
Issue 15 September 1993

d e v e l o p
T h e A p p l e T e c h n i c a l J o u r n a l

GETTING STARTED
WITH
QUICKDRAW GX

DEVELOPING
QUICKDRAW GX
PRINTING
EXTENSIONS

QUICKDRAW GX
FOR POSTSCRIPT
PROGRAMMERS

MANAGING
COMPONENT
REGISTRATION

DYNAMIC
CUSTOMIZATION
OF COMPONENTS

FLOATING
WINDOWS:
KEEPING AFLOAT
IN THE WINDOW
MANAGER

WORKING IN THE
THIRD DIMENSION

KON & BAL’S
PUZZLE PAGE

MACINTOSH
Q & A

Issue 1
5

d
 e v e l o p

$10.00
1047-0735

Printed on recycled paper

Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014

B
U

LK
R
A

TE
U

.S
.
PO

ST
A

G
E

PA
ID

Lo
s

A
ng

el
es

, C
A

Pe
rm

it
N

o.
 1

83
1

15

®

E D I T O R I A L S T A F F

Editor-in-Cheek Caroline Rose

Technical Buckstopper Dave Johnson

Our Boss Greg Joswiak

His Boss Dennis Matthews

Review Board Pete (“Luke”) Alexander, Neil Day,

C. K. Haun, Jim Reekes, Bryan K. (“Beaker”)

Ressler, Larry Rosenstein, Andy Shebanow,

Gregg Williams

Managing Editor Cynthia Jasper

Contributing Editors Lorraine Anderson, Philip

Borenstein, Robin Cowan, Toni Haskell, Judy

Helfand, Rebecca Pepper, Rilla Reynolds

Indexer Ira Kleinberg

A R T & P R O D U C T I O N

Production/Art Director Diane Wilcox

Technical Illustration Dave Olmos, John Ryan

Formatting Forbes Mill Press

Printing Wolfer Printing Company, Inc.

Film Preparation Aptos Post, Inc.

Production PrePress Assembly

Photography Sharon Beals

Online Production Cassi Carpenter

develop, The Apple Technical Journal, a
quarterly publication of Apple Computer’s
Developer Press group, is published in
March, June, September, and December.

Lindsay Marshall of Rucker Huggins
illustrated several QuickDraw GX features
for this cover. The three g’s are from the
“GX-ready” typeface, Columbine,
developed by David Siegel.

The develop Bookmark CD (or the
Developer CD Series disc, Reference
Library edition) for September 1993 or
later contains this issue and all back issues
of develop along with the code that the
articles describe. The develop issues and
code are also available on AppleLink and
via anonymous ftp on ftp.apple.com.

CONTENTS September 1993

1
© 1993 Apple Computer, Inc. All rights reserved.

Apple, the Apple logo, APDA, AppleLink, AppleShare, AppleTalk, ImageWriter, LaserWriter, LocalTalk, MacApp,
Macintosh, MPW, and MultiFinder are trademarks of Apple Computer, Inc., registered in the U.S. and other countries.
AppleScript, ColorSync, develop, Finder, KanjiTalk, Macintosh Quadra, MoviePlayer, QuickDraw, QuickTime, Sound
Manager, System 7, TrueType, and WorldScript are trademarks of Apple Computer, Inc. HyperCard, HyperTalk, and
MacDraw are registered trademarks of Claris Corporation. PostScript is a trademark of Adobe Systems Incorporated,
which may be registered in certain jurisdictions. Helvetica is a registered trademark of Linotype Company. UNIX is a
registered trademark of UNIX System Laboratories, Inc. All other trademarks are the property of their respective
owners.

Another award for develop! And changes made at your request. 2

Letters from you, plus more from us on asynchronous routines. 3

Getting Started With QuickDraw GX by Pete (“Luke”) Alexander
A brief introduction to QuickDraw GX, and a simple GX-aware sample. 6

Developing QuickDraw GX Printing Extensions by Sam Weiss All
about these nifty new add-ons to QuickDraw GX printing. 34

QuickDraw GX for PostScript Programmers by Daniel Lipton The two
graphics models are compared, along with useful code snippets for each. 51

Managing Component Registration by Gary Woodcock For those cases
where you may need to manage the component registration process, here’s how. 74

Floating Windows: Keeping Afloat in the Window Manager by
Dean Yu A way to implement floating windows without patching traps, and a
library you can use in your own application. 89

Working in the Third Dimension by Jamie Osborne and Deanna Thomas
This article shows off a nice 3-D interface and presents a set of MacApp objects you
can use to create your own such interface. 103

The Veteran Neophyte: Through the Looking Glass by Dave Johnson
Dave explores the mathematics of symmetry and finds some surprises. 71

Somewhere in QuickTime: Dynamic Customization of Components
by Bill Guschwan A sample derived media handler that “speaks” the text track in
a movie. 84

View From the Ledge by Tao Jones An office survival guide for the socially
and politically inept. 115

KON & BAL’s Puzzle Page: I’m Here to Serve by Konstantin Othmer
and Bruce Leak Try your skill (or is it luck?) on yet another puzzle from those
masters of Macintosh machinations, KON and BAL. 132

Macintosh Q & A Apple’s Developer Support Center answers your product
development questions. 117

137I N D E X

Q & A

C O L U M N S

A R T I C L E S

L E T T E R S

E D I T O R I A L

d e v e l o p Issue 15

2

CAROLINE ROSE
Dear Readers,

develop does it again! We’re thrilled to announce that we’ve won another Excellence
award, this time in the 1993 International Technical Publications Competition,
sponsored by the Society for Technical Communication.

Some things that are worth noting in this issue:

• We’re very happy to finally have a female author. Welcome to
Deanna Thomas; may she be the first in a long line.

• We’ve added a strange new column called “View From the Ledge”;
please let us know what you think of this irreverent (or is that
“irrelevant”?) addition.

• We’re temporarily without a Print Hints or Graphical Truffles
column. But there’s a lot of information about printing and
graphics in our three QuickDraw GX articles.

Finally, here are two changes that have happened as a result of your feedback:

• Tech Notes are numbered again, this time within each category of
Note. References in develop will include the new number after the
category; for example, we might refer you to the Macintosh
Technical Note “Fond of FONDs” (Text 21). With this issue we
finally stop giving the former number of a Tech Note, as in
“(formerly #91)”; those old numbers are long gone.

• New Inside Macintosh is now on the develop Bookmark CD. It was
painfully missing from Issue 14’s CD, but we have seen the error of
our ways and have quickly rectified the situation.

Please keep letting us know what you want; it pays!

Caroline Rose

Editor
CAROLINE ROSE (AppleLink CROSE) has
written and edited more technical documentation
than she cares to remember. In past work lives,
she was also a programmer and (gasp!) a
manager. She’s worked for Tymshare, Apple,
NeXT, and Apple, in that order. But no previous
job compares to the variety and fun she enjoys as
editor of develop. Caroline is still raving about the
great time she had at the Worldwide Developers

Conference in May. We suspect the highlight was
when a developer asked her to sign his copy of
develop — or was it when she took the Karaoke
dare at the WWDC party? Recent delights
outside of work include singing like a wannabe
Bonnie Raitt at jam sessions with her friends and
listening to tapes of John Prine and Richard
Thompson from an incredible music festival she
attended in a mountain meadow.•

LETTERS
NEW TECH NOTE NUMBERS
In develop Issue 14 Peter Fink complains
about the loss of Tech Note numbering.
In your answer you write: “We’re always
open to suggestion, but so far you’re the
only one to mention this. If others
reading this reply have similar feedback,
I hope they’ll let us know.”

Actually, I and others have complained
about the loss of Tech Note numbers
for quite some time, but sometimes
talking about these things is like
complaining about the weather. I
suspect most people just grumble along
and don’t complain in writing.

— Johan G. E. Strandberg

Good news: Numbers are back; see the
editorial on page 2 and the Tech Notes on
this issue’s CD. It’s too bad when people
grumble without writing; the latter is much
more effective, and we really appreciate the
effort. Thanks!

— Caroline Rose

DEBUGGING LESSON FLUB
There seems to be a problem with the
point made in the “Debugging Lesson”
letter in the Letters section of develop
Issue 14. According to the source listed,
there would be no problem even if
memory moved when FillWithData was
called. Since the handle is being passed
as a handle (that is, not dereferenced),
and handles are 4-byte pointers (which
get pushed onto the stack as is),
FillWithData would always get a valid
handle, which it can dereference
internally to its heart’s content.

Unfortunately, there seems to be a lot of
confusion (and a great deal of paranoia)
WE HATE IT WHEN YOU DON’T WRITE
We welcome timely letters to the editors,
especially from readers reacting to articles that
we publish in develop. Letters should be
addressed to Caroline Rose (or, if technical
develop-related questions, to Dave Johnson) at
Apple Computer, Inc., 20525 Mariani Avenue,
M/S 303-4DP, Cupertino, CA 95014 (AppleLink
CROSE or JOHNSON.DK). All letters should
over the usage of handles. As long as
you pass handles as handles (and watch
your dereferencing), you’ll be OK.

—Charlie Reading

Um, oops. (Imagine, if you will, me
standing gaping and red-faced, astonished
at my own carelessness and idiocy.)

You’re right, of course; the danger is only in
passing dereferenced handles to routines in
other segments, and the code in the letter
passes the handle itself. I guess I just read
the text and didn’t really look closely at the
code before replying. Obviously, it was only
intended as an example, and the writer’s
point is still valid: passing dereferenced
handles to routines in other segments is
dangerous. You should either pass the handle
itself (as the example code did!) or lock the
handle first.

Sorry about the confusion.

—Dave Johnson

BABBLING ON
I enjoyed reading Dave Johnson’s
column in develop Issue 13 (“Tower of
Babble”). While reading his discussion
of natural versus programming
languages, I think I was able to put my
finger on what has bugged me about
HyperTalk® for years. Natural
languages imply a fluidity of meaning,
giving its users great flexibility for
nuances, emphasis, and brevity.
HyperTalk looks like a natural language,
but it possesses none of that fluidity of
meaning. In HyperCard®, SET has but
one meaning. But in my Oxford
dictionary, “set” has 194 definitions! In
other words, HyperCard looks so much
like English, one winds up assuming
that all kinds of structures could be used
LETTERS September 1993

3
include your name and company name as well
as your address and phone number. Letters may
be excerpted or edited for clarity (or to make
them say what we wish they did).•

d e v e l o p Issue 15

4

as long as they make sense in English
(for example, “set me to true”).

Allow me to submit a suggestion, which
you may wish to pass along to the
software gods. Since Apple has now all
but declared that C and C++ are the
only computer languages the human
race will ever need, maybe it would be
great to have a HyperTalk-to-C
translator. Why? Well, C is a write-only
language (no one ever can figure out
what’s happening in someone else’s C
listing) and HyperTalk is a read-only
language (it’s a cinch to understand,
but impossible to code in). With a
translator, we could write code that still
could be understood, just like when we
used to code in Pascal. (Yes, this is a
joke, from a die-hard Pascal enthusiast.)

Thanks again for a nifty column!

—Kevin Killion

I’m glad you liked the column. Your
comment about HyperTalk is very well
taken! I think that’s what always bothered
me about it, too, though it was just a sort of
vague unease. Unfortunately, I think people
who didn’t learn “regular” programming
languages first may have a distinct
disadvantage: we “real” programmers
know up front how limited and terse and
strict programming languages are, and we
don’t expect anything more. But power
users who learn HyperTalk (or, more likely
now, AppleScript) as their very first
programming language may be in for a
struggle if they don’t keep reminding
themselves that it’s not a natural language.

As a die-hard C enthusiast, I’ll graciously
ignore your slams against my favorite
language, and assume that since you’re
obviously an intelligent person, sooner or
SUBSCRIPTION INFORMATION
Subscriptions to develop are available through
APDA (see inside back cover for APDA
information), or you can use the subscription
card in the back of this issue. Please address all
subscription-related inquiries to develop, Apple
Computer, Inc., P.O. Box 531, Mt. Morris, IL
61054 (or AppleLink DEV.SUBS).•
later you’ll realize the error of your ways
and come around to the truth, bemoaning
the years you’ve spent in bondage to an
uptight compiler.

—Dave Johnson

ASYNCH SUPPORT ON A/UX
After reading through Jim Luther’s
Asynchronous Routines article in
develop Issue 13, I spiffed up my
application to make all my file handling
asynchronous, anticipating the glorious
day when all the drivers on my
Macintosh support asynchronous calls.
But since the SCSI Manager isn’t
asynchronous yet, there’s no apparent
difference to the user of my code (or to
me, the hard-working programmer who
wants payoff for my labors).

Is there any platform or configuration I
can test my application on and see the
results of my effort?

—Tony Amaretto

Try your code on A/UX 3.0.1 (the
operating system for the Apple Workgroup
Server 95); it features an enhanced File
Manager that supports asynchronous calls to
UNIX® file systems simply by using the
techniques in Jim Luther’s article.
AppleShare Pro takes advantage of this
capability on AWS 95 to get performance
up to four times better than AppleShare
3.0’s under System 7 (your mileage, as
always, will vary).

For more information related to the
Asynchronus Routines article, see the box on
the next page.

Have fun!

—Dave Johnson
BACK ISSUES
For information about back issues of develop
and how to obtain them, see the last page of this
issue. Back issues are also on the develop
Bookmark CD and the Developer CD Series disc
(Reference Library edition).•

Th
D’O
info
MORE ON ASYNCHRONOUS ROUTINES IN ISSUE 13
For developers interested in the “Asynchronous Routines
on the Macintosh” article in develop Issue 13, here’s
some new information that has surfaced since then.

StackSpace. Contrary to the advice on page 28 of the
article, you should not call StackSpace at interrupt time,
because the Memory Manager might not be in a
consistent state. Furthermore, StackSpace clears MemErr,
which may have an adverse effect on the current
process’s handling of Memory Manager errors.

PPC polling. Unlike the Device Manager and File
Manager, the PPC Toolbox stuffs the result of an
asynchronous routine into ioResult before it’s really done
with the parameter block. If your interrupt code — such
as a VBL task — polls ioResult periodically to check for
completion and reuses the parameter block to make
another call, the system can crash because one or more
system queues will be corrupted.

Context switching. The System 7 Process Manager
(and MultiFinder under System 6) will wait until all
currently active asynchronous requests to the File
Manager have completed before performing a context
switch. This check was added for compatibility reasons to
prevent system crashes caused by a few applications that
accessed program globals within File Manager
completion routines without restoring their A5 world.
What this means to you is that if your application makes
an asynchronous File Manager call and then calls
WaitNextEvent or GetNextEvent, the system may wait for
your call to complete. If the asynchronous File Manager
call takes a long time to complete, it will appear to the
user that the system isn’t responding.

Synchronous drivers. Although you can execute low-
level file access routines asynchronously, a volume’s
underlying device driver may not support asynchronous
operations. Once the File Manager passes a request to a
synchronous driver, that driver doesn’t give up control
until it has completed the task. Synchronous drivers (such
anks to François Grieu and Lawrence
liveiro for providing some of this
rmation.•
as those using the current SCSI Manager) affect programs
using asynchronous File Manager calls in two ways:
unexpected pauses and unsightly stack frame buildup.

• When calling the File Manager asynchronously, your
program passes control to the File Manager and the
request is placed in a queue or, if the queue is empty,
the request is handled immediately. Either way, once a
synchronous driver gets the request, it retains control
until it has responded to the request. If the request
takes a long time to complete, the user may think the
system isn’t responding. If your program is a
background task, these pauses will affect the
performance of the current foreground application. To
keep this to a minimum, avoid time-consuming
asynchronous File Manager requests.

• Chaining asynchronous File Manager calls will work
on volumes controlled by synchronous drivers, but
watch out: When the driver is synchronous, the stack
frames from the system and your completion routines
will keep building up on the current stack until the last
asynchronous call in the chain completes, or until the
stack overwrites the current heap. You’ll need to break
the asynchronous File Manager call chain every few
completion routines. A simple way to do this is to start
a Time Manager or VBL task from your File Manager
call’s completion routine, and let the task start the next
asynchronous File Manager call in the chain.

File Sharing and AppleShare. Chained
asynchronous File Manager calls can fail when either the
Macintosh File Sharing or AppleShare 3.0 (not 3.0.1) file
server is running. The file server software intercepts
almost all calls made to the File Manager. Due to how the
file server keeps track of what requests it has or hasn’t
seen, there are a few situations where the file server can
do the wrong thing with chained asynchronous File
Manager calls. To make sure the file server sees and
handles all chained asynchronous File Manager calls
correctly, use two parameter blocks for the chained calls
and switch parameter blocks at every completion routine.
LETTERS September 1993

5

d e

6

PE
GETTING

STARTED

WITH

QUICKDRAW

GX
 v e l o p Issue 15

TE (“LUKE”) ALEXANDER
A beta version of QuickDraw GX comes to you on this issue’s CD. As
you contemplate the vast scope of it all, you may wonder how you’re
ever going to get your arms around this new imaging technology. Not
to worry — this article will get you started. It walks you through the
steps to getting QuickDraw GX up and drawing and presents a simple
“GX-hip” application shell that incorporates the basics for you to
experiment with.

QuickDraw GX offers developers a totally new and markedly improved way of
imaging on the Macintosh. Yes, you’ll have to learn the new system, but look at what
you get: The API is simpler and the human interface is better. The amount of control
your application can exercise over text and graphics has been greatly increased. Your
application will be able to produce consistent output no matter what the output
device. And extensive support for color is built in throughout the system.

With the beta version of QuickDraw GX in hand, you’re no doubt eager to create a
QuickDraw GX application and start drawing. This article covers just about
everything you need to know to get started: initializing QuickDraw GX, using
windows, creating and manipulating QuickDraw GX shapes, printing, and
debugging. By way of illustration, we discuss the QuickDraw GX shell that you’ll
find on this issue’s CD. But before we do that, let’s take a quick look under the hood
at the major features of QuickDraw GX and how it fits into the Macintosh
architecture.

QUICKDRAW GX: A QUICK LOOK UNDER THE HOOD
QuickDraw GX coexists happily with QuickDraw, thank goodness. It doesn’t replace
QuickDraw, but instead “moves in next door,” so you still live with a Macintosh
Toolbox based on QuickDraw. You can run QuickDraw-based applications on a
QuickDraw GX system. These applications won’t even notice that QuickDraw GX is
installed, but they’ll be able to take advantage of some of the QuickDraw GX
PETE (“LUKE”) ALEXANDER started out as a
meteorology major in college and to this day is
great at forecasting the weather. He’d be happy
to see nothing but blue skies, and in all kinds of
weather he strives to incorporate something blue
in his attire. He loves raw carrots, despises
cooked ones. He hates waiting in lines and
wearing a wristwatch. Sometimes when he’s
driving down the street and spots someone sitting

at a bus stop, he’ll honk his horn to wake them
from their dazed stupor. And when he sees
bicyclists sitting in their bike seats while riding up
hills, he’s been known to yell out the window,
“Stand up, you weenie!”•

printing features, including improved background printing to all devices, desktop
printers, print job queuing, and better type management.

QuickDraw GX has three major pieces: graphics, typography, and printing. You can
visualize the relationship of these three different pieces to each other and to
QuickDraw as shown in Figure 1.

GRAPHICS
The basic building block of QuickDraw GX graphics is the shape. A shape is an object
that contains, among other things, a geometry of some type and a fill property that
specifies how the geometry should be interpreted when drawn (such as framed or
filled).

There are four basic types of shapes, classified by the nature of the geometry they
contain: geometric shapes, typographic shapes, bitmap shapes, and pictures.

• A geometric shape contains a primitive geometry: a point, a line, a
curve, a rectangle, a polygon (a series of points connected by
straight lines), or a path (a series of points connected by straight or
curved lines). In addition, there are two other special geometric
shape types: empty (no geometry at all) and full (covers the entire
coordinate system).

• A typographic shape contains text, glyphs (renditions of individual
characters or character combinations over which your application
has direct control), or layouts (pieces of text for which QuickDraw
GX automatically chooses and positions glyphs, given certain
information by the application).

QuickDraw

QuickDraw GX
Printing Architecture

QuickDraw GX
Typography

QuickDraw GX Graphics Engine

System 7.1

Figure 1
QuickDraw and the Pieces of QuickDraw GX
GETTING STARTED WITH QUICKDRAW GX September 1993

7
If you’re a PostScript language whiz
making the transition to QuickDraw GX, you’ll
find the article “QuickDraw GX for PostScript
Programmers” in this issue helpful.•

d e v e l o p Issue 15

8

• A bitmap shape contains a reference to a block of memory
containing a bit image, as well as information on how to interpret
the bits: the pixel size, color space, color set, and color profile.

• A picture contains a list of other shapes. The shapes in the list can
be other pictures, so that a picture is actually a hierarchical
database of shapes.

Besides containing a geometry, a shape contains references to three other objects that
describe how it should be rendered. These objects are the style, the transform, and
the ink.

• The style defines the pen thickness, the place where the pen draws
(inside, outside, or on the geometry), the kind of start and end cap
(such as round, pointy, or square), and ways to dash, join, and
pattern shapes. For a text shape, the style also defines the font,
size, variation, and text face.

• The transform controls the skew, scale, perspective, and clipping of
the geometry. It also specifies where to draw it and how to hit-test
it.

• The ink tells the system which color to draw the geometry in. Ink
also includes information about the color matching and transfer
mode.

Some of these objects in turn contain references to other objects. For example, a
transform points to a list of view port objects that describe where to draw the
geometry. A view port is like a QuickDraw grafPort in that it defines an area of local
space as a drawing environment. Unlike a grafPort, though, a view port doesn’t
contain state information about the drawing environment (pen, color, transfer mode,
and so on). A view port contains the mapping used to convert from the view port’s
local space to a global space described by a view group. A view port object points in
turn to a list of view device objects, which describe the clip shape, mapping, and
bitmap associated with a physical device such as a monitor.

A shape can also have one or more attributes, which modify the shape’s behavior.
These attributes enable your application to specify how a shape is edited or how
QuickDraw GX stores the shape. For example, if you set the shape attribute
gxMapTransformShape, this tells QuickDraw GX that you want it to manipulate the
transform referenced by the shape, instead of directly manipulating the data
contained within the geometry of the shape.

Figure 2 depicts the shape object and what it references. The owner count is the
number of other objects within the application that reference that object. The tag list
is a list of tag objects, which are simply containers for any data the application
associates with the owning object.
Shapes are completely resolution
independent, which enables accurate
representation at any size to the screen or
printer.•

Color set

Color profile

Clip shape

Mapping

Bitmap

Attributes

Tag list

Clip shape

Mapping

Dither

Halftone

(Parent view port)

(Child view port list)

(View device list)

Attributes

Owner count

Tag list

View port object

View device object

Transform object

Clip shape

Mapping

(View port list)

Attributes

Owner count

Tag list

Pen size

Cap

Join

Dash

Pattern

Curve error

Attributes

Owner count

Tag list

Style object

Font

Text face

Text size

Justification

Font variations

Platform

Color set

Color profile

View group object

Type

Geometry

Fill

(Style object)

(Ink object)

(Transform object)

Attributes

Owner count

Tag list

Shape object

Transfer mode

Color

Attributes

Owner count

Tag list

Ink object

Figure 2
The Shape Object and What It References
GETTING STARTED WITH QUICKDRAW GX September 1993

9

d e v e l o p Issue 15

10
TYPOGRAPHY
QuickDraw GX has a sophisticated typographic model that’s fully integrated with
graphics. The ability to do kerning, tracking, and justification, as well as ligatures and
ornamental forms of various characters, is provided by the line layout routines,
supported by the QuickDraw GX smart font format. The line layout routines work
with the typographic information contained in the TrueType GX and Type 1 GX
fonts to give you a ton of control over how text is placed on a page.

Because QuickDraw GX typography is fully integrated with graphics, you can rotate,
skew, and change the perspective of typographic shapes the same way you can
geometric shapes. You can use the text shape to draw a line of text with one style. The
glyph shape enables you to draw text in several styles and graphically manipulate each
glyph. The layout shape uses the information contained in a TrueType GX or Type 1
GX font to automatically kern, justify, and track, and to support ligatures, final forms
(special forms found at the ends of words), and ornamental forms of the various
glyphs contained within the layout shape.

Note that although QuickDraw GX supports all existing Macintosh font formats
(Type 1, bitmap, and TrueType), to take full advantage of its extensive line layout
capabilities you must use TrueType GX or Type 1 GX fonts.

PRINTING
QuickDraw GX improves printing for both users and developers. Users get an
improved human interface, and developers get much more control and functionality.
From the application’s point of view, QuickDraw GX offers true device
independence: you can send the same data to all supported devices and the output
will be rendered appropriately on each device.

QuickDraw GX introduces three new printing concepts: desktop printers, portable
digital documents, and printing extensions.

Users can create desktop printers with the Chooser. These are represented as icons on
the desktop and are full Finder citizens; users can drag and drop print files and
documents to them. Users can also manage the print queue and redirect print files
and documents by dragging them to and from desktop printers, and can share
desktop printers with other users via PrinterShare GX.

A portable digital document (PDD) file contains all the objects required to render a
document on a screen or printer, so you can open, review, and print the file on any
system running QuickDraw GX without the application or fonts used to create the
document. When a PDD file is created, only the glyphs used in the document are
saved along with it; since the document can’t very well be edited, the PDD is secure
for transporting fonts. When you print, you can save the print job as a PDD with or
without the fonts required. If you know that the person you’re sending the PDD file
to has the fonts you used, you can choose not to save the fonts with the PDD.

Printing extensions are small standalone pieces of code that modify the behavior of
printing and give users vastly increased control, at a system rather than a program
level, over how a printed page looks. For example, through a printing extension the
user can direct a printer to print “Confidential” diagonally across each page, no
matter what program is doing the printing. The user selects a printing extension from
a list displayed in the expanded Print, By Page Setup, and Document Setup dialogs
(which appear when More Choices is clicked in the regular dialogs).

The API for QuickDraw GX printing gives you easy access to information about the
page size and orientation of a print job and enables you to keep the user from
changing these settings.

QuickDraw GX supports raster, vector, and PostScript™ devices. The bad news is
that if your system is running QuickDraw GX, you won’t be able to use any
non–QuickDraw GX printer drivers. The good news is that because QuickDraw GX
provides system-level support for developing printer drivers, it’s a whole lot easier to
develop printer drivers for QuickDraw GX than it is for the old QuickDraw-based
printing architecture — you can plan on months of development time as opposed to
years. And in many cases you may find that a printing extension, which is easier yet to
develop, will suffice to implement the desired functionality; for more information, see
the article “Developing QuickDraw GX Printing Extensions” later in this issue.

PROGRAMMING AMENITIES
QuickDraw GX offers you some truly useful programming goodies: libraries of
handy high-level routines, extensive error-handling capabilities, and a powerful new
debugging tool called GraphicsBug.

THE QUICKDRAW GX LIBRARIES
As you cruise around the QuickDraw GX folder on this issue’s CD, you’ll notice a
folder named Libraries. Open it and you’ll find libraries of code for many common
graphics, line layout, and printing tasks. These provide sample code that most
applications will need in order to create a QuickDraw GX application. But unlike
Macintosh Toolbox code, this library code can be modified or extended by you to
meet your own particular needs. All the library code is based on core QuickDraw GX
calls.

ERROR HANDLING IN QUICKDRAW GX
The goal of QuickDraw GX’s error-handling capabilities is to never allow
QuickDraw GX to crash your Macintosh, and to inform you anytime QuickDraw GX
can’t complete an operation. QuickDraw GX uses two different models for handling
errors: one for graphics and layout errors and another for printing errors. We’ll
discuss graphics and layout errors here. Printing errors are described later in this
article, under “Basic Printing in QuickDraw GX.”
GETTING STARTED WITH QUICKDRAW GX September 1993

11
The By Page Setup and Document Setup
dialogs are new in QuickDraw GX. They’re
described later in this article under “Basic Printing
in QuickDraw GX.”•

d e v e l o p Issue 15

12
There’s both a debugging and a nondebugging version of the combined graphics and
layout portions of QuickDraw GX. The debugging version provides extensive error-
handling capabilities to help you debug your applications under development. The
nondebugging version is lean and mean; it has fewer error-handling capabilities and is
faster than the debugging version. You can differentiate between the two versions by
their sizes and version strings: the nondebugging version is smaller, and the version
string for the debugging version has the word “debug” in it. When you’re developing
your QuickDraw GX application, you should be using the debugging version.

In the debugging version, information about internal data and drawing problems
comes in three flavors: notices, warnings, and errors. Only a few selected errors and
warnings are issued in the nondebugging version.

Notices. A notice informs you that the operation you’re performing isn’t really
needed. Notices aren’t necessarily bad things; they’re just information to help you
improve the efficiency of your application. For example, if you’ve already colored a
shape and you try to color it again, you’ll receive the following notice in the installed
debugger:

GRAPHICS NOTICE: color already set

Warnings. A warning informs you that QuickDraw GX doesn’t allow the operation
you’re trying to perform. While this might not cause any problems, you also might
not get the result you expected. For example, if you try to use a font that isn’t
available, QuickDraw GX will substitute the default font and give you the following
warning:

GRAPHICS WARNING: font substitution took place

Errors. An error means that QuickDraw GX couldn’t draw your shape or complete a
routine. For example, if you try to draw an empty shape or one that hasn’t been
defined, you’ll receive the following error:

GRAPHICS ERROR: shape is nil

Checking for drawing errors. Once you’ve finished developing your application,
you’ll still want to be able to check for drawing errors. The QuickDraw GX routine
GXGetShapeDrawError lets you do this and, in case of an error, fail in a graceful
manner. For example, this code fragment checks that drawing was successful and fails
if it wasn’t:

GXDrawShape(gthePage);

if (drawingError = GXGetShapeDrawError(gthePage) != noDrawError)
// Your error-handling code here!
For a complete list of all the errors, warnings,
and notices provided by the graphics and layout
portions of QuickDraw GX, take a look at the
graphics errors.h header file.•

Routine naming in QuickDraw GX is very
predictable and logical. All calls preceded by
“GX” are from the core API, while ones without
“GX” are from the library or application code. In
addition, all calls pertaining to the same object
are very similar, and once you grasp how to
operate on one object, you pretty much know
how to operate on all objects.•

Ignoring notices and warnings. Sometimes you might want to ignore a particular
notice or warning because you know what you’re doing. Use these routines to ignore
a notice or warning:

void GXIgnoreGraphicsNotice(gxGraphicsNotice notice);
void GXIgnoreGraphicsWarning(gxGraphicsWarning warning);

For example, if you wanted to ignore a notice about recoloring a shape, you would
make this call:

void GXIgnoreGraphicsNotice(color_already_set);

When you call GXIgnoreGraphicsNotice or GXIgnoreGraphicsWarning, the notice
or warning is added to the top of the notice stack or warning stack, respectively. (It’s
added to the stack even when not ignored, but the stack handling is taken care of
behind the scenes for you in that case.) So you must balance this with a call to one of
the following routines to ensure that you don’t overflow the notice or warning stack:

void GXPopGraphicsNotice(void);
void GXPopGraphicsWarning(void);

In the nondebugging version, where notices and most warnings aren’t available,
calling the GXIgnoreGraphicsXXX and GXPopGraphicsXXX routines still results in
a trap call and dispatch even though they just return immediately. There may be a
small performance penalty for this, so you should remember to remove the
unnecessary calls for a shipping application.

Grabbing errors, notices, and warnings. In the nondebugging version, you
receive only a few selected errors and warnings. If you’ve tested your application
thoroughly, these should be the only errors you see:

out_of_memory
not_enough_memory_for_graphics_client_heap
graphics_client_memory_too_small
could_not_create_backing_store

These should be the only warnings you see:

<>_substitution_occurred
<<map, move, scale, rotate, or skew>>_shape_out_of_range
<<map, move, scale, rotate, or skew>>_transform_out_of_range

You probably don’t want your user to end up in a debugger or with a system bomb, so
you should catch errors by calling the GXGetGraphicsError routine; you can then
handle the error appropriately within your application or present it to the user.
GETTING STARTED WITH QUICKDRAW GX September 1993

13

d e v e l o p Issue 15

14
gxGraphicsError GXGetGraphicsError(gxGraphicsError *stickyError);

You can also grab notices (in the debugging version only) and warnings with these
calls:

gxGraphicsNotice GXGetGraphicsNotice(gxGraphicsNotice *stickyNotice);
gxGraphicsWarning GXGetGraphicsWarning(gxGraphicsWarning *stickyWarning);

GRAPHICSBUG: A POWERFUL NEW DEBUGGING TOOL
The only way to create and modify shapes in QuickDraw GX is through the public
API; you can’t operate on any data directly. This is a very good thing because it lets
Apple expand the system in the future with minimal compatibility risk. But if you
can’t see the data you’re working with, won’t debugging be a nightmare? Here’s
where GraphicsBug comes to the rescue. GraphicsBug is an application that enables
you to inspect the contents of any QuickDraw GX graphics or layout object to make
sure it contains the correct information. The command set is very similar to that of
MacsBug; just type “?” to get a list of the commands available. GraphicsBug works
only in the debugging version of QuickDraw GX 1.0b1 but in both versions of later
QuickDraw GX releases.

INITIALIZING QUICKDRAW GX
Now that we’ve checked out the horsepower under the hood and the amenities built
in for programmers, we’re ready to get QuickDraw GX up and drawing. The first
step is to initialize QuickDraw GX, but before you do, you need to make sure the
user has installed it. Use the Gestalt selector 'grfx' to determine whether the graphics
and typography portions of QuickDraw GX have been installed, and the Gestalt
selector 'pmgr' to determine whether QuickDraw GX printing has been installed.

In the case of our QuickDraw GX shell, the following routine finds out which parts
of QuickDraw GX have been installed:

Boolean QuickDrawGXAvailable()
{

long theFeatureInQuestion;

if (Gestalt('grfx', &theFeatureInQuestion) == noErr)
{

if (Gestalt('pmgr', &theFeatureInQuestion) == noErr)
gQDGXPrintingInstalled = true;

return (true);
}
return (false);

}

The QuickDraw GX shell uses the global variable gQDGXPrintingInstalled to
determine if QuickDraw GX printing has been installed. If it has, the printing menu
items in the File menu are enabled. Otherwise, an alert tells the user that QuickDraw
GX printing hasn’t been installed, and the application works without printing.

Once you know that the user has QuickDraw GX, you’re ready to initialize it. After
the generic Macintosh Toolbox initialization, you create a new graphics client to
allocate memory. Then you can set up error handling and validation as an aid to
tracking down problems, although if you’re eager to get on with drawing, you don’t
have to do this right now. Finally, you can initialize the common color library to get
quick and easy color. In the QuickDraw GX shell, the routine QuickDrawGXInit
does all of this initialization.

CREATING A NEW GRAPHICS CLIENT
A graphics client is a reference to the block of MultiFinder memory used by
QuickDraw GX graphics and layout called the QuickDraw GX heap. When your
application creates a new graphics client, QuickDraw GX usually allocates this block
of memory. The QuickDraw GX heap contains all the graphics and layout objects
your application creates while running QuickDraw GX, as well as a few objects
QuickDraw GX uses to manage the heap. (See “Managing Memory in the
QuickDraw GX Heap” for more details.)

The simplest way to create a graphics client is to call EnterGraphics, which defines a
client for you based on some fundamental assumptions. If you want to have more
control over the graphics client you create, call GXNewGraphicsClient:

gGraphicsClient = GXNewGraphicsClient(nil, gGraphicsHeapSize * 1024, 0L);

The variable gGraphicsClient holds the new graphics client. You can use this variable
anytime you need to access this graphics client. In our shell, we only need this
variable when the application shuts down. The first parameter tells the Memory
Manager where we want to create the QuickDraw GX heap. A nil value tells the
Memory Manager to create the heap within MultiFinder memory. That’s usually
where you want it, but you can also specify a pointer to a block of memory in your
application heap or even the system heap. The second parameter defines the size of
the heap in bytes. Our shell uses a 115K heap (gGraphicsHeapSize = 115); if you pass
0, you get the default heap size of 600K. The last parameter, named separateStack,
tells QuickDraw GX to allocate a stack for the graphics client, which is necessary if
that client is going to run at interrupt time. To get a separate stack, just pass any
nonzero value that defines the stack size.

SETTING UP ERROR HANDLING AND VALIDATION
After setting up the graphics client, you should enable the error, warning, and notice
capabilities if you want to make debugging easier for yourself down the line. In our
GETTING STARTED WITH QUICKDRAW GX September 1993

15

d

16
MANAGING MEMORY IN THE QUICKDRAW GX HEAP
The graphics and layout portions of QuickDraw GX use
their own heap format and their own relocating Memory
Manager to improve efficiency. Why is this necessary?
The GX system is object based, so it needs the ability to
quickly move graphics and layout objects from the heap
onto disk when they aren’t needed and additional
memory is required, and to move these objects back into
memory when they’re needed. This isn’t possible with the
current Memory Manager.

Your application has quite a bit of control over the objects
it creates in the QuickDraw GX heap. The QuickDraw GX
API provides calls to unload objects from the heap, and
shape attributes that indicate when a shape should be
paged out of the heap to the backing store on disk. If you
don’t unload the objects or set any of the shape attributes
yourself, QuickDraw GX unloads the oldest objects first.

You can use a GXUnload call to tell QuickDraw GX to
page a graphics or layout object — specifically, a shape,
style, transform, ink, color profile, color set, or tag — from
the heap to the backing store on disk when the next
memory management call occurs. For example, to unload
a particular shape from the heap, you would use the
following call:

GXUnloadShape(gxShape target);

QuickDraw GX maintains a reference to the objects, so it
can read them from disk back into the heap if your
application needs them. It does this automatically, but if
 e v e l o p Issue 15
you want to improve the performance of your application,
you can explicitly load graphics and layout objects with a
GXLoad call. For example, to load a particular shape into
the heap, you would use the following call:

GXLoadShape(gxShape target);

There are two shape attributes that you can set to indicate
when to page a shape out to disk when memory is
needed:

• When gxDiskShape is set, this shape will be the first
shape to be paged out of memory to disk when
memory is needed.

• When gxMemoryShape is set, this shape will be the
last to be paged out to disk.

It’s generally a good idea to dispose of an object as soon
as you’ve finished with it. If you leave a bunch of unused
objects lying around in the heap, QuickDraw GX will
maintain them and page them out to disk when memory
becomes tight. This wasted operation will cause your
application to take a performance hit.

If you have a collection of shapes, say a picture, that you
won’t need for a while, you should consider flattening
them to disk and then disposing of them. When you
flatten a shape to disk, each object is compressed and
sent to the file as a stream of data. When you dispose of
the objects you just flattened, you free up some heap
space.
QuickDraw GX shell we enable all three with the routines SetGraphicsLibraryErrors
(which enables errors and warnings) and SetGraphicsLibraryNotices (which enables
notices).

The debugging version of QuickDraw GX graphics and layout provides extensive
validation facilities that let you determine whether you’re passing valid data to the
QuickDraw GX API and whether anything’s gone awry internally. (See “Tracking
Down a Memory Trashing Problem” for details on how to use validation to find out

how damage is being caused in the QuickDraw GX heap.) In general, you should
always run with gxPublicValidation + gxTypeValidation while you’re developing a
QuickDraw GX application. To set this level of validation, make this call:

GXSetValidation(gxPublicValidation + gxTypeValidation);

This setting ensures that for all calls, QuickDraw GX checks the routines on entry
and makes sure that the types are correct. For example, if you call GXDrawShape
with this validation setting, QuickDraw GX makes sure that the shape being passed
in is a valid shape and that it’s an object of the correct type. This will result in a slight
decrease in performance but will help you catch bad data earlier.

Your application can validate various QuickDraw GX graphics and layout objects —
shape, style, transform, ink, view port, view device, view group, color profile, color
set, tag, or graphics client, or any combination — with a GXValidate call before
they’re passed to a routine. For example, if you wanted to validate the inks in the
heap, you would make the following call:

GXValidateInk(gxInk);

If you’re interested in using only these validation calls, set the validation level to
gxPublicValidation.
TRACKING DOWN A MEMORY TRASHING PROBLEM
Validation is a good way to track down a memory
trashing problem. If the QuickDraw GX heap gets
trashed, you need to know if it’s your application that’s
doing the damage or if it’s QuickDraw GX. These
validation levels can help you find this out:

gxNoMemoryManagerValidation = 0x0000
gxApBlockValidation = 0x0100
gxFontBlockValidation = 0x0200
gxApHeapValidation = 0x0400
gxFontHeapValidation = 0x0800
gxCheckApHeapValidation = 0x1000
gxCheckFontHeapValidation = 0x2000

To see if the problem is caused by your application, add
gxApHeapValidation or gxFontHeapValidation to the
types of validation you set. The one you choose depends
on whether you believe the problem lies in a general API
call or within the font heap (the heap separate from the
QuickDraw GX heap where all the font information is
cached). This type of validation checks the public API calls
when they make a memory request.

If your application doesn’t trash memory after adding this
validation, it means that the problem is probably caused
by an internal call within QuickDraw GX. In that case,
add the validation level gxCheckApHeapValidation or
gxCheckFontHeapValidation. This additional validation
checks the memory allocation for the internal core calls. If
you die at this point, you know that the internal call is
causing the problem.
GETTING STARTED WITH QUICKDRAW GX September 1993

17

d e v e l o p Issue 15

18
SETTING UP THE COMMON COLOR LIBRARY
The common color library provided by QuickDraw GX gives you a quick way to
color the shapes you create. This library contains 103 common colors, including
maroon, teal, fluorescent blue, apple green, Mars orange, and Venetian red. To
initialize this library, make this call:

InitCommonColors();

With the color library set up, you can call SetShapeCommonColor to color a shape.
We’ll do this later with the shapes we draw in the QuickDraw GX shell window.

USING WINDOWS WITH QUICKDRAW GX
Now that you’ve initialized QuickDraw GX, you need to set it up to work within a
window. The first step is to create a view port and attach it to a window. Then you
need to provide routines to zoom and resize the view port and to scroll its contents.

Recall that QuickDraw GX draws all shapes in a view port, which contains the
mapping used to convert from the view port’s local space to the global space
(described by a view group). The view group determines whether the contents of the
view port are drawn on the screen in a window or to an off-screen area. A view port
also contains its clip shape, describing the area in which drawing can take place.

ATTACHING A VIEW PORT TO A WINDOW
By attaching a view port to a window, you guarantee that all the shapes you draw to
the view port will be drawn in the correct location even after the user moves the
window. You attach a view port to your window with this call:

gxViewPort windowParentViewPort;

windowParentViewPort = GXNewWindowViewPort(theWindow);

If all goes well, windowParentViewPort contains a reference to the view port attached
to the window (the parent view port). You can’t change the clip shape or mapping of
this particular view port, because QuickDraw GX automatically maintains all the
characteristics of the parent view port. This is a problem if you don’t want your scroll
bars to be overwritten. However, you can attach a view port to the parent view port
(see Figure 3) and then adjust this newest view port (the child view port) to reflect
changes due to scrolling or resizing the window.

Defining the new view port’s bounds. Before we create a new view port we need
to determine its bounds. We can find the bounds of the window by converting the
window’s QuickDraw portRect into a fixed-point QuickDraw GX rectangle. The
following utility routine does this.
If you’re looking for a shortcut, you can
skip the InitCommonColors call, because your first
call to SetShapeCommonColor will initialize the
library.•

The number of view ports that can be
attached to another view port is limited only by
the amount of memory you make available in the
QuickDraw GX heap.•

void GetFixedWindowBounds(WindowPtr myWindow, gxRectangle *boundingBoxPtr)
{

GrafPtr oldPort;
Rect qdBounds;
gxRectangle gxBounds;

GetPort(&oldPort);
SetPort(myWindow);
qdBounds = myWindow->portRect;

// Convert the QuickDraw rectangle into a GX fixed-point rectangle.
GXQDGlobalToFixedLocal((Point *) &qdBounds.top,

(gxPoint *) &gxBounds.left);
GXQDGlobalToFixedLocal((Point *) &qdBounds.bottom,

(gxPoint *) &gxBounds.right);

*boundingBoxPtr = gxBounds;
SetPort(oldPort);

}

Child view port

Child view port

Child view port

Parent view port

Figure 3
The View Port Hierarchy
GETTING STARTED WITH QUICKDRAW GX September 1993

19

d e v e l o p Issue 15

20
Now we can create a QuickDraw GX rectangle that represents the portRect of the
window. The rectangle will reside in the variable viewRect.

GetFixedWindowBounds(theWindow, &viewRect);

We need to adjust viewRect for the scroll bars attached to the window.

viewRect.right -= ff(kScrollBarWidth - 1);
viewRect.bottom -= ff(kScrollBarWidth - 1);

Creating and activating the child view port. Now we’re ready to create a child
view port that’s attached to the parent view port. We want to create a new view port
within the same view group (that is, sharing the same global space) as the window’s
view port:

gxViewPort gcontentViewPort;

gcontentViewPort =
GXNewViewPort(GXGetViewPortViewGroup(windowParentViewPort));

The gcontentViewPort variable now contains a valid view port that we can work
with. Now we’re ready to set the clip shape of this view port. The clip shape can be
any geometry-based shape like a rectangle, a polygon, or a path. The clip shape for
gcontentViewPort will simply be defined by the rectangle contained in viewRect,
which is the portRect of the window, minus the scroll bar areas. After we set the clip
shape, we dispose of the shape because it’s no longer needed, thereby freeing up space
within the QuickDraw GX heap:

gxRectangle contentViewPortShape;

contentViewPortShape = GXNewRectangle(&viewRect);
GXSetViewPortClip(gcontentViewPort, contentViewPortShape);
GXDisposeShape(contentViewPortShape);

Next, we need to set the mapping of gcontentViewPort to be the default mapping
and attach gcontentViewPort to the parent view port:

GXSetViewPortMapping(gcontentViewPort, nil);
GXSetViewPortParent(gcontentViewPort, windowParentViewPort);

Now we need to tell QuickDraw GX which view port we want the shapes to be
drawn in. We could have all shapes drawn to both view ports, but that wouldn’t be
especially efficient. So we make the following call, which tells QuickDraw GX to
draw all the shapes we make from now on in gcontentViewPort:
QuickDraw GX uses fixed-point
numbers, offering the advantage of speed,
instead of the floating-point numbers used by
QuickDraw. The ff macro uses IntToFixed to
convert an integer into a fixed-point number;
another handy macro, fl, converts a floating-point
number into a fixed-point number.•

SetDefaultViewPort(gcontentViewPort);

ZOOMING AND RESIZING THE CHILD VIEW PORT
Anytime the user zooms or resizes the window, we must update the clip shape of the
child view port we attached to the window’s parent view port. To do this, we get the
portRect of the window in a fixed-point rectangle, adjust it for the scroll bars, create a
new clip shape from this rectangle, and reset the clip shape of the view port to this
new clip shape. The following routine does the work:

void ResetContentViewPortClip(WindowPtr theWindow)
{

gxRectangle viewRect;
gxShape contentViewPortClipShape;

// Get the window's portRect into the fixed-point viewRect.
GetFixedWindowBounds(theWindow, &viewRect);

// Adjust the viewRect to accommodate the scroll bars.
viewRect.right -= ff(kScrollBarWidth - 1);
viewRect.bottom -= ff(kScrollBarWidth - 1);

// Create and set the new clip shape.
contentViewPortClipShape = GXNewRectangle(&viewRect);
GXSetViewPortClip(gcontentViewPort, contentViewPortClipShape);
GXDisposeShape(contentViewPortClipShape);

}

SCROLLING THE CHILD VIEW PORT’S CONTENTS
When the user scrolls in the window, we need to reset the mapping of the child view
port before we call ScrollRect to scroll the bits in the window. That will ensure that
when we redraw the contents of the window on the next update event, all the shapes
will be located in the correct window-relative position. Otherwise they would be
redrawn in their old position, because the geometry of the shapes — which includes
their position in the view port — doesn’t change.

This remapping approach gives us an advantage at print time. If we didn’t adjust the
mapping of the child view port, we would need to adjust the mapping of each shape.
While it’s possible to do that, we would have to do it again at print time to ensure
that the shapes printed on the right page. If the page contained a lot of shapes, that
could be a very time-consuming operation.

To update the mapping of gcontentViewPort (the child view port) to reflect the
scrolling of the window, we get its current mapping, adjust it to translate the view
port by the scroll amount, and set the mapping to the changed one.
GETTING STARTED WITH QUICKDRAW GX September 1993

21

d e v e l o p Issue 15

22
gxMapping viewPortMapping;

GXGetViewPortMapping(gcontentViewPort, &viewPortMapping);
GXMoveMapping(&viewPortMapping, ff(hScroll), ff(vScroll));
GXSetViewPortMapping(gcontentViewPort, &viewPortMapping);

CREATING, MANIPULATING, AND DRAWING QUICKDRAW
GX SHAPES
At this point, you’ve learned how to initialize QuickDraw GX and deal with view
ports. It’s finally time to talk about creating, manipulating, and drawing shapes.

A shape contains all the information required to draw it. To create a shape with
QuickDraw GX, you simply define its geometry. Then you can draw it by calling
GXDrawShape(myShape). If you haven’t specified otherwise, your shape will use the
default style, transform, and ink supplied by QuickDraw GX for the particular type of
shape. When you change a shape’s style, transform, or ink, QuickDraw GX copies a
reference to the new style, transform, or ink into your shape.

To illustrate the process of creating, manipulating, and drawing shapes, in our
QuickDraw GX shell we’ll create a typographic shape containing text. We’ll outline
the text in some color and fill the inside of each letter with a pattern composed of
stars. Then we’ll create a typographic shape containing a line layout of some text,
which we’ll render in a combination of different fonts and scripts.

In the QuickDraw GX shell we’ll use a picture, which we’ll store in the global
variable gthePage, to collect all the shapes we draw to the window. Using a picture
enables us to make just one call to GXDrawShape to draw the contents of the
window. We also need to set the gxUniqueItemsShape shape attribute so that each
time we add a shape to the picture, QuickDraw GX will make a copy of the shape and
add the copy, rather than just adding a reference to the shape. These calls create our
picture and set the shape attribute:

gxShape gthePage

gthePage = GXNewShape(gxPictureType);
GXSetShapeAttributes(gthePage, gxUniqueItemsShape);

The variable gthePage now holds an empty picture, ready to have shapes added to it.

EXAMPLE 1: A SHAPE CONTAINING TEXT
First we’ll create a shape containing text, which we’ll store in the variable
tempTextShape. We want the text to read “GX.” We set the text shape’s position,
create the new shape, set the text size, and set the font to New York:

gxPoint textPosition = {ff(10), ff(205)};
gxShape tempTextShape;

tempTextShape = GXNewText (2, (unsigned char *) "GX", &textPosition);
GXSetShapeTextSize(tempTextShape, ff(250));

// This next call comes from the Font Library.
SetShapeCommonFont(tempTextShape, newyorkFont);

The variable tempTextShape now holds the text shape.

Outlining the text. We said that we want to outline the text with some color and fill
the text shape with stars. The approach we’ll take to outlining our text shape is to first
convert it into a path shape, which requires only the GXSetShapeType call.

After the conversion to a path shape, each character in the text shape becomes a path.
Thus, the converted shape will contain two different paths, one for each character. To
draw the outline of each path, we set the fill type to gxClosedFrameFill. Then we set
the pen to draw on the outside of each contour, set the pen thickness, set the color of
our path to a color from the common color library, and scale it 125% on the x-axis
and 65% on the y-axis so that it will come out looking short and fat.

GXSetShapeType(tempTextShape, gxPathType);
GXSetShapeFill(tempTextShape, gxClosedFrameFill);
GXSetShapeStyleAttributes(tempTextShape, gxOutsideFrameStyle);
GXSetShapePen(tempTextShape, ff(3));
SetShapeCommonColor(tempTextShape, blue);
GXScaleShape(tempTextShape, fl(1.25), fl(0.65), 0, 0);

Now we add our path shape to the picture we’ve stored in gthePage:

GXSetPictureParts(gthePage, 0, 0, 1, &tempTextShape, nil, nil, nil);

From now on, whenever we draw gthePage, our path shape stored in tempTextShape
will be drawn as well. (See Figure 4.)

Filling with stars. To fill our shape with stars, we start by changing the fill type and
color of our path. Then we define the star shape and the pattern record that will
replace the style of our shape, add our new patterned path to our picture, and dispose
of all the unneeded shapes.

We need to change the fill type of tempTextShape to solid fill because at this point we
want to fill the contents rather than draw the outline of each path. We also want our
stars to be gray, so we need to reset the color.
GETTING STARTED WITH QUICKDRAW GX September 1993

23
Another approach to outlining text,
described in the article “QuickDraw GX for
PostScript Programmers” in this issue, involves
using text faces.•

24
Figure 4
The Path Shape Outlining Our Text
d e v e l o p Issue 15
GXSetShapeFill(tempTextShape, gxSolidFill);
SetShapeCommonColor(tempTextShape, cold_grey);

We define the star as a polygon shape containing one contour and five points, with
the default fill of evenOdd (which results in a star with a hollow pentagon inside), and
we scale it by 15% to make it tiny:

gxShape starShape;
long starGeometry[] = {1, // One contour.

5, // Five points defining the polygon.
ff(60), 0, ff(90), ff(90), 0, ff(30),
ff(120), ff(30), 0, ff(90)};

starShape = GXNewPolygons((gxPolygons *) starGeometry);
GXScaleShape(starShape, fl(0.15), fl(0.15), 0, 0);

The pattern record contains the shape to be used as the pattern, two vectors (u and v)
that describe how to tile the pattern, and the pattern attribute. (See Figure 5.) We’ll
attach this record to the style of our path shape, replacing the default style.

v

u

Figure 5
Making the Star Pattern

The bounding box of our star shape will be a fixed-point rectangle contained in the
variable starShapeBounds. This information is used to define the u and v vectors of
our pattern record.

gxRectangle starShapeBounds;

GXGetShapeBounds(starShape, 0L, &starShapeBounds);

We define u and v to place the stars side by side without overlapping:

gxPatternRecord starPattern;

starPattern.u.x = 0;
starPattern.u.y = starShapeBounds.bottom;
starPattern.v.x = starShapeBounds.right + fix1;
starPattern.v.y = 0;

We set the attributes of the pattern record to gxNoAttributes and then add our star
polygon shape to the pattern record:

starPattern.attributes = gxNoAttributes;
starPattern.pattern = starShape;

Finally, we add the starPattern to tempTextShape. QuickDraw GX copies a new style
to the converted tempTextShape with the pattern record, replacing the default style
currently referenced by tempTextShape. Anytime this shape is drawn, it will be drawn
patterned with stars. We add our updated tempTextShape to the picture stored in the
variable gthePage:

GXSetShapePattern(tempTextShape, &starPattern);
GXSetPictureParts(gthePage, 0, 0, 1, &tempTextShape, nil, nil, nil);

Now we can dispose of our star polygon shape because it’s contained in our pattern
record, which has been encapsulated into the style of our shape. We also dispose of
tempTextShape because there’s now a unique reference to it in our picture.

GXDisposeShape(starShape);
GXDisposeShape(tempTextShape);

The results. Our picture, gthePage, now contains two shapes. The first shape is a
colored path that outlines the text “GX.” The second shape is the same path filled
with gray stars. When we call GXDrawShape(gthePage), all the shapes contained in
our picture are drawn. The results are shown in Figure 6.
GETTING STARTED WITH QUICKDRAW GX September 1993

25

26
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

������������
������������
������������
������������
������������
������������
������������
������������
������������

Figure 6
Our Text Outlined With Color and Filled With Stars
d e v e l o p Issue 15
EXAMPLE 2: A SHAPE CONTAINING A LINE LAYOUT
In a text shape, all the text can be rendered in only one font and size. In a layout
shape, on the other hand, the text can be rendered in a combination of different fonts
and sizes by applying multiple style runs. A layout shape can contain as many style
runs as you like. A style controls the font, the size, the script (such as Roman or
Arabic), run features (which pertain to swashes, ligatures, and final forms available
with the specified font), justification overrides, and kerning adjustments.

To illustrate QuickDraw GX’s line layout features, we’ll create a layout shape
containing the text “Catch the Nasty WAVE, Dude.” We’ll start by creating the styles
to be applied in three different style runs, and then we’ll define the layout shape.
Finally, we’ll make the whole line of text slant backward, to demonstrate that you can
perform any graphical operation on typographic shapes in QuickDraw GX.

Creating the styles. We’re going to apply styles to our layout shape in three
different runs. The first run of text, “Catch the Nasty,” will use the Hoefler Italic
font; the second run, “WAVE,” will use the Times Roman font; and the third run,
“Dude,” will use Hoefler Italic again. In the first and third runs, we’ll enable a total of
three of the run features available with Hoefler Italic. But before we create the styles,
we need to initialize the run controls used to regulate the run features. We specify the
number of run features and styles we’ll use.

gxRunControls runControls;
gxRunFeature runFeatures[3];
gxStyle styles[3];

InitializeRunControls(&runControls);

Here’s how we specify the style used for our first text run:

styles[0] = NewLayoutStyle((char *)"\pHoefler Italic", ff(36), 0,
&runControls, nil, 0, nil);

We want to enable two run features in our first text run: an “as” ligature in “Nasty”
and swashes on the “C” and “N.”

runFeatures[0].featureType = gxLigatureType;
runFeatures[0].featureSelector = gxLigatureRareOnSelector;
runFeatures[1].featureType = gxAlternateDesignsType;
runFeatures[1].featureSelector = gxAlternateDesignsChanceryOnSelector;

Now we add the two run features to the style used by this run of text:

GXSetStyleRunFeatures(styles[0], 2, runFeatures);

We create the styles for the second and third text runs:

styles[1] = NewLayoutStyle((char *)"\pTimes Roman", ff(38), 0,
&runControls, nil, 0, nil);

styles[2] = NewLayoutStyle((char *)"\pHoefler Italic", ff(40), 0,
&runControls, nil, 0, nil);

The run feature used by the last run of text will enable the final form of the “e” in
“Dude” and will update the style:

runFeatures[2].featureType = gxSmartSwashType;
runFeatures[2].featureSelector = gxSmartSwashLineFinalsOnSelector;
GXSetStyleRunFeatures(styles[2], 3, runFeatures);

We’ll also get the swash on “D” in “Dude” because we enabled the swash capabilities
in the second run feature. When we call GXSetStyleRunFeatures, we tell QuickDraw
GX line layout to use all three entries in the array.

Defining the layout shape. We need to define the length of our layout (in bytes)
and initialize the lengths array used to tell QuickDraw GX line layout the length of
each run of text:

short totalLengthOfLayout, lengthsArray[3];

lengthsArray[0] = 15; lengthsArray[1] = 6; lengthsArray[2] = 5;
totalLengthOfLayout = 26;
GETTING STARTED WITH QUICKDRAW GX September 1993

27

28

d e v e l o p Issue 15
We now have all the information required to define our layout shape and add it to
our picture stored in the variable gthePage. Our layout shape will contain three
runs of text using three different styles. Each style will use a different text size.
Two different fonts will be used, and three run features will be enabled. The
definition looks like this:

char *sampleText = "Catch the Nasty WAVE, Dude";

gxPoint layoutPosition = {ff(10), ff(65)};

tempLayoutShape =

GXNewLayout(1, &totalLengthOfLayout, (void *) &sampleText,

3, lengthsArray, styles,

0, nil, nil, nil, &layoutPosition);

GXSetPictureParts(gthePage, 0, 0, 1, &tempLayoutShape, nil, nil, nil);

We draw tempLayoutShape by calling GXDrawShape(tempLayoutShape). The
result is shown in Figure 7. Note that “WAVE” has been kerned automatically.
Hoefler Italic 36 pt Times Roman 38 pt Hoefler Italic 40 pt

Figure 7
Our Line Layout Shape
Skewing the shape and cleaning up. Because QuickDraw GX treats all
typographic shapes as graphics, we can perform any graphical operation on our
layout shape, now stored in tempLayoutShape. We’ll skew it by 125% in the x
direction about its origin, move the shape 15 pixels in the x direction to put it back
into the window after the skew, and move it 75 pixels in the y direction to move it
away from the beginning position. Finally, we’ll add the shape to our picture
stored in the variable gthePage. When drawn, it will look like Figure 8.

GXSkewShape(tempLayoutShape, fl(1.25), 0, shapePosition.x,

shapePosition.y);

GXMoveShape(tempLayoutShape, ff(15), ff(75));

GXSetPictureParts(gthePage, 0, 0, 1, &tempLayoutShape, nil, nil, nil);

Figure 8
Our Line Layout Shape, Skewed
We no longer need tempLayoutShape because it’s now part of our picture, so we can
dispose of tempLayoutShape and our array of styles:

short loop;

GXDisposeShape(tempLayoutShape);

for (loop = 0; loop <= 2; loop++)

GXDisposeStyle(styles[loop]);

Now gthePage contains three shapes. The first shape is a colored path that
outlines the text “GX,” the second shape is the same path filled with stars, and the
third shape is a typographically cool and skewed rendition of “Catch the Nasty
WAVE, Dude.” When we call GXDrawShape(gthePage), all these shapes are
drawn. In the QuickDraw GX shell, gthePage is set up in the
CreateThePageOfGXShapes function.

BASIC PRINTING IN QUICKDRAW GX
QuickDraw GX adds quite a few new printing features, as mentioned earlier in this
article. We’ll briefly explore printing here by discussing methods for printing
shapes, how to initialize QuickDraw GX printing, how to handle printing errors,
how to implement three new print items added to the File menu, and how to finish
up printing.

METHODS FOR PRINTING SHAPES
Three approaches to printing shapes are available to your application: you can
send shapes to QuickDraw GX printing one by one, you can send a picture that
contains all the shapes used to represent a page, or you can send a picture that
contains other pictures.

Depending on your application, sending an entire picture full of information may be
simplest, but if the picture contains quite a few shapes, say 20,000 to 25,000, you
might suffer a performance penalty. On the other hand, sending shapes one by one
is more complicated for some applications, but it may be the most efficient in terms
of performance when you have lots of shapes — more than 20,000. If you have lots
of shapes in one big picture but you don’t want to send them one by one, you should

29

GETTING STARTED WITH QUICKDRAW GX September 1993

d e v e l o p Issue 15

30
consider breaking the big picture into smaller pictures. (Recall that a QuickDraw GX
picture is a shape that can contain other pictures.) This approach would enable you to
group similar items in the same way as in MacDraw®.

You need to decide which method works best for your application. In the case of our
shell, we’ll send a picture for each page of our document (which conveniently consists
of only one page).

INITIALIZING QUICKDRAW GX PRINTING
To initialize QuickDraw GX printing, we call InitPrinting after we create the
graphics client. We then create a job, which is an extensible data structure containing
all the information required to print a document. For example, a job specifies the
formatting printer driver, the printer for which the job has been targeted, when the
document should be printed, and the number of pages in the document.

OSErr myQDGXPrintError;
gxJob gDocumentJob;

myQDGXPrintError = GXInitPrinting();

if (myQDGXPrintError == noErr)
myQDGXPrintError = GXNewJob(&gDocumentJob);

else
// Your error-handling code here!

HANDLING PRINTING ERRORS
QuickDraw GX printing handles printing errors differently from the Printing
Manager. The Printing Manager requires you to check for an error after each call. If
you receive an error, you must match all your open calls with the appropriate close
calls, close up the Printing Manager, and report the error to the user.

In QuickDraw GX printing, printing errors are local to the job. This gives you the
ability to poll for errors after a group of routines, making your code smaller and
cleaner. If you do receive an error within a group of routines, the routine that caused
the error will prevent the remaining calls from executing until the error is cleared by
calling GXGetJobError. You can then alert the user to the problem. All the
QuickDraw GX printing errors are listed in PrintingErrors.h.

IMPLEMENTING THE NEW MENU ITEMS
Your application should implement three new items in the File menu: Print One
Copy, Document Setup, and By Page Setup.

• Print One Copy should print one copy of the document without
presenting the user with any dialog other than a status dialog.

• Document Setup should present a dialog that lets the user format
the entire document, similar to the old Page Setup dialog.

• By Page Setup should present a dialog that enables page-by-page
formatting of a document (for instance, the user should be able to
choose a different page size for each page in the document).

We won’t take the space to reprint the code to implement Document Setup or By
Page Setup here; check it out in our QuickDraw GX shell.

When the user chooses Print One Copy from the File menu, we want to print the
application’s document. In our QuickDraw GX shell, that means printing the
contents of gthePage:

OSErr DoPrintOneCopy(WindowPtr window)
{

Str255 windowTitle;
OSErr printError;

if (window)
{

GetWTitle(window, windowTitle);

// Start sending the job. The job has the same name as our window,
// and it contains one page. The name appears in the status dialog.
GXStartJob(gDocumentJob, windowTitle, 1);

// Send the entire page down to the printer. (All the shapes that
// are being printed have been collected into gthePage.)
GXPrintPage(gDocumentJob, 1, GXGetJobFormat(gDocumentJob, 1),

gthePage);

// This call tells QuickDraw GX printing we've finished sending the
// job, so terminate the transmission (that is, the connection to
// the printer).
GXFinishJob(gDocumentJob);
if (GXGetJobError(gDocumentJob) != noErr)

// Your error-handling code here!
}

}

FINISHING UP
Once we’ve finished printing, we leave the printing system open. This isn’t a
problem, because the QuickDraw GX printing system has a very small memory
requirement when not in use — approximately 35K. The main reason we leave it
GETTING STARTED WITH QUICKDRAW GX September 1993

31

d e v e l o p Issue 15

32
open is that we want to keep the job around, ready to be used the next time the user
prints. If we were to close the printing system, we would need to recreate the job.

CLOSING UP THE QUICKDRAW GX WORLD
Closing up the QuickDraw GX world is as straightforward as initializing it. You
should dispose of all the QuickDraw GX objects you created while your application
was running. For example, if you called the GXNewShape routine to create a shape,
you should call the GXDisposeShape routine to dispose of it.

In our QuickDraw GX shell’s shutdown, we need to dispose of the QuickDraw GX
picture we created to contain all the shapes drawn to our window, the common color
library, our window, and the graphics client. To dispose of the picture we created,
we first test to make sure it contains something. If it does, we call GXDisposeShape
on it:

if (gthePage != nil)
GXDisposeShape(gthePage);

The QuickDraw GX shell has also been using the common color library, which we
dispose of by calling

DisposeCommonColors();

Now we can dispose of the window; this also disposes of the view ports. In our shell,
we created our own pointer to the window record, so we need to dispose of it with
the appropriate call.

To close up the QuickDraw GX printing system, we dispose of the job and then call
GXExitPrinting before we dispose of the graphics client. If we were going to save our
picture to disk, we would want to flatten the job to disk as well.

if (GXDisposeJob(gDocumentJob))
// Your error-handling code here!

if (GXExitPrinting())
// Your error-handling code here!

Finally, we need to call GXDisposeGraphicsClient to dispose of the graphics client
we created earlier:

GXDisposeGraphicsClient(gGraphicsClient);

If for some reason you haven’t yet disposed of all the QuickDraw GX objects you’ve
created while your application has been running, GXDisposeGraphicsClient disposes

of them. If you enabled graphics notices earlier in your application, you’ll receive a
graphics notice for the first QuickDraw GX object you didn’t dispose of. For
example, if you didn’t dispose of a shape, you’ll receive this notice:

GRAPHICS NOTICE: shape not disposed

This isn’t a problem when you’re shutting down your application, because the
QuickDraw GX heap is cleaned up when GXDisposeGraphicsClient is called. But
getting a notice like this when your application ends means that you’ve been leaving
unused items in the QuickDraw GX heap. That could mean reduced performance,
since the QuickDraw GX Memory Manager has to page these unused objects into
and out of the heap in a low-memory situation.

If you do receive a graphics notice about something you didn’t dispose of, you should
track down the object to improve your runtime memory management. Prevent your
application from calling GXDisposeGraphicsClient so that the QuickDraw GX heap
doesn’t disappear before you can analyze it. In GraphicsBug, use the Heap menu to
choose your application’s heap; then type “hd” to get a dump of your QuickDraw GX
heap, or “hd shape” to get a list of all the shapes you forgot to throw away.

In our QuickDraw GX shell, the routine ShutDownProgram closes up the
QuickDraw GX world.

WHERE TO GO FROM HERE
We’ve taken a look at what you need to do to begin making use of the new
QuickDraw GX technology. Now you’re ready to tackle that huge pile of QuickDraw
GX material.

I suggest starting with the sample code that comes with QuickDraw GX. There are
sample applications ranging from very simple to relatively complex, and some tools to
play with. Try out the samples that interest you. For an illustration of the minimum
number of lines of code needed to draw GX shapes, take a look at the “One
Rectangle” sample. It initializes the QuickDraw GX world, attaches a view port to a
window, creates a rectangle, and draws the shape to the window.

Then take a look at the QuickDraw GX documentation. You should start with the
“QuickDraw GX Objects” chapter, which describes all the objects illustrated in
Figure 2. From there, proceed to the parts of the documentation that make the most
sense for your application.

I hope you’ve enjoyed this overview of QuickDraw GX. We haven’t covered all the
exciting parts of the technology, by any means. This is only the beginning!
GETTING STARTED WITH QUICKDRAW GX September 1993

33
THANKS TO OUR TECHNICAL REVIEWERS
Hugo Ayala, Cary Clark, Tom Dowdy, Dave
Hersey, Daniel Lipton, Dave Opstad•

d

34

SA
DEVELOPING

QUICKDRAW

GX

PRINTING

EXTENSIONS
e v e l o p Issue 15

M WEISS
With QuickDraw GX comes a new extensible printing architecture
that simply invites you to jump in and tinker. Writing printer drivers
has never been easier. But with the advent of printing extensions, you
may never have to write a printer driver again! This article tells you
what you need to know to create QuickDraw GX printing extensions.

Macintosh system software has long provided hooks that enable developers to add
system-level features in the form of INITs (now called system extensions) and cdevs
(control panels). QuickDraw GX extends the extension concept to printing via
printing extensions, plug-in software modules whose sole purpose in life is to modify
the behavior of printing. Want to stamp the word “Confidential” on every page
printed to a specific printer? Write a printing extension. Want to drive a sheet feeder
attachment to a LaserWriter? Write a printing extension. Chances are that if there’s
something you want to do that the QuickDraw GX printing architecture doesn’t
already do, you can do it with a printing extension.

In this article, I’ll describe the steps you must take to create a QuickDraw GX
printing extension. By the end of the article we’ll have a working, environmentally
friendly extension called 4-Up. As shown in Figure 1, the 4-Up printing extension
maps four document pages onto one physical page at print time, saving countless
trees in the process!

Notice that I referred to a printing extension as a “software module.” I would love to
use the currently hip term “component,” but I don’t want to confuse the issue by
implying that printing extensions are implemented as Component Manager
components. In fact, printing extensions are a whole new sort of beast. QuickDraw
GX includes a new low-level software manager called the Message Manager, which it
uses to implement its extensible printing architecture. A printing extension is a client
of the Message Manager called a message handler. The Message Manager manages the
construction of a hierarchy of related message handlers into a message class, allows
message objects to be instantiated from message classes, and directs messages among
message handlers. I won’t be going into too much detail about the Message Manager
SAM WEISS (AppleLink S.WEISS), famous for
the PrintSpy INIT (which surfaced in the former
Soviet Union when the KGB was dismantled), has
been working on QuickDraw GX printing in one
form or another for the last five years. In this
capacity, he can often be found in his office
managing collections, sending messages,
rewriting the core, or cutting his own hair. But in
his spare time, Sam enjoys sharing his favorite

hobby (musical electronic fishkeeping) with his
one-year-old daughter Talia, whose first word was
DoubleDespoolDatFileDaDa-Plecostomous. When
asked about life after QuickDraw GX, Sam
appeared confused and muttered something
about having a few philosophers over for
dinner.•

in this article. But there are times when you’ll have to call the Message Manager
directly from your printing extension, so you need to be aware of it.

Another new manager included in QuickDraw GX is the Collection Manager, which
manages the creation of lightweight extensible data structures called collections.
QuickDraw GX printing makes heavy use of collections. Although we won’t need to
call the Collection Manager from the 4-Up extension, nearly all serious printing
extensions will need to do so.

THE QUICKDRAW GX PRINTING ARCHITECTURE
Before we jump into the technical details of writing a printing extension, it will be
helpful to have a general overview of the QuickDraw GX printing process. First, I’ll
describe how the printing process occurs in several distinct phases, each responsible
for a specific subtask of the entire process. Then, I’ll explain the flow of control under
QuickDraw GX printing, as contrasted with that of the Printing Manager. And
finally, I’ll discuss how printing extensions fit into the picture.

THE FOUR SEASONS OF PRINTING
Under QuickDraw GX, printing occurs in four distinct phases:

Page 2Page 1

Page 4Page 3

Page 2Page 1

Page 4Page 3

Figure 1
4-Up at Work
DEVELOPING QUICKDRAW GX PRINTING EXTENSIONS September 1993

35

d e v e l o p Issue 15

36
• Spooling, which takes place in the foreground under the control of
the printing application, results in a device-independent print file
being stored to disk. This print file is also known as a portable
digital document or PDD, and it can be viewed using the version of
TeachText included with QuickDraw GX. Because the contents of
the print file are stored in a device-independent format, it can be
redirected to a device other than the original target, potentially
even a different class of device, for actual printing. For example, a
print file originally targeted for a PostScript LaserWriter can be
redirected to an ImageWriter. The print file contains enough
information to allow the document to be rendered to the best of
the printer’s ability, regardless of the originally intended target
printer.

• Despooling, which always occurs in the background under the
control of the PrinterShare GX background printing task, is the
process of reading pages from the print file for imaging.
Despooling need not occur on the same machine on which
spooling occurred. PrinterShare GX sends print files over the
network when the target device is a remote server. Also, users may
copy print files to floppy disk, or otherwise manually move them
to other machines for printing.

• Imaging also occurs in the background under the control of
PrinterShare GX. Despooling and imaging always happen
together, but it’s useful to consider them as distinct phases since
they accomplish different tasks. While the despooling process is
responsible for reading the correct pages from the print file, the
imaging process is responsible for translating the device-
independent graphics data contained in the file into a format
recognized by the target device. This would be PostScript code in
the case of a PostScript LaserWriter, and it would be device-
resolution bitmaps and appropriate escape sequences in the case of
an ImageWriter.

• Device communications encompasses the actual dialog that occurs
between the printer driver and the target device. This is a distinct
phase, as it may actually take place on a machine other than that
on which imaging occurred. For example, if the target device is a
remote server, and PrinterShare GX determines that certain
necessary resources (such as fonts) aren’t available on the server,
PrinterShare GX may opt to image the job locally into an image
file, which it sends to the server. By definition, image files are
device-dependent, nonviewable, and nonredirectable. The image
file is “played back” on the server during the device
communications phase.

GO WITH THE FLOW
At the highest level, the flow of control under QuickDraw GX printing remains
similar to that in the existing Printing Manager. There are three major players: the
application, the printing API, and the printer driver. The printing application calls a
layer of printing API routines, each of which either performs some task or calls the
appropriate printer driver to perform some task. However, there are two major
differences in QuickDraw GX printing. First, the printing API has been greatly
expanded. And second, the way in which control is transferred from the API to the
driver is completely different. I won’t be going into detail about the expanded
printing API — but you’ll need to understand the new flow of control in order to
write printing extensions.

The existing Printing Manager calls the driver simply by loading the appropriate
PDEF (code resource) from the driver, computing the offset to the specified routine,
and jumping to it. As shown in Figure 2, QuickDraw GX printing uses an
intermediary, the Message Manager, to transfer control to the driver. When the
application makes a QuickDraw GX printing call, and the printing API needs to call
the driver, it does so by calling the Message Manager to request that a message be
sent to the driver. The advantage of this approach is flexibility. The Message
Manager allows message handlers to be inserted between the printing API and the
driver (which is itself a message handler). Aha! The light goes on! This gives us the
ability to extend the behavior of printing, or even fix bugs, without modifying the
driver’s code. It also serves as the foundation upon which the printing extension
mechanism is built.

DON’T SHOOT THE MESSENGER
QuickDraw GX printing defines over a hundred messages. When an application calls
the printing API, QuickDraw GX either performs the requested task itself or sends
one of these messages (via the Message Manager) to the driver to perform the task.
For many tasks, QuickDraw GX provides a default implementation for the associated
message, but sends a message to the driver anyway. This gives the driver a chance to
do things its own way, or to massage the message parameters before forwarding the
message on to the default implementation.

This is where printing extensions come in; they’re inserted between the printing API
and the driver, thereby having the opportunity to override any message before it gets
to the driver. There are two flavors of message overriding, partial and complete.

In a partial message override, the extension will do some work to customize the
behavior of the message, but it will still forward the message to the driver. The
extension may do its work before forwarding the message (preprocessing), after
forwarding the message (post-processing), or both before and after forwarding the
message. For example, message preprocessing might involve changing one or more of
the message parameters before the driver sees them. Post-processing might involve
modifying result parameters returned by the driver.
DEVELOPING QUICKDRAW GX PRINTING EXTENSIONS September 1993

37

d e v e l o p Issue 15

38
In a complete message override, the extension is responsible for implementing the
message entirely and does not forward the message to the driver. Since any number of
extensions may be inserted between the printing API and the driver, complete
overrides will also inhibit any other extensions inserted between the driver and the
extension performing the override from receiving the message. So before completely
overriding a message, think hard and be sure to consult the documentation (Inside
Macintosh: Printing Extensions and Printer Drivers, available from Addison-Wesley in
September), which gives details regarding which messages are appropriate candidates
for complete overrides.

Any message not explicitly overridden by the extension is implicitly forwarded by the
Message Manager to the driver — or if there is another extension loaded before the
driver, it will get the next crack at the message.

 Application

 Printing extension

 Driver

Printing
API

Message
Manager

Start

 API call message

 Application

 Driver

Printing
Manager

The Old Way The QuickDraw GX Way

Figure 2
The Old Way Versus the QuickDraw GX Way

LESS IS MORE
Now that you have some background on the behind-the-scenes operations of
QuickDraw GX printing, we can investigate what it takes to cram four pages into
one. The first step is deciding which messages to override. With over a hundred
messages to choose from, this may well be the most difficult aspect of printing
extension development. If you’ve ever worked with a large class library like MacApp,
you know what I mean. Half the battle is understanding the context within which
various messages are sent. QuickDraw GX printing is no different; in fact, you can
envision it as a printing class library. As in MacApp, it takes some time to learn your
way around.

In our case, there are at least four different messages we could override in order to
stuff four pages into one: GXSpoolPage, GXDespoolPage, GXImagePage, and
GXRenderPage. The one we choose will depend on the desired effect. I chose the
GXDespoolPage message, which is sent by QuickDraw GX to read each page from
the print file during background printing. QuickDraw GX printing always spools
data to a device-independent print file and then releases control back to the
foreground application. PrinterShare GX, a background printing process, despools
the print file, images it, and sends the result to the target printer. By overriding the
GXDespoolPage message, we have no effect on the print file itself and we don’t affect
spooling performance. Our modifications will be done on the fly during the
background despooling/imaging phase of printing. One implication of this strategy is
that our extension won’t affect what the user sees when viewing the print file on the
screen (soft copy); it will affect only what’s actually printed (hard copy).

During the background despooling/imaging phase of printing, QuickDraw GX sends
the GXDespoolPage message for each page in the print file. QuickDraw GX supplies
a default implementation for this message which reads the requested page from the
print file and returns it to the caller as a picture shape. The 4-Up extension simply
needs to override the GXDespoolPage message and return a picture shape containing
the requested page plus the three succeeding pages. Of course, we’ll need to scale
down the original pages and move them around on the physical page a little. But
that’s the basic idea.

OK, it sounds great in theory. But we have a problem. Suppose the print file contains
16 pages. We’re effectively creating a 4-page document. But QuickDraw GX is going
to send the GXDespoolPage message 16 times and expect a valid picture shape to be
returned each time. What happens when we run out of pages, after we’re called for
the fourth time? As you’ve probably guessed, there’s another message we must
override called GXCountPages. This message is sent at the beginning of the imaging
process to determine how many times the GXDespoolPage message should be sent.
In the example given above, we would need to override GXCountPages to return 4
instead of 16.
DEVELOPING QUICKDRAW GX PRINTING EXTENSIONS September 1993

39

d e v e l o p Issue 15

40
WRITING THE CODE
Now that we know which messages to override, we can write some code. Writing the
code for a printing extension consists of implementing message overrides. In the
4-Up extension, we’ll override two messages, GXCountPages and GXDespoolPage.
Coding a message override is fairly straightforward, similar to coding a callback
routine for other Toolbox managers. The most important part is ensuring that we
declare the function with the expected calling interface.

OVERRIDING GXCOUNTPAGES
The GXCountPages message has the following interface:

OSErr GXCountPages (gxSpoolFile thePrintFile, long* numPages);

In fact, all messages share certain common interface elements. For example, all
messages must return a result of type OSErr. This is important because all printing code
is segmented. If the segment dispatcher fails to load your extension’s code segment, it
must be able to report the error condition to the caller. If your particular override
doesn’t do anything that can fail, simply return noErr.

Now that we know the interface to the GXCountPages message, we can implement
our override. Since we’re squeezing four pages into one, we can determine the
number of actual pages with the following simple formula:

physicalPages = (originalPages + 3) / 4

Trick #1. Determining the value of originalPages is one of two tricky things we need
to do in this extension. Your first thought might be to retrieve the document’s page
count from the current job, which is an implicit parameter to every message. The
current job is an abstract object of type gxJob, which you can think of as a
replacement for the print record in the existing Printing Manager. It contains all sorts
of information relating to the document being printed. We can get a reference to the
current job by calling GXGetJob, a QuickDraw GX printing routine, and then access
information such as the document’s page count from the job.

Although this technique would work for simple cases, it won’t work if another
printing extension is present and also modifying the result returned by the
GXCountPages message. Consider the case where the user is running our 4-Up
extension and another 2-Up extension. Ideally, the result should be an 8-to-1
mapping; both extensions would do their work, each oblivious to the other’s
existence, yet the final output would be the result of a cooperative effort!

The correct technique is to forward the GXCountPages message to the next message
handler, and use the result we get back as the value for originalPages. Note that the
value we get may actually be the result of modifications made by other extensions, but

we don’t care! That’s the beauty and flexibility inherent in the messaging architecture.
Forwarding the GXCountPages message is as easy as calling the predefined routine
Forward_GXCountPages. Here’s the full implementation of our GXCountPages
override:

OSErr FourUpCountPages (gxSpoolFile thePrintFile, long* numPages) {
OSErr anErr;
long originalPages;

anErr = Forward_GXCountPages(thePrintFile, &originalPages);
nrequire (anErr, FailedForward_GXCountPages);

*numPages = (originalPages + 3) / 4;
return noErr;

FailedForward_GXCountPages:
return anErr;

}

Note the use of the nrequire exception-handling macro. It displays an error string
and jumps to the FailedForward_GXCountPages label if anErr is nonzero. See the
article “Living in an Exceptional World” in develop Issue 11 for more information.

OVERRIDING GXDESPOOLPAGE
The meat of the 4-Up extension is contained in the GXDespoolPage override. The
GXDespoolPage message has the following interface:

OSErr GXDespoolPage (gxSpoolFile thePrintFile, long pageNumber,
gxFormat pageFormat, gxShape *pagePicture, Boolean *formatChanged);

Normally, the default implementation of this message will be executed, resulting in
the page identified by pageNumber being read from the print file specified by
thePrintFile. Additionally, the page’s associated format will be read into pageFormat,
and the Boolean formatChanged will be set to true if the format being returned is
different from the format returned by the last invocation of the GXDespoolPage
message. Formats are abstract objects that contain formatting information for one or
more pages in a document. We’ll need to query the page format for its dimensions so
that we can properly place our four scaled-down pages onto the physical page.

Our GXDespoolPage override must do the following work:

1. Using pageNumber, compute the actual page numbers for the
pages we must read. Remember, when QuickDraw GX asks for
page 2, we’ll be returning pages 5, 6, 7, and 8. Page numbers start
at 1.
DEVELOPING QUICKDRAW GX PRINTING EXTENSIONS September 1993

41

d e v e l o p Issue 15

42
2. Read up to four pages from the print file, being careful not to read
past the last remaining page.

3. Query the page’s format for its dimensions. We’ll be fairly
unsophisticated and ignore all but the first format for each group
of four pages. As a result, we won’t handle all cases correctly — for
example, mixed portrait and landscape pages. This is left as an
exercise for the reader.

4. Scale down and translate each page to the correct size and
position.

5. Add the modified pages to a new picture shape, and return it.

This may seem like a lot of work. Fortunately, we can rely on the default
implementation of GXDespoolPage for much of it. Here’s the code:

OSErr FourUpDespoolPage (gxSpoolFile thePrintFile, long pageNumber,
gxFormat pageFormat, gxShape* pagePicture,
Boolean* formatChanged) {

OSErr anErr;
long firstPage, lastPage, numPages, whichPage;
gxShape fourUpPage, thePages[4];
gxShape* atPage;

/* Determine actual page numbers of the pages to despool. */
lastPage = pageNumber * 4;
firstPage = lastPage - 3;

/* Determine page number for last page in spool file so that we can
constrain our despooling loop to a valid range if fewer than four
pages remain in the file. */

anErr = ForwardMessage(gxCountPages, thePrintFile, &numPages);
nrequire (anErr, FailedForward_GXCountPages);

if (lastPage > numPages)
lastPage = numPages;

/* Create picture shape to hold subpages. */
fourUpPage = GXNewShape(gxPictureType);
anErr = GXGetGraphicsError(nil);
nrequire (anErr, FailedGXNewShape);

/* Despool backwards so that pageFormat ends up containing the format
for the first page in the group. */

atPage = &thePages[lastPage-firstPage]; /* Last page in group */
numPages = 0; /* Track number of successfully despooled pages */

for (whichPage = lastPage; whichPage >= firstPage; --whichPage) {
anErr = Forward_GXDespoolPage(thePrintFile, whichPage, pageFormat,

atPage--, formatChanged);
nrequire (anErr, FailedForward_GXDespoolPage);
++numPages;

}

/* Map the despooled pages onto a single physical page. */
{

gxRectangle pageRect;
fixed tx, ty;
gxMapping aMapping;

/* Get the dimensions of the physical page. */
GXGetFormatDimensions(pageFormat, &pageRect, nil);

/* Compute x and y translation factors. */
tx = (pageRect.right - pageRect.left) >> 1;
ty = (pageRect.bottom - pageRect.top) >> 1;

/* Initialize the mapping to scale by 50%. */
GXResetMapping(&aMapping);
aMapping.map[0][0] = fixed1/2;
aMapping.map[1][1] = fixed1/2;

/* Map the pages onto the physical page. */
GXMapShape(thePages[0], &aMapping);

if (numPages > 1) {
GXMoveMapping(&aMapping, tx, 0);
GXMapShape(thePages[1], &aMapping);
if (numPages > 2) {

GXMoveMapping(&aMapping, -tx, ty);
GXMapShape(thePages[2], &aMapping);
if (numPages > 3) {

GXMoveMapping(&aMapping, tx, 0);
GXMapShape(thePages[3], &aMapping);

}
}

}

/* Place the mapped pages into a single picture. */
GXSetPictureParts(fourUpPage, 1, 0, numPages, thePages, nil, nil,

nil);
anErr = GXGetGraphicsError(nil);
DEVELOPING QUICKDRAW GX PRINTING EXTENSIONS September 1993

43

d e v e l o p Issue 15

44
nrequire (anErr, FailedGXSetPictureParts);

/* GXSetPictureParts cloned the pages, so we must dispose of our
references to them. */

for (atPage = &thePages[numPages-1]; atPage >= thePages; --atPage)
GXDisposeShape(*atPage);

}

/* Return the 4-up page. */
*pagePicture = fourUpPage;

/* Since we don't know whether the format for "actual page number 5"
is the same as that for "actual page number 1," we always set
formatChanged to true. A more sophisticated extension could do the
right thing here. */

*formatChanged = true;

ncheck (anErr);
return noErr;

/*------------------------
Exception-handling code
------------------------*/

FailedGXSetPictureParts:
FailedForward_GXDespoolPage:

for (atPage = &thePages[numPages-1]; atPage >= thePages; --atPage)
GXDisposeShape(*atPage);

GXDisposeShape(fourUpPage);
FailedGXNewShape:
FailedForward_GXCountPages:

return anErr;
}

Trick #2. This code is pretty easy to follow, but one line demands further
explanation. Remember earlier I said that there were two “tricky things” our
extension would have to do. The first was correctly determining the number of
original pages in the document. The second trick occurs early in the above code,
in the line

anErr = ForwardMessage(gxCountPages, thePrintFile, &numPages);

We need to know the actual page number for the last page in the document so that
we can make sure not to read a nonexistent page. Since the last page’s page number is
equal to the number of pages in the document, your first thought might be to send

the GXCountPages message. QuickDraw GX supplies the Send_GXCountPages
routine to do this, and we would call it like so:

anErr = Send_GXCountPages(thePrintFile, &numPages);

However, this would not produce the desired result. Since this would invoke our own
GXCountPages override, as well as those of all other message handlers that override
GXCountPages, the result would be the total number of physical pages actually
printed, not the total number of logical pages we must despool.

What we really want to do is forward the GXCountPages message. But here’s the
potential gotcha! We can’t use QuickDraw GX’s supplied Forward_GXCountPages
routine to do it.

Here’s why: The Message Manager provides two routines for forwarding a message.
The ForwardMessage routine takes a selector, which indicates the message to be
forwarded, and zero or more message-specific parameters. ForwardThisMessage
takes only the message-specific parameters and assumes you want to forward the
current message. The current message is the one corresponding to the override
you’re currently executing — that is, the override from which you’re calling
ForwardThisMessage. The problem with calling Forward_GXCountPages from
within the GXDespoolPage override is that all QuickDraw GX’s Forward_XXX
routines are simply inline aliases to ForwardThisMessage, with the message-specific
parameters added for type-checking purposes. Since it’s far more common to forward
the current message than it is to forward an arbitrary message, QuickDraw GX
assumes the common case and provides only the corresponding aliases. Therefore, if
we were to call Forward_GXCountPages from within our GXDespoolPage override,
we would actually forward the GXDespoolPage message with a bogus parameter list!

This doesn’t mean we can’t forward arbitrary messages, but to pull it off we do have
to call the Message Manager directly. In the above code, we call ForwardMessage and
pass the constant gxCountPages, defined by QuickDraw GX, as the message selector.
Warning: You don’t get type checking when you call the Message Manager’s sending
and forwarding functions directly, so be careful out there!

THE JUMP TABLE
The only code left to write is the jump table for our code segment. As you’ll see in
the next section, QuickDraw GX determines which messages an extension overrides
and the location of the associated override code from special resources within the
extension. Since these resources specify the location of the extension’s overrides in
terms of byte offsets from the beginning of a specified code segment, it’s easiest to
begin each code segment with a simple assembly language jump table. That way, the
extension’s entry points are always well defined, independent of any changes we make
to the code in the future. Also, QuickDraw GX requires that each code segment
begin with a long word set to 0, and this is easily accomplished from assembly
DEVELOPING QUICKDRAW GX PRINTING EXTENSIONS September 1993

45

d e v e l o p Issue 15

46
language. Since we’re overriding only two messages, and our code is small, we’ll have
just a single segment, with the following jump table:

FourUpEntry PROC EXPORT
DC.L 0 ; long word required by QuickDraw GX

IMPORT FourUpCountPages
JMP FourUpCountPages

IMPORT FourUpDespoolPage
JMP FourUpDespoolPage

ENDPROC

END

PUTTING IT ALL TOGETHER
Writing code is great, but it’s useless if it never runs. There are several things we
must do if our printing extension is to be recognized, loaded, and executed by
QuickDraw GX.

BE RESOURCEFUL
There are four required resources (besides the code) that must be present in every
printing extension. All resources, including your own, should have their sysHeap and
purgeable bits set, unless otherwise noted. Except for code resources, which have IDs
starting at 0, all resources should have IDs in the range reserved for printing
extensions. This range extends from 0x9600 to 0x97FF (-27136 to -26625 decimal).
The predefined constant gxPrintingExtensionBaseID (equal to -27136) is provided
for your use. All the required resources have predefined constants for their types and
IDs. For the actual values, see the appropriate header files.

The four required resources give QuickDraw GX the following important
information:

• 'over' resource: which messages you override and where to find the
associated override code

• 'eopt' resource: during which phases of printing your extension
needs to run, and if and when it modifies the contents of the page

• 'load' resource: where in the message handler chain your extension
should load, relative to other printing extensions

• 'scop' resource: which driver and printer types your extension is
compatible with

The remainder of this section gives all the gory details for each of the required
resources, including examples.

The 'over' resource. The override resource lists the messages you’re overriding and
where the associated override code is located. Printing extension code resources
always have type 'pext' and should have IDs starting at 0 for maximum performance.
Given the above jump table, and the fact that we override only universal printing
messages, we have a single override resource that looks like this:

#define fourUpCodeSegmentID 0
#define gxCountPagesOffset 4 /* first entry follows zero long word */
#define gxDespoolPageOffset 8 /* jump table entries are 4 bytes long */

resource 'over' (-27136, purgeable, sysHeap) {
{

gxCountPages, fourUpCodeSegmentID, gxCountPagesOffset;
gxDespoolPage, fourUpCodeSegmentID, gxDespoolPageOffset

};
};

If your extension overrides imaging messages, you’ll need separate override resources
for each distinct class of imaging messages you override. For example, PostScript
message overrides would go in a separate table, and vector overrides in yet another
table. You can choose any ID within the printing extension range for these tables. You
let QuickDraw GX know the override resource ID with a mapping resource whose
type is the same as the driver type for the imaging messages you’re overriding, and
whose ID is equal to gxPrintingExtensionBaseID. There are predefined constants for
these values. For example, if your extension overrides the PostScript message
gxPostscriptEjectPage, you would have the following two resources:

resource 'post' (-27136, purgeable, sysHeap) {
-27135 /* ID of our PostScript 'over' resource */

};

resource 'over' (-27135, purgeable, sysHeap) {
{
gxPostscriptEjectPage, postscriptSegmentID, gxPostscriptEjectPageOffset;
};

};

The 'eopt' resource. The extension optimization resource provides QuickDraw
GX with additional information that helps it perform optimally under certain
conditions. This resource consists of a bit field containing predefined flags that tell
the system when the extension executes, whether it needs to communicate with the
device directly, and if and when it makes changes to the page. The 4-Up extension
DEVELOPING QUICKDRAW GX PRINTING EXTENSIONS September 1993

47

d e v e l o p Issue 15

48
runs during the despooling/imaging phase and changes the page during the
GXDespoolPage message. It doesn’t need to communicate with the device.

Using the predefined resource template, our 'eopt' resource looks like this:

resource 'eopt' (-27136, purgeable, sysHeap) {
gxExecuteDuringImaging, gxDontNeedDeviceStatus,
gxChangePageAtGXDespoolPage, gxDontChangePageAtGXImagePage,
gxDontChangePageAtGXRenderPage

};

The 'load' resource. The extension load resource tells QuickDraw GX your
default loading order preference. The first extension’s message handler is loaded
directly above the driver. Subsequent extensions are loaded one above the other.
The last extension to be loaded is the first to override a given message, and therefore
has the most control. Most extensions should use the predefined constant
gxExtensionLoadAnywhere, which indicates that the extension has no loading
preference. If you prefer to load first, use the constant gxExtensionLoadFirst; if you
prefer to load last, use gxExtensionLoadLast. You should regard this resource as a
hint, not as a guarantee. For one thing, several extensions may indicate that they
want to load last. Obviously, only one will win. More important, the user can reorder
the extensions in any way desired, and that ordering always takes priority over the
default ordering.

Our 'load' resource looks like this:

resource 'load' (-27136, purgeable, sysHeap) {
gxExtensionLoadAnywhere

};

The 'scop' resource. The extension scope resource tells QuickDraw GX the scope
of your extension’s compatibility with the various driver types that are supported by
QuickDraw GX. Built-in support exists for raster devices, such as the ImageWriter
and LaserWriter SC, vector devices, such as plotters, and PostScript devices. If your
extension is PostScript-only, you would specify that in a 'scop' resource. An example
of a PostScript-only extension might be one that drives a sheet feeder attachment to a
LaserWriter, which understands PostScript commands for selecting bins.

You may have up to three separate 'scop' resources. The main 'scop' resource lists
the types of drivers that the extension is compatible with. It has an ID of
gxPrintingExtensionBaseID. The currently supported types are 'rast', 'post', 'vect',
and 'univ', for raster, PostScript, vector, and universal, respectively. For example, an
extension compatible with PostScript and vector drivers, but not with raster drivers,
would have the following 'scop' resource:

resource 'scop' (-27136, purgeable, sysHeap) {
{

'post'; /* compatible with all PostScript devices */
'vect'; /* compatible with all vector devices */

};
};

The second 'scop' resource has an ID of gxPrintingExtensionBaseID+1 and lists the
specific printer types that the extension is compatible with. A printer’s type is defined
by the creator type of its resource file. For example, the LaserWriter SC has the
creator type 'lwsc'. If your extension isn’t generally compatible with a class of devices
but does support a particular device, you should list it here. For example:

resource 'scop' (-27135, purgeable, sysHeap) {
{

'lwsc'; /* compatible with LaserWriter SC */
};

};

The third 'scop' resource has an ID of gxPrintingExtensionBaseID+2 and lists the
specific printer types that the extension is not compatible with. If your extension is
generally compatible with a class of devices but doesn’t support a particular device,
you should list it here. For example:

resource 'scop' (-27134, purgeable, sysHeap) {
{

'dpro'; /* incompatible with DraftPro plotter */
};

};

Taken together, the above three 'scop' resources would indicate that the extension is
compatible with all PostScript devices, all vector devices except for the DraftPro
plotter, and additionally the LaserWriter SC printer.

If your extension is not driver-specific, you can indicate that it has universal scope.
4-Up is one such extension, so we have a single 'scop' resource that looks like this:

resource 'scop' (-27136, purgeable, sysHeap) {
{

'univ'; /* universal scope => compatible with all devices */
};

};

Note that if this 'scop' resource had instead included 'post', 'vect', and 'rast', the
extension would indeed be loaded for all three device types. However, should a fourth
DEVELOPING QUICKDRAW GX PRINTING EXTENSIONS September 1993

49

d e v e l o p Issue 15

50
device type be defined in the future, the extension would not support it. Thus, if your
extension truly has universal scope, you should use the 'univ' type rather than
enumerating all known device types.

BUILDING THE BEAST
We’ve written the code, we’ve added the necessary resources. All that’s left is to build
it properly. The two most important things to remember are:

• Link the code so that it’s given the proper resource type ('pext')
and ID (zero-based).

• Set the file’s type to 'pext' and the creator type to something
unique. This is very important! Your extension’s creator type
should not be all lowercase (lowercase types are reserved by Apple)
and you should register it with the Developer Support Center
(AppleLink DEVSUPPORT) to ensure uniqueness. When
QuickDraw GX encounters two printing extensions with the same
creator type, it will reject all but the first it finds. Your Link and
Rez step will look something like this:

Link -ra =resSysHeap,resPurgeable ∂
-t 'pext' ∂
-c '4-Up' ∂
-rt pext=0 ∂
-sg 4-Up ∂
-m FourUpEntry ∂
{CObjs} ∂
-o "4-Up";

Rez -rd -o "4-Up" 4-Up.r -append

BUT WAIT! THERE’S MORE!
There you have it — a completely functional printing extension, with minimal effort.
Hopefully, by now you’re brimming with ideas for extensions you can write. The
mechanism is extremely powerful, and I’ve barely scratched the surface in this article.
Serious extensions will need to override the dialog messages to install panels and
gather user settings, call the Collection Manager to satisfy persistent storage needs
(that is, save user settings across the spooling/imaging threshold), and call the
Message Manager to manage dynamic contexts (global state that persists from one
message to the next).

Extensions can also customize the Finder’s desktop printer menu, save printer-wide
settings in desktop printers, and manage user interface interactions via the built-in
alert and status mechanisms. Perhaps a future article will explore these and other
topics. For now, you should have enough information to get more than your feet wet!
THANKS TO OUR TECHNICAL REVIEWERS
Dennis Farnden, Dave Hersey, Sean Parent•

QUICKDRAW GX

FOR POSTSCRIPT

PROGRAMMERS
DANIEL LIPTON
With QuickDraw GX, the Macintosh gets a brand new, powerful, and
totally different model for text and graphics. Programmers of graphics
and page layout applications accustomed to using custom PostScript code
during the printing process will have to learn new techniques for
imaging on the Macintosh, but the reward is a robust feature set, an
easier API, and consistent output whether to a screen (of any resolution
or color depth) or a printer (PostScript, raster, or vector). This article
should help those programmers make the transition.

QuickDraw, while a powerful imaging model for its time and well suited for
interactive graphics on the screen, lacks many features demanded by today’s users. To
provide features such as transformation (rotation, skewing, and so on) and Bézier
curves (ubiquitous in most modern graphics applications), applications in a
QuickDraw world must do much of the work of drawing to the screen themselves.
However, when printing to PostScript devices such as the Apple LaserWriter, these
applications can offload much of this work to the printer by simply using the
PostScript language to draw most, if not all, of their graphics and text. For this
reason, many Macintosh application programmers have also become PostScript
programmers and know how to get things done with the PostScript language.

WHAT IS POSTSCRIPT?
Before getting into the details of how to make the transition from the PostScript
language to QuickDraw GX, you need to understand the two models. The article
“Getting Started With QuickDraw GX” in this issue of develop provides an
introduction to QuickDraw GX. For an overview of the features of the PostScript
language, read on.

The PostScript language is probably best known as a robust graphics model with
many capabilities. These capabilities include the ability to fill or frame paths made up
of line and cubic Bézier segments, render continuous tone images in both color and
QUICKDRAW GX FOR POSTSCRIPT PROGRAMMERS September 1993

51
DANIEL LIPTON, in addition to being an
accomplished PostScript programmer, is an avid
animal lover. He lives with a variety of pets, most
notably his dog SpotFunction. As a result of many
hours of training, SpotFunction can perform some
impressive tricks, including both “roll” and
“loop.” Dan’s affinity for animals extends beyond
the canine domain to include his pet iguana, who
can neither roll nor loop. Although warm-blooded

himself, Dan can often be found sunning himself
on a rock outside his office at Apple. “I find
myself mysteriously drawn to the reptilian
lifestyle,” he confesses, his eyes intently tracking a
fly buzzing about his office. Dan is known to
break into fits of uncontrollable laughter whenever
he’s shown a picture of a gorilla, a fact that his
coworkers often use to their advantage during
meetings.•

d e v e l o p Issue 15

52
grayscale, transform graphics with a matrix, and clip to a path made up of line and
cubic Bézier segments. PostScript code can also draw text in a variety of different
typefaces and manipulate this text as a graphic.

To a limited extent the PostScript language is also a printing model. Certain
operators in the PostScript language are related to printing. These include operators
for page control (showpage and copypage), for controlling paper selection, and for
controlling device-specific features (setpagedevice in PostScript Level 2).

In addition, the PostScript language serves as a document interchange format. Since
it’s so widely available on so many different platforms and printers, a PostScript file
can be treated as a device-independent document interchange. (However, it’s not
easily edited except by an expert.) Similarly, it’s also used to export clip art.
Encapsulated PostScript (EPS) files are widely used for exporting and importing
artwork into documents.

But the most important attribute of the PostScript language is that, more than a
graphics model, it’s a programming language with most of the constructs of modern
high-level languages. The PostScript language is really a wrapper for the PostScript
graphics model. The graphics are invoked by operators in the language. This full
programmability makes it easy for programmers to extend the PostScript model to
meet their needs. If a desired feature isn’t in the PostScript graphics model, it can
frequently be programmed in the PostScript language. For example, PostScript
Level 1 doesn’t contain patterns, but a PostScript procedure can be written to fill a
PostScript path with a pattern.

Due to this programmability, it’s possible to emulate directly on PostScript printers
many of the QuickDraw GX features that aren’t present in the PostScript graphics
model. When QuickDraw GX generates a PostScript stream, it includes a complex
set of PostScript procedures to do so.

COMPARING QUICKDRAW GX AND POSTSCRIPT
This section compares QuickDraw GX and the PostScript language in terms of their
graphics, text-drawing, printing, and programming models.

THE GRAPHICS MODEL
Some differences between the QuickDraw GX and PostScript graphics models
include math types, Bézier curves, matrix transformation, and orientation of the
y-axis.

Math types. Before entering the world of QuickDraw GX programming, a
PostScript programmer must understand the basic differences in how numbers are
represented by QuickDraw GX and the PostScript language.
The definitive reference on the PostScript
language is PostScript Language Reference
Manual, Second Edition (Addison-Wesley,
1990).•

The PostScript language uses floating-point numbers and QuickDraw GX uses fixed-
point numbers. The advantage to floating-point numbers is numeric range; the
advantage to fixed-point numbers is speed. With fixed-point numbers, addition and
subtraction are no slower than with regular integers. QuickDraw GX uses 16.16
fixed-point numbers (32-bit numbers with the high 16 bits representing the integer
portion and the low 16 bits representing the fractional portion).

In the PostScript language, color component values are represented by floating-point
numbers between 0.0 and 1.0. In QuickDraw GX, color component values are
represented by a type called colorValue, which is really a short such that 0x0000 is 0.0
and 0xFFFF is 1.0. QuickDraw GX also uses a type called fract. The fract type is like
the fixed type except that only the high two bits are the integer portion and the low
30 bits are the fractional portion. This is generally used for numbers between -1 and
1 where fractional precision is important.

Curves. Both QuickDraw GX and the PostScript language support Bézier curves.
However, each supports a different kind (see Figure 1). While the PostScript
language uses cubics, GX uses quadratics. A cubic Bézier curve segment is defined by
four control points: a starting point on the curve, two points off the curve, and an
ending point on the curve. A quadratic Bézier curve is defined by three control
points: a starting point on the curve, a control point off the curve, and an ending
point on the curve.

Figure 2 illustrates two similarly shaped paths. The one on the left is defined by two
quadratic segments, requiring five control points. The one on the right is defined by
a single cubic segment, requiring four control points. This seems to imply that in
drawing similar shapes, more points are required using quadratics than using cubics
and that, therefore, quadratics are at a disadvantage. However, to reduce data size, the
data structure for a QuickDraw GX path allows implied points. Each point in the

Quadratic Bézier
(QuickDraw GX)

Cubic Bézier
(PostScript)

Figure 1
Comparing Control Points on Bézier Curves
QUICKDRAW GX FOR POSTSCRIPT PROGRAMMERS September 1993

53

d e v e l o p Issue 15

54
QuickDraw GX path has a control bit, indicating whether the point is on or off the
curve. If two consecutive points in the path are off the curve, there’s an implied point
halfway between the two explicitly specified points. So, as shown in Figure 2, it’s only
necessary to supply four points for the quadratic path, as the point between point 2
and point 3 is implicit.
Point 3 (off curve)

Point 1 (on curve)

Point 2 (off curve)

Point 4 (on curve)

Implied point (on curve)

Quadratic path
(QuickDraw GX)

Point 3 (off curve)

Point 1 (on curve)

Point 2 (off curve)

Point 4 (on curve)

Cubic path
(PostScript)

Figure 2
Control Points for Paths
Matrix transformations. Both QuickDraw GX and the PostScript language allow
anything to be transformed through a matrix before being drawn. Both use a 3 x 3
transformation matrix. However, in the PostScript language the matrix has implicit
constant values in the last column, so there are only six degrees of freedom rather
than nine. QuickDraw GX allows you to specify all nine elements of the matrix.

To modify the current transformation matrix (CTM) by a given transformation, an
application may use the following PostScript code:

[4.17 0.0 0.0 -4.17 -1280.0 1650.5] concat

This code concatenates the following matrix with the CTM in the graphics state:

 4.17 0.0 0.0

0.0 -4.17 0.0

-1280.0 1650.5 1.0

QuickDraw GX has a data structure called gxMapping, which is a structure
containing one field. The field is a 3 x 3 array. The first two columns contain fixed-
point numbers and specify the skewing, scaling, rotation, and translation of the
transformation. The third column is made up of fractional numbers (numbers of type
fract) and specifies the perspective portion of the transformation. The following code
generates a mapping that’s equivalent to the matrix in the PostScript code:

/* Declare a mapping structure (fract1 is a constant for 1.0 in
mathtypes.h). */

gxMapping aMapping = { { fl(4.17), fl(0.0), fl(0.0) }
{ fl(0.0), -fl(4.17), fl(0.0) }
{ -fl(1280.0), fl(1650.5), fract1 } };

The y-axis. The y-axis orientation differs in the PostScript graphics model and
QuickDraw GX. In the PostScript model, the y-axis increases from the bottom of the
page or window to the top and in QuickDraw GX, as in QuickDraw, it increases from
top to bottom (see Figure 3).

OBJECT-BASED MODEL VERSUS STREAM-BASED PROTOCOL
A fundamental difference between graphics code for QuickDraw GX and PostScript
code is that QuickDraw GX is object-based and PostScript code is essentially a

PostScript coordinate system

x increases

y
in

cr
ea

se
s

QuickDraw GX coordinate system

x increases

y increases

Figure 3
Coordinate Systems
QUICKDRAW GX FOR POSTSCRIPT PROGRAMMERS September 1993

55

d e v e l o p Issue 15

56
stream-based protocol. Although the PostScript language is a programming language,
documents usually consist of a set of PostScript procedures followed by a stream that
invokes those procedures. Each model has advantages: With a stream-based protocol
the graphic content of any given page is virtually infinite. As long as PostScript code
is continuously streamed to the printer, it renders into the frame buffer until
showpage is issued — which essentially says, “This page is done; start the next one.”
With an object model it’s relatively easy to share data between objects. A quick
summary of objects in QuickDraw GX illustrates this advantage.

QuickDraw GX objects. The shape object is the basic element of the QuickDraw
GX graphics model. A shape contains a geometry of any primitive type and points to
three other objects that describe how to render that geometry: the ink object, which
describes how to apply color to the geometry (as well as transfer mode); the style
object, which describes how to affect the geometry before rendering (pattern, dash,
and so on); and the transform object, which describes how to map and clip the
geometry before rendering. These objects can, in turn, point to other objects. For
example, a transform object points to a list of view port objects that describe where to
draw the geometry (such as in which window). An ink object points to a color profile
object that describes the colors in the ink in a device-independent manner. All the
previously described objects could also have lists of tag objects. A tag object is simply
a container for any data the application associates with the owning object.

Data sharing is extremely easy in this object model. If I have a picture made up of 100
different shapes and 30 of them have the same color, these 30 shapes can all point to
the same ink object. The color for these 30 shapes is stored only once. In a stream-
based protocol, it’s only convenient to share data between consecutive items in the
stream. (You can write PostScript code that shares data between nonconsecutive
objects, but it’s not easy.)

PostScript procedures and dictionaries versus QuickDraw GX objects.
Emulating the object model in PostScript code is possible because it’s a programming
language. You could use PostScript dictionaries as containers for shapes and then
have a PostScript procedure that draws one of these dictionaries. The following is a
simple example of how this could work. (Warning: Serious PostScript code ahead.)

/aShape 7 dict def % Make a dictionary for the shape.
aShape begin % Put it on the dictionary stack.

/geometryProcedure { % Define a procedure for the geometry
newpath % to draw a rectangle.
100 100 moveto
0 100 rlineto
100 0 rlineto
0 -100 rlineto
closepath

} bind def
There’s more information on QuickDraw
GX objects in the article “Getting Started With
QuickDraw GX” in this issue of develop.•

% Dictionary entries for transform.
/Transform [10 0 0 10 0 0] def

% Dictionary entries for the color.
/redComponent 1.0 def
/greenComponent 0.0 def
/blueComponent 1.0 def

/penWidth 5.0 def
/fillType (framed) def

end % Dictionary definition.

% The following procedure takes a shape dictionary and draws it.
/DrawShapeDict {

begin % Put the shape dictionary on the stack.
gsave % Shape shouldn't affect graphics state.
Transform concat % Apply transform.
redComponent greenComponent blueComponent setrgbcolor % Set the color.
geometryProcedure % Execute the geometry procedure.
fillType (framed) eq { % If the shape is framed,

penWidth setlinewidth % set the pen width and
stroke % stroke the path.

} { % Else, fill the shape.
eofill

} ifelse
grestore
end

} bind def

% The following would be in the stream to draw the shape stored in the
% dictionary.

aShape DrawShapeDict

You could use PostScript code in this manner, but most printers have limited
memory, and memory management in PostScript printers is difficult (a subject for
another article), so it’s usually not done.

Graphics state versus shape attributes. In a stream-based graphics model, a
graphics state determines how a particular item is drawn. In the PostScript language,
the graphics state attributes include the color, pen thickness, transformation matrix,
clip, miter limit, end caps, and joins that will be used to fill or stroke the current path,
bitmap, or text to be drawn. Applications using PostScript code must efficiently
manage the graphics state — you never want to send more information to the printer
than necessary, but sending too little is fatal to the fidelity of the graphics. So, an
QUICKDRAW GX FOR POSTSCRIPT PROGRAMMERS September 1993

57

d e v e l o p Issue 15

58
application emitting PostScript code must send the color for the item to be drawn
only if it’s different from that of the last item drawn, and do similarly for pen
thickness, transformation matrix, and so on.

In the QuickDraw GX object-based model, every shape points to all the information
necessary to draw itself. An application merely needs to call GXDrawShape to draw
the shape properly with the designated color and pen thickness and other designated
characteristics. The application no longer has to keep track of the graphics state.
However, there’s a different burden (though less cumbersome): making sure shape
objects share other objects when possible to reduce the memory used by the picture.

The following code samples effectively illustrate the difference between the two
models. Each sample draws two rectangles, one red and one blue, and offsets the
second one by (100, 100). First, here’s the PostScript code:

/DrawRect {100 100 moveto 25 0 rlineto 0 25 rlineto -25 0 rlineto
closepath fill} bind def

gsave
1.0 0.0 0.0 setrgbcolor % Set the color red.
DrawRect
100 100 translate % Move the coordinate system by 100,100.
0.0 0.0 1.0 setrgbcolor % Set the color blue.
DrawRect
grestore

Now compare the QuickDraw GX code:

void GXDraw2Rectangles()
{

gxRectangle aRectangle = { ff(100), ff(100), ff(125), ff(125) };
gxShape rectShape;
gxInk redInk, blueInk;
gxColor aColor;

aColor.space = rgbSpace; /* Color will be RGB. */
aColor.profile = nil; /* No color profile. */
aColor.element.rgb.red = 0xFFFF;
aColor.element.rgb.green = 0x0000;
aColor.element.rgb.blue = 0x0000;
redInk = NewInk(); /* Make red ink. */
GXSetInkColor(redInk, &aColor);

aColor.element.rgb.red = 0x0000;
aColor.element.rgb.green = 0x0000;
aColor.element.rgb.blue = 0xFFFF;

blueInk = NewInk(); /* Make blue ink. */
GXSetInkColor(blueInk, &aColor);

rectShape = GXNewRectangle(&aRectangle); /* Create a shape. */

GXSetShapeInk(rectShape, redInk); /* Use red ink. */
GXDrawShape(rectShape); /* Draw it. */

/* Move it over and draw it in blue. */
GXMoveShape(rectShape, ff(100), ff(100));
GXSetShapeInk(rectShape, blueInk); /* Use blue ink. */
GXDrawShape(rectShape); /* Draw it. */

/* Clean up. */
GXDisposeShape(rectShape);
GXDisposeInk(blueInk);
GXDisposeInk(redInk);

}

The PostScript code uses a procedure to draw the rectangle. The procedure is
analogous to the shape object. However, each time the rectangle is drawn, the
graphics state must be modified to change the color and the transformation. At the
end, the graphics state for subsequently drawn items is blue and the origin is shifted
by (100, 100) from the original rectangle. The grestore operator is needed to set the
graphics state back to what it was to begin with.

The QuickDraw GX code created a shape, made it red, drew it, moved it, made it
blue, and drew it again. No global state was affected, only the shape itself. Moving
the rectangle with PostScript code necessitated modifying the graphics state’s CTM.
With QuickDraw GX code, moving the rectangle involved only translating the
shape’s own geometry with the GXMoveShape routine.

QuickDraw GX database versus PostScript container. In QuickDraw GX a
picture is a type of shape object whose geometry is a list of other shapes. Those
shapes in the list can also be picture shapes. Therefore, a QuickDraw GX picture
shape is a hierarchical database of shapes. This database can be queried and modified
with QuickDraw GX routines such as GXSetPictureParts, which inserts or replaces
shapes in a picture shape, and GXGetPictureParts, which retrieves shapes from a
picture. Since a picture can have objects that refer to each other, QuickDraw GX
must have the whole picture shape available at one time (although not actually in
memory, but rather in the disk-based backing store in low-memory conditions).

A PostScript file describing a picture is essentially a container for graphics. The file
contains all the data needed to draw the picture, but it can’t be readily edited or
queried without having an interpreter for the PostScript language built into your
QUICKDRAW GX FOR POSTSCRIPT PROGRAMMERS September 1993

59

d e v e l o p Issue 15

60
application. The PostScript stream-based protocol lets the device draw the stream on
the fly.

Again, each model has its advantages. The object model is best suited for interactive
applications and the stream-based protocol is best suited for printers with limited
memory and no disk drives.

TEXT-DRAWING MODELS
QuickDraw GX contains three different types of shape objects for drawing text: the
text type, the glyph type, and the layout type. The text type is the simplest of the
three, although it’s not the most primitive form. Drawing a text shape is similar to
using the PostScript show operator, as illustrated by the following code samples.
First, here’s a PostScript “Hello World” program:

/Times-Roman findfont % Get the font dictionary for Times.
24 scalefont % Scale it to 24 points.
setfont % Make it the current font.
100 100 moveto % Move to location 100, 100.
(Hello World) show % Draw the text.

Now here’s the QuickDraw GX “Hello World” program:

void GXHelloWorld(void)
{

gxShape helloShape;
gxFont aFont;
gxPoint location = {ff(100), ff(100)};

/* Find the font object for Times. */
aFont = FindPNameFont(fullFontName, "\pTimes Roman");

/* Make a text shape. */
helloShape = NewText(11, "Hello world", &location);

GXSetShapeFont(helloShape, aFont);
GXSetShapeTextSize(helloShape, ff(24));
GXDrawShape(helloShape);
GXDisposeShape(helloShape);

}

You can use these examples to help you get started with drawing text in QuickDraw
GX. They also show some similarities between the PostScript model and the
QuickDraw GX model. Both have font entities: in PostScript code it’s a dictionary
and in QuickDraw GX code it’s an object. In PostScript code, the font matrix entry in
the dictionary itself is scaled by the scalefont operator to set the point size; in

QuickDraw GX code, the point size is contained in the shape’s style and can be set by
a call to GXSetShapeTextSize. For the most part, that’s it for similarities.

Characters and glyphs. To understand the full capabilities of QuickDraw GX
typography, you must first understand the difference between characters and glyphs.
Characters are symbols that have linguistic meaning, usually a letter from an
alphabet. Glyphs are renditions of those characters or combinations of them. For
example, for any given character from an alphabet, there may be various forms of this
character that are appropriate to draw at different times (see Figure 4).

The most complex text drawing in QuickDraw GX comes from the layout shape.
With a layout shape, the application specifies which characters in the language make
up the piece of text to be displayed. Given the language and script system specified in
the layout shape’s style object, QuickDraw GX can then figure out which glyphs to
use for those characters.

The top line of Figure 4 shows three glyphs from a particular Roman font. They’re
the glyphs for lowercase f, lowercase i, and a lowercase fi ligature. The ligature is an
example of a glyph that represents two characters. With a layout shape, QuickDraw
GX can detect when the i follows the f and automatically choose the fi ligature glyph
when drawing. This allows the user to type f followed by i rather than having to
figure out what key combination to type and what font to select to get the fi ligature.

The bottom line of Figure 4 illustrates another example of different glyphs for the
same character. The glyph on the left is the normal capital A for that font. The glyph

Figure 4
Different Glyphs From a Roman Font
QUICKDRAW GX FOR POSTSCRIPT PROGRAMMERS September 1993

61

d e v e l o p Issue 15

62
on the right is a glyph to use at the beginning of the line. With a layout shape,
QuickDraw GX detects when the character is at the beginning of the line and
automatically chooses the correct glyph.

Platforms and encodings. In most versions of the PostScript language, any given
encoding of a font has access to only 256 glyphs at a time. If a font contains more
than 256 glyphs, you must use different font dictionaries, each with a different
encoding. In effect, the application generating the PostScript code must select from
different font dictionaries to create all the glyphs in a given typeface. QuickDraw GX
can take advantage of fonts that contain up to 65535 glyphs, all of which are available
to any shape object.

The bytes contained in the geometry of a text, layout, or glyph shape can have
different meanings depending on the gxFontPlatform and gxFontScript attributes set
in the style object. When gxFontPlatform is set to gxMacintoshPlatform and
gxFontScript is set to gxRomanScript, the stream of bytes means the same thing it
does on a Roman Macintosh system today. If gxFontPlatform is set to
gxGlyphPlatform, the bytes are taken two at a time as a short and are treated as glyph
indices in the font; a shape object then has direct access to all the glyphs in a font.
Each font indicates which platforms, languages, and scripts it supports.

Positioning glyphs in a line of text. The PostScript language provides several
methods for allowing your application to explicitly position glyphs on a page. The
simplest is the show operator. This operator simply draws each glyph specified by the
string and moves the current point by the advance width of that glyph. The ashow
and awidthshow operators allow the application to modify the advance width for all
glyphs or a particular glyph. With the kshow operator you can call a general
procedure between the drawing of each pair of glyphs specified by the string and the
procedure can modify the graphics state before drawing the next glyph. This process
is generally used for kerning. In kerning the procedure is passed the two character
codes, uses those two codes to look in a kerning table, and modifies the current point
appropriately. This method, while totally flexible, is difficult to use because the
application must parse font metric files to derive kerning tables to use with the
kshow procedure.

PostScript Level 2 provides a way to position characters without executing a
procedure for each glyph drawn — the xshow, yshow, and xyshow operators. With
these operators the application can specify an array of advance widths to use in place
of the built-in advance widths of the font. This is faster than using the kshow
operator. Again, the application must generate the advance widths to use, usually by
parsing font metric tables and deriving kerning information.

It’s possible for applications to generate PostScript code that uses the kshow operator
or the xshow, yshow, and xyshow operators to justify, kern, and track text. In
QuickDraw GX, a layout shape does this automatically, as specified by metrics in the

QuickDraw GX font. Each font contains tables that specify kerning pairs with
kerning amounts, optimal tracking values, and optimal choices for how justification
should occur. Your application can override these values if you choose, but the values
in the font are written by the font designer and therefore cause QuickDraw GX to
position the glyphs as the font designer intended. Your application need not parse the
font metric tables and position glyphs directly.

When you use layout or glyph shapes, text can have multiple style runs. This allows a
single shape object to switch between fonts, sizes, text faces, and languages as many
times as desired (see Figure 5).

If you want the application to have direct control over positioning glyphs, use a glyph
shape object rather than a layout shape object. Glyph shapes bypass the automatic
positioning information. This approach is similar to using PostScript operators.
When using a glyph shape, you specify exactly which glyphs are to be drawn in what
styles and at what positions and angles. Then, when GXDrawShape is called, it uses
this information for rendering.

Using the positions and advance bits in a glyph shape, your application can draw the
glyphs anywhere on the page. Figure 6 illustrates some of the data in a glyph shape
with various values in the positions and advance bits. Where the advance bit is 1, the

All visible objects are but as pasteboard masks* (Herman Melville, Moby Dick)

Times 12 pt Times 12 pt

Times Italic 12 pt

Helvetica 12 pt
Times 12 pt

Times 9 pt

Figure 5
A Shape Object With Multiple Style Runs

(x
0,

y 0)

1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

(0
,0

)

(0
,0

)

(0
,0

)
(0

,0
)

(1
,0

)

Advance bits

Positions/deltas

Glyphs

(1
,0

)

(1
,0

)

(1
,0

)

(1
,0

)

(1
,0

)

(x
1,

y 1)
(x

2,
y 2)

(x
3,

y 3)

(x
14

,y
14

)

(x
15

,y
15

)

(x
16

,y
16

)

(x
17

,y
17

)
(x

18
,y

18
)

Figure 6
Some of the Data in a Glyph Shape
QUICKDRAW GX FOR POSTSCRIPT PROGRAMMERS September 1993

63

d e v e l o p Issue 15

64

value in the positions array is that glyph’s absolute position on the page (before being
mapped through the shape’s transform). Where the advance bit is 0, the value in the
positions array is an amount to add to the normal advance vector of the glyph. Not
shown in Figure 6 is the tangents array. Each glyph in a glyph shape object also has a
tangent vector that specifies an orientation for the glyph in addition to the position.

Given the tangent (Tx, Ty), the glyph is transformed through the following 2 x 2
matrix:

It’s important to note that glyph shapes don’t do any character-to-glyph mapping, as
do layout shapes. They map character codes to glyph codes as specified by the
gxFontPlatform attribute in the style object, but they don’t automatically pick
alternate forms of characters (ligatures, for example). If you use glyph shapes in your
application, you have to do nearly everything; however, glyph shapes provide the
most flexibility.

QuickDraw GX is language aware. When you use the layout type of shape
objects, QuickDraw GX is aware of the language and script as specified by the style
object. This allows QuickDraw GX to automatically run text, for example, from left
to right for English, right to left for Hebrew, and vertically for Chinese. Each
font/language combination has a set preference for which way to run text. Because
the layout shape can automatically determine where to position the glyphs based on
the language, your application can maintain the text for the shape in its linguistic
order rather than the display order.

QuickDraw GX also uses script-dependent information when justifying text. For
example, in English, justification involves adding or removing white space between
glyphs. In Arabic, glyphs are joined by horizontal lines called Kashidas. When
justifying Arabic text, QuickDraw GX automatically varies the length of the Kashida
to compensate for added or removed space in the text.

PRINTING MODELS
The printing models for QuickDraw GX and the PostScript language differ in much
the same ways as the graphics models do. PostScript code uses a stream-based
protocol while QuickDraw GX uses an object model.

PostScript stream-based printing. PostScript language elements invoke various
printing commands such as commands for choosing a particular type of paper or a
particular page orientation. With PostScript Level 1, some implementations added
operators for bin selection and other device-dependent features. PostScript Level 2
has the setpagedevice operator, which is a generalization of this idea.

 Tx Ty

 -Ty Tx

A PostScript stream that represents an actual document rather than a particular
encapsulated graphic has those various operators embedded between the pages to
instruct the printer page by page. In addition to operators, there’s a defined protocol
for including comments in a PostScript stream to identify the document elements.
Some of these occur at the beginning of the stream and some of them occur between
the pages. They’re called document structuring conventions (DSCs) and are
described in detail in the PostScript Language Reference Manual, Second Edition.

QuickDraw GX object-based printing. For each element of a printed document,
there’s a corresponding QuickDraw GX object. Your application simply associates the
appropriate objects when spooling the document’s pages and QuickDraw GX does
the rest. Your application need not worry about the details of paper trays and
transformation matrices to reorient the page.

Global document properties, such as the device information and the number of pages
or copies, are stored in the job object. Properties associated with a particular page are
stored in the format object. Each format object owns a paper type object.

The job object can be thought of as a context for the document that your application
is spooling. The format object contains information such as the page orientation
(portrait or landscape) and paper type (US Letter, Envelope, and so on). Each page
your application generates can have a different format associated with it. The job
object contains a default format that’s used if a specific format isn’t specified for a
page. All your application needs to do to set up the contents of these objects is call
the QuickDraw GX printing dialog boxes. The following code example shows how
five pages in one job can be printed with four different formats. (The contents of
each page are stored in a picture shape object.)

OSErr Print5Pages(shape page1, shape page2, shape page3, shape page4,
shape page5)

{
OSErr status;
EditMenuRecord myEditMenu;
gxFormat format1, format2, format3;
gxJob myJob;
DialogResult result;

status = GXNewJob(&myJob);
if (status != noErr) return (status);

/* Add code here to set up the Edit menu record. */
. . .

/* Use dialog box to set up default format for the job. */
result = GXJobDefaultFormatDialog(myJob, &myEditMenu);
QUICKDRAW GX FOR POSTSCRIPT PROGRAMMERS September 1993

65

d e v e l o p Issue 15

66
if (result == okSelected) {

/* Create three separate formats for the first three pages. */
format1 = GXNewFormat(myJob);
format2 = GXNewFormat(myJob);
format3 = GXNewFormat(myJob);

/* Bring up dialog box to set up page 1's format. */
result = GXFormatDialog(format1, "\pPage Setup for Page 1",

&myEditMenu);
if (result != okSelected) goto canceled;

/* Bring up dialog box to set up page 2's format. */
result = GXFormatDialog(format2, "\pPage Setup for Page 2",

&myEditMenu);
if (result != okSelected) goto canceled;

/* Bring up dialog box to set up page 3's format. */
result = GXFormatDialog(format3, "\pPage Setup for Page 3",

&myEditMenu);
if (result != okSelected) goto canceled;

/* Bring up the Job dialog box. */
result = GXJobPrintDialog(myJob, &myEditMenu);
if (result != okSelected) goto canceled;

/* Now spool the document. */
GXStartJob(myJob, "\pdevelop Article", 5);

GXPrintPage(myJob, format1, page1, 1);
GXPrintPage(myJob, format2, page2, 2);
GXPrintPage(myJob, format3, page3, 3);
GXPrintPage(myJob, nil, page4, 4); /* Page 4 uses job's

default format. */
GXPrintPage(myJob, nil, page5, 5); /* So does page 5. */

GXFinishJob(myJob);

canceled:
GXDisposeFormat(format1);
GXDisposeFormat(format2);
GXDisposeFormat(format3);

}
status = GXGetJobError(myJob);
GXDisposeJob(myJob);
return (status);

}

This example calls the QuickDraw GX routines that present dialog boxes, allowing
the user to configure all the job and format properties. However, the QuickDraw GX
printing API allows the programmer to control these properties directly, if desired.
Using this API, your application can exert total control of all aspects of printing
without ever bringing up a dialog box!

IF YOU CAN DO IT IN POSTSCRIPT . . .
This section shows you how to use QuickDraw GX to do some of those tricky things
you’ve figured out how to do with PostScript code.

FRAMING SOMETHING WITH A NONSQUARE PEN
QuickDraw has the concept of a nonsquare pen. You can set the width and height of
the pen independently. Both the PostScript language and QuickDraw GX have only
one pen dimension; however, you can simulate the framing of a path with a
nonsquare pen. Here’s the PostScript code:

% Assuming there exists a path ready for drawing in the graphics state:
gsave % Save the current graphics state to muck with later.
1 setlinewidth % Set the current line width to 1.
xPen yPen scale % Scale the CTM by the pen width and pen height.
stroke % Stroke the path. The scaled matrix will scale the

% 1-unit line width by xPen in the x-axis and yPen in
% the y-axis when stroking. This produces the desired
% effect.

grestore % Put back the CTM and line width.
newpath % Clear the path since we did grestore after stroke.

Now, here’s how to do it with QuickDraw GX:

void FrameNonSquare(gxShape theShape, fixed xPen, fixed yPen)
{

gxShape tempShape;
gxMapping aMapping;
gxTransform aTransform;

/* Make a copy of the shape to operate on. */
tempShape = GXCopyToShape(nil, theShape);
/* Make a new transform for the shape so it's scaled by the pen. */
aTransform = GXCopyToTransform(nil, GXGetShapeTransform(tempShape));
GXScaleTransform(aTransform, xPen, yPen, 0, 0);
GXSetShapeTransform(tempShape, aTransform);
/* Make an inverse mapping to premap the shape so that when it's

scaled by the pen it will return to its original self. */
GXResetMapping(&aMapping); /* Set to identity. */
QUICKDRAW GX FOR POSTSCRIPT PROGRAMMERS September 1993

67

d e v e l o p Issue 15

68
GXScaleMapping(&aMapping, FixedDivide(ff(1), xPen),
FixedDivide(ff(1), yPen), 0, 0);

GXMapShape(tempShape, &aMapping);

GXSetShapePen(tempShape, ff(1)); /* Set pen width to 1. */
GXDrawShape(tempShape); /* Draw it. */
GXDisposeShape(tempShape);
GXDisposeTransform(aTransform);

}

MODIFYING GLYPHS IN A FONT
The PostScript language allows you to modify the behavior of glyphs by changing
entries in the font dictionary, either directly or with the makefont operator.

Oblique text. This PostScript code creates oblique text:

/Helvetica findfont 24 scalefont % Put 24-point Helvetica dictionary
% on the stack.

[1.0 0.0 -0.25 1.0 0.0 0.0] makefont % Skew the font dictionary.
setfont % Make it the current font.

This is how to do it with QuickDraw GX:

/* Modify the style object to do oblique text. */
void ObliqueText(gxStyle aStyle)
{

gxTextFace theFace;
gxTransform aTransform;

aTransform = GXNewTransform(); /* Make a transform. */
GXSkewTransform(aTransform, fix1/4, 0, 0, 0); /* Skew it. */
theFace.faceLayers = 1; /* Set text face to 1 layer. */
GXResetMapping(&theFace.advanceMapping); /* Make advance mapping */

/* the identity mapping. */

theFace.faceLayer[0].outlineTransform = aTransform;
theFace.faceLayer[0].outlineStyle = nil;
theFace.faceLayer[0].boldOutset.x = 0;
theFace.faceLayer[0].boldOutset.y = 0;
theFace.faceLayer[0].outlineFill = gxSolidFill;
theFace.faceLayer[0].flags = 0;

GXSetStyleFace(aStyle, &theFace);
GXDisposeTransform(aTransform);

}

The text face data structure is used to modify the way glyphs are drawn. A text face
can have multiple layers and each layer can have a style (for patterns and so on), a
transform, a boldness, and a fill type. By using all of the fields and layers in the text
face, you can affect the drawing of text in all sorts of nasty ways. The next example
uses the fill type to simulate outline text.

Outline text. This code creates outline text in QuickDraw GX:

/* Modify the style object to do outline text. */
void OutlineText(gxStyle aStyle)
{

gxTextFace theFace;
gxStyle layerStyle;

theFace.faceLayers = 1; /* Set text face to 1 layer. */
GXResetMapping(&theFace.advanceMapping); /* Make advance mapping */

/* the identity mapping. */
layerStyle = GXNewStyle();
GXSetStylePen(layerStyle, fix1/16); /* Make pen 1/16 point. */
theFace.faceLayer[0].outlineTransform = nil;
theFace.faceLayer[0].outlineStyle = layerStyle;
theFace.faceLayer[0].boldOutset.x = 0;
theFace.faceLayer[0].boldOutset.y = 0;
theFace.faceLayer[0].outlineFill = gxClosedFrameFill;
theFace.faceLayer[0].flags = 0;
GXSetStyleFace(aStyle, &theFace);
GXDisposeStyle(layerStyle);

}

To do the same thing with PostScript code, modify the font dictionary:

/Helvetica findfont % Put Helvetica's dictionary on the stack.

dup length 1 add dict begin % Make a copy of the font dictionary and put
{ % it on the stack.

1 index /FID eq {pop pop} {def} if else
} forall

/PaintType 2 def % Make the font PaintType 2. This means stroked.
/StrokeWidth 1.0 16.0 div def % Make the stroke width 1/16.
currentdict
end

/HelveticaFramed exch definefont pop % Define the outlined font.
/HelveticaFramed findfont 24 scalefont setfont % Make it current.
QUICKDRAW GX FOR POSTSCRIPT PROGRAMMERS September 1993

69

d e v e l o p Issue 15

70
CONVERTING FRAMED OBJECTS INTO FILLED OBJECTS
Sometimes you want a shape that, if filled, is the same as the result of stroking the
original shape. In PostScript code, calling strokepath on the current path applies the
current pen width to the path, and the resulting path is one that can be filled to
produce the result that calling stroke would have produced.

In QuickDraw GX, the GXPrimitiveShape routine applies the fill and style to any
shape to produce a primitive shape. A primitive shape is one that’s completely
described by its geometry and fill and doesn’t need a style object to be drawn
properly. For example, a path that’s framed with a pen width of 10 becomes a
solidFilled shape.

CONVERTING TEXT INTO A PATH
In the PostScript language, the charpath operator takes a string and converts it into a
path using the current font in the graphics state. The following code converts the
word Hello into a path using the font and font size of the current graphics state:

(Hello) false charpath

Any QuickDraw GX text, glyph, or layout shape object can be turned into a path
shape object by calling GXSetShapeType as follows:

GXSetShapeType(myTextShape, pathType);

This converts the shape object myTextShape into a path shape object by applying the
font, font size, and text face in the shape object’s style object.

NOW YOU’RE READY FOR QUICKDRAW GX
Whether or not you’re familiar with the PostScript language, the preceding samples
and comparisons should help you get going on your QuickDraw GX application. In
the days of QuickDraw, you frequently had to resort to generating PostScript code
from your application because the graphics constructs simply didn’t exist in
QuickDraw. However, QuickDraw GX is a robust graphics, text, and printing
architecture that does all the things that current drawing applications do and then
some. There should be no need to generate your own PostScript code from your
application in the world of QuickDraw GX. Using QuickDraw GX as the medium
for all drawing also gives your application the added benefit of being able to produce
application-independent portable digital documents. You can view portable digital
documents with TeachText and print them on any printer, PostScript or not. Enjoy!
THANKS TO OUR TECHNICAL REVIEWERS
Pete (“Luke”) Alexander, Tracey Davis, Herb
Derby, Dave Williams•

Symmetry is more interesting than you might think. At
first glance there doesn’t seem to be much to it, but if
you look a little closer you’ll find that symmetry runs
swift and cold and deep through many human pursuits.
Symmetry concepts are found at the heart of topics
ranging from the passionately artistic to the coolly
scientific, and from the trivial to the fundamental.

I learned a lot about symmetry while trying to learn
how to create tile shapes. I’ve always been intrigued
and tantalized by M. C. Escher’s periodic drawings, the
ones that use lizards or birds or fish or little people as
jigsaw puzzle pieces, interlocking and repeating forever
in a systematic way to completely tile a surface
(mathematicians call this tessellation of a plane). My own
halting attempts to draw tessellations have met with
only tepid success. Especially hard is creating tiles that
are recognizably something other than meaningless
abstract shapes.

To accomplish this feat of tiling a plane, you have to
apply a set of constraints to everything you draw. Every
line serves multiple purposes. In one of Escher’s prints,
for example, the same line that forms the left arm of
one lizard also forms the tail of an adjacent lizard. That
line is also repeated ad infinitum across the plane; every
lizard’s left arm and tail is defined by that same line
shape. Now think about drawing a line like that. Not
only are you drawing two shapes with one line (which is
difficult enough), but you’re also drawing innumerable

THE VETERAN
NEOPHYTE

THROUGH THE
LOOKING GLASS

DAVE JOHNSON
DAVE JOHNSON once thought that maybe computers contained
the secret of life, but has since decided that no, it can’t be found
there, either. He’s now beginning to look elsewhere. Compost piles
(preferably hot, steaming, and active) are currently being eagerly
investigated.•
identical lines simultaneously. They sort of spin out
from the point of your pencil in a dazzling dancing
tracery of lines. Trying to hold all that complexity and
interrelatedness in your head is very, very difficult.

Being a basically lazy person with too much time on my
hands, I decided to write a program that would handle
it all for me. I envisioned a direct manipulation kind of
thing: as I changed a line, all the other corresponding
lines in the pattern would change simultaneously. I
figured it would be easy to draw little people and leaves
and fishes that perfectly interlocked, if only I didn’t
have to keep all those interdependencies and
constraints in mind and could just draw. Also, I thought
maybe that by interactively “doodling” and being able
to watch the whole pattern change on the fly, I could
get some sort of gut feeling for the constraints.

All this was way back in 1990. To learn more, I bought
a book called Handbook of Regular Patterns: An
Introduction to Symmetry in Two Dimensions by Peter S.
Stevens. The book is a sort of systematic catalog of
hundreds of regular patterns, including many of
Escher’s, and also has a great introduction to the
mathematics of symmetry (which turns out to figure
heavily in this tiling business). Unfortunately, after an
intense but superficial examination and an evening or
two playing with pencil and paper and little dime store
pocket mirrors (bought in a frenzy of excitement the
day after I bought the book), I decided that the
program would be way too hard to write to make it
worth it, and shelved the whole thing.

Well, last month I finally picked up the idea again.
QuickDraw GX was getting close to being released,
and it had features that made it relatively easy to
implement what I wanted: very flexible transformation
and patterning capabilities, and excellent hit testing,
which makes implementing direct manipulation of lines
a snap. So I dusted off Stevens’s book and my little
mirrors and got to work, trying to figure out the
constraints on the tiles and implement the program.

Here’s a basic fact about tiling a plane that I still find
thoroughly remarkable three years after I first learned
THE VETERAN NEOPHYTE September 1993

71

72
about it: there are only 17 possible arrangements of
tiles. “But wait!” I hear you cry in your many-throated
voice, “How can that be? Surely there are a very large
number — nay, an infinite number — of possible tile
shapes?”

Well, yes, that’s true. But the way they fit together, the
underlying structure, will always be one of only 17
possibilities. This applies to any two-dimensional
pattern made up of regularly repeating motifs, not just
seamless tilings. The motif that’s repeated, of course,
can be anything: a leaf, a loop, or a lizard; a frog, a
flower, or a fig — it makes no difference. There are
still only 17 ways to build a regularly repeating 2-D
pattern. This was proved conclusively in 1935 by a
mathematician named von Franz Steiger. (Yes, that’s his
name; I checked twice.)

To see why, you need to learn a little about the
fundamental symmetry operations and how they
combine with one another to breed other symmetry
operations. I’ll gloss over most of the details (see
Stevens’s book, or any introductory text on
crystallography, for more info), but the gist of it is that
when you sit down and begin to repeat some motif by
repeatedly applying fundamental symmetry operations
— like reflection and rotation — you find an
interesting thing: combining symmetry operations with
one another often causes other types of symmetry to
sort of spring into existence. And the operations always
seem to gather themselves into the same few groups.

Figure 1 shows a very simple example. We start with a
simple motif (a comma shape) and repeat it by applying
a transformation to it, in this case by reflecting it across
a vertical line. Then we reflect the whole thing again,
this time across a line perpendicular to the first one.
The resulting pattern of four commas possesses mirror
symmetry in two directions, meaning that a reflection
of the entire pattern across either one of the lines leaves
the pattern unchanged. But if you study it, you’ll find
another symmetry embedded in the pattern that we
didn’t explicitly specify. In particular, it shows rotational
symmetry: rotating the pattern 180˚ about its center
leaves it unchanged, too.
d e v e l o p Issue 15
Figure 1
Building a Simple Symmetry Group

Figure 2 shows an alternative way to create the same
pattern. This time we begin with the rotation (the
point of rotation, or rotocenter, is shown by an oval). If
we then run a mirror line through the rotocenter, we
produce exactly the same structure, the same symmetry
group, as we did by combining two perpendicular
reflections above. These three symmetry operations
(two perpendicular reflections and a 180˚ rotation)
come as a set. Combining any two automatically
produces a pattern that also contains the third. This is
where the constraints on the structure of regular 2-D
patterns appear. No matter how you combine and
recombine the fundamental operations to cover a
plane, you find yourself generating the same 17
arrangements, the same 17 groups of operations.

Figure 2
Another Way to Build the Group

By the way, this example group isn’t one of the 17 plane
groups. It’s one of the 10 point groups, groups whose
constituent transformations operate around a single
point. In case you’re curious, there are also 7 line
groups (ways to repeat motifs endlessly along a line)

and 230 space groups (ways to repeat a solid shape to fill
three-dimensional space). I don’t know if anyone has
figured out the groups of higher-dimensional spaces.
Knowing mathematicians, I don’t doubt it.

So what about that computer program I was going to
write? As this column goes to press, it’s undergoing its
second major overhaul, having suffered mightily from
my “write it first, then design it” philosophy. So far I
have 5 of the 17 groups implemented, and it’s pretty
cool. There’s no telling how far I’ll actually get before
my deadline arrives, but I’ll put the results, however
clunky and raw they may be, on this issue’s CD so that
you can check it out.

I’ve learned a couple of things already: Even with the
constraints automatically handled by the computer, it’s
still really hard to create representational shapes that
will tile a plane, though creating abstract tile shapes is
suddenly a piece of cake. Also, I still haven’t gotten the
kind of gut-level understanding of the structure of the
patterns that I was hoping for (though just watching
them change as I doodle is very entertaining).

I’ve also learned along the way that symmetry concepts
go far deeper than the simple plane groups I’m messing
with. The rules of symmetry and of form are, in a
sense, manifestations of the structure of space itself. It’s
an odd thought that space has a structure, isn’t it?
Normally we think of space as a sort of continuous
nothingness, as an absence of structure or as a formless
container for structure. But space itself does have a
structure, and every single material thing must conform
to that structure in order to exist.

Physicists, of course, have been trying very hard for a
long time to describe precisely the nature of space.
Einstein thought that there was really nothing in the
world except curved, empty space. Bend it this way, and
you get gravity, tie it in a tight enough knot and you get
a particle of matter, rattle it the right way and you get
electromagnetic waves.
Thanks to Jeff Barbose, Michael Greenspon, Bill Guschwan,
Mark Harlan, Bo3b Johnson, Lisa Jongewaard, and Ned van
Alstyne (aka Ned Kelly) for reviewing this column.•
And there are other symmetries, symmetries even more
fundamental. Einstein’s theory of special relativity
broke some of the central symmetries in physics, and
thus called attention to the role of symmetry in science.
Shortly afterward a mathematician named Emmy
Noether established a remarkable fact: each symmetry
principle in physics implies a physical conservation law.
For instance, the familiar conservation of energy law is
implied by symmetry in time — energy is conserved
because time is symmetric. (Of course, I’m greatly
oversimplifying here. The symmetry of time is one
that Einstein tarred and feathered and ran out of town
on a rail. He showed that under extreme conditions
time is not symmetric, and energy isn’t conserved.
Reassuringly, he replaced these broken and bloodied
false symmetries with fresh new ones, but they’re well
beyond the scope of this column and my poor addled
brain.) The point is that symmetries seem to be part of
the very fabric of the universe; they seem to be the
warp and weft of existence itself.

Yes, it’s heady stuff indeed, this symmetry business. I’m
staying plenty busy just trying to understand the
symmetries possible in a plane, thank you very much,
so I’ll leave worries about the symmetry of space-time
or of K-meson decay to the pros. Once again, I find
that by looking just beneath the surface of a seemingly
innocuous topic, I find depth and complexity beyond
measure. Ain’t life grand?

RECOMMENDED READING
• Handbook of Regular Patterns: An Introduction to

Symmetry in Two Dimensions by Peter S. Stevens
(MIT Press, 1981).

• Patterns in Nature by Peter S. Stevens (Little,
Brown & Company, 1974).

• Where the Wild Things Are by Maurice Sendak
(Harper & Row, 1963).
THE VETERAN NEOPHYTE September 1993

73
Dave welcomes feedback on his musings. He can be reached
at JOHNSON.DK on AppleLink, dkj@apple.com on the Internet, or
75300,715 on CompuServe.•

74
One of the many design problems a component developer may face is
how to register interdependent components in a predetermined fashion
so that any given component is registered before the components that
depend on it. This article and the sample code that accompanies it show
you how to do just that.

MANAGING

COMPONENT

REGISTRATION
d e v e l o p Issue 15

GARY WOODCOCK
The Component Manager is an effective mechanism for providing extended
functionality to the Macintosh platform. Although a single component can perform
impressive tasks, often it’s a hierarchy of components, cooperating with one another,
that provides the most powerful capabilities. An example of such a hierarchy is found
in QuickTime movie playback using the movie controller component (see Figure 1).
This component uses the services of many other components, all of which cooperate
together, to make interaction with QuickTime movies very simple yet very powerful.

There are distinct advantages to partitioning functionality in this manner. First, by
creating components that perform simpler processing, you increase the likelihood
that you can leverage the investment you’ve made in your code by using it in more
than one place. Second, it’s easier to debug smaller components than a gigantic
everything-and-the-kitchen-sink component. Finally, a component that provides very
elementary functionality is easier to override or update (via component replacement
or capture) than a large, complex component.

This situation — a component depending on the presence of several lower-level
components to perform its function — is very commonplace. In such cases, it’s
important to take steps to ensure that supporting components are available when
your component needs them. There are two obvious choices for when to go looking
for the components you depend on: when your component is being registered (in its
register routine), or when your component is first opened (in its open routine). Most
software-dependent components don’t need to worry much about managing
component registration. Generally such a component should just auto-register, and
then check for any required components in the open routine; if the required
components aren’t available, your open routine can return an error. The caller of
GARY WOODCOCK, an optically challenged,
melanin-impoverished male who lives with his
feline-American companion Phaser, hopes
someday soon to be able to spend a few
motivationally deficient days enjoying a reduced
state of awareness without becoming terminally
inconvenienced. He feels P. J. O’Rourke’s
observation that “Giving money and power to

government is like giving whiskey and car keys to
teenage boys” carries far too much truth.•

your component can then handle the error in whatever way is most appropriate.
There is a case, however, where checking at registration time might be necessary;
that’s what this article is about.

DO I REALLY NEED TO WORRY ABOUT THIS?
One potential problem occurs in situations where the Component Manager’s
registration list is used to build some user interface element, such as a pop-up menu
or a list. In this case, the general assumption is that because a component’s name is
displayed in a user interface element, a user can select it and it will do whatever it’s
supposed to do — after all, if the component couldn’t perform its function, it
wouldn’t be displayed as an option for the user, right? Well, that depends.

Let’s look at an example. The SuperOps company builds the WhizBang video
digitizer card and supplies two software components with it — the WhizBang video
digitizer component and the WhizBang sequence-grabber panel component (which is
used to control features specific to the WhizBang hardware). The component files

Movie
controller

Clock

Sound
media handler

Video
media handler

Text
media handler

Generic
media handler

Alias
data handler

Image
decompressor

Standard
media handler

Figure 1
The Movie Controller Component Hierarchy
MANAGING COMPONENT REGISTRATION September 1993

75
For more information on overriding
components, see Bill Guschwan’s “Somewhere
in QuickTime” column in this issue.•

d e v e l o p Issue 15

76
are named WhizBang Video Digitizer and WhizBang Panel. In its register routine,
the WhizBang video digitizer component checks for its hardware and registers with
the Component Manager only if the hardware is present (this is normal behavior for
components that encapsulate hardware functionality). The WhizBang sequence-
grabber panel component checks for the availability of the WhizBang video digitizer
component when it receives either an open message or a “panel can run” message —
it doesn’t get a register message, and therefore it always registers successfully with the
Component Manager.

Now let’s say I’ve got a Macintosh Quadra 950 with multiple sound and video
digitizers installed (I can dream, can’t I?), one of which is the WhizBang card. I
remove the WhizBang card from my computer, but I leave the two WhizBang
components installed. I then start up my Macintosh Quadra and run my favorite
movie capture application. I display the sequence-grabber video settings dialog box,
and I see a dimmed item in the panel pop-up menu — “WhizBang panel.” The
dimmed name indicates one of two things: another application has the WhizBang
video digitizer open, so it’s not available, or the WhizBang video digitizer component
isn’t registered at all, so the panel can’t run.

In this case, we already know that the WhizBang card isn’t installed, so there’s no way
this panel can ever be enabled, given the current hardware configuration. Rather than
confuse users by displaying the panel name in the pop-up menu (even if it is
dimmed), it would be nicer if it weren’t displayed at all. To do that, we need to ensure
the following order of events at startup: the video digitizer component must attempt
to register first, and then the panel component must attempt to register (this implies
that the panel component must implement a register routine), checking for the
presence of the video digitizer component before it does so. Further, this sequence of
events must not be influenced by the alphabetic order of the component filenames.
Guess what? We can realize this goal by managing component registration.

This article and the sample code on this issue’s CD demonstrate various ways of
managing component registration. We start with the easiest, most obvious approach
and work our way up to a more sophisticated solution, pointing out the pros and cons
of each along the way. If you just want the “answer” without any fanfare, skip ahead
to the section “Mo’ Better: Use a Loader Component to Manage Registration.”

I assume that you’re familiar with the Component Manager and that you know
something about how components are written. For more information on these topics,
see Inside Macintosh: More Macintosh Toolbox and “Techniques for Writing and
Debugging Components” in develop Issue 12.

THE SYSTEM VERSION AND THE COMPONENT MANAGER
The Component Manager behaves slightly differently depending on the version of
system software it’s running under and how the Component Manager was installed.
For more information on QuickTime
components, see Inside Macintosh: QuickTime
and Inside Macintosh: QuickTime Components
(included in the QuickTime Developer’s Kit v. 1.5)
and “Inside QuickTime and Component-Based
Managers” in develop Issue 13.•

It’s important to know about these subtleties in order to understand how to work with
the Component Manager to install your components properly.

In system software version 6.0.7, the Component Manager is installed as part of an
INIT (usually the QuickTime INIT). During the INIT installation, the Component
Manager examines the contents of the System Folder and its subfolders for files of
type 'thng'; in each 'thng' file, it looks for resources of type 'thng', which it then uses
to register the corresponding components. The important point here is that the
Component Manager is not available until after the INIT has been installed.

Like system software version 6.0.7, versions 7.0 and 7.0.1 pick up the Component
Manager via an INIT, and so again the Component Manager isn’t around until after
the INIT has been installed. The main difference in System 7 is that in addition to
searching the System Folder and its subfolders for component files, the Component
Manager will also examine the contents of any subfolders that are in the Extensions
folder.

Examples of INITs in system software versions 7.0 and 7.0.1 that install the
Component Manager are QuickTime, AppleScript, and Macintosh Easy Open. Note
that your component can’t assume that just because the Component Manager is
installed, QuickTime is installed — always use the Gestalt selectors to determine
what functionality is available.

The Component Manager is actually part of System 7.1 and, as a consequence, is
available before the INIT process is started.

METHODS FOR MANAGING COMPONENT REGISTRATION
Now that we have a good idea of when the Component Manager is installed and
where it’s searching for components, let’s see what we can do to make sure that our
components get registered in the order we want them to be registered.

We’ll use some simple components to illustrate the various methods we might use to
manage component registration. In the sample code provided on the CD are three
components — Moe, Larry, and Curly — that together establish a functional
component hierarchy (see Figure 2). The hierarchy is such that Moe doesn’t depend
on any other components, Larry depends on Moe, and Curly depends on both Larry
and Moe. To enforce these dependencies, we use register routines in Larry and Curly
to make sure that the components they need are present before they actually allow
themselves to be registered with the Component Manager. To let us know when each
of these components is actually registered, Moe’s register routine calls SysBeep once,
Larry’s calls SysBeep twice, and Curly’s calls SysBeep three times. By the way, these
components really don’t do anything useful at all, but you probably figured that out
already.
MANAGING COMPONENT REGISTRATION September 1993

77

d e v e l o p Issue 15

78
RISKY: LET THE COMPONENT MANAGER TAKE CARE OF IT
We can always simply let the Component Manager do whatever comes naturally — in
this case, auto-registration. This method works only as long as you aren’t picky about
the order in which your components are registered. (Obviously, if your component
doesn’t depend in any way on the presence of other components, you’re golden.) In
our example scenario, though, we can’t count on the Component Manager
recognizing our constraints and doing the right thing. The Component Manager
doesn’t have enough information to know that our components have an ordering
dependency (kinda reminds you of INITs, doesn’t it?).

Nonetheless, let’s look at what happens. The following is what occurs on my
Macintosh Quadra 700 running System 7.1 and QuickTime 1.6, but you shouldn’t
infer that this is how the Component Manager will behave from now until eternity —
there is no documentation whatsoever that provides this kind of detailed information
on component registration behavior, so it can change.

We start with each component in a separate file. We might expect that the
Component Manager would register component files in alphabetic order, and in fact
this is exactly what happens. The first component that the Component Manager tries
to register is Curly. However, Curly needs both Moe and Larry before it can be
registered, and neither of them is present, so Curly bails. Larry comes next, and
because Larry needs Moe, and Moe isn’t around yet, Larry bails. Moe is last, and
Moe doesn’t depend on any components at all, so Moe is registered successfully. One
out of three’s not too good, though.

We might further expect that if we put all of our components in a single file, the
Component Manager would walk the component resources from lowest resource ID
to highest resource ID. If that were true, all we’d have to do is give our components
ascending resource IDs in the order in which we want them to be registered (say, 200

Curly depends on
both Larry and Moe

Moe has no
dependencies

Larry
depends
on Moe

Figure 2
The Moe, Larry, and Curly Component Hierarchy

for Moe, 300 for Larry, and 400 for Curly), and we’d be done! Well, I know we all
long for the day that the omniscient System will always figure out the right thing to
do regardless of how we’ve specified that it be done, but that day’s not here yet — or,
to quote KON, “It’s just a computer.”

The Component Manager calls Count1Resources to find out how many 'thng'
resources are in a file. It then iterates through these resources, using the
Get1IndResources call. Unfortunately, there’s no guarantee that the Resource
Manager will index resources in the same numeric order as their corresponding
resource IDs; that is, even if Moe’s 'thng' resource ID is lowest (200), Moe’s resource
index (as maintained by the Resource Manager) may or may not be 1.

If we actually go ahead and try this (you can try this yourself with the Moe, Larry,
and Curly component file on the CD, which I created by simply Rezzing the three
components into a single 'thng' file), we find that we get exactly the same behavior
we observed with the separate component files — first Curly fails, then Larry fails,
and only Moe registers successfully. This approach just isn’t reliable enough for our
purposes, and we need a better mousetrap.

BETTER: USE AN INIT TO MANAGE REGISTRATION
Here’s an idea — we can use an INIT to manage the registration order of our
components! We’ll create a resource that describes the order in which to register our
components, and then the INIT can read this resource, registering the component
resources in the specified order. The registration order is simply defined as the
position in the component list; that is, the first component in the list is registered
first, the second component in the list is registered second, and so on.

The component load order resource. We use a custom resource, called a
component load order resource, to indicate to our INIT the order in which the
components in the INIT file should be registered. The resource type is defined as
'thld' (for “thing load”) and the resource is a 1-based list of structures of type
ComponentLoadSpec, as defined below:

#define kComponentLoadOrderResType 'thld'

typedef struct ComponentLoadSpec {
ResType componentResType;
short componentResID;

} ComponentLoadSpec, *ComponentLoadSpecPtr, **ComponentLoadSpecHdl;

typedef struct ComponentLoadList {
short count;
ComponentLoadSpec spec[1];

} ComponentLoadList, *ComponentLoadListPtr, **ComponentLoadListHdl;
MANAGING COMPONENT REGISTRATION September 1993

79
KON’s pithy quote was immortalized in the
Puzzle Page in develop Issue 9.•

d e v e l o p Issue 15

80
The componentResType field contains the component resource type, in this case
'thng', and the componentResID field contains the component resource ID.

The loader INIT. Our INIT — called, surprisingly enough, LoaderINIT — doesn’t
really do much work. When the INIT is executed, it checks to see whether the Shift
key or mouse button is held down; if so, it quits. If not, it then checks for the
presence of the Component Manager, and if the Component Manager is installed, it
tries to load our components with a call to the LoadComponents routine.

main (void)
{

KeyMap keys;

// INIT setup for THINK C (these routines are defined in <SetupA4.h>)
RememberA0();
SetUpA4();

// If mouse or Shift key down, don't bother.
GetKeys (keys);
if (!Button() && !(1 & keys[1])) {

OSErr result = noErr;

// Is the Component Manager available?
if (HasComponentMgr()) {

// Load the components!
result = LoadComponents (kComponentLoadListResType,

kLoaderBaseResID);
}

}

// INIT cleanup for THINK C (this routine is defined in <SetupA4.h>)
RestoreA4();

}

The LoadComponents routine. LoadComponents does the job of reading the
component load order resource and loading each of the components it points to; this
routine is shown below.

static OSErr
LoadComponents (ResType loadListResType, short loadListResID)
{

OSErr result = noErr;

ComponentLoadListHdl componentLoadList = (ComponentLoadListHdl)
Get1Resource (loadListResType, loadListResID);

// Did we get the component load list?
if (componentLoadList != nil) {

ComponentLoadSpec componentLoadSpec;
ComponentResourceHandle componentResHdl;
Component componentID;
short numComponentsToLoad = (**componentLoadList).count;
short i;
for (i = 0; i < numComponentsToLoad; i++) {

// Get the component load spec.
componentLoadSpec = (**componentLoadList).spec[i];

// Get the component resource pointed to by this spec.
componentResHdl = (ComponentResourceHandle) Get1Resource (

componentLoadSpec.componentResType,
componentLoadSpec.componentResID);

// Did we get it?
if (componentResHdl != nil) {

// Register it.
componentID = RegisterComponentResource (componentResHdl,

kRegisterGlobally);
if (componentID == 0L) {

// RegisterComponentResource failed.
result = -1L; // Return anonymous error

}
}
else {

// Get1Resource failed.
result = ResError();

}
}

}
else {

// Couldn't get component loader resource.
result = ResError();

}
return (result);

}

Why it’s too good to be true. LoaderINIT works fine if we’re running System 7.1
or later (the Component Manager is installed before the INIT 31 process begins) or
we name LoaderINIT something alphabetically greater than the name of the INIT
that’s installing the Component Manager (assuming we know this somehow). If
neither of these conditions is met, LoaderINIT will execute before the Component
Manager is installed, and none of our components will be registered. Bummer.
MANAGING COMPONENT REGISTRATION September 1993

81

d e v e l o p Issue 15

82
We could do something sneaky like patch a trap that we’ve observed being called
right before the Finder comes up, and then execute our INIT code. In effect, this
defers our normal INIT execution until after all other INITs load (provided they
aren’t pulling the same sneaky trick). However, we’d rather be more elegant and, dare
I say, more compatible. We could also name our INIT ~LoaderINIT (or something
similar) to guarantee that we run last in the INIT sequence (a somewhat naive hope),
but we’d rather not become participants in the latest chapter of the ongoing saga of
INIT Wars (Chapter XX: MacsBug Strikes Back). So what’s a component developer
to do?

MO’ BETTER: USE A LOADER COMPONENT TO MANAGE REGISTRATION
Fortunately, we don’t have to give up yet. We can avoid the shortcomings of the
INIT approach by using a component to load our components — a component we’ll
call, oh, I don’t know, something original; how about . . . a loader component.

The loader component. The loader component is a very simple component. It
implements only the open, close, can do, version, and register selectors, and has no
unique selectors of its own. It resides in a file of type 'thng', so the Component
Manager will auto-register it. Also, the cmpWantsRegisterMessage flag is set in the
componentFlags field of its component resource so the Component Manager will
send it a register message at auto-register time. Our other three components (Moe,
Larry, and Curly) are also included in the loader component file.

When the loader component is registered, it receives three messages from the
Component Manager — open, register, and close. The register routine does all the
work. It performs basically the same checks that are performed in LoaderINIT and
calls the same LoadComponents routine described earlier to manually register Moe,
Larry, and Curly. The loader component’s register routine is shown below.

pascal ComponentResult
_LoaderRegister (Handle storage)
{

KeyMap keys;
LoaderPrivateGlobalsHdl globals = (LoaderPrivateGlobalsHdl) storage;
OSErr result = noErr;

#ifndef BUILD_LINKED
short savedResRefNum = CurResFile();
short compResRefNum = OpenComponentResFile ((**globals).self);

// Use the component's resource file (not the THINK project resource
// file) if we're running standalone.
UseResFile (compResRefNum);
#endif BUILD_LINKED

// If mouse or Shift key down, don't bother.
GetKeys (keys);
if (!Button() && !(1 & keys[1])) {

// Load the components!
result = LoadComponents (kComponentLoadListResType,

kLoaderBaseResID);
}

#ifndef BUILD_LINKED
// Restore the resource file (if running standalone).
CloseComponentResFile (compResRefNum);
UseResFile (savedResRefNum);
#endif BUILD_LINKED

return ((result == noErr) ? 0L : 1L);
}

The 'gnht' resource. Everything’s pretty cool up to this point, except for one minor
detail — we can’t keep the component resources for Moe, Larry, and Curly as 'thng'
resources in our loader component file. Why? Well, if they are kept as 'thng'
resources, they’ll be auto-registered along with the loader component, and our
carefully constructed mechanism for managing registration goes right out the
window! Worse, we end up trying to load our components twice — once via the
Component Manager’s auto-registration mechanism, and once by our own loader
component!

So, we need to mildly fake out the Component Manager. We do this by keeping Moe,
Larry, and Curly’s component resources around as 'gnht' resources instead of 'thng'
resources. The 'gnht' resource is identical to the 'thng' resource, but the Component
Manager doesn’t know to look for it, so Moe, Larry and Curly aren’t auto-registered.
The loader component (whose component resource is of type 'thng') does get auto-
registered, and it knows where to find the component resources for Moe, Larry, and
Curly because the component load order resource provides this information. Recall
that in LoaderINIT, the component load specs in the component load order resource
all point to resources of type 'thng'. We simply change these fields to point to
resources of type 'gnht', and we’re set!

PRACTICE SAFE REGISTRATION
In this article, we’ve looked at several approaches to installing components in a
predetermined order. While you’re encouraged to adapt these methods freely to fit
your particular problem, keep in mind that your solution should strive to be as
compatible as possible with other system extensions — your users will thank you for
sparing them the frustration of renaming and removing extensions just to get your
software running!
MANAGING COMPONENT REGISTRATION September 1993

83
THANKS TO OUR TECHNICAL REVIEWERS
Bill Guschwan, Peter Hoddie, Casey King•

84
QuickTime’s component architecture lets you do a
number of amazing and useful things by customizing
components, which you can do by deriving one
component based on another. Because QuickTime
components are dynamically linked, preexisting
applications can take advantage of a new, derived
component without recompiling or rebooting. And
because QuickTime is an extension of system software,
the derived component will provide systemwide
functionality.

In this column I’ll describe how to use object-oriented
techniques to customize components using a derived
component. To illustrate, I’ll show you how to
customize the Apple text media handler to “speak” text
tracks in movies using Apple’s new Text-to-Speech
Manager. You’ll find the derived component on this
issue’s CD, along with a generic derived component
that you can use as a basis for doing your own
customizing. I’ve also supplied an application to help
you debug your component. This application uses the
debugging technique of registering the code inline. It’s
very basic and simply plays back a movie, but it gives
you access to the full debugging environment of
THINK C.

ABOUT THOSE OBJECT-ORIENTED TECHNIQUES
As any MacApp or class library programmer knows,
there are three main steps to adding or altering
functionality in an object-oriented program:

SOMEWHERE IN
QUICKTIME

DYNAMIC
CUSTOMIZATION OF
COMPONENTS

BILL GUSCHWAN
d e v e l o p Issue 15

BILL GUSCHWAN (AppleLink ANGUS) hung out with Robert
Schumann to discuss their symphonic feats. Robert: “Angus, I
understand you compare your jobs to symphonies.” Angus: “I
guess so, though I’d rather compare operas to pasta. You know,
Wagner is lasagna, Mozart is fettucine, Verdi is ravioli, . . .”
Robert: “So on your opera pasta scale, how do you rate my
symphonic music?” Angus: “Linguini.” Robert: “Yo mama!” Angus:
“Listen, Mr. Concerto Psycho Ward, at least my mother knows the
meaning of life beyond success. Can’t say the same about your
1. Identify the class responsible for the behavior you
want to alter.

2. Identify the specific methods you need to add or
override.

3. Create a new class derived from the original class
and implement the new methods or enhance the
inherited methods.

Because components can be overridden much like C++
classes, these object-oriented techniques can be applied
to customizing components. (For a more in-depth
comparison of components and C++ classes, see the
“Be Our Guest” column in develop Issue 12.)

So, the three steps to customizing components are:

1. Identify the component to use as a starting point.

2. Identify the routines in the component to override.

3. Create a derived component.

Before we get into a discussion of these steps, let’s drop
back and look at the nuts and bolts of QuickTime
component architecture with its dynamic linking
capabilities. This should give you a clearer idea of how
it’s possible to alter QuickTime’s behavior at run time.

DYNAMIC LINKING OF COMPONENTS
The QuickTime movie file format depends on the
dynamic linking capabilities of the Component
Manager. To play a QuickTime movie, you need more
than just the movie data (video frames, digitized audio
samples, text, and such): you also need a time source,
code to read/write the data, and code to act on or
interpret the data. It would be impractical to store all
this information in each and every QuickTime movie.
Instead, the time source and code are dynamically
linked in as components, while the movie data remains
in a QuickTime movie file.

When a movie is opened in an application like
MoviePlayer, the movie file is opened first, followed by
a NewMovieXXX call (such as NewMovieFromFile).
The major purpose of the NewMovieXXX call is to
wife.” Robert: “You mean my beloved Clara.” Angus: “Yep, Clara,
the dogcow. Well, gotta go, I hear Symphony No. 2.” Robert:
“Before you go, what’s the key?” Angus: “C Major.” Robert: “No,
what’s the key?” Angus: “As Wittgenstein says, the key to life is
that language is a game.” Robert: “No, what’s the key?” Angus:
“Oh, it’s the key to my new office in PIE DTS.” Robert: “Then let the
music begin, allegro.” Angus: “Pass the parmesan.”•

dynamically link to all the components listed in the
movie resource and return a handle to this “new” data
structure.

When a NewMovieXXX call is made, QuickTime
invokes the Component Manager to load the handlers
described in the media. A clock component is loaded
first (type 'clok', subtype 'micr'). Then the media
handler for each track is brought in (type 'mhlr'). If you
have video and sound, for example, video and sound
media handlers are loaded (subtypes 'vide' and 'soun',
respectively).

You may notice that the media handlers open other
media handlers to do chores for them. The video and
sound media handlers open the standard media handler
(type 'mhlr', subtype 'mhlr'), which is a private,
high-throughput media handler. The text media
handler, though, opens the base media handler (type
'mhlr', subtype 'gnrc'). The base media handler is a
public, general-purpose media handler with a lower
throughput that is nevertheless fast enough for text.

Next a data handler is loaded. Note that at present
there’s only one kind of data handler (type 'dhlr',
subtype 'alis') supporting streams of data from HFS
files. If necessary, a decompressor component is loaded
for video; its type depends on the compression format.

Thus, a media handler and a data handler are loaded
for each track. QuickTime movies use data handlers
and media handlers to load, interpret, and manage the
movie data. The alias data handler is responsible for
opening and closing data files and for reading and
writing sample data. It doesn’t understand the format
of the data but merely hands off the data to the media
handler to interpret.

The media handler is the component that’s responsible
for interpreting data retrieved from the data handler
and for scheduling the rendering of this data at the
correct time during movie playback. For example, the
text media handler interprets text samples and renders
the text track in the movie based on the current time
value of the movie. The media handler interfaces with
To see information about a track in a hierarchical manner,
you can use Dumpster, a QuickTime tool that’s included on this
issue’s CD.•
the data handler using file offsets and with the rest of
QuickTime through a time value. Thus, a major media
handler chore is to convert time values into file offsets.

You now know how and why a QuickTime movie
dynamically links with its media handlers. With that
background on QuickTime component architecture
behind us, we now embark on the process of
customizing the text media handler to speak its text.

IN SEARCH OF A BASE COMPONENT
The first step in customizing a component is to identify
the base component — the component to start with.

Not all components can be customized. There are two
requirements. First, the component must implement
the target request; that is, it must allow another
component instance to intercept all its messages. To
determine whether a particular component instance
implements the target request, you can use the call

ComponentFunctionImplemented(myComponentInstance,
kComponentTargetSelect)

The second requirement is that a component must
have a public API before it can be inherited from.
When a component is called, it’s passed the routine’s
selector in the ComponentParameters structure. The
component parses this selector and jumps to the
appropriate function. If there’s no public API, you
can’t know the parameters and behavior of any of the
component’s routines and thus can’t override them.
The interface file QuickTimeComponent.h contains
the APIs for all public QuickTime components.

To speak text as it streams by, we’ll want to customize
the Apple text media handler, which both implements
the target request and has a public API. The Apple text
media handler itself is a derived media handler that uses
the services of the base media handler supplied by
Apple. Consequently, its interface is defined in the
MediaHandlers.h file. (For more on the intricacies of
derived media handlers, see the “Somewhere in
QuickTime” column in develop Issue 14.)
SOMEWHERE IN QUICKTIME September 1993

85
You can watch the components of a movie load if you set
A-trap breaks as outlined in the section “Breaking on Common
Component Manager Routines” in the article “Inside QuickTime
and Component-Based Managers” in develop Issue 13.•

86
IN SEARCH OF THE ROUTINES TO OVERRIDE
Our next step is to find the routines to override. In our
example, one routine we need to override is the routine
in the Apple text media handler where the text is
rendered. In addition to rendering the text, we want to
grab the text and speak it.

A media handler is normally called in response to a
MoviesTask call. MoviesTask is the QuickTime
workhorse routine that gives time to the media handler
to get the data and render it. In turn, MoviesTask calls
the MediaIdle routine to do the bulk of the processing
in a media handler. MediaIdle is the main routine in
MediaHandlers.h. Thus, MediaIdle is the main routine
we want to override. Additionally, we’ll need to
override the MediaInitialize routine, which supplies us
with an initial reference to the media.

CREATING A DERIVED COMPONENT
So far we’ve chosen a base component from which to
derive our customized component, and we’ve identified
the routines we want to override. Now we’re ready to
take the third step of writing a new component that
targets the base component and overrides the
identified routines. If you’re curious about the design
of the generic derived component, you can investigate
it on the CD. I’m only going to point out a couple of
things about its design before moving on to discuss
what you need to do to make your own derived
component.

To capture or not to capture. You have two possible
approaches when deriving a component. First, you can
simply open and target a component, which lets your
component use the services of that component. The
component is still available to other clients, but you’re
using an instance of it. Second, in addition to targeting
the component, you can capture it. The base
component will then be replaced by your component in
the component registration list and will no longer be
available to clients (although current connections are
retained). The CaptureComponent routine returns a
special ID so that the captured component can still be
used by your component.
d e v e l o p Issue 15

QuickTime 1.6 adds a new Component Manager
selector, componentWantsUnregister, that you can take
advantage of when you want to free a captured component. Set
componentWantsUnregister in the componentRegisterFlags field.
When the captured component is unregistered, your derived
component can call UncaptureComponent and dispose of the
global memory.•
We’ll use CaptureComponent because we want to
replace the functionality of all instances of the text
media handler (conceptually, you can think of capturing
as patching). However, targeting without capturing is
just as effective — and it has a few advantages: it
doesn’t require you to keep track of the captured
component’s ID, and it allows clients looking for a
specific component to be successful.

Let’s walk through the steps you’d take to make your
own derived component using the generic code on this
issue’s CD, which are the same steps used to create our
text-speaking example. You need to make changes in
specific places: the component resource, the global data
file, the OpenComponent routine, and the override
routines.

Changing the component resource. The first thing
to change is the resource file for the component. The
essential part of this file is the component description,
which is a structure that describes the component type,
subtype, manufacturer, and flags. The Component
Manager looks at this information when it’s handling
an application’s request for a component. You want the
right information here so that QuickTime will grab
your derived component instead of the base
component.

You should change the component type and subtype to
match those of the component you’re inheriting from.
In our example, when a QuickTime movie with a text
track is opened, QuickTime asks the Component
Manager for a text media handler, which has type
'mhlr' and subtype 'text'. Since we want QuickTime to
grab our derived component instead, we need to make
its type and subtype the same.

In our case, we have to change the component
manufacturer to match that of the base component as
well. This isn’t the ideal situation, because it would be
most desirable for each component to have a unique
manufacturer. But clients may look for a component of
a specific manufacturer and won’t grab your derived
component if its manufacturer is different. Because it
would be better to be able to identify a derived
To identify a captured component in a debugger, you
can use the thing dcmd. The component ID of a captured
component will begin with two periods (..).•

component, it’s strongly suggested that component
clients always perform a default search, avoiding asking
for specifics other than type and subtype.

You may also need to set the componentFlags field,
which identifies specific functionality for a component.
For example, video digitizers use componentFlags to
identify the type of clipping the digitizer performs,
among other things.

If you don’t know how a client searches for a
component, you can find out by running that
application and trapping on FindNextComponent. The
last parameter pushed on the stack is the component
description, and you can find its values in a debugger
(see “Inside QuickTime and Component-Based
Managers” in develop Issue 13). In our example, we
know that QuickTime performs a simple type and
subtype search for a text media handler, so we only
have to change the type and subtype in the component
resource.

The global data file. The ComponentData.h file
contains the declaration of the data structure for each
component instance and the global component data
structure. You’ll need to fill out a component
description structure describing your chosen base
component, which will be used to ask the Component
Manager to find it.

Now you’re left with defining the global data for your
derived component. The generic capturing component
on this issue’s CD has one item that’s shared across all
its instances: a reference to the captured component. If
you need data that’s shared across instances, declare it
here, but in general you shouldn’t need it.

The data local to each instance is allocated in the
OpenComponent routine. By default, three component
instances will be kept track of: a self copy, a delegate
copy, and a target copy. These instances will be stored
for you, and you won’t need to do any work. The target
copy is the instance of a component that may capture
yours. If your component calls itself, it should use this
instance in case the target overrides the routine.
The other data that you allocate is specific to the type
of your derived component. For our example, we’ll
allocate room for a speech channel, a media reference,
a handle to the text to be spoken, and a StdTTSParams
structure, which is filled out by the Standard Text to
Speech dialog. This dialog lets the user choose voice,
pitch, and modulation.

The OpenComponent routine. OpenComponent
performs three major operations. First, it allocates
storage for each instance. Second, it checks for
QuickTime, the Text-to-Speech Manager, and other
dependencies; if they’re not installed, the component
can’t open and an error is returned. Note that software
dependencies are checked here instead of in
RegisterComponent to bypass possible load order
conflicts. Finally, OpenComponent captures the Apple
text media handler and stores a reference to it in the
component globals.

The override routines. Now it’s time to implement
the override routines. You’ll need to get the selectors
for the routines from the original component’s header
file.

In our example, we look at MediaHandlers.h and find
the MediaInitialize routine. The selector has a
constant, kMediaInitializeSelect. We need to make the
parameters of our override routine match those of the
MediaInitialize routine.

pascal ComponentResult MediaInitialize
(PrivateGlobals **storage,
GetMovieCompleteParams *gmc)

MediaInitialize performs these tasks: it stores the media
reference from the GetMovieCompleteParams
structure in our private storage; it queries the user for a
voice with the Standard Text to Speech dialog; and,
with this information, it allocates and sets up the
speech channel.

Next we implement the MediaIdle routine, which has a
selector of kMediaIdleSelect. Our MediaIdle looks like
this:
SOMEWHERE IN QUICKTIME September 1993

87

88
pascal ComponentResult MediaIdle
(PrivateGlobals **storage, TimeValue
atMediaTime, long flagsIn, long *flagsOut,
const TimeRecord *movieTime)

This routine retrieves the media sample for the time
passed in and then speaks it. The important parameter
is atMediaTime, which contains the current time value
of the media for the movie. We get the media sample
for that time using GetMediaSample, and then we use
the nifty new Text-to-Speech Manager to speak.

In this case, we’ll use SpeakText, which takes three
parameters: a speechChannel (allocated earlier in the
OpenComponent routine), a pointer to the beginning
of the text that we want to speak, and the length of the
text. SpeakText is an asynchronous routine, so it won’t
hold up processing (or the movie) while it speaks. On
the other hand, the text can’t be disposed of until
speaking is finished. To accommodate this requirement,
a reference to the text is stored in our instance storage,
and the text is disposed of when the component closes.

LETTING USERS LINK AND UNLINK COMPONENTS
Thanks to dynamic linking, a large number of users can
easily take advantage of new functionality provided by
customized components. Three methods can be used to
register and unregister components. First, a component
is registered at system startup if the component resides
in the System Folder, or in the Extensions folder of the
System Folder. To unregister this component, a user
can remove it and reboot. Second, an application can
dynamically register components as needed, and then
unregister them when finished. Third, you can use the
d e v e l o p Issue 15

A version of the Text-to-Speech Manager can be found on
this issue’s CD.•
drag-and-drop applications Komponent Killer and
Reinstaller II included on this issue’s CD. Using these
applications, you don’t have to reboot. (Of course, your
typical user won’t do it this way; this method is for you,
the programmer.)

EXCITING PROSPECTS
Now you know how to customize a component using a
derived component, which will be dynamically linked at
run time and thus can extend systemwide functionality.
Just think of the possibilities! You can override the
movie controller and implement an Apple event
handler. And you can override other base components
as well. Fiddle around with the generic derived
component on the CD to get an idea of the exciting
prospects before you.

REFERENCES
• “Somewhere in QuickTime: Derived Media

Handlers” by John Wang, develop Issue 14.

• “Inside QuickTime and Component-Based
Managers” by Bill Guschwan, develop Issue 13.

• “Techniques for Writing and Debugging
Components” by Gary Woodcock and Casey
King, develop Issue 12.

• “Be Our Guest: Components and C++ Classes
Compared” by David Van Brink, develop Issue
12.
Thanks to Ken Doyle, Tim Schaaff, and Gary Woodcock for
reviewing this column.•

FLOATING

WINDOWS:

KEEPING

AFLOAT IN

THE WINDOW

MANAGER
DEAN YU
These days having floating windows in an application is like having an
air bag in a car; you’re not cool if you don’t have at least one. Because
system software doesn’t support floating windows in the Window
Manager, myriad floating window implementations abound, ranging
from the straightforward to the twisted. This article presents a library
of routines providing standard, predictable floating window behavior
that most applications can readily use.

Floating windows are windows that stay in front of document windows and provide
the user easy access to an application’s tools and controls. Ever since the introduction
of HyperCard, most Macintosh programmers have been in love with floating palettes
and frequently use them. This would be fine if there were an official way to
implement floating windows, but there is no such beast. This article offers a solution.

Currently, the most popular way of implementing floating windows is to patch
various Window Manager routines so that they behave correctly when floating
windows are present. But patching traps has always been problematical. Patches often
make assumptions about how a particular routine behaves or when it will be called. If
system software or a third-party extension suddenly uses the patched routine where it
has never been used before, compatibility problems can arise. Often, patches subtly
alter the behavior of a routine — for example, by using a register or setting a
condition code. This makes it difficult for Apple to extend (or even fix!) the
Macintosh API and still maintain a high level of compatibility with existing
applications.

You can just as easily implement floating windows by avoiding the use of high-level
Window Manager routines that generate activate events; instead, you can use lower-
level routines almost exclusively. It’s much less likely that the code will break (or cause
other code to break) when Apple makes changes to the system software. The reason
for this is simple: it’s much less likely for system software engineers to change the
fundamental behavior of a Macintosh Toolbox routine than it is for them to use that
FLOATING WINDOWS: KEEPING AFLOAT IN THE WINDOW MANAGER September 1993

89
DEAN YU subscribes to the Taoist philosophy
that that which is meant to happen, eventually will
happen. In fact, he believes this is the only reason
he landed his job as a Blue Meanie in the first
place. During his two-and-a-half year stint in the
System Software group, Dean has worked on
System 7 and System 7.1 and has gone to
Cancún. Apple’s Rumor Monger claims that Dean
left Apple in January to avoid working on a

project that installs 69 files in the System Folder,
and that, more recently, he went to Las Vegas and
married a Marilyn Monroe look-alike. Dean
denies these rumors, of course, but not very
vehemently.•

d e v e l o p Issue 15

90
routine in some new and different way. Under this second implementation method,
the application becomes a proper client of the Toolbox, using the routines that are
available rather than trying to reengineer them. The floating windows library
described in this article and provided on this issue’s CD follows this philosophy.

STANDARD FLOATING WINDOW BEHAVIOR
Developers implementing floating windows should follow certain rules to ensure the
“consistent user experience” that we’re always harping about. Don’t worry if there
seem to be a lot of things to keep in mind; the routines in the library do most of the
hard work for you.

ORDER OF ON-SCREEN INTERFACE OBJECTS
As more and more things appear on users’ screens, it becomes very important to
define a front-to-back order in which interface objects appear. This alleviates
confusion and prevents the neophyte user from being scared away when things start
flying thick and fast on the screen. Within an application, the order of windows and
other on-screen objects from back to front should be as follows (see Figure 1):

• Document windows and modeless dialogs

• Floating windows

• Modal dialogs and alerts

• System windows

• Menus

• Help balloons

If you thought that floating windows would be as far back as they are, you get a gold
star. The rationale for putting modal dialogs in front of floating windows stems from
the normal use of these windows: floating windows are most frequently used as tool
palettes. The user picks a tool, color, or something similar from the palette and then
performs an operation on the active document. When a modal dialog appears, the
application needs more information from the user before it can proceed. The tools in
the floating window should not be available because they can’t be used in the dialog.

Incidentally, system windows are windows that can appear in an application’s window
list but aren’t directly created by the application. These windows appear in front of all
windows created by the application. Examples of system windows include notification
dialogs, the PPC Browser, and input method windows.

APPEARANCE OF FLOATING WINDOWS
The physical appearance of the HyperCard floating palette has become the de facto
standard look for floating windows. The description of floating windows that follows
Floating windows are known as utility
windows in the Macintosh Human Interface
Guidelines.•

is based on this look. There’s at least one popular program that uses the standard
document window as a floating window. Don’t do this; it only confuses the novice
user.

Unlike document windows, floating windows are all peers of each other. That is,
there’s no visual cue to the user of any front-to-back order unless the floating
windows actually overlap each other; they all float at the same level. Because of this
equality, the title bars of floating windows are almost always in an active state. The
exception to this rule occurs when a modal window is presented to the user; since this
type of window appears above floating windows on the screen, the background of the
title bar of each visible floating window turns from its dotted pattern to white to
indicate an inactive state (see Figure 2).

A floating window can have a close box, a zoom box, and a title. The use of size boxes
in floating windows is not recommended. The title bar of a floating window should
be 11 pixels high or 2 pixels higher than the minimum height of the primary script’s
application font, whichever is greater. The title of a floating window should be in the
application font, bold, and its size should be the greater of 9 points and the smallest
recommended point size for that script system. Floating windows should have a
1-pixel drop shadow that starts 2 pixels from the left and top of the window.

Document window

Floating window

Movable modal dialog Help balloon Modeless dialog

Figure 1
Order of Windows on a Screen
FLOATING WINDOWS: KEEPING AFLOAT IN THE WINDOW MANAGER September 1993

91

d e v e l o p Issue 15

92
FLOATING WINDOWS AND CONTEXT SWITCHING
Because floating windows are almost always in an active state, it would be very
confusing to the user if floating windows were still visible when an application is
placed in the background. (Imagine an active window lurking behind an inactive
document window.) For this reason, when an application receives a suspend event it
should hide any visible floating windows. Conversely, when the application receives a
subsequent resume event, the floating windows that were hidden on the suspend
event should be revealed.

IMPLEMENTING FLOATING WINDOWS IN YOUR
APPLICATION
Now that we’ve taken care of the formalities, we can get to the heart of the matter.
This section explains the methodology used in creating the floating windows library
routines included on this issue’s CD. (You can use these routines, or you can write
your own using the same methodology.) First, we talk about handling activate events,
which is the trickiest aspect of implementing floating windows. Then, we describe the
API in the floating windows library and how you can use it in your applications.

DEALING WITH ACTIVATE EVENTS
The most difficult part of implementing floating windows is dealing with activate
events. You need to work around how the Window Manager generates these events
and how the Toolbox Event Manager reports them to an application. The Window
Manager was written under the assumption that there’s only one active window at any
time; obviously, this is not true in an application that has floating windows. A
corollary of this assumption is that the Window Manager generates only one
deactivate event for every activate event. This model breaks down when a modal
dialog appears in an application with floating windows: the modal dialog receives the
activate event, but a deactivate event is necessary for all visible floating windows and

Active Inactive

Figure 2
Active and Inactive States of a Floating Window

the frontmost document window. If things were left up to the Window Manager, only
the frontmost floating window would receive the required deactivate event.

To avoid this problem, you shouldn’t use the Window Manager routines
SelectWindow, ShowWindow, and HideWindow since they implicitly generate
activate and deactivate events. In addition, you shouldn’t use SendBehind to move the
front window further back in the pile of windows on the screen or to make a window
frontmost, because that routine also generates activate events.

Instead, use lower-level routines like BringToFront, ShowHide, and HiliteWindow
to simulate the higher-level calls. Additionally, instead of dispatching activate events
in your application’s main event loop, you should activate or deactivate a window as
its position in the window list changes. Here’s how a replacement to SelectWindow
might look (see “This Is Not Your Father’s Window Manager” for more information
on this routine):

pascal void SelectReferencedWindow(WindowRef windowToSelect)
{

WindowRef currentFrontWindow;
WindowRef lastFloatingWindow;
ActivateHandlerUPP activateProc;
Boolean isFloatingWindow;

if (GetWindowKind(windowToSelect) == kApplicationFloaterKind) {
isFloatingWindow = true;
currentFrontWindow = (WindowRef) FrontWindow();

}
else {

isFloatingWindow = false;
currentFrontWindow = FrontNonFloatingWindow();
lastFloatingWindow = LastFloatingWindow();

}

// Be fast (and lazy) and do nothing if you don't have to.
if (currentFrontWindow != windowToSelect) {

// Selecting floating windows is easy, since they're always active.
if (isFloatingWindow)

BringToFront((WindowPtr) windowToSelect);
else {

// If there are no floating windows, call SelectWindow as in the
// good ol' days.
if (lastFloatingWindow == nil)

SelectWindow((WindowPtr) windowToSelect);
FLOATING WINDOWS: KEEPING AFLOAT IN THE WINDOW MANAGER September 1993

93

d e v e l o p Issue 15

94
else {

// Get the activate event handler for the window currently in
// front.
activateProc = GetActivateHandlerProc(currentFrontWindow);

// Unhighlight it.
HiliteWindow((WindowPtr) currentFrontWindow, false);

// Call the activate handler for this window to deactivate the
// window.
if (activateProc != nil)

CallActivateHandlerProc(activateProc,
uppActivateHandlerProcInfo, currentFrontWindow,
kDeactivateWindow);

// Get the activate event handler for the window that's being
// brought to the front.
activateProc = GetActivateHandlerProc(windowToSelect);

// Bring it behind the last floating window and highlight it.
// Note that Inside Macintosh Volume I states that you need to
// call PaintOne and CalcVis on a window if you're using
// SendBehind to bring it closer to the front. In System 7,
// this is no longer necessary.
SendBehind((WindowPtr) windowToSelect,

(WindowPtr) lastFloatingWindow);
HiliteWindow((WindowPtr) windowToSelect, true);

// Now call the window's activate event handler.
if (activateProc != nil)

CallActivateHandlerProc(activateProc,
uppActivateHandlerProcInfo, windowToSelect,
kActivateWindow);

}
}

}
}

Activate events and the frontmost document window. Other cases that the
Window Manager doesn’t handle well occur when the frontmost document window
is closed or when a new document window is created in front of other document
windows. If floating windows are present, these document windows don’t get the
needed activate and deactivate events, since the application is essentially removing or
creating windows in the middle of the window list. Your application needs to send the

THIS IS NOT YOUR FATHER’S WINDOW MANAGER
You may have noticed that the SelectReferencedWindow
routine doesn’t strictly define how to do certain things.
There are two reasons for this. The first is the advent of
PowerPC architecture. When you write code that has the
potential of running on several different runtime
architectures, it should be generic, especially if you don’t
know what’s lurking on the other side of a procedure
pointer. The 68000 and PowerPC architectures handle
procedure pointers differently: on a 680x0 machine, a
ProcPtr points to the entry point of a procedure, whereas
on a PowerPC, a ProcPtr points to a routine descriptor. It
would be nice if source code that calls procedure pointers
didn’t have to worry about the proper calling convention
for a particular platform and the proper magic would
happen at the flip of a compile switch. The solution that
we use in system software is the CallProcPtr macros
defined in our interface files, which expand to different
things depending on the platform we’re compiling for. For
FLOAT
the ActivateHandlerUPP (for Universal Procedure Pointer)
type used in SelectReferencedWindow, the definitions
shown below are needed.

The second reason for generality in the code is the future.
We would like to move the Macintosh operating system
into the 1990s to get preemptive multitasking and
separate address spaces. This means a move toward
opaque data structures: accessor functions will be
provided, so you won’t be able to access fields of a data
structure directly. In the future, data structures like
WindowRecords may no longer be created in your
application’s address space, so you’ll get a reference to a
window instead of an absolute address. The floating
window API follows this philosophy; all calls take a
WindowRef type instead of a WindowPtr, and all fields of
a window’s data structure are accessed with an accessor
function. This is all for the best. Really.
typedef pascal void (*ActivateHandlerProcPtr)(WindowRef theWindow, Boolean activateWindow);
enum {

uppActivateHandlerProcInfo = kPascalStackBased | kParam1FourByteCode | kParam2TwoByteCode
};

#if USES68KINLINES
typedef ActivateHandlerProcPtr ActivateHandlerUPP;
#pragma parameter CallActivateHandlerProc(__A0)
pascal void CallActivateHandlerProc(ActivateHandlerUPP activateHandler, WindowRef theWindow,

Boolean activateWindow) = 0x4E90; //jsr (A0)
#define CallActivateHandlerProc(activateHandler, activateHandlerProcInfo, theWindow, \

activateWindow) \
CallActivateHandlerProc(activateHandler, theWindow, activateWindow)

#else
typedef UniversalProcPtr ActivateHandlerUPP;
#define CallActivateHandlerProc(activateHandler, activateHandlerProcInfo, theWindow, \

activateWindow) \
CallUniversalProc(activateHandler, activateHandlerProcInfo, theWindow, activateWindow)

#endif
ING WINDOWS: KEEPING AFLOAT IN THE WINDOW MANAGER September 1993

95

d e v e l o p Issue 15

96
right activate events to the right windows. The floating windows library routines
ShowReferencedWindow and HideReferencedWindow generate the appropriate
activate and deactivate events for you.

Activate events and modal windows. When a modal window is to appear, you
should send deactivate events to all visible floating windows and to the active
document window. When the user dismisses the modal window, send activate events
to those windows. Instead of overloading SelectReferencedWindow with yet another
case, it’s easier to surround calls to Alert or ModalDialog with calls to deactivate and
activate the floating windows and the first document window.

Here’s what the code would look like:

short PresentAlert(short alertID, ModalFilterProcPtr filterProc)
{

short alertResult;

DeactivateFloatersAndFirstDocumentWindow();
alertResult = Alert(alertID, filterProc);
ActivateFloatersAndFirstDocumentWindow();

return alertResult;
}

THE FLOATING WINDOW API
The floating windows library supplies the routines and accessor functions described
below. Each routine description tells how to use it in an application and, when
necessary, describes its parameters in detail.

The floating window API uses the WindowRef type in the place of a WindowPtr.
This is in anticipation of the situation in which memory for a window’s data structure
is no longer allocated in the application’s address space. (See “This Is Not Your
Father’s Window Manager.”) At present, a WindowRef is interchangeable with a
WindowPtr, and a parameter of type WindowRef can be passed to existing Window
Manager routines. A typecast is needed because a WindowRef points to a structure
that contains a WindowRecord plus other fields.

Creating and disposing of windows. The routines described in this section —
NewWindowReference, GetNewWindowReference, and DisposeWindowReference
— should be used instead of NewWindow, GetNewWindow, and DisposeWindow.
You can use these new routines for any type of window, not just floating windows.
Note that you should use them together; for example, DisposeWindowReference
should be used to dispose of any windows created by NewWindowReference or
GetNewWindowReference.

pascal OSErr NewWindowReference(WindowRef *windowReference, const Rect
*boundsRect, ConstStr255Param title, Boolean visible, WindowAttributes
attributes, WindowRef behind, long refCon, ActivateHandlerUPP
activateHandler);

NewWindowReference creates a floating window, document window, or dialog
window. On machines with Color QuickDraw, it creates a color window; on
machines without Color QuickDraw, it creates a window with a black-and-white
grafPort.

The windowReference parameter returns a reference to the new window. If a window
could not be created, nil is returned. The boundsRect, title, visible, and refCon
parameters are identical to the parameters you would normally pass to NewWindow
or NewCWindow.

The behind parameter specifies the window that the new window should be created
behind. It’s similar to the behind parameter that’s passed to NewWindow, except that
-1 has the following special meaning: if a floating window is being created, -1 means
the new window will be created in front of all other windows; if a document window
is being created, -1 means the new window will be created behind any existing
floating windows.

Unlike NewWindow, which establishes an appropriate WDEF resource based on the
window definition ID passed as a parameter, NewWindowReference establishes an
appropriate window definition function based on the attributes parameter, which
describes the desired physical attributes. The following values have been defined for
the attributes parameter:

enum {
kHasCloseBoxMask = 0x00000001,
kHasZoomBoxMask = 0x00000002,
kHasGrowBoxMask = 0x00000004,
kHasModalBorderMask = 0x00000010,
kHasThickDropShadow = 0x00000020,
kHasDocumentTitlebarMask = 0x00001000,
kHasPaletteTitlebarMask = 0x00002000,
kHasRoundedTitlebarMask = 0x00004000,

// Attribute groupings

kWindowGadgetsMask = 0x0000000F,
kWindowAdornmentsMask = 0x00000FF0,
kWindowTitlebarMask = 0x000FF000,

};
typedef unsigned long WindowAttributes;
FLOATING WINDOWS: KEEPING AFLOAT IN THE WINDOW MANAGER September 1993

97

d e v e l o p Issue 15

98
The values of the attributes parameter can be combined, except only one title bar
value can be used. For example, kHasCloseBoxMask + kHasZoomBoxMask +
kHasGrowBoxMask + kHasDocumentTitlebarMask describes the appearance of a
standard document window.

Finally, the activateHandler parameter is a pointer to the routine that’s called
whenever the window is activated or deactivated. You should always supply this
routine, because the main event loop doesn’t receive activate events when the floating
windows library is used. Activate event handlers have the following prototype:

pascal void (*ActivateHandlerProcPtr) (WindowRef theWindow, Boolean
activateWindow);

The theWindow parameter is the window that should be activated or deactivated.
The activateWindow parameter specifies whether the window should be activated or
deactivated: true means activate, false means deactivate.

NewWindowReference can return the following errors:

• kUndefinedTitlebarTypeError: Invalid values in the attributes
parameter, or more than one title bar attribute is specified in the
attributes parameter.

• kWindowNotCreatedError: Not enough memory to create the
window.

• kInvalidWindowOrderingError: The behind parameter specifies
creating a floating window behind an existing document window,
or a document window in front of a floating window.

pascal OSErr GetNewWindowReference(WindowRef *windowReference, short
windowResourceID, WindowRef behind, ActivateHandlerUPP
activateHandler);

GetNewWindowReference creates a window based on a resource template. On
machines with Color QuickDraw, it creates a color window. On machines without
Color QuickDraw, it creates a window with a black-and-white grafPort.

The windowReference parameter returns a reference to the new window. If a window
could not be created, nil is returned. The windowResourceID parameter is the
resource ID of the WIND resource that describes the window. The visible field in
the WIND resource should be false.

The behind parameter specifies the window that the new window should be created
behind. As in NewWindowReference, if -1 is specified for this parameter, document
windows are created behind any existing floating windows.

GetNewWindowReference can return the following errors:

• kWindowNotCreatedError: Not enough memory to create the
window, or the specified WIND resource cannot be found.

• kInvalidWindowOrderingError: The meaning of this is the same
as for NewWindowReference.

pascal void DisposeWindowReference(WindowRef windowReference);

DisposeWindowReference frees the memory used by a window created with
NewWindowReference or GetNewWindowReference.

Displaying windows. The routines described in this section affect how windows
look and how they’re ordered on the screen.

pascal void SelectReferencedWindow(WindowRef windowToSelect);

SelectReferencedWindow replaces SelectWindow; it brings a window as far forward
as it should come when the user clicks in it. Selecting a floating window makes it the
absolute frontmost window on the screen. Selecting a document window makes it the
frontmost document window, but it remains behind all floating windows.

pascal void HideReferencedWindow(WindowRef windowToHide);

HideReferencedWindow replaces HideWindow to hide a window. As in
HideWindow, if the frontmost window is hidden, it’s placed behind the window
immediately behind it, so when it’s shown again, it will no longer be frontmost. This
is also true for document windows even if floating windows are visible.

pascal void ShowReferencedWindow(WindowRef windowToShow);

This routine replaces ShowWindow to make a hidden window visible again. If the
window is frontmost when it’s shown, the previously active window is deactivated.

pascal void DeactivateFloatersAndFirstDocumentWindow(void);

Before presenting a modal window to the user, applications should call this routine to
unhighlight any visible floating windows and the frontmost document window, and to
send deactivate events to these windows. At this point, all visible windows in the
window list can be treated as normal windows, and the modal dialog or alert can be
brought up with the traditional calls.

pascal void ActivateFloatersAndFirstDocumentWindow(void);

After the user dismisses a modal window, the application should call
ActivateFloatersAndFirstDocumentWindow to restore the highlight state of any
FLOATING WINDOWS: KEEPING AFLOAT IN THE WINDOW MANAGER September 1993

99

d e v e l o p Issue 15

100
visible floating windows and the frontmost document window. This routine also
sends an activate event for each of these windows. When called in the background,
ActivateFloatersAndFirstDocumentWindow hides any visible floating windows by
calling SuspendFloatingWindows.

pascal void SuspendFloatingWindows(void);

When an application with visible floating windows receives a suspend event, it should
call SuspendFloatingWindows to hide its floating windows. This routine remembers
the current visibility of a floating window so that only the current visible floating
windows are revealed on a subsequent call to ResumeFloatingWindows. If a movable
modal dialog is frontmost when this routine is called, floating windows are not
hidden because the application is in a modal state. However, if the dialog goes away
while the application is in the background, the floating windows will be hidden
automatically because ActivateFloatersAndFirstDocumentWindow calls
SuspendFloatingWindows.

pascal void ResumeFloatingWindows(void);

Applications should call ResumeFloatingWindows when a resume event is received.
Any floating windows that were visible when SuspendFloatingWindows was called
are made visible again. ResumeFloatingWindows also activates the frontmost
document window.

Utility routines. These routines provide all the other functions an application might
need to operate smoothly with floating windows.

pascal ActivateHandlerUPP GetActivateHandlerProc(WindowRef theWindow);

GetActivateHandlerProc returns a pointer to the routine that handles activate and
deactivate events for the specified window. If the window doesn’t have a handler
routine, GetActivateHandlerProc returns nil.

pascal void SetActivateHandlerProc(WindowRef theWindow, ActivateHandlerUPP
activateHandlerProc);

SetActivateHandlerProc sets a new routine to handle activate and deactivate events
for the specified window. It replaces any existing handler routine for this window.

pascal void DragReferencedWindow(WindowRef windowToDrag, Point startPoint,
const Rect *draggingBounds);

DragReferencedWindow drags a window around, ensuring that document windows
stay behind floating windows. Like DragWindow, DragReferencedWindow doesn’t
bring a window forward if the Command key is held down during the drag.

pascal WindowRef FrontNonFloatingWindow(void);

FrontNonFloatingWindow returns a reference to the first visible window that’s not a
floating window. Usually, this is the first visible document window. However, if a
modal dialog is visible, it returns a reference to the dialog window.

pascal WindowRef LastFloatingWindow(void);

LastFloatingWindow returns a reference to the floating window that’s furthest back
in the window list, whether it’s visible or not. Normally, the floating windows library
uses this routine internally, although applications can use it to determine where the
floating window section of the window list ends. If there are no floating windows in
the window list, LastFloatingWindow returns nil.

Hangin’ with the Get/Setters. In an effort to move toward more flexible and
architecture-independent data structures, the library includes routines that get and
set several WindowRecord fields. The library supplies the accessor functions only for
the fields the floating window routines need to get at, however. The ambitious reader
can also create accessor functions for the other WindowRecord fields that aren’t
provided by the floating windows library. Accessor functions have been provided for
these fields: windowKind, visible, hilited, strucRgn, and nextWindow.

THE SAMPLE PROGRAM AND THE SOURCE
On this issue’s CD, there’s a floating windows program that doesn’t do much more
than exercise the routines from the floating windows library. It shows how floating
windows interact with other types of windows, including alerts, movable modal
dialogs, and document windows. The floating window definition procedure on the
CD is taken from one of the many game programs I’ve never finished; it works well
enough for demonstration purposes, although anyone can write a better one.

The complete MPW C source for the floating windows library is in the files
WindowExtensions.c and WindowExtensions.h. This code was written so that most
applications could start using the routines with a minimum of effort. (You may have
to change the resource ID of the floating window WDEF that’s defined in
WindowExtensions.h.) Just remember that your mileage may vary.

SEAT CUSHIONS AND OTHER FLOTATION DEVICES
OK, I admit it. I did have a private agenda when I set out to write this article. The
way I figure it, for every application developer I convince to implement floating
windows without patching traps, I save myself a few hours in MacsBug. The most
compelling argument I could think of was to write the code for the floating windows
library routines so that no one else would have to. If you use the supplied library
routines, you don’t have to worry about any of the details on how floating windows
FLOATING WINDOWS: KEEPING AFLOAT IN THE WINDOW MANAGER September 1993

101

d e v e l o p Issue 15

102
behave, and you can concentrate on making your applications the envy of all your
friends who use Windows.

The floating windows library described in this article isn’t the be-all and end-all of
floating windows. The THINK Class Library and MacApp — as well as AppsToGo
in the Sample Code folder on the CD — provide support for floating windows within
an entire application framework. The floating windows library presented here has the
advantage of being a standalone library that can be linked into your home-grown
application. For the stout of heart who want to implement their own floating
windows, this article lays out a road map of the gotchas and pitfalls in creating
floating windows on top of the Window Manager.

I touched briefly on making source code more platform independent. As Apple takes
the Macintosh experience cross-platform, there’s a big potential for source code
maintenance to become hellish as different machine architectures create subtle
differences in the runtime environment. By factoring out assumptions about data
structures and the underlying chip architecture, your applications can move cross-
platform more quickly and less expensively.

The API of the floating windows library hints at what the Toolbox will look like in a
few years time. While I can’t predict when the Window Manager will finally support
floating windows, use of the API described in this article will make for a smoother
transition when that day finally comes.
THANKS TO OUR TECHNICAL REVIEWERS
C. K. Haun, Nick Kledzick, Kevin MacDonell, Eric
Soldan•

J
D

WORKING IN

THE THIRD

DIMENSION
AMIE OSBORNE AND
EANNA THOMAS
Macintosh users have a lifetime of experience seeing and manipulating
objects in three dimensions. Many developers are taking advantage of
this experience by adding three-dimensional elements to their human
interfaces. 3-D effects can heighten the ease of use, realism, and visual
appeal of your application. This article discusses why 3-D effects add
value to Macintosh applications and describes an easy way to add 3-D
effects to applications created with MacApp.

Three-dimensional effects can add life to any user interface. A 3-D interface is
inviting to users. It offers them tactility and can make the user interface elements they
work with stand out. When implemented correctly, the 3-D interface helps users
differentiate between the important contents of a window and the background. The
result is a friendlier, more accessible interface to your application.

This article tells you about some basic 3-D design principles that you can use and
describes one way to implement them. The accompanying code on this issue’s CD
contains a set of adorners and classes that make it easy to bring your MacApp
applications into the third dimension.

WHY A 3-D LOOK?
Developers have been adding color and 3-D buttons to their products for a couple of
years now. Users like 3-D effects not only because they’re nicer to look at but also
because they help define user interface elements within the workspace. There’s a clear
message that both users and developers want 3-D effects, and developers aren’t
holding off until Apple provides guidelines and tools to implement them.

We’ve seen many developers come up with their own implementations of gray
windows and 3-D buttons. Even within Apple there are several ideas about what a
3-D user interface should look like. Although this article doesn’t present an official
Apple 3-D interface, it does describe designs and approaches that we developed while
WORKING IN THE THIRD DIMENSION September 1993

103
JAMIE OSBORNE (AppleLink JWO) is a best-
selling novelist stuck inside a software engineer’s
body. When he isn’t working on secret decoder
rings in Apple’s Enterprise Systems Division, he
can be found watching Star Trek with his friends
Darmok and Jilad, and his kitten. Before coming
to Apple, he was an undergraduate at Dartmouth
College, where he discovered and was

subsequently sucked into the world of Macintosh
programming. He has yet to escape.•

d e v e l o p Issue 15

104
implementing a 3-D interface and that we think can help you with your own 3-D
interface design.

THE 3-D LOOK
In our three-dimensional look, windows have a light gray background instead of the
standard white background. Darker shades of gray and white on the edges of user
interface elements give the illusion that some elements are chiseled into the
background while others appear in bas-relief.

There are two special cases: Modal dialog boxes (windows with the definition ID of
dBoxProc) have a gray background, but do not have the chiseled effect because the
color version of the window already has a 3-D border. Scrollable document windows
(definition ID of documentProc) do not have a gray background at all.

The 3-D look offers the user two advantages. First, it creates a clearer work
environment. White interface elements, such as text fields, checkboxes, and pop-up
menus, stand out from the light gray background and call attention to themselves.
The chiseled appearance, though subtle and unobtrusive, effectively communicates
the division of elements within the window.

The second advantage to the 3-D look is that it lets the user work on a more tangible,
tactile surface. The chiseled look gives strong clues that invite interaction. The slight
depression of text fields, for example, invites the user “into” the field to edit text. The
shading around buttons makes them look as if they project slightly from the gray
background. This makes buttons appear pressable, and they react appropriately when
the user clicks them. Our implementation of these elements strives to maintain the
crisp, clean graphical elegance that the Macintosh is known for.

The background gray we use for windows is the lightest gray in the Macintosh
palette. Its RGB value is 61166, 61166, 61166 (hex 0xEEEE). In small areas, this gray
is subtle; it appears to be darker in large areas that have only a few text fields or other
graphical elements.

Chiseled lines define the edges of windows, text fields, and checkboxes. They also
help group related items within a window. To create a chiseled effect on the light gray
background, use white and the fourth gray value from the Macintosh palette. The
RGB value of this medium light gray is 43690, 43690, 43690 (hex 0xAAAA). The way
you use these colors determines whether an object comes toward the user or recedes
into the background.

To chisel an object into the gray background, use gray shading on the object’s top and
left edges and white on its bottom and right edges. To make an object project from
the gray background, reverse the order: use white on the top and left edges and gray
on the bottom and right edges. Note that the color of the top and left edges, whether
DEANNA THOMAS, semiotician savant, has
been at Apple for over five years, and loves to
work in all dimensions (second, third, and fourth),
experience music, meditate in the garden, and
taste wonderful foods. A visual designer in the
Human Interface Group of the Enterprise Systems
Division, Deanna paints in tiny pixels instead of
on the large canvases she knew at the University
of North Texas, where she got her MFA in

Painting and Photography. Before joining Apple,
she taught college-level studio arts and managed
her own design business, Gorilla Graphics.•

white or gray, always extends to the far corner pixels. Figure 1 shows both kinds of
shading.

If you keep in mind that the imaginary light source on the desktop comes from the
upper left corner of the screen, you can always determine where to place the
highlight and shadow colors.

In windows, the background itself should appear to come forward by one pixel. To
create this effect, draw a white line on the top and left edges of the window and a gray
line on the bottom and right edges. Figure 2 shows a window with the background
drawn this way and a scrolling list chiseled into the background.

Though these chiseled effects are subtle, they do give a sense of depth, even if it’s
almost subliminal in some cases. Remember, we don’t want to hit anyone over the
head with these graphical enhancements. The goal is to add elegance and ease of use
to the work environment, not to scream out “Look at me!”

ICON BUTTONS
Icon buttons are buttons that use graphics to describe what they do. The page
orientation controls in the standard Page Setup dialog box are good examples of early

Figure 1
Shading Items for 3-D Effects

Figure 2
A Window With 3-D Effects
WORKING IN THE THIRD DIMENSION September 1993

105

d e v e l o p Issue 15

106
icon buttons. One of the great things about icon buttons is that they give pictorial
clues at a glance. The user can usually understand what the buttons do from the way
they’re clustered and from their surrounding context. Another advantage of icon
buttons is that they’re more accessible and easier to see than menu commands. This
makes icon buttons ideal for frequently used commands.

It’s very easy to create poorly designed icons. If you decide to use icon buttons in
your application, take the extra time to do plenty of user testing to make sure your
users think your icons mean what you think they mean. This is especially important if
you decide not to use text labels for your buttons.

Our icon buttons are square or rectangular, and the button is a slightly darker shade
of gray so that it’s easily distinguished from the light gray background. The illusion of
height invites the user to press a button. Figure 3 shows a few examples of icon
buttons.

Because icon buttons are dynamic elements with specific characteristics, they need to
maintain a distinct appearance even in black and white, just as checkboxes and radio
buttons do. On a black-and-white screen, we use a 50% dither pattern along the
bottom and right edges of an icon button to give the button height (see Figure 3).
When the user clicks the button, the entire button inverts, maintaining a subtle 3-D
look.

To achieve a consistent 3-D effect, our icon buttons follow certain guidelines. We
always use a 2- to 3-pixel margin between the icon boundaries and the edge of the
surface of a button. The frame and shading that give the icon button its 3-D
appearance extend four pixels in each direction. Figure 4 shows a closeup of an icon
button’s shading.

When you design your icon buttons, don’t forget the additional pixels that you’ll
need for the shading. If you want to use a 32 x 32 icon in a button, the minimum
button size is 40 x 40. If you want the entire button, including its shading, to fit in a
32 x 32 space, the icon should fit in roughly a 22 x 22 area so that it sits comfortably
within the button.

Figure 3
Some Icon Buttons

Grayscale Black and white

As you design your icons, try to keep the image as free form as possible. In general,
the image shouldn’t follow the outline of the button. A square icon can hide the
appearance of a square button and diminish the 3-D effect when the user presses the
button. The more free form the image, the clearer it is within the button. The icon
buttons in Figure 3 are good examples of free-form images.

Our icon buttons can appear in one of three states: available, selected, and
unavailable. Figure 5 shows what these states look like.

• In the available state, the button shows the full 3-D shading, and
its icon is displayed in the normal way. When the user clicks the
button, it goes into the selected state.

• In the selected state, the button and its icon darken, similar to a
selected icon in the Finder. Since it’s a 3-D image, the shading
changes to make the icon recede into the surface, giving the
impression that it’s pushed in. If the button behaves like a radio
button, it stays in this state until the user selects a different button.
If the button behaves like a push button, it pops back out when the
user releases the mouse button.

• In the unavailable state, meaning the operation that the button
represents is not available, the entire button is dimmed to make it
appear flat against the surface. When the user takes some action
that makes the button’s operation available, it changes to the
available state.

available selected unavailable

Figure 5
Icon Button States

Figure 4
Icon Button Detail
WORKING IN THE THIRD DIMENSION September 1993

107

d e v e l o p Issue 15

108
You can change the icon in the button depending on context. Dynamic buttons give
the user visual information about what effect the operation will have. For instance,
suppose you have a list that can show user names, folders, and documents at the same
time. When the user selects a folder or a document from the list, the icon button for
the Open operation displays a folder icon or a document icon; the folder case is
shown in the window on the left in Figure 6. When the user selects a user name from
the list, the button changes to display the standard user face icon, as shown on the
right in Figure 6.

You need to be especially careful when designing dynamic icon buttons. While the
image in the icon may change to specialize the button, you don’t want to change the
meaning of the button. Changing the icon from open folder to open document is
useful, but changing the meaning of the button from “open item” to “quit
application” would confuse the user.

THE NAUGHTY BITS
This issue’s CD includes code that makes it easy for you to add these 3-D effects to
your MacApp application, and includes a sample application, with source code, that
shows you how to use the code. There are some adorners for drawing gray
backgrounds and chisels in windows and around text and list boxes, 3-D versions of
TControls such as T3DCheckBox and T3DRadio, and two C++ stack-based objects
to help with drawing. The code requires MacApp 3.0.x and the resulting application
requires System 7.

The 3-D adorner classes on the CD are TGrayBackgroundAdorner,
T3DGrayBackgroundAdorner, TWhiteBackgroundAdorner, T3DFrameAdorner,
T3DLineTopAdorner, T3DLineBottomAdorner, T3DLineLeftAdorner, and

Figure 6
A Window Containing a Dynamic Button

T3DLineRightAdorner. The 3-D TControl classes are T3DButton, T3DCheckBox,
T3DRadio, and T3DIconButton.

The easiest way to incorporate the 3-D adorners and classes into your application is
to use a view editor, such as AdLib or ViewEdit. Attach the adorners to your views
the same way you would attach any other adorner. For best performance, insert the
line adorners after the Draw adorner in the view’s adorner list. One of the
background adorners should replace the Erase adorner (before the Draw adorner) in
your window’s adorner list.

For the classes, create a control 'View' resource of the type you want, and insert “3D”
into the name. For instance, TCheckBox becomes T3DCheckBox, TRadio becomes
T3DRadio, and so on. T3DIconButton is an exception because there is no
TIconButton class. To create a T3DIconButton, you’ll need an icon suite ('ICN#'
resource). Next, create a TControl and change the class name to T3DIconButton.
Then, set the user value of the T3DIconButton to the ID of the icon suite. If you
install the adorners or classes this way, be sure to call InitU3DDrawing in your
initialization code so that the linker doesn’t dead-strip any adorners that you don’t
explicitly reference in your code.

Another way to use the adorners is to create them procedurally and use the
AddAdorner method to add them to a view. If you do it this way, you can create a
single global instance of each adorner you intend to use and pass a pointer to the
global adorner when you call AddAdorner. MacApp uses this technique for the
common adorners such as TDrawAdorner and TEraseAdorner. You may still want to
call InitU3DDrawing in your initialization function in case you decide to use the first
method for some of your views.

You can create the 3-D classes (such as T3DCheckBox and T3DRadio) procedurally
as you would any other MacApp view.

STACKING THE DECK IN YOUR FAVOR
The MacApp classes on the CD use two C++ stack-based objects to help you draw
the 3-D effects. CGraphicsState objects save and restore the drawing state, and
CDrawPerDevice objects let you customize your drawing routines for different pixel
depths. For more information on stack-based objects, see “Stack-Based Objects.”

When a drawing routine changes the graphics state, as most of the 3-D adorners
and classes do, it’s a common courtesy to restore the state to the way you found it
when your routine is done. CGraphicsState saves important characteristics of the
graphics state, such as the foreground color, the background color, the pen state, and
the text style. All you have to do is declare an instance of a CGraphicsState in your
function’s local variable list, and forget it. C++ takes care of everything else, as in the
following example.
WORKING IN THE THIRD DIMENSION September 1993

109
AdLib is a view editor sold by MADA. You may
purchase a copy by calling MADA at (408)253-
2765 or by sending an AppleLink to MADA.•

d

110
Stack-based objects are a powerful feature of C++ that
lets you use function scope to perform routine actions in
your code. They work because of constructors and
destructors.

To create a stack-based object, create a C++ class with a
constructor and a destructor. In the constructor, add the
code that you want to execute when an instance of the
object is created. For example, the constructor can save
the graphics state, set the cursor to a watch, or lock down
handles. In the destructor, reverse the process: restore the
state, reset the cursor, or unlock the handles.

Since the object is created on the stack as a local
variable, C++ frees the memory it occupies when the
function ends. But before the object is freed, its destructor
executes.

STACK-BASED OBJECTS
 e v e l o p Issue 15
The CGraphicsState class is a simple illustration of this
technique. When you declare an object of type
CGraphicsState, the constructor saves the graphics state
in the object’s data members. When the function ends,
and the destructor is called, it restores the graphics state
from its saved data.

In theory, you can use the constructors and destructors of
stack-based objects to do anything you want; in practice,
you have to be careful. Obviously, your destructor should
reset any changes that your constructor made, so it’s
important that they’re in sync. If your constructor allocates
memory, you should be prepared to handle a failure.
Since constructors can’t return a value, you’ll need to
provide some way to find out whether the operation was
successful.
MyClass::DrawIt() {
short aLocal;
CGraphicsState theGState;
. . .
// Do some drawing.
. . .

}

When the function ends, CGraphicsState’s destructor restores the graphics state.

Sometimes you want your drawing routine to behave differently depending on the
pixel depth of a monitor. Our stack-based object, CDrawPerDevice, lets you specify
how your drawing routine should react to monitors with different pixel depths.
CDrawPerDevice performs the same function as the DeviceLoop routine (see the
article “DeviceLoop Meets the Interface Designer” in develop Issue 13), but
CDrawPerDevice is easier to use with MacApp. To use the DeviceLoop routine with
C++ or with Object Pascal, you need to create a static drawing routine that you can
pass to DeviceLoop. Since you can’t make the Draw method of a TView subclass
static, you need to create a second drawing function. If you had to do this for all your
drawing classes, it would get messy and wasteful. CDrawPerDevice doesn’t require
static draw routines.

To use CDrawPerDevice, declare an instance of it and initialize it with a CRect that
specifies the QuickDraw drawing area. Then do your drawing in a while loop that
calls CDrawPerDevice::NextDevice, like this:

MyClass::DrawIt(VRect area) {
CGraphicsState theGState;
CRect aQDArea;
short pixelSize;

this->ViewToQDRect(area, aQDArea);
CDrawPerDevice device(aQDArea);
while (device.NextDevice(pixelSize)) {

if (pixelSize > 2) {
// Do some color drawing.
this->DrawColor();

}
else {

// Do some black-and-white drawing.
this->DrawBW();

}
}

}

Note that you create actual instances of CGraphicsState and CDrawPerDevice on
the stack (that is, as local variables in the function). Don’t instantiate pointers to these
objects.

DECORATING YOUR WINDOWS WITH ADORNERS
An adorner is a handy class that MacApp uses to draw views. Instead of putting
special drawing code in the Draw method of a class, you can use an adorner to do the
drawing for you. For example, a line adorner might draw a single black line along the
top edge of a view. You can create an adorner to draw something, like a line, and then
add it to any view you want.

The basic 3-D adorner is TGrayBackgroundAdorner. As you might have guessed, it
colors the background of its view gray. This adorner calls EraseRect on the viewRect

Correct Incorrect

CGraphicsState myState; CGraphicsState *myState;
CDrawPerDevice drawing(aQDArea); CDrawPerDevice *drawing;

new drawing(aQDArea);
WORKING IN THE THIRD DIMENSION September 1993

111

d e v e l o p Issue 15

112
with kLightGray. Using EraseRect instead of PaintRect in gray has a useful side
effect: because any view without an explicit TDrawingEnvironment inherits the
foreground color and the background color from its superview, all subviews of a
view with a TGrayBackgroundAdorner will erase with gray by default. This is
especially important when you have TStaticText items. Without the gray
TDrawingEnvironment they inherit, they would draw ugly white boxes around the
text.

T3DGrayBackgroundAdorner is a subclass of TGrayBackgroundAdorner that adds
the chiseled effect described earlier in this article. Its Draw routine first calls the
inherited method, which fills the viewRect with kLightGray. Then it draws the gray
and white lines around the edges. These lines are not drawn if the monitor is in
black-and-white mode. To draw a chiseled gray line that appears as a black line in
black-and-white mode, use T3DLineTopAdorner, T3DLineLeftAdorner,
T3DLineBottomAdorner, or T3DLineRightAdorner.

The T3DFrameAdorner, used for TEditText and list views, is an interesting case.
Unlike the other frame adorners, which tend to draw a one-pixel-wide line around
your view or portions of your view, T3DFrameAdorner draws two-pixel-wide lines to
achieve its 3-D effect. This isn’t a problem for TEditText, but it means that you need
to inset your TListView two pixels from the TView or TControl that encloses the
TListView. Then add the T3DListFrameAdorner to the enclosing TView instead of
the TListView. You should also add a TWhiteBackgroundAdorner to your list view
or edit text (before the Draw adorner) so that the text appears on a white background.
Another way to get the same effect is to set the drawing environment background for
the list view or edit text to white.

Note that the 3-D adorners draw the chiseled effect only on devices whose pixel
depth is 2 or more. None of the 3-D adorners described here, except the line
adorners described above, show up in black and white. This decision to hide 3-D
effects in black and white follows the Macintosh Human Interface Guidelines
recommendation that applications not try to simulate 3-D effects in black and white.

TO STAY IN CONTROL YOU HAVE TO HAVE CLASS
It would be nice if you could give 3-D effects to controls simply by adding adorners.
To do it that way, you would need to draw over the CDEF. This is not a
recommended programming practice, since CDEFs may change, or a user might
have installed a special CDEF such as Greg’s Buttons. Any assumptions your adorner
makes about the way a control looks may turn out to be false. That’s why we use
MacApp classes instead of adorners to handle the drawing of 3-D controls.

The 3-D control classes are still easy to use because they inherit from their 2-D
ancestors. On 1-bit devices, the 3-D classes simulate the standard two-dimensional
CDEF drawing. Since icon buttons need to maintain a distinct button appearance
Greg’s Buttons is a shareware extension that
adds 3-D effects to the standard controls.•

even in black and white, T3DIconButton does simulate a 3-D effect even on 1-bit
devices.

The text for checkboxes, radio buttons, and regular push buttons is normally drawn
on a white background because that’s the way the System CDEF works. The
TControl subclasses change the effect to draw on a gray background and, where
appropriate, to add a 3-D effect. T3DCheckBox, for example, draws black text on a
gray background and adds the chiseled effect to the checkbox itself. You can
customize the drawing colors by setting the fForegroundColor and
fBackgroundColor fields.

You can use two different kinds of 3-D buttons: T3DButton, descended from
MacApp’s TButton, and T3DIconButton from our code. Class T3DButton just
inherits from TButton to draw in 3-D.

Class T3DIconButton uses the TIconSuite class and icon suites ('ICN#' and 'ics#'
resources) to draw icon buttons. T3DIconButton uses CDrawPerDevice to draw
buttons differently on monitors set to different pixel depths. For example, if you’re
drawing on a 4-bit monitor, T3DIconButton uses the 'icl4' or 'ics4' resource for your
icon, but if you’re drawing on an 8-bit monitor, it uses 'icl8' or 'ics8'. Also, instead of
inverting the icon when the button is hit, T3DIconButton masks the icon with the
kSelected mask just as the Finder does.

ADDING THE 3-D CLASSES TO YOUR MACAPP
APPLICATION
Here’s how you add the 3-D adorners and 3-D control classes to your MacApp
application:

1. Drag the files in the 3D Drawing folder on the this issue’s CD to
your project folder.

2. Edit your MYourApp.cp file as follows: In main, add “extern
InitU3DDrawing();” after your includes, and add
“InitU3DDrawing();” where the other initialization routines are.

3. Edit your YourApp.MAMake file to include the files you added
from the CD. The Demo3D.MAMake file is a good example of
how to do this.

WHY BOTHER WITH A THIRD DIMENSION WHEN WE
HAVE TWO PERFECTLY GOOD ONES?
“So,” you ask, “why should I bother with all this stuff? Does it really make my
application any easier to use?” The answer is: probably. There have been no studies
that definitively prove a 3-D interface is better than a 2-D interface. What we hear is
WORKING IN THE THIRD DIMENSION September 1993

113

d e v e l o p Issue 15

114
a cry for more 3-D elements in the Macintosh interface. The subtle effects described
in this article are enough to add depth and tactility to the workspace. This results in
ease of use and clarity of view for the user. It’s also a lot more fun without being
distracting.

“Why not just use a custom CDEF like Greg’s Buttons?” The 3-D effects from this
article weren’t created arbitrarily. They reflect a lot of work done to date by some of
Apple’s visual designers. CDEFs are also more difficult to write than adorners and
TControl subclasses. Furthermore, CDEFs define only the way controls are drawn.
You can’t use a CDEF to create a chiseled effect and a gray background for your
windows, for example.

“This all looks great with MacApp, but what if I’m using something else?” There’s
nothing intrinsic about the 3-D effects that makes them difficult to implement in any
application framework. We chose to use MacApp because it made sense for our work.
You could easily adapt these techniques to fit the framework you’re using.

We hope that someday 3-D will become the rule, and that it will be just as easy to
make a window three dimensional as it is now to make it colorized. Until then, the
methods we’ve described in this article should save you time and frustration when
making your applications 3-D. And we’re confident that those who use your
applications will appreciate and benefit from your effort.
The 3-D code was written by Jamie
Osborne, Robin Mair, Faulkner White, and Henri
Lamiraux.•

THANKS TO OUR TECHNICAL REVIEWERS
Robin Mair, Ed Navarett, Cordell Ratzlaff, Dean
Yu•

The brain trust that makes up the heart, soul, and
spleen of develop recently got together to have a few
beers, pat each other on the back in a team-building-
while-not-being-too-aggressive way, and just generally
— as Albert Einstein once said — “figure it all out.”

Two interesting things came out of the meeting. First,
it’s very difficult to pat each other on the back in a
team-building-while-not-being-too-aggressive way
after you’ve had a couple of beers; and second, develop
has a serious flaw. A flaw as wide, as gaping, and as
socially repugnant as the space between Alfred E.
Neuman’s teeth.

As by now I’m sure you’ve discovered, develop is the best
source for “how to” articles on Apple technology. It’s
the literary equivalent of an overprotective older
brother in a strange neighborhood. Yet all those back
issues of develop, combined with that big stack of CDs
you save but never use, are doing nothing to help you
survive in the day-to-day workplace. You may be able
to write C++ in your sleep, but it’s not going to do you
any good if you don’t know socially important things
like who your company’s CEO is or the finer points of
water cooler etiquette. The raw philanthropic nature of
this journal, combined with the necessity to fill a couple
of extra pages, compels us to offer some useful office
survival tips along with the gripping technical articles
develop has always delivered.

VIEW FROM
THE LEDGE

TAO JONES
TAO JONES is the pen name of an Apple employee so afraid of
speaking directly that he can’t even get up the nerve to introduce
himself here.•
From this point forward for eternity (or until I’m fired,
or until the hate mail reaches unbearable levels), I’ll be
your tour guide through the political jungle of the
modern office. Like any good companion, I’ll be
pointing out the nasty baboons from the safety of our
digital van, helping you step around the virtual guano
while we roam the electronic terra firma, bellowing at
you when you try to feed your little sister to the lions,
and pretending to know what I’m talking about when I
don’t have a clue.

To offer the ultimate in customer service, and to
provide snappy repartee, I’ll be answering questions
sent in by inquisitive readers and hand-picked by our
crack staff. Rest assured your questions will be held in
the utmost confidence, unless they have good blackmail
potential. Everyone “fortunate” enough to have their
questions printed will receive an incredibly cheap, yet
heartwarmingly collectible, gift. Interestingly enough,
questions arrived even before this column was
announced. Leaks are everywhere, I guess.

Dear Tao,

As a product manager at a major U.S. software company, I
often find myself losing in negotiations with my colleagues
for our company’s internal resources. I always go into
meetings prepared and well rehearsed, and I always come out
with less than I’d hoped for.

The situation is growing desperate. I have yet to be
promoted, and I’m afraid I’ll need to call in the loans I’ve
made to my children so I can pay off my BMW.

Please help,

Distressed in Denver

Dear Distressed,

You say you’re a product manager yet you got your
point across in fewer than ten pages. My guess is you’re
being too direct with people in the workplace. A rule of
VIEW FROM THE LEDGE September 1993

115
Tao Index: In the computing industry, people who refer to
themselves as “guru” or “wizard” usually aren’t.•

116
thumb: When dealing with people in the workplace,
never be direct.

There are several disadvantages to saying what’s on
your mind. One is that people will know what you’re
thinking. If you’re dealing with someone who isn’t
direct, they’ll automatically have an edge on you; they’ll
know what you know, but not vice versa. If you’re
dealing with someone who is truly malevolent — the
kind of person who bites the heads off marshmallow
bunnies before eating the rest, or worse, someone who
wears suspenders — your directness can be very
detrimental to what you’re trying to accomplish.

As you’ve already learned, being direct can be especially
harmful when dealing with management. Let’s say you
have some idea that you present honestly and
forthrightly to your boss. When your boss responds
with, “It basically seems like a good idea; let’s see if we
can work something out,” what this really means is
you’re heading straight into a nightmare commonly
referred to as “negotiation.” This is bad news in a big
way, because Boss School has taught your manager to
(1) verbally whittle your idea into a headless
monstrosity doomed for failure, and then (2) either
take credit for your superhuman struggles in making
the plan succeed or, more likely, crucify you mercilessly
for failure.

Just like everything else in the ’90s, the answer to your
problem lies in a combination of inner awareness,
macrobiotic diets, shaky mutual funds, and self-help.
Not being direct will seem unnatural at first, so I give
you this as your homework: Put a marble on a table.
Study it closely until you really begin to understand
what that marble is all about. Then, for the next half
hour, describe the marble without using the words
“round” or “sphere.” Once you think you’ve got it, ask
some friends in and describe the marble to them. If
they have no idea what you’re talking about, you’ll
know that you’re well on your way to honing one of the
most important of your office survival skills.

As for calling in those loans from your children: Mom,
I told you that I’d pay you back when I got a chance.
d e v e l o p September 1993

Tao would like to thank Sarcasmo for rewriting most of this
column without trying to claim authorship, Cindy Jasper and
Caroline Rose for their unnerving faith, and Mr. and Mrs. Jones for
his existence.•
Dear Tao,

I have an employee who is perpetually late and always uses
the excuse “my dog got loose.” I’ve always been a bit
suspicious, and upon checking I discovered that he doesn’t
even own a dog! What should I do?

Sign me,

Flea-Bitten

Dear Flea,

As a manager you’re probably already aware that
chronic lateness is usually only a symptom of some
bigger underlying problem. Situations like this are
sensitive, extremely volatile, and prone to disaster if not
handled by properly trained professionals.

First, you should make a detailed account in writing of
all the incidents as they happen. Then call both the
local animal shelter and the police department, stating
that you believe one of your employees is running an
illegal dog-racing operation. Don’t forget to mention
that you think it’s likely your underling will “do
something” (make sure to use that exact phrase) with
the dogs if he finds out that the authorities are after
him. As you watch events unfold, it may seem like a
painful and arduous process. But believe me, once it’s
all over, your employee will be so choked with emotion
that he won’t be able to find the words to thank you.

RECOMMENDED READING AND
LISTENING
• Gojiro by Mark Jacobson. The autobiography of

everyone’s favorite Japanese monster.

• Cool Tricks by John Javna. It’s high time you
learned how to tie balloon animals, isn’t it?

• Dead Man’s Party by Oingo Boingo. Play it loud,
and when your boss comes in, say “It’s symbolic.”
Tao needs questions to keep from dropping into a nasty blue
funk. Please send them to AppleLink DEVELOP.•

MACINTOSH

Q & A
Q Will QuickDraw and QuickDraw GX coexist, or will QuickDraw GX replace
QuickDraw?

A QuickDraw isn’t leaving with the introduction of QuickDraw GX. It’s here to
stay. Among other reasons, QuickDraw functions are used extensively by the
Macintosh Toolbox and applications. For more information, see the article
“Getting Started With QuickDraw GX” in this issue of develop.

Q Will display cards that offer QuickDraw acceleration be affected by QuickDraw GX?

A Current QuickDraw acceleration cards aren’t affected by QuickDraw GX.
QuickDraw GX doesn’t use any of the current QuickDraw calls and its presence
won’t affect applications that use only QuickDraw. QuickDraw acceleration
cards also won’t accelerate QuickDraw GX.

Q The LaserWriter driver before the QuickDraw GX version has an option to print in
Color/Grayscale or Black & White. Why isn’t this option in the QuickDraw GX
LaserWriter driver?

A The Color/Grayscale option was added to the LaserWriter driver only for
compatibility reasons. At the time, some applications couldn’t deal with the
color option (specifically with cGrafPorts), so a Black & White mode was also
provided. The Black & White mode exhibited the same functionality as the
earlier LaserWriter driver 5.2.

Because most applications are color compatible now, the option was removed
from the QuickDraw GX printer drivers. Some people reported that the option
let them print faster when they chose Black & White. This was true because of
quirks in the earlier LaserWriter driver version. Under QuickDraw GX, this
shouldn’t be a problem. If it turns out to be a problem for your driver, you could
incorporate black-and-white threshold printing into your “rough draft mode”
code. The QuickDraw GX LaserWriter driver always prints in color.

Q When a QuickDraw GX PostScript printer driver generates a file, will it work for
Level 1 and Level 2 printers?

A The LaserWriter driver bundled with QuickDraw GX produces a flavor of
PostScript that we call “portable.” This flavor is meant to work on the widest
range of printing devices, be they Level 1 or 2, color or black and white.

Q What PostScript Level 2 features does the QuickDraw GX printing mechanism take
advantage of?
MACINTOSH Q & A September 1993

117
Kudos to our readers who care enough to
ask us terrific and well thought-out questions. The
answers are supplied by our teams of technical
gurus in Apple’s Developer Support Center; our
thanks to all. Special thanks to Pete (“Luke”)
Alexander, Mark Baumwell, Joel Cannon, Matt
Deatherage, Tim Dierks, Nitin Ganatra, Bill
Guschwan, Mark Harlan, C. K. Haun, Dave
Hersey, Rich Kubota, Jim Luther, Joseph Maurer,

Kevin Mellander, Don Moccia, Ed Navarrete,
Guillermo Ortiz, Faith Pai, Dave Radcliffe,
Brigham Stevens, Steve Strassmann, Dan Strnad,
John Wang, and Dave Wells for the material in
this Q & A column.•

d e v e l o p September 1993

118
A The Level 2 features used in QuickDraw GX mostly have to do with patterns,
text, and bitmaps:

• QuickDraw GX patterns are converted into Level 2 pattern dictionaries
when going to a Level 2 printer. The actual PostScript code emitted by the
driver differs little with respect to patterns when going to Level 1 or Level
2. However, the procedures defined in the header do something entirely
different on a Level 2 printer.

• Line layout in QuickDraw GX takes advantage of the xshow, yshow, and
xyshow operators when it makes sense to do so.

• The Level 2 rectangle operators are used in Level 2, though this happens in
the procedures defined in the header rather than in PostScript code from
the driver.

• On Level 2 printers, the indexed color spaces are used for printing bitmaps
up to eight bits deep.

• The plan is to use Level 2 device-independent color when possible.

Q Why can’t I get NewMessageGlobals to work in my gxInitialize message for my
QuickDraw GX printing extension? The global data I try to initialize isn’t being
accessed correctly.

A You shouldn’t call NewMessageGlobals from any routine in which you access
your global data. Otherwise, because of optimization that your compiler may
perform, the data references can be invalid. Instead, use an approach like this:

extern long A5Size(void);
extern void A5Init(void *);
typedef struct GlobalType {

StringHandle aString;
} GlobalType;
GlobalType myGlobals;

/* This routine sets the initial values of our global data. */
OSErr InitGlobalData()
{

OSErr err;
// Initialize our globals.
myGlobals.aString = GetString(r_myStringID);
err = ResError();
if (!err) DetachResource(myGlobals.aString);
return err;

}

/* Our override for the gxInitialize message. */
OSErr MyInitialize()
{

OSErr err;
// Create an A5 world, then go initialize our global data.
err = NewMessageGlobals(A5Size(), A5Init());
if (!err) err = InitGlobalData();
return err;

}

A detailed explanation of the problem accompanies the Kabooms printing
extension sample on this issue’s CD.

Q A QuickDraw GX printing extension I’ve already written works fine, but when I
install my latest creation, it doesn’t show up in the print dialog — only my old printing
extension does. Both extensions are the same except for a few lines of code in their
gxDespoolPage message overrides. What’s going on?

A Your printing extensions shouldn’t have the same creator type. QuickDraw GX
requires unique creator types for drivers and printing extensions, just as the
Finder does for applications. A creator type must be unique because QuickDraw
GX uses it to build its chain of message handlers. If two printing extensions
have the same creator, there’s no way to determine which is which in the chain.
You can register creator types for your printer drivers and printing extensions
with the Developer Support Center (AppleLink DEVSUPPORT).

Q Will the SndPlayFromDisk routine in the new Sound Manager version 3.0 work on
Macintosh models without the Apple Sound Chip? For the current Sound Manager, is
there a good way to tell whether a machine supports SndPlayFromDisk?

A Sound Manager 3.0 supports SndPlayFromDisk on all models. Playing from
disk is based on the performance of the machine’s SCSI device more than the
Sound Manager’s performance. In earlier versions of the Sound Manager,
SndPlayFromDisk works only on Apple Sound Chip machines.

The System 7.1 interface has a play-from-disk Gestalt flag in the sound
attributes selector. If this flag bit is set, play from disk is supported. If you’re not
running System 7.1, you’ll have to guess based on whether the version of the
system being used has an Apple Sound Chip. So first check for the new Gestalt
flag and the presence of Sound Manager version 3.0 or later, which supports
this flag. Older versions of the Sound Manager don’t report whether play from
disk is supported, so you’ll have to check for the Apple Sound Chip.
MACINTOSH Q & A September 1993

119

d e v e l o p September 1993

120
Q Is the Component Manager bundled with QuickTime? In other words, will the users of
the application I’m designing have to buy QuickTime in order to get the Component
Manager?

A The Component Manager was first introduced as part of the QuickTime 1.0
system extension. This makes the presence of QuickTime a requirement for
system software versions earlier than System 7.1. The Component Manager is
now part of System 7.1, giving the extended functionality to any Macintosh
application running on System 7.1 regardless of the presence of QuickTime.

Q How does the Component Manager handle multiple segments?

A The Component Manager doesn’t automatically support multiple code
segments. In fact, it assumes that all the code is in one segment. The 'thng'
resource allows you to specify one segment. Therefore, if you load other code
segments from your main segment, they should be loaded and locked in the
system heap. There are several ways you can do this; the register routine
probably is the best place to do it. Since the register routine is called only once
at registration time, this allows your component to completely load the
remaining code segments into the system heap. Components should ensure
that A5 (or A4) is set appropriately before any intersegment calls. For more
information, see “Managing Component Registration” in this issue of develop.

Q How can I get answers to my Macintosh Common Lisp questions?

A Macintosh Common Lisp technical support is available on the Internet at the
following addresses (add “@internet#” for the corresponding AppleLink
addresses):

• bug-mcl@cambridge.apple.com, which reaches the MCL team

• info-mcl@cambridge.apple.com, which reaches MCL users at large

You can join the info-mcl list in one of the following ways:

• Contact info-mcl-request@cambridge.apple.com on the Internet to add your
address to the list.

• Join INFO.MCL$ on AppleLink by contacting ST.CLAIR.

• Check comp.lang.lisp.mcl on Internet netnews.

MCL utilities and sample source code are available in these places:

• on the MCL 2.01 CD-ROM (available through APDA)

• on the Developer CD Series disc (Tool Chest edition) and the
develop Bookmark CD

• on the Internet, by anonymous ftp from the location
cambridge.apple.com:/pub/MCL2/contrib

Q Can I assume that the value of the ColorSync CWorld parameter returned by the
CWNewColorWorld routine isn’t null if the routine was successful? I’d like to
determine whether a color world exists by checking the variable for null.

A You can assume that if no error is returned by CWNewColorWorld, the
CWorld parameter will be a valid handle. In other words, it won’t be null if no
error is returned.

Q The icons that appear in our application’s menu lists are very, very small. It looks like
they’re 8 x 8 (scaled) instead of the standard 16 x 16. Can you tell from our test code
why this is happening?

A This was a wild one! What’s causing the weird behavior is that you have a 'cicn'
resource with ID = 256 that’s smaller than 32 x 32. When the MDEF finds such
an icon, it uses it to size the area to use for the menu icons. So, for your
application the solution is either to change the 'cicn' to be larger (32 x 32) or to
give it a different ID.

Q I’ve installed a resource error procedure (ResErrProc) but it gets called with an error
-192 (resNotFound) every time I release a resource. Why is this happening and what
can I do to fix it?

A If you install a ResErrProc, the Process Manager switches it out when switching
to another application. The problem you’re having is that the Process Manager
doesn’t switch it out while in Process Manager code itself. If you break into the
debugger in your ResErrProc and examine register A5, you’ll find it’s not your
A5; it is in fact the Process Manager’s.

What has happened is that the Process Manager has patched ReleaseResource
for its own mysterious purposes. An error occurs, which the Process Manager
believes it can ignore, but because your ResErrProc is still installed, it gets
called and reports the error. To avoid this, when your ResErrProc gets called,
check to see whether register A5 is equal to the low-memory global CurrentA5.
If the values aren’t equal, you can assume your application wasn’t responsible for
the error, so you can ignore it.

The code might look like this:
MACINTOSH Q & A September 1993

121

d e v e l o p September 1993

122
void MyResErrorProc (void)
{

long A5;
A5 = SetCurrentA5 ();
if (A5 == *(long *)CurrentA5) /* If they're equal, we're in

current app code */
Debugger(); /* ...or whatever you want to do here */

else /* Not in current app code */
SetA5 (A5); /* Restore old A5 */

return;
}

Similar problems can occur if you make calls that make other Resource
Manager calls. The secondary calls may produce errors that are inconsequential
to the primary call, but your ResErrProc gets called anyway. This makes
ResErrProcs of limited use, so use any information reported by a ResErrProc
carefully.

Q We can’t apply the rotation and skew effects to a QuickTime 1.5 movie. We’ve created
an identity matrix, applied RotateMatrix to the matrix, set the matrix to the movie
using SetMovieMatrix, and played the movie. The movie didn’t rotate but the
movieRect rotated and the movie scaled to the movieRect. Is there anything wrong with
what we’re doing?

A Rotation and skew will give you correct results for matrix operations but they
haven’t been implemented into QuickTime movie playback yet. Scaling and
offset transformations now work with movies and images; rotation and skew are
important future directions. Meanwhile, you can accomplish rotation and
skewing by playing a movie to an off-screen GWorld and then using
QuickDraw GX to display the rotated or skewed off-screen GWorld.

Q The demo programs on the final QuickTime for Windows CD won’t run without
locking up, because the QTInitialize function doesn’t return. Any ideas?

A The final QuickTime for Windows exhibits the behavior you describe when the
display board is configured in a way that QuickTime for Windows doesn’t
recognize. XGA and SuperVGA are modes that could cause this problem. To
check whether this is the problem, edit the QTW.INI file to include the
following:

[Video]
Optimize = Driver

The default is Hardware. This could be causing the problem you describe.

Q While updating our application to run correctly under the Kanji version of System 7.1,
we’ve noticed that the space bar sends two key-down events (values $81 and $40) as
opposed to one ($20). To determine whether the space bar was hit, should we use the key
code from the event record instead of the character code?

A This is new with Kanji 7.1 and is still a controversial issue. Codes $81and $40
correspond to the two-byte space character, which is different from the standard
ASCII space character (different width).

You can’t use the key code from the event record, as it has been lost during
KanjiTalk’s event processing. Moreover, even if it were there (or if you got it
through a GetKeys call) you shouldn’t use it; the space bar has different key
codes on different keyboards!

So, the only reasonable workaround in your case seems to be to expand your
space bar key-down check to compare with $81 (the first byte of a two-byte
character) followed by $40, in addition to comparing with the standard ASCII
$20.

Q What kind of resources are available to incorporate WorldScript capability to our
programs?

A The first thing to do to support WorldScript is to make sure that your product
takes full advantage of the Script Manager. The most up-to-date and
comprehensive reference for learning about it is Inside Macintosh: Text. Be sure
to check the QuickDraw Text and Text Utilities chapters, because much of the
old Script Manager functionality has been moved into those areas. Other
references are Guide to Macintosh Software Localization and Localization for Japan.
These are all available through APDA. (If compatibility with system software
versions before System 7.1 is important to your application, see the earlier
documentation: the Script Manager and Worldwide Software Overview
chapters of Inside Macintosh Volumes V and VI, and Macintosh Worldwide
Development: Guide to System Software.) See also the Text Services Manager
chapter of Inside Macintosh: Text.

In general, all the rules for being Script Manager–compatible apply, but with a
few new twists. WorldScript is still a very young technology and there isn’t a lot
of detailed information yet. Some human interface issues have not matured to
the point of being ready to standardize. This means that you might find yourself
breaking new ground as you add WorldScript support to your application.

The Japanese Language Kit is the first new product to take advantage of
WorldScript. All the non-Roman system software uses WorldScript but doesn’t
really take full advantage of the possibilities.
MACINTOSH Q & A September 1993

123

d e v e l o p September 1993

124
The main advantage of WorldScript is that it supports multiple scripts in a
system. The old model was that there could be a Roman script plus one other
optional script, and Roman was always the secondary script, unless it was the
only script. Now, any script can be the primary script, and there can be multiple
secondary scripts. (Roman is still required to be available.) This makes it
possible to have Japanese (and in the future, other scripts) installed as secondary
scripts in any system.

Because many of the Macintosh Toolbox and operating system routines don’t
pass script or font information with text, it’s difficult to display multiscript text
properly. Menus, dialogs, window titles, and filenames are problem areas. A
short-term solution is the Language Kit Extension, which was introduced in the
Japanese Language Kit. It dynamically changes the system fonts according to
the region code in each application’s 'vers' resource. This allows localized
applications to display menus, dialogs, window titles, and filenames correctly.
Multiple applications running concurrently can have independent system fonts.

The Language Kit Extension also extends the Views control panel to control
the current script and font for the entire file system. This allows the user to
display, create, and edit filenames for any script installed. Note that this solution
supports only one script at a time, and fundamental changes will have to made
to the Toolbox to support more than one script concurrently.

A technical overview of potential internationalization problem areas is given in
the “Internationalization Checklist” on this issue’s CD. Internationalization tips
are also provided in “Writing Localizable Applications” in Issue 14 of develop.
Here are some areas requiring special attention:

• Font names should be displayed in menus in their appropriate script and
font.

• The system (primary) script may not be the same as the application script.

• Script system resources (date/time/currency) should be referenced explicitly.

• Text should be tagged with script and font information so that it can be
displayed in its appropriate script and font.

Styled text and QuickDraw GX are multiscript-capable and should be used as
much as possible. Unstyled text documents limit text to one script (character
set), which is undesirable.

Ideally, the localized version of a product should be independent of the scripts
and languages it supports. With Macintosh multiscript support and today’s
cultural diversity within nations, users want “foreign language–capable”
applications that let them mix writing systems and use familiar regional
formatting conventions.

Here are a few tests to see how well you’re doing:

• Does the base version of your application work on all localized versions of
system software (such as KanjiTalk, Arabic, German)?

• Install the Japanese Language Kit and see whether your application supports
multiscript text. Try using the two-byte Japanese script with a relatively
simple script such as German, and then with a bidirectional script such as
Arabic.

Q We’re planning to distribute a custom font with our application, by including the
FOND and NFNT resources in its resource fork. Are there any problems we might be
overlooking by using this technique?

A There are things you must be aware of when embedding fonts in applications.
First, no ID conflict resolution is done. Since the system caches some fonts for
performance reasons, if your font has the ID of a font in the system, you can’t
predict whether you’ll get your font or the system’s font. Second, you must use
NFNT instead of FONT resources for bitmap fonts, or the system will
sometimes get the wrong font strike. This is described in the Macintosh
Technical Note “Fond of FONDs” (Text 21). You should never try to override a
font in the System file with one in your application; the name of your custom
font should be different from all other font names. If you don’t want your font
to show up in menus, give it a name beginning with a period or “%” so that
AddResMenu will ignore it.

While most printer drivers and the system take pains to find fonts wherever
they may be, some software components don’t, and we can’t promise this will
work with all printers or all software. While installing fonts in an application
should work for most purposes, it’s preferable all around for you (and your
customers) to install your fonts in the system. Of course, you should always ask
for your font by name in your code.

Q When I try to use the MDEF mDrawMsg to draw the contents of the pop-up box for a
pop-up menu, if the system justification is right to left and I send it mDrawMsg with a
rectangle that’s too short, the system hangs unless I move the left edge of the rectangle
off to infinity and use clipping to constrain the drawing. Is there a better way to do this?

A There may be an easier way to achieve the same result. The standard MDEF
has been modified to support two new messages to do exactly what you need. In
fact, this was added to support the System 7 pop-up menu CDEF. For an
MDEF whose entry point is defined as

void pascal MyMenu (short message, MenuHandle theMenu, Rect
*menuRect, Point *hitPt, short *whichItem);
MACINTOSH Q & A September 1993

125

d e v e l o p September 1993

126
the two new messages are mCalcItemMsg and mDrawItemMsg. In response to
mCalcItemMsg, the MDEF calculates the bounding rectangle of a menu item:

• Input parameters:

message = mCalcItemMsg = 5

theMenu = handle to pop-up menu

menuRect.top and menuRect.left = screen position at which to draw
menu

hitPt = not used

whichItem = menu item to calculate the size for

• Output:

menuRect.bottom and menuRect.right, calculated for correct size for
whichItem

In response to mDrawItemMsg, the MDEF draws an item in a menu:

• Input parameters:

message = mDrawItemMsg = 4

theMenu = handle to pop-up menu

menuRect = rectangle to draw item in

hitPt = not used

whichItem = menu item to draw

• Output:

Draws item whichItem of menu theMenu in rectangle menuRect.
menuRect is determined by first calling the MDEF with
mCalcItemMsg.

These messages may be ignored by other menu definition procedures; they’re
optional. If you find that your rectangle wasn’t resized after an mCalcItemMsg
call, the MDEF has probably ignored your size request, and you should do it
manually. The standard MDEF will continue to support these options.

Q We create an alias for a file when File Sharing is off, so the alias doesn’t contain server
and zone information. Then we turn on File Sharing and resolve the alias. The file, of
course, is found but the alias isn’t marked for an update. Shouldn’t it be updated?

A According to Inside Macintosh: Files, wasChanged is set to TRUE only on
aliases created by NewAlias (not NewAliasMinimalFromFullPath or

NewAliasMinimal) when it sees that key information has changed. The key
information is:

• name of the target

• directory ID of the target’s parent

• file ID or directory ID of the target

• name and creation date of the volume on which the target resides

Since none of that changes when you turn File Sharing on or off, the
wasChanged flag isn’t set to TRUE. If you’re really worried about it, just call
UpdateAlias every time you use the alias (unless you think this would be a major
performance hit). Or maybe you should update it only if you notice that it
doesn’t have server information and the server is now turned on (to check for
this, call PBHGetVolParms and check the bHasPersonalAccessPrivileges bit).

Q When I try to compile some C++ code that I’m porting from another platform, I get the
error message shown below. Can you shed some light on what the error means? I can
avoid it by removing labels, but sometimes it’s difficult to fix. What’s the real cure?

4:14:35 PM ----- Executing build commands.
CPlus -s tops1 -model far -sym on -mf test.cp
Set Echo 0

File "test.cp"; line 704 # sorry, not implemented: label in block
with destructors

A The error message is correct; labels in a scope that locally defines objects with
destructors aren’t supported. The most appropriate fix would be for AT&T to
fix their CFront code to support this, but that’s not going to happen right away.

The variety of twisted code paths that become possible when labels and gotos
are used probably gave the compiler programmers conniptions. When code can
contain constructors and destructors, the C++ compiler has to be extremely
careful to construct each object only once and destruct each object only once.
This probably was a problem for the C++ compiler if gotos were allowed, so the
compiler programmers must have chickened out and didn’t write the necessary
code (at least, not yet). The only solution to this error is either to avoid the label
and goto constructs (which you’ve been trying to do) or to keep any objects with
destructors out of the block that contains the label.

Q I want to use sprintf in a standalone code resource, but I’m having trouble linking my
resource because sprintf apparently requires data-to-code references. I get the error
shown below; what can I do to avoid this?
MACINTOSH Q & A September 1993

127

d e v e l o p September 1993

128
While reading file "HD:MPW:Libraries:Libraries:Runtime.o"
Link: Error: Data to Code reference not supported (no Jump
Table). (Error 59)
Link: Errors prevented normal completion.

A Unfortunately, a great deal of the standard C library uses globals, which
necessitates your creating an A5 world as described in the Macintosh Technical
Note “Stand-Alone Code, ad nauseam” (Platforms & Tools 35). Additionally,
some of the global data used is initialized with function pointers. For example, if
you had the following global variable defined

ProcPtr gMyProcedure = (ProcPtr)MyFunc;

where MyFunc is a function of yours, you can see that the global variable would
have to be initialized with a pointer to the function before your code started
executing. MPW’s loader supports only pointing variables such as these at A5-
relative references — that is, into the jump table. It cannot initialize them to the
PC-relative reference that a standalone code segment requires. This means that
you can’t link any code resource that requires a data-to-code reference — thus
the error.

Fortunately, there’s a workaround. Because the standard library is written very
generally and uses a lot of indirection, the linker believes sprintf might use some
of the standard output calls; however, it never does, and since it’s these calls that
necessitate the use of the data-to-code references, if we can fool the linker into
accepting an innocuous substitute, we won’t require the data-to-code references
that are causing us such agony now. To cut to the chase, add the following lines
to your code somewhere:

size_t fwrite (const void *, size_t, size_t, FILE *) { return 0; }
flsbuf() {} // These calls won't actually be called by sprintf.

fcvt() {} // These calls are used only for floating-point %f
ecvt() {} // and %e.

The first two calls override fwrite and flsbuf; these calls will no longer cause the
linker to believe that you require the data-to-code references; because they’re
never called by sprintf, replacing them isn’t a difficulty. The second two calls are
only conveniences; they stub out the standard library’s code for converting
floating-point arguments. If you never use %f or %e in your sprintf calls, these
will reduce the size of your compiled code.

To get these overriding functions to mask the versions in the StdCLib.o library,
make sure that the object file containing these stubs appears on the Link
command line before the StdCLib.o library.

Q Why does calling FSpCreateResFile return an afpAccessDenied error (in ResErr) when
the destination folder is an AppleShare drop folder?

A Using any of the CreateResFile calls in a drop box is a useless exercise. Here’s
why: The access privileges within a drop box are very limited write-only access.
This lets you create new files and then perform a small set of operations on the
file while it’s empty (no bytes in either the data or the resource fork of the file).
So, while the file is empty, you can open it (either fork) with write-only access
(PBHOpenDeny or PBHOpenRFDeny), and write the file’s attributes
(PBHSetFInfo or PBSetCatInfo), including Desktop Manager comments. Once
either fork has a single byte of data written to it, you can no longer open or
change the file’s attributes. This makes it possible to copy a file into a drop
folder, but not to manipulate or delete a file (containing data) that’s already in
the drop folder. You can also move a file or directory into a drop folder if that
file or directory is already on the same server volume.

So, when you call CreateResFile on a drop folder, a new file is created and data
is added to the resource fork of the file. Since the file now has data in one of
the forks, you cannot open the file or change any of the file’s attributes.
FSpCreateResFile fails because after performing the CreateResFile operation
that writes data into the resource fork, it attempts to set the file’s attributes
(creator, fileType, and scriptTag).

For a quick explanation of drop folder access privileges and rules, see the
Macintosh Technical Note “Creating Files Inside an AppleShare Drop Folder”
(Files 18). For a complete explanation of what AFP access privileges you need to
perform specific operations on an AppleShare (AFP) server, see the section
“Directory Access Control” in Inside AppleTalk starting on page 13-31.

Q When I try to send an OpenSelection Apple event to the Finder, I get a -903 error after
calling AESend. Could you tell me what causes this error and how I can overcome it?

A The application is returning the -903 error because it isn’t completely set up to
send and receive Apple events. This is why you’re getting the error only after
calling AESend. The problem is that the isHighLevelEventAware bit isn’t set in
your SIZE resource, meaning that your application doesn’t send or receive
high-level events. For more information on setting the isHighLevelEventAware
bit, see Inside Macintosh: Macintosh Toolbox Essentials, pages 2-115 through 2-119
(or Inside Macintosh Volume VI, pages 5-14 through 5-17).

Q When we launch our Macintosh application, the system heap grows by huge amounts. It
seems to be filling up with font-related resources. What’s causing this to happen?
MACINTOSH Q & A September 1993

129

d e v e l o p September 1993

130
A Your application is probably calling RealFont for each font installed in the
system. Trying to build lists of font information at startup nearly always
balloons the system heap to enormous sizes if you have lots of fonts.

When you call RealFont, the system must load the FOND resource and walk
through the association table to see if there’s a bitmap for it. If there’s a
TrueType font, the Font Manager loads the 'sfnt' resource and examines it. A
value inside TrueType fonts says “I don’t render smaller than this resolution”; if
the requested resolution is smaller than that value, RealFont returns FALSE
even on a TrueType font. For most of Apple’s TrueType fonts the value is about
6 points — calling RealFont(2, Helvetica) will return FALSE.

So the system is loading every FOND and 'sfnt' looking to see whether the
fonts are real. The main solution is not to call RealFont until you’re sure you
need the information. For example, don’t outline Size menus until just before
they’re accessed or until a new font is chosen, to prevent this kind of problem.

Q I just wrote an installer script for the Apple Installer version 3.4. After the installation
is complete and I click the Quit button, the Finder insists on mounting both of the disks
that were used in the installation. It gives me the annoying dialog “Please insert the
disk Install 1” and “Please insert the disk Program 1.” Before I did the installation,
only the Install 1 disk was mounted by the Finder. Why is this happening?

A This situation typically occurs when the installer disk sets were created under
System 7 and the installation is happening under system software version 6.0.x.
Its cause is that the system is trying to update the second disk’s desktop. The
solution in this case is to insert the disk into a system running version 6.0.x
before performing the installation.

Another possible cause for this problem is that the second disk opens to display
a window by default. When the Installer quits, there’s still “residue” Finder
information to be written to the second disk, which has since been ejected. The
solution in this case is to insert the second disk with the write tab lock disabled,
and close any open window associated with that disk.

Q I received an error code of -151 from NewGWorld when creating a very large off-
screen bitmap. Does this mean not enough memory? If so, can I count on it not to
change in future versions of the system? It’s not listed as one of the possible errors in
Inside Macintosh Volume VI.

A The error -151 is cTempMemErr, “failed to allocate memory for temporary
structures,” or in other words, there wasn’t enough temporary memory available
for NewGWorld. NewGWorld returns this error after it receives a memFullErr

from TempNewHandle. (See Inside Macintosh: Memory or the Memory
Management chapter of Inside Macintosh Volume VI for more information about
temporary memory.) This was inadvertently left out of Inside Macintosh Volume
VI but does appear in the MPW interface files. You can count on this error code
in future versions of system software.

Q SetStylHandle appears to dispose of only the TEStyleHandle in the TextEdit record and
not the handles in the TEStyleRec in system software version 7.0.1. Since my
application calls SetStylHandle often, I’m leaving lots of little handles around in my
heap. Can I safely dispose of the handles in the current TEStyleRec before calling
SetStylHandle?

A SetStylHandle does indeed orphan the related handles in your heap, a potential
problem for applications using SetStylHandle. This won’t be fixed in the
foreseeable future. Your application will be fine disposing of the handles itself.
Here’s a routine you can use instead of SetStylHandle; it correctly disposes of
the substructures in the TEStylRec before calling SetStylHandle:

void FixedSetStylHandle(TEStyleHandle newstyle, TEHandle hte)
/*

This function avoids orphaning the substructures of a
TEStyleRec by disposing of them before calling SetStylHandle.

*/
{

register TEStyleHandle oldstyle;
/* Get the old-style handle so that we can clean it up. */
oldstyle = GetStylHandle(hte);
/* Dispose of the substructures first. */
DisposeHandle((**oldstyle).styleTab);
DisposeHandle((**oldstyle).lhTab);
DisposeHandle((**(**oldstyle).nullStyle).nullScrap);
DisposeHandle((**oldstyle).nullStyle);
/* Now we can install the new style. */
SetStylHandle(newstyle, hte);

}

Q I was hiking in a remote part of the Rocky Mountains and could have sworn that I saw
the familar Macintosh beach-ball cursor. Is this possible?

A Yes; that’s the same symbol that’s used to signify a ranger station. It could also
be that you were hallucinating. (By the way, develop’s Editor-in-Cheek tells us
that the beach-ball cursor can also be found on the reverse of an Eastern
Caribbean $5 bill; she took a special field trip down there just to check this out.)
MACINTOSH Q & A September 1993

131
Have more questions? Need more answers?
Take a look at the Macintosh Q&A Technical
Notes on this issue’s CD and on the Dev Tech
Answers library on AppleLink.•

132
KON & BAL’S

PUZZLE PAGE

I’M HERE TO SERVE
d e v e l o p Issue 15

KONSTANTIN OTHMER
AND BRUCE LEAK
See if you can solve this programming puzzle, presented in the form of
a dialog between Konstantin Othmer (KON) and Bruce Leak (BAL).
The dialog gives clues to help you. Keep guessing until you’re done; your
score is the number to the left of the clue that gave you the correct
answer. These problems are supposed to be tough. If you don’t get a high
score, at least you’ll learn interesting Macintosh trivia.

BAL Here’s one for you, KON: I’ve got this server that I store builds on. It’s
a Macintosh ci running System 7.1 with File Sharing enabled, hooked
up over Ethernet. The server runs an experimental MPW tool that
spins the beach-ball cursor (don’t they all?) waiting for a build to
appear; then it renames the build with the next release number and
makes it available to the public. Early on we had some problems with
the tool and it would occasionally crash the server, but that seems to be
working now.

KON So what’s the problem?

BAL When I use the Finder to copy my latest build out there, it crashes the
server. Yet when I use the duplicate command as part of the MPW
build script for my project, it works.

KON I thought you did all your builds in THINK C.

BAL Of course, but I use MPW for file management just like the guys on
the Finder team.

KON Chalk one up for MPW.

BAL But that’s not all. When I use the Finder to copy other files out to the
server it works fine. Solve me, KON. Over.

KON I’m suspicious of that MPW shell script running on the server. It’s
continuously making file system calls while File Sharing is trying to
copy your file over in the background. There must be some contention
KONSTANTIN OTHMER AND BRUCE LEAK
spent some time in the county slammer this
summer, BAL for bungee jumping off a Cupertino
freeway overpass and KON for losing the
landmark “KON versus Stockton Board of
Health” tenants-rights trial. They were able to get
reduced sentences by working as waiters in “Pro
Bono,” the prison’s nouvelle cuisine restaurant,

(see photo) and faithfully adhering to the
Macintosh Human Interface Guidelines.•

caused by MPW trying to rename the file while it’s still in the process
of being copied.

BAL Come on, KON, what do you think we’re running here? This is
System 7 we’re talking about. Don’t you think we would get something
like that right on the seventh try?

KON No comment.

100 BAL If I stop the MPW shell script running on the server or even quit
MPW completely, the server still crashes when I use the Finder to
copy my build to it.

KON Are the Finder copies that crash file-size dependent?

95 BAL Size doesn’t seem to matter. The Finder can successfully copy files that
are the same size, smaller, and bigger than mine without crashing the
server.

KON So it’s the server that’s crashing?

BAL Yeah, the progress bar comes up on the client machine, the copy starts,
and then almost immediately the server crashes and the client machine
hangs in XPP’s two-minute penalty box.

KON There’s an updated version of the StopXPP dcmd that works with
System 7 for all those MacsBugphiles. Install that baby and you’re
golden. When the client hangs because the server has gone away, just
drop into MacsBug and type StopXPP to force the connection to time
out immediately. Any other problems?

90 BAL Yeah, yeah, yeah. I’ve already got that dcmd. My machine isn’t hung
anymore, but the server is still crashed and your point total is still
falling.

KON You packrat! You stole one of those rev J Apple Ethernet cards from
Van Brink’s garage. It’s dropping bits, same as it ever did, and the way
the Finder is slicing up your bit stream chokes it.

85 BAL Sorry, it’s rev K of the card — the one that only drops bits when you’re
running in 32-bit mode — but the ci has only 8 megs of RAM and is
running in 24-bit mode.

KON OK, I’ll try Third-Party Cards for $200.

80 BAL KON, I use only Apple equipment. Throw the card out altogether, use
LocalTalk, and it still happens. Get a life.

KON Are there any other cards in the ci that are dropping bits? Perhaps the
Apple ci cache card?

75 BAL No cards, but if it makes you feel any better, I’ll have Vanna swap in a
new ci, keeping only the hard disk; it still happens.
KON & BAL’S PUZZLE PAGE September 1993

133

d e v e l o p Issue 15

134
KON I don’t want a ci anymore. How ’bout we try an fx, or maybe even a
Classic?

70 BAL Vanna’s getting a little tired here. Bad news: it still happens on all of
them.

KON What if we try one of those NuTek boxes?

65 BAL Fine. It crashes on boot. Next.

KON And swapping out the hard drive fixes it?

60 BAL Swapping out the hard drive stops the server from crashing. Any
chance I can solve this problem and preserve my existing hardware
investment?

KON So there’s something wrong with your system software or the File
Sharing software on that drive. I’ll reinstall all that stuff and watch it
work beautifully. Problem solved.

55 BAL Not! After you reinstall System 7.1 and all the bogus networking disks,
and reinstall MacsBug and the dcmds from the virgin copies that came
with that Debugging Macintosh Software book, ISBN #0-201-57049-1, it
still happens.

KON I never really trusted installing over existing corrupt software. So I
throw everything in the trash, empty the trash, and reinstall fresh.

50 BAL It still happens.

KON Maybe the volume allocation is messed up: you’ve got some bad I-
nodes, circular B-tree references, or some other HFS mumbo jumbo.
I’ll confer with Dr. Norton and see what he thinks.

45 BAL Doctors Norton, Feldman, and Bruffey, Disk FirstAid, and others all
give it a clean bill of health, though a few file dates were wrong and
they’ve been fixed.

KON So maybe some part of the media went bad, producing bad sectors or
ambiguous data. I’ll do a media test using Silverlining.

40 BAL The media is fine. OK, KON. Quit screwing around. It’s not a
hardware problem.

KON But when I replaced the hard disk, the problem went away. What
remains after I throw all the files away? Well, the driver persists. I’ll
update the driver with the utility software that came with the drive.

35 BAL It still happens. It doesn’t have anything to do with the driver.

KON I’ll try SneakerNet!

30 BAL Well, transferring the file by floppy disk doesn’t work either, using the
Finder on the server. Surprisingly, this most reliable means of

networking doesn’t work even though you aren’t using high-density
floppies. In this case paper clips don’t even help.

KON OK, I reformat the drive and reinstall the software fresh.

25 BAL Now it works. So what’s the bug?

KON Well, the reformatting changed the interleave, and there was some
weird timing problem hosing you.

20 BAL Enough grasping at straws. Remember it only happens with my file or
copies of my file. Get those rusty old gears turning.

KON I’ll chop the file into pieces and see if those still crash the server when
I copy them. I’ll strip out all the CODE resources with ResEdit and
try that file.

15 BAL The file is pretty small now, and it still crashes.

KON I strip out all the data by setting the EOF.

10 BAL It still crashes. Look, I can build it from scratch, I can build it on other
machines, I can change the code that’s in it, other people can build it
on their machines, it happens with Ethernet, SneakerNet, LocalTalk,
you name it — it still crashes.

KON And people thought we’d run out of these puzzles.

BAL I got a great one for next time, too, but you’ve got to finish this one
first.

KON So what makes my file my file? If it’s not the name, the data in it, or
the creation date, it’s got to be the container info — the icon, the file
type, the creator, that stuff.

BAL Your puzzle, KON.

KON The Desktop Manager previously used only by AppleShare is used by
the Finder in System 7, right?

5 BAL Yeah, there are two invisible data files: Desktop DB and Desktop DF.
Desktop DF has the all the data for the icons, and Desktop DB has
information for all files: the document-to-application binding, the file-
to-icon binding, and the file-to-comment binding. For each
application creator, it keeps a list of all the applications of that type
with the newest one first. That way when you double-click a
document, the Finder launches the newest version of the application
that handles that document.

KON I get it. The desktop database got corrupted by the experimental
MPW tool you had, and when the Finder tries to update the database,
it reads bad data and chokes.
KON & BAL’S PUZZLE PAGE September 1993

135
SCORING
75–100 Excellent! Link your résumé to DEVELOP.
50–70 Not bad. Link your résumé to MACTECHMAG.
25–45 Hmmm. Better sit on that résumé for a while.
5–20 At least you beat KON’s score!•

d e v e l o p Issue 15

Than
doug
revie

136
BAL It worked when copying files via MPW because MPW doesn’t try to
keep the desktop database up to date.

KON So you should be able to rebuild the desktop database by holding down
the Command and Option keys while booting. Then everything will
work great.

BAL I knew the AppleShare servers are the most reliable in the business,
and I couldn’t believe we got one to crash.

KON Well, if you want to write sleazy MPW tools that you haven’t fully
debugged, you get what’s coming to you.

BAL In fact, for ultimate security on a network server, you should lock it in
a room and not run any weird stuff that isn’t endorsed by your
AppleShare administrator.

KON Right! But if you insist on running untested code, you get what you
pay for.

BAL Nasty.

KON Yeah.
ks to Gary Davidian, Pat Dirks, scott
lass, Kevin Stinson, and Chris Zuleeg for
wing this column.•

A
accelerator cards, Macintosh

Q & A 117
activate events, floating windows

and 92–96
ActivateFloatersAndFirstDocu-

mentWindow, floating windows
and 99–100

AddAdorner, 3-D effects and 109
AdLib, 3-D effects and 109
adorners, 3-D effects and

111–112
AESend, Macintosh Q & A 129
Alert, floating windows and 96
alerts, floating windows and 90,

96
Alexander, Pete (“Luke”) 6
aliases, Macintosh Q & A

126–127
Apple events, Macintosh Q & A

129
AppleScript, QuickTime and 77
AppleShare 5, 129
Apple Sound Chip, Macintosh

Q & A 119
ashow (PostScript), QuickDraw

GX and 62
asynchronous routines, new

information on 5
attributes, QuickDraw GX and 8
awidthshow (PostScript),

QuickDraw GX and 62

B
background adorners, 3-D effects

and 109
base components, QuickTime and

85
Bézier curves, QuickDraw GX and

53–54
bitmaps, Macintosh Q & A

130–131
bitmap shape 8
Black & White option, Macintosh

Q & A 117

BringToFront, floating windows
and 93

By Page Setup, QuickDraw GX
and 11, 30, 31

C
CaptureComponent, QuickTime

and 86
CDEFs, 3-D effects and 112
CDrawPerDevice, 3-D effects and

109, 110, 111, 113
CGraphicsState, 3-D effects and

109, 110, 111
charpath (PostScript), QuickDraw

GX and 70
child view port, QuickDraw GX

and 20–21
Chooser, QuickDraw GX and 10
Collection Manager, QuickDraw

GX and 35
collections, QuickDraw GX and

35
Color/Grayscale option,

Macintosh Q & A 117
color profile object, QuickDraw

GX and 56
Color QuickDraw, floating

windows and 97, 98
ColorSync, Macintosh Q & A

121
common color library, QuickDraw

GX and 18
complete message override,

QuickDraw GX and 38
component load order resource,

QuickTime and 79–80
Component Manager

Macintosh Q & A 120
QuickDraw GX and 34–35
QuickTime and 74–83

components 74–83, 84–88
constructors, 3-D effects and 110
context switching 5, 92

asynchronous routines and 5
floating windows and 92

INDEX September 1993

137
For a cumulative index to all issues of
develop, see this issue’s CD.•

INDEX

control classes, 3-D effects and
112–113

copypage (PostScript),
QuickDraw GX and 52

Count1Resources, QuickTime and
79

CreateThePageOfGXShapes,
QuickDraw GX and 29

custom fonts, Macintosh Q & A
125

CWNewColorWorld, Macintosh
Q & A 121

D
derived components, QuickTime

and 86
desktop printers 10
despooling 36
destructors, 3-D effects and 110
“Developing QuickDraw GX

Printing Extensions” (Weiss)
34–50

device communications 36
DeviceLoop, 3-D effects and 110
Device Manager, asynchronous

routines and 5
display cards, Macintosh Q & A

117
DisposeWindow, floating windows

and 96
DisposeWindowReference,

floating windows and 96, 99
Document Setup, QuickDraw GX

and 11, 30, 31
document structuring conventions,

QuickDraw GX and 65
DragReferencedWindow, floating

windows and 100
DragWindow, floating windows

and 100
Draw, 3-D effects and 109, 110,

111, 112
drivers, Macintosh Q & A 117
dynamic linking, QuickTime and

84–88

E
Encapsulated PostScript,

QuickDraw GX and 52
EnterGraphics, QuickDraw GX

and 15
'eopt' resource, QuickDraw GX

and 46, 47–48
Erase adorner, 3-D effects and

109
EraseRect, 3-D effects and

111–112
Event Manager, floating windows

and 92

F
FailedForward_GXCountPages,

QuickDraw GX and 41
File Manager, asynchronous

routines and 5
file servers, KON & BAL puzzle

132–136
File Sharing 5, 126–127
filled objects, QuickDraw GX and

70
Finder

KON & BAL puzzle
132–136

Macintosh Q & A 129, 130
QuickDraw GX and 10
QuickTime and 82
3-D effects and 107, 113

FindNextComponent, QuickTime
and 87

“Floating Windows: Keeping
Afloat in the Window
Manager” (Yu) 89–102

FOND resource, Macintosh
Q & A 125, 130

font resources, Macintosh Q & A
125, 129–130

fonts 68–69, 125, 129–130
Forward_GXCountPages,

QuickDraw GX and 41, 45
ForwardMessage, QuickDraw GX

and 45

ForwardThisMessage, QuickDraw
GX and 45

4-Up printing extension,
QuickDraw GX and 34–50

framed objects, QuickDraw GX
and 70

FrontNonFloatingWindow,
floating windows and 101

FSpCreateResFile, Macintosh
Q & A 129

G
geometric shape 7
Gestalt 14, 77
Get1IndResources, QuickTime

and 79
GetActivateHandlerProc, floating

windows and 100
GetMediaSample, QuickTime and

88
GetNewWindow, floating

windows and 96
GetNewWindowReference,

floating windows and 96, 98,
99

GetNextEvent, asynchronous
routines and 5

“Getting Started With QuickDraw
GX” (Alexander) 6–33

glyphs, QuickDraw GX and 60,
61–62, 68–69

'gnht' resource, QuickTime and
83

GraphicsBug, QuickDraw GX and
14, 33

Greg’s Buttons, 3-D effects and
112

grestore (PostScript), QuickDraw
GX and 59

Guschwan, Bill 84
GXCountPages, QuickDraw GX

and 39, 40, 41, 45
GXDespoolPage, QuickDraw GX

and 39, 40, 41–45, 48

d e v e l o p Issue 15

138

GXDisposeGraphicsClient,
QuickDraw GX and 32, 33

GXDisposeShape, QuickDraw
GX and 32

GXDrawShape 22, 25, 28, 29, 63
GXExitPrinting, QuickDraw GX

and 32
GXGetGraphicsError,

QuickDraw GX and 13
GXGetJob, QuickDraw GX and

40
GXGetJobError, QuickDraw GX

and 30
GXGetPictureParts, QuickDraw

GX and 59
GXGetShapeDrawError,

QuickDraw GX and 12
GXIgnoreGraphicsNotice,

QuickDraw GX and 13
GXIgnoreGraphicsWarning,

QuickDraw GX and 13
GXImagePage, QuickDraw GX

and 39
GXLoad, QuickDraw GX and 16
GXMoveShape, QuickDraw GX

and 59
GXNewGraphicsClient,

QuickDraw GX and 15
GXNewShape, QuickDraw GX

and 32
GXPrimitiveShape, QuickDraw

GX and 70
GXRenderPage, QuickDraw GX

and 39
GXSetPictureParts, QuickDraw

GX and 59
GXSetShapeTextSize, QuickDraw

GX and 61
GXSetShapeType, QuickDraw

GX and 23, 70
GXSetStyleRunFeatures,

QuickDraw GX and 27
GXSpoolPage, QuickDraw GX

and 39
GXUnload, QuickDraw GX and

16

GXValidate, QuickDraw GX and
17

H
handles, Macintosh Q & A 131
help balloons, floating windows

and 90
HideReferencedWindow, floating

windows and 96, 99
HideWindow, floating windows

and 93, 99
HiliteWindow, floating windows

and 93
human interface, 3-D effects and

103–114

I
icon buttons, 3-D effects and

105–108
icons, Macintosh Q & A 121
image file 36
InitPrinting, QuickDraw GX and

30
INITs, QuickTime and 77, 79–82
InitU3DDrawing, 3-D effects and

109
ink object, QuickDraw GX and 8,

56
Installer, Macintosh Q & A 130
installer scripts, Macintosh Q & A

130

J
Johnson, Dave 71
Jones, Tao 115
jump table, QuickDraw GX and

45–46

K
Kanji 7.1, Macintosh Q & A 123
key-down events, Macintosh

Q & A 123
Komponent Killer, QuickTime

and 88

“KON & BAL’s Puzzle Page”
(Othmer and Leak) 132–136

kshow (PostScript), QuickDraw
GX and 62

L
LaserWriter driver, Macintosh

Q & A 117
LastFloatingWindow, floating

windows and 101
layout shape, QuickDraw GX and

60, 61, 62
Leak, Bruce 132
line adorners, 3-D effects and 109
line groups 72–73
line layouts, QuickDraw GX and

26–29
Lipton, Daniel 51
LoadComponents, QuickTime

and 80
loader component, QuickTime

and 82–83
LoaderINIT, QuickTime and 80,

81, 82, 83
'load' resource, QuickDraw GX

and 46, 48

M
Macintosh Common Lisp,

Macintosh Q & A 120–121
Macintosh Easy Open,

QuickTime and 77
Macintosh Q & A 117–131
MacsBug, QuickDraw GX and 14
makefont (PostScript),

QuickDraw GX and 68
“Managing Component

Registration” (Woodcock)
74–83

math types, QuickDraw GX and
52–53

matrix transformations,
QuickDraw GX and 54–55

MDEFs, Macintosh Q & A
125–126

INDEX September 1993

139

MediaIdle, QuickTime and 86,
87–88

MediaInitialize, QuickTime and
86, 87

memory
Macintosh Q & A 130-131
QuickDraw GX and 16, 17

Memory Manager 5, 15, 16, 33
message class 34
message handler 34
Message Manager, QuickDraw

GX and 34, 37, 38, 45
message objects 34
ModalDialog, floating windows

and 96
modal dialogs, floating windows

and 90, 96
modal windows, floating windows

and 96
modeless dialogs, floating windows

and 90
movie controller component,

QuickTime and 74
MoviePlayer, QuickTime and 84
MoviesTask, QuickTime and 86
MultiFinder 5, 15
multiple segments, Macintosh

Q & A 120

N
NewCWindow, floating windows

and 97
NewGWorld, Macintosh Q & A

130–131
NewMessageGlobals, Macintosh

Q & A 118–119
NewMovieFromFile, QuickTime

and 84
NewWindow, floating windows

and 96, 97
NewWindowReference, floating

windows and 96, 97, 98, 99
NFNT resource, Macintosh

Q & A 125

nonsquare pens, QuickDraw GX
and 67–68

notices, QuickDraw GX and 12,
13

O
Object Pascal, 3-D effects and

110
objects, QuickDraw GX and 70
oblique text, QuickDraw GX and

68–69
off-screen bitmaps, Macintosh

Q & A 130–131
OpenComponent, QuickTime and

86, 87, 88
OpenSelection, Macintosh Q & A

129
Osborne, Jamie 103
Othmer, Konstantin 132
outline text, QuickDraw GX and

69
'over' resource, QuickDraw GX

and 46, 47
overrides, QuickDraw GX and 37
owner count, QuickDraw GX and

8

P
page layout, QuickDraw GX and

51–70
PaintRect, 3-D effects and 112
partial message override,

QuickDraw GX and 37
paths, QuickDraw GX and 70
PDEF, QuickDraw GX and 37
picture, QuickDraw GX and 8
plane groups 72
point groups 72
pop-up boxes/menus, Macintosh

Q & A 125–126
portable digital document 10, 36
PostScript 11, 51–70, 117
PPC Toolbox, asynchronous

routines and 5

primitive shape, QuickDraw GX
and 70

Print dialog, QuickDraw GX and
11

printer drivers, Macintosh Q & A
117

PrinterShare GX 10, 36, 39
printing extensions 11, 34–50,

118–119
Printing Manager 30, 35, 37, 40
Print One Copy, QuickDraw GX

and 30, 31
Process Manager, asynchronous

routines and 5

Q
Q & A, Macintosh 117–131
QTInitialize, Macintosh Q & A

122
QuickDraw

Macintosh Q & A 117
QuickDraw GX and 6, 8,

11, 51
3-D effects and 111

QuickDraw GX
compared to PostScript

51–70
developing printing

extensions 34–50
getting started with 6–33
Macintosh Q & A 117,

118–119
symmetry and 71

QuickDraw GX heap 15, 16
QuickDrawGXInit, QuickDraw

GX and 15
“QuickDraw GX for PostScript

Programmers” (Lipton) 51–70
QuickTime

customizing components
84–88

Macintosh Q & A 120, 122
registering components 74,

77, 78

d e v e l o p Issue 15

140

QuickTime for Windows CD,
Macintosh Q & A 122

QuickTime INIT 77

R
RegisterComponent, QuickTime

and 87
Reinstaller II, QuickTime and 88
resource fork, Macintosh Q & A

125
Resource Manager, QuickTime

and 79
ResumeFloatingWindows, floating

windows and 100
RotateMatrix, Macintosh Q & A

122
rotational symmetry 72
rotation effect, Macintosh Q & A

122
rotocenter 72

S
scalefont (PostScript),

QuickDraw GX and 60–61
'scop' resource, QuickDraw GX

and 46, 48–50
ScrollRect, QuickDraw GX and

21
SCSI Manager, asynchronous

routines and 5
segments, Macintosh Q & A 120
SelectReferencedWindow, floating

windows and 96, 99
SelectWindow, floating windows

and 93, 99
SendBehind, floating windows and

93
Send_GXCountPages,

QuickDraw GX and 45
SetActivateHandlerProc, floating

windows and 100
SetGraphicsLibraryErrors,

QuickDraw GX and 16
SetGraphicsLibraryNotices,

QuickDraw GX and 16

SetMovieMatrix, Macintosh
Q & A 122

setpagedevice (PostScript),
QuickDraw GX and 52, 64

SetShapeCommonColor,
QuickDraw GX and 18

SetStylHandle, Macintosh Q & A
131

shape object, QuickDraw GX and
7, 22–30, 56

show (PostScript), QuickDraw
GX and 60, 62

ShowHide, floating windows and
93

showpage (PostScript),
QuickDraw GX and 52, 56

ShowReferencedWindow, floating
windows and 96

ShowWindow, floating windows
and 93, 99

ShutDownProgram, QuickDraw
GX and 33

skew effect, Macintosh Q & A
122

SndPlayFromDisk, Macintosh
Q & A 119

“Somewhere in QuickTime”
(Guschwan) 84–88

Sound Manager, Macintosh
Q & A 119

space groups 73
SpeakText, QuickTime and 88
stack-based objects, 3-D effects

and 109–111
StackSpace, asynchronous routines

and 5
standalone code resources,

Macintosh Q & A 127–128
stroke (PostScript), QuickDraw

GX and 70
strokepath (PostScript),

QuickDraw GX and 70
style object, QuickDraw GX and

8, 56

SuspendFloatingWindows,
floating windows and 100

symmetry, Johnson ponders
71–73

symmetry group 72
synchronous drivers, asynchronous

routines and 5
SysBeep, QuickTime and 77
System 6, asynchronous routines

and 5
System 6.0.7, QuickTime and 77
System 7.0

asynchronous routines and 5
QuickTime and 77
3-D effects and 108

System 7.0.1 77, 131
System 7.1 78, 81, 123
System CDEF, 3-D effects and

113
system heap, Macintosh Q & A

129–130
system windows, floating windows

and 90

T
T3DButton, 3-D effects and 109,

113
T3DCheckBox, 3-D effects and

109
T3DFrameAdorner, 3-D effects

and 108–109, 112
T3DGrayBackgroundAdorner,

3-D effects and 108–109, 112
T3DIconButton, 3-D effects and

109, 113
T3DLineBottomAdorner, 3-D

effects and 108–109, 112
T3DLineLeftAdorner, 3-D effects

and 108–109, 112
T3DLineRightAdorner, 3-D

effects and 109, 112
T3DLineTopAdorner, 3-D effects

and 108–109, 112
T3DListFrameAdorner, 3-D

effects and 112

INDEX September 1993

141

T3DRadio, 3-D effects and 109
tag list, QuickDraw GX and 8
tag objects 8, 56
TButton, 3-D effects and 113
TControl, 3-D effects and 108,

109, 112, 113
TDrawingEnvironment, 3-D

effects and 112
TeachText, QuickDraw GX and

36
TEditText, 3-D effects and 112
tessellation 71
text, QuickDraw GX and 22–26,

51–70
TextEdit, Macintosh Q & A 131
text media handler, QuickTime

and 84–88
text shape, QuickDraw GX and

60
Text-to-Speech Manager,

QuickTime and 84–88
TGrayBackgroundAdorner, 3-D

effects and 108–109, 111, 112
'thld' resource, QuickTime and

79
'thng' resource, QuickTime and

77, 79, 80, 83
Thomas, Deanna 103
three-dimensional effects, MacApp

and 103–114
TIconSuite, 3-D effects and 113
tile shapes, Johnson ponders

71–73
Time Manager, asynchronous

routines and 5
TListView, 3-D effects and 112
transform object, QuickDraw GX

and 8, 56
TrueType GX font, QuickDraw

GX and 10
TStaticText, 3-D effects and 112
TView, 3-D effects and 110, 112
TWhiteBackgroundAdorner, 3-D

effects and 108–109, 112

Type 1 GX font, QuickDraw GX
and 10

typographic shape 7

U
user interface, 3-D effects and

103–114

V
validation, QuickDraw GX and

17
“Veteran Neophyte, The”

(Johnson) 71–73
view device 8
ViewEdit, 3-D effects and 109
view editors, 3-D effects and 109
“View From the Ledge” (Jones)

115–116
view group 8
view port objects, QuickDraw GX

and 56
view ports 8, 18–21
'View' resource, 3-D effects and

109

W
WaitNextEvent, asynchronous

routines and 5
warnings, QuickDraw GX and

12, 13
WDEF resource, floating windows

and 97
Weiss, Sam 34
Window Manager, floating

windows and 89–102
windows, QuickDraw GX and

18–22
WIND resource, floating windows

and 98, 99
Woodcock, Gary 74
“Working in the Third

Dimension” (Osborne and
Thomas) 103–114

WorldScript, Macintosh Q & A
123–125

X
xshow (PostScript), QuickDraw

GX and 62
xyshow (PostScript), QuickDraw

GX and 62

Y, Z
y-axis, QuickDraw GX and 55
yshow (PostScript), QuickDraw

GX and 62
Yu, Dean 89

d e v e l o p Issue 15

142

We’re always looking for people who might be interested in writing an
article or a column for develop. If you’d like to take advantage of this
opportunity to spotlight and distribute your code to thousands of
developers of Apple products, with a result that you’ll be proud to show
your colleagues (and Mom), please read on.

WHAT TO WRITE
Think about writing an article like the ones you see in this issue, usually ranging
from 6 to 30 pages in length, or just a short column (say, 2 to 4 pages). Typically
you’ll expound on source code that readers will get on the CD.

We encourage authors to write in a light, humorous style; we’ll try to refrain from
editing out your jokes!

WHO AND WHAT CAN HELP YOU
A content editor and technical editor will work with you on your article, and an
illustrator will work on any illustrations. A review board will give feedback on your
first draft, and numerous technical reviewers will look for errors. Once things come
together in the final draft, a copyeditor will go over it all.

Not only will you have an opportunity to review your article at several stages, we
rely on you to answer questions and in general to review all changes carefully.

WHAT TO DO NEXT
Send an abstract and an outline to AppleLink DEVELOP, or to Caroline Rose,
Apple Computer, Inc., 20525 Mariani Avenue, M/S 303-4DP, Cupertino, CA 95014.
We can send you our Author’s Guidelines along with information about timing and
the scoop on our incentive program.

So don’t just sit on those great ideas of yours . . . send ’em along to us!

YOUR NAME HERE

WANT TO

WRITE FOR

develop?

YOUR bio here (modest or otherwise).• Thanks for your interest. We look forward
to hearing from you.•

YOUR
ELECTRONICALLY

RETOUCHED
PHOTO HERE

Issue 1 Realistic Color; Palette Manager; Offscreen
Worlds; PostScript; Compatibility Rules; Debugging
Declaration ROMs; Apple II Development Dynamo

Issue 2 C++ Objects; Object Pascal; Memory
Manager; MacApp; How to Design an Object-Based
Application; C++ Style Guide; The GS/OS Cache

Issue 3 ISO 9660 and High Sierra; A Mixed-Partition
CD; Accessing CD Audio Tracks; Comm Toolbox;
Macintosh Display Card 8•24 GC; PrGeneral

Issue 4 Writing a Device Driver in C++; Polymorphic
Code Resources in C++; Macintosh Coprocessor
Platform and A/ROSE; PostScript; An Apple IIGS

Printer Driver

Issue 5 (Volume 2, Issue 1) Asynchronous Background
Networking; Scanning From ProDOS; Palette
Manager Animation; Macintosh Common Lisp

Issue 6 Threads on the Macintosh; QuickDraw’s
CopyBits Procedure; MacTCP Cookbook:
Constructing Network-Aware Applications

Issue 7 QuickTime 1.0; TrueType; Threaded
Communications With Futures; Using C++ Objects in
a World of Exceptions; Subspace Manager

Issue 8 Curves in QuickDraw; Validating Date and
Time Entry in MacApp; Macintosh Debugging;
Macintosh Hybrid Applications for A/UX

Issue 9 Color on 1-Bit Devices; The TextBox You’ve
Always Wanted; Making Your Macintosh Sound Like
an Echo Box; Simple Text Windows via the Terminal
Manager; Tracks: A New Tool for Debugging Drivers

Issue 10 Apple Event Objects; PostScript
Enhancements for the LaserWriter Font Utility;
Drawing in GWorlds; The Optimal Palette

Issue 11 Asynchronous Sound Helper; Multibuffering
Sounds; Living in an Exceptional World; NetWork
Project: Distributed Computing on the Macintosh

Issue 12 Writing and Debugging Components; Time
Bases: The Heartbeat of QuickTime; Apple Event
Coding Through Objects; Globals in Standalone Code

Issue 13 Asynchronous Routines; QuickTime and
Component-Based Managers; Macintosh Debugging
Revisited; Adventures in Color Printing; DeviceLoop

Issue 14 Writing Localizable Applications; 3-D
Rotation Using a 2-D Input Device; Video Digitizing
Under QuickTime; Making Better QuickTime Movies

BACK ISSUES OF develop are on the develop Bookmark CD and on the Developer CD Series disc. To get
printed back issues, send $13 per issue in the U.S. (or $20 outside the U.S.) to the address on the subscription card.

HOW’RE WE DOING? We’d love to hear how you feel about develop. If you have any questions,
suggestions, or even gripes, please don’t keep them to yourself. (Be sure to include your name, company name,
address, and phone number.)

Send editorial suggestions or
comments to AppleLink DEVELOP
or to:

Caroline Rose
Apple Computer, Inc.
20525 Mariani Avenue, M/S 303-4DP
Cupertino, CA 95014
AppleLink: CROSE
Internet: crose@applelink.apple.com
Fax: (408)253-8521

Send technical questions
about develop to:

Dave Johnson
Apple Computer, Inc.
20525 Mariani Avenue, M/S 303-4DP
Cupertino, CA 95014
AppleLink: JOHNSON.DK
Internet: dkj@apple.com
CompuServe: 75300,715
Fax: (408)253-8521

WANT TO SUBSCRIBE? CHANGE OF ADDRESS? SUBSCRIPTION QUERIES?
For all your subscription-related needs, see the subscription card, or AppleLink DEV.SUBS.

WANT TO WRITE FOR develop? If you’d like to contribute an article or column to develop, please see
the blurb on the reverse of this page.

Apple provides a wealth of information,

products, and services to assist

developers. APDA, Apple’s source for

developer tools, and Apple Developer

University are open to anyone who

wants access to development tools and

instruction. Qualified developers may

access additional information and

services through the Apple Associates

and Partners programs.

The Associates Program, Apple’s
mainstream program for developers,
is a convenient and cost-effective
way to get essential technical and
marketing information. This
program offers self-help technical
support, keeps you up to date with
the latest products and technical
documentation, and gives you access
to the Apple developer community
through AppleLink. Associates also
receive discounts on equipment.

The Partners Program is open to
Apple-selected developers. In
addition to receiving the same
development information and tools
as Associates, Partners receive
technical support via electronic
mail. Membership in the Partners
program is limited to strategic
developers who directly contribute
to Apple’s long-term product plans
and business objectives.

APDA offers convenient worldwide
access to development tools,
resources, training products, and
information for anyone interested in
developing applications on Apple
platforms. Customers receive the
quarterly APDA Tools Catalog
featuring over 300 Apple and third-

party development products. There
are no membership fees. APDA
offers convenient payment and
shipping options, including site
licensing. Apple Associates or
Partners automatically receive the
APDA Tools Catalog.

Apple Developer University (DU)
provides training for all levels of
Macintosh programmers. Developer
University classes give you
experience using the most up-to-
date development tools. Developer
University offers classes at U.S. and
international locations and through
DU Extension partners. On-site
instruction can also be arranged for
selected courses. Multimedia self-
paced courses are available from
Developer University through
APDA. DU course offerings include
System 7 extensions, object-oriented
and procedural programming, and
new technologies, such as PowerPC.

R E S O U R C E S

Apple Associates and Partners
Programs Call the Developer Support
Center at (408)974-4897, AppleLink
DEVSUPPORT, or write 20525 Mariani
Avenue, M/S 303-2T, Cupertino, CA 95014,
for information or an application form for the
Associates or Partners program. Developers
outside the U.S. and Canada should instead
contact the Apple office in their country for
information about developer programs.

APDA To order products or to receive a
complimentary catalog, call 1-800-282-
2732 in the U.S., 1-800-637-0029 in
Canada, (716)871-6555 internationally, or
(716)871-6511 for fax. You can also order
electronically (AppleLink APDA; Internet
APDA@applelink.apple.com; CompuServe
76666,2405; or America Online APDA) or
write APDA, Apple Computer, Inc., P.O. Box
319, Buffalo, NY 14207-0319.

Apple Developer University The
registrar at (408)974-6215 can reserve
your place or send a current Curriculum
Guide and Course Schedule. You can also
AppleLink DEVUNIV or write 20525
Mariani Avenue, M/S 305-1TU, Cupertino,
CA 95014. Self-paced products should be
ordered directly through APDA.

Name

Yes! Send me a year (4 issues) of develop and the develop Bookmark CD for
only $30 in the U.S. That’s 25% off the cover price. All other countries $50.

Company/Institution Title

Address

City State/Province Zip Code

Country Telephone

Please bill me. Payment enclosed.

B993B

Allow 6–8 weeks for delivery. U.S. subscription price is $30 for 4 issues of develop and the develop Bookmark CD.
All other countries $50. For Canadian orders, price includes 7% GST (R100236199). Please make check payable to
Apple Computer, Inc., in exact amount, in U.S. dollars.

PHONE orders call 1-800-877-5548 in the U.S. FAX orders to (815) 734-1127
(815) 734-1116 all other countries

APPLELINK orders to DEV.SUBS

Subscribe & Save 25%

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 201 MT. MORRIS, IL

d e v e l o p
Apple Computer, Inc.
P.O. Box 531
Mount Morris, IL 61054-7858
U.S.A.

POSTAGE WILL BE PAID BY ADDRESSEE

NO POSTAGE
NECESSARY

IF MAILED IN THE
UNITED STATES

	Table of Contents
	Editorial
	LETTERS
	GETTING STARTED WITH QUICKDRAW GX
	QUICKDRAW GX: A QUICK LOOK UNDER THE HOOD
	Figure 1
	GRAPHICS
	Figure 2

	TYPOGRAPHY
	PRINTING

	PROGRAMMING AMENITIES
	THE QUICKDRAW GX LIBRARIES
	ERROR HANDLING IN QUICKDRAW GX
	GRAPHICSBUG: A POWERFUL NEW DEBUGGING TOOL

	INITIALIZING QUICKDRAW GX
	CREATING A NEW GRAPHICS CLIENT
	SETTING UP ERROR HANDLING AND VALIDATION

	MANAGING MEMORY IN THE QUICKDRAW GX HEAP
	TRACKING DOWN A MEMORY TRASHING PROBLEM
	SETTING UP THE COMMON COLOR LIBRARY

	USING WINDOWS WITH QUICKDRAW GX
	ATTACHING A VIEW PORT TO A WINDOW
	Figure 3

	ZOOMING AND RESIZING THE CHILD VIEW PORT
	SCROLLING THE CHILD VIEW PORT’S CONTENTS

	CREATING, MANIPULATING, AND DRAWING QUICKDRAW GX SHAPES
	EXAMPLE 1: A SHAPE CONTAINING TEXT
	Figure 4
	Figure 5
	Figure 6

	EXAMPLE 2: A SHAPE CONTAINING A LINE LAYOUT
	Figure 7
	Figure 8

	BASIC PRINTING IN QUICKDRAW GX
	METHODS FOR PRINTING SHAPES
	INITIALIZING QUICKDRAW GX PRINTING
	HANDLING PRINTING ERRORS
	IMPLEMENTING THE NEW MENU ITEMS
	FINISHING UP

	CLOSING UP THE QUICKDRAW GX WORLD
	WHERE TO GO FROM HERE

	DEVELOPING QUICKDRAW GX PRINTING EXTENSIONS
	Figure 1
	THE QUICKDRAW GX PRINTING ARCHITECTURE
	THE FOUR SEASONS OF PRINTING
	GO WITH THE FLOW
	DON’T SHOOT THE MESSENGER
	Figure 2

	LESS IS MORE
	WRITING THE CODE
	OVERRIDING GXCOUNTPAGES
	OVERRIDING GXDESPOOLPAGE
	THE JUMP TABLE

	PUTTING IT ALL TOGETHER
	BE RESOURCEFUL
	BUILDING THE BEAST

	BUT WAIT! THERE’S MORE!

	QUICKDRAW GX FOR POSTSCRIPTPROGRAMMERS
	WHAT IS POSTSCRIPT?
	COMPARING QUICKDRAW GX AND POSTSCRIPT
	THE GRAPHICS MODEL
	Figure 1
	Figure 2
	Figure 3

	OBJECT-BASED MODEL VERSUS STREAM-BASED PROTOCOL
	TEXT-DRAWING MODELS
	Figure 4
	Figure 5
	Figure 6

	PRINTING MODELS

	IF YOU CAN DO IT IN POSTSCRIPT . . .
	FRAMING SOMETHING WITH A NONSQUARE PEN
	MODIFYING GLYPHS IN A FONT
	CONVERTING FRAMED OBJECTS INTO FILLED OBJECTS
	CONVERTING TEXT INTO A PATH

	NOW YOU’RE READY FOR QUICKDRAW GX

	THE VETERAN NEOPHYTE: THROUGH THE LOOKING GLASS
	Figure 1
	Figure 2
	RECOMMENDED READING

	MANAGING COMPONENT REGISTRATION
	Figure 1
	DO I REALLY NEED TO WORRY ABOUT THIS?
	THE SYSTEM VERSION AND THE COMPONENT MANAGER
	METHODS FOR MANAGING COMPONENT REGISTRATION
	Figure 2
	RISKY: LET THE COMPONENT MANAGER TAKE CARE OF IT
	BETTER: USE AN INIT TO MANAGE REGISTRATION
	MO’ BETTER: USE A LOADER COMPONENT TO MANAGE REGISTRATION

	PRACTICE SAFE REGISTRATION

	SOMEWHERE IN QUICKTIME: DYNAMIC CUSTOMIZATION OF COMPONENTS
	ABOUT THOSE OBJECT-ORIENTED TECHNIQUES
	DYNAMIC LINKING OF COMPONENTS
	IN SEARCH OF A BASE COMPONENT
	IN SEARCH OF THE ROUTINES TO OVERRIDE
	CREATING A DERIVED COMPONENT
	LETTING USERS LINK AND UNLINK COMPONENTS
	EXCITING PROSPECTS
	REFERENCES

	FLOATING WINDOWS:KEEPING AFLOAT IN THE WINDOW MANAGER
	STANDARD FLOATING WINDOW BEHAVIOR
	ORDER OF ON-SCREEN INTERFACE OBJECTS
	APPEARANCE OF FLOATING WINDOWS
	Figure 1
	Figure 2

	FLOATING WINDOWS AND CONTEXT SWITCHING

	IMPLEMENTING FLOATING WINDOWS IN YOUR APPLICATION
	DEALING WITH ACTIVATE EVENTS

	THIS IS NOT YOUR FATHER’S WINDOW MANAGER
	THE FLOATING WINDOW API

	THE SAMPLE PROGRAM AND THE SOURCE
	SEAT CUSHIONS AND OTHER FLOTATION DEVICES

	WORKING IN THE THIRD DIMENSION
	WHY A 3-D LOOK?
	THE 3-D LOOK
	Figure 1
	Figure 2

	ICON BUTTONS
	Figure 3
	Figure 4
	Figure 5
	Figure 6

	THE NAUGHTY BITS
	STACKING THE DECK IN YOUR FAVOR
	STACK-BASED OBJECTS
	DECORATING YOUR WINDOWS WITH ADORNERS
	TO STAY IN CONTROL YOU HAVE TO HAVE CLASS
	ADDING THE 3-D CLASSES TO YOUR MACAPP APPLICATION
	WHY BOTHER WITH A THIRD DIMENSION WHEN WE HAVE TWO PERFECTLY GOOD ONES?

	VIEW FROM THE LEDGE
	RECOMMENDED READING AND LISTENING

	MACINTOSH Q & A
	KON & BAL’S PUZZLE PAGE: I’M HERE TO SERVE
	INDEX
	WANT TO WRITE FOR develop?
	RESOURCES
	Subscription Card

