointer into
routines such as Get Li braryd i ent Dat a.

TLi brary* Get Local Li brary();

TLi brary* LookupLi brary(const TLibraryl D);

TLi brary* LookupLi braryWt hd assl D(const Td ass| D);

TLi brary* LookupLi braryWt hFuncti onSet | D(const TFunctionSet|D);

TLi brary* Get oj ect sLocal Li brary(const voi d* object);

A library can call Get Local Li brary to get itsown TLi br ary object.
The LookupLi brary function returns the TLi br ary object for the
library with the given library ID. The LookupLi braryW t hd assl D
function returns the TLi br ar y object for the library that implements the
given class ID and LookupLi braryW t hFunct i onSet | D returns the
TLi br ary object for the library that implements the given function set

Getting a library’s TLi br ary object 7-43

ID. The Get hj ect sLocal Li brary function returns the TLi brary
object for the library that implements the given object. See “TDynamic”
in Chapter 9, “Utility Classes and Member Functions,” for more details
on Get Obj ect sLocal Li brary.

The Get d assl nf o and Get Funct i onSet | nf o functions can also be used
to get the TLi br ary object for alibrary. They both provide away for
getting the TLi br ar y object for the function set or class for which you are
currently requesting information. See “TClassInfo” in Chapter 9, “Utility
Classes and Member Functions,” for more information on Get G assl nf o
and “Getting Information About Function Sets” earlier in this chapter for
more information on Get Funct i onSet I nf 0.

Getting a library file’sTLi br ar yFi | e object

The ASLM provides a number of functions that allow you to obtain a
library file’s TLi br ar yFi | e object. The main purpose of obtaining a
library file's TLi br ar yFi | e object isto make ASLM calls to open the
library file and get resources from it. These calls are described in detail in
“Library File and Resource Management” earlier in this chapter.

TLi braryFi l e* GetLocal LibraryFile();
TLi braryFil e* GetLibraryFile(TLi brary*);

TLi braryFil e* Get Obj ectsLocal Li braryFil e(const voi d*
obj ect);

A library can call Get Local Li braryFil e to getthe TLi braryFil e
object for the library file that the library isin. The Get Li braryFi | e
function returns the TLi br ar yFi | e object for the library file that the
library passed to it isin. The Get Obj ect sLocal Li braryFi | e function
returnsthe TLi br ar yFi | e for the library that implements the given object.
See “TDynamic” in Chapter 9, “Utility Classes and Member Functions,”
for more details on the Get Obj ect sLocal Li braryFi | e function.

The Get Cl assl nf o and Get Functi onSet | nf o functions can also be used
to get the TLi brar yFi | e object for alibrary file. They both provide away
of getting the TLi br ar yFi | e object for the library that implements the
function set or class for which you are currently requesting information.
See “TClassInfo” in Chapter 9, “Utility Classes and Member Functions,”
for more information on Get d assl nf o and “ Getting Information About
Function Sets” earlier in this chapter for more information on

Get Funct i onSet I nf o.

7-44 Chapter 7 / ASLM Utilities

Per client data

The ASLM provides some support for per client data. Thisis done by
allowing a shared library to maintain a separate data structure for each of
its clients. In order for a shared library to have per client data, it must use
the cl i ent dat a= clauseinitsLi br ary declaration in the exports file. This
allowsthe library writer to specify either the name of the structure to be
used for per client data or the size of the structure to be used.

The Get d i ent Dat a function is used by the implementation of the library
and returns a pointer to the per client data structure for the current client. If
thisisthe first time that this function is called for a given client, the
structure is allocated from the client’s local pool, and the memory is
zeroed. The structure is automatically deallocated when the client
terminates or the library is unloaded. Never delete this structure. This call
should only be made by libraries, and will return NULL if called from an
application or stand-alone code resource.

The Get Li braryC i ent Dat a function may be used by any client to get
its client data for a given shared library. It returns NULL if the library does
not support client data. See “Getting a Library’s TLibrary Object” earlier
in this chapter for information on how you can get the TLi br ar y object
for ashared library.

voi d* Getd i ent Dat a(voi d);
voi d* GetLi braryd i ent Dat a(TLi brary*);

Debugging macros

The DebugBr eak, DebugSt r , DebugTest , and DebugBr eak macros are
designed to be used while debugging. The DebugBr eak macro calls
DebugSt r with a specified string. The DebugTest macro calls DebugSt r
with a specified string if theval parameter ist r ue. (DebugSt r, an A-trap
that puts you in the debugger, is documented in Inside Macintosh.)

Note: Thisroutineis not available to Pascal users.

Both DebugTest and DebugBr eak generate code only if the variable
gDebug is defined as 1. (Y ou can define gDebug to be 0 or 1 as needed).

With DebugTest and DebugBr eak, you can make a DebugSt r call that is
compiled only when you want debugging on without the inconvenience of
having to place DebugSt r in an #i f statement each time you want it called.
These macros take a C string as a parameter instead of a Pascal string.

#def i ne DebugBreak(str)
#def i ne DebugTest (val, str)

Debugging macros 7-45

Using the Global TraceLog

The Get A obal TraceLog and Set @ obal Tr aceLog functions get and set
the global TTr acelLog that belongs to the ASLM.

The Tr ace routine accepts the same parameters that can be passed to the
stdio.h printf functionin C. It formats unformatted text and sendsit to a
specified output, usually the TraceMonitor’s Trace window.

TTracelLog* CGet d obal TraceLog();
voi d Set d obal TracelLog(TTracelLog*);
voi d Trace(const char *formatStr, ...);

For more information on the TraceM onitor, see “The TraceMonitor
Application” in Appendix B.

Specifying a library file

TFi | eSpec

TFi | eSpec isadata structure that is used for specifying the location of a
library file (TLi brar yFi | e) inafile system or OS independent way. The
TFi | eSpec struct is used to compare library files and to pass them around
without worrying how the library fileis actually specified for the OS or file
system being used. The details of the library file's location are stored in a
struct that has the TFi | eSpec struct asitsfirst field. This struct is often
referred to as a “subclass” of TFi | eSpec. On the Macintosh, the

TMacFi | eSpec subclassis used for this specifying the location of library
files.

Thereisaso aTFi | eSpec class (and subclasses) for C++ users. C++ users
should refer to the “TFileSpec” section of Chapter 9 for details.

Generally you do not need to be concerned with TFi | eSpecs unless you are
going to call Regi st erLi braryFi | e, Regi st erLibraryFil eFol der, or

CGet Fi | eSpec.

t ypedef unsigned int Fi | eSpecType;

#def i ne kUnknownType ((Fi | eSpecType) 0)
#def i ne kMacType ((Fil eSpecType) 1)
#def i ne kMaxType ((Fi |l eSpecType) 255)

Bool ean | sFil eSpecTypeSupported(Fil eSpecType);
Bool ean Conpar eFi | eSpecs(const void* f1, const void* f2);

7-46 Chapter 7 / ASLM Utilities

struct TFil eSpec

{
unsi gned char fType; /* FileSpec type */
unsi gned char fSize; /* size of struct */

s

| sFi | eSpecTypeSupported isused to check if the given Fi | eSpecType
is supported. Generally you will not have a heed to use this function.

Conpar eFi | eSpecs is used to compare two file specs to see if they
represent the same file. Note that only a byte compare of the file spec is
done. If each file spec represents the same file in different ways,

Conpar eFi | eSpecs will still returnf al se.

TMacFi | eSpec

The TMacFi | eSpec class keeps track of alibrary file by using a filename,
volume refNum, and directory ID. You must use | ni t MacFi | eSpec to
initialize the file spec and make sure that the length is set properly.

struct TMacFil eSpec

{

unsi gned char fType; /* FileSpec type */

unsi gned char fSize; /* size of struct */

short f VRef Num /* vol unme refNum of vol une
file is on */

| ong f Par | D; /* dirlD of the folder file
isin */

Str63 f Name; /* nane of the file */

1

voi d I nitMacFil eSpec(TMacFi |l eSpec *spec, int vRefNum | ong
parl D, Str63 nane);

Miscellaneous routines

Dest royPoi nt er

The Dest r oyPoi nt er function is used to delete an object when all you
know about the object is the Poi nt er Type. It ensuresthat if the object isa
C++ object, its destructor is called and the proper v-table dispatching is
carried out to call the destructor. If the object is not a C++ object, its
memory is simply freed. It is used by TCol | ect i on subclasses to dispose
of objectsin the collection when Del et eAl | has been called. You may also
find asimilar use for it in any routine you write that will destroy objects,
and it is left to the user to passin the Poi nt er Type of the objects to the
routine.

Miscellaneous routines/-47

t ypedef

#def i ne
#def i ne

#def i ne
#def i ne

voi d

Thevalid Poi nt er Types are

m kVoi dPoi nt er for objects that are not C++ objects (so no destructor
will be called)

m kTDynani cPoi nt er for objects that descend from Si ngl eCoj ect and
have their v-table first (such as subclasses of TDynani ¢ and
TSi npl eDynani c)
m kTSt dDynami cPoi nt er for objects that do not descend from
Si ngl ebj ect and have their v-table first (such as subclasses of
TSt dDynani ¢ and TSt dSi npl eDynami c)

m kTSCDynani cPoi nt er for objects that are Symantec C++ objects (such
as subclasses of TSCDynani ¢)

Note: Dest r oyPoi nt er does not work for objects that do not have their
v-tablefirst.

i nt Poi nt er Type;

kVoi dPoi nt er ((PointerType)0) /* a non-object pointer */

kTDynanmi cPoi nt er ((PointerType)l) /* Singlehject with
vtable first */

kTSCDynani cPoi nt er ((PointerType)2) [/* a Think C++ object */

kTSt dDynami cPoi nt er ((PointerType)3) /* non-SingleCbhject with

vtable first */

Dest royPoi nt er (voi d*, Poi nter Type);

SLMsprintf

The SLMspri nt f function is aspecial version of the stdio.h spri nt f
function used in C. In code intended to be linked with a shared library, you
should use SLMspri nt f instead of the stdio.h spri ntf function because
SLMsprint f isinterrupt-safe and because the stdio.h spri nt f function
does not work with shared libraries.

int SLMsprintf(char *outString, const char *argp, ...);
Note: Thisfunction is not available to Pascal users.

Word and byte functions

The Hi ghWer d function returns the high word of al ong datatype, and
Lowwor d returns the low word of al ong data type.

The Hi ghByt e function returns the high byte of aword, and LowByt e
returns the low byte of aword.

#def i ne H ghWor d(x) ((unsi gned short) ((x) >> 16))
#def i ne Lowwor d(x) (((unsigned short)(x)))

7-48 Chapter 7 / ASLM Utilities

#def i ne Hi ghByt e(x) ((unsigned char) ((x) >> 8))
#def i ne LowByt e(x) (((unsigned char)(x)))

Memory functions

The SLMrentpy, SLMrenmove, and SLMrenset functions are equivalent to
the C mentpy, nenmove, and nenset routines. They are exported by
ASLM and are faster than the C versions.

void ZeroMen(voi d* dest, size_t nBytes);
voi d* SLMvencpy(voi d* dest, const void* src, size_ t nBytes);
voi d* SLMvermmove(voi d* dest, const void* src, size t nBytes);

voi d* SLMrenset (void *dest, int c, size_t n);

Atomic routines for getting and setting bits

The At oni cSet Bool ean, At oni cCl ear Bool ean, and

At omi cTest Bool ean functions are inline routines that will atomically set,
clear, or test a Boolean. A pointer to the boolean is passed as a parameter.
The At omi cSet Bool ean function returnst r ue if you were the “setter”
and At oni cd ear Bool ean returnst r ue if you were the “clearer”.

At omi cTest Bool ean returns the current value of the Boolean.

Bool ean At om cSet Bool ean(unsi gned char*);
Bool ean At omi cCl ear Bool ean(unsi gned char*);

Bool ean At omi cTest Bool ean(unsi gned char*);

TheSetBit,d earBit,and Test Bi t functions are similar to the atomic
boolean routines above, except that they act on bit strings rather than
Booleans and Set Bi t and Cl ear Bi t return the previous value of the bit
rather than whether you were the “setter” or “clearer”. The bit string may
be any length. The Set Bi t function sets the nth bit of a specific block of
memory. The C ear Bi t function clears the nth bit. Both Set Bi t and

d ear Bi t return the value of the bit before it was set or cleared. The

Test Bi t function returns the value of the nth bit. Each of these routines
takes a pointer to the specified block of memory as a parameter. The

bi t no parameter is a zero-based index into the array of bits.

Bool ean SetBit(void* mem size_t bitno);
Bool ean ClearBit(void* mem size_t bitno);

Bool ean TestBit (const void* mem size_t bitno);

Miscellaneous routines/-49

Registering C++ objects with the Inspector

Developers can register C++ objects that they create with the Inspector
application so that useful information about the object can be displayed.
For each type of object that is registered, the Inspector displays a separate
window. Thetitle in the window isthe class ID of the object. Each window
displays all objects with the given class ID that have been registered. The
information for each object is obtained by calling the object’s

Get Ver boseNane member function. See “TDynamic” in Chapter 9,
“Utility Classes and Member Functions,” for more information on

CGet Ver boseNarre. See “The Inspector Application” in Appendix B for
more information on the Inspector application.

Users register objects with the Inspector by calling

Regi st er Dynani cObj ect and unregister them by calling

Unr egi st er Dynam cQbj ect . Only subclasses of TDynami ¢ may be
registered with the Inspector, although you can provide your own base
class that forces the v-table first and provides the Get Ver boseNane
member function in the same v-table slot as TDynami ¢ does. In this
case, the object will need to be cast to aTDynani c* when it is registered
or unregistered.

Objects registered with the Inspector are always added to the beginning of
the list in the window. The Inspector updates the contents of any window
that has changed each time it gets background or foreground time.

voi d Regi st er Dynam cQObj ect (TDynami c*) ;
voi d Unr egi st er Dynami cCbj ect (TDynam c*) ;

7-50 Chapter 7 / ASLM Utilities

ASLM Utility Class Categories

This chapter describes the following categories of ASLM utility classes:

collection classes that manage objects organized into lists, arrays, and
other kinds of collections

object arbitration classes that handle the sharing of objects among
ASLM clients

memory management classes that provide memory pools and other aids
to memory management

process management classes that let clients and libraries defer tasks for
asynchronous processing

miscellaneous classes that do not belong to any of the other categories
and are often used by ASLM clients and by shared libraries

For a complete description of the utility classes that are distributed with the
ASLM, see Chapter 9, “Utility Classes and Member Functions.”

Collection classes

The ASLM provides afamily of classes that maintain collections of objects.
A collection is a data structure such as alinked list or an array, along with a
set of routines that can manipulate the collection. The TCol | ect i on class
isthe base class for al collections. It provides an interface that lets you use
objects in a collection without you having to know any details about the
collection.

The TCol | ect i on class and its subclasses (TSi npl eLi st

TLi nkedLi st, TPriorityList, TArray, and THashLi st) provide
access to objects that belong to different kinds of collections. The

TCol I ecti on class and its subclasses also provide member functions for
mani pul ating objects in collections. For example, the Add member function
adds an object to a collection, and the Menber member function can tell
you if a specified object isin acollection.

Certain TCol | ect i on member functions such as AdduUni que and Menber
have versions that take a TMat chCbj ect parameter. This parameter gives
the collection a user-defined way to compare objects rather than just
comparing object pointers, which iswhat TCol | ect i on does by default.

When you call TCol | ect i on member functions that add objects to
collections, the data type that you add to collectionsisvoi d*, but you can
actually add any data type that fitsinto si zeof (voi d*) bytes, provided
you use a type cast.

The Tl terat or classletsyou iterate through all objectsin a

TCol | ecti on. You need an iterator when you do not know what kind of
data structure is being used for aTCol | ect i on or you do not have access
to the actual data (which should always be the case unless you are
implementing a TCol | ect i on subclass). You can call the

TCol I ection:: Createlterator functionto createaTl t er at or object
for a collection.

Object arbitration classes

Object arbitration is a mechanism for accessing objects by id. It provides
functions for registering an object by id and subsequently claiming the
object by id for exclusive or shared access. When an object is registered
by id—for example, “ ACME: DRAWBRECT” — then it can be claimed by
any ASLM client using this same id provided it has not already been
claimed for exclusive access. When the object is registered with an
arbitrator, it is attached to atoken, which isa"carrier" for the object and
associates the object with theid. It is this token which is returned when the
object is claimed.

8-2 Chapter 8 / ASLM Utility Class Categories

Object arbitration is intended to be used to manage access to system or
application resources. For example aresource might be a specific physical
resource or device driver such as the serial port, or a set of such resources
such as all the serial ports on the machine. The owner of a system resource
registers an object which provides the interface to the resource and then
clients can claim the resource for shared or exclusive access. The choice of
shared or exclusive access depends on the service provided by the object
and is defined as part of the access protocol by the service. This access
protocol should be adhered to by clients of the service.

The primary class which provides the arbitration functionality is
TArbitrator.A TArbi trator objectisarepository of identified objects
that are registered with the arbitrator and are thus available for shared or
exclusive access. Any object that has access to a particular instance of the
TAr bi trat or class, and can provide the ID of aregistered object, can then
request an object or can register its own objects by id.

There are several classes that get involved in object arbitration. These
classes are described later in this section, but the full descriptions can be
found in Chapter 9, “Utility Classes and Member Functions”). The classes
used in object arbitration are:

m TArbitrator

m TToken

m TRequest Token

m TNotifier

m TMet hodNotifier

m TProcNotifier

m TTokenNotification

Registering object with an arbitrator

An object isregistered using TAr bi t rat or: : Regi st er Cbj ect. The
TArbi trator createsaTToken and stores a pointer to it in an internal
hash list. Alternatively a TToken can be created first using

TAr bi t rat or: : NewToken, given the object and object id, and then the
token can be registered using TAr bi tr at or : : Regi st er Token.

Once it isregistered, the token maintains the following information about
the registered object:

m apointer to the registered object

m the ID under which the object is registered (this ID is used to ook up the
object)

Object arbitration classes 8-3

m apointer back to the TAr bi t r at or object with which the object is
registered

m the use count (the number of clients that have claimed the object)

m aTNotifier object that can notify the exclusive owner of the token (if
there is one) when there is arequest from someone else to claim the
token

Object ID’s (also called token ID’ s) have to be of a certain format in order
to avoid naming conflicts and also in order to group resources (objects) of
the same type together. See “ Grouping related objects’” below and the
TToken section in Chapter 9 for more information on the format of an
object ID.

Looking up objects and claiming tokens

An owner of atoken is anyone who has successfully requested a token for
either shared access (a shared owner) or exclusive access (an exclusive
owner). When requesting a token, a request type (of type

TokenRequest Type, whichiseither kShar edTokenRequest or

kExcl usi veTokenRequest) is given to request either shared or exclusive
access.

This easiest way to lookup an object registered with an arbitrator is to use
the TArbi t rat or: : LookupObj ect member function. It returns the actual
object that you want to lookup rather than the token. It always does a
shared request and simply returns NULL if the request cannot be satisfied.

There are also three functions which can be used to request a token:

Get Token, Passi veRequest , and Act i veRequest . The

TAr bi trat or: : Get Token function requests atoken and if the token is
availableit isreturned, otherwise Get Token returns NULL. The token is
available if the request type is kExcl usi veTokenRequest and the token
has not been claimed for either exclusive or shared access (the use count is
0) or if the request type is kShar edTokenRequest and the token is not
already claimed for exclusive access (the use count is >= 0). If thetoken is
claimed for exclusive access then it is not available (the use count is-1).

The other two functions, TAr bi t r at or : : Passi veRequest and
TArbitrator:: Acti veRequest, are used to post arequest for atoken
which may not be available. Using these functions, the client can "wait in
line" for the token. If you use Act i veRequest and the token is not
available, the exclusive owner will be notified that there is a request for the
object (more on notification later). Passi veRequest will not notify the
owner. In either case, when the owner releases the token it will then be
available to the first requester in line. The request will remain outstanding
until it is satisfied or the request token is deleted.

8-4 Chapter 8 / ASLM Utility Class Categories

Both Passi veRequest and Acti veRequest return a TRequest Token
which is the context for the request. There are two possible states of the
request token: either the request succeeded and the token is claimed for the
requester, or the request is still pending. A TRequest Token object isa
registered token while arequest is pending. Y ou can temporarily suspend a
request by claiming it exclusively using its Get member function. It
remains registered until it is deleted. A TRequest Token is created and
returned even if the requested token is not registered. Y ou can call
TRequest Token: : | sTokenRegi st er ed to check if the token has been
registered already. Also, you can force the TAr bi t r at or to create, register,
and claim the token by passing t rue inther egi st er | f Fi r st parameter.

There are two ways of waiting for a pending request: polling and
notification. To poll for completion of the request you can call
TRequest Token: : Exchange periodically and if it returns a non-null
pointer you are done. The TRequest Token: : Exchange member
function is used to "trade-in" the request for the real token. Exchange
will return NULL if the token is not available, otherwise it will return the
real token and delete the request token. Alternatively you can use
TRequest Token: : Get Obj ect to poll. Thiswill return the token if it is
available but will not delete the request token.

If you want to be notified synchronously when the request completes, you
can provideaTNot i fi er when you call Passi veRequest or

Act i veRequest . Asthe owner of atoken, if you want to be notified of a
pending request then supply the token with a notifier by calling
TToken:: Set Notifier.

There are two ways an owner can give up ownership. You can call

TToken: : Rel ease at any time, or you can call TRequest Token: : G ve
when you are notified. If you call Rel ease, it will check for an outstanding
request and call the G ve member function of the request token for you.
The requester is notified when the G ve member function is called.

Notification

There are two cases where notification is made use of: when an exclusive
owner of atoken is notified that a request has been made for the token, and
when the requester of atoken is notified when the request can be satisfied.
In both cases, the notification is delivered viaaTNot i fi er object. The
token owner sets up his notifier by calling TToken: : Set Noti fi er. The
token requester sets up his notifier by passinga TNot i fi er object to
TArbi trator:: PassiveRequest or TArbitrator:: Acti veRequest

The TNoti fi er classisageneral-purpose class that provides “ object-
oriented” callback capability. There are two subclasses of TNot i fi er
provided: TProcNot i fi er and TMet hodNoti fi er.

Object arbitration classes 8-5

When using aTPr ocNot i fi er, you provide a notification function of type
Not i f yProc and optionally ar ef Pt r (as a context pointer). If you use a
TMet hodNot i fi er, you provide an object pointer and a member function
pointer of type Not i f yMet hod. The TMet hodNot i fi er callsyour
member function using your object.

Asthe owner of atoken, when your notification function is called the

ref Ptr ispassed as a parameter, and a TTokenNot i fi cati on ispassed as
the not i f yDat a parameter. Use TTokenNot i fi cati on:: Get Token to
get the token and TTokenNot i fi cati on: : Get Request Token to get the
request token. If you want to give up the token then call the request token's
G ve member function. Y ou should not keep the request token unless you
have an agreement with the client as part of your access protocol, and you
must not keep the TTokenNot i fi cati on.

As the requester of atoken, when your notification function is called the
TTokenNot i fi cati on ispassed asthenot i f yDat a parameter. You can
get the request token by calling TTokenNot i fi cati on::

CGet Request Token. When you are notified, the token you requested has
already been claimed and is available by calling the Exchange or

Get hj ect member functions of the request token as discussed above.

Grouping related objects

It is possible to manage a set of related objects using the arbitration classes.
Y ou can use an object id of the form “<t ypel D>$<i nst ancel D>". A
request can specify only the <t ypel D>$ portion of the id, in which case the
first available object of that type will satisfy the request. In this case it
doesn't matter what the <i nst ancel D> portion is of the token that satisfies
the request is.

If you have several objects with the same <t ypel D> (the portion up to the
“$"), and more than all of these are claimed exclusively, then a request
using Act i veRequest will notify each owner until one gives up the token
or they have all been notified. If your access protocol allows owners to
keep request tokens, then the first owner that calls TRequest Token: : G ve
will gett r ue back as the result and any subsequent call to G ve with the
same request token will return f al se indicating there is no longer an
outstanding request.

The owner of arequest token may want more than one member of atype,
in which case, after the first request is satisfied (you get the first token you
requested using TRequest Token: : Get Obj ect), you can call

TRequest Token: : Request Agai n and thiswill start another active request
using the same request token.

8-6 Chapter 8 / ASLM Utility Class Categories

Private and global arbitrators

There are two ways to register objects with an arbitrator. One way isto
create aprivate TAr bi t r at or object that is recognized only within a
specific library or application, or by any other client that knows how to
access the arbitrator. The other way isto use the global arbitrator that is
supplied by the ASLM. This global arbitrator isaTAr bi t r at or object that
you can retrieve by calling Get A obal Ar bi t rat or and that aclient or a
library can use to register objects for global access.

The Get A obal Arbi trat or function obtains a global TAr bi trat or
object. With aTAr bi t r at or object, you can register objects so other
clients can look them up.

TArbi trator?* CGet G obal Arbitrator();

A client can obtain the global arbitrator by calling Get @ obal Ar bi t r at or
in the following manner:

TArbitrator* arbitrator = Getd obal Arbitrator();

An example use of object arbitration

The ASLM does not provide serial port arbitration, but the ASLM object
arbitration feature could be used to implement serial port arbitration. As an
example of how object arbitration works, suppose an application needs to
access a serial port, the ASLM’ s object arbitration features make it possible
to:

m Ask for any available serial port (you might do thisif, for example, all
serial ports have dial-out modems attached and you don’t care which
one you get).

m Obtain notification when another client wants to use the serial port that
you are using. (Assume, for instance, that you are listening for an
incoming call and another application wants to dial out. You can then
choose to give up your port.)

m Request a specific serial port.

m Ask for aserial port, even though none is currently available, and receive
notification when a serial port becomes available.

m Obtain agroup of serial ports (this may be desirable if, for instance, you
want to listen for incoming calls on a group of ports dedicated to dial-in
modems).

Object arbitration classes 8-7

In this example, when you choose your object ids, the <set i d> could be
“ Serport” and <nenber id> could be “SLOTO0: A” or “SLOTO: B” or

“ SLOT1: A* or “SLOT1: B” and so on for multiple serial ports on the main
board or on NuBus cards. Then you would have several serial port objects
which can be claimed by giving a complete object id to claim a specific
port such as “Ser por t $SLOT0: A”. Alternatively you might have an
application which wants to claim a serial port but doesn't care which one
(e.g. they are all connected to outgoing modems). In the latter case you
can supply only the set id “Ser port $” as the object id when making a
request and your request will be satisfied by the first serial port available.

More arbitration examples can be found in the ExampleTools folder on the
ASLM Examples Disk.

Memory management classes

The ASLM provides memory management classes called memory pools that
let you allocate memory at interrupt time—an ability that the Macintosh
Memory Manager does not have. The ASLM implements memory pools
with the TMenor yPool class—an abstract base class that provides the
interface for all pool classes (see Chapter 9, “Utility Classes and Member
Functions” for details). Most of TMenor yPool s member functions are
pure virtual member functions that subclasses must override.

Two other classes, TSt andar dPool and TChunkyPool , are derived from
the TMenor yPool class. Both classes support interrupt-safe memory
allocation. The TSt andar dPool class lets you alocate variable-size
chunks, and TChunkyPool allocates only fixed-size chunks, see Chapter 9
“ASLM Utility Classes and Member Functions” for details.

Besides pools that you can create for your own use, there are also several
pools created by the ASLM. These include

m the system pool
m thelocal pool
the client pool

the default pool

Sometimes these pools overlap so that the same pool has more than one
name. For example, the client pool may be the current client’s local pool.

8-8 Chapter 8 / ASLM Utility Class Categories

The system pool

The ASLM creates the system pool for use by all ASLM clients. The
system pool is allocated out of the system heap and will grow as needed if
there is room for it to grow. When you want to allocate memory for system
use, you can allocate the memory from the system pool. The system pool
can be used for

m objects and memory used by alibrary that is shared by more than one
client

m objects and memory that a shared library keeps for its own private use

When a shared library isloaded, the ASLM automatically sets thelibrary’s
local pool to the system pool, as explained in the next section, “The Local
Pool.”

Note: Memory that is allocated for the client’s own use—especially if the
client is responsible for disposing of the memory—should generally be
allocated from the client pool, which is described later in the section, “The
Client Pool.”

The prototype of the related function is:
TSt andar dPool * Get Syst enPool () ;

The local pool

The local pool isthe pool that is attached to the local library manager and
is also referred to as the library manager’ s object pool. When a shared
library isloaded, the ASLM installs the system pool as the local pool. When
aclient calls| ni t Li br ar yManager , a new memory pool is created for the
client’sown use and is installed as the client’s local pool. The

TLi br ar yManager class uses the local pool to allocate memory for classes
created with NewCobj ect unless you also pass a pool to Newhj ect . There
are also other times when alocal pool is used for default memory
allocations. These situations are described later in “ The Client Pool” and
“The Default Pool.”

Y ou can change the current local pool by calling Set Local Pool or by
calling TLi br ar yManager : : Set Obj ect Pool . Thisis useful mainly for
shared libraries that do not want to use the system pool as their local pool.
They can create their own pool and use it as the local pool instead. It can
even be shared among a family of libraries.

Memory management classes8-9

Y ou should never delete the initial local pool (the one installed by

I nitLibraryManager) sinceit is deleted automatically when

Cl eanuplLi br ar yManager iscaled. You also should never delete the
current local pool, since an attempt to allocate memory from it may be
made at alater point. When you have changed the current local pool, you
can delete the pool that previously was the local pool aslong as it was not
the initial local pool. Y ou must make sure that no objects are still allocated
from any pool you delete or you will never be able to safely delete those
objects.

The prototype of the related functions are:
TSt andar dPool * Get Local Pool () ;
voi d Set Local Pool (TSt andar dPool *) ;

The client pool

The client pool is the current client’s local pool. The current client is
normally the currently running application, but also may be set to a shared
library or other client by making the proper calls. (Refer to “The Current
Client” in Chapter 4, “Writing and Building Clients.”

When a shared library needs to allocate memory for a client, the shared
library can allocate the memory from the client’s local pool rather than
from the system pool or from a pool that belongs to the shared library. If a
shared library uses the menor y=cl i ent optioninitsLi brary declaration
inits exportsfile, the shared library allocates memory from the client pool
by default.

The Get d i ent Pool function returns the client pool.

IMPORTANT The client pool isinaccessible if the current client has not been
set up to be an ASLM client. Interrupt and callback routines must make
sure that the current client is set up properly before they use the client
pool. Thisis also true of stand-alone code resources that are called from
non-ASLM clients.

The prototype of the related function is:
TSt andar dPool * Get C i ent Pool ();

The default pool

The default pool is the pool that the ASLM uses for default memory
allocations; that is, when the new operator is used and a pool is not
specified. The default pool is used by the global new operator (defined in
d obal New. h) and by the TDynani ¢ new operator.

8-10 Chapter 8 / ASLM Utility Class Categories

The purpose of the default pool isto permit alibrary to choose whether it
wants default memory allocations to come from the library’ s local pool or
the current client’s local pooal. If the default pool is NULL, the current
client’s pool is used.

The prototype of the related functions are:
TSt andar dPool * Get Def aul t Pool () ;
voi d Set Def aul t Pool (TSt andar dPool *) ;

The Get Def aul t Pool function gets the default pool and

Set Def aul t Pool setsthe default pool. For libraries, the default pool is
initially set to NULL if the library was built with the menor y=cl i ent
option; otherwise it is set to the system pool.

If the default pool is set to NULL when Get Def aul t Pool iscalled,

Get Def aul t Pool returns the pool that belongs to the current client’s local
library manager. Thisis the same as the pool returned by Get d i ent Pool .
If the default pool is not NULL when Get Def aul t Pool iscalled, the current
default pool is returned.

Note: If alibrary isbuilt using the menor y=cl i ent option and the default
pool is then changed to something besides NULL, the client pool is ho
longer used for default memory allocation. In other words, the

menor y=cl i ent option causes the initial value of the default pool to be
NULL only when the library is loaded. The flag has no other effect on
memory allocation afterward.

Process management classes
Sometimes clients and libraries must defer tasks for asynchronous
processing, possibly for one of the following reasons:

m You need to perform atask that takes a significant amount of time and
you want to defer the task for atime when it will be less disruptive.

m You want to do something that involves the operating system, but you
are currently executing at interrupt level.

m You want atask to execute after a certain amount of time.

m You want atask to execute while your application isin a certain state
(for example, in the foreground or in an event loop).

m You want to accumulate tasks to be executed at the same time for the
sake of efficiency.

Process management classes8-11

The ASLM provides two base classes that can be used for asynchronous
task processing: TOper at i on and TSchedul er. A TQper at i on object
contains the implementation of atask to be performed. A TSchedul er
object schedules a TOper at i on for later execution and controls when the
TOper at i on is executed.

The TSchedul er class has a number of subclasses that can be used to
process operations based on their priority or schedule them to be processed
after a certain amount of time has passed, at system task time, or at deferred
task time.

The TSchedul er subclasses are as follows:

m TTi meSchedul er, which implements a scheduler that processes
TOper at i on objects when a requested amount of time has elapsed.

m Tl nterrupt Schedul er, which is used by interrupt service routines to
defer processing.

m TSeri al Schedul er, which ensures FIFO (first in, first out) processing
of the tasks.

m TPrioritySchedul er, which implements a scheduler that |ets you
serialize tasks by establishing their priorities.

m TThreadSchedul er, which implements a lightweight “thread”
scheduler.

m TTaskSchedul er, which implements a heavyweight task scheduler.

The most important TSchedul er member functions are Schedul e, which
schedules a TOper at i on, and Run, which processes all scheduled

TOper at i ons. For more information on the TOper at i on and

TSchedul er classes, and their subclasses and member functions, see
Chapter 9, “Utility Classes and Member Functions.”

Miscellaneous classes

The miscellaneous classes provided with the ASLM are the TDynani c,

TLi br ar yManager , TCl assl D, TA assl nf o, TMacSemaphor e,
TTracelLog, and TTi ne classes. For further details on these classes, consult
the alphabetical listingsin Chapter 9, “Utility Classes and Member
Functions.”

8-12 Chapter 8 / ASLM Utility Class Categories

Utility Classes and Member Functions

This chapter describes all the ASLM utility classes and their member
functions. The declaration of each utility class does not include the private
and protected member functions or the data members. Also, the
implementation of inline functions is not included. Private and protected
functions are used internally by the classes and should not be used by
clients.

Class descriptions

The following table shows the inheritance of all the utility classes.

MDynamic
TAtomicBoolean
TClassID
TDynamic TBitmap
TCollection TArray
THashList
TSimpleList TLinkedList
TPriorityList
TFastRandom TSimpleRandom
THashObject TArbitrator
THashDoubleLong
TProcHashObject
Tlterator TListlterator
THashListlterator
TArraylterator
TClassInfo
TLibraryFile
TLibraryManager
TMacSemaphore
TMatchObject TProcMatchObject
TToken TRequestToken
TDoubleLong TTime TMilleseconds
TSeconds
TTimeStamp TStopWatch
TMicroseconds
TMemoryPool TChunkyPool
TStandardPool
TNotifier TProcNotifier
TMethodNotifier
TPoolNotifier
TOperation TGrowOperation
TScheduler TTimeScheduler
TPriorityScheduler ~ TSerialScheduler
TThreadScheduler
TTaskScheduler
TinterruptScheduler
TTestTool
TTracelLog
TFileSpec TFilelDFileSpec
TMacFileSpec
TFunctionSetID
TLibrarylD
TLink TPriorityLink
TSCDynamic
TStdDynamic
TStdSimpleDynamic
TSimpleDynamic
TTokenNotification
TUseCount

9-2 Chapter 9 / Utility Classes and Member Functions

MDynam ¢

Declarations

The Mbynani ¢ classis abase class for shared library classes, which has one
virtual function (the destructor). It is meant to be used with multiple
inheritance to force the v-table to be at the front of the object when mixing
classes. An object that has its v-table first is an object derived from a base
class that has at least one virtual function and no data members. For more
information on Mbynani ¢, see “ The TDynamic Family of Base Classes’ in
Chapter 6, “Using the ASLM.”

This classis not a shared class.

vi rtual ~MDynami c() ;

Mdynami ¢ 9-3

TArbi trator

Description

The TAr bi trat or classisused in object arbitration to request and register
shared objects.

TAr bi t rat or hasthe following inheritance:
TDynamic --> THashOobject --> TArbitrator

The TArbi trat or classisarepository of identified objects that are
registered with the arbitrator and are available for shared or exclusive
access. An object can accessthe TAr bi t r at or classwith theID of a
registered object, and request or register its own objects.

Object arbitration is a mechanism for sharing named objects among ASLM
clients. The TAr bi t r at or classis a shared data manager, which provides
functions for registering and accessing shared data. Programs that make
use of shared libraries can share data structures and instances of classes by
registering them by name with a TAr bi trat or. The TAr bi t r at or class
provides facilities for registering data by name, and for requesting shared
or exclusive access to the data.

Object arbitration is made possible by an object called a token, which
maintains and provides information about objects. A token contains a
pointer to the object it represents and the 1D that the object was registered
with. Tokens are registered with TAr bi t r at or objects. The TAr bi tr at or
classisone of aset of classes that are provided with the ASLM to support
object arbitration. The othersinclude TNot i fi er, TMet hodNot i fi er,
TProcNot i fi er, TRequest Token, TToken, and TTokenNot i fi cati on.

For more information on TAr bi t r at or and object arbitration, see “ Object
Arbitration Classes” in Chapter 8, “ASLM Utility Class Categories.” The
descriptions of the member functions below assume that you have already
read this section and understand how object arbitration works. For details
on the other classes used in object arbitration, see “ TNatifier,”
“TMethodNotifier,” “TProcNotifier,” “TRequestToken,” “TToken,”
and “TTokenNotification” in this chapter.

9-4 Chapter 9 / Utility Classes and Member Functions

Declarations

#def i ne

#def i ne
#def i ne

t ypedef
#defi ne
#def i ne

#def i ne
#defi ne

virtual
virtual
virtual

vi rtual

virtual
vi rtual

virtual

virtual

virtual

virtual
virtual

virtual

kTArbitratorl D

"I$arbt, 1. 1"

kRequest | DPrefix ' ?'
kRequest | DPrefi xSi ze 1

i nt TokenRequest Type;

kl nval i dTokenRequest ((TokenRequest Type) 0)
kRequest TokenRequest ((TokenRequest Type) 1)
kExcl usi veTokenRequest ((TokenRequest Type) 2)
kShar edTokenRequest ((TokenRequest Type) 3)

TAr bi trat or (TSt andar dPool *
size_t defS ze
~ TArbitrator();

NULL,
0);

CBErr Regi st er hj ect (const char* thel D, void* theCyject);
voi d* Unr egi st er Cbj ect (const char* thel D);

voi d* LookupQhj ect (const char* thel D);

CSErr Regi st er Token(TToken*) ;
TToken* Get Token(const char* thel D, TokenRequest Type);

TRequest Token*

TRequest Token*

TRequest Token*

Bool ean
unsi gned | ong

TToken*

Passi veRequest (const char* thel D,
TokenRequest Type, TNotifier* = NULL,
Bool eanParmregi sterlfFirst = fal se);
Act i veRequest (const char* thel D,
TokenRequest Type, TNotifier* = NULL,
Bool eanParmregi sterlfFirst = fal se);
Get Request (const char* thel D);

Not i f yOaner s(TRequest Token* t heRequest) ;
Hash(const voi d*) const;

NewToken(const char* thel D, void* = NUL);

Continued on following page »

TArbi trator 9-5

Member functions

Act i veRequest

The Act i veRequest member function registers a request for a token and
notifies the current owner (or owners) that a request is pending. Then

Act i veRequest returnsaTRequest Token object. The Act i veRequest
object works just like Passi veRequest , except that the current owner (or
group of owners) is notified of the request. More than one owner can be
notified if there is more than one token registered with the same type ID. If
an owner gives up the token, no more owners are notified. See “ Object
Arbitration Classes’ in Chapter 8, “ASLM Utility Class Categories,” for
more information on type IDs.

The TNot i fi er parameter is used to provide a notifier that will be called
when the requested token becomes available.

If theregisterlfFirst parameter istrue, then if the requested token is
not already registered, it will be created, registered, and claimed
automatically. This solves the race condition problem that will occur if a
client wants to register an object only if it is not already registered, but it
may be interrupted by another client that wants to do the same thing. If the
interrupt comes in after the first client calls Passi veRequest (and
discovers that the token is not registered already), and before the first client
callsRegi st er Obj ect or Regi st er Token, then the same object is
registered twice.

Cet Request

Get Request returns the request token that is being used to handle an
outstanding request. The t hel D parameter is used to specify the ID of the
token being requested, not the ID of the request token. If there are more
than one outstanding requests for the same token, then the first request in
line to be satisfied will be returned.

CGet Token

The Get Token member function looks up atoken and returnsitif itis
immediately available. It does not register arequest. It returns NULL if the
token is not available. The TokenRequest Type parameter is the request
type kExcl usi veTokenRequest or kShar edTokenRequest . The
exclusive owner of atoken can delete the token. This procedure unregisters
the token but does not del ete the object.

Hash

The Hash member function obtains the hash value used for storing the
TToken. Itispublic in case you want to subclass TAr bi t r at or and change
the hashing algorithm.

9-6 Chapter 9 / Utility Classes and Member Functions

LookUpObj ect

The LookupObj ect member function returns the object that has been
registered with a specified ID. LookupQbj ect calls Get Token witha
request type of kShar edTokenRequest and then returns the result of
TToken: : Get Obj ect .

NewToken

NewToken is used to create a token that can then be registered by calling
Regi st er Token. The token’s ID and a pointer to the token’'s object are
passed to NewToken.

Not i f yOmners

Not i f yOaner s is used to notify owners of arequest for atoken after
Passi veRequest has been called and an active request is desired. For
example, initially you may only want atoken if no one else has claimed it
already. However, if at alater point you decide that you would like to
request that owners of the token give up the token, then Not i f yOaner s
can be called, passing as a parameter the TRequest Token returned by
Passi veRequest .

Passi veRequest

The Passi veRequest member function registers a request for a token and
returns a TRequest Token. It isthe same as Act i veRequest except that
current owners of the token are not notified of the request.

Regi st er Token

The Regi st er Token member function registers a token that was created
using NewToken. If there is an outstanding request for the token then it will
be claimed by the requester before NewToken returns. If you wish to claim
the token before registering it, call TToken: : Get .

Regi st er bj ect

You can use Regi st er Cbj ect to register an object without having to deal
with tokens. A token is automatically created to hold the object. Thet hel D
parameter is a string that identifies the object. If there is an outstanding
request for the object (actually the token created for the object), then it will
be claimed by the requester before Regi st er Qbj ect returns.

Continued on following page »

TArbi trator 9-7

See also

Unr egi st er (bj ect

Y ou can use Unr egi st er Cbj ect to unregister a previously registered
object. Thet hel D parameter is a string that identifies the object. If the
object is successfully unregistered, a pointer to the object is returned.
Otherwise, Unr egi st er Obj ect returns NULL. If the caller plans to delete
the object, the caller first needs to make sure that no one is using the object.
If this cannot be ensured, the client should instead exclusively claim the
object’ s token first by calling Act i veRequest to obtain the token that
owns the object, and then delete the token or call Unr egi st er Token.

Unr egi st er Token

Y ou can use Unr egi st er Token to unregister a previously registered
token. The normal way to unregister a token is to exclusively claim the
token and then delete it. Using Unr egi st er Token allows you to re-use the
token.

TNotifier

TMet hodNot i fi er
TProcNotifier
TRequest Token
TToken
TTokenNot i fication

“Object Arbitration Classes” in Chapter 8, “ASLM Utility Class
Categories”

TArbitratorExamplel, TArbitratorExample2, and TArbitratorExample3 on
the ASLM Examples disk

9-8

Chapter 9 / Utility Classes and Member Functions

TArr ay

The TAr r ay classimplements an array collection.

The TAr r ay class has the following inheritance:
TDynamic --> TCollection --> TArray

Description The TAr r ay objects can provide efficient and quick indexing into a
collection and have the ability to grow as needed. A TArrayl t er at or
classis provided to iterate through the array.

All TArr ays are zero-based arrays. Also, there are never any gapsin the
array. Removing an object moves all higher-indexed objects down by one
index number (for example, if the fifth object in the array is removed, the
objects after it all move down one slot to fill in the hole). This aso means
that you cannot explicitly set or remove the nth object in the array. You
can think of aTArray asbeing like aTLi nkedLi st , except it alows you
to quickly index objects in the collection.

The TAr r ay constructor’s gr owBy parameter specifies the amount by
which afull array should grow. If the number is negative, it represents the
percentage by which the array should grow. If the number is positive, it
represents the number of cellsto add to the array. The initial size of the
array is also passed to the constructor, along with the pool that is used to
allocate the storage for the array.

Declarations #define kTArraylD "slmcol | $arry, 1. 1"

TArray();
TArray(size_t size, TStandardPool* = NULL,
int growBy = 0);

Vi rtual ~ TArray();
TSt andar dPool * Get G owPool () const;
vi rtual Tlterator* Createlterator(TStandardPool *);
Vi rtual Bool ean Renove(voi d*);
vi rtual voi d* Renove(const TMat chQhj ect &) ;
vi rtual Bool ean Menber (const voi d*);
Vi rtual voi d* Menber (const TMat chQhj ect &) ;
vi rtual voi d* CGet | ndexedObj ect (si ze_t) const;

Continued on following page »

TArr ay 9-9

Member functions

See also

Createlterator

The Creat el t er at or member function returnsa TArr ayl t er at or
object for the array (see “TArraylterator” later in this chapter).

CGet G owPool

The Get G owPool member function returns the pool that the TAr r ay
object will use when it needs to grow to support more entries.

Get | ndexedbj ect

The Get | ndexedObj ect member function is described in “TCollection
later in this chapter.

Menber

The Menber member function is described in “TCollection” later in this
chapter.

Renove

The Renove member function is described in “TCollection” later in this
chapter.

That chObj ect
TArraylterator
TCol | ection

TArrayExample on the ASLM Examples disk

9-10 Chapter 9/ Utility Classes and Member Functions

TArrayl terator

Description

Declarations

Member functions

See also

The TArrayl t er at or classiteratesthrough aTAr r ay collection.

The TArrayl t er at or class has the following inheritance:

TDynamic --> Tlterator --> TArraylterator

For information on TArrayl t er at or, see “Tlterator” later in this
chapter.

#define kTArraylteratorID "sImcoll $aitr, 1. 1"

TArraylterator(TArray*);

vi rtual ~ TArraylterator();

Vi rtual voi d Reset () ;

vi rtual voi d* Next () ;

Vi rtual Bool ean Iterati onConpl ete() const;
vi rtual Bool ean RenoveCur r ent Obj ect () ;

Iterati onConpl et e

Thel terati onConpl et e function is described in “Tlterator” later in this
chapter.

Next
The Next function is described in “Tlterator” later in this chapter.

RenmoveCur r ent (hj ect

The RenoveCur r ent Obj ect function is described in “Tlterator” later in
this chapter.

Reset
The Reset function is described in “Tlterator” later in this chapter.

TIterator
TArray

TArrayExample on the ASLM Examples disk

TArrayl t er at or 9-11

TAt om cBool ean

Description

Declarations

Member functions

The TAt oni cBool ean class atomically sets, clears, and tests a Boolean
value.

The TAt oni cBool ean class has no parent class.

The TAt oni cBool ean classis simply an inline class to the atomic Boolean
routines mentioned in “ Atomic Routines for Getting and Setting Bits” in
Chapter 7, “ASLM Utilities.” It will set or clear a Boolean and return
whether or not you were the setter or clearer. Thisisall donein an
“atomic” matter. In other words, it will work properly even if interrupted
by code that triesto set or clear the same Boolean.

struct TAton cBool ean

{
voi d Init();
Bool ean Set ();
Bool ean Clear();
Bool ean Test();
unsi gned char fFl ag;

}s

I nit

Thel ni t member function is used to initialize the TAt oni cBool ean and
setittof al se.

Set

The Set member function sets the Boolean to t r ue and returnst r ue if
you were the setter of the Boolean.

d ear

The d ear member function sets the Boolean to f al se and returnst r ue if
you were the clearer of the Boolean.

Test
The Test member function returns the current value of the Boolean.

9-12 Chapter 9/ Utility Classes and Member Functions

TBi t Map

Description

Declarations

Member functions

The TBi t Map classis used to store and manipulate a string of bits.

The TBi t Map class has the following inheritance:
TDynamic --> TBitMp

Y ou can use the TBi t Map member functions to test, set, and clear the value
of specific bitsin a block of memory. The member functions are all
interrupt safe so no problems arise if you try to set or clear a bit before an
interrupt tries to set or clear the same hit. Y ou will always be reliably told
the previous value of the bit before you set or cleared it. The bit map array
is zero based so the first bit is at index zero.

Both constructors allow you to specify the number of bitsin the bit map.
The constructor that takes the pool parameter allows you to specify the
memory pool out of which to allocate the bit map. The other constructor
allows you to specify the block of memory to use for the bit map.

#define kTBitmapl D "sl m supp$bmap, 1. 1"

TBi t map(size_t nunBits, TMenoryPool * pool);
TBi t map(voi d* bits, size_ t nBits);

vi rtual ~ TBi tmap();

vi rtual Bool ean I svalid() const;

vi rtual Bool ean SetBit(size t);

vi rtual Bool ean ClearBit(size_t);

vi rtual Bool ean TestBit (size t);

vi rtual | ong SetFirstClearBit();

vi rtual | ong SetFirstC earBit(size t, size t);
CearBit

The d ear Bi t member function clears the nth bit. It returns the value of
the bit before it was cleared. The C ear Bi t function does not check to
make sure that the index passed to it within range.

Isvalid

The | sVval i d member function returnst r ue if the TBi t Map object was
initialized properly after it was created. It returnsf al se if initialization was
not successful. This can happen if there was not enough memory to
allocate the block of memory used for the bitmap.

Continued on following page »

TBitMap 9-13

Set Bi t

The Set Bi t member function sets the nth bit of a specific block of
memory. It returns the value of the bit before it was set. The Set Bi t
function does not check to make sure that the index passed to it within
range.

SetFirstClearBit

The Set Fi r st Cl ear Bi t member function sets the first cleared bit. It will
return - 1 if there are no cleared bits. Otherwise it returns the index of the
bit that was set. The version of Set Fi r st Cl ear Bi t that takestwo si ze_t
parameters allows you to specify the range that the bit to set should be in.

TestBi t

The Test Bi t member function returns the value of the nth bit. It does not
check to make sure that the index passed to it within range.

9-14 Chapter 9/ Utility Classes and Member Functions

TChunkyPool

Description

The TChunkyPool class allocates memory of a certain size, called the
pool’s chunk size.

The TChunkyPool class has the following inheritance:
TDynamic --> TMenoryPool --> TChunkyPoo

The TChunkyPool class supports interrupt-safe memory allocation and can
be useful when you want to allocate many objects of the same size. One of
the more common uses of a TChunkyPool isasthe link pool for a

TSi npl eLi st, TLi nkedLi st, or TPrioritylList.

The TChunkyPool objects are more efficient than TSt andar dPool objects
because they use seven fewer bytes of overhead in each chunk allocated
than TSt andar dPool objects. They also increase processing speed because
they make it easier to find free chunks in the pool.

The TChunkyPool class provides a constant named

kChunkyPool ChunkOver head that can help you determine the amount of
overhead that each chunk allocated from a pool will require. Y ou should
consider the value of this constant when you decide how big a pool you
will need.

The definition of kChunkyPool ChunkOverhead is:
#def i ne kChunkyPool ChunkOver head 4

The following example shows how to create a TChunkyPool object that has
enough memory for 200 TLi nk objects:

size_t poolsize = 200 * (sizeof (TLink) +
kChunkyPool ChunkOver head) ;

TChunkyPool * myPool = new (pool size, kSystenZone)
TChunkyPool (si zeof (TLi nk)) ;

The chunk size is always rounded up to a multiple of four, after adding in
the required kChunkyPool ChunkOver head. The size of the pool is
rounded down to a multiple of the chunk size. Therefore, if you ask for a
100-byte pool with a chunk size of 72, the pool sizeis 80.

Continued on following page »

TChunkyPool 9-15

Declarations

Member functions

#def i ne kChunkyPool ChunkOver head 4

#defi ne kTChunkyPool I D "! $chkp, 1. 1"

TChunkyPool (size_t chunkSi ze);
vi rtual TChunkyPool () ;

vi rtual Bool ean I svalid() const;

/1 TMenoryPool Overrides

vi rtual voi d* Al l ocate(size_t size);
vi rtual voi d* Real | ocat e(voi d*, size t);
vi rtual voi d Free(voi d*);
vi rtual si ze_t CGet Si ze(voi d*) const;
vi rtual Bool ean CheckPool () const;
vi rtual size_t Get Lar gest Bl ockSi ze() const;
si ze_t Get ChunkSi ze() const;
size_t Get Nunber O Chunks() const;
Al |l ocate

The Al | ocat e member function allocates a block of memory from the
pool. When you call Al | ocat e, pass the size of the block you want as a
parameter.

CheckPool

The CheckPool member function returnst r ue if no problems are found
with the pool. When you are debugging code, it is advisable to call
CheckPool periodically to make sure that you are not corrupting the pool.

Free
The Fr ee member function returns to the pool the block passed to it.

CGet ChunkSi ze

The Get ChunkSi ze member function returns the pool’s chunk size. When
you create a pool, you pass the desired chunk size of the pool to the
constructor that creates the pool. This value is passed in the constructor’s
chunkSi ze parameter.

Cet Lar gest Bl ockSi ze

9-16 Chapter 9 / Utility Classes and Member Functions

Get Nunber O Chunks

The Get Number O Chunks member function returns the number of free
chunks available in the pool.

Cet Si ze
The Get Si ze member function returns the size of the block passed to it.

Real | ocat e

Memory from a TChunkyPool object cannot be reallocated to a different
size. Therefore, Real | ocat e returns either NULL if abad memory sizeis
passed (the memory size is greater than the pool’ s chunk size), or the block
of memory passed to it if the sizeisvalid.

TChunkyPool 9-17

Td assI D

Description

The TC assl D class represents the class IDs that you use to identify classes
implemented in a shared library.

The Td assl Dclass has no parent class.

Class IDs are assigned to classes in the library’ s exports file and are used
by clients to specify a class when using routines such as NewObj ect and
Loadd ass.

A Td assl Dobject isasimple C string and can be treated as such. When
you pass aTCl ass! D object to aroutine expecting a C string it will be cast
to a C string automatically. However, the opposite is not true. C strings must
be explicitly cast to a TA ass| D abject when needed, such as when calling
Newbj ect .

Class | Ds take the form xxxx$yyyy. Usually xxxx is related to the
developer of the class and yyyy is related to the name of the class.

Adding xxxx ensures that, when combined with yyyy, the class ID will
always be unique. Otherwise there would be alot of classes with aclass D
of “TLinkedList” or “TDocument.” The xxxx part of the class ID should
always start with your four character creator ID, which is assigned by DTS.
Thisis the same creator |D used for applications and documents. Using the
creator |D ensures that each developer has a unique ID. You can optionally
put something after the creator ID. For example, Apple’s DTS group may
want to always use “appl:dts’ so it only needs to ensure that the yyyy part
of the class ID is unique within DTS, but not within al of Apple.

The yyyy part can simply be the class nhame, such as “TLinkedList,” or it
can be some sort of abbreviation for the class name, such as “list.” The
only ruleis that when combined with xxxx , it must form aclass ID that
you know is unique.

Generally your class's class ID will only be found in one place: your
library’ s interface file where a constant of the form k<cl assnane>I Dis
placed. All users of the class ID will just use this constant, including the
exportsfile. In fact, a constant of this form for every class being exported
must be made available to the exports file. Since users will usually be using
the constant, your class ID does not have to make it clear which class it
represents. However, since the class ID appearsin the classlist of the
Inspector, it may be beneficial to give class IDs a descriptive name. This
makes debugging easier.

9-18 Chapter 9/ Utility Classes and Member Functions

Declarations

Y ou can (and should) use a version number in your IDs. This allows you to
specify aversion of aclass when you call afunction that takesaTC assl D
as a parameter. See Appendix D, “Versioning,” for more details on using
version numbers. If you use version numbers, your class ID will ook
something like this:

#define kTListID "appl : dts$TList, 1. 1"

If you are defining many classes with the same version, you may want to do
something like this:

#defi ne kMyLi baryVersion "1.1"
#define kTListID "appl:dts$TList," kMLibraryVersion

Commas are not allowed in class IDs except at the start of the version
number.

#def i ne kMaxd assl DSi ze 255

#i fdef __cpl uspl us

voi d* operator new size_ t, size t strLen, TMenoryPool * thePool = NULL)
voi d* operator new(size_t)
void operator del ete(void* obj, size t)

Td assl () ;
Td assl D(const TA asslI D) ;

operator const char*() const; // cast to a const char *
Ver si on Ext ract Versi on() const;
size_t Get Lengt h() const;

TA assI D& operator=(const Td assl D&);

Bool ean oper at or ==(const Td assl D& const;
Bool ean operator! =(const Td assl D& const;

Continued on following page »

TdassID 9-19

There are also global compare operators for comparing a TG ass| D object
with aC string and a Td ass| D function for casting a C string to a
TC assl D object.

const Td assl D& d assl D(const char* str); // cast a char* to a T assID

Bool ean oper at or==(const Td assl D& const char *);
Bool ean operator!=(const Td assl D& const char *);
Bool ean oper at or==(const char *, const Td assl|D&);
Bool ean operator!=(const char *, const Td asslDg);

If you create a TG ass! D object by invoking the new operator (something
that you will probably never need to do) you must pass in the size of the
class ID string, not including the terminating NULL.

When C++ users pass a C string to aroutine expecting aTd assl D, they
must cast it to aTd assl Dfirst. You can use the d assl| D function to do
this. This example shows how you can perform a cast when you call
NewObj ect on aTLi nkedLi st :

TLi nkedLi st* list = (TLi nkedLi st*)NewChj ect (d assl D(KTLi nkedLi stID));

Member functions Ext r act Ver si on

The Ext r act Ver si on member function extracts version information from
the TCl assl| D object.

CGet Lengt h

The Get Lengt h member function obtains the length of aclass ID, not
including the version information. The maximum size of aTd assl Dis
255 object characters.

oper at or ==
operator! =

The oper at or == and oper at or == member functions strip off the
version numbers when they compare Td ass| D objects. If you want to
include the version number when comparing, then use st r cnp. Y ou should
use st r cnp when comparing TC ass| D objects for ordering purposes (that
is, using >, <. >=, and <=).

See also Appendix D, “Versioning,” for more details on using version numbers in
classIDs

9-20 Chapter 9/ Utility Classes and Member Functions

Td assl nfo

Description

The TC assl nf o class iterates through subclasses of a specified base class,
providing information for each subclass.

The Td assl nf o class has the following inheritance:

TDynamic --> Tlterator --> Td assIinfo

To use the TA assl nf o class, you must first create an instance of the class
by calling the global Get d assl nf o function and passing it the ID of the
base class through which you want to iterate. Each call to Next returnsa
class ID of aclass that inherits from the base class. Y ou can call other

Td assl nf o member functions to get information about the class returned
by the last call to Next . When you are finished with the TQ assl nf o
object, delete it in normal C++ fashion.

For more information on Get C assl nf o, see “TLibraryManager” later in
this chapter.

Usingd assl nf o with function sets

The Td assl nf o class works with both function sets and classes. To make
Td assl nf o work with afunction set that is used by aclient, you can give
the function set an interface ID by placing the ID in aclient’s export file.
Theinterface ID istreated like a class' s parent classID. ThisID (which is
entirely fictional, and does not represent a real function set or class) can be
used by Td assl nf o to iterate through all function sets that have the same
interface ID. This strategy is useful in conjunction with the

Get Funct i onPoi nt er function. If all function sets with the same interface
ID implement the same functions (such as a set of database routines), you
can use aTd assl nf o object to obtain alist of all function sets that
implement the desired routines. Then you can let the user choose which
one to use.

For more information on interface IDs, see “ Getting Information About
Function Sets” in Chapter 7, “ASLM Utilities.”

WARNING If the interface ID of afunction set conflicts with the

TC assl D of aclass or another function set, the function set that is
assigned the new interface ID cannot be iterated by a TA assl nfo
object.

Continued on following page »

Td assl nfo 9-21

Declarations

Member functions

#define kTd assInfol D "sl msupp$clif,1.1"

vi rtual ~ Td asslnfo();
vi rtual voi d Reset () ;
vi rtual voi d* Next () ; /l safe to cast to

Td assl D* or char*
vi rtual Bool ean Iterati onConpl ete() const;
vi rtual Bool ean RenoveCurrent Obj ect () ; /1 do nothing

i nst ead

voi d Set Based assl D(const TC assl D& cl assID);

TC assl| D* Getd assl ();
vi rtual Td assl D* GetParentl D(size t idx = 0);
TLi brary* CGet Li brary() const;

TLi braryFile* GetLibraryFile() const;
unsi gned short Get Version() const;
unsi gned short Get M nVersion() const;

Bool ean Get NewObj ect Fl ag() const;
Bool ean CGet Pr el oadFl ag() const;
Bool ean CGet FunctionSet Fl ag() const;
size_t Get Si ze() const;

Getd assI D

The Get Cl ass| D member function returns the TCl assl D object of the
class.

CGet Functi onSet Fl ag

The Get Funct i onSet Fl ag member function returnst r ue if the classis
actually afunction set.

Cet Li brary

The Get Li br ar y member function returns the TLi br ar y object in charge
of the library that the classisin.

CGet Li braryFil e

The Get Li br ar yFi | e member function returns the TLi br ar yFi | e object
for the library that the classisin.

9-22 Chapter 9/ Utility Classes and Member Functions

Get M nVer si on

The Get M nVer si on member function returns the minimum version that
the class supports. This value corresponds to the version range you specify
when you export afunction set or class. When used in conjunction with
Get Ver si on, the version range supported by the class can be obtained.

Get Newnj ect Fl ag

The Get NewObj ect FI ag member function returnst r ue if the class hasits
newobj ect flag set.

CetParent| D

The Get Par ent | D member function returns the parent 1Ds of the class.
Since Get Par ent | Dworks with classes using multiple inheritance, it is
necessary to passin the index of the parent you are interested in. The index
is zero-based and defaults to zero. The Get Par ent | D function will return
NULL if the index is out of range, and only returns immediate parents, not
parents that are more than one generation away.

Get Pr el oadFl ag

The Get Pr el oadFl ag member function returns the pr el oad flag. (See
“Writing an .exp File” in Chapter 5, “Writing and Building Shared
Libraries,” for more information on the pr el oad flag.)

CGet Si ze

The Get Si ze member function returns the size of the classin bytes. It
returns zero if the library in which the class is implemented was not built
using the - symoption (symbolic debugging symbols enabled).

CGet Ver si on

The Get Ver si on member function returns the version of the class. When
used in conjunction with Get M nVer si on, the version range supported by
the class can be obtained.

Iterati onConpl et e

Thelterati onConpl et e member function returnst r ue only when Next
returns NULL and the iteration is complete; that is, if the iterator has not
become invalid (see “ Tlterator” later in this chapter for more information
on thistopic). The iterator can become invalid if Syst eniffask or

Get Next Event iscalled and a shared library is dragged in or out of the
Extensions folder, thus adding or removing classes from the system.

Continued on following page »

Td assl nfo 9-23

Next

The Next member function obtains the next subclass, if there is one. The
voi d* that isreturned may be cast to aTd assl Dor toachar*.

RermoveCur r ent (hj ect

The RenoveCur r ent Obj ect member function is overridden to do
nothing.

Reset

The Reset member function starts another iteration, beginning with the
base class. The base class is the class that was specified when

Get d assl nf o was called to create the TCl assl nf o object, but it can be
changed by calling Set Based assl| D.

Set Based assl| D

The Set Based ass| D member function changes the base class through
which you are iterating and resets the iterator. Thisis useful if you have
more than one base class through which you want to iterate. If you use
Set BaseC assl D, you do not need to call Get d assl nf o for each base
class.

See also Tl terator
Get d asslnfo
“Getting Information About Function Sets” and “Getting a Library’s
TLibrary Object” in Chapter 7, “ASLM Utilities’
TClasslnfoExample on the ASLM Examples disk

9-24 Chapter 9/ Utility Classes and Member Functions

TCol | ecti on

Description

Declarations

The TCol | ecti on class allows you to use objects in a collection without
knowing any details about the collection.

The TCol | ect i on class has the following inheritance:
TDynamic --> TCollection

The TCol | ecti on classisthe base class for all ASLM collection classes.
The TCol | ect i on class and its subclasses (TSi npl eLi st , TLi nkedLi st
TPriorityList,TArray, and THashLi st) provide access to objects that
belong to different kinds of collections. TCol | ect i on and its subclasses
also provide member functions for manipulating objects in collections. For
example, the Add member function adds an object to a collection, and the
Mermber member function can tell you if a specified object isin a
collection.

Most TCol | ecti on member functions are pure virtual functions, so they
must be implemented in subclasses of the TCol | ect i on class. The

TCol | ect i on classes provided by the ASLM are thread-safe and interrupt-
safe, so thereis no problem if multiple threads try to change the collection
at the same time.

The TCol | ecti on member functions such as AddUni que and Menber
have versions that take a TMat chCbj ect parameter. This parameter gives
the collection a user-defined way to compare objects rather than just
comparing object pointers, which iswhat TCol | ect i on does by default.

When you call TCol | ecti on member functions that add objects to
collections, the data type that you add to the collectionsisvoi d*, but you
can add any datatype that fitsinto si zeof (voi d*) bytes, provided you
use atypecast.

typedef int PointerType;

#def i ne kVoi dPoi nt er ((PointerType)0) /* a non-object
poi nter */

#def i ne kTDynam cPoi nt er ((PointerType)l) /* SingleChject with
v-table first */

#defi ne kTSCDynani cPoi nter ((PointerType)2) /* a Think C++ object */
#defi ne kTSt dDynam cPoi nter ((PointerType)3) /* non-SingleChject with
v-table first */

Continued on following page »

TCol | ection 9-25

Member functions

#define kTCol l ectionlD "!$col |, 1. 1"

vi rtual ~ TCol l ection();

size_t Count () const;

Bool ean | sEnpty() const;
vi rtual Tlterator* O eatelterator(TStandardPool *) = 0;
vi rtual CsErr Add(voi d*);
vi rtual CsErr AddUni que(voi d*, const TMat ch(bj ect &) ;
vi rtual CsErr AddUni que(voi d*);
vi rtual voi d RermoveAl | ();
vi rtual voi d Del et eAl | (Poi nt er Type = kTDynam cPoi nter);
vi rtual voi d* Rermove(const TMat chQbj ect &) = 0;
vi rtual voi d* Menber (const TMat chQhj ect &) = 0;
vi rtual Bool ean Renmove(voi d*) = 0;
vi rtual Bool ean Menber (const voi d*) = 0;
vi rtual voi d* Get | ndexed(hj ect (si ze_t) const;

voi d* operator[](size_t);

| ong Get Seed() const;

voi d Gab();

voi d Rel ease();
Add

The Add member function adds to the collection the object that was passed
to it. It returns an GSEr r . If the object is successfully added to the
collection, kNoEr r or isreturned in GSEr r . If the add does not succeed, an
error code is returned in OSEr r . The most likely error is kQut Of Menory,
although other errors may be possible, depending on the subclass
implementation.

AddUni que

The AddUni que member function adds a specified object to the collection
if the object is not already in the collection. It returns an GSEr r . If the
object is successfully added to the collection, kNoEr r or isreturned in
OSEr r. If the add does not succeed, an error code is returned in OSEr r .
The most likely error iskQut Of Menor y, although other errors may be
possible, depending on the subclass implementation.

9-26 Chapter 9/ Utility Classes and Member Functions

Count

The Count member function returns the number of objectsin the
collection.

Createlterator

The Creat el t er at or member function returns an iterator for the
collection (see “Tlterator” later in this chapter).

Del et eAl |

The Del et eAl | member function removes and deletes all objects from the
collection. It takes a Poi nt er Type parameter that specifies the type of the
objectsin the collection. Then, if necessary, the objects can be cast to the
proper type so the destructors will be called properly. Use kVoi dPoi nt er
if the objects are not C++ objects (so no destructor will be called). Use
kTDynani cPoi nt er for objects that descend from Si ngl eQoj ect and
have their v-table first. Use kTSt dDynani cPoi nt er for objects that do not
descend from Si ngl eObj ect and have their v-table first. Use

kTSCDynami cPoi nt er for objects that are Symantec C++ objects. You
cannot call Del et eAl | if the collection contains objects that do not have
their v-table first. Y ou should instead remove the objects one at atime and
delete them yourself. If the collection does not contain pointers—because,
for example, you have put | ong data types in the collection—then you
should not call Del et eAl | because Del et eAl | treats each object as a
pointer to memory and attempts to free the memory. Call RenoveAl |
instead.

If you subclass TCol | ect i on, you can use the Dest r oyPoi nt er function
to take care of deleting the pointer for each object in the collection. See
“Miscellaneous Routines” in Chapter 7, “ASLM Utilities,” for more
information.

WARNING Do not call Del et eAl | if the objects in the collection were
not allocated using the ASLM global new operator defined in the
header file GlobalNew.h. Objects that inherit from TDynani ¢ are
always allocated using the ASLM global new operator unless the
subclass overrides the new operator. Also, do not call Del et eAl | for
stack objects or for objects that are defined as data members of a class
because these objects are not allocated using the ASLM global new
operator. Call RermoveAl | instead.

Continued on following page »

TCol | ection 9-27

Get | ndexedbj ect

The Get | ndexedChj ect member function returns the nth object in the
collection. The default implementation of Get | ndexedObj ect obtainsthis
information by creating an iterator for the collection and counting as the
iterator iterates through the collection until the nth object is found.

TCol | ect i on subclasses should override Get | ndexedObj ect if thereisa
more efficient way of getting the nth object. The C++ array operator
(operator[]) simply calls Get | ndexed(hj ect .

CGet Seed

The Get Seed member function returns the current seed value (this value
changes each time the collection is changed).

G ab

The Gr ab member function grabs the collection’s semaphore. It is
generally used only by the implementation of TCol | ecti on and its
subclasses.

| sEnpty
The | sEnpt y member function returnst r ue if the collection is empty.

Menber

The Menber member function returnst r ue if the object passed toitisin
the collection. The TMat chbj ect version of Menber returns the object
that matches the TMat chObj ect . (For more information about the

TMvat chbj ect class, see “TMatchObject” later in this chapter.)

operator[|
The oper at or[] member function calls Get | ndexedObj ect .

Rel ease
The Rel ease member function releases the collection and semaphore.

Renove

The Renpve member function removes the object passed to it (or, in the
TMat chQobj ect version of Renove, the object that matches a specified
TMat chQbj ect). Renove removes only the first object that matches the
object or TMat chQobj ect passed to it. (For more information about the
TMat chQobj ect class, see “ TMatchObject” later in this chapter.)

9-28

Chapter 9 / Utility Classes and Member Functions

RenoveAl |

The RermoveAl | member function removes all objects from the collection.
The user isresponsible for making sure that the objects are also deleted if

necessary.

See also Thvat chbj ect
Tl terator

TCol | ection 9-29

TDoubl eLong

The TDoubl eLong class implements a double long (64 bits) integer class
that handles all the math functionality of the TTi ne class.

The TDoubl eLong class has the following inheritance:
TDynamic --> TMatchObject --> TDoubl eLong

Description Normally TDoubl eLong is used as a superclass for some other class which
has a 64-bit value as its comparable/hashing value (the default hash value is
the low 32-bits). Its main purpose is as the base class for the TTi e class. It
provides all the operators that are commonly used for integer math.

Declarations #def i ne kTDoubl eLongl D "sl m supp$dbl |, 1. 1"

TDoubl eLong(const TDoubl eLongé&) ;

TDoubl eLong(unsi gned long low, |ong hi);
TDoubl eLong(l ong I);

TDoubl eLong() ;

vi rtual ~ TDoubl eLong();

vi rtual OSEr r Inflate(TFormattedSt reamy) ;

vi rtual OSErr Fl atten(TFormatt edStrean®) const;
vi rtual Bool ean | skqual (const voi d*) const;

vi rtual unsi gned long Hash() const;

vi rtual doubl e Convert ToDoubl e() const;

operat or doubl e() const;
operator unsigned | ong() const;
vi rtual TDoubl eLong& Add(const TDoubl eLong&);
vi rtual TDoubl eLong& Subtract (const TDoubl eLong&);
Vi rtual TDoubl eLong& Ml tipl y(const TDoubl eLong&);
vi rtual TDoubl eLong& Di vi de(const TDoubl eLongé&) ;
vi rtual TDoubl eLong& Modul o(const TDoubl eLongé&) ;
Vi rtual TDoubl eLong RShi ft (unsi gned int) const;
vi rtual TDoubl eLong LShi ft (unsigned int) const;
vi rtual TDoubl eLong& Negate();
Vi rtual short Conpar e(const voi d*) const;

9-30 Chapter 9/ Utility Classes and Member Functions

Member functions

TDoubl eLong&
TDoubl eLong&
TDoubl eLong&
TDoubl eLong&
TDoubl eLong&
TDoubl eLong&
TDoubl eLong&
TDoubl eLong&
TDoubl eLong&

oper at or =(const TDoubl eLongé&)

oper at or +=(const
oper at or - =(const
oper at or *=(const
oper at or/ =(const
oper at or %=(const
oper at or &=(const
oper at or| =(const
oper at or *=(const

TDoubl eLong&)
TDoubl eLong&)
TDoubl eLong&)
TDoubl eLong&)
TDoubl eLong&)
TDoubl eLong&)
TDoubl eLong&)
TDoubl eLong&)

TDoubl eLong operator +(const TDoubl eLong&) const;
TDoubl eLong operator-(const TDoubl eLong&) const;
TDoubl eLong operator*(const TDoubl eLong&) const;
TDoubl eLong operator/(const TDoubl eLong&) const;
TDoubl eLong operat or % const TDoubl eLong&) const;
TDoubl eLong operat or & const TDoubl eLong&) const;
TDoubl eLong operator| (const TDoubl eLong&) const;
TDoubl eLong operator~(const TDoubl eLong&) const;
TDoubl eLong operator~() const;

TDoubl eLong operator-() const;

TDoubl eLong operat or <<(unsi gned int) const;
TDoubl eLong operator>>(unsi gned int) const;

Bool ean oper at or >(const TDoubl eLong&) const;
Bool ean oper at or <(const TDoubl eLong&) const;
Bool ean oper at or <=(const TDoubl eLong&) const;
Bool ean oper at or >=(const TDoubl eLong&) const;
Bool ean oper at or ==(const TDoubl eLong&) const;
Bool ean operator! =(const TDoubl eLong&) const;

This section describes the member functions that are not self explanatory.

Conpar e

The Corrpar e member function returns zero if the object passed to it
matches the comparison criteria that are specified for TDoubl eLong. It
returns - 1 if the match object is considered to be “greater” and 1 if the
object passed to Conpar e is considered to be “greater.” It is normally
only used when the TDoubl eLong object is being used as a

That chQbj ect .

Convert ToDoubl e

The Conver t ToDoubl e member function converts the TDoubl eLong

object to adoubl e.

Continued on following page »

Toubl eLong ~ 9-31

See also

oper at or doubl e

This member function performs the same operation as Conver t ToDoubl e.
It allows for implicit caststo adoubl e.

Hash

The Hash member function returns the lower 32 bits of the TDoubl eLong.
It isonly used when the TDoubl eLong object is being used with a hash list.
It can be overridden by a subclassif a different hash function is needed.

Inflate
Fl atten

Thel nfl at e and Fl at t en member functions may be useful when streams
are supported by future versions of the ASLM.

| sEqual

The | sEqual member function returnst r ue if the TDoubl eLong object
and the object passed to it are equal. If this not the case, | sEqual returns
fal se.

RShi f t
LShi ft

The Rshi ft and LShi ft member functions shift the TDoubl eLong object
the specified number of bits to the left or to the right. The shiftisan
arithmetic one so thereis no rollover.

That chObj ect

9-32

Chapter 9 / Utility Classes and Member Functions

TDynam ¢

Description

Declarations

The TDynani ¢ classis a base class that forces the v-table first, overrides
new and del et e to use memory pools, and provides some non-virtual
member functions that provide information about the object.

The TDynani c class has no parent class.

The TDynani ¢ class has some advantages over the TSi npl eDynani ¢ class.
For example, you can register TDynani ¢ objects with the Inspector and
control their tracing. The TDynani c class also provides some member
functions that are common in C++ base classes. These member functions
(which must be overridden to be useful) include | sVal i d, which you can
use to verify that an object is constructed properly; C one, which you can
use to clone objects; and | nf | at e and FI at t en, which may be useful
when streams are supported by future versions of the ASLM.

The main disadvantage of TDynani c isthat it has alarger v-table—a
wasteful characteristic if you do not take advantage of any of the class's
virtual member functions.

For more information on TDynani ¢, see “ The TDynamic Family of Base
Classes” in Chapter 6, “Using the ASLM.”

These are declarations of the TDynani ¢ member functions:
typedef int TraceCont r ol Type;

#defi ne kTraceSt at us ((TraceCont rol Type) 1)

#defi ne kTrace(n ((TraceCont rol Type) 2)

#defi ne kTraceC f ((TraceCont rol Type) 3)

#defi ne kTDynam cI D "! $dyna, 1. 1"

vi rtual ~ TDynani c;
voi d* operator new(size_t size, TMenoryPool *);
/1 from specified pool
voi d* operator new(size_t); // fromdefault pool
voi d oper at or del et e(voi d* obj, size_t)

{ SLMDel et eCperator(obj); }

Continued on following page »

Toynanic 9-33

const TA assl| D&
const Td assl| D&

Vi
Vi
Vi
Vi
Vi

Vi

Vi

rtual
rtual
rtual
rtual
rtual

rtual

rtual

size_t

TLi brary*

TLi braryFi | e*
TSt andar dPool *
voi d

Bool ean

CeErr
CSEr r
TDynam c*

char*
voi d

voi d

Bool ean
Bool ean
Bool ean
Bool ean

Bool ean

Get (oj ect sA assl DO() const;

Get oj ect sParent d assl () const;

Get oj ect sSi ze() const;

Get oj ect sLocal Li brary() const;

Get oj ect sLocal Li braryFil e() const;

Get (oj ect sLocal Pool () const;

Set (vj ect sLocal Pool (TSt andar dPool *) const ;

IsValid() const;

I nfl at e(TFor nat t edSt r ean®) ;
Fl atten(TFormatt edStrean®) const;
d one(TSt andar dPool *) const ;

Get Ver boseNane(char*) const;
Dunp() const;

Trace(char *formatStr, ...) const;
TraceControl (TraceCont rol Type) const;
I sTraceCn() const;

Trace() const;

Tracef () const;

| sDeri vedFron{const Td assl D& const;

9-34

Chapter 9 / Utility Classes and Member Functions

Member functions

WARNINGThe following routines may be called only for an object
that isimplemented in a shared library and is a shared class. If anon-
library client implements a class, calling one of these routines on an
instance of the class may cause a crash, even if the class inherits from
aclass that forces the v-table first (even if it inherits from a shared
class).

| sDeri vedFrom

Get Obj ectsCl assI D

Get (bj ect sParent d assl D
CGet Obj ectsSi ze

CGet Obj ect sLocal Li brary

Get Qbj ect sLocal Li braryFile
CGet Obj ect sLocal Pool

Set Cbj ect sLocal Pool

An object that has its v-table first is an object derived from a base class
that has at |east one virtual function and no data members. Thisis true
of objects that belong to the TDynami c, TSi npl eDynani c,

TSt dSi npl eDynani ¢, and TSt dDynani ¢ classes.

d one

The d one member function is used to clone objects. It must be overridden
by the subclass to be useful.

Dunp

The Dunp member function displays information about a specified object
in the TraceMonitor’s Trace window. The TDynani ¢ implementation of
this member function traces the string returned by Get Ver boseNane. You
may want your TDynani ¢ subclass to do aformatted trace of all the fields
in the object.

Continued on following page »

Toynanic 9-35

Get oj ect sd assI D

The Get Obj ect sA ass| D member function returns an object’s TG ass| D
object. The TA assl DclassisaC string class, so it can be treated as an
ordinary C string. If you call Get Obj ect sC assl| Dfrom a constructor or a
destructor, Get Chj ect s assl| Dreturnsthe TC ass| D object for the class
whose constructor or destructor calls Get hj ect s assl D, not for the
subclass. For example, if TSquar e inherits from TShape and the
constructor for TShape calls Get Obj ect sCl assl D, then when you create a
TSquar e object, the call by the constructor for TShape returns the TShape
class ID, and the call by the constructor for TSquar e returns the TSquar e
classID.

CGet (bj ect sLocal Li brary

The Get Obj ect sLocal Li br ary member function returns the TLi br ary
object for the library in which the object isimplemented. If you call

Get Obj ect sLocal Li br ary to obtain information for a polymorphic
object, the member function always returns TLi br ar y for the subclass, not
TLi brary for the base class. For example, if your object isaTSquar e
subclass, but all you know isthat it has TShape as a base class,

Get bj ect sLocal Li brary returnsthe TLi br ary object for TSquar e, not
the TLi br ary object for TShape. If you are in a constructor or destructor
when you call Get (hj ect sLocal Li br ary, the member function returns
TLi brary for the library of the class whaose constructor or destructor you
arein, not TLi br ary for the subclass. This behavior is similar to that of
Get Obj ect sCl assl D, above.

Get Obj ect sLocal Li braryFil e

The Get Obj ect sLocal Li braryFi | e member function returns the

TLi br ar yFi | e object for the library in which the object is implemented. If
you call Get Obj ect sLocal Li brar yFi | e to obtain information for a
polymaorphic object, the member function always returns the

TLi br ar yFi | e for the subclass, not the TLi br ar yFi | e for the base class.
Thisis similar to the behavior of Get Cbj ect Local Li brary. If you arein
a constructor or destructor when you call Get bj ect sLocal Li brary, the
member function returns TLi br ar yFi | e for the library of the class whose
constructor or destructor you arein, not TLi br ar yFi | e for the subclass.
This behavior is similar to that of Get Obj ect sCl assl D.

9-36

Chapter 9 / Utility Classes and Member Functions

Get bj ect sLocal Pool

The Get Obj ect sLocal Pool member function is similar to

Get Obj ect sLocal Li braryFi | e except that it returns the local pool for
the object’ s shared library. If you are in a constructor or destructor when
you call Get Obj ect sLocal Pool , Get Obj ect sLocal Pool returnsthe
local pool for the library of the class whose constructor or destructor you
arein, not the local pool for the subclass. This behavior is similar to that of
Get Obj ect sC assl D.

Get Qoj ect sParent d assl D

The Get Obj ect sPar ent Cl ass| D member function returnsthe TQ assl| D
object for the parent class of the object. If you are executing a constructor
or destructor when you call Get Obj ect sPar ent C assl| D, what you obtain
isTd ass| Dfor the parent class of the class whose constructor or
destructor you are in, not the subclass. This behavior is similar to that of
CGet Obj ect s assl D.

Get (bj ect sSi ze

The Get bj ect sSi ze member function returns the size of the object in
bytes. It returns zero if the library in which the class is implemented was
not built using the - symoption (symbolic debugging symbols enabled).

CGet Ver boseName

The Get Ver boseNanme member function returns a string that describes the
object. You must pass a pointer to 256 bytes of memory as a parameter to
Get Ver boseNane. The member function returns information about the
object in that 256-byte parameter. (The TDynami ¢ implementation of the
member function returns a string containing the address of the object.) If
you override Get Ver boseNane, make sure that the information which

Get Ver boseNane generates fits on one line and is 256 characters or less in
length, including the terminating NULL character.

Inflate
Fl atten

Thel nfl at e and Fl at t en member functions may be useful when streams
are supported by future versions of the ASLM.

| sDeri vedFr om

The | sDer i vedFr ommember function returnst r ue if the object is
derived from the specified TCl ass| D object.

Continued on following page »

Toynanmic 9-37

Isvalid

The | sval i d member function returnst r ue if the object was initialized
properly after it was created. Some classes always initialize properly, but
others may need to allocate memory or get resources during construction.
Classes whose construction can fail must override | sval i d to return f al se
if construction fails; otherwise, | sval i d alwaysreturnst r ue.

Set (bj ect sLocal Pool

The Set oj ect sLocal Pool member function sets the local pool for the
object’ s shared library. For more information see “Memory Management
Classes’ in Chapter 8, “ASLM Utility Class Categories.”

Trace

The Tr ace member function sends output to the TraceMonitor’s Trace
window. The Tr ace function, like pri nt f , takes an unformatted string with
multiple parameters. For more information see “ Sending Output to the
TraceMonitor Window” in Chapter 7, “ASLM Utilities.”

Tr aceCont r ol

The TraceCont r ol member function turns an object’s tracing on and off.
It takes only one parameter: a constant that specifies what the member
function should do. If the kTr aceSt at us constant is specified as a
parameter, Tr aceCont r ol returnstr ue if tracing ison and returnsf al se
if tracing is off. The constant kTr aceOn turns tracing on and returns the
tracing state before it was turned on. The constant kTr aceOf f turns tracing
off and returns the tracing state to the state it was in before it was turned
off. The Tr aceCont r ol function was created so that only one virtual
function (instead of three) would be needed to handle | sTraceOn,
TraceOn,and TraceOf f .

| sTraceOn
TraceO
TraceO f

Thel sTraceOn, TraceOn, and Tr aceOf f member functions call

Tr aceCont r ol with the appropriate argument. The | sTr aceOn function
returnstrue if tracing is on for the object. The TraceOn and Tr aceOf f
functions turn tracing on and off for the object. Note that the TDynani ¢
implementation of Tr aceCont r ol does not support turning tracing on and
off. In the TDynani ¢ implementation, tracing is always on. The TDynanmi ¢
subclass must override Tr aceCont r ol to turn off tracing for the object.
The TDynanmi c: : | sTraceOn function always returnst r ue. Y ou may want
to override Tr aceCont r ol in your TDynani ¢ subclass and maintain a
trace flag.

9-38

Chapter 9 / Utility Classes and Member Functions

TFast Random

Description

Declarations

Member functions

The TFast Randomclass returns a random number computed with 32-bit
arithmetic.

The TFast Randomclass has the following inheritance:
TDynamic --> TFast Random

The TFast Randomclass creates random numbers according to the
following algorithm (using the current time stamp as the initial seed):

Seed = (Seed*2416 + 374441) % 1771875.

#defi ne kTFast Random D "s|l m supp$frnd, 1. 1"

const unsi gned | ong kMaxFast Random = 1771874,

TFast Randon() ;
TFast Random(unsi gned | ong seed);

vi rtual TFast Random() ;
vi rtual voi d Set Seed(unsi gned | ong seed);
vi rtual voi d Set Seed();

unsi gned long GetSeed() const;

vi rtual unsi gned |l ong Get Randon();
Vi rtual unsi gned | ong Get RandonNunber (unsi gned | ong | o,
unsi gned long hi);

TFast Random

The TFast Randommember function creates an object, using the current
time stamp as the seed. TFast Randon{ unsi gned | ong seed) createsthe
object using seed as the seed.

Get Random

The Get Randommember function returns a random number ranging from
0 to kMaxFast Random inclusive. Y ou should not normally use this
member function; instead, use Get RandomNunber .

Get RandomN\unber

The Get RandonmNunber member function returns the a random number
ranging from| o to hi , inclusive.

Continued on following page »

TFast Random 9-39

CGet Seed

The Get Seed member function returns the current seed value. The seed
value changes each time Get Randomis called.

Set Seed

The Set Seed member function sets the random number seed using the
current time stamp.

9-40 Chapter 9/ Utility Classes and Member Functions

TFi | eSpec

Description

Declarations

The TFi | eSpec classis a base class for specifying the location of alibrary
file (aTLi brar yFi | e object) in afile system-independent or OS-
independent way.

The TFi | eSpec class has no parent class.

The subclasses of TFi | eSpec contain the details of alibrary file' s location.
The TFi | eSpec base classis used to compare TLi br ar yFi | e objects to
see if they represent the same file and also so afile specification can be
passed around without worrying about the contents.

The TFi | eSpec class has two subclasses: TMacFi | eSpec and

TFi | el DFi | eSpec. The TMacFi | eSpec class keeps track of files by
volume refNum, directory ID, and filename. The TFi | el DFi | eSpec class
keeps track of files by volume refNum and file ID.

There are also C st ruct and Pascal Recor d versions of TFi | eSpec and its
subclasses for C and Pascal users.

Inversion 1.1 of the ASLM, only the TMacFi | eSpec subclassis supported,
since the ASLM currently uses the TMacFi | eSpec subclass to keep track
of library files on the Macintosh Operating System.

The TFi | eSpec class provides cast operators to automatically cast a
TFi | eSpec object to TMacFi | eSpec or TFi | el DFi | eSpec. It isyour
responsibility to ensure that this cast is alegal one. Y ou can call

TFi | eSpec: : Get Type to get the type of the TFi | eSpec object.

Generally, you do not have to be concerned with TFi | eSpecs unless you
plan to call Regi st erLi braryFi | e, Regi st erLi braryFil eFol der, or
CGet Fi | eSpec.

typedef unsigned int FileSpecType;

#def i ne kUnknownFi | eSpecType ((Fi |l eSpecType) 0)
#defi ne kMacType ((Fil eSpecType) 1)
#defi ne kFil el DType ((Fi |l eSpecType) 2)
#def i ne kMaxFi | eSpecType ((Fi | eSpecType) 255)

cl ass TFi | eSpec;
cl ass TMacFi | eSpec;
cl ass TFil el DFi | eSpec;

extern "C' Bool ean | sFi |l eSpecTypeSupported(Fi | eSpecType);
extern "C' Bool ean Conpar eFi | eSpecs(const void* f1, const void* f2);

Continued on following page »

TFil eSpec 9-41

Member functions

See also

voi d* operator new(size_t size, TMenoryPool *thePool)

voi d* operator new(size_t size)

voi d oper ator del ete(voi d* obj, size t)
Fi | eSpecType Get Type() const;

unsi gned char Get Si ze() const;

// conpare operators

Bool ean oper at or ==(const TFi | eSpec&) const;
Bool ean operator! =(const TFil eSpec& const;

// cast operators

operator const TMacFil eSpec&() const;
operator const TFilel DFi |l eSpec&) const;

unsi gned char f Type;
unsi gned char fSze;
oper ator == and oper ator =

The oper at or member functions can be used to compare two file
specifications. It does not matter whether the two file specs are of the same
subclass.

CGet Si ze

The Get Si ze member function returns the size of the TFi | eSpec data
structure.

Get Type

The Get Type member function returns the type of the TFi | eSpec data
structure.

TFi | el DFi | eSpec
TMacFi | eSpec

9-42 Chapter 9/ Utility Classes and Member Functions

TFi | el DFi | eSpec

Description

Declarations

See also

The TFi | el DFi | eSpec classisaTFi | eSpec subclass that keeps track of
library files by file ID and volume refNum.

The TFi | el DFi | eSpec class has the following inheritance:
TFi |l eSpec --> TFil el DFil eSpec

Inversion 1.1, the ASLM uses the TMacFi | eSpec subclass to keep track of
library files on the Macintosh Operating System.

You can use the TFi | el DFi | eSpec for your own purposes if you wish, but
do not pass them to any ASLM routines. See “ TFileSpec” for more
information.

// Sone nmacros to nmake accessing fields wthout doing a cast easier

#define GetFil el DFronfil eSpec(x) (((const TFilel DFil eSpec& x).fFilelD
#def i ne Get VRef Nunfronfi | eSpec(x) (((const TFil el DFi | eSpec&) x) . f VRef Nunj

extern "C' void InitFilel DFil eSpec(TFi | el DFi |l eSpec *spec, int vRef Num
long filelD);

TFi | el DFi | eSpec(const TFi | el DFi | eSpecg&);
TFi | el DFi | eSpec(int vRefNum long filelD;

short fVRef Num /1 vol une ref Num
long fFilelD I/l FilelD
TFi | eSpec

TFil el DFi | epec 9-43

TFor mat t edSt r eam

TFor mat t edSt r eamis not yet implemented.

9-44 Chapter 9/ Utility Classes and Member Functions

TFuncti onSet | D

The TFuncti onSet | D classis aclass that you can use to identify function
sets implemented in a shared library.

The TFunct i onSet | D class has no parent class.

Description A TFuncti onSet | D object, likeaTd assl D object, isa C string made up
of adeveloper ID and a class name separated by a dollar sign ($), and
optionally followed by version information.

Function set IDs are assigned to function setsin the library’s exports file
and are used by clients to specify a function set when using routines such
as Get Funct i onPoi nt er and LoadFunct i onSet . For C users, thereis
also a TFunct i onSet | D typedef.

Function-set IDs are written in this format:
xxxx$M/FunctionSet [, 1. 2. 3]

Although TFunct i onSet | D objects work exactly like TCl ass| D objects
(the two can be used interchangeably), TFunct i onSet | D makes it clearer
what parameters are expected for certain routines. For example, function
set users can call LoadFuncti onSet (TFuncti onSet | D*) instead of
Loadd ass(Td assl D*), but either can be used to perform the task of
loading a function set.

The Funct i onSet | D functions perform casts in away similar to the
d ass! Dfunction. It is only used by (and required by) C++ users. For
example, you can call LoadFunct i onSet using the following format:

CsEr err = LoadFuncti onSet Functi onSet | D(kMFunctionSet1D) ;
See “TClassID” earlier in this chapter for details on TFunct i onSet | Ds.
All the information provided for TG ass! D objectsis also true of

TFunct i onSet | D objects, but keep in mind that TCl ass| D member
functions are meaningless to C users.

Declarations TFuncti onSet | Distypedef’'d to be the same as TA assl D.
#def i ne TFunctionSet1 D Td assI D

See also Td asslI D

TFunctionSetID 9-45

TG owper at i on

Description

Declarations

TG owQper at i on objects are used to automatically increase a pool’ s size
when the pool comes dangerously close to running out of memory.

The TG owQper at i on class has the following inheritance:
TDynamic --> TQOperation --> TG owOperation

This classis used automatically by TPool Noti fi er when it needs to
increase the pool size at interrupt time, in which case it schedules a
TG owQper at i on on the global TTaskSchedul er.

The TG owOper at i on is not processed at interrupt time so it is always safe
for it to grow the pool.

Thisclassisonly used by the ASLM; you will never need to use this class
in your programs.

#defi ne kTG owQper ati onl D "1 $gwop, 1. 1"

TG owOper ation();

Vi rtual ~ TG owOperation();
virtual void Process();

si ze_t f G owBy;

Bool ean* f Opl nUse;

9-46 Chapter 9 / Utility Classes and Member Functions

THashDoubl eLong

Description

Declarations

Member functions

The THashDoubl eLong classis used to hash a TDoubl eLong.

The THashDoubl eLong class has the following inheritance:

TDynamic --> THashQbject --> THashDoubl eLong

The THashDoubl eLong class should be subclassed to provide a useful
Hash member function. It has no usein ASLM version 1.1. However, if
subclassed, it can be used as a Hash object for a TDoubl eHashLi st if you
write one.

#defi ne kTHashDoubl eLongl D " sl m supp$hdbl, 1. 1"

THashDoubl eLong() ;

Vi rtual ~ THashDoubl eLong() ;
virtual unsigned | ong Hash(const voi d*) const;
Hash

The Hash member function returns the pointer to the object that is passed
toit. It should never be overridden by a subclass. The const voi d*
parameter is a pointer to a TDoubl eLong object.

THashDoubl eLong ~ 9-47

THashLi st

Description

The THashLi st classimplements ahash list asaTCol | ecti on subclass.

The THashLi st class has the following inheritance:
TDynamic --> TCollection --> THashLi st

The hash list implemented by THashLi st isachained hash list. The hash
list has an array of buckets. When only one object hashes to a particular
bucket, then the bucket contains a pointer to the object. If more than one
object hashes to the same bucket then the bucket will contain a pointer to a
linked list of objects that hash to that bucket.

The THashLi st classimplements all of the standard TCol | ecti on
member functions, plus the extra member functions listed in the declaration
below.

Using a hash list

To make a hash list useful, you must create a subclass of TMat chQoj ect
that is aware of the kinds of objects added to the hash list. When you call
member functions that use a TMat chbj ect , such as

Merber (TMat chObj ect &) , the Hash member function of the match object
is called to get the hash key for each object.

Each object in the hash list that also has the same hash key is passed to the
match objects’ Conpar e member function to determine whether it matches
the match object. For example, if a hash list contains objects that are hashed
by a name contained in the object (such as a person’s name), the match
object should also contain a name field that it can match with the name.
Also, the object’ s Hash member function should return the hash value of
that name using the same hashing function that is used by the

THashOhj ect belonging to the THashLi st .

To make things easier, you can use the TPr ocHashhj ect and
TProcMat chObj ect classes and set their HashPr oc to the same function.

9-48 Chapter 9/ Utility Classes and Member Functions

Declarations

struct HashListlnfo

{

si ze_t
size_t
size_t
si ze_t

size_t

b

enptySl ot s;
si ngl eSl ot s;
numChai ns;

| ongest Chai n
avgChai n;

#defi ne kTHashLi st|ID

vi rtual

vi rtual

vi rtual

CSEr r
CSEr r

voi d

TMenor yPool *
THashQbj ect *
size_t

voi d

voi d

/1 nunber of enpty slots in
/1 the hash Ii st
/1 nunber of slots with only
/1 one entry
/1 nunber of slots with nore
/1 than one entry
; /1 the longest chain
/1 the average length of a chain

"1$hsls, 1. 1"
THashLi st (Bool eanPar m ;

THashLi st () ;
THashLi st (THashQbj ect *,
size_t initialSize,
TMenor yPool * = NULL);
~ THashLi st ();

G ow(size_t newSize);
Rehash();

Set HashOhj ect (THashObj ect *) ;
Get Li nkPool () const;

CGet HashObj ect () const;

Get Tabl eSi ze() const;

Set Li nkPool (TMenor yPool *) ;

CGet HashLi st | nf o(HashLi st | nfo&) const;

/] TColl ection Overrides

vi rtual

vi rtual
vi rtual
vi rtual
vi rtual

Tlterator*

voi d*
voi d*
Bool ean
Bool ean

Createlterator(TStandardPool *);

Renove(const TMat chQhj ect &) ;
Menber (const TMat chQhj ect &) ;
Renove(voi d*);

Menber (const voi d*);

Continued on following page »

THashLi st 9-49

Member functions

Createlterator

The Cr eat el t er at or member function returns an iterator for the
collection (see “Tlterator” later in this chapter).

Get HashLi st nfo

The Get HashLi st | nf o member function returns information about the
hash list in aHashLi st | nf o data structure. The HashLi st | nf o data
structure includes the following fields:

m enptySl ot s isthe number of empty hash buckets in the hash table.
m singl eS| ot s isthe number of hash buckets with only one entry.
m nuntChai ns isthe number of hash buckets with more than one entry,

thus requiring the hash bucket to point to alist of entries rather than
pointing directly to the entry.

m | ongest Chai n isthelongest chain hanging off a hash bucket, in other
words, the most entries that hash to the same hash bucket.

m avgChai n isthe average length of a chain. Hash buckets with 0 or 1
entries are not included in this average.

Use thisinformation to determine if your hash list is big enough and if you
are using a good hash function. If the proportion of empty hash buckets to
hash buckets that require chaining (especially long chains) is high, then
your hash function is not very good. The ideal hash function would result
in each hash bucket getting one entry before chaining is started (an
impossible task with random data). The worst hash function would hash all
entries into the same hash bucket.

Get Hash(bj ect

The Get HashObj ect member function returns the THashQbj ect being
used by the THashLi st .

Get Li nkPool

The Get Li nkPool member function returns the pool in which TLi nk
objects will be allocated when chaining is required.

Get Tabl eSi ze

The Get Tabl eSi ze member function returns the number of hash buckets
in the THashLi st object.

G ow

The G ow member function changes the number of bucketsin the
THashLi st . This member function can be called only at System Task time,
unless you have already forced the THashLi st Gr ower class to be loaded.

9-50 Chapter 9/ Utility Classes and Member Functions

See also

The G owfunction isinterrupt-safe, but not reentrant. The error code
kNot Al | onedNow is returned if the THashLi st is already being grown.
The other possible error return value is kQut Of Menory.

Menber
The Menber function is described in “TCollection” earlier in this chapter.

Rehash

The Rehash member function forces the THashLi st to rehashitself. This
is not necessary in the current implementation of THashLi st , but was
required in an earlier version of the ASLM by a class hamed

TDoubl eHashLi st . If the TDoubl eHashLi st classis ever reactivated, it
will require this member function. Error return values and caveats for
Rehash are the same as for G ow.

Renove
The Renove function is described in “TCollection” earlier in this chapter.

Set Hashbj ect

The Set HashObj ect member function sets the THashObj ect that the
THashLi st should use for hashing.

Set Li nkPool

The Set Li nkPool member function sets the pool that will be used when
allocating links for chaining is required. By default, the pool passed to the
constructor is used as the initial link pool.

THashLi st

The empty THashLi st constructor usesani ni ti al Si ze of 103, the
current client’s pool, and does not set the hash object. Its hash function
simply takes the address of the object to be hashed.

The second THashLi st constructor creates a hash list whose hash table is
the size specified ini ni ti al Si ze. The constructor allocates the hash table
from the specified pool, and allocates the links for the chains from the
same pool. The THashObj ect passed to the constructor is used to do the
hashing.

THashbj ect

Tiat chObj ect

TCol | ecti on
THashLi stlterator

THashLi st 9-51

THashLi stlterator

Description

Declarations

Member functions

The THashLi st |t erat or classiteratesa THashLi st collection and most
subclasses of a THashLi st .

The THashLi st | t er at or class has the following inheritance:
TDynamic --> Tlterator --> THashListlterator

The THashLi st |t er at or interface isthe same as all other iterators. A
TMat chObj ect may be used if you only want to ook at objectsin asingle
hash bucket. The Tivat chCbj ect must have overridden the Hash member
function, and must use the same hashing algorithm used by the

THashQbj ect given to the THashLi st . The overridden Hash member
function is only called once by the iterator to get the hash value of the
match object. Only objects in the hash list that hash to this same value and
are considered by the match object to be equal to the match object are
returned by the iterator.

For more information, see “ Tlterator,” “TMatchObject,” and
“THashList” in this chapter.

#defi ne kTHashListlteratorID "!$hsit, 1. 1"

THashLi st 1terator(THashLi st *,
TMat chObj ect* = NULL);
vi rtual ~ THashLi stlterator();

// Tlterator Overrides

vi rtual voi d Reset () ;

vi rtual voi d* Next () ;

vi rtual Bool ean Iterati onConpl ete() const;
vi rtual Bool ean RenoveCur r ent Obj ect () ;
Next

The Next member function returns the next object in the hash list. If a
match object was given to the iterator then only objects that match the
match object and hash to the same bucket as the match object will be
returned. See “Tlterator” in this chapter for more information.

9-52 Chapter 9/ Utility Classes and Member Functions

Iterati onConpl et e

Thel terati onConpl et e member function returnst r ue if the iteration
completed successfully. See “Tlterator” in this chapter for more
information.

RenoveCur r ent oj ect

The RenoveCur r ent Obj ect member function removes the current object
(the one just returned by Next) from the hash list. See “Tlterator” in this
chapter for more information.

Reset

The Reset member function will reset the iterator so the entire hash list can
be iterated over again. See “Tlterator” in this chapter for more
information.

See also TIterator
THashLi st
That chObj ect

THashLi st | t er at or 9-53

THash(bj ect

Description

Declarations

Member functions

See also

The THashQbj ect classisthe base class for all objects that “know” how
to hash another object.

The THashQbj ect class has the following inheritance:
TDynamic --> THashObj ect

The THashObj ect classis hormally subclassed to provide a hashing
function for a particular type of data or class. The most common use of a
THashObj ect iswiththe THashLi st which requires the user to passit a
THashOhj ect that it will use to get a hash value for objects added to the
hash list. In this case, the THashObj ect subclass's Hash member function
must know what type of objects are being added to the hash list so it can
cast the object past to it to the proper type and cal cul ate the hash value for
the object. Normally thisinvolves looking at afield of the object and
calculating the hash value based on what is in the field. For example, aclass
called TPer sonRecor d might have an f Nane field that is simply a C string.
The Hash member function could simply return the sum of the ASCI|
characters as the hash value.

vi rtual ~ THashQbj ect () ;
vi rtual unsi gned long Hash(const void*) const = 0;
Hash

The Hash member function will return the hash value for the object passed
to it. The Hash member function must know what type of object is passed
toit soit can cast it properly.

THashLi st

9-54 Chapter 9/ Utility Classes and Member Functions

TI nt er r upt Schedul er

Description

Declarations

Member functions

The Tl nt er rupt Schedul er classisused by interrupt service routines to
defer processing.

The Tl nt er r upt Schedul er class has the following inheritance:
TDynam ¢ --> TSchedul er --> TPrioritySchedul er --> TInterruptSchedul er

On the Macintosh, TI nt er r upt Schedul er isafront end to the Deferred
Task Manager. Operations scheduled on the Tl nt er r upt Schedul er
execute at deferred task time.

The TI nt er r upt Schedul er cannot be used on a MacPlus when System 6
isrunning. The problem is that the Deferred Task Manager does not exist
in this situation, and since the Tl nt er r upt Schedul er isjust afront end to
the Deferred Task Manager, it cannot operate without it. In this case the
Schedul e member function will not do anything and | sval i d will return
fal se.

The Tl nt er r upt Schedul er provides an alternate constructor that takes
another TSchedul er as aparameter. When this constructor is used,
operations that are ready to be processed are scheduled on the second
scheduler rather than being processed immediately.

#define kTlInterruptSchedulerlD "slmsked$insk, 1. 1"

Tl nterrupt Schedul er () ;
Tl nt errupt Schedul er (TSchedul er *,
unsi gned long priority);

vi rtual ~ Tl nterrupt Schedul er ();
Vi rtual Bool ean I svalid() const;

vi rtual voi d Schedul e(TOper ati on*);

I svalid

Thel sVval i d member function returnstr ue if the

Tl nt er r upt Schedul er object was initialized properly after it was created.
Cdl I sval i d after creating a Tl nt er r upt Schedul er to verify that it was
constructed correctly. If it returnsf al se, the scheduler should be deleted
and not used. This will be the case when creating a

Tl nt er r upt Schedul er on a MacPlus running System 6.

Continued on following page »

Tl nt er r upt Schedul er 9-55

Schedul e

The Schedul e member function schedules a TOper at i on object. The
newly scheduled TOper at i on object will not be processed until deferred
task time.

See also TOper ati on
TSchedul er
Tl nt errupt
TPrioritySchedul er

Schedul er Exanpl e on the ASLM Examples disk

9-56 Chapter 9 / Utility Classes and Member Functions

Tlterator

Description

Declarations

The Tl t er at or classletsyou iterate through all objectsinaTCol | ecti on
object.

The Tl t er at or class has the following inheritance:

TDynamic --> Tlterator

You need to use Tl t er at or when you do not know what kind of data
structure is being used for a TCol | ect i on or do not have access to the
actual data (which should always be the case unless you are implementing a
TCol | ecti on subclass). You can call the

TCol | ection:: Createlterator member function to create a

Tl t er at or object for acollection. All TCol | ect i on subclasses have a

Tl t er at or subclassthat is capable of iterating over the collection.

By using an object of the TMat chQbj ect class—which can tell you
whether two objects are equal—you can determine which objects an iterator
should return. For example, assume that you want an iterator to return only
employee records for employees in a certain pay range. To carry out this
operation, you can set the TMat chCbj ect for theiterator to a

TMat chObj ect whose Conpar e member function looks at the employee’s
salary and returns O (0 indicates a match) only for employees within the
specified pay range. The Tl t er at or Next member function passes each
employee in the collection to the TMat chObj ect Conpar e member
function and returns the first object for which the Conpar e member
function returns 0. Thislets TMat chObj ect act asafilter for Tl t er at or .
If you want your iterator to use a match object, you can call

Set Mat chObj ect to set TMat chObj ect for the iterator.

#define kTIteratorID "!$iter, 1. 1"

vi rtual ~ Tlterator();

vi rtual voi d Reset () = 0;

vi rtual voi d* Next () = 0;

vi rtual Bool ean IterationConpl ete() const = 0;

vi rtual Bool ean RenoveCur r ent Obj ect () = 0;
voi d Set Mat chQbj ect (TMat chChj ect *) ;

ThMat chQObj ect* Get Mat chQbj ect () const;

Continued on following page »

Tlterator 9-57

Member functions

See also

Get Mat chQbj ect

The Get Mat chObj ect member function returns the match object that was
set with Set Mat chQbj ect .

Iterati onConpl et e

Thel terati onConpl et e member function returnst r ue if the iterator
has finished iterating, and returns f al se if an iteration has stopped because
the iterator has becomeinvalid. A Tl t er at or becomesinvalid if thereisa
change in the contents of the TCol | ect i on object while iterationisin
progress. The contents of the TCol | ect i on object can be changed by an
interrupt that takes place during iteration. The contents of a collection can
also be changed by the code that is doing the iterating. However, acall to
RenmoveCur r ent Obj ect does not make the iterator invalid, even though it
changes the contents of the collection. If the iterator does become invalid,
you can call Reset and restart the iteration.

Next

The Next member function returns the next object in the iteration, or NULL
if the iteration is complete or has become invalid.

Since collections are thread-saf e, when the Next member function returns
NULL, you should call I t er ati onConpl et e. If it returnst r ue, then you
were returned NULL because the iterator was done. Otherwise, you were
returned NULL because the underlying collection changed.

RermoveCur r ent (bj ect

The RenmoveCur r ent Obj ect member function removes the current object
in the iteration (the object that Next most recently returned).

RenoveCur r ent Obj ect returnsf al se if the removal failed (most likely
because the collection has changed and the iterator has become invalid.)

Reset

The Reset member function restarts an iteration from the beginning. Y ou
can call Reset whenaTl t er at or object becomes invalid or when you just
want to iterate through a TCol | ect i on object again.

Set Mat chQhj ect

The Set Mat chObj ect member function sets the TMat chObj ect for
Tlterator.

Tiat chObj ect

9-58 Chapter 9 / Utility Classes and Member Functions

TLi braryFi |l e

Description

Declarations

Thisisthe C++ front-end for the C routines that let a shared library access
the resources in the shared library’sfile.

The TLi br ar yFi | e class has the following inheritance:
TDynamic --> TLibraryFile

The TLi br ar yFi | e class allows you to access the resources in the shared
library’sfile. It contains member functions to place the library file's
resource fork in the resource chain so Resource Manager calls can work.
The TLi br ar yFi | e class also provides member functions that serve as a
front end to some operating system Resource Manager calls. These
member functions keep track of the use of resources so clients and libraries
can share the resources.

IMPORTANT The TLi br ar yFi | e resource management calls are not
interrupt-safe and are not meant to be portable; in fact, they may not exist
on non-Macintosh systems.

#define kTLibraryFilelD "!$Ifil,1.1"

vi rtual Ptr Get Shar edResour ce(ResType, int the ID,
OSErr* = NULL) = 0;
rtual Ptr Get Shar edl ndResour ce(ResType, int index,
OSErr* = NULL) = 0;
rtual Ptr Get Shar edNamedResour ce(ResType,
const char* nane,
OSErr* = NULL) = 0;

v

\'

vi rtual voi d Rel easeShar edResource(Ptr) = 0;
Vi rtual | ong Count Shar edResour ces(ResType) = O;
vi rtual size_t Cet SharedResour ceUseCount (Ptr) const = O;

Vi rtual CSErr Get Shar edResourcel nfo(Ptr,
size t* theSize = NULL,
short* thel D = NULL, ResType* = NULL,

char* theName = NULL) const =

\'

rtual | ong Get Ref Num() const = O;
\Y =

rtual TFi | eSpec* Cet Fi | eSpec() const

0;

Continued on following page »

TLibraryFile 9-59

vi rtual OSEr r OpenLi braryFile() = 0;

vi rtual OSErr Cl oseli braryFile() = 0;
vi rtual OSEr r Preflight (I ong& savedRef Num) = O;
vi rtual OSErr Postflight(l ong savedRef Nunm) = O;

Member functions ~ The C versions of the member functions are described in “Library File and

Resource Management” in Chapter 7, “ASLM Utilities.” They have the
same names and parameters as the TLi br ar yFi | e member functions,
except that they require you to passthe TLi braryFi | e toact onasa
parameter.

9-60

Chapter 9 / Utility Classes and Member Functions

TLi braryl D

Description

Declarations

See also

The TLi br aryl D classis used to identify shared libraries.

The TLi br ar yl D class has no parent class.

A TLi braryl Dobject, likeaTd ass! Dabject, isa C string made up of a
developer ID and alibrary name separated by a dollar sign ($), and
optionally followed by version information.

Library IDs are written in this format:

xxxx$MyLi brary[, 1. 2. 3]

Although the version is not required, your library 1D should contain a
version number so each release of your library will have unique library ID.
It also allows you to reuse the same library ID (with a new version number)

with afuture version of the library. See Appendix D, “Versioning,” for
more information on version numbersin library 1Ds.

TLi br aryl Dis typedef’d to be the same as TCl assl D.
#def i ne TLi braryl D TC assI D

TCl assl D

Appendix D, “Versioning”

TLibrarylD 9-61

TLi br ar yManager

Description

Declarations

The TLi br ar yManager classisthe interface that clients and shared
libraries use to access many ASLM functions.

The TLi br ar yManager class has the following inheritance:
TDynamic --> TLi bar yManager

“Creating and Deleting the Local Library Manager” in Chapter 7,
“ASLM Utilities,” provides more information on how to create and delete
aTLi braryManager object and how it is used.

All TLi br ar yManager member functions have C-language equivalents.
These C functions have the same names and parameters as the

TLi br ar yManager member functions, with the exception of the

NewCbj ect and Get Funct i onPoi nt er functions. Since there is more than
one version of each of these functions, different names are needed for the
C-language equivalents.

Most of the member functions of this class are described in Chapter 7,
“ASLM Utilities,” using the C-language equivalents. All the C versions of
TLi br ar yManager member functions use the local library manager.

#i fdef __cpl uspl us

#def i ne kTLi braryManagerI D "! $l ngr, 1. 1"

vi rtual voi d* New(Chj ect (const Td assl D& cl assl D,
CBErr* = NULL, TStandardPool * = NULL)
const;

vi rtual voi d* New(Chj ect (const TA assl D& cl assl D,
const Td assl D& based assl D,
CBErr* = NULL, TStandardPool * = NULL)
const ;

vi rtual voi d* NewChj ect (const TFor matt edSt r ean&,
CBErr* = NULL, TStandardPool * = NULL)
const ;

vi rtual Td assl nfo* Getd asslnfo(const TA assl D& OSErr* = NULL)
const ;

9-62 Chapter 9/ Utility Classes and Member Functions

virtual

virtual

virtual

vi rtual

virtual
vi rtual

virtual

virtual

virtual

vi rtual

virtual

virtual

virtual

virtual
virtual

vi rtual
virtual

CsErr

voi d*

voi d*

CeEr r

CsErr
Bool ean

CsErr

CsErr

Bool ean

ProcPtr

ProcPtr

CsErr

CeEr r

voi d

Bool ean

Bool ean

voi d
voi d

voi d

Verifyd ass(const Td assl D& cl assl D,
const Td assl D& based assl D) const;
Cast (hj ect (const voi d* obj,
const Td assl D& parent| D,
CsErr* = NULL) const;
Cast ToMai nChj ect (const voi d* obj) const;

Loadd ass(const Td assl D&,

Bool eanParm | cadAl | = fal se);
Unl oadd ass(const Td assl D&);
| sA assLoaded(const Td assl D&) const;

LoadFunct i onSet (const TFuncti onSet | D&,
Bool eanParm | oadAl | = fal se);

Unl oadFuncti onSet (const TFunctionSet | D&);

I sFunct i onSet Loaded(const TFuncti onSet | D&)
const ;

Get Funct i onPoi nt er (const TFuncti onSet | D&,
const char* funcNane, CBErr* = NULL);

Get Funct i onPoi nt er (const TFuncti onSet | D&,
unsi gned int index, CSErr* = NUL);

LoadLi brari es(Bool eanParm forceAl | = true,
Bool eanParm doSel f = true);

Unl oadLi brari es();

Reset Funct i onSet
(const TFunctionSet|ID* = NULL);

TraceLogn();
TraceLogO f ();

Regi st er Dynam cChj ect (TDynami c*) ;
Unr egi st er Dynam c(hj ect (TDynam c*) ;

Set (oj ect Pool (TSt andar dPool *) ;

TSt andar dPool * Get oj ect Pool () const;

voi d

Set Def aul t Pool (TSt andar dPool *) ;

TSt andar dPool * Get Def aul t Pool () const;

d obal Wr | d Get G obal Vorl d() const;
TLi brary* Get Li brary() const;
TLi braryFi | e* GetLi braryFile() const;

Continued on following page »

TLi br ar yManager 9-63

Member functions Cast Chj ect
Cast ToMai n(bj ect

The Cast Obj ect and Cast ToMai nObj ect member functions are
described in “Verifying an Object’s Type” in Chapter 7, “ASLM
Utilities.”

Dunp
The Dunp member function displays alist of all known classesin the
TraceMonitor Trace window.

CGet d asslinfo

The Get d assl| nf o member function returns information about a base
class and the classes that inherit fromit. It returns a TC ass| nf o object,
whichisaTI t er at or subclass and is used to iterate through the desired
subclasses. See “ TClassInfo” for more information on Get d assl nf o.

CGet Def aul t Pool
Set Def aul t Pool

For information about Get Def aul t Pool and Set Def aul t Pool , see
“Memory Management Classes” in Chapter 8, “ASLM Utility Class
Categories.”

Get Funct i onPoi nt er

The Get Funct i onPoi nt er member function obtains a pointer to a
function. For more information about Get Funct i onPoi nt er , see
“Calling Functions by Name” in Chapter 7, “ASLM Utilities.” Since
Get Funct i onPoi nt er isoverloaded, there are two C-language
equivalents. Get Funct i onPoi nt er and Get | ndexedFunct i onPoi nt er.

Get d obal Wrl d

The Get @ obal Wor | d member function returns the global world for the
client owning the TLi br ar yManager object. For additional information,
see “Global World Functions” in Chapter 7, “ASLM Utilities.”

Cet Li brary

The Get Li br ar y member function returns the TLi br ar y object for the
shared library owning the TLi br ar yManager object. It returns NULL when
itiscalled for aTLi br ar yManager object that was created for a non-
shared library client, such as an application.

9-64 Chapter 9/ Utility Classes and Member Functions

GetLibraryFile

The Get Li brar yFi | e member function returns the TLi br ar yFi | e object
for the shared Library owning the TLi br ar yManager object. It returns
NULL when it is called for aTLi br ar yManager object that was created for
anon-shared library client, such as an application.

| sCl assLoaded

| sFunct i onSet Loaded
Loadd ass

Unl oadd ass
LoadFunct i onSet

Unl oadFunct i onSet
LoadLi brari es

Unl oadLi brari es

These member functions are all described in “Loading and Unloading
Shared Libraries” in Chapter 7, “ASLM Utilities.”

New(bj ect

The NewObj ect member function is described in “Using NewObject” in
Chapter 7, “ASLM Utilities.” Since NewObj ect is overloaded, there are
three C-language equivalents: NewObj ect , NewCbj ect W t hPar ent , and
NewObj ect Wt hSt ream Likeits TLi br ar yManager equivalent,

NewCbj ect W t hSt r eamis not yet supported in version 1.1 of the ASLM.

Regi st er Dynam cQoj ect

Unr egi st er Dynam cQbj ect

The Regi st er Dynani cObj ect and Unr egi st er Dynani cObj ect
member functions register any object that is to appear in the Inspector
application. These member functions are described in “Registering C++
Objects With the Inspector” in Chapter 7, “ASLM Utilities.”

Reset Funct i onSet

The Reset Funct i onSet member function is described in the “Loading
and Unloading Shared Libraries” in Chapter 7, “ASLM Utilities.”

Set (bj ect Pool
Get (bj ect Pool

The Set Obj ect Pool and Get Obj ect Pool member functions set and get
the object pool associated with the TLi br ar yManager object. This pool is
the same as the local pool. For more information, see “Memory
Management Classes” in Chapter 8, “ASLM Utility Class Categories.”

Continued on following page »

TLi br ar yManager 9-65

TraceLogOn
TraceLogO f

The TraceLogOn and Tr aceLogOf f member functions control the global
TTr aceLog object’s tracing operations. When tracing is on, the output of
Tr ace isdisplayed in the TraceMonitor Trace window.

Verifyd ass

The Veri f yd ass member function is described in “Verifying aClass's
Base Class” in Chapter 7, “ASLM Utilities.”

9-66 Chapter 9/ Utility Classes and Member Functions

TLi nk

Description

Declarations

Member functions

The TLi nk class implements a link object that can be placed on alinked
list.

The TLi nk class has no parent class.
The TLi nk classis used primarily to maintain TLi nkedLi st objects. It
holds a pointer to an object and a pointer to the next link in the list.

Because TLi nk is completely non-virtual and is only eight byteslong, it is
very fast and efficient. A TLi nk object is often afield of the object to
which it points.

TLi nk(voi d* val ue);

TLi nk(TLi nk* 1ink, voi d* val ue);
TLi nk(Bool eanPar nj ;

TLi nk() ;
~TLi nk();
voi d* operator new size t size, TMenoryPool *); // default size froma
/1 pool
voi d* operator new(size_t); // fromdefault pool
void operator del ete(void* nmenj;
voi d Set Next (TLi nk* i nk);
TLi nk* Get Next () const;
voi d* Get Val ue() const;
voi d Set Val ue(voi d*);
voi d Append(TLi nk* newLi nk); // append newLink after this
voi d Rermove(TLi nk* previous); // renove nextLink fromli st
Append
Renove

The Append member function inserts the link passed to it into the list, and
the Renpbve member function removes the link from the list. When you call
Renove, you must specify in a parameter the link that precedes the link to
be removed.

Continued on following page »

TLi nk 9-67

Set Next
CGet Next
Set Val ue
CGet Val ue

A TLi nk object hastwo fields: an f Next field that points to the next TLi nk
object in alist, and an f Val ue field that points to the object. Set Next and
Get Next set and get the f Next field, and Get Val ue and Set Val ue set and
get the f val ue field.

Instead of using Set Val ue to set the link’s f Val ue, you can pass the
object to the TLi nk constructor. If you do not want the constructor to
initialize the link, you can passf al se to the constructor. This makes

constructing the link slightly faster.

See also TLi nkedLi st

9-68 Chapter 9/ Utility Classes and Member Functions

TLi nkedLi st

Description

Declarations

Member functions

The TLi nkedLi st classisaTSi npl eLi st subclass that adds the ability to
do things with alinked list based on “after” or “before” rules.

The TLi nkedLi st class has the following inheritance:
TDynamic --> TCol l ection --> TSi npl eLi st --> TLi nkedLi st

The TLi nkedLi st class provides several member functions in addition to
those belonging to the TSi npl eLi st class. Their names are intuitive and
largely self-explanatory. TLi nkedLi st does not haveitsown Tl t er at or
class because the TLi st I t er at or class aso worksfor TLi nkedLi st s. The
TLi st terator classiteratesthrough the linked list.

#define kTlinkedListID “slmcol | $11st, 1.1

TLi nkedLi st ();

TLi nkedLi st (TMenor yPool *) ;

TLi nkedLi st (TSi npl eLi st *);
vi rtual ~ TLi nkedLi st ();

/1 New nmenber functions

\'
Vv
\'
\'

rtual void* After(const void* obj) const;
rtual void* After(const ThMatchQbject& const;
rtual void* Bef ore(const voi d* obj) const;
rtual void* Bef ore(const TMat chChj ect & const;

\'
\'
Vv
\'

rtual Bool ean AddLi nkAfter (TLi nk*, const TMat chQbj ect &) ;
rtual Bool ean AddLi nkAfter (TLi nk*, const void* obj);
rtual Bool ean AddLi nkBef ore(TLi nk*, const TMat chQhj ect &) ;
rtual Bool ean AddLi nkBef ore(TLi nk*, const voi d* obj);

virtual OSErr AddAfter (voi d*, const TWMatchObject &);
virtual OSErr AddAfter (voi d*, const void* obj);
virtual OSErr AddBef or e(voi d*, const TMat chQbj ect &) ;
virtual OSErr AddBef ore(voi d*, const void* obj);
AddAf t er

AddBef or e

The AddAf t er and AddBef or e member functions return error codes other
than kNoEr r or if they fail to add the object to the list.

Continued on following page »

TLi nkedLi st 9-69

See also

AddLi nkAf t er
AddLi nkBef or e

The AddLi nkAf t er and AddLi nkBef or e member functions return f al se
if the link to be added before or after cannot be found.

After
Bef or e

The Af t er and Bef or e member functions return the object that is located
immediately after or before the object passed to it in the list.

TLi stlterator
That chObj ect
TSi npl eLi st
TCol | ecti on

TLinkedListExample on the ASLM Examples disk

9-70

Chapter 9 / Utility Classes and Member Functions

TLi stlterator

Description

Declaration

Member functions

The TLi st terator classisused to iterate all collection classes
descending from TSi npl eLi st, including TLi nkedLi st and
TPrioritylList.

The TLi st | t er at or class has the following inheritance:

TDynamic --> Tlterator --> TListlterator

For information on TLi st | t er at or, see “Tlterator” earlier in this
chapter.

#define kTListlteratorID “!'$litr, 1.1”

TLi stlterator(TSi nmpl eLi st*);
Vi rtual ~ TListlterator();

// Tlterator Overrides

vi rtual voi d Reset () ;

vi rtual voi d* Next () ;

vi rtual Bool ean Iterati onConpl ete() const;
vi rtual Bool ean RenoveCur rent Obj ect () ;

/1 New nember functions

Vi rtual TLi nk* Get Current Li nk() const;
voi d Set Li st (TSi npl eLi st *);

CGet Current Li nk
The Get Cur r ent Li nk member function returns the TLi nk object of the

current object (the object just returned by Next).

IterationConpl ete
Next

RermoveCur r ent (bj ect
Reset

For information on these functions, see “ Tlterator” earlier in this chapter.

Continued on following page »

TListlterator 9-71

Set Li st

The Set Li st member function is used to change the list you want to
iterate over. It automatically calls Reset after changing the list.

See also TIterator
TSi npl eLi st

TSimpleListExample on the ASLM Examples disk

9-72 Chapter 9/ Utility Classes and Member Functions

TMacFi | eSpec

Description

Declaration

Member functions

See also

The TMacFi | eSpec class keeps track of files by using a filename, volume
refNum, and directory ID.

The TMacFi | eSpec class has the following inheritance:
TFi | eSpec --> TMacFil eSpec

The TMacFi | eSpec classisthe only TFi | eSpec subclass supported in
ASLM 1.1.

Y ou can directly access or change the three fields used to specify the
location of the library file. You can also use | ni t MacFi | eSpec to change
the fields after creating the TMacFi | eSpec object.

For more information see “ TFileSpec” earlier in this chapter.

voi d | nit MacFi | eSpec(TMacFi | eSpec *spec, int vRef Num |ong parlD,
Str63 nane);

TMacFi | eSpec(const TMacFi | eSpec&) ;
TMacFi | eSpec(int vRefNum |ong parl D, Str63 nane);

voi d* operator new(size_t, size_t fileNaneLen,
TMenor yPool *thePool = NULL)

voi d* operator new size_ t size)

void operator delete(void* obj)

short fVRef Num /! volune refNumof volune file is on
long fParlD // dirIDof the folder fileis in
Str63 f Nang; // nanme of the file

oper at or new

The TMacFi | eSpec class provides an oper at or new override that allows
you to specify the length of the filename (the default sizeis 63). Thisis
useful for reducing the amount of memory TMacFi | eSpec occupies.

TFi | eSpec

TMacFi | eSpec 9-73

TMac Senaphor e

Description

The TMacSemaphor e class implements a simple semaphore that can
prevent data from being changed by another process while aclient istrying
to accessiit.

The TMacSemaphor e class has the following inheritance:
TDynamic --> TMacSemaphore

A semaphore is a flag that can protect a critical piece of data from being
unexpectedly accessed by more than one process at the same time. The
TMacSemaphor e class provides a semaphore that can prevent data from
being changed by interrupts.

Since the Macintosh Operating System supports only one thread of
execution, the only way that data can be changed while you are trying to
access it is for the data to be changed by an interrupt. Therefore, on the
Macintosh, semaphores work by simply locking out interrupts.

Although this solution is simple, it can be dangerous. It means that you
should never hold (or “grab”) the ASLM semaphore for more than a very
short period of time. If you do, interrupts might be locked out for a
dangerously long time—causing problems such as loss of network data.

This code fragment is an example of how you can use a TMacSemaphor e
object inan ASLM client:

TMacSenmaphor e* semaphore = new TMacSenaphor e;
semaphor e->G ab();
if (count == 0)
count ++;
semaphor e- >Rel ease() ;

In this example, it is assumed that the client wants to increment count only
if count isequal to 0. If the semaphore were not used in the example,
count could be changed by an interrupt after it has been determined that
count == 0 but before the code in the example increments count in the
statement count ++.

If an interrupt changed the value of count in this way, the code shown in
the example would increment count again. Thus, count would end up
being equal to 2, when you really want it to be equal to 1.

By using the semaphore as shown in the example, you can prevent
interrupts from occurring and performing unwanted actions such as
unexpectedly changing the value of count when you do not want the value
changed.

9-74 Chapter 9/ Utility Classes and Member Functions

Declarations

Member functions

See also

#defi ne kTMacSemaphorel D "! $semm, 1. 1"

TMacSenaphore();
vi rtual ~ TMacSenaphore();
virtual void Grab();
virtual void Rel ease();
virtual Bool ean GrabNoWai t () ;

G ab

The G ab member function grabs the semaphore which causes the
interrupts to be blocked out.

G abNoWai t

The G abNoWai t member function grabs the semaphore if it is not already
grabbed and returns t r ue if the grab is successful. On the Macintosh
Operating System, Gr ab never blocks, so G abNoWai t never fails. Since the
Macintosh Operating System has only a single thread of execution, it is
impossible to try to grab the same semaphore more than once from outside
the same thread of code.

Rel ease

The Rel ease member function rel eases the semaphore and reenables
interrupts by returning the interrupt level to the state it was in before the
matching grab was called. Y ou must call Rel ease for every G ab.

TMacSemaphoreExample on the ASLM Examples disk

TMacSemaphore 9-75

That chCoj ect

Description

Declarations

The TMat chObj ect class gives users of a collection away to determine
whether two objects are equal, rather than just having the collection
compare object pointers.

The TMat chQbj ect class has the following inheritance:
TDynami c- - >TMat chCbj ect

This object is the base class for any object which “knows” how to hash a
specific object, as well as how to compare a second object to the specific
object.

Using Thvat chObj ect to determine whether two objects are equal can
prevent, for example, two objects with the same name from appearing in a
collection. Objects of the TMat chQbj ect class can also be used to filter out
objects that you do not want returned to you by a Tl t er at or object.

Objects of the TMat chCbj ect class can be useful when you want to
perform operations such as AddUni que or Menber onaTCol | ecti on
object, but want something other than the object’ s pointer to determine
whether two objects are equal. TCol | ect i on member functions such as
AddUni que and Menber have versions that use a TMat chCoj ect parameter
to help determine if the object is already in the collection.

The Tvat chObj ect subclass should know about a specific type of object
that will be added to the collection that the TMat chObj ect subclasswill be
used with. An example of how to do thisis given with the | sEqual
member function description below.

#defi ne kTMat chCbj ect1 D "! $nobj, 1. 1"
vi rtual That chQbj ect () ;

/1 Default inplenentation is to return O
virtual unsigned | ong Hash() const;

/1 Default inplenentation is to conpare
/! address of "this" with address of the object
virtual short Conpar e(const voi d*) const;

/! Default inplenentation is to call Conpare
virtual Bool ean | sequal (const voi d*) const;

9-76 Chapter 9 / Utility Classes and Member Functions

Member functions

Conpar e

The Conmpar e member function returns zero if the object passed to it
matches comparison criteria that are specified for the Tvat chQbj ect . It
returns - 1 if the match object is considered to be “greater,” and 1 if the
object passed to Conpar e is considered to be “greater.” Subclasses of
TMat chObj ect must override the Conpar e member function so it can
properly compare the object passed to it with the information stored in the
match object (such as a name).

IMPORTANT The implementation of Conrpar e and | sEqual should be
designed to execute as fast as possible, since a semaphore is held when
Conpar e and Equal are called—and, on the Macintosh, this disables
interrupts.

Hash

The Hash member function is used to speed up hash list operations that use
match objects. For example, when used by the THashLi st I t er at or, it
tells the iterator which hash buckets to examine. It will be used in a similar
way by the THashLi st : : Menber member function to speed up searches.
See “THashListlterator” and “THashList” for more information
regarding hash functions.

| sEqual

The TCol | ect i on member functions such as AddUni que pass each object
in the collection to the match object’s | sEqual member function (one at a
time) to seeif the object is aready in the collection. Also, Tl t er at or
subclasses pass each object in the collection to the match object’s | sEqual
member function (one at atime) for filtering purposes.

The | sEqual member function returnst r ue if the match object and the
object passed are considered to be equal, and returnsf al se otherwise. The
default implementation of | sEqual isto simply call Conpar e and return

t rue if Conpar e returns 0 and f al se otherwise. For this reason, you
normally do not need to override | sEqual . However, since interrupts are
normally disabled when | sEqual iscalled, you should override | sEqual if
comparing objects for equality is alot faster than calling Conpar e.

Continued on following page »

ThNat chCbj ect 9-77

See also

Suppose, for example, that you had a collection of TNane objects and
wanted to make sure that all the names in the collection were always
unique. If you called AddUni que(voi d*) to add TNanme objectsto the
collection, the same name might appear in the collection more than once
because more than one TNane object might have the same name. That is
because AddUni que(voi d*) uses object pointers to determine whether two
objects are the same, and a collection does not know anything about names.
Y ou can do the following to avoid this problem:

1 Subclass TMat chQbj ect . (For example, you can create a subclass
named TNanmeMat chQbj ect .)

2 Add anamefield to your subclass and set the name field to the name of
the TNarre object that you want to add to the collection.

3 Havethe Tvat chObj ect subclass's Conpar e member function compare
the name field to the name in the TNanme object passed to it, returning 0
if they are equal, - 1 if the match object’s nameis greater, and 1 if the
TNane object’s name is greater. (Conpar e must cast the voi d* passed to
it to aTNane*.)

4 Call the member function TCol | ecti on: : AddUni que(voi d*,
TMat chQbj ect &) to add the object to the collection. (Note that
AddUni que(voi d*) uses object pointers to determine if two objects are
the same.)

AsTCol | ecti on: : AddUni que iterates through TCol | ect i on, it passes
each object to your TNanmeMat chObj ect : : | sEqual member function.
The | sEqual function compares its TNameMat chQbj ect 's name with the
name of the TNane object passed to it (usually by calling the Conpar e
member function), returning t r ue if the objects are equal and returning

f al se if they are not.

If TNaneMat chQObj ect : : | sEqual returnsf al se for all TNane objects
passed to it, AddUni que adds the object to the TCol | ect i on.

TArrayExample and TLinkedListExample on the ASLM Examples disk

9-78

Chapter 9 / Utility Classes and Member Functions

TMenor yPool

Descriptions

The TMenor yPool classisthe abstract class from which memory allocators
should descend.

The TMenor yPool class has the following inheritance:
TDynamic --> TMenoryPool

The TMenor yPool classis an abstract class used for all pools. Some
TMenor yPool member functions are pure virtual member functions that
must be overridden. Memory pools are used for high seed interrupt safe
memory allocation. For more information on memory pools see “Memory
Management Classes” in Chapter 8, “ASLM Utility Class Categories.”

On the Macintosh, TMenor yPool subclasses always allocate their pools by
using NewPt r and then blocks of memory are allocated out of these pools
whenever the user calls one of the member functions that allocates
memory.

Creating and deleting pools

When you create a memory pool using the TMenor yPool new operator,
you pass the amount of memory that you want to be made available from
the pool in the pool Si ze parameter (the second si ze_t parameter of
new). The size of the pool object is automatically passed in the first si ze_t
parameter of new. The pool object and the pool memory that are available
for allocation coexist in the same physical block of memory.

Remember that each chunk you allocate from the pool requires some
overhead. The TMenor yPool subclasses define a constant for the chunk
overhead size. Y ou should estimate how many chunks you will want to
allocate from the pool, multiply this by the constant, and add the result to
the pool Si ze parameter when the pool is created. If you do not add
enough overhead to cover the number of chunks that you intend to allocate
from the pool, you may not be able to allocate all of them.

Continued on following page »

TMerror yPool 9-79

WARNING Y ou cannot create pools at interrupt time, and you cannot
add memory to pools by calling AddMenor yToPool at interrupt time.
Thisis because AddMenor yToPool makes calls to the Macintosh
Memory Manager that are not interrupt-safe. If the ASLM knowsit is
being used at interrupt time (usually when acall to Ent er | nt er r upt
is made), the AddMenor yToPool function does not attempt to

“grow” the pool.

TMenor yPool subclasses must be created using the new operator. A
pool should never be created as a stack object or as a data member of
aclass.

Another parameter that is required when you create a pool is the zone from
which memory is allocated for the pool. The first version of new accepts a
zone type. Possible zone types are kSyst enZone, kKer nel Zone,

kAppl i cZone, kCur r ent Zone, and kTenpZone. The kSyst enZone and
kKer nel Zone types are the same; they cause memory allocations from the
pool to be made from the system heap. The kTenpZone uses temporary
memory, and kAppl i cZone uses the application zone. The kCur r ent Zone
type uses memory from the current zone. On the Macintosh Operating
System, thisis normally the application zone of the currently executing
application. Y ou can get and set the current zone by using the Macintosh
Memory Manager calls Get Zone and Set Zone.

The second version of new accepts a pointer to a heap zone (a THz* on the
Macintosh). If a NULL pointer is passed for this parameter, the ASLM uses
temporary memory.

An optional parameter that you can specify when you create a pool is
Menor yType. The value of Menor yType is either kNor mal Menory,
kHol dMenory, kLockMenory, or kLockMenor yCont i guous.

The names of all these constants are based on virtual memory terms. Held
memory is memory that is never paged out to disk. Locked memory is
memory that is held and never moved in physical memory. Locked
contiguous memory is memory that is locked and is also stored
contiguously in physical memory. If the Menor yType parameter is not
specified, the ASLM uses kNor mal Menory by default.

When you delete a TMenor yPool object, the ASLM frees all the memory
allocated for the pool, including any additional blocks of memory that may
have been added by AddMenor yToPool cals.

9-80

Chapter 9 / Utility Classes and Member Functions

Using pool notifiers

The TMenor yPool class provides a facility for notifying clients when the
amount of available memory falls below or exceeds a certain level. Y ou can
use this facility to expand (grow) your pool by calling AddMenor yToPool
or to shrink your pool by calling DownSi zePool .

ASLM provides the TPool Not i fi er classto assist in growing pools when
they are low on memory. Subclasses of TPool Not i fi er can be created to
either change the behavior of the notifier when the pool islow on memory
and to do something when the pool has too much free memory. For more
information on pool notifiers and how they are used, see the description of
the Al | ocat e member function below and the TPool Not i fi er classlater
in this chapter.

WARNING The TMenor yPool objects often fail to allocate or grow on
memory for machines with virtual memory turned on when you
specify kLockMenor yCont i guous Menor yType, especialy if the
machine has little real memory. It may not be possible to make the
range of memory physically contiguous if any of the pagesin the
range are already locked, or if there is not a contiguous block in real
memory that is large enough. Therefore, if you must have a pool with
locked contiguous memory, allocate it as early as possible, preferably
at system startup, to increase the likelihood of finding enough
contiguous memory. The pool may not be able to grow at alater time.

Declarations #defi ne kTMenoryPool | D "! $pool , 1. 1"
vi rtual ~ TMenor yPool () ;

voi d* operator new(size_ t size, size_t pool S ze,
ZoneType zType, MenoryType niType = kNor mal Menory)
voi d* operator new(size_ t size, size_t pool Size, void* zone,
MenoryType niType = kNor mal Menory)
voi d* operator new(size_ t size)
void operator delete(void* ptr)

vi rtual voi d* Al ocat e(si ze_t) = 0;
vi rtual voi d* Real | ocat e(voi d*, size_t) = 0;
vi rtual voi d Free(voi d*) = 0;
vi rtual size_t Get Si ze(voi d*) const = 0;

Continued on following page »

TMerror yPool 9-81

vi rtual Bool ean CheckPool () const = 0;

vi rtual voi d Get Pool | nf o(Pool | nf 0&) const;
vi rtual voi d TracePool I nfo() const;
vi rtual Bool ean AddMenor yToPool (size_t);
vi rtual voi d DownSi zePool () ;
vi rtual size_t Get Lar gest Bl ockSi ze() const = 0;
size_t Get Qurrent Pool Si ze() const;
voi d Set Noti fi er(TPool Notifier*);
TPool Noti fier* GetNotifier() const;
voi d Set Noti fyMarks(size t |ow,

size_t high = (size_t)-1L);

static TMenor yPool * Recover Pool (voi d*);

static voi d* Al | ocat eMenory(size t);

static voi d* Al | ocat eMenor y(TMenor yPool *, size_t);
static voi d* Real | ocat eMenory(voi d*, size_ t);
static voi d Fr eeMenor y(voi d*);

static size_t Get MenorySi ze(voi d*) ;

Member functions ~AddMenor y ToPool

The AddMenor yToPool member function adds a specified amount of
memory to the memory available to the pool. It allocates the memory that
is added to the pool from the heap that was specified when the pool was
created. The AddMenor yToPool object also uses the Menor y Type specified
when the pool was created. On the Macintosh Operating System, the
memory to be added to the pool is allocated by calling Newpt r .

Al |l ocate

The Al | ocat e member function allocates a block of memory from the
pool. When you call Al | ocat e, you pass the size of the block you want as
aparameter. If Al | ocat e cannot find enough memory, it calls the pool’s
TNot i fi er object, and the notifier then has the option of freeing some
memory. Al | ocat e will continue to call the TPool Noti fi er object’s

Not i f y member function as long as it continues to free up memory and
thereis still not enough memory for the allocation. If the pool notifier does
not free up enough memory and Al | ocat e was not called at interrupt time,
then it will immediately grow the pool so it has enough memory, otherwise
it will return NULL. See “TPoolNotifier” later in this chapter for more
information on pool notifiers.

9-82 Chapter 9/ Utility Classes and Member Functions

Al | ocat eMenory
Real | ocat eMenory
FreeMenory

Get MenorySi ze

The Al | ocat eMenory member function workslike Al | ocat e, butisa
static function that takes the pool from which to allocate as a parameter.
Thereisalso aversion of Al | ocat eMenory that uses the pool returned by
Cet Def aul t Pool instead of taking the pool as a parameter. Other
TMenor yPool static functions include Real | ocat eMenory (similar to
Real | ocat €), FreeMenory (similar to Fr ee), and Get Menor ySi ze
(similar to Si ze).

DownSi zePool

The DownSi zePool member function frees all memory that was added to
the pool with AddMenor yToPool and does not currently have any blocks
of memory allocated from it.

Free

The Fr ee member function returns to the pool the block that is passed to
it.

Get Curr ent Pool Si ze

The Get Cur r ent Pool Si ze member function returns the current size of
the pool.

Cet Si ze
The Get Si ze member function returns the size of the block passed to it.

CGet Lar gest Bl ockSi ze

The Get Lar gest Bl ockSi ze member function returns the largest block
sizethat is available for allocation.

CheckPool

The CheckPool member function returnst r ue if no problems are found
with the pool. When you are debugging code, it is good practice to call
CheckPool now and then to make sure that you are not corrupting the
pool.

Continued on following page »

TMerror yPool 9-83

CGet Pool I nfo

The Get Pool | nf o member function returns a Pool | nf o data structure
that contains the number of free bytes in the pool (f Fr eeByt es), the size
of the largest block in the pool (f Lar gest Bl ock), the “high-water mark”
that shows the most memory that has been used at the same time from the
pool (f MaxUsage), and the current size of the pool, including both free
and allocated blocks (f Cur Si ze).

Note: To seeif you have enough memory to allocate a block, you must
check f Lar gest Bl ock—not f Fr eeByt es—because the pool’s memory
may be fragmented. The value stored in f MaxUsage is the maximum
amount of memory that has been allocated from the pool at any one time,
including per-block overhead and the extra memory that must be allocated
during aReal | ocat e call. You can use the value of f MaxUsage asa
guideline to help you figure out how big your pool should be. In deciding
how big to make your pool, you also should consider how fragmented
your pool may become. The pool may become fragmented during the
normal course of allocating and reallocating blocks because pool memory
is non-relocatable and cannot be compacted.

Real | ocat e

The Real | ocat e member function reallocates a block of memory to a new
size that can be larger or smaller than the original size. When you call

Real | ocat e, you pass the member function two parameters. a pointer to
the block that you want to reallocate and the new size that you want
alocated. A Real | ocat e call can fail if there is not enough memory in the
pool for both the original block and the new block.

When you call Real | ocat e to reallocate memory to alarger block, the
Real | ocat e function attempts to merge the block with any free block
before or after it. If thisis not possible, Real | ocat e must be able to store
both the original block and the new block in memory at the same time.

Recover Pool

The Recover Pool member function returns the TMenor yPool object that
was used to allocate a specified block of memory.

9-84

Chapter 9 / Utility Classes and Member Functions

See also

Set Not i f yMar ks
Set Noti fier
Cet Notifier

The Set Not i f yMar ks member function sets the low and high free
memory marks that the pool’ s notifier will be warned about. The

Set Not i fi er function specifiesthe TPool Noti fi er object to use for
notification when the low or high mark is reached. The Get Noti fi er
function returns the TPool Not i fi er for the pool. When your notifier is
called, you can schedule a TOper at i on on a TTaskSchedul er to allocate
more memory. For more information on pool notifiers, see “Using Pool
Notifiers” earlier in this section.

TracePool I nfo

The Tr acePool | nf o member function writes the information obtained by
Get Pool I nf o to the TraceMonitor’'s Trace window.

TPool Noti fier
TSt andar dPool
TChunkyPool

TPoolNotifierExample on the ASLM Examples disk

TMerror yPool 9-85

TMet hodNot i fi er

Descriptions

Declarations

Member functions

The TMet hodNot i fi er classisthe base class for notifiers that call a
member function in an object.

The TMet hodNot i fi er class has the following inheritance:
TDynamic --> TNotifier --> TMethodNotifier

A Thvet hodNot i fi er object uses a member function of an object as the
callback, so it is more object—oriented than TProcNoti fi er. The
constructor takes a pointer to the member function to call for notification
and the object that the member function belongs to. Although the object
passed to the constructor is declared as a TDynami c¢*, the only requirement
isthat it inherit from Si ngl eCbj ect and that it have its v-table first.

#defi ne kTMet hodNotifierlD "!$mot, 1. 1"

TMet hodNot i fi er (TDynami c*, NotifyMethod);
TMet hodNot i fi er (const TMet hodNoti fier&);
vi rtual ~ TMet hodNot i fier();

virtual void Not i f y(Event Code, OSErrParm = kNoError,
voi d* notifyData = NULL);

TDynami c* Get bj ect () const;

Get (oj ect

The Get Obj ect member function returns the object associated with the
TMet hodNot i fi er object. A TMet hodNot i fi er object has an object
pointer that is attached by the creator of the notifier and is returned as a
TDynani c* by calling Get Qbj ect. The TMet hodNotifier’s

Not i f yMet hod must point to a member function of the object associated
with the notifier.

Notify

The Not i f y member function calls the Not i f yMet hod that was passed to
the constructor when the object was created. The Not i f y function sets the
global world to the global world stored with the TMet hodNot i fi er object
when it was created and sets the current client to the client that owns the
global world. It then calls the Not i f yMet hod that was set up when the
TMet hodNot i fi er object was created.

9-86 Chapter 9/ Utility Classes and Member Functions

See also TNotifier
TProcNoti fier

TMethodNotifierExample on the ASLM Examples disk

TMet hodNot i fi er 9-87

TM cr oseconds

Description

Declarations

Member functions

See also

This TTi me subclass is used to specify an initial time valuein
microseconds—that is, it provides a constructor that takes atime valuein
microseconds.

The TM cr oseconds class has the following inheritance:

TDynamic --> TMatchObject --> TDoublelLong -->
TTime --> TM croseconds

For additional information, see “TTime” later in this chapter.

#define kTM crosecondsl D "sl m supp$m cs, 1. 1"

TM cr oseconds() ;
TM cr oseconds(unsi gned | ong nsecs);
~ TM croseconds() ;

operator unsigned | ong() const;
vi rtual doubl e Convert ToDoubl e() const;
operat or doubl e() const;

oper ator unsi gned | ong
The oper at or unsi gned | ong member function returns the number of

microseconds in an unsi gned | ong.

Convert ToDoubl e

The Convert ToDoubl e member function converts the time to adoubl e
containing the number of microseconds.

oper at or doubl e

The oper at or doubl e member function returns the number of
microseconds in adoubl e by calling Convert ToDoubl e.

TTi me

TTimeExample on the ASLM Examples disk

9-88 Chapter 9/ Utility Classes and Member Functions

TM 1|1 seconds

This TTi me subclass is used to specify an initial time valuein
milliseconds—that is, it provides a constructor that takes atime valuein
milliseconds.

The TM | | i seconds class has the following inheritance:
TDynamic --> TMatchObject --> TDoublelLong -->

TTine --> TMIIliseconds
Description For additional information, see “TTime” later in this chapter.
Declarations #define kTM I lisecondsID "sl msupp$mils, 1.1"

TM I Iiseconds();
TM | Iiseconds(unsi gned | ong nsecs);
~ TM I 1liseconds();

operator unsigned | ong() const;
virtual double Convert ToDoubl e() const;
operat or doubl e() const;

Member functions oper at or unsi gned | ong
The oper at or unsi gned | ong member function returns the number of

millisecondsin an unsi gned | ong.

Convert ToDoubl e

The Conver t ToDoubl e member function converts the time to adoubl e
containing the number of milliseconds.

oper at or doubl e

The oper at or doubl e member function returns the number of
milliseconds in adoubl e by calling Convert ToDoubl e.

See also TTi e

TTimeExample on the ASLM Examples disk

TM | | i seconds 9-89

TNot i fier

Description

Declarations

Member functions

The TNot i fi er class and its subclasses are used for asynchronous
notification of events.

The TNot i fi er class has the following inheritance:
TDynamic --> TNotifier

The TNoti fi er classisused as abase class for classes that are used for
asynchronous notification of events. The ASLM provides two general
purpose TNot i fi er subclasses: TProcNoti fi er and TMet hodNoti fi er.
The TProcNot i fi er handles notification by calling a C function that is
passed to the TProcNot i fi er object when it was constructed. The

TMet hodNot i fi er handles notification by calling a method of an object,
both of which are passed to the TMet hodNot i fi er object whenitis
constructed. The ASLM also provides the TPool Not i fi er classwhichis
used by TMenor yPool subclasses for notification when the memory pool
has either too little or too much free memory.

The TNot i fi er constructor saves the current global world in afield that
can then be accessed by the TNot i fi er subclass. Its main use is by the
Not i f y member function for setting up the global world and the current
client.

t ypedef unsigned | ong Event Code;

#define kTNotifierID "!$noti, 1.1"

TNotifier();
vi rtual ~ TNotifier();

virtual void Not i f y(Event Code, OSErrParm = kNoError,
voi d* = NULL) = O;

Notify

The Not i f y member function is called to notify the TNot i fi er subclass
of an asynchronous event. The contents of the three parameters passed to
Not i fy are up to the caller, but usually there will be some agreement
between the caller and the TNot i fi er subclass on what the parameters will
contain.

9-90 Chapter 9/ Utility Classes and Member Functions

The TNoti fi er hasad obal Wor | d field that is set up to be equal to the
current global world when an instance of the TNot i fi er subclassis
created. Thisis handled automatically by the TNot i fi er constructor. The
subclass's Not i f y member function can use this field to set up the global
world and current client when it is called.

See also TMet hodNot i fi er
TProcNoti fier

TProcNotifierExample and TMethodNotifierExample on the ASLM
Examples disk

TNotifier 9-91

TOper ati on

Description

A TQper at i on object contains the implementation of atask to be
performed.

The TOper at i on class has the following inheritance:
TDynamic --> TQOperation

The TOper at i on objects (containing the implementation of atask to be
performed) are normally placed on TSchedul er objects so that they can
be executed at alater time. But they also have other uses, such as being
used in place of callback procedures.

When an operation is ready to be processed, its Pr ocess member function
iscalled. It is up the scheduler that the operation is on to decide when it
should be processed. The default implementation of the Pr ocess member
function isto call the operation’s Pr ocessPr oc if it has one. The
ProcessProc issimply aC function that is set up when the operation is
constructed. Subclasses of TOper at i on may choose to make the Pr ocess
member function do all the work rather than calling the Pr ocessPr oc. See
Pr ocess below for more information.

TOper at i on objects can have reference data stored with them so the
operation has some context when it is called. Often this reference datais
simply a pointer to the object that created the TQper ati on .

Setting up a global world for an operation

TOper at i on objects have the ability to have their global world (or any
other global world) be set up as the current global world when the
operation is processed. There are two ways to set up the global world for an
operation. One strategy is to store the global world with the operation. The
other way is to store the global world with an ASLM scheduler such as

TTi meSchedul er or Tl nt er r upt Schedul er. In either case, the scheduler
sets up the global world before processing the operation, and then restores
it afterwards. It will also set the current client to the client that owns the
global world by using the Set Cl i ent Towor | d routine. (For more
information about the ASLM scheduler classes, see “Process Management
Classes” in Chapter 8, “ASLM Utility Class Categories.”)

If the global world of the scheduler that you use is set to the constant

ki nval i dwor | d (which isthe default), the scheduler sets the current global
world to the operation’s global world before processing the operation,
unless the operation’s global world is also set to kI nval i dWor | d. Then,
the current global world is not changed. If the scheduler’s global world is
not set to ki nval i dwor | d, the scheduler sets the global world to the
scheduler’ s global world before processing the operation.

9-92 Chapter 9/ Utility Classes and Member Functions

Declarations

All operations have their saved global world set to the current global world
when they are created. Y ou can set an operation’s saved global world by
calling Set Savedd obal Wr | d. You can retrieve an operation’s saved
global world by calling Get Savedd obal Wor | d.

Setting a scheduler’s global world

All schedulers have their global world set to the constant kil nval i dWer | d
when they are created. Y ou change a scheduler’s global world by calling
TSchedul er: : Set Schedul er Wor | d. You can retrieve the scheduler’s
global world by calling TSchedul er: : Get Schedul er Wr | d.

TSchedul er: : | sSchedul er Wor | dval i d returnsf al se if the
scheduler’s global world is set to kI nval i dwor | d. Otherwise,

TSchedul er: : |1 sSchedul erWor | dVal i d returnst r ue.

Since the default is for schedulers to have their global world set to

kI nval i dwor | d and for operations to have their global world set to the
world that was current when they were created, the ASLM default behavior
isfor an operation to be processed in the world that was current when it was
created.

Usually, this default behavior is satisfactory; that is, you can usually create
your TSchedul er and TOper at i on objects without doing anything special
to get the global world set up properly when your operation is processed.
However, you might want to change an operation’s global world if the
implementation of the ProcessProc isin adifferent global world than the
code that created the operation.

For example, someone might give you an operation whose Pr ocessPr oc
you get to set before scheduling it. Also, you might want to set the
scheduler’s global world if the scheduler is run by one client, the
operations on the scheduler were created by a second client, and the
operation’s ProcessProc or Process member function calls code
belonging to the first client. If the operation’s Pr ocessProc or Process
member function does not care about the global world, but the code that it
callsin thefirst client does care, then the first client should set the
scheduler’s global world to its own world. Thisis arare case, but it does
sometimes turn up—for example, in the Inspector application.

#define kTQperationlD "1$oper, 1. 1"

#def i ne kRenovedl nProcess ((TPriorityLi nk*)-1L)

Continued on following page »

TNotifier 9-93

TOperation();
TOperation(long creatorData);
TOperation(voi d* creatorPtr);
TOper ati on(ProcessProc, |ong creatorData);
TOper ati on(ProcessProc, void* creatorbtr);
TOper ati on(const TOperation&);

vi rtual ~ TOperation();

TPriorityLi nk* GetLink();

virtual void Reset () ;
virtual void Process();

Bool ean WasRenovedl| nProcess() const;

voi d Cl ear Renovedl nProcess();

voi d Set Del et eWhenDone() ;

Bool ean | sBei ngRerun() const;

voi d Set ProcessProc(ProcessProc);
ProcessProc Get ProcessProc() const;

/1 Timer and Priority are just two different ways
/1 of looking at the sane field.

voi d Set Ti me(const TTi ne&);
voi d Set Ti ne(unsi gned | ong nsecs);
voi d SetPriority(unsigned long pri);

unsi gned long GetTinme() const;
unsigned long GetPriority() const;

/1l CreatorData and CreatorPtr are just 2 different ways
/1 of looking at the sane field.

voi d* Get CreatorPtr() const;

| ong Get CreatorData() const;
voi d Set CreatorPtr(voi d*);
voi d Set Cr eat or Dat a(l ong) ;

d obal Worl d CGet Savedd obal Wrl d() const;
voi d Set Savedd obal Wr | d(G obal Wrl d) ;

9-94 Chapter 9/ Utility Classes and Member Functions

Member functions

Get Li nk

All TOper at i on objects have aTLi nk field that is automatically initialized
to point to the TOper at i on object. Get Li nk returns a pointer to this

TLi nk. Normally it is only used by TSchedul er subclasses for keeping the
operation on alist of operations. Since the TOper at i on has only one

TLi nk field, it can only be on one scheduler at atime.

CGet Ti me
Set Ti ne
CetPriority
SetPriority

The TOper at i on objects can be associated with atime if they areon a
TTi meSchedul er object or with apriority if they are on a
TPrioritySchedul er object (both of these classes are described later in
this chapter). Y ou can get and set the time by calling Set Ti me and

Get Ti me. You can get and set the priority by calling Get Pri ori ty and
Set Priority.A TOperati on object cannot have both atime and a
priority because the two values are stored in the same field.

Process

When you want to schedule a TOper at i on, you can pass the TQper at i on
object to the TSchedul er: : Schedul e member function. At some point,
the TSchedul er: : Run member function is called, causing each

TOper at i on to be removed from TSchedul er and the

TOper ati on: : Process member function to be called for each operation.

IMPORTANT A TQper at i on cannot be scheduled a second time until it has
been removed from the scheduler. This is because scheduled operations are
maintained on alinked list and the link is part of the TOper at i on object.
Therefore, a TOper at i on object can be on only one linked list at atime. A
TOper at i on object can be rescheduled in its ProcessPr oc or Process
member function because the object will already be removed when the
ProcessProc or Process iscaled. Alternatively, a TOper at i on object
can be rescheduled at any time after the operation has been processed.

There are two ways to control what a TOper at i on doeswhen its Pr ocess
member function is called.

m You can subclass TOper at i on and override its Pr ocess member
function. This also gives you the opportunity to add more fields to the
TOper ati on.

m You can set the TOper at i on object’s Pr ocessPr oc.

Continued on following page »

TNotifier 9-95

The Pr ocessPr oc isafunction that is called when the TOper ati on is
processed. The default behavior of TOper ati on: : Process isto call the
TOper at i on object’s ProcessProc. Infact, it isan error not to set the
ProcessProc if you have not overridden the Pr ocess member function.

Y ou can set the Pr ocessPr oc by either passing the appropriate parameter
to the constructor or by calling Set Pr ocessPr oc. The purpose of the
ProcessProc isto let you use TOper at i on without having to subclassiit
and override the Pr ocess member function. In general, if you want to
subclass TOper at i on to add more fields, you should override the Pr ocess
member function, not set the Pr ocessPr oc.

Note: You can delete aTOper at i on object inits Process member
function or its Pr ocessPr oc. Then the operation’s creator does not need
to keep track of the operation.

Reset

The Reset member function sets the operation’s Pr ocessPr oc to NULL sO
that it will not be called when the operation is processed.

SetCreatorbPtr
CGCetCreatorbPtr
Set Creat orDat a
CGet Creat or Dat a

Each TOper at i on has a user data field, which you can use for any purpose
you like. You can get and set the contents of the user datafield by calling
Set Creator Ptr and Get Cr eat or Pt r, withaPt r type passed as a
parameter. Alternatively, you can get and set the user datafield by calling
Set Cr eat or Dat a or Get Cr eat or Dat a, with al ong data type passed as a
parameter. The Set Cr eat or Pt r and Set Cr eat or Dat a functions set the
same field in a TQper at i on object.

One common use of the user datafield isto set it to point to an object,
possibly the one that created the TOper at i on object. Y ou can also set the
user datafield by passing the appropriate parameter or parameters to the
constructor.

Set ProcessProc
Get ProcessProc

The Set Pr ocessPr oc member function is used to set the operation’s
ProcessProc, and Get ProcessPr oc returns the operation’s
ProcessProc. You can also set the ProcessPr oc by passing the
appropriate parameters to the constructor.

9-96

Chapter 9 / Utility Classes and Member Functions

The purpose of the ProcessPr oc isto let you use TOper at i on objects
without having to subclass them and override the Pr ocess member
function. In general, if you want to subclass TOper at i on to add more
fields, you should override the Pr ocess member function, not set the
ProcessProc.

Set Savedd obal Wrl d
CGet Savedd obal Worl d

All TOper at i on subclasses have a global world associated with them that is
set by the TOper at i on constructor to be equal to the current global world
at the time of the operation’s construction. Get Savedd obal Wor | d is
used to get this global world and Set Savedd obal Wor | d is used to
change its value. See “ Setting up a Global World for an Operation” and
“Setting up a Scheduler’s Global World” earlier in this section to see how
the global world is used.

WasRenovedl nProcess

d ear Renovedl nPr ocess
Set Del et eWhenDone

| sBei ngRer un

These four member functions are used by clients of the TTi meSchedul er
class to coordinate removal of an operation-in-progress.

The WasRenoved! nPr ocess function returns a flag that shows whether the
current TOper at i on object was removed from its TTi neSchedul er object
whileitsPr ocess routine was executing.

You can call C ear Renovedl| nProcess when aTOper at i on client
determines that an operation that isin process has been removed from the
TTi meSchedul er object, and the TOper at i on object intends to delete
itself.

You can call Set Del et eWhenDone when a TOper at i on object needs to be
deleted. The Set Del et evWhenDone function should be called only when
auto-rescheduling ist r ue and the object being deleted has not been
removed in process. (The object should first ensure that itstime field is
Z€ero.)

You can call | sBei ngRer un when it isimportant that the

TTi meSchedul er object does not ook at a TOper at i on object’s memory
when the call returns. Typically, | sBei ngRer un is called when

TOper at i on is an embedded object and the parent object is to be deleted.
In this case, TOper at i on should delete only the parent object when

| sBei ngRer un returnstr ue.

Continued on following page »

TNotifier 9-97

The WasRenovedl| nProcess, O ear Renovedl| nPr ocess,
Set Del et eWhenDone, and | sBei ngRer un functions are described in more
detail in “TTimeScheduler” later in this chapter.

See also TSchedul er

9-98 Chapter 9 / Utility Classes and Member Functions

TPool Noti fi er

Description

Declarations

Member functions

The TPool Not i fi er classisused by TMenor yPool objects so that they
can be notified when the pool reaches alow or high mark.

The TPool Not i fi er class has the following inheritance:
TDynamic --> TNotifier --> TPool Notifier

The TPool Noti fi er classcan assist in automatically increasing the size of
(growing) a pool when the pool comes dangerously close to running out of
memory.

When you create a TPool Not i fi er object, you pass to the constructor the
percentage by which you want the pool to grow and the minimum number
of bytes by which it should grow. Y ou can then attach the notifier to one
pool by calling the TMenor yPool : : Set Not i fi er member function.

If you omit both constructor parameters, a default 10 percent “grow by”
is used, with a 128-byte minimum grow.

See aso TG owOper at i on for information on “growing” a pool.
IMPORTANT A TPool Noti fi er object can be attached to only one pool.

#defi ne kTPool NotifierlD "I$plnt,1.1"

TPool Noti fier(unsigned int growBy = 10,
unsi gned int mnGow = 128);
vi rtual ~ TPool Notifier();

virtual void Not i f y(Event Code, OSErrParm = kNoError,
voi d* = NULL);
virtual size_ t G owBy(TMenoryPool *, size t);

G owBy

If apool has a notifier attached to it and the pool does not have enough
memory for Al | ocat e, then Al | ocat e attempts to grow the pool
immediately if it is not interrupt time. The Al | ocat e function calls
TMenor yPool : : AddMenor yToPool and uses the

TPool Noti fi er:: G owBy member function to determine the number of
bytes to add to the pool.

Continued on following page »

TPool Not i fi er 9-99

See also

The G owBy member function returns the largest of these three sizes:
m the size passed to G owBy
m the minimum amount the pool should grow by

m the percentage that the pool should grow by times the current size of the
pool

The latter two sizes are determined by the parameters passed to the
TPool Noti fi er object’s constructor.

The size passed to Gr owBy is the size passed to the Al | ocat e member
function. This behavior ensures that the pool always grows by at least the
amount by which the notifier would have grown the pool. It also makes
sure that the pool grows by enough to handle the size being allocated.

Notify
You can call TMenor yPool : : Set Not i f yMar ks to tell the pool when it

should call the notifier's Not i f y member function to indicate that pool has
reached alow or high mark.

The TPool Noti fi er subclass only handles events in the category
kLowPool Menor yEvent (which occurs when the amount of memory in the
pool goes below the low mark). The default behavior of the Noti fy
member function for this event isto grow the pool immediately if it is not
being called at interrupt time. If the member function is called at interrupt
time, it schedules a TG owOper at i on on the global TTaskSchedul er. The
TG owQper at i on will then grow the pool at System Task time. If you want
to do something special for kHi ghPool Menor yEvent , you can subclass
TPool Not i fi er and override the Not i f y member function .

The TPool Noti fi er subclass's Noti fy member function has the option
of freeing up memory before resorting to growing the pool. If the Noti fy
member function cannot free enough memory then it must schedule a

TG owQper at i on if itiscalled at interrupt time (you can call

At I nt errupt Level to check on whether an interrupt isin progress) or
just immediately grow the pool otherwise. The recommended way of doing
thisisto make the TPool Not i fi er subclass’ Noti f y member function
call TPool Noti fer:: Notify directly if the notifier is not going to free up
any memory.

TMenor yPool
TG owQper ati on
TTaskSchedul er

TPoolNotifierExample on the ASLM Examples disk

9-100 Chapter 9 / Utility Classes and Member Functions

TPriorityLink

Description

Declarations

Member functions

See also

The TPri ori t yLi nk class implements alink object which can be placed
on alinked list, and can hold atimer or priority value.

The TPri ori t yLi nk class has the following inheritance:
TLink --> TPriorityLink

The TPriorityLi nk classisaTLi nk subclass that is designed primarily
for usewiththe TPri ori t yLi st (described later in this chapter).

The TPriorityLink classaddsanf Pri ority field to the TLi nk class,
and adds two member functions for accessing the field: Set Pri ority and
Get Priority. Whenalink isadded to the list, the priority that is placed in
thefPriority field determines wherein the list the link will go.

Prioritiesused inthef Pri ori ty field are always unsigned long data types,
three of which are predefined: kNor mal Pri ority,kH ghestPriority,
and kLowest Pri ority. (The higher priority alink has, the lower isthe
value placed inthef Priority field.) Tolower alink’s priority, you can
add the value kToLower Pri ori ty tothevalueinthef Priority field.

#define kNormal Priority (((unsigned long)-1L) >> 1)
#define kHi ghestPriority 0

#defi ne kLowestPriority ((unsi gned |1 ong)-1L)
#define kToLowerPriority 1

TPriorityLi nk(Bool eanParm ;

TPriorityLi nk(voi d* val ue);

TPriorityLi nk(TLi nk* link, void* value);
TPriorityLink();

voi d SetPriority(unsigned |ong);
unsigned long GetPriority() const;

SetPriority
GetPriority

TheSet Priority and Get Pri ority member functions access the
fPriority field.

TPrioritylList
TLi nk

TPriorityLink 9-101

TPriorityLi st

Description

Declarations

TheTPriorityLi st class keeps lists sorted in order of priority.

The TPri orityLi st class has the following inheritance:

TDynamic --> TCollection --> TSinpleList -->
TPrioritylList

The TPriorityList classisasubclassof TSi npl eLi st and is maintained
by TPri orityLi nk.

When alink is added to the list, the priority that is set for the link
determines where in the list the link will go. The TPri ori t yLi st subclass
adds two member functions to the TSi npl eLi st subclasses:
AddPrioritized and AddLi nk. The TPri ori t yLi st class does not have
itsown Tl t er at or class, sincethe TLi st1terat or class also works for
TPrioritylLists.

IMPORTANT TLi nk objects cannot beused onaTPri ority list; only
TPriorityLi nk objectscan beused onaTPri orityLi st.

#define kTPriorityListID "!$plst,1.1"

TPriorityList();

TPriorityList(TMenoryPool *);

TPriorityList(TPriorityList*);
vi rtual ~ TPriorityList();

/1 TLi nkedLi st overri des

vi rtual OSErr AddFi r st (voi d*);

vi rtual CSErr AddLast (voi d*);

vi rtual voi d AddLi nkFi r st (TLi nk*);
vi rtual voi d AddLi nkLast (TLi nk*);

/1 New nmenber functions

vi rtual OSErr AddPrioritized(void*, unsigned long pri);
vi rtual voi d AddLi nk(TPri ori tyLi nk*);

9-102 Chapter 9 / Utility Classes and Member Functions

Member functions

See also

AddFi r st
AddLi nkFi r st
AddLast
AddLi nkLast

Y ou can use any of the TSi npl eLi st member functions to add objects to
alist. The Add member function adds the object to the list with

kLowest Pri ority. Both AddFi r st and AddLi nkFi r st set the priority of
thelink to kHi ghest Pri ority. Both AddLast and AddLi nkLast set the
priority of the link to kLowest Priority.

AddLi nk
AddPrioritized

Theonly TPriorityLi st member functions that are not in the

TSi npl eLi st classare AddLi nk and AddPri oriti zed. You can call
AddLi nk toadd alink that already has its priority set, and you can call
AddPri oriti zed to add an object with the priority that you pass to
AddPrioritized.

TCol | ecti on
TSi mpl eLi st

TPriorityListExample on the ASLM Examples disk

TPriorityList 9-103

TPrioritySchedul er

Description

Declarations

Member functions

The TPrioritySchedul er classimplements a scheduler that lets you
serialize tasks by establishing their priorities.

The TPri oritySchedul er class has the following inheritance:
TDynamic --> TScheduler --> TPrioritySchedul er

The TPri orit ySchedul er classallows you to schedule tasks to be
processed in order of priority. The priority of the operation is set by
calling the operation’s Set Pri ority member function. The priority of an
operation must be set before it is schedul ed.

The TPri orit ySchedul er’s constructor takes ani f Aut oRun parameter
which allows you to force the scheduler to be run automatically as long it
has any operations scheduled. See the description of the Run member
function below for information on the aut or un option.

#defi ne kTPrioritySchedul erl D "1$prsk, 1. 1"

TPrioritySchedul er(); //autoRun default to fal se
TPrioritySchedul er (Bool eanPar mi f Aut oRun) ;

vi rtual ~ TPrioritySchedul er();

vi rtual Bool ean IsValid() const;

vi rtual Bool ean Rermove(TCper ati on*) ;

vi rtual TQper ati on* Renove(const That chChj ect &) ;
vi rtual TQper ati on* RenmoveNext () ;

vi rtual Bool ean | sEnpty() const;

vi rtual voi d Run();

vi rtual voi d Schedul e(TQper ati on*);

vi rtual voi d Set Aut oRun(Bool eanPar nj ;

| sEnpty

The | sEnpt y member function checks to seeif all scheduled operations
have been executed.

Isvalid

The | sval i d member function returnst r ue if the object was initialized
properly after it was created. You should call | sval i d after constructing a
TPrioritySchedul er object and delete the object if it returnsf al se.

9-104 Chapter 9 / Utility Classes and Member Functions

See also

Renove

See TSchedul er: : Renmove for information on the Remove member
function.

RenoveNext

See TSchedul er: : RemoveNext for information on the RenoveNext
member function.

Run

Ordinarily, you must explicitly call the scheduler’s Run member function
to process the operations on the scheduler. However, if you construct a
TPrioritySchedul er object by passing at rue valueinthei f Aut oRun
parameter, you do not have to call the scheduler’s Run member function.
Thisis because Schedul e will automatically call Run if the scheduler is set
up for autorun mode and it is not currently running. If the scheduler is
running, it will finish processing the current operation and then continue
processing operations left on the scheduler including those that were added
while it was processing the operation that just finished processing. The

aut or un option can be useful when you schedul e operations at interrupt
time.

When in non-autorun mode, anything scheduled after Run is called will not
be processed until Run is called again.

Schedul e

The Schedul e member function schedules a TOper at i on. For
information on when the operation will be processed, see the description of
the Run member function above.

Set Aut oRun

The Set Aut oRun member function sets the aut or un option, which can be
useful when you schedule operations at interrupt time. For more
information, see the description of the Run member function above.

TOper ati on
TSchedul er

TPrioritySchedulerExample on the ASLM Examples disk

TPriorityScheduler 9-105

TPr ocHash(bj ect

Thisisa THashObj ect subclass that uses a C procedure to hash objects.

The TPr ocHashQbj ect class has the following inheritance:
TDynamic --> THashQbject --> TProcHashObject

Description The TPr ocHashbj ect class allows you to use THashObj ect class without
having to subclassit. To use the TPr ocHashObj ect class, you can either
pass the HashPr oc to the constructor or set the HashPr oc by calling
Set HashPr oc. If the HashPr oc isNULL, the Hash member function will
simply return the object pointer passed to it. Otherwise it will call the
HashPr oc.

Declarations t ypedef unsigned | ong (*HashProc) (const voi d*);

#define kTProcHashChj ect I D "! $phob, 1. 1"

TPr ocHashObj ect (HashProc) ;

vi rtual ~ TProcHashQbj ect () ;

virtual unsigned | ong Hash(const voi d*) const;
voi d Set HashPr oc(HashProc) ;
HashProc Get HashProc() const;

Member functions Hash
If the HashPr oc isNULL, the Hash member function will simply return the
object pointer passed to it. Otherwise it will call the HashPr oc.

Set HashPr oc
CGet HashPr oc

The Set HashPr oc and Get HashPr oc member functions set and get the
object’ s HashPr oc .

See also THashQbj ect

9-106 Chapter 9 / Utility Classes and Member Functions

TPr ocMat ch(oj ect

Thisisa TMat chObj ect subclass that takes a reference pointer and
pointers to C functions to do the matching/hashing job.

TPr ocMat chQbj ect has the following inheritance:
TDynamic --> TWMatchCbject --> TProchMatchObject

Description The TPr ocMat chChj ect class allows you to use the TMat chChj ect class
without having to subclass it. To use the TPr ocMat chChj ect class, you
must pass to the constructor pointers to the HashPr oc, Conpar ePr oc, and
I sEqual Pr oc functions or set these functions later on by calling
Set HashPr oc, Set Conpar ePr oc, and Set | sEqual Pr oc. If any of these
functions are set to NULL, the default functionality is used. The default
action of Hash isto return the object pointer passed to it. For | sEqual , the
default action isto call Conpar e, and for Conpar e the default isto
compare object pointers.

Declarations t ypedef unsigned |ong (*HashProc) (const void*);
t ypedef Bool ean (*I seEqual Proc) (const voi d* ref,
const voi d* toComp);
t ypedef int (* Conpar eProc) (const voi d* ref,

const voi d* toComp);
#defi ne kTProcMat chCbject! D "! $pnob, 1. 1"

TPr ocMat chQhj ect (const voi d* ref, HashProc = O,
ConmpareProc = 0, IsEqual Proc = 0);

vi rtual ~ TProcMat chQbj ect () ;
Vi rtual unsi gned |l ong Hash() const;
vi rtual short Conmpar e(const voi d*) const;
vi rtual Bool ean | sequal (const voi d*) const;
voi d Set Ref er encePoi nt er (const voi d*);
voi d Set HashPr oc(HashProc) ;
voi d Set Conpar ePr oc(Conpar eProc) ;
voi d Set | sequal Proc(1 sEqual Proc);
const voi d* Cet Ref erencePoi nter() const;
HashPr oc Get HashProc() const;
Conpar ePr oc Get Conpar eProc() const;
| sequal Proc CGet | sequal Proc() const;

Continued on following page »

TProcMat chCbj ect 9-107

Member functions Conpar e

If the Conpar ePr oc iSNULL, the Conpar e member function will simply
compare object pointers. Otherwise it will call the Conpar ePr oc.

Hash

If the HashPr oc isNULL, the Hash member function will simply return the
object pointer passed to it. Otherwise it will call the HashPr oc.

| sequal

If the | sEqual Proc iSNULL, the | sEqual member function will simply
call Conpar e. Otherwiseit will call thel sEqual Proc.

Set Ref er encePoi nt er
Cet Ref er encePoi nt er

A TProcMat chChj ect object has a reference pointer (ref Ptr) that is
attached by the creator of the match object. The Get Ref er encePoi nt er
function returns this pointer as avoi d*. The Set Ref er encePoi nt er
function sets the pointer. This pointer can be used for anything the user
wants to useit for.

Set HashPr oc
CGet HashPr oc

The Set HashPr oc and Get HashPr oc member functions set and get the
HashPr oc to be called when the object is hashed.

Set Conpar eProc
Get Conpar eProc

The Set Conpar ePr oc and Get Conpar ePr oc member functions set and
get the Conpar ePr oc to be called when the object is compared.

Set Equal Proc
CGet Equal Proc

The Set Equal Pr oc and Get Equal Pr oc member functions set and get the
I sEqual Pr oc to be called when the object is tested for equality.

See also Thvat chbj ect

9-108 Chapter 9 / Utility Classes and Member Functions

TProcNotifier

Description

Declarations

Member functions

See also

The TProcNoti fi er classisthe base class for notifiers that call aC
procedure for notification.

The TProcNot i fi er class has the following inheritance:
TDynamic --> TNotifier --> TProcNotifier

The TProcNoti fi er class uses a pointer to a callback function and a
reference pointer—an operation that works more like atraditional callback,
although it is delivered via an object.

If the reference pointer isleft NULL, it is replaced with a pointer to the
TProcNot i fier objectitself. Itisinitialy set by passing it to the
TProcNot i fi er constructor inther ef Pt r parameter.

#define kTProcNotifierID "!$pnot, 1.1"

TProcNotifier(NotifyProc, void* refPtr = NULL);
TProcNotifier(const TProcNotifierg&);
vi rtual ~ TProcNotifier();

vi rtual voi d Notify(Event Code, OSErrParm = kNoError,
voi d* notifyData = NULL);

Notify

The Not i f y member function sets the global world to the global world
stored with the TPr ocNot i fi er and sets the current client to the client that
owns the global world. It then callsthe Not i f yPr oc that was set up when
the TProcNot i fi er object was created. The not i f yDat a parameter
contains the reference pointer that was set up when the notifier was
constructed.

TNot i fier

TProcNotifier 9-109

TRequest Token

Description

Declarations

The TRequest Token class keeps track of an outstanding (unfilled) request
for a token.

The TRequest Token class has the following inheritance:

TDynamic --> TMatchCbject --> TToken -->
TRequest Token

The TRequest Token classis the context for a request for a registered
token while the request is outstanding and delivers the requested token
when the request is satisfied. A TRequest Token object is aregistered token
itself while arequest is pending. It remains registered until it is unregistered
or deleted. If the request has been satisfied, the object associated with the
TRequest Token isthe token that was requested. Until this point, the
request token has no object associated with it (Get Obj ect will return
NULL).

For more information on TRequest Token and object arbitration, see
“Object Arbitration Classes” in Chapter 8, “ASLM Utility Class
Categories.” The descriptions of the member functions below assume that
you have already read this section and understand how object arbitration
works. For details on the other object arbitration classes, see
“TArbitrator,” “TNotifier,” “TMethodNotifier,” “TProcNotifier,” and
“TToken,” in this chapter.

#def i ne kTRequest Tokenl D "1$ragtk, 1. 1"
vi rtual ~ TRequest Token();
// TMat chChj ect nenber functions

vi rtual Bool ean | sEqual (const voi d*) const;
vi rtual unsi gned | ong Hash() const;

/1 new nenber functions

vi rtual Bool ean G ve(TToken* theToken);

vi rtual TToken* Exchange();

vi rtual voi d Request Agai n() ;

vi rtual TokenRequest Type Get Request Type() const;

virtual voi d Set Request Type(TokenRequest Type) ;
Bool ean | sTokenRegi stered() const;

9-110 Chapter 9 / Utility Classes and Member Functions

Member functions

Exchange

The Exchange member function polls for the requested token. Exchange
returns NULL for as long as the request is not satisfied. When the request is
satisfied, Exchange deletes the TRequest Token object and returns the
requested token.

A ve

The G ve member function is used to give up the specified token to the
TRequest Token object. If TRequest Token hasaTNot i fi er object,
TRequest Token callsitsNot i f y member function to notify the requester
that the request has been satisfied. The not i f yDat a parameter in the

Not i fy cal isa TTokenNot i fi cati on object containing the request
token and the requested token.

Hash

The Hash member function is used internally by TAr bi t r at or in order to
determine which hash bucket the requested token can be found in (the
TAr bi trat or usesa THashLi st to store registered tokens).

| sEqual

Thel sEqual member function is used internally by TArbi trator in
order to determine which tokens match the token that the request token is
requesting.

| sTokenRegi st ered

The | sTokenRegi st er ed member function is used to determine whether
the token that was requested is actually registered already. Even if the token
is not registered yet, the request token will still be notified when the token is
registered.

Request Agai n

If you want to use a TRequest Token for multiple requests of the same
token id, you can call TToken: : Get Obj ect to poll for the requested
token. If Get Obj ect returns atoken, you can call Request Agai n to
request another token using the same TRequest Token. Y ou can use this
technique to get several tokens of the same type—but do not release any of
them until the process is complete. If atoken is released before you call
Request Agai n, the same token is returned.

Continued on following page »

TRequest Token 9-111

See also

Set Request Type
et Request Type

Set Request Type is used to set the request type of the request token and
Get Request Type will return the request type of the request token. Thereis
normally no reason to change a request token’s request type since request
tokens are created for you when you when you request a token from a

TAr bi t rat or and are deleted when you call Exchange.

TNotifier

TMet hodNot i fi er
TProcNotifier
TToken
TTokenNotification

“Object arbitration classes’ in Chapter 8, “ASLM Utility Class
Categories.”

TArbitratorExamplel, TArbitratorExample2, and TArbitratorExample3
examples on the ASLM Examples disk.

9-112 Chapter 9 / Utility Classes and Member Functions

TSCDynam ¢
The TSCDynani ¢ class provides the same capabilities as TSt dDynani c.
However, it is only used for Symantec C++ implementations.

Description The TSCDynanmi ¢ classisthe base class for shared library classes with a set

of common capabilities.

For more information on TSCDynani ¢ and TSt dDynarmi ¢, see “The
TDynamic Family of Base Classes” in Chapter 6, “Using the ASLM.”

Declarations #defi ne kTSCDynani cl D "! $scdy, 1. 1"
vi rtual ~TSCDynam c() ;
voi d* operator new(size_t size, TMenoryPool *);
/1 from specified pool
voi d* operator new(size_t); // fromdefault pool
voi d operator del ete(voi d* obj, size_t)

{ SLMDel eteQperator(obj); }

const Td assl D& Get (oj ect sA assl O() const;
const Td assl D& Get (oj ect sParent d assl D() const;
size_t Get oj ect sSi ze() const;
TLi brary* Get oj ect sLocal Li brary() const;
TLi braryFi | e* Get oj ect sLocal Li braryFil e() const;
TSt andar dPool * Get oj ect sLocal Pool () const;
voi d Set (oj ect sLocal Pool (TSt andar dPool *) const ;
vi rtual Bool ean _cdecl IsvValid() const;
vi rtual CsErr _cdecl Inflate(TFormattedStrean®);
vi rtual CsErr _cdecl Flatten(TFormattedStrean&) const;
vi rtual TSCDynam c* _cdecl d one(TStandar dPool *) const;
vi rtual char* _cdecl Get VerboseNarre(char*) const;
vi rtual voi d _cdecl Dunp() const;
voi d Trace(char *formatStr, ...) const;
vi rtual Bool ean _cdecl TraceControl (TraceControl Type) const;
Bool ean I sTrace(n() const;
Bool ean Tracen() const;
Bool ean Tracef () const;
Bool ean I sDeri vedFron{const Td assl D& const;

Continued on following page »

TSChynami ¢ 9-113

Member functions ~ See “TDynamic” for information on the member functions of
TSCDynani c.

9-114 Chapter 9 / Utility Classes and Member Functions

TSchedul er

Description

Declarations

Member functions

The TSchedul er objects are used to schedule TOper at i ons for later
execution and to control when the TOper at i ons are executed (processed).

The TSchedul er class has the following inheritance:
TDynamic --> TSchedul er

The TSchedul er class, the base class for all schedulers, is an abstract class
that you must inherit from in order to use. The ASLM provides a number
of schedulers for you including TTaskSchedul er,

Tl nt errupt Schedul er, TTi neSchedul er, TThr eadSchedul er,

TSeri al Schedul er,and TPri ori t ySchedul er. Some general
information about schedulers can be found in “Process Management
Classes” in Chapter 8, “ASLM Utility Class Categories.”

For instructions on setting up a global world for an operation and setting a
scheduler’s global world, see “ TOperation” earlier in this chapter.

#define kTSchedul erI D "1 $sked, 1. 1"
vi rtual ~ TSchedul er () ;
vi rtual Bool ean Renove(TOperati on*) = 0;
vi rtual TOper ati on* Renove(const TMat chQhj ect &) = 0;
vi rtual TOper at i on* RenoveNext () = 0;
vi rtual Bool ean | sEnpty() const = 0;
vi rtual voi d Schedul e(TOper at i on*) = 0;
vi rtual voi d Run() = 0;
Bool ean | sSchedul erWorl dval i d() const;
d obal Worl d Get Schedul erWorl d() const;
voi d Set Schedul er Wor | d(d obal Wor |l d) ;
| sEnpty

The | sEnpt y member function checks to seeif all scheduled operations
have been executed.

Continued on following page »

TScheduler 9-115

| sSchedul erVorl dval i d
Get Schedul erWr | d
Set Schedul er Wr | d

A scheduler has a global world associated with it that is used to set up the
global world for operations before they are processed. See “ TOperation”
earlier in this chapter for more information on setting up the global world
for operations.

The | sSchedul er Wor | dVval i d member function returnst r ue if the
scheduler’ sworld is set to avalid one (anything but kI nval i dWr | d). By
default the scheduler’s global world is set to ki nval i dwor | d.

The Get Schedul er Wr | d and Set Schedul er Wor | d member functions
are used to get and set the scheduler’s global world.

Renove

When aTQper at i on is scheduled, you can remove it by calling the
Rermove member function. Calling Renove(TOper ati on*) returnstr ue if
the operation is removed. Renmove(const TMat chChj ect &) returns the
object that was removed, otherwise it returns NULL

RenoveNext

Rermove removes only the first operation that matches the operation or
TMat chObj ect object that is passed to it. To remove the next TOper ati on
object to be processed, you can call RenoveNext . RenoveNext will return
NULL if there are no more operations on the scheduler.

Schedul e
Run

The most important TSchedul er member functions are Schedul e, which
schedules a TOper at i on, and Run, which processes all scheduled

TOper at i ons. Processing includes removing TOper at i on objects from
the TSchedul er object as they are processed. If you want to reschedule a
TOper at i on object that has just been processed, you must reschedule it
yourself.

9-116 Chapter 9 / Utility Classes and Member Functions

See also

To reschedule a TOper at i on object that has just been processed, call
Schedul e. The newly scheduled TOper at i on will not be processed again
until the TSchedul er object’s Run member function is called again. The
creator of the TSchedul er object is responsible for determining when the
object’s Run member function is called, although some TSchedul e
subclasses have an autoRun feature that causes them to be run every time
you try to schedule a TOper at i on object. Also, some schedulers determine
for themselves when they should be run. For example, the

TTaskSchedul er processes its operations automatically at System Task
time.

TOperati on
TTaskSchedul er

TTI nt er r upt Schedul er
TTi meSchedul er

TThr eadSchedul er
TSeri al Schedul er
TPrioritySchedul er

TSchedul er 9-117

TSeconds

This TTi me subclass is used to specify an initial time value in seconds—that
is, it provides a constructor that takes a time value in seconds.

The TSeconds class has the following inheritance:
TDynamic --> TMatchCbject --> TDoublelLong -->

TTinme --> TSeconds

Description For additional information, see “TTime" later in this chapter.
Declarations #define kTSecondsI D "sl m supp$secs, 1. 1"

TSeconds();

TSeconds(unsi gned | ong secs);

~ TSeconds();

oper at or unsi gned | ong() const;
Vi rtual doubl e Convert ToDoubl e() const;

oper at or doubl e() const;

Member functions oper at or unsi gned | ong
The oper at or unsi gned | ong member function returns the number of
secondsin an unsi gned | ong.

Convert ToDoubl e

The Convert ToDoubl e member function converts the time to adoubl e
containing the number of seconds.

oper at or doubl e

The oper at or doubl e member function returns the number of seconds
in adoubl e by calling Convert ToDoubl e.

See also TTimeExample on the ASLM Examples disk

9-118 Chapter 9 / Utility Classes and Member Functions

TSer i al Schedul er

Description

Declarations

Member functions

See also

The TSeri al Schedul er classisaTPri oritySchedul er subclass that
ensures FIFO (first in, first out) processing of the TOper at i on class.

The TSeri al Schedul er class has the following inheritance:

TDynamic --> TScheduler --> TPriorityScheduler -->
TSeri al Schedul er

The TSeri al Schedul er classworkslikeaTPri oritySchedul er, but
always sets the operation’ s priority to kNor nal Pri ori ty before
scheduling it.

#define kTSeri al Schedul erID "!$srsk, 1.1"

TSerial Schedul er(); // autoRun default to false
TSeri al Schedul er (Bool eanPar m i f Aut oRun) ;

vi rtual ~ TSeri al Schedul er () ;
vi rtual voi d Schedul e(TOperati on*);
Schedul e

The Schedul e member function schedules a TOper at i on. It overrides
TPrioritySchedul er:: Schedul e to set the operation’s priority to
kNor mal Pri ority. Otherwise it behaves the same as
TPrioritySchedul er:: Schedul e.

TSchedul er
TPrioritySchedul er

TSerial SchedulerExample on the ASLM Examples disk

TSeri al Schedul er 9-119

TSI npl eDynam ¢

Description

Declarations

Member functions

The TSi npl eDynani ¢ class forces the v-table first.

The TSi npl eDynani ¢ class has no parent class.

The TSi npl eDynani ¢ classis base class for shared-library classes that has
no virtual functions. This classis not a shared class, since it isintended to
be a class that just forces the v-table to be at the front of the object.

The TSi npl eDynani ¢ classinherits from Si ngl eChj ect and only has
one virtual member function: its destructor. This feature gives
TSi npl eDynani ¢ asmall, simple v-table.

For more information on TSi npl eDynani c, see “The TDynamic Family
of Base Classes” in Chapter 6, “Using the ASLM.”

vi rtual ~ TS npl eDynani c() ;
voi d* operator new(size_t size, TMenoryPool *);
// fromspecified pool
voi d* operator new(size_t); // fromdefault pool
voi d oper ator del ete(voi d* obj, size t)

{ SLMDel et eQperator(obj); }

const TA assl D&
const Td assl D&
size_t

TLi brary*

TLi braryFi | e*
TSt andar dPool *
voi d

Get (oj ect s assl O() const;

Get oj ect sParent d assl () const;

Get (oj ect sSi ze() const;

Get oj ect sLocal Li brary() const;

Get oj ect sLocal Li braryFil e() const;

Get oj ect sLocal Pool () const;

Set (oj ect sLocal Pool (TSt andar dPool *) const;

Bool ean | sDeri vedFr on{const Td assl D&) const;

See “TDynamic” earlier in this chapter for a description of the
TSi npl eDynani ¢ member functions.

9-120 Chapter 9 / Utility Classes and Member Functions

TSI npl eLi st

Description

The TSi npl eLi st classisaTCol | ecti on subclass that implements a
linked list that can have objects added at the front or the back.

The TSi npl eLi st class has the following inheritance:
TDynamic --> TCollection --> TSinpleList

The TSi npl eLi st classis used to maintain alist of objects. It uses TLi nks
to maintain the list and is a very efficient collection class when objects do
not need to be looked up or removed from the middle of the list.

The ASLM provides two TSi npl eLi st subclasses. The TLi nkedLi st
provides a couple of useful additional methods and the TPri ori t yLi st is
used to maintain alist of objects sorted by priority.

A TLi stlterator classisprovided to iterate through the linked list. The
TSi npl eLi st class provides some member functions besides those that
belong to the TCol | ect i on class. The names of the member functions
provided by TSi npl eLi st areintuitive and largely self-explanatory.

The constructor that takes a TMenor yPool * parameter is used to specify
the pool (called the link pool) to be used when TLi nk objects need to be
allocated for objects added to the pool. It is recommended that you use a
TChunkyPool for the link pool sinceit is more efficient than a

TSt andar dPool at allocating blocks of memory of the same size. TLi nks
are allocated out of the link pool automatically whenever an object (as
opposed to alink) is added to the list. They are also deleted automatically
whenever an object is removed or deleted from the list.

When you remove or delete objects from alinked list, the TLi nk objects are
deleted only if the link pool has been set. However, when you remove links
(by calling RenoverFi r st Li nk or RenovelLast Li nk), the TLi nk is
returned and not deleted, and you are responsible for deleting them.

IMPORTANT It is not safe to set the link pool and call AddLi nkFi rst or
AddLi nkLast unlessyou have explicitly allocated the link from a pool
yourself. Adding TLi nk objects that are stack objects or class data
membersis not allowed if the link pool has been set.

Continued on following page »

TSinpleList 9-121

Declarations #define kTSinpleListID "!$slst,1.1"

vi rtual

/] TColl ection overrides

vi rtual

vi rtual
vi rtual
vi rtual
vi rtual

11

vi rtual
vi rtual
vi rtual
vi rtual

vi rtual
vi rtual
vi rtual
vi rtual
vi rtual
vi rtual

vi rtual
vi rtual
vi rtual
vi rtual
vi rtual
vi rtual

Member functions Add

Tlterator*

voi
voi

Bool ean
Bool ean

New menbers

TLi
TLi
TLi
TLi

TLi
TLi
TLi
TLi
voi
VOi

voi
VOi
voi
voi

d*
d*

nk*
nk*
nk*
nk*

nk*
nk*
nk*
nk*
d
d

d*
d*
d*
d*

CSEr r
CSErr

voi

TMenor yPool *

AddUni que

The Add and AddUni que member functions are described in
“TCollection” earlier in this chapter.

d

TSi npl eLi st ();

TSi npl eLi st (TMenor yPool *) ;
TSi npl eLi st (TSi npl eLi st*);
~ TSi npl eLi st ();

Createlterator(TStandardPool *);

Renove(const TMat chQhj ect &) ;
Menber (const TMat chQhj ect &) ;
Renove(voi d*);

Menber (const voi d*);

Menber Li nk(const voi d*);

Menber Li nk(const TMat chQbj ect &) ;
Renoveli nk(voi d*);

Renoveli nk(const TMat chOhj ect &) ;

FirstLink() const;
Last Li nk() const;
RenoveFi r st Li nk() ;
Renovelast Li nk();
AddLi nkFi rst (TLi nk*);
AddLi nkLast (TLi nk*);

First() const;

Last () const;

RenoveFirst ();

Renovelast () ;

AddFi r st (voi d*);

AddLast (voi d*);

Set Li nkPool (TMenor yPool *) ;
Get Li nkPool () const;

9-122 Chapter 9 / Utility Classes and Member Functions

AddFi r st
AddLast

The AddFi r st member function adds the object to the beginning of the
list, and the AddLast member function adds the object to the end of the
list. The AddFi r st and AddLast member functions return error codes
other than kNoEr r or if they fail to add the object to the list.

AddLi nkFi r st
AddLi nkLast

The AddLi nkFi r st member function adds the link to the beginning of the
list, and the AddLi nkLast member function adds the link to the end of the
list. If you do not set the link pool, the only TSi npl eLi st member
functions you can use to add links to the list are AddLi nkFi r st and

AddLi nkLast . The AddLi nkFi r st and AddLi nkLast member functions
can be useful when an object you want to add to the linked list has a TLi nk
field that pointsto itself.

Createlterator

The Cr eat el t er at or member function returns an iterator for a
TSi npl eLi st object. For additional information, see “ TListlterator”
earlier in this chapter.

First
Last

The Fi r st member function returns the first object in the list, and the
Last member function returns the last object in the list.

Fi r st Li nk
Last Li nk

The Fi r st Li nk member function returns the link for the first object in the
list, and the Last Li nk member function returns the link for the last object
inthelist.

Get Li nkPool
Set Li nkPool

The Get Li nkPool member function returns the link pool for the list. The
Set Li nkPool member function sets the link pool for the list.

Continued on following page »

TSinpleList 9-123

The TLi nk objects are used to maintain linked lists. The ASLM allocates
TLi nk objects when you call Add, AddUni que, AddFi r st , or AddLast .
However, before you call any of these member functions, you must set the
TMenor yPool from which you want your TLi nk objects to allocate
memory. Y ou can do this by passing the TMenor yPool object to the
constructor or by calling Set Li nkPool .

Menber

The Menber member function is described in “TCollection” earlier in this
chapter.

Menber Li nk

The Merrber Li nk member function returns the TLi nk of the object passed
if itisinthe collection. It searches for the object in the same manner as
Menber .

RenoveFi r st Li nk
Renovelast Li nk

The RenoveFi r st Li nk member function removes the first link from the
collection, and the Renpvelast Li nk member function removes the last
link from the collection.

RenoveFi r st
Renovelast

The RenoveFi r st member function removes the first object from the list,
and the RenpvelLast member function removes the last object from the
list.

See also TCol | ecti on

TSimpleListExample on the ASLM Examples disk

9-124 Chapter 9 / Utility Classes and Member Functions

TSI npl eRandom

Description

Declarations

Member functions

The TSi npl eRandomclass returns a random number computed with 64-bit
arithmetic.

The TSi npl eRandomclass has the following inheritance:
TDynamic --> TFastRandom --> TSi npl eRandom

The TSi npl eRandomclass generates better random numbers over a 32-bit
range than TFast Randomdoes.

#defi ne kTS npl eRandom D " sl m supp$srnd, 1. 1"

const unsi gned | ong kMaxSi npl eRandom = 2145740624;

TS npl eRandomn() ;
TS npl eRandomn(unsi gned | ong seed);
TSi mpl eRandon{ unsi gned | ong im
unsi gned long ia, unsigned long ic);
vi rtual ~ TS npl eRandon() ;

virtual unsigned long Get Random();
virtual unsigned |long Get RandonNunber (unsigned | ong | o,
unsi gned long hi);

Get Random
CGet RandomN\unber

The Get Randommember function returns a random number from 0 to
kMaxSi npl eRandom inclusive. The Get RandomNunmber member function
returns the a random number from | o to hi , inclusive. Y ou should
normally use Get RandomNunber instead of Get Random

TSi npl eRandom

The TSi npl eRandommember function creates an object, using the current
time stamp as the seed.

The TSi npl eRandon(unsi gned | ong seed) function creates the object
using the value of seed as the seed

The TSi npl eRandon{unsi gned long im unsigned long ia,
unsi gned | ong ic) function creates the object using the current time
stamp as the seed, and the parameters as the random number generator
using a standard congruency generator:

seed = (seed*ia +ic) %im

TSi npl eRandom 9-125

TSt andar dPool

The TSt andar dPool class provides a general purpose, interrupt-safe
memory allocator.

The TSt andar dPool class has the following inheritance:
TDynamic --> TMenoryPool --> TStandardPool

Description The TSt andar dPool classisa TMenor yPool subclass that implements a
general purpose, interrupt-safe memory allocator. Besides being interrupt-
safe, it is also much faster than other common memory allocators such as
the Macintosh Memory Manager and C cal | oc and mal | oc functions. See
“TMemoryPool” earlier in this chapter for more information on memory
pools.

The TSt andar dPool class provides a constant named

kSt andar dPool ChunkOver head that can help you determine the amount
of overhead that each chunk allocated from a pool will require. Use this
constant to help you decide how big a pool you will need.

The following code fragment shows how to create a standard pool, add
some additional memory to it, and then destroy it (In this example, the
system zone is used for the memory pool.):

TSt andar dPool * myPool = new (kMyPool Si ze, kSyst enZone)
TSt andar dPool ;

nmyPool - >AddMenor yToPool (kMyExt raMenorySi ze) ;

del et e nyPool ;

The following is an example of how the constant

kSt andar dPool ChunkOver head can be used. If you expect to allocate
100 blocks from a pool, and you estimate that the blocks will occupy no
more than 5000 bytes of memory, you can create the pool by writing these
two statements:

size_t poolsize = 100 * kStandar dPool ChunkOver head + 5000;
TSt andar dPool * myPool = new (pool size, kSysten¥Zone)
TSt andar dPool ;

When memory is allocated, block sizes are always rounded up to be a
multiple of 8. This needs to be taken into account when determining how
large a pool you need.

9-126 Chapter 9 / Utility Classes and Member Functions

Declarations #def i ne kSt andar dPool ChunkOver head 12

#defi ne kTSt andardPool ID "! $stdp, 1. 1"

TSt andar dPool () ;
vi rtual ~ TSt andar dPool () ;

virtual Bool ean I svalid() const;

/1 TMenoryPool Overrides

vi rtual voi d* Al |l ocat e(size t);

vi rtual voi d* Real | ocat e(voi d*, size t);
vi rtual voi d Free(voi d*);

vi rtual si ze_t CGet Si ze(voi d*) const;

vi rtual Bool ean CheckPool () const;

vi rtual si ze_t CGet Lar gest Bl ockSi ze() const;

Member functions ~ The member functions are described in “TMemoryPool” earlier in this
chapter.

Isvalid

Thel sval i d member function returns f al se if the pool is corrupt or was
not created properly. It should not be used in this case.

TSt andar dPool 9-127

TSt dDynam ¢

The TSt dDynani ¢ classis the base class for shared-library classes with a set
of common capabilities.

The TSt dDynami ¢ class has no parent class.

Description The TSt dDynani ¢ classissimilar to TDynani c, except it does not inherit
from Si ngl eObj ect . It has the same functionality as TDynani ¢, except it
cannot be registered with the Inspector application. It is useful when you
do not want to inherit from Si ngl ebj ect , but you do want most of the
extra methods that TDynani ¢ provides. It also forces the v-table to be first.

For more information on TSt dDynani c, see “ The TDynamic Family of
Base Classes” in Chapter 6, “Using the ASLM.”

Declarations #define kTSt dDynanicl D "! $sdyn, 1. 1"
vi rtual ~ TStdDynam c();
voi d* operator new(size_t size, TMenoryPool *);
// fromspecified pool
voi d* operator new(size_t); // fromdefault pool
voi d operator del ete(voi d* obj, size_t)

{ SLMDel eteQperator(obj); }

const Td assl D& Get (oj ect s assl O() const;
size_t Get oj ect sSi ze() const;
TLi brary* Get oj ect sLocal Li brary() const;
TLi braryFi | e* Get oj ect sLocal Li braryFil e() const;
TSt andar dPool * Get oj ect sLocal Pool () const;
voi d Set (oj ect sLocal Pool (TSt andar dPool *) const ;
vi rtual Bool ean IsValid() const;
vi rtual CsErr Inflate(TFor nattedSt rean®) ;
vi rtual CSEr r Fl atten(TFor mat t edStr ean®) const;
vi rtual TDynami c* d one(TSt andar dPool *) const ;
vi rtual char* Get Ver boseNane(char*) const;
vi rtual voi d Durmp() const;

9-128 Chapter 9 / Utility Classes and Member Functions

voi d Trace(char *formatStr, ...) const;

vi rtual Bool ean TraceControl (TraceCont rol Type) const;
Bool ean I sTraceCn() const;
Bool ean Trace() const;
Bool ean Tracef () const;
Bool ean | sDeri vedFron{const Td assl D& const;

Member functions ~ See “TDynamic” earlier in this chapter for a description of the
TSt dDynani ¢ member functions.

TStdDynamc 9-129

TSt dSi npl eDynam ¢

The TSt dSi npl eDynani ¢ classis the base class for shared-library classes
that have no virtual functions.

The TSt dSi npl eDynani ¢ class has no parent class.

Description Thisclassis not shared, sinceit isaclass that just forces the v-table to be at
the front of the object.

The TSt dSi npl eDynani ¢ classworks like TSi npl eDynani c, except that it
does not inherit from Si ngl eObj ect . The TSt dSi npl eDynani ¢ class, like
TSi npl eDynani ¢, has asmall v-table, but it is not simple because it does
not inherit from Si ngl eoj ect . It is useful if you want some of the non-
virtual member functions that TDynani ¢ provides that give you meta
information about the object.

For more information on TSt dSi npl eDynanmi ¢, see “The TDynamic
Family of Base Classes” in Chapter 6, “Using the ASLM.”

Declarations vi rtual ~ TSt dSi npl eDynani c() ;

voi d* operator new(size_t size, TMenoryPool *);

//from specified pool
voi d* operator new(size_t); /1 fromdefault pool
void operator del ete(void* obj, size_t)

{ SLMDel et eCperator(obj); }

const TA assID& Get (hj ectsd assl () const;

size_t Get oj ect sSi ze() const;

TLi brary* Get oj ect sLocal Li brary() const;

TLi braryFi | e* Get oj ect sLocal Li braryFil e() const;

TSt andar dPool * Get oj ect sLocal Pool () const;

voi d Set (oj ect sLocal Pool (TSt andar dPool *) const ;
Bool ean | sDeri vedFr on{const Td assl D&) const;

Member functions See “TDynamic” earlier in this chapter for a complete description of the
TSt dSi npl eDynani ¢ member functions.

9-130 Chapter 9 / Utility Classes and Member Functions

TSt opwat ch

The TSt opwat ch classis used to determine the time that has elapsed since
the TSt opwat ch object was initialized.

The TSt opwat ch class has the following inheritance:

TDynamic --> TMatchCbject --> TDoublelLong -->
TTime --> TTimeStanp --> TStopwatch

Description The TSt opwat ch classisa TTi neSt anp subclass that remembers a time
stamp when it isinitialized and compares that time stamp to a new time
stamp that is taken each time one of the “elapsed” routines, such as
El apsedSeconds, iscaled. A TSt opwat ch object isinitialized when it is
constructed and whenever Reset iscalled.

Declarations #def i ne kTSt opwat chl D "sl m supp$st pw, 1. 1"

TSt opwat ch() ;

Vi rtual ~ TStopwat ch();

virtual void Reset () ;

virtual unsigned |ong El apsedM croseconds() const;
virtual unsigned | ong El apsedM | | i seconds() const;
virtual unsigned | ong El apsedSeconds() const;

Member functions El apsedM cr oseconds
El apsedM | | i seconds
El apsedSeconds

The El apsedM cr oseconds, El apsedM | | i seconds, and

El apsedSeconds member functions return the number of microseconds,
milliseconds, or seconds that have elapsed since TSt opwat ch was created
or last reset.

Reset

The Reset function restarts the stopwatch by setting the time stamp to the
current time.

See also TTi me

TTimeExample on the ASLM Examples disk

TStopWatch 9-131

TTaskSchedul er

The TTaskSchedul er classimplements a scheduler for heavyweight tasks.

The TTaskSchedul er class has the following inheritance:

TDynamic --> TScheduler --> TPriorityScheduler -->
TTaskSchedul er

Description The TTaskSchedul er classisaTPri orit ySchedul er subclass that can
be useful for scheduling heavyweight tasks (that is, tasks that consume a
great amount of CPU time or use system resources). Specifically,
TTaskSchedul er schedules TOper at i on objectsto run at System Task
time.

The ASLM has aglobal TTaskSchedul er class that clients can use instead
of creating their own scheduler. Y ou can access the global

TTaskSchedul er classby calling Get G obal TaskSchedul er. You
should call the | sVval i d member function before you use a newly created
TTaskSchedul er to verify that it was initialized properly and can be used.

TTaskSchedul er * Get d obal TaskSchedul er () ;

For more information on schedulers, see “Process Management Classes’
in Chapter 8, “ASLM Utility Class Categories,” and “TScheduler” earlier

in this chapter.
Declarations #defi ne kTTaskSchedul er | D "1$task, 1. 1"
TTaskSchedul er () ;
TTaskSchedul er (unsigned long priority,
Bool eanPar m runToEnpty = fal se);
vi rtual ~ TTaskSchedul er () ;
vi rtual voi d Schedul e(TQper ati on*);
vi rtual voi d Set Priority(unsigned |ong);
voi d Set RunToEnpt y(Bool ean) ;

Member functions Schedul e

The Schedul e member function schedules a TOper at i on object. The
operation will be run at the next System Task time.

9-132 Chapter 9 / Utility Classes and Member Functions

See also

SetPriority

The TTaskSchedul er objects have priorities. These priorities determine
the order in which each TTaskSchedul er isprocessed at System Task
time. The priority of a TTaskSchedul er iseither passed in the constructor
or set by the Set Pri ori ty member function. The default priority of every
TTaskSchedul er object iskNormal Priority. The ASLM global task
scheduler has a priority one higher than kNor mal Priority, soitis
processed first, unless you give your TTaskSchedul er ahigher priority.

Set RunToEnpt y

The TTaskSchedul er objects also have aflag named r unToEnpt y. If this
flagistrue, operations that are scheduled while the TTaskSchedul er is
already running are run during the current System Task time rather than
waiting for the next System Task time. Ther unToEnpt y flag defaults to

f al se. It can be set in the constructor, or it can be set by calling

Set RunToEnpt y.

TSchedul er
TSchedulerExample on the ASLM Examples disk

TTaskSchedul er 9-133

TTest Tool

The TTest Tool classisaclass used by the MPW tool TestTool, provided
with the ASLM.

The TTest Tool class has the following inheritance:
TDynamic --> TTestTool

Description TestTool isatool for writing ASLM classes that can be used as test
modules. The test modules are run by TestTool, an MPW tool provided
with ASLM. TestTool is described in Appendix B, “ASLM Utility

programs.”
Declarations #defi ne kTTest Tool | D kTest Tool Prefix "TTest Tool , 1. 1"
TTest Tool ();
TTest Tool (TSt andar dPool * t hePool) ;
vi rtual ~TTest Tool () ;

virtual void SetPrintf(PrintfFunc);

virtual void Printf(const char*, ...) const;
virtual void I ni t Test (Bool ean ver bose, Bool ean debug, int argc,
char** argv) = 0;
virtual void RunTest I t er ati on(Bool ean verbose, Bool ean debug) = 0;
virtual void EndTest (Bool ean verbose, Bool ean debug) = 0;
voi d Set Pool (TSt andar dPool * t hePool) ;

TSt andar dPool * Get Pool ();

Member functions EndTest

The EndTest member function is called when the MPW tool TestTool has
finished running the test. At this point you should clean up.

| ni t Test

The | ni t Test member function is called just before the MPW tool
TestTool starts running the test. At this point, you should do most of your
setting up for the test.

Printf

The Pri nt f member function is the same asthe C Pri nt f routine, except
that it works with a shared library, allowing TestTool to send text to the
MPW Worksheet.

9-134 Chapter 9 / Utility Classes and Member Functions

RunTestlterati on
The RunTest | t er at i on member function runs one iteration of the test.

Set Pool

The Set Pool member function sets the pool out of which your test should
allocate memory. It is usually called by the MPW tool TestTooal.

SetPrintf

The Set Pri nt f member function sets the routine to call for Printf.Itis
usually set by the MPW tool TestTool.

TTest Tool 9-135

TThr eadSchedul er

Description

Declarations

Member functions

See also

The TThr eadSchedul er classisaTPri orit ySchedul er subclass that
implements a lightweight “thread” scheduler.

The TThr eadSchedul er class has the following inheritance:

TDynamic --> TScheduler --> TPriorityScheduler -->
TThr eadSchedul er

In the Macintosh implementation, TThr eadSchedul er works like
TPrioritySchedul er with the autorun option on. A thread is a
lightweight task that has no operating system calls. You must call the
I sval i d member function to verify that the scheduler was initialized
properly and can be used.

The Run member function of TThr eadSchedul er is private and should
never be called. It is provided so that if the Macintosh someday has real
threads, or if the ASLM is ported to an operating system with threads, users
of TThr eadSchedul er automatically get this functionality.

#defi ne kTThr eadSchedul er| D "sl m sked$t hsk, 1. 1"

TThr eadSchedul er () ;

vi rtual ~ TThr eadSchedul er () ;
virtual void Schedul e(TOper ati on*);
Schedul e

The Schedul e member function schedules the operation and calls Run if it
is not already running. It behaves the same as TPri ori t ySchedul er with
the autorun option on.

TSchedul er
TPrioritySchedul er

9-136 Chapter 9 / Utility Classes and Member Functions

Description

Declarations

Member functions

The TTi me classisthe base class for all time-related classes.

The TTi e class has the following inheritance:
TDynamic --> TMatchCbject --> TDoubleLong --> TTine

The ASLM provides several special data-type classesto help libraries and
clients perform “time math.” The TTi e class obtains atime value from
the CPU’ s time-generating system and provides all the routines for
accessing that value. You can useaTTi neSt anp to initialize aTTi ne with a
time. Since TTi me isa TDoubl eLong subclass, you can perform all the 64-
bit integer math operations on it also.

Internally, all times are stored as microseconds, and the casting operators
for the TTi me class return values converted to other time units. The

TM cr oSeconds, TM | | i Seconds, and TSeconds subclasses are used to
provide an initial time in microseconds, milliseconds, or seconds.

#define kTTimel D "sl m supp$tinme, 1. 1"

TTi me();

TTi me(unsi gned | ong m croseconds);
TTi me(const TDoubl eLong&) ;

TTi me(const TTi me&);

vi rtual ~ TTime();

voi d Set Ti me(const TTi ne&);

voi d Set M cr oseconds(unsi gned | ong);
vi rtual voi d Set M I liseconds(unsigned | ong);
vi rtual voi d Set Seconds(unsi gned | ong);

unsi gned long GetM croseconds() const;
vi rtual unsigned long GetMIIliseconds() const;
vi rtual unsi gned |l ong Get Seconds() const;

Get M cr oseconds
GetM I 1iseconds
Cet Seconds

These three member functions get the time in microseconds, milliseconds,
and seconds.

Continued on following page »

TTine 9-137

Set M cr oseconds
SetMI1iseconds
Set Seconds

The Set M cr oseconds, Set M | | i seconds, and Set Seconds member
functions set the time in microseconds, milliseconds, and seconds.

Set Ti ne

The Set Ti me member function sets the time based on the TTi e object
passed to it.

See also TTi meSt anp
TSt opWat ch
TM Il i sconds
TM cr oSeconds
TSeconds

TTimeExample on the ASLM Examples disk

9-138 Chapter 9 / Utility Classes and Member Functions

TTi meSchedul er

Description

The TTi meSchedul er class implements a scheduler that processes
TOper at i on objects when arequested amount of time has elapsed.

The TTi meSchedul er class has the following inheritance:

TDynamic --> TScheduler --> TPriorityScheduler -->
TTi meSchedul er

Y ou must call the TOper ati on: : Set Ti me member function before
scheduling a TOper at i on object to determine when the TOper at i on will
be processed. On the Macintosh, TTi meSchedul er isafront end to the
Time Manager. Operations scheduled on a TTi neSchedul er object
execute at interrupt time.

Schedulers within schedulers

All TTi meSchedul er objects can be combined with other kinds of
schedulers to handle operations that otherwise would be processed
immediately. The most common use of this capability isto provide a

TTi meSchedul er object with aTl nt er r upt Schedul er object. Then,
when a TTi meSchedul er operation fires, it is automatically placed on a

Tl nt err upt Schedul er object so it can be processed at deferred task time
rather than immediately at interrupt time. Y ou can provide a

TTi meSchedul er object with another scheduler by passing it to the
constructor.

Member functions for handling interrupts

The ASLM provides four member functions that can be useful when you
want to remove a TQper at i on object from a TTi neSchedul er object at
interrupt time. These four member functions—

Del et el nProcessOper ati on, Rerunl nProcessOper ati on,
Reschedul e, and Set Aut oReschedul e—give you some amount of
control over the problem of removing a TOper at i on object whileits

Pr ocess routineis being called.

The Del et el nProcessQOper ati on, Rer unl nProcessQOper at i on,
Reschedul e, and Set Aut oReschedul e member functions are provided
because Renove calls that are invoked at interrupt time can remove a
TOper at i on object that isin the process of being executed. (The Renove
member function is inherited from the TSchedul er class.) Ordinarily,
deleting or rescheduling a TOper at i on object that isin process can be
disastrous.

Continued on following page »

TTi reSchedul er 9-139

When you have a client that needs to remove a TOper at i on object while an
interrupt isin progress, you can call the

TOper at i on: : WasRenovedl nPr ocess member function to determine if
it was removed while it was in the Pr ocess member function.

If WasRenovedl nPr ocess returnsf al se, you are free to do whatever you
want with the TOper at i on object. If WasRenovedI nPr ocess returns

t r ue, you must decide what you want to do with the in-process

TOper ati on. You can call either Del et el nPr ocessQper at i on, which
informs the scheduler that it should delete the TOper at i on when it returns
from the Pr ocess call, or you can call Rer unl nPr ocessOper ati on,
which causes the scheduler to call Process again immediately after
returning from the Pr ocess member function.

A TOper at i on object can call the TOper at i on member function
WasRenovedl nProcess to determine whether it has been removed. It may
then modify its behavior accordingly. If a TOper at i on has been removed
whileit isin process, it can delete itself, provided it calls

TOper ati on: : Cl ear Renoved| nProcess so that TTi meSchedul er does
not do anything with the deleted TOper at i on object.

It isimportant to remember, however, that the behavior of the “remover”
and TOper at i on must be coordinated. If the TOper at i on deletesitself
when it detects that it was removed, then you can probably call either

Del et el nProcessQper at i on or Rer unl nProcessQper at i on, sincein
either case, the TOper at i on is deleted. However, if the TOper at i on must
do something more complicated, then you should use

Rer unl nProcessOper at i on to give the TOper at i on a chance to do
whatever it has to do.

If a TOper at i on object detects that it was removed in process, and is about
to act on it itself, then it should call the TOper at i on member function

d ear RenpvedI nProcess to keep TTi meSchedul er from either deleting
the operation or rerunning it (depending on what the “remover” asked
for).

If aTOper at i on object wants to delete itself when auto-rescheduling is
true, and it has not been removed in process, it should ensure that itstime
field is 0 and then call Set Del et eWhenDone. This operation informs the
TTi meSchedul er that a TOper at i on object wants to be deleted. If your
TOper at i on isremoved before Set Del et eWhenDone returns to the

TTi meSchedul er, the rules governing removal in process take effect.

A TOper at i on object may also delete itself by calling the

TTi meSchedul er Renmove member function and, if that succeeds, calling
the Del et el nProcessOper at i on member function. But this requires that
you know which TTi meSchedul er the TOper at i on object ison. The
previous technigue does not require this knowledge.

9-140 Chapter 9 / Utility Classes and Member Functions

Declarations

A particularly tricky situation can occur when a TOper at i on isan
embedded object. In this case, you want to delete the object in which the
TOper at i on is embedded, not the TOper at i on itself.

The only way to do this safely isto call the Rer unl nProcessOper ati on
member function. To do that, you can place code like thisin your
Pr ocess member function:

I f (WasRenpvedl nProcess())

{

/1 Do your standard stuff, but be aware that you
/1 mght come here twice.

if (1sBeingRerun())

{
del et e parent bj ect;

}

return;

/! Here, do your normal thing.

This technique requires that the “remover” of your operation call
Rer unl nPr ocessOper at i on whenever it detects that your TOper at i on
object was removed in process.

The Del et el nProcessQOper ati on, Rer unl nProcessQOper at i on, and
Set Aut oReschedul e member functions are described in more detail in
“Member Functions” below.

#def i ne kMaxSchedul edTi ne ((unsi gned | ong)-1L)
#define kTTi neSchedul erl D “sl msked$skti, 1.1"

TTi meSchedul er () ;
TTi meSchedul er (voi d* data);
TTi meSchedul er (TSchedul er *,
unsi gned long priority);
Vi rtual ~ TTi meSchedul er () ;

virtual Bool ean I svValid() const;

Continued on following page »

TTi reSchedul er 9-141

virtual Bool ean Renove(TOper ati on*);

virtual TOperation* Renove(const TMat chQhj ect &) ;
virtual TOperation* RenoveNext () ;
virtual void Schedul e(TOper ati on*);
vi rtual Bool ean | sEnpty() const;
virtual Bool ean Reschedul e(TOper at i on*,

unsi gned long tine);
virtual void Set Aut oReschedul e(Bool eanPar nj ;

vi rtual Bool ean Del et el nProcessOper ati on(TOper ati on* op);
virtual Bool ean Rer unl nProcessQper ati on(TOper ati on* op);

Member functions Del et el nProcessQper ati on

The Del et el nProcessQper at i on member function causes the

TTi meSchedul er to delete the current TOper at i on object when it returns
from the Pr ocess call that has been interrupted. Uses of the

Del et el nProcessQper at i on are described in more detail below.

| sEnpty
The | sEnpt y member function returnst r ue if the scheduler is empty.

Isvalid

The | sval i d member function returns f al se if the scheduler was not
constructed correctly. It should be called after creating the scheduler to
verify that it constructed correctly. If it returnsf al se, the scheduler should
be deleted and not used.

Rer unl nProcessQper ati on

The Rer unl nPr ocessQper at i on member function causes

TTi meSchedul er to rerun the Pr ocess function for the current

TOper at i on object when it returns from the Pr ocess call that has been
interrupted. Uses of the Rer unl nPr ocessOper at i on are described in
more detail below.

Reschedul e

The Reschedul e member function reschedul es the operation on the

TTi meSchedul er object. Use Reschedul e when an operation is already
scheduled and you want to change the time that it will be fired. Using
Reschedul e avoids the necessity of going through the steps of first
removing the operation, then setting its time, and then calling Schedul e.

9-142 Chapter 9 / Utility Classes and Member Functions

See also

Renove

The Renmove member function returns the specified operation from the
scheduler.

Schedul e

The Schedul e member function schedules the specified operation. It will
be run at the time specified in the operation.

Set Aut oReschedul e

The Set Aut oReschedul e member function sets the TTi neSchedul er
mode flag to enable or disable the TTi meSchedul er class s auto-
reschedule feature. Auto-rescheduling makes it possible for a TOper ati on
object to reschedule itself automatically for another timer period simply by
changing its own time field to a nonzero value.

Auto-rescheduling can be useful when an operation must perform multiple
retries or simply wants to repeat the given operation. This strategy is
sometimes convenient because TOper at i on objects that use the auto-
reschedule feature do not have to know which TTi meSchedul er they are
on. A possible shortcoming of this strategy isthat a TOper at i on object
which is on an auto-reschedule TTi meSchedul er can delete itself only
under very controlled conditions.

The default state of the auto-reschedule feature isf al se, or disabled. When
the auto-reschedule feature is disabled, a TOper at i on object is responsible
for rescheduling itself.

TSchedul er
TOperati on

TTimeSchedulerExample on the ASLM Examples disk

TTi reSchedul er 9-143

TTi meSt anp

Description

Declarations

Member functions

See also

The TTi meSt anp classis used to get a time stamp of the CPU's current
clock value.

The TTi meSt anp class has the following inheritance:

TDynamic --> TMatchCbject --> TDoublelLong -->
TTime --> TTi neStanp

The time stamp value is set whenever the TTi neSt anp object is constructed
or whenever the Set Ti neSt anp member function is called. Y ou can use
TTi meSt anp to compare the elapsed time between two time stamps by
simply subtracting one from the other. The resolution of the time stamp is
determined by the hardware. Some older machines only give aresolution
of 1/60 second.

Since TTi neSt anp isa TTi me subclass, it can perform 64-bit time math to
calculate the difference between two TTi meSt anps.

#define kTTi meStanpl D "sl m supp$tstm 1. 1"

TTi meSt anp() ;
vi rtual ~ TTi meSt anp() ;
vi rtual voi d Set Ti meSt anp() ;

Set Ti meSt anp

The Set Ti meSt anp member function sets the time stamp value to the
current time.

TTi ne
TTimeExample on the ASLM Examples disk

9-144 Chapter 9 / Utility Classes and Member Functions

TToken

Description

The TToken class carries an object and givesit an ID.

The TToken class has the following inheritance:
TDynamic --> TWMatchCbject --> TToken

Object arbitration is made possible by an object called a token, which
maintains and provides information about objects. A token ID is an object
made up of atype ID and an instance ID.

The type ID is determined by the developer of the shared library in which
the token ID is used. To avoid name collisions, atoken ID should uniquely
identify the type of the token that it identifies in the context of the

TArbi trat or object for which the token registered. If more than one
token of the same type isregistered, an instance D should be used to
identify each instance. The type and instance | Ds are separated by a dollar
sign ($). Tokens registered with the global TAr bi t r at or should have type
IDs that are registered with Apple Computer’s Developer Technical
Support (DTS). It is sufficient to register a creator ID—for example, you
might register the creator ID ' eesp' for the an organization called the
Excellent Enterprise Systems Protocols group.

Suppose, for example, that eesp: sport $A and eesp: sport $B are token
IDs for the A and B serial ports on the Macintosh. In this case,

eesp: sport $ isthe token for a serial port, and is the keyword that is used
when the tokens are registered. Thus, arequest for eesp: sport $is
satisfied by either port. However, arequest for eesp: sport $A is satisfied
only by serial port A.

Normally, TToken objects are created automatically by calling

TArbi trator:: Regi st er Qbj ect, but they can also be created by calling
TAr bi trat or:: NewToken, in which case the token can only be used with
the arbitrator that created it. Deleting a TToken will causeit to be
automatically unregistered from the arbitrator that it is registered with. This
isthe way tokens are normally unregistered.

For more information on TToken and object arbitration, see “ Object
Arbitration Classes” in Chapter 8, “ASLM Utility Class Categories.” The
descriptions of the member functions below assume that you have already
read this section and understand how object arbitration works. For details
on the other object arbitration classes, see “ TArbitrator,”
“TMethodNotifier,” “TNotifier,” “TProcNotifier,” and
“TRequestToken” in this chapter.

Continued on following page »

TToken 9-145

Declarations

Member functions

#defi ne kTTokenl D

vi rtual

/1 TMat chQbj ect

Bool ean
unsi gned | ong

vi rtual
vi rtual

/1 new nmenber functions

vi rtual Bool ean

vi rtual voi d

vi rtual Bool ean

vi rtual Bool ean

vi rtual TokenRequest Type

vi rtual voi d
const char*
voi d*
voi d
TNotifier*
voi d
| ong

Get

"1 $tokn, 1. 1"

TToken();
TToken(const char*);
~ TToken();

menber functions

| sEqual (const voi d*) const;
Hash() const;

CGet (TokenRequest Type) ;
Rel ease();

Request (TRequest Token*) ;
Not i f y(TRequest Token*);
CGet Request Type() const;

Set | D(const char*);
Get 1 D() const;

CGet Obj ect () const;
Set (bj ect (voi d* t heObj ect);

GetNotifier() const;
Set Notifier(TNotifier*);

Get UseCount () const;

The Get member function is used to claim the token. When you already
have a pointer to the token, it can be used instead of requesting the token
from its arbitrator. It can be useful if you have atoken but do not have it
claimed yet. Y ou will want to do this when you are about to register atoken
using TAr bi trat or: : Regi st er Token, and you do not want to give up
the token to anyone who already has an outstanding request for it. You
might also do thisif you do not have the token claimed, but you want to
deleteit if no one hasit claimed already. In this case you will need to use a
TokenRequest Type of kExcl usi veTokenRequest .

9-146 Chapter 9 / Utility Classes and Member Functions

Getl D
Set1D

Each token has an ID associated with it called the object 1D or token ID.
Theid string is allocated automatically when the token is created by calling
TArbitrator:: Regi sterObj ect or TArbi trator:: NewToken. If a
token is not currently registered with an arbitrator, you can change itsid by
calling Set | D. Thiswill automatically delete the old id string and allocate a
new one. Do nhot ever change the id string while the token is currently
registered. You can also retrieve the id string at any time by calling Get | D.

Get (oj ect
Set (bj ect

The Get Obj ect and Set Obj ect member functions get and set the object
associated with the token. If the token is actually a TRequest Token, the
object returned will be the requested token if the request has been satisfied.
NULL isreturned if the request has not been satisfied yet. There is normally
no reason to call Set Cbj ect .

CGet Noti fier
Set Notifier

TokenshaveaTNot i fi er object associated with them so that the token
owner can be notified of certain events. If the token is actually a

TRequest Token, the notifier is used to notify the requester that the
requested token is available. If the token isanormal TToken registered
with an arbitrator, the notifier is used to notify the token owner when an
active request has been made for the token. Token owners normally setup a
notifier for the token if they have exclusive access to the token and they are
willing to give up the token if someone else requestsiit.

Token owners can set the token’ s notifier by calling Set Not i fi er. Before
giving up atoken, token owners should call Set Not i fi er (NULL) to
remove the notifier.

Token requesters can set the notifier of their TRequest Token by calling
Set Noti fi er or by passing the TNoti fi er object to
TArbi trator:: PassiveRequest or TArbitrator:: Acti veRequest .

Cet UseCount

Get UseCount returns the number of shared owners of the token. If the
token is owned exclusively by someone, - 1 is returned.

Continued on following page »

TToken 9-147

See also

et Request Type

CGet Request Type isused to determine if the TToken object is actually a
TRequest Token object, and if it isa TRequest Token object, to determine
what the request type of the token is. It ismainly used internally by
TToken.

Notify

Not i fy isused to notify the exclusive owner of the token that thereisa
request for the token. The TRequest Token parameter passed in isthe
requester of the token. It returnst r ue if the owner of the token had
attached a notifier to the token and returnsf al se otherwise.

TRequest Token: : Get Obj ect can be used to determine if the owner gave
up the token. Not i fy is mainly used internally by the object arbitration
classes and does not have much use otherwise.

Rel ease

Rel ease isused to release a token. It releases the owner’s claim on the
token.

Request

Request isused to claim the token for the requester specified by the
TRequest Token parameter. If it returnst r ue, then either the token was
successfully claimed or the token is already claimed and the owner had a
notifier and was notified about the request. In this case, you should call the
request token’s Get Obj ect method to see if the token was successfully
claimed. This routine is mainly used internally by the object arbitration
classes. It isonly useful if you have both the token to be claimed and a
request token that wants to claim the token.

TNotifier

TMet hodNot i fi er
TProcNotifier
TRequest Token
TTokenNoti fication

“Object arbitration classes’ in Chapter 8, “ASLM Utility Class
Categories.”

TArbitratorExamplel, TArbitratorExample2, and TArbitratorExample3
examples on the ASLM Examples disk

9-148 Chapter 9 / Utility Classes and Member Functions

TTokenNoti ficati on

Description

Declarations

Member functions

The TTokenNot i fi cati on classis used with object arbitration to pass
information to a client’ s notification function.

The TTokenNot i fi cati on class has no parent class.

The TTokenNot i fi cati on classisasimpleinline classthat is used to
return notification information to a client using object arbitration. It is
passed in the not i f yDat a parameter of the notifier’s notify function.

When notifying a token owner that the token is being requested, Get Token
is used to retrieve the requested token and Get Request Token is used to
retrieve the token that was used for the outstanding request. If you want to
give up the token then call the request token's G ve member function. You
should not keep the request token unless you have an agreement with the
client as part of your access protocol, and you must not keep the
TTokenNoti fi cati on.

When notifying the requester of a token that the token is available,

CGet Request Token is used to retrieve the token that was used for the
outstanding request. The token that was requested has already been claimed
and is available by calling the Exchange or Get Gbj ect member functions
of the request token.

For afull description of object arbitration and how TTokenNot i fi cati on
objects are used with object arbitration, see the “Object Arbitration
Classes” section of Chapter 8, “ASLM Utility Class Categories.”

TTokenNoti ficati on(TToken*, TRequest Token*);
~TTokenNotification();

TToken* Get Token();
TRequest Token* CGet Request Token() ;
Get Token

This function returns the token that was requested. This is true whether the
owner of the token or the requester of the token is being notified.

Get Request Token

This function returns the request token that is being used to handle the
reguest.

Continued on following page »

TTokenNotification 9-149

See also TNotifier
TMet hodNot i fi er
TProcNotifier

“ Object arbitration classes’ in Chapter 8, “ASLM Utility Class
Categories.”

TArbitratorExamplel, TArbitratorExample2, and TArbitratorExample3
examples on the ASLM Examples disk.

9-150 Chapter 9 / Utility Classes and Member Functions

TTracelLog

Description

Declarations

Member functions

The TTr acelLog abstract class can help you in debugging.

The TTr acelLog class has the following inheritance:
TDynamic --> TTracelog

The TTr acelLog class provides a Tr ace member function that has a
parameter list equivalent to that of the C-language pri nt f subroutine.
When you send unformatted text to Tr ace, the text is formatted and is
usually sent to awindow, but this depends on the implementation of the
TTr acelLog subclass.

The Get @ obal Tr aceLog function provides a TTr aceLog subclass that
will send traces to the TraceMonitor’s Trace window. The

Set A obal TraceLog function can be used to change the global

TTr acelLog to your own TTr aceLog subclass.

#define kTTraceLogl D "sl m dbug$tl og, 1. 1"

TTracelLog();
vi rtual ~ TTracelLog();
virtual void Trace(char *formatStr, ...) const;

/1 New nenber functions

Bool ean | sTraceLogOn() const;
voi d TraceLogOn();
voi d TraceLogOfif () ;

virtual void TraceFormatted(char* outstr) const = O;
virtual void TraceUnf ormatt ed(voi d* argp) const;

| sTraceLogOn

The | sTraceLogOn member function returnst r ue if tracing is turned on
for the TTr aceLog object.

Tr ace

The Tr ace member function calls Tr aceUnf or mat t ed and passes the
address of the For mat St r parameter as the parameter for

TraceUnf or mat t ed. The Tr ace member function, like pri nt f , takes an
unformatted string with multiple parameters.

Continued on following page »

TTraceLog 9-151

TraceFornatted

The Tr aceFor mat t ed member function displays the trace string passed to
it. Thisisthe only member function that a TTr aceLog subclass must
implement. The default global trace log sends the trace to the
TraceMonitor’ s Trace window.

TraceUnformatt ed

The Tr aceUnf or mat t ed member function formats the trace to get the
actual string to output. It then calls Tr aceFor mat t ed to output the trace
string.

TraceLogOn
TraceLogO f

You canturn aTTr aceLog object’s tracing on and off by calling the
TraceLogOn and Tr aceLogCOf f member functions. Y ou can also turn
tracing on and off for any object that inherits from TDynani ¢ by calling
TDynani c::TraceOn and TDynani c::TraceO f, but only if the TDynani ¢
subclass implements Tr aceOn, TraceCf f , and | sTr aceOn. By default,
TraceOn and TraceOf f do nothing, and | sTr aceOn alwaysreturnst r ue.

9-152 Chapter 9 / Utility Classes and Member Functions

TUseCount

Description

The TUseCount classis a data structure for maintaining a use-count value.

The TUseCount class has no parent class.

The TUseCount classisdefined inline and has only onefield, the f val ue
field, so it requires no more overhead than any other use-count field unless
ashort wasused instead of al ong.

The TUseCount classreturnst r ue if I ncr ement iscalled for the first time
(that is, when the use count goes from 0 to 1) and when Decr enent is
called for the last time (when the use count goes from 1 to O, or goes
negative). Generally, when Decr enent is called for the last time, that isa
signal that some action must be taken. For example, if you want to delete
an object after its use count goes to 0, a program can execute a statement
such as:

if (myQoject.fUseCount->Decrenment()) del ete nyQbject;

The advantage of using the TUseCount classis that the increment and
decrement tests are atomic. If a program does not use the TUseCount class
, but instead executes a statement such as:

if (--useCount <= 0)

The MPW compiler decrements the location of useCount , and then makes
a separate test of the location. If the use count is changed at interrupt time
after the first instruction is issued, but before the second, other routines
may assume that they have incremented the use count from 0 to 1 or have
decremented it from 1 to 0, which can cause problems.

In order to work, TUseCount must store avalue that is one less then the
actual use count. Thus, when the use count is 0, the value stored is actually
- 1. Therefore, Set UseCount is used to set the use count and Set Val ue is
used to set the value (the use count - 1).

Continued on following page »

TUseCount 9-153

Declarations struct TUseCount

{
voi d Set Val ue(l ong) ;
voi d Set UseCount (| ong) ;
| ong CGet Val ue() const;
| ong Get UseCount () const;
voi d Init();
Bool ean Increment(); // Returns True if first tine
Bool ean Decrenent(); // Returns True if back to unused
Bool ean |sUnused() const;
| ong f Val ue;
1

Member functions | ncr ement
Decr enent

The TUseCount member function returnst r ue if | ncr enent iscalled for
the first time and when Decr enent iscalled for the last time. When

Decr enent iscalled for the last time, it isasignal that some action must be
taken.

I nit
Thel nit member function is used to reset the use count to “unused.” In
other words, the use count is set to O (value set to - 1).

| sUnused

The | sUnused member function returnst r ue if the use count is currently
“unused” (the use count is 0).

Set Val ue
Get Val ue

The Set Val ue and Get Val ue member functions are used to set and get
the value (the use count - 1).

Set UseCount
Cet UseCount

The Set UseCount and Get UseCount member functions are used to set
and get the use count.

9-154 Chapter 9 / Utility Classes and Member Functions

IV Appendixes

Appendix A Header Files

To use the ASLM, aclient must include certain ASLM header files. Five
header files are provided with the ASLM:

m LibraryManager.h

m LibraryManagerClasses.h
m LibraryManagerUtilities.h
m GlobalNew.h

m TestTool.h

This appendix provides a general description of the contents of the ASLM
header files.

LibraryManager.h

The LibraryManager.h header file contains essential interfaces for using
the ASLM. Declarations in LibraryManager.h include the

TLi br ar yManager , TDynani ¢, and TCl ass| D classes; error codes; macros
for exception handling; and some function declarations, including the
declarations of I ni t Li br ar yManager and New(bj ect . The

TLi br ar yManager , TDynani ¢, and TCl ass| D classes are described in
Chapter 9, “Utility Classes and Member Functions.” The C interface for
TLi br ar yManager is described in Chapter 7 “ASLM Utilities.”

Y ou can include the LibraryManager.h file in both C and C++ programs.

LibraryManagerClasses.h

The LibraryManagerClasses.h header file contains all the ASLM classes
that are not defined in LibraryManager.h. If you write an application that
uses or subclasses any classes declared in LibraryManagerClasses.h, the
application must include the LibraryManagerClasses.h file. The
LibraryManagerClasses.h file also contains function declarations that deal
with certain classes defined in the file, such as Get 3 obal Arbitrator and
Get d obal TaskSchedul er.

Y ou can include the LibraryManagerClasses.h file in both C and C++
programs. However, most C programs will not need thisfile.

LibraryManagerUtilities.h

The LibraryManagerUtilities.h header file contains the interface to many of
the utility functions and macros provided with the ASLM. The functions
and declarations included in the LibraryManagerUtilities.h header file are
described in Chapter 7, “ASLM Utilities".

Y ou can include the LibraryManagerUtilities.h file in both C and C++
programs.

A-2 Appendix A / Header Files

GlobalNew.h

TestTool.h

The GlobalNew.h header file contains the interface to the ASLM global
new and del et e operators, which allocate memory from pools rather than
from the free store conventionally used in C++ programs. For more details
on memory pools and the new and del et e operators, see “Memory
Management Classes” in Chapter 8 and “Using the ASLM Global new and
del et e Operators” in Chapter 6.

Y ou can include the GlobalNew.h file only in C++ programs.

The TestTool.h header file contains the interface to the TTest Tool class, a
class used by the MPW tool TestTool provided with the ASLM. TTest Tool
is abase class used for writing ASLM classes that can be used as test
modules. TestTool creates and executes TTest Tool subclasses. TestTool
allows you to load and unload the ASLM, and load and run tests
implemented by classes descended from TTest Tool . You can also specify
options to be passed on to the loaded objects.

TestTool is provided in executable form in the Tools folder on the ASLM
Developer Tools disk, and is provided in source code form on the ASLM
Examples disk. For instructions on building and using TestTool, see
Appendix B, “ASLM Utility Programs.”

Y ou can include the TestTool.h file only in C++ programs.

Test Tool.h A-3

Appendix B ASLM Utility Programs

The ASLM includes several utility programs that demonstrate how shared
libraries work and perform avariety of useful tasks. The source code for
these programs has been provided in case you want to examine them or
make use of them in your own clients and shared libraries.

The ASLM’s utility programs are located on the ASLM Debugging Tools
and the source code can be found on the ASLM Examples disks. This
appendix describes the following utility programs and explains how to use
them:

LibraryManagerTest1
LibraryManagerTest2
I nspector

TestTool
TraceMonitor

For information on how to build the utility programs, refer to the section
“Building the Examples” in Appendix C “Using the Example
Programs.”

LibraryManagerTest1 and LibraryManagerTest2

LibraryManagerTestl and LibraryManagerTest2 are MPW tools that
demonstrate how you can write shared libraries and clientsin C++ and C.
These tools can also perform a quick test of the ASLM so that you can tell
whether the ASLM is working properly. Source code for the tools are
provided in the ExampleLibrary folder on the ASLM Examples disk. The
executable codeisin the LibraryManagerTest folder on the ASLM
Dubugging Tools disk.

Both LibraryManagerTest1 and LibraryManagerTest2 rely on a shared
library named ExampleLibrary. The source code that builds
ExampleLibrary is on the ASLM Examples disk, along with the source code
for the two tools. A copy of thelibrary that is already built is on the ASLM
Debugging Tools disk, along with the executable LibraryManagerTest1
MPW tool.

To run the LibraryManagerTest1 and LibraryManagerTest2 tools, you
must copy them into your MPW Tools folder. Y ou must also copy the
ExampleLibrary file into your system Extensions folder. Thisis described
in “Installing the Debugging Tools” in Chapter 3, “ASLM Installation.”

The makefile in the ExampleLibrary folder builds two MPW tools:
LibraryManagerTest1, which tests ExampleLibrary, and
LibraryManagerTest2, a C version of LibraryManagerTestl. The same
makefile builds a shared library named ExampleLibrary, which is used by
the LibraryManagerTest1 and LibraryManagerTest2 tools.

The LibraryManagerTest1l and ExampleLibrary files supplied on the ASLM
Debugging Tools disk are identical to the ones built using the makefilein
the ExampleLibrary folder.

How LibraryManagerTest1 and LibraryManagerTest2 Work

Functionally, LibraryManagerTest1 and LibraryManagerTest2 are almost
identical. LibraryManagerTestl iswritten in C++, while
LibraryMangerTest2 is written in C and shows how to call methods of
classes from C.

Both tools instantiate objects in the ExampleLibrary and call functions that
are implemented in a function set in the ExampleLibrary file.

B-2 Appendix B/ ASLM Utility Programs

The syntax of the LibraryManagerTest1 and LibraryManagerTest2
commandsis:

Li braryManager Test1l [-v] [-t O] 1] [-c nReps] [-s] [-I] [-X]

-i classlD
Li braryManager Test2 [-v] [-t 0]|1] [-c nReps] [-s] [-I] [-X]
-i classlD

where:

-v Turns on verbose mode, which prints progress messages
in the MPW worksheet. Default is off.

-t Turns on tracing. Default is off.

-c nReps Sets the number of times a test loop will run. The nReps
variable is a positive integer that can be set to the
number of times the test will iterate its while loop.

-s Unloads the ASLM.

-1 Loadsthe ASLM.

- X Turns on debugging.

-i classlD Tests GetClasslnfo with the specified class ID.

Running LibraryManagerTest1 or LibraryManagerTest2

Y ou can run the LibraryManagerTest1 file located in either the ASLM
Debugging Tools disk or the ASLM Examples disk. Before running
LibraryManagerTest1 or LibraryManagerTest2 do the following.

m Drag LibraryManagerTestl or LibraryManagerTest2 into your MPW
Tools folder.

m Drag the ExampleLibrary from the Built folder file into your Extensions
folder.

To run the LibraryManagerTest1 tool, execute the LibraryManagerTest1
command by entering this command:

Li brar yManager Test 1

LibraryManagerTest1 and LibraryManagerTest2 B-3

If the ASLM isinstalled in your system and is operating properly,
LibraryManagerTest1 prints an analysis similar to the following:

Hel | o(ul ong&): Hell o

startticks = 283301

Hel | o(ul ong*): Hell o

startticks = 283309

Hel | oC(ul ong*): Hell o

startticks = 283316

Hel | oPascal (ul ong&): Hel |l o

startticks = 283323

100000 Iterations of Hello: 180

100000 Iterations of |ocal Hello: 144

El apsed ticks (according to 'C interface): 151
El apsed ticks: (according to Pascal interface): 155

The LibraryManagerTest2 tool also tests the ASLM and provides output
similar to that of the LibraryManagerTest1 tool shown earlier. To run the
LibraryManagerTest2 tool enter the command:

Li braryManager Test 2

The Inspector application

The Inspector is an application that helps you debug shared libraries. The
Inspector lets you inspect objects that are implemented in shared libraries
and is a good example of how to write a shared library that displays
windows, menus, and dialog boxes. The source code is in the Inspector
folder on the ASLM Examples disk. The Inspector also allows you to load
or unload the ASLM, register ashared library file, or register a shared
library file folder.

The makefile in the Inspector folder builds the Inspector application along
with InspectorLibrary and WindowStackerLibrary (two shared libraries
required by the Inspector application).

In case you do not choose to build the Inspector example, an executable
copy of the Inspector application and its libraries—InspectorLibrary and
WindowStackerLibrary— can be found, already built, on the ASLM
Debugging Tools disk.

For information on how to register C++ objects with the Inspector, see
“Registering C++ Objects with the Inspector” in Chapter 7, “ASLM
Utilities.”

B-4 Appendix B/ ASLM Utility Programs

Running the Inspector

Before running the Inspector, you must drag the InspectorLibrary and
WindowStackerLibrary files into your system Extensions file.

To run the Inspector:
1 Run the Inspector by double-clicking the application icon in the Finder.

2 If the ASLM isloaded, the Inspector starts and displays three or more
windows.

How the Inspector works

Each window that the Inspector displays represents a C++ class. The title of
each window isthe class ID for the class that the window represents.

In the content region of each window, there is alist of instantiated objects
that belong to the class represented by the window. These objects are
registered by calling Regi st er Dynani cObj ect .

Next to the name of each object, there is atext string. These strings are
returned by each object’s Get Ver boseNane method. The Get Ver boseNane
method isa TDynani ¢ class method that can be overridden by its subclasses.
(For more information about the TDynani ¢ class and its methods, see
Chapter 9, “Utility Classes and Member Functions.”)

The Inspector always displays at least three windows, each of which
represents a class used internally by the ASLM. The three main windows that
the Inspector displays can be useful when you want to see which shared
libraries, shared library files, and classes are currently recognized by the
ASLM. The windows also provide some useful information about each class:

m The !$file window contains one object for each shared library file. The
information supplied for the object includes the object’ s filename,
directory 1D, and volume refNum.

m The !$libr window contains one object for each shared library. The
information in this window includes the use count for the library (a use
count of 0 means the library is not in use and is not loaded), the
library’s unformatted version number, and information about the
library’s library file.

m The !$clss window contains one object for each classin a shared library.

The information presented in this window includes the class' flags, use
count, and class ID. Function sets are also displayed in this window.

The use count in the !$clss window is not necessarily the number of
instances of the class. Although the use count is incremented each time an
instance is created, it is also incremented each time alibrary containing a
subclass of the classis loaded, even if the subclass is not instantiated.

The Inspector application B-5

Here are the flags you see in the Inspector. Flags are in hex. The valuesin
the inspector are also in hex and represent the sum of all the flags that are
Set.

The following are the flags for the ! $clss window:

1 the class has the pr el oad flag set

2: the class has the NewQbj ect flag set

4. the classis actually afunction set

8: the class has a virtual destructor

10: the classis a dummy function set resulting from the use of
thei nt er f acel D= option for function sets

40: the class uses multiple inheritance

80: the classisan ASLM root class

The following are the flags for the ! $libr window:

1 the library is built with fl ags=pr el oad

2: the library is built with menor y=cl i ent rather than
menor y=l ocal .

4 the library is built with fl ags=noSegUunl oad rather than
fl ags=segUunl oad

8: the library is built with f | ags=I oaddeps or
f 1 ags=f or cedeps

10: the library is built with f | ags=f or cedeps

20: the library is built with f | ags=I oadsel f

80: the library uses per client data

100: the library is built with heap=t enp

200: the library is built with heap=syst em

400: the library is built with heap=HOLD

100 and 200: thelibrary is built with heap=appl i cati on

Inspector menus

The Inspector has the standard Macintosh File and Edit menus (although
the Edit menu is not activated), a Windows menu, and a Commands menu.
From the Windows menu, you can select and stack windows. The Tile
Windows command under the Windows menu is currently not
implemented.

B-6 Appendix B/ ASLM Utility Programs

The Commands menu contains commands to reload and unload the ASLM,
to turn tracing on and off, and to switch from the Inspector’s normal mode
to a bare-bones simple program mode that has only a File menu and an
Edit menu and that does not display windows. When in this mode, the
Inspector does not require its shared libraries and does not require that the
ASLM be |oaded.

The Unload Library Manager command and the Reload Library Manager
commands are used mainly for testing purposes.

WARNING Choosing Unload Library Manager during normal use of
the ASLM can cause any client currently using the ASLM to crash.

The Goto Simple Program command in the Commands menu places the
Inspector in its simple program mode, which does not display windows and
does not require the ASLM to be loaded. This mode lets you launch the
Inspector without having the ASLM present. Y ou can then load the ASLM
from within the Inspector.

Choosing the Goto Simple Program command is not the only way to put
the Inspector into simple program mode. If the ASLM is not loaded when
you launch the Inspector application, the Inspector goes into simple
program mode automatically. Another way to put the Inspector into simple
program mode is to unload the ASLM while the Inspector is running. Y ou
can do that by choosing the Unload Library Manager command.

When the Inspector isin simple program mode, only the File menu is
active. If the ASLM isloaded, you can take the Inspector out of Simple
Program mode by choosing Goto Real Program (the mode with windows),
or you can unload the ASLM by choosing Unload Library Manager (see
the warning above). If the ASLM is not loaded, you can load it, but only if
it was loaded at boot time and has since been unloaded.

The Register Folder menu item will register the folder you select as a
registered library file folder by using the Regi st er Li brar yFi | eFol der
function. You can unregister the folder by using Unregister Folder.
Likewise, Register Fileregisters the library file you select with the ASLM
by using the Regi st er Li br ar yFi | e function, and Unregister File allows
you to unregister the library file.

The Inspector application B-7

TestTool

TestTool isan MPW tool that allows you to load and unload the ASLM and
test classes included with the ASLM and shared libraries that you develop
yourself.

The makefile in the TestTools folder builds TestTool and a shared library
named TestLibrary. The source code files that are used to build TestTool
and TestLibrary are on the ASLM Examples disk.

The TestTool file and the TestLibrary file that are built using the makefile
on the ASLM Examples disk are identical to the executable copies of
TestTool and TestLibrary that are supplied in the TestTool folder on the
ASLM Debugging Tools Disk.

Using TestTool

Before running TestTool, drag the TestTool file into your MPW Tools
folder, and the TestLibrary file into your system Extensions folder.

Y ou can run TestTool by executing the TestTool command. To execute the
TestTool command, pass the name of the class to do the testing as a
parameter on the command line. TestTool then runs the tests by calling the
object’s methods. The class must inherit from the TTest Tool class, which
is declared in the TestTool.h header file. Y ou can write your own

TTestTool subclassesif you like.

The syntax of the TestTool command is:

TestTool [v] [-tO]1] [-n nReps] [-s] [-1] [-x] [-p]
[-c CasslID [-4a]

where:

-V Turns on verbose mode, which prints progress messages
in the MPW worksheet. Default is off.

-t Turns on tracing Default is off.

-n nReps Sets the number of times atest loop will run. The
nReps variable is a positive integer that can be set to the
number of times the test will iterate itswhi | e loop.

-S Unloads the ASLM.

-1 Loads the ASLM.

- X Turns on debugging.

-p Does not allow the memory pool to grow.

B-8 Appendix B/ ASLM Utility Programs

-c classlD Runs tests using the specified class.

-0 Remaining arguments are passed to
<Your Test Tool >: : | ni t Test

-a Runs all tests.

Thisis an example of a TestTool command:
TestTool -v -t -n 5 -c TTest TaskSchedul er

TestTool classes

The classID variable that you specify in the - ¢ option should not contain a
prefix because all TTest Tool subclassesuseaclass|D withthesl mtest$
prefix. Note that the class ID variable is case sensitive. (For more
information on class IDs, see “TClassID” in Chapter 9, “Utility Classes
and Member Functions.”)

The TestLibrary contains the following classes that you can use with

TestTool:

TTestAbitrator TTestNoVTable
TTestTaskScheduler TTestRandom
TTestTimeScheduler TTestStandardPool
TTestTimeStamp TTestTimings
TTestExceptions TTestPriorityList
TTestFSet TTestAllocLinkedList
TTestHashList TTestLinkedList
TTestMisc

The TraceMonitor application

The TraceMonitor application displays traces that are sent by ASLM clients
using the Tr ace routine. The Tr ace routine sends output to the currently
installed global trace log. The global trace log that the ASLM installs, sends
the traces to the TraceMonitor application which displays them in its main
window. Traces can be useful for debugging shared libraries since they do
not have access to any other type of debugging window. For more
information, see “Using the Global TraceLog” in Chapter 7, “ASLM
Utilities.”

The TraceMonitor application B-9

Appendix C

Using the Example Programs

The ASLM package contains a collection of example programs that can
help you create and build clients and shared libraries. Source codeis
provided so that you can examine, and then compile and link into
executable clients and shared libraries. Some of the code samplesin this
document are taken from these examples.

The examples are in seven folders on the ASLM Examples Disk:
m Example Tools

m ExampleLibrary

m FunctionSetinfo

m Inspector

m Sample INIT

m Sample Apps

m TestTools

The examples in the folders ExampleLibrary, Inspector, and TestTools are
utilities described in Appendix B “ASLM Utility Programs.”

The programs in the folders Sample Apps, Sample INIT, ExampleTools,
and FunctionSetinfo are examples of clients and shared libraries written in
C++, C, and Pascal, and a sample Extension (INIT) that makes use of the
ASLM.

Each of the example folders contains a makefile and a set of three folders
named Sources (containing the source files), Objects (containing the object
files), and Built (containing the built files). The Example Tools folder has a
Bui | dExanpl e script instead of a makefile. If an example has more than
one makefile, execute the makefile that builds the shared libraries first and
the tools or applications second.

The Sample Apps folder

The sample programs in the Sample Apps folder are patterned after the
Sample.c and Sample.p programs that are supplied with MPW. Like
Sample.c and Sample.p, each sample program in the Sample Apps folder
displays a single window on the screen. The window contains a picture of a
traffic light. By either clicking inside the picture or selecting a menu item,
you can make the traffic light switch back and forth between red and green
(or between two different patternsif you do not have a color Macintosh).

Each version of the program provided with the ASLM is divided into two
parts: aclient and a shared library. Code that is not likely to be useful in
other programs (in the opinion of its author) was placed in the client section
of each program. Code that was believed more likely to find its way into
other programs was placed the shared library associated with each client.

The sample programs in the Sample Apps folder are

m CSample, aclient and shared library writtenin C

m CPlusSample, aclient and shared library written in C++

m CCPlusSample, aclient written in C and a shared library written in C++
m PSample, aclient and shared library written in Pascal

Before running any of the sample applications, the shared library file that is
built with the application must be placed in the Extensions folder.

The Sample INIT folder

The Sample INIT folder contains an example of an INIT that uses a shared
library. The example includes a shared library that implements the

Show! NI T function commonly used by INITs. The INIT in this example
callsthe Showt NI T function in the shared library.

The source filesin the Sample INIT folder include

m SamplelNIT.c, a C-language example that shows how Extensions
(INITs) can use the ASLM

m SamplelNIT.r

m ShowlINITLibrary.c
m ShowlINITLibrary.exp
m ShowlINITLibrary.h
m ShowlINITLibrary.r

Before rebooting your machine, the SamplelNIT and ShowINITLibrary
files must be placed in your Extensions folder.

C-2 Appendix C/ Using the Example Programs

The FunctionSetinfo folder

The FunctionSetinfo folder contains an example of how to find all
function sets that have a common interface ID by using the

Get Funct i onSet | nf o function. In the example, there are two function
sets, Mat hFSet Add and Mat hFSet Sub, which share a common interface.
The Test Mat hSet MPW tool uses Get Funct i onSet | nf o to find these
function sets and then calls the Mat hFunct i onl and Mat hFunct i on2
functions in each function set by using Get Funct i onPoi nt er . After
building the example, the MathLibrary file must be placed in the
Extensions folder before running the TestMathFSet tool.

The source files in the FunctionSetInfo folder include

m TestMathSet.c, which isan MPW tool that demonstrates how to use
Get Functi onSet I nfo

m MathFSetAdd.c, which is the implementation of the Mat hFSet Add
function set

m MathFSetSub.c, which is the implementation of the Mat hFSet Sub
function set

The Example Tools folder

The Example Tools folder contains a large assortment of tools that
demonstrate how you can use the utility classes supplied with the ASLM in
your clients and shared libraries.

The example tools that are built have file names that are, for the most part,
self-explanatory. The programs are

LibraryManagerExample TPoolNotifierExample
TArbitratorExamplel TPriorityListExample
TArbitratorExample2 TPrioritySchedulerExample
TArbitratorExample3 TProcNotifierExample
TArrayExample T Serial SchedulerExample
TClasslnfoExample TSimpleListExample
TInterruptSchedulerExample TTaskSchedulerExample
TLinkedListExample TTimeExample
TMacSemaphoreExample TTimeSchedulerExample
TMethodNotifierExample TTokenExample

The Example Tools folder C-3

Building the examples

When you build an example you must always copy its shared library (if it
has one) into the Extensions folder before running the example (unless
you want to see an example of ASLM exception handling).

To build the example programs, do the following:

1 Set {SLMInterfaces} to the directory where the ASLM interface files are
located, and export SLM Interfaces.

2 Set {SLMLibraries} to the folder where the ASLM MPW libraries are
located, and export SLMLibraries.

3 Either add the directory where the ASLM tools are located to your
{Commands} path or copy the tools into the MPW Scripts and Tools
folders.

The following sample code builds the example programs. This sample
assumes that the ASLM Developer Tools disk islocated on a hard drive
named HD:

set SLM nterfaces "HD: ASLML. 1: Devel oper Tool s:Interfaces:”
export SLM nterfaces

set SLM.i braries "HD: ASLML. 1: Devel oper Tool s: Libraries:"
export SLM.i braries

set Conmands "HD: ASLML. 1: Devel oper Tool s: Tool s:, { Cormands} ™"

Y ou must be in the directory containing the makefile for the example to
build. If you want to build all the examples at once, set the current
directory to the ASLM Examples folder and then execute the following:

directory : Exanpl eLibrary
make > nmake. out
make. out

directory ::lnspector

make -f makefile.libs > nake. out
make. out

make > nake. out

nmake. out

directory :: TestTools

make > make. out

make. out

make -f makefile.tools > nake. out
make. out

C-4 Appendix C/ Using the Example Programs

directory '::Sanple INIT:'
make > make. out
make. out

directory '::FunctionSetlnfo:'

make > nmake. out
make. out

directory '::Exanple Tools:"'
Bui | dExanpl e -a

directory '::Sanple Apps:'
directory ':CSanpl e:

make > make. out

make. out

directory '::PSanple:’
make > make. out

make. out

directory '::CCPlusSanple:'
make > make. out

make. out

directory '::CPlusSanple:'
make > make. out

make. out

Building .SYM files for clients, libraries, and tools

To build the example programs with .SY M files, you must execute the
following command before running the makefiles for the examples.

Set Synbol Option "-sym on"

export Synbol Option

The .SYM files that you create in this manner are placed in the Built folder
of the example that you are building. Thiswill only work for the Inspector,

ExampleLibrary, and TestTools examples.

Building the examples C-5

Appendix D Versioning

When you write a shared library or a client, you can specify the version
numbers of function sets and classes implemented in the shared library or
used by the client. Y ou can place both the current version and the
minimum supported version of a function set or class in the exports file of
the library that you are writing. The class version information that you
place in an exports file is represented by a range of numbers. For example,
1.0...1.2, indicates the oldest version (1.0) and the most recent version (1.2)
supported by the class. Version numbers are referred to in terms of major,
minor, and bug-fix. A period separates the major, minor, and bug-fix
numbers. In version 3.5.2, the major number is 3, the minor number is 5,
and the bug-fix number is 2.

When you create an object or call afunction that isimplemented in a
shared library, the ASLM uses the class or function set with the newest
version number that is also compatible with the version specified in the
client object file with which the client linked.

When a client uses the NewObj ect function to create an instance of a class,
the ASLM uses the class with the newest version number that is also
compatible with the version specified in the class ID passed to NewObj ect .
If the class ID contains no version number then the latest version is always
used. The same is true when you use the Get Funct i onPoi nt er routine to
get a pointer to a function in afunction set. The function set ID determines
which version of the function set will be used.

Y ou can place version information in function set IDs and class IDs. In fact,
both function set IDs and class | Ds should contain version numbers. For
more information on this topic, see “TClassID” in Chapter 9, “Utility
Classes and Member Functions.”

Shared libraries also have version numbers. When you are developing a
shared library, you can assign version numbers to progressive versions of a
shared library. The version number should also be part of the library ID so
that each version of the shared library will have a unique library ID. The
library’ s version number also serves as the default version for function sets
and classes that do not specify a version. Therefore, when you assign a
version number to a shared library, each function set and class in the
library that does not have its own version number is assigned the version
number of its shared library.

When there are multiple shared libraries with the same library 1D, the
ASLM registers all of the shared libraries, however, only the function sets
and classes in one of the libraries will be used. The others are marked as
duplicates and are not used, even if different version numbers are used for
the libraries, function sets, or classes.

How versioning works

When a shared library is built, information about the version of each
function set and class is placed in the library’s client object (.cl.o0) file.
Therefore, the client object file with which a client links determines which
version of the function set or classis used by the client. For example,
assume that a .cl.o file contains a function set or class that is designated as
version 1.2. When the class is created (or when a function in the function
set is called) the ASLM looks for the function set or class with the highest
version number that supports the version in the .cl.o file that the client
linked with—in this case, version 1.2.

Now assume that three versions of a class exist: version 1.2 (which supports
versions 1.0...1.2), version 1.4 (which supports versions 1.1...1.4), and
version 1.5 (which supports versions 1.3...1.5). If aclient links with the
client object file for the 1.2 version of the function set or class, the ASLM
chooses version 1.4 because it is newer than version 1.2, and because
version 1.5 does not support version 1.2. If the client linked with the client
object file for the 1.0 version of the function set or class, version 1.2 of the
function set or class is used because it is the only one that supports

version 1.0.

It is possible for multiple versions of afunction set or class to be in use at the
same time. This can happen if the version ranges of the classes do not
completely overlap (for example, if the available version rangesare 1.1...1.4
and 1.3...1.5) or if an older version of afunction set or classisin use when a
new version is made available. The older version of the function set or class
continues to be used by its existing clients but the newer version is used by
any new clients that start up after the new function set or classis added.

D-2 Appendix D/ Versioning

Note: If aclass does not have avirtual destructor, only one version of the
class can be used at atime. Thisrestriction is needed to ensure that the
proper destructor is called when instances of the class are deleted.

Function sets can maintain backwards compatibility by always listing the
function to be exported in the same order in the exports file and not
changing the interfaces of existing functions. If thisis done, new functions
may be added to the function set and the version range of the function set
can continue to include older version numbers.

Version numbers and subclasses in C++

If new data members or virtual member functions are added to a class, the
user of the class is unaffected because the v-table offsets of the functions
and the locations of the data members of the class that the user knows
about remain the same.

However, subclassing a class that has added virtual member functions or
data members has a definite impact on the subclass. If virtual member
functions are added to a base class, they will be overwritten by the new
virtual functions of the subclass. Thisis not necessarily a problem, provided
the parent class does not call any of the new functions itself. If you pass an
object that is an instance of the subclass to a function holding the new
definition of the base class, the function may attempt to call new member
functions of the class. Since this will probably fail, the function will then
call the overwritten function in the subclass. Similar problems may arise
when data members are added to a class.

To prevent this problem, a change in a class’s magjor version number
indicates that the classis no longer subclass compatible with previous
versions of the class. Clients linked with the older version’s client object file
may instantiate the class and get the new classif the new class is backwards
compatible. However, auto (stack) objects, objects created with the
nondefault new operator, imbedded objects, and objects that are instances
of the subclass whose major version number changed, can only use the
class with the same major version number as the version number for the
class contained in the client object file that the client or shared library
linked with.

If the base class has its version numbers set correctly, subclass compatibility
is all handled automatically. For example, assume you implemented
version 1.0 of aclass called TFoo that is subclassed by a class called
TSubFoo (which isin another shared library), and then a newer version of
TFoo isintroduced that has added some virtual functions, but is otherwise
compatible with version 1.0. As aresult, the major version of TFoo must
change, and you must use version 1.0...2.0 (not 1.0...1.1). When someone

Version numbers and subclasses in C++D-3

creates an instance of TSubFoo, TSubFoo will automatically use version 1.0
of TFoo sinceit was linked with version 1.0 of the client object file
containing TFoo and it knows that version 2.0 is not subclass compatible.

Using the example above, if aclient was linked with version 1.0 of the
client object file containing TFoo, then it would automatically use version
2.0 of TFoo when it creates instances of TFoo using the default new
operator. However, if the client created an instance of TFoo using a
nondefault new operator (such as one where you explicitly specify the pool
out of which to allocate memory) or if the object is a stack object then
version 1.0 of TFoo is used automatically.

Thereason version 1.0 is used in thisinstance is because the memory for
the object is allocated by the client, and not by the constructor of the object
asit iswhen using the default new operator. Since the client will not have
any idea that the size of the object has grown, it needs to play it safe and
only use aversion that it knows is subclass compatible.

If thereis aversion incompatibility (that is, if there is no shared class with a
compatible version), an exception is raised using the error code
kVer si onEr r or or the error code kNot Found.

WARNING Thesi zeof function always returns the size of the class
declared in the interface files with which alibrary or aclient is
compiled. However, if you use the new operator to create an instance
of the class, you may get an object back that is bigger then the result
of thesi zeof function. Thisis possibleif a newer version of the
class exists, the newer version adds new data members, and indicates
how to be compatible with the class you requested. This will not occur
if the object created is a stack object or an embedded object. In this
case, you get an object of the correct size. To ensure that you get the
correct size of aclass, call Get Obj ect sSi ze after creating an
instance of the class.

D-4 Appendix D / Versioning

The following table summarizes how to handle your class version numbers

when you make changes to the class:

Change made to the class

Action needed for versioning

Virtual functions deleted
Data members deleted

Virtual functions added after the
last virtual function

Data members added after the
last data member

Implementation changed
Non-virtual methods added
A new constructor added after the

last constructor
Change made to a data member

Change the class ID of the class
Change the class ID of the class
Increase the major version of the class

Increase the major version of the class

Increase the minor or bug-fix version of the
class

Increase the minor or bug-fix version of the
class

Increase the minor or bug-fix version of the
class

If the data member is the same size, and you
have no inline functions to it, just increase the
minor or bug-fix version of the class.
Otherwise, you need to change the class ID of
the class.

Version numbers and subclasses in C++D-5

