~ O~ ~ -~

3.17.7 External Control Instructions
Recommendations and miscellaneous information follow:

Recommendations
It is recommended that external control instructions not be supported in a system unless they are
exploited by devices which use this form of bus transfer.

Miscellaneous

The The PowerPC Architecture, Appendix A, defines two instructions for problem-state programs to
communicate with special purpose devices. These two instructions, ecowx and eciwx, present unusual
PowerPC processor bus signals. They are coded as address-only transfers but have data.

3.17.8 Special Direct-Store Segment
Recommendations and miscellaneous information follow:

Recommendations

It is recommended that software which uses the special direct-store segment feature of the 601 processor
encapsulate this usage in a service.

It is recommended that this service support other PowerPC processors that do not have this 601-unique
capability.

Miscellaneous

The 601 processor has implemented a special direct-store segment which is treated differently than other
direct-store segments. When a direct-store segment has the Bus Unit Identifier (BUID) set to X '7f', the
processor does a special translation to a real address. The load or store is cache inhibited to this address.

Architecture Guidance — Page 81 of 319

Page 82 of 319 — PowerPC Reference Platform

4.0 Machine Abstractions

Historically in the PC industry, operating systems have been intertwined with the hardware on which they
execute. Vendors made sure that operating systems would run on their platforms by cloning hardware that
was known to run these operating systems. While this had the advantage of allowing the PC operating
system industry to flourish, it curbed the number of hardware modifications made to PC platforms by hard-
ware manufacturers. Vendors did not want to jeopardize the ability of their platforms to run as many off-
the-shelf operating systems as possible.

The advent of abstraction software and microkernel-based operating systems has allowed operating systems
to be more portable across different platforms. Abstraction software concentrates operating system
hardware-dependent code into a collection of code that has well-defined interfaces with the operating system
kernel and may be modified to meet the hardware interface. An operating system uses abstraction software
to interface with system components such as processor and system registers, interrupt controllers, and I/0
devices. The operating system is buffered from the hardware of a platform. Thus, moving an operating
system to another binary-compatible platform now implies porting only the abstraction software of that
operating system to the new platform. A hardware system vendor with a differentiated system would have to
supply replacement abstraction software which bridged the gap between the distributed operating system
with its standard set of abstractions and the differentiated hardware. This abstraction approach reduces time
to market and allows operating system vendors to support a single version of the operating system. Simi-
larly, microkernel-based operating systems concentrate hardware-dependent code and kernel services into a
collection of code that is separate from the OS “personality.”

The PowerPC Reference Platform Specification has been created to utilize these abstraction processes to
allow hardware differentiation. It allows vendors to design unique hardware platforms that use off-the-shelf
operating systems. Hardware platforms and operating systems that meet this specification are termed
“PowerPC Reference Platform compliant.” To enable the same operating system to run on differentiated
PowerPC Reference Platform-compliant hardware, the PowerPC Reference Platform Specification requires
that compliant operating systems be designed to use abstraction software to interface to the hardware. For
an operating system to be PowerPC Reference Platform compliant, it must have the qualities described
below:

» The operating system must provide software abstractions for the functions described in the subsequent
subsections of this chapter.

+ The operating system must provide a mechanism to allow the abstraction software to be replaced by
other vendors.

« The operating system must provide a mechanism to allow the replacement abstraction software to be
merged with the distributed operating system and to run with that operating system.

+ The operating system abstraction process must not require access and recompilation of portions of the
operating system outside the abstraction software.

An operating system vendor may choose to port to a PowerPC Reference Platform-compliant hardware
implementation, but may choose not to meet the above requirements. This approach will limit broad
support of that operating system. These operating systems are not PowerPC Reference Platform compliant.

This specification encourages PowerPC based platform vendors to examine the use of abstraction software
and microkernel-based operating systems on their platforms. At present, not all operating systems have
these architectures. However, many operating systems vendors are migrating to this approach, so it is
important that platform vendors be aware of the new technology.

Note: The abstraction requirements in this document are meant to enhance portability of operating systems
and device drivers across PowerPC Reference Platforms. They are not intended to insure portability to non-
compliant platforms. For that, other abstractions may be necessary.

Machine Abstractions — Page 83 of 319

Applications Applications

4< API/AHI {7 7‘ API/ABI {7

Operating System A Operating System B
Abstraction for Abstraction for Abstraction for
Platform 2 Platform 1 Platfarm 2
and 05 A and 05 B and 0S B
Platform 2 Platform 1 Platform la | | Platform 2

Figure 9. Abstraction Software for Various Platforms

4.1 Abstraction Example

The left side of Figure 9 demonstrates that support for an operating system which runs on Platform 2, called
Operating System A, is provided by a set of software abstractions. The right side of the figure shows that a
different set of abstraction software is used to support Operating System B. Note that the abstraction soft-
ware is different among PowerPC Reference Platform-compliant systems that support this platform. The
PowerPC Reference Platform defines the functions which must be abstracted, but it does not define the
interface to the operating system nor does it define the way the functions are collected into usable services.

In this example, if Platform 1 has hardware that is different than Platform 2, another implementation of the
abstraction software must be supplied to support execution of Operating System B. The hardware vendor
would supply the abstraction software that allows B to run on Platform 1. Platform la is the same system
as Platform 1 with an upgraded processor, or a clone of Platform 1 manufactured by a different vendor.
Since the hardware is similar enough to support use of the same abstraction software, the operating system
will run on both platforms without another implementation of abstraction software.

Page 84 of 319 — PowerPC Reference Platform

4.2 Abstraction Software Components

The following subsections describe the abstraction software components. These components are shown in
Figure 10 and consist of the Boot-Time Abstraction Software (BTAS) and the Run-Time Abstraction Soft-
ware (RTAS). This diagram shows a logical collection of abstraction software and is not intended to show
an implementation approach. For example, a PowerPC Reference Platform-compliant operating system
may implement these functions as a replaceable layer, as well-defined overlayable components of the kernel,
or as a small, replaceable kernel. Operating system vendors can use the information in this section as guid-
ance in determining if their operating system adheres to the abstractions that the PowerPC Reference Plat-
form is promoting. Hardware vendors can gain from this information a general idea of what is required to
port a PowerPC Reference Platform-compliant operating system to their platforms. Hardware vendors
should also refer to specific abstraction software documents provided by operating system vendors for oper-
ating systems they wish to port.

4.3 Boot-Time Abstraction Software

The BTAS is a collection of firmware and software which abstracts the hardware that a platform’s boot
program (e.g. firmware) uses at boot time. It also abstracts the hardware that the operating system loader
uses to load an operating system. A hardware platform vendor that provides boot hardware different than
that expected by the operating system loader and boot firmware must supply replacement components for
the BTAS or must provide other methods of using the new boot devices, such as Open Firmware. Exam-
ples of the hardware that the BTAS must abstract are devices such as ASCII terminals, graphics monitors,
and keyboards. These devices allow the loader to interact with a user during the loading of the operating
system. The BTAS must abstract mass storage and network devices so that the operating system binary can
be loaded.

4.4 Run-Time Abstraction Software

The RTAS is a collection of data and software that abstracts hardware from the operating system kernel.
The RTAS is made up of system abstractions and device drivers. Some system abstractions may be used to
abstract device drivers from hardware. Examples of items that the RTAS abstracts are interrupt controllers
and cache configuration.

The software that implements the RTAS is unique for each combination of operating system and differen-
tiated platform hardware. Initial versions of the RTAS are distributed by an operating system vendor. The
distributed RTAS is written for one or more hardware platforms. Vendors who differentiate their hardware
platforms must make sure that the RTAS supports their hardware. If not, they must develop and distribute
replacement components for the RTAS.

This section specifies a minimum set of hardware features that the RTAS must abstract. Equivalently, it
specifies the hardware features that a vendor may change and then have RTAS functions defined to bridge
the gap.

4.41 Data

The RTAS contains areas of data used to store and pass system configuration information from the boot
process to the operating system. This configuration information includes processor parameters, memory
map information, system bus information, and I/O device information. These areas are:

the NVRAM area
the Residual Data area

Machine Abstractions — Page 85 of 319

Boot

Program 0S5 Londer Operating System
(ROM)
/4 + [} [}
’/Boot—time N
Abstraction
Software Run—time Abstraction
oS Loadable Softwara y ;"':
Independent Utllities [
Abstraction System Abstraction
Software
Y Y Y ¥ Y \
Hardware m"‘ Timer | |Floppy ¢ @ ¢ |Graphics
Boot State Operating System (Run—time) State

-4———1—» Open Firmware Only

Figure 10. Software Abstraction Layers
4.4.1.1 System Information

The RTAS must provide information about each processor in the system. It must also provide the starting
addresses and lengths of each distinct area in the memory map.

4.4.1.2 System Memory

The RTAS must provide information about System Memory. This includes the type, size, and physical
address ranges of each contiguous System Memory area that is available or unavailable to the operating
system. Any special attributes that are associated with these areas of System Memory must also be provided.

4.4.1.3 1/0 Device Information

The RTAS must provide information about a platform’s I/O devices. This must include the types,
addresses, and quantity of I/O devices and I/0 buses.

4.4.2 Processor Initialization

The RTAS must provide services to perform any processor initialization not performed by the operating
system loader. For operating systems which support multiprocessors, the RTAS must provide services to
locate and initialize other processors.

Page 86 of 319 — PowerPC Reference Platform

/
/

4.4.3 Flushing of Temporary 1/O Buffers

If an operating system supports software-managed coherency, then the RTAS must provide services to main-
tain coherency by flushing any hardware-provided temporary I/O buffers which are not automatically flushed
after a transfer.

4.4.4 Virtual Memory Management

The RTAS must encapsulate the data structures and operations associated with virtual memory management
support. These abstractions would support differences within processors designed to comply with The
PowerPC Architecture, Books I, IT and III. Examples of the type of abstractions required are described in
the next two subsections.

4.4.4.1 TLB Flush

The PowerPC architecture does not specify the size or organization of TLBs, nor does it require the hard-
ware to automatically maintain a TLB coherent with memory-based page tables. Therefore, the operating
system must manage the TLBs. The RTAS must provide TLB flush routines that map the TLB flush prim-
itives required by the operating system to the appropriate set of TLB invalidation instructions provided by
the specific processor.

4.4.4.2 TLB Reload

Some PowerPC processors provide automatic reload of TLB entries from memory-based page tables.
However, some processors do not implement this mechanism and instead rely on a hardware-assisted soft-
ware routine to refill the TLB. The RTAS must provide services to load a TLB entry in a manner con-
sistent with the processor(s) of a platform.

4.4.5 Cache Management

The RTAS must manage the caches in the system. PowerPC processors may have different sizes of cache
and a single cache may combine data and instructions or the processor may have separate caches for data
and instructions. In addition, PowerPC Reference Platform systems may have external caches which are
write-through or copy-back.

4.4.6 Interrupt Handling

The RTAS must provide services to acknowledge the interrupts and to enable and disable interrupts from
devices used on the platform.

4.4.7 Direct Memory Access (DMA)

The abstraction layer must provide abstractions for any DM A devices which are independent of a particular
device, such as those built in as inseparable components of the platform. If a particular device (e.g. a disk
controller) has a built-in DMA controller, that DM A controller would be controlled by the device driver.
Abstraction software services which might be required depend on the particular hardware support. Typical
services are as follows:

Block transfers from memory to the I/O adaptor
Block transfers from the I/0O adaptor to memory
Byte and halfword bus transfer sizes

Block transfers of large sizes

Scatter/gather with single-byte resolution

Machine Abstractions — Page 87 of 319

Start DMA transfer
Stop DMA transfer indication of DM A transfer completion (e.g. interrupt or read DM A counter)
Flush intermediate DM A transfer buffers

Additional features such as generalized memory-to-memory transfer, word transfer sizes, additional DM A
channels and chained DM A may be provided by the platform hardware. The abstraction software may
provide support for these services.

4.4.8 Calendar and Timer Services

These run-time abstractions provide services for the various clocks and calendars within the system. They
must account for the non-volatile Real-Time Clock in the system, the 601 processor RTC, the Time Base
on other PowerPC processors, the decrementer which provides an interrupt after counting down to zero, and
the ability to change clock frequency supplied on some PowerPC processors. Operating Systems which plan
to participate in multiboot scenarios must maintain the non-volatile Real-Time Clock in GMT.

4.4.9 1/0 Addresses

The RTAS must provide a service which allows the device drivers to determine the physical address of a
device.

4410 Power Management

If macro power management is supported by the operating system, then the abstraction layer must provide a
means to change device and subsystem power states. It must also provide a means to read and write system
information.

4.4.11 Hardware Fault

The abstraction layer must provide a means for notifying the operating system that a hardware fault has
occurred. The RTAS must provide support as follows:

It must provide a means for notifying the operating system that a memory error has occurred
It must provide a means for notifying the operating system that an I/O device error has occurred
It must provide a means for notifying the operating system that a bus timeout error has occurred

4.4.12 Device Drivers

Device drivers are a part of the RTAS. Device drivers are normally distributed by hardware device vendors.
They meet a defined interface at the operating system and perform hardware-device-specific operations. To
make the device drivers more portable it is strongly recommended that device drivers for PowerPC Reference
Platform-compliant systems:

use the RTAS services provided by each operating system to make the device drivers platform inde-
pendent

be written in an Endian-aware manner to allow the driver to be easily ported to Big-Endian and Little-
Endian operating systems

PCMCIA Socket Services are normally provided by the hardware system vendor. If an operating system

provides them, then the operating system must also provide a method for hardware vendors to supply alter-
nate Socket Service device drivers.

Page 88 of 319 — PowerPC Reference Platform

5.0 Boot Process and Firmware

This section describes the boot process, the format and contents of boot information, and the state of the
system at the end of the boot process. In this section, the required features for PowerPC Reference Platform
systems are stated in terms of “must.” The features that are used to improve usability or performance are
described in terms of “recommended.”

It is a goal of the PowerPC Reference Platform developers to implement IEEE standard P1275 for Boot
Firmware, “Open Firmware.” Systems delivered after June 1, 1995, must implement “Open Firmware” to
be compliant with the PowerPC Reference Platform Specification. Appendix I, “PowerPC Supplement to
IEEE 1275,” defines the extension of Open Firmware for a system based on the PowerPC microprocessor.
This section describes Open Firmware for the PowerPC Reference Platform.

Note: In the following discussion, firmware that is not compliant to the Open Firmware standard is
referred to as “conventional firmware.”

The firmware for a PowerPC Reference Platform-compliant machine must load into memory the load
image, which is to take control of the machine. As part of that process, the firmware must initialize some of
the devices on the system. The firmware may run diagnostics on the hardware on which it depends, but the
loaded operating systems must not assume that complete diagnostics have been run.

Common sources for the load image include disk, diskette, CD-ROM and network connection. Depending
upon the type of PowerPC Reference Platform system being produced and the requirements of the operating
system being hosted, all of these devices do not need to be supported on all machines. For instance, a
medialess machine might require only the ability to boot from the network.

The steps involved in the boot process are shown in Figure 11. Upon power-on, the firmware stored within
the system ROM must initialize enough hardware to load the load image. This initialization results in the
cold-start transient state of the system. The firmware then loads the boot record that contains data struc-
tures defining the location of the load image. Next, the firmware loads the load image into memory.
Finally, the firmware transfers control to the entry point of the load image, thus concluding the original
transient system state. The code in the load image establishes whatever state it requires to proceed with its
function. The subsections below describe this process in more detail and define formats and data structures
necessary for the boot process.

Establish Cold-Start
Transient State

Locate the Load Image
Load the Load Image

!

Transfer System Control
To Load Image

Figure 11. Boot Process Overview

Boot Process and Firmware — Page 89 of 319

5.1 Establishing Cold-Start Transient State

The boot process must prepare enough of the system to execute boot activities, and must discover the exist-
ence of devices with boot images. Minimum tasks to be done in this process are as follows:

a) Power-On Self Test (POST)

b) Configuring the console

¢) Obtaining the user’s password (if required)
d) Configuring the system for boot

5.1.1 Power-On Self Test (POST)

The PowerPC Reference Platform firmware must check the critical core components (the components of the
system necessary to successfully complete the boot process). The processor must be checked to see that it is
functioning. Enough memory to run the boot must be initialized and tested. A check such as a Cyclic
Redundancy Check (CRC) may be performed on the contents of the System ROM to ensure that uncor-
rupted code exists on the ROM.

5.1.2 Configuring the Console

It is recommended that firmware locate and initialize the console as early as possible to allow the display of
progress messages and error messages. In the event of error during the boot, the message must suggest the
user’s next action. This action might be to try another boot device, to run diagnostics, or to try a power off
and on cycle. It is strongly recommended that the message be configurable to either the natural language of
a user or language-independent interfaces such as icons.

The primary console may be located by using data stored in NVRAM, or by probing the likely console
locations. If more than one console is located, the firmware must have a predetermined policy to decide
which of the consoles is used in the boot process.

After the console is discovered, it must be initialized and its driver must be made available to firmware. It is
recommended that any hardware cursor or mouse-style pointer be turned off until input is requested to avoid
distracting the user during the boot process.

5.1.3 Obtaining the User’s Password

At least two levels of passwords must be supported on PowerPC Reference Platform-compliant machines.
One level is intended for the normal user and allows normal computational use of the system. The second
level allows a user the privileges of changing and defining the system configuration as well as all the normal
privileges.

If passwords have not been enabled for the particular machine being booted, this step is skipped. If pass-
words are enabled, the console must request the user’s password and the boot process must authenticate it
before proceeding with the boot or configuration.

5.1.4 Configuring the System

The boot process must configure the components necessary to perform the boot. The rest of the configura-
tion process may be deferred to the hosted operating system that will complete the configuration process. If
the configuration data in NVRAM identifies the boot devices, the boot process may proceed to check the
boot devices. Otherwise, the boot process must check likely boot device candidates. For instance, for the
Reference Implementation the firmware checks the diskette drive and devices attached to the SCSI controller.
For network boot, software specific to the adaptor will have to be included in the firmware.

Page 90 of 319 — PowerPC Reference Platform

~ O~ ~ -~

~ ~ ~ ~—

~ O~~~ ~ ~—

~ ~ ~— ~—

The firmware must provide a mechanism that allows a user to perform manual configuration. For example,
a user may have the capability to escape from the auto-configuration process and then either define the boot
device or redefine the default order of looking at devices. For network boot, the user may be able to set the
network identification for the boot image.

5.2 Locating the Load Image

The next step in the boot process is to locate the load image in a boot partition. A boot device must have
at least one boot partition. The default boot partition and load image are specified by using Global Envi-
ronment variables defined in NVRAM. In the normal booting process, firmware uses the default values to
select the load image.

The firmware must provide a mechanism that allows a user to perform manual selection. For example,
when the default device and partition are not specified or a user wants to select other than the default, a user
may have the capability to escape from the default booting process to specify the boot device and the
location of the load image.

The boot record can be used by firmware to identify the possible boot partitions in a device that has mul-
tiple partitions. A hard disk must have a boot record. However, a CD-ROM may not have a boot record.
In this case, a CD-ROM must be treated as if it has single partition, and the format of the CD-ROM must
conform to the ANSI/NISO/ISO 9660 standard, “Information processing -- volume and file structure of
CD-ROM for information interchange,” and the load image must be identified by using an ANSI/NISO/ISO
9660-standard file name.

Note: The ANSI/NISO/ISO 9660 standard specifies the volume and file structure of compact read-only
optical disks (CD-ROM) for the interchange of information between users of information processing
systems. The PowerPC Open Firmware specification requires compliant firmware to support the
ANSI/NISO/ISO 9660 file system for CD-ROM.

A diskette device is treated as if it has a single partition.

In the following sections, the structures of the boot record are presented.

5.2.1 Boot Record

The format of the boot record is an extension of the PC environment. The boot record is composed of a
PC compatibility block and a partition table. To support media interchange, the PC compatibility block
may contain an x86-type program. The entries in the partition table identify the PowerPC Reference Plat-
form boot partition and its location in the media.

The layout of the the boot record must be designed as shown in Figure 12. The first 446 bytes of the boot

record contain a PC compatibility block, the next four entries contain a partition table totalling 64 bytes, and
the last 2 bytes contain a signature.

Boot Process and Firmware — Page 91 of 319

PC Compatibility
Block

in the Boot Record

0x1BE 446
Partition Entry 1

0x1CE 462
Partition Entry 2

0x1DE 478
Partition Entry 3

0x1EE 494
Partition Entry 4

0x1FE 510
0x55 0xAA

512

Figure 12. Boot Record -- Detail View
5.2.1.1 PC Partition Table Entry

To support media interchange with the PC, the PowerPC Reference Platform defines the format of the parti-
tion table entry based on the PC format. This section describes the format of the PC partition table entry.

A partition table entry occupies 16 bytes. The layout of a PC partition table entry is shown in Figure 13.

partition begin : boot ind head sector cyl

partition end ! sys ind head sector cyl

beginning sector ’ low word (LE) high word (LE)

number of sectors . low word (LE) high word (LE)
LE = Little-Endian format

Figure 13. Partition Table Entry

The primary fields of a partition table entry are defined as follows:

partition begin This field contains the beginning address of the partition in head, sector, cylinder nota-
tion.
partition end This field contains the end address of the partition in head, sector, cylinder notation.

beginning sector The number of sectors preceding the partition on the disk (that is, the zero-based rela-
tive block address of the first sector of the partition).

number of sectors The number of sectors allocated to the partition.

The subfields of a partition table entry are defined as follows:

boot ind Boot Indicator. This byte indicates if the partition is active. If the byte contains 0x00, then the
partition is not active and will not be considered as bootable. If the byte contains 0x80, then the
partition is considered active.

Page 92 of 319 — PowerPC Reference Platform

~ O~~~ ~

~ O~ ~ -~

head An eight-bit value, zero-based.

sector A six-bit value, one-based. The low-order six bits are the sector value. The high-order two bits
are the high-order bits of the 10-bit cylinder value.

cyl Cylinder. The low-order eight-bit component of the 10-bit cylinder value (zero-based). The
high-order two bits of the cylinder value are found in the sector field.

sys ind System Indicator. This byte defines the type of the partition. There are numerous partition
types defined. For example, the following list shows several:

0x00 Available partition
0x01 DOS, 12-bit FAT
0x04 DOS, 16-bit FAT
0x05 Extended DOS partition

The extended DOS partition is used to allow more than four partitions in a device. The boot record in the
extended DOS partition has a partition table with two entries, but does not contain the code section. The
first entry describes the location, size and type of the partition. The second entry points to the next partition
in the chained list of partitions. The last partition in the list is indicated with a system indicator value of
zero in the second entry of its partition table.

Because of the DOS format limitations for a device partition, a partition that starts at a location beyond the
first 1 gigabyte is located by using an enhanced format shown in Figure 14.

partition begin boot ind -1 -1 -1
partition end sys ind -1 -1 -1
beginning sector 32-bit start RBA (zero-based) (LE)
number of sectors 32-bit RBA count (one-based) (LE)

Figure 14. Partition Table Entry Format for an Extended Partition

The value “-1” indicates that the field is all ones. “RBA” means Relative Block Address in units of 512
bytes.

5.2.1.2 PowerPC Reference Platform Partition Table Entry for Conventional Firmware

This section describes the definition of the partition table entries for conventional firmware. The definition
of the boot record and its process for Open Firmware are defined in Appendix I, “PowerPC Supplement to
IEEE 1275.”

Conventional firmware identifies the PowerPC Reference Platform partition table entry (refer to Figure 15)
by the 0x41 value in the system indicator field. All other fields are ignored by the firmware except for the
“beginning sector” and “number of sectors” fields. The “head,” “sector,” and “cyl” fields must contain
PC-compatible values (i.e. acceptable to DOS) to avoid confusing PC software. These fields, however, may
be ignored by the PowerPC Reference Platform firmware. See Section 5.2.1.1, “PC Partition Table Entry,”
for descriptions of these fields.

Boot Process and Firmware — Page 93 of 319

~ O~ ~ ~

~ O~ ~ -~

~ O~~~ ~—

~ O~~~ ~

partition begin boot ind head sector cyl

partition end sys ind head sector cyl
beginning sector 32-bit start RBA (zero-based) (LE)
number of sectors 32-bit RBA count (one-based) (LE)

Figure 15. PowerPC Reference Platform Partition Table Entry Format for Conventional Firmware

The 32-bit start RBA is zero-based. The 32-bit count RBA value is one-based and indicates the number of
512-byte blocks. The count is always specified in 512-byte blocks, even if the physical sectoring of the target
device is not 512-byte sectors.

5.3 Loading the Load Image

The next step in the boot process is to transfer the load image into System Memory. This section describes
the layout of the 0x41 type partition and the process of loading the load image. The structure and the
process of the load image for Open Firmware are described in Appendix I, “PowerPC Supplement to IEEE
1275

Note: The 0x41-type partition is supported by conventional firmware. An Open Firmware implementation
may support the 0x41 type partition for compatibility. However, after June 1 1995, hardware system and
operating system vendors must format the boot devices as described in the PowerPC Open Firmware specifi-
cation in Appendix I, “PowerPC Supplement to IEEE 1275.”

The layout for the 0x41 type partition is shown in Figure 16. The PC compatibility block in the boot
partition may contain an x86-type program. When executed on an x86 machine, this program displays a
message indicating that this partition is not applicable to the current system environment.

The second relative block in the boot partition contains the entry point offset, load image length, flag field,
operating system ID field, ASCII partition name field and the reservedl area. The 32-bit value entry point
offset (Little-Endian) is the offset (into the image) of the entry point of the PowerPC Reference Platform
boot program. The entry point offset is used to allocate the reservedl space. The reservedl area from offset
554 to Entry Point - 1 is reserved for implementation-specific data and future expansion.

The 32-bit value load image length (Little-Endian) is the length, in bytes, of the load image. The load image
length specifies the size of the data physically copied into the system RAM by the firmware.

The flag field is 8 bits wide. The MSb in the field is allocated for the Open Firmware flag. If this bit is set to
1, the loader requires Open Firmware services to continue loading the operating system.

The second MSb is the Endian mode bit. If the mode bit is 0, the code in the section is in Big-Endian
mode. Otherwise, the code is in Little-Endian mode. The implication of the Endian mode bit is different
depending on the Open Firmware flag. If the Open Firmware flag is on, the mode bit indicates the Endian
mode of the code section pointed to by the load image offset, and the firmware has to establish the hardware
Endian mode according to this bit. Otherwise, this bit is just an informative field for firmware.

The OS_ID field and partition name field are used to identify the operating system located in the partition.

The OS_ID field has the enumerated identification value of the operating system located in the partition.
The 32 bytes of partition name field must have the ASCII notation of the partition name. The name and

Page 94 of 319 — PowerPC Reference Platform

F N N N U N

~

OS_ID can be used to provide to a user the identification of the boot partition during the manual boot
process.

/ PC Compatibility /
Block

512

Entry Point Offset (LE)

516

Load Image Length (LE) —— | Load Image

520
Flag Field
521
0S_ID

522
/ Partition Name /

554
/ Reservedl /

1023

/ 0S-Specific Field /
(Optional)

—>» Entry Point

(Code Aligned)

Code Section of the
Load Image

/ Reserved2 /

RBA_Count * 512

Figure 16. Layout of the 0x41-Type Partition

Once the boot partition is located by using the boot record, the firmware will typically:

a) read into memory the second 512-byte block of the load image

b) determine the load image length, which runs up to, but does not not include, the reserved2 space

c) allocate a buffer in system RAM for the load image transfer (no fixed location)

d) transfer rest of the load image into system RAM from the boot device (the reserved2 space is NOT
loaded)

Note: The firmware does not load into the memory any data in the reserved2 space. Only the part of the
load image that can continue loading the rest of the boot image is actually brought into system RAM by the

Boot Process and Firmware — Page 95 of 319

~

~ ~

~ ~ ~— ~— ~—

firmware. This allows the PowerPC Reference Platform boot partition to grow to any arbitrary size. It is
important to allow the boot partition size to be larger than the system RAM because the size of entire boot
partition could exceed available system RAM, especially in an entry-level system.

5.4 Transferring System Control to Load Image

After the load image has been loaded, the firmware transfers control to the entry point of the loader code.
The state of the machine at this point is defined in Section 5.4.1, “System State.”

5.4.1 System State

When the firmware passes control to the software loaded through the boot mechanism, the following must
be true:

a) For the area of System Memory where the load image resides, addressing must have been set up as phys-
ical address equals virtual address. This area must be covered by BAT registers.

b) IP (Interrupt prefix) bit in MSR (Machine Status Register) must be 0 to vector the interrupt to the
System Memory.

c) System I/O address space must be in contiguous I/O mode. (For a discussion of the contiguous I/0
mode used in the Reference Implementation, refer to Section 6.1, “Memory and I/O Map.”)

d) The video mode, if a graphics device is used, must be set to a bitmap mode with minimum resolution of
640x480x8.

e) The residual data must be available. Section 5.6.1, “Map of Residual Data Structure,” shows the data
that the firmware must collect for an operating system. The memory addresses of the residual data and
load image are passed on GPR3 and GPR4, respectively. Open Firmware must store the the address of
the Open Firmware client interface at GPR5. For conventional firmware, the GPR5 must be set to 0.

f) Configuration and status information that are operating system independent must be stored in NVRAM.
The NVRAM structure is shown in Section 5.5.5, “Map of NVRAM Data Structure.”

g) It is strongly recommended that conventional firmware leave the system in Big-Endian mode. However,
conventional firmware may leave the system in Little-Endian mode for client programs that the conven-
tional firmware recognizes as expecting Little-Endian. On the other hand, Open Firmware must estab-
lish the system hardware Endian mode to be the same as the client program to be loaded.

h) Conventional firmware must disable the external interrupts. Open Firmware must enable the external
interrupts.

5.4.2 Call-Back to Firmware

Call-back refers to a service request by software to the system firmware. In general, call-backs to firmware
are enabled through call-back entry points provided by the firmware.

Conventional firmware must not export any entry point for call-back to firmware. Open Firmware, on the
other hand, may allow call-back through its client interface. However, the call-back service must be limited
to support of the boot operations or to functions for which the firmware is efficient. This makes the run-
time operating system independent of the implementation of firmware. For the same reason, operating
systems must not export the call-back entry point for application programs.

Page 96 of 319 — PowerPC Reference Platform

e e T N

~ O~ ~ ~

5.5 NVRAM

NVRAM stores the system configuration data for the use of the firmware and the operating system. As
shown in Figure 17, NVRAM has four sections -- HEADER, GEArea, OSArea and ConfigArea. The
detailed structure of NVRAM is described in Section 5.5.5, “Map of NVRAM Data Structure.”

0 _
/ /
—— GEAddress
GELength
Header
ConfigAddress
ConfigLength
— OSAreaAddress
R OSAreaLength
/ Global Variables / GEArea
L |
/ OSArea / OSArea
/ Unused /
—>
/ Configuration / ConfigArea
NVRAM size - 1

Figure 17. NVRAM Map

5.5.1 HEADER

The HEADER section starts at address 0. This section includes system variables such as version number of
NVRAM map, size of NVRAM, security fields, error logs, the start address and length of the other three
sections, etc. The version number in the HEADER can be used to identify updated versions of NVRAM
structures to accommodate future requirements.

The size, the version, the revision fields and the fields of security section in the header are maintained only
by the firmware. Operating systems may read these fields but must not modify any of them.

There are two error logging slots allocated in the header. The overrun bit may be used to preserve the oldest
error in a burst of error events.

Boot Process and Firmware — Page 97 of 319

~ ~ ~ ~—

~ ~

~ N N~ ~N——— ~

N el S L e

~ O~ ~ ~

—_——— —~ ~— — ~— ~— ~—

5.5.2 Global Environment Area

The GEArea has definitions of global environment variables. The size and start address of the GEArea are
specified by GEAddress and GELength in the HEADER section. The global environment variables must be
settable from the firmware and operating systems. In general, the environment variable definition is a null-
terminated string. The format is as shown below:

Name=<value>
Global variables are used mainly by firmware for cached data or by operating systems to communicate with

firmware. These Global variables are architected. Architected environment variables defined to date are
listed below:

Name Comment

ClientIPAddr+ IP address of the machine

ServerIPAddr+ IP address of the BOOT server

GatewayIPAddr+ IP address of the Gateway

NetMask+ Network mask

boot-file++ Name of the file to be loaded by firmware

boot-device+++ Selected boot device

boot-path+++ Ordered list of the boot devices that the firmware searches during boot

+ The values of these variables are represented in “dotted decimal notation” of the 32-bit IP address.
+ + The value of boot-file is represented by the full path name of the file, starting from the root direc-

tory. Nodes in the path are separated by a “/.”

+ + + The values of boot-path and boot-device are represented in the text representation of the path names
as defined in the Open Firmware specification. The leaf node in the path name must have a device
argument and the device argument must indicate the type of device. The possible device types
include HARDDISK, NETWORK, CDROM and FLOPPY. For example,
boot-device="/PCI/SCSI@2/HARDDISK@1,0:" refers to the hard disk that is configured as
SCSI ID 1 on the SCSI controller that is configured as device number 2 on the PCI bus. Also, the
boot path may list multiple boot devices, separated by a semicolon.

Open Firmware may use the GEArea for its configuration memory. When the GEArea is used, the names
of the configuration variables must be the same as those defined in the Open Firmware specification and the
script must be specified with “Script=<value>.”

An operating system may use the GEArea for its own environment variables as non-architected variables. A
naming convention is used to avoid potential conflict among the names of non-architected environment vari-
ables. The name of the non-architected global environment variables must be prefixed with a symbol of the
operating system that created the variable. Following are the prefixes for the operating systems:

Operating system name Prefix

AIX “AIX-”
Windows NT “WINNT-”
MK OS/2%* “MKOS2-”
Taligent “TALIGENT-”
Solaris** “SOLARIS-”
MK AIX “MKAIX-”
MK “MK-"

Page 98 of 319 — PowerPC Reference Platform

~

~ O~ ~ -~

5.5.3 Operating System-Specific Area

The OSArea section is allocated for operating system-specific data. The size and the start address of the
OSArea section are specified by OSAreaAddress and OSArealength in the HEADER section.

The OSArea space must be preserved between boots such that when the firmware transfers the system
control to the operating system loader, the image in the OSArea must be same as when the system was last
powered down.

While the global environment variables are preserved, the OSArea is a transient space and is not preserved
when a different operating system is loaded. That is, if the LastOS does not match the ID of the operating
system to be loaded, the OSArea space may be reconfigured by the operating system for its use. This allows
the sharing of the OSArea among operating systems.

5.5.4 Configuration Area

The ConfigArea stores the configuration data for non-native ISA devices. The size and start address of the
ConfigArea are specified by ConfigAddress and Configlength. This field is located at the tail of the
NVRAM and grows toward lower addresses.

An operating system may store the configuration data of the devices. The data must be represented in the
format of the compressed Plug and Play configuration packet.

The firmware must present this configuration data to the operating system on the next boot using residual
data. Open Firmware must build a device tree with nodes for the devices that have configuration data in
ConfigArea.

5.5.5 Map of NVRAM Data Structure

This section describes the structure of the NVRAM. The fields in the NVRAM structure must follow Big-
Endian byte ordering. What follows is the current NVRAM header file, followed by an explanatory table
that better defines the data structure.

5.5.5.1 NVRAM Header

The information in this subsection is the NVRAM header file that defines the contents of NVRAM.
/* Structure map for NVRAM on PowerPC Reference Platform */

/* All fields are either character/byte strings which are valid either
endian or they are big-endian numbers.

There are a number of Date and Time fields which are in RTC format,
big-endian. These are stored in UT (GMT).

For enum's: if given in hex then they are bit significant, i.e. only
one bit is on for each enum.

*/

$ifndef NVRAM
#define NVRAM

#define NVSIZE 4096 /* size of NVRAM */

#define OSAREASIZE 512 /* size of OSArea space */
#define CONFSIZE 1024 /* quess at size of Configuration space */

Boot Process and Firmware — Page 99 of 319

typedef struct _SECURITY {
unsigned long BootErrCnt;
unsigned long ConfigErrCnt;
unsigned long BootErrorDT[2];
unsigned long ConfigErrorDT[2];
unsigned long BootCorrectDT[2];
unsigned
unsigned long BootSetDT[2];
unsigned long ConfigSetDT[2];
unsigned char Serial[l6];

} SECURITY;
typedef enum _0S_ID {
Unknown = 0,
Firmware = 1,

AIX = 2,

NT = 3,

MKOS2 = 4,
MKAIX = 5,
Taligent = 6,
Solaris = 17,
MK = 12

} 0S_ID;

typedef struct _ERROR_LOG {

long ConfigCorrectDT[2];

/*
/*
/*
/*
/*
/*
/*
/*
/*

Count of boot password errors */
Count of config password errors */

RTC
RTC
RTC
RTC

of last
of last
of last
of last

from
from
from
from

Date&Time
Date&Time
Date&Time
Date&Time
Date&Time from RTC of last
Date&Time from RTIC of last
Box serial number */

unsigned char ErrorLogEntry[40]; /* To be architected */

} ERROR_LOG;

typedef enum _BOOT_STATUS {
BootStarted = 0x01,
BootFinished = 0x02,
RestartStarted = 0x04,
RestartFinished = 0x08,
PowerFailStarted = 0x10,
PowerFailFinished = 0x20,
ProcessorReady = 0x40,
ProcessorRunning = 0x80,
ProcessorStart = 0x0100
} BOOT_STATUS;

typedef struct _RESTART BLOCK {
unsigned short Version;
unsigned short Revision;

unsigned long ResumeReservel[2];

volatile unsigned long BootStatus;
unsigned long CheckSum; /* Checksum of RESTART_BLOCK */

void * RestartAddress;

void * SaveAreaAddr;

unsigned long SaveArealength;
} RESTART_BLOCK;

typedef enum _OSAREA_USAGE {
Empty = 0,
Used = 1
} OSAREA_USAGE;

typedef enum _PM_MODE {
Suspend = 0x80,
Normal = 0x00

/* Part of state is in memory */
/* No power management in effect */

Page 100 of 319 — PowerPC Reference Platform

error in pw */
error in pw */
correct pw */
correct pw */
set of pw */
set of pw */

} PMMode;

typedef struct _HEADER {
unsigned short Size; /* NVRAM size in K(1024) */
unsigned char Version; /* Structure map different */
unsigned char Revision; /* Structure map the same -
may be new values in old fields
in other words old code still works */
unsigned short Crcl; /* check sum from beginning of nvram to OSArea */
unsigned short Crc2; /* check sum of config */
unsigned char Last0S; /* 0S_ID */
unsigned char Endian; /* B if big endian, L if little endian */
unsigned char OSAreaUsage; /* OSAREA_USAGE */
unsigned char PMMode; /* Shutdown mode */
RESTART_BLOCK RestartBlock;
SECURITY Security;
ERROR_LOG ErrorLog[2];

/* Global Environment information */
void * GEAddress;
unsigned long GELength;
/* Date&Time from RTC of last change to Global Environment */
unsigned long GELastWriteDT[2];

/* Confiqguration information */
void * ConfigAddress;
unsigned long Configlength;
/* Date&Time from RTC of last change to Configuration */
unsigned long ConfiglastWriteDT[2];
unsigned long ConfigCount; /* Count of entries in Configuration */

/* 0S dependent temp area */
void * OSAreaAddress;
unsigned long OSArealength;
/* Date&Time from RTC of last change to OSAreaArea */
unsigned long OSArealastWriteDT[2];
} HEADER;

/* Here is the whole map of the NVRAM */
typedef struct _NVRAM_MAP {
HEADER Header;
unsigned char GEArea[NVSIZE-CONFSIZE-OSAREASIZE-sizeof (HEADER)];
unsigned char OSArea[OSAREASIZE];
unsigned char ConfigArea[CONFSIZE];
} NVRAM MAP;

#endif /* ndef _NVRAM_ */

/ 5.5.5.2 NVRAM Description

/ The information in this subsection describes the various fields in the NVRAM header file.

/ Field name Address size Comment

/ (Offset) (bytes)

/

/ HEADER

/

/ size 0x0 2 Size of the NVRAM in Kbytes

Boot Process and Firmware — Page 101 of 319

~N N N N N N N/ N~

—— U e/ ~— ——

Version 0x2

Revision 0x3
*CRC1 0x4

*CRC2 0x6
**Last0S 0x8
Endian 0x9
OSArealUsage 0xA
PMMode 0xB

Version number of NVRAM structure
Revision number of NVRAM Structure
Check sum from beginning of NVRAM

to OSArea

Check sum of ConfigArea
Identification of the operating system
that has loaded at last boot time
System is set to Little Endian mode
after boot if it has "L", otherwise
system remains in Big Endian mode
0SArea usage flag

Definition to be determined

System state for power management
0x80 - System was suspended

0x40 - System was hibernated

0x00 - Normal

/* Beginning of restart block description record */

Version 0xC
Revision 0xE
ResumeReservel 0x10
BootStatus 0x18
CheckSum 0X1C

RestartAddress 0x20
SaveAreaAddress 0x24

SaveArealength 0x28

2

2
8
4

Restart block version

Restart block revision

Reserved for future use

Definition not architected

For firmware use to track

resume state

Checksum of RESTART BLOCK

Real address for operating system for
resuming from suspend mode

Real Address of reserved space for
resume firmware

Length of space reserved for resume
firmware

/* Beginning of security section */

~N NN N N YN N YN YN YN YN YN NS YN NSNS NN N N~

~ N N N~

~

BootErrCnt 0x2C 4 Count of incorrect boot passwords entered
ConfigErrCnt 0x30 4 Count of incorrect config passwords entered
BootErrDT 0x34 8 Date and time in RTC format when last
incorrect boot password was entered
ConfigErrDT 0x3C 8 Date and time in RTC format when last
incorrect configuration password was
entered
BootLastDT 0x44 8 Date and time in RIC format when last
correct boot password was entered
ConfigLastDT 0x4C 8 Date and time in RIC format when last
correct configuration password was
entered
BootSetDT 0x54 8 Date and time in RTC format when last
boot password was set
ConfigSetDT 0x5C 8 Date and time in RTC format when last
configuration password was set
Serial 0x64 16 Box serial number

/* Beginning of the
ErrorLogEntry 0x74

/* Beginning of the
ErrorLogEntry 0x9C

first error log record */

40

The error log record is still
being defined

second error log record */

40

/* Pointers of the global environment area */

Page 102 of 319 — PowerPC Reference Platform

~ O~~~ ~— ~— ~— — ~ O~~~ ~— ~— —

~OYN YN YN YN N N~

GEAddress 0xC4 4 Address offset of the global environment
variable area from the beginning of NVRAM
GELength 0xC8 4 Size of the global environment variable
area in bytes
GELastlriteDT 0xCC 8 Date and time in RTIC format of last
modification to the global
environment variable area
/* Pointers of the configuration area */
ConfigAddress 0xD4 4 Address offset of the configuration area
from the beginning of NVRAM
ConfigLength 0xD8 4 Size of the configuration area in bytes
CLastlriteDT 0xDC 8 Date and time in RTIC format of last
modification to the configuration
area
ConfigCount 0xE4 4 Count of entries in Configuration are
/* Pointers of the operating system specific area */
0SAreaAddress 0xE8 4 Address offset of the operating system
specific area from the beginning of NVRAM
0SArealength 0xEC 4 Size of the operating system specific
area in bytes
OSLastWriteDT 0xF0 8 Date and time in RTIC format of last
modification to the operating
system specific area
Global Environment Variable Area
GEArea ***(0xC4) ***(0xC8) Space for global environment variables
Configuration Area
OSArea ***(0xE8) ***(0xEC) Space for operating system specific data
Operating System Specific Area
ConfigArea ***(0xD4) ***(0xD8) Space for non-native device configuration
data
Legend:

* 16-bit CRC is computed using CCITT polynomial,
(x**16 + x**12 + x**5 + 1),
The new value of each CRC bit c(i) is computed as follows:

c(0)
c(l)
c(2)
c(3)
c(4)
c(5)
c(6)
c(7)
c(8)
c(9)
c(10)
c(11)
c(12)

p(8) XOR pd(0) XOR pd(4) */
= p(9) XOR pd(l) XOR pd(5) */
p(10) XOR pd(2) XOR pd(6) */
p(11) XOR pd(0) XOR pd(3) XOR pd(7) */
p(12) XOR pd(1) */
p(13) XOR pd(2) */
p(14) XOR pd(3) */
p(15) XOR pd(0) XOR pd(4) */
pd(0) XOR pd(l) XOR pd(5) */
pd (1) XOR pd(2) XOR pd(6) */
pd(2) XOR pd(3) XOR pd(7) */
pd(3) */
pd(0) XOR pd(4) */

Boot Process and Firmware — Page 103 of 319

~ O~/ e~/ — s~~~ — ~ e~ e~ —

—_—— .~

~ O~ ~ -~

~ ~

~ O~ ~ ~

c(13) = pd(1l) XOR pd(5) */

c(14) = pd(2) XOR pd(6) */

c(15) = pd(3) XOR pd(7) */
Where */

XOR denotes bit wise exclusive or operation

p(i) denotes bit i in the previous 16-bit CRC

d(i) denotes bit i in the new 8-bit data

pd (i) denotes p(i) XOR d(i) *x/

** These fields are specified with enumerated identifications of
operating systems. The identifications of operating systems are
defined as follows:

Operating system name Identification
Unknown
Firmware
AIX
Windows NT
MKOS2
MKAIX
Taligent
Solaris 1
MK 12

oY Ul > O DN - O

*** Parentheses are used for indirect addressing. For example,
(0xF8) refers to the value in NVRAM at offset 0xF8 from the
beginning of NVRAM.

5.6 Residual Data

Residual data is used by conventional firmware to pass the system data collected by the firmware. The
memory address of the residual data is passed on GPR3. The map of residual data is shown in Section
5.6.1, “Map of Residual Data Structure.” The terminology used in the residual data structure is defined in
Section 5.6.2, “Plug and Play Configuration Structures.” This structure allows vendor-specific extensions.
Some of those extensions that are being used for booting AIX are defined in Appendix J, “Plug and Play
Extensions.” A dump of the residual data created on a Reference Implementation is shown in Appendix K,
“Dump of Residual Data.”

Note: Open Firmware will provide the residual data as defined in Section 5.6.1, “Map of Residual Data
Structure,” to the operating systems. Future changes to the existing residual data may not be supported by
Open Firmware. It is strongly recommended that operating systems use the Open Firmware client interface
to collect the data necessary for the operating system instead of using residual data.

To avoid ambiguity in address alignment for objects in residual.h, the sizes of the data types used in Section
5.6.1, “Map of Residual Data Structure,” are defined as follows:

Data type Size in bits

char 8
short 16
long 32

Vital Product Data (VPD) must be supplied with the system. The boot process must know how to get this
data and must place it in the residual data structure. For security purposes, the operating system must
protect VPD in RAM from being modified. The list of the VPD is described in the residual structure.

Page 104 of 319 — PowerPC Reference Platform

One possible place to save the VPD is the area in the System ROM reserved for VPD. If VPD is stored in
the same ROM as the boot code, care must be taken not to destroy or invalidate this information during
boot ROM maintenance actions (e.g. replacing EPROM, or rewriting a Flash ROM).

5.6.1 Map of Residual Data Structure

/* x/
/* Residual Data header definitions and prototypes */
/* */
/* Structure map for RESIDUAL on PowerPC Reference Platform */
/* residual.h - Residual data structure passed in r3. */
/* Load point passed in r4 to boot image. */
/* For enum's: if given in hex then they are bit significant, i.e. */
/* only one bit is on for each enum */

$ifndef RESIDUAL_
#define RESIDUAL

#define MAX CPUS 16
#define MAX MEMS 64
#define MAX DEVICES 256
#define AVE_PNP_SIZE 32
#define MAX MEM SEGS 64

/* */
/* Public structures... */
/* */

typedef enum _CACHE_TYPE {
NoneCAC = 0,
SplitCAC = 1,
CombinedCAC = 2
} CACHE_TYPE;

typedef enum _TLB_TYPE {
NoneTLB = 0,
SplitTLB = 1,
CombinedTLB = 2
} TLB_TYPE;

typedef enum _FIRMWARE_SUPPORT {
Conventional = 0x01,
OpenFirmware = 0x02,
Diagnostics = 0x04,
LowDebug = 0x08,
Multiboot = 0x10,
LowClient = 0x20,
Hex4l = 0x40,
FAT = 0x80,
1509660 = 0x0100,
} FIRMWARE_SUPPORT;

typedef struct _VPD {

/* Box dependent stuff */

unsigned char PrintableModel[32]; /* Null terminated */
/* Must be of the form: */
/* Manufacturer, 0x0,Model, 0x0, Serial, 0x0, ... */

Boot Process and Firmware — Page 105 of 319

unsigned char Serial[64];
unsigned short SpecVersion;
unsigned short SpecRevision;
unsigned long FirmwareSupports;
unsigned long NvramSize;

/*

unsigned long NumSIMMSlots;
unsigned long NumISASlots;
unsigned long NumPCISlots;
unsigned long NumPCMCIASlots;
unsigned long NumMCASlots;
unsigned long NumEISASlots;
unsigned long ProcessorHz;
unsigned long ProcessorBusHz;
unsigned long PCIHz;

unsigned long TimeBaseDivisor;

/* A unique identifier for this box */

/*
/*
/*
/*

PPC Ref Pltfm version and revision
on this machine

See FirmwareSupport enum

Size of nvram in bytes -

neg if NVRAM reformatted because it was bad

/*
/*
/*
/*

August 15, 1994 (MHz-->Hz)
August 15, 1994 (MHz-->Hz)
August 15, 1994 (MHz-->Hz)
(Bus clocks per timebase tic) * 1000

/* Derivable from CpuType but included for convenience */

unsigned long WordwWidth;
unsigned long PageSize;

unsigned long CoherenceBlockSize;

unsigned long GranuleSize;

/* Cache and TLB variables */
unsigned long CacheSize;
CACHE_TYPE CacheAttrib;
unsigned long CacheAssoc;
unsigned long CachelineSize;

unsigned long I_CacheSize;
unsigned long I_CacheAssoc;
unsigned long I_CachelineSize;
unsigned long D_CacheSize;
unsigned long D_CacheAssoc;
unsigned long D_CachelineSize;
unsigned long TLBSize;
TLB_TYPE TLBAttrib;

unsigned long TLBAssoc;
unsigned long I_TLBSize;
unsigned long I_TLBAssoc;
unsigned long D_TLBSize;
unsigned long D_TLBAssoc;

void * ExtendedVPD;
} VPD;

typedef enum _DEVICE_FLAGS {

Failed = 0x1000,
Static = 0x0800,

Dock = 0x0400,
IPLable = 0x0200,

Configurable = 0x0100,
Disablable = 0x80,
PowerManaged = 0x40,
ReadOnly = 0x20,
Removable = 0x10,

/*
/*
/*
/*

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

Page 106 of 319 — PowerPC Reference Platform

Word width in bits 601 - 32
Page size in bytes 601 - 4k
In bytes 601 - 32
In bytes 601 - 32

Cache size in Kbytes 601 - 32k
Combined ,split or None
Associativity 601 - 8

Cache line size 601 - 64; 2 sectors
per line

601 - 32k

601 - 8

601 - 64; 2 sectors per line

601 - 32k

601 - 8

601 - 64; 2 sectors per line

Number of TLBs on the system 601 - 256
Combined I+D or split

Associativity 601 - 2

601 - 256

601 - 2

601 - 256

601 - 2

- device failed POST code tests
- dynamically configurable;

- static

- not a docking station device;
is a docking station device

not an IPLable device;

- IPLable

- device is configurable

- device can be disabled

not managed; 1 - managed

oORRP P PO O O

*/
x/
*/
x/
*/

x/
*/
x/
*/

x/
*/
x/
*/

x/
*/
x/
*/
x/
*/
x/
*/
x/
*/
x/
*/
x/
*/
x/
*/
x/
*/

*/
x/
*/
x/
*/
x/
*/
x/
*/
x/

ConsoleIn = 0x08,
ConsoleOut = 0x04,
Input = 0x02,
Output = 0x01

} DEVICE_FLAGS;

typedef enum _BUS_ID {
ISADEVICE = 0x01,
EISADEVICE = 0x02,
PCIDEVICE = 0x04,
PCMCIADEVICE = 0x08,
PNPISADEVICE = 0x10,
MCADEVICE = 0x20,
PROCESSORDEVICE = 0x80 /* devices on local processor bus */
/* August 15, 1994 *x/
} BUS_ID;

typedef struct _DEVICE_ID {
unsigned long BusId; /* See BUS_ID enum above */
unsigned long Devld;
unsigned long Seriallum;

unsigned long Flags; /* See DEVICE_FLAGS enum above */
unsigned char BaseType; /* See pnp.h for bit definitions */
unsigned char SubType; /* See pnp.h for bit definitions */
unsigned char Interface; /* See pnp.h for bit definitions */

unsigned char Spare;
} DEVICE_ID;

typedef union _BUS_ACCESS {

struct _PnPAccess/{
unsigned char CSN;
unsigned char LogicalDevNumber;
unsigned short ReadDataPort;
} PnPAccess;

struct _ISAAccess{
unsigned char SlotNumber;
unsigned char LogicalDevNumber;
unsigned short ISAReserved;
} ISAAccess;

struct _MCAAccess{
unsigned char SlotNumber;
unsigned char LogicalDevNumber;
unsigned short MCAReserved;
} MCAAccess;

struct _PCMCIAAccess{
unsigned char SlotNumber;
unsigned char LogicalDevNumber;
unsigned short PCMCIAReserved;
} PCMCIAAccess;

struct _EISAAccess({
unsigned char SlotNumber;
unsigned char FunctionNumber;
unsigned short EISAReserved;
} EISAAccess;

struct _PCIAccess{
unsigned char BusNumber;
unsigned char DevFuncNumber;
unsigned short PCIReserved;
} PCIAccess;

Boot Process and Firmware — Page 107 of 319

struct _BridgeAccess{
unsigned char BusNumber;
unsigned char NumberOfSlots;

unsigned short BridgeReserved;
} BridgeAccess;
} BUS_ACCESS;

/* Per logical device information */
typedef struct _PPC_DEVICE {
DEVICE_ID Deviceld;
BUS_ACCESS BusAccess;

/*
/*
/*
/*
/*
/*

August 15, 1994 */
August 15, 1994 */
number of slots in BusNumber */
August 15, 1994 */
August 15, 1994 */
August 15, 1994 */

/* The following three are offsets into the DevicePnPHeap */

/* All are in PnP compressed format
unsigned long AllocatedOffset;
unsigned long PossibleOffset;
unsigned long CompatibleOffset;

} PPC_DEVICE;

typedef struct _PPC_CPU {
unsigned long CpuType;

unsigned long PerCpuSerial;
unsigned long L2_CacheSize;
unsigned long L2_CacheAsc;
} PPC_CPU;

typedef struct _PPC_MEM ({
unsigned long SIMMSize;
} PPC_MEM;

typedef enum _MEM_USAGE ({

/*
/*
/*

/*
/*

/*

/*

x/
Allocated resource description */
Possible resource description */
Compatible device identifiers */

Result of mfpvr - */
might be different rev level */

L2 Cache Information */

0 - absent or bad, 8M, 32M in K(1024)

/* See specification, section 6.1 -

/* Reference implementation memory map

ResumeBlock = 0x4000,
SystemROM = 0x2000,
UnPopSystemROM = 0x1000,
IOMemory = 0x0800,
SystemIO = 0x0400,
SystemRegs = 0x0200,
PCIAddr = 0x0100,
PCIConfig = 0x80,
ISAAddr = 0x40,
Unpopulated = 0x20,

Free = 0x10,
BootImage = 0x08,
FirmwareCode = 0x04,
FirmwareHeap = 0x02,

FirmwareStack = 0x01
} MEM_USAGE;

typedef struct _MEM MAP ({
unsigned long Usage;
unsigned long BasePage;
unsigned long PageCount;
} MEM_MAP;

typedef struct _RESIDUAL {
unsigned long Residuallength;

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/*
/*

/*

Page 108 of 319 — PowerPC Reference Platform

for use by power management

Flash memory (populated)
Unpopulated part of SystemROM area
3G to 4G - 16M

2G to 3G - next 4 are details within it

3G - 8M to 3G

2G + 16M to 3G - 8M Used for SCSI I/0
2G + 8M to 2G + 16M

2G to 2G + 8M

Unpopulated part of System Memory
Free part of System Memory

BootImage part of System Memory
FirmwareCode part of System Memory
FirmwareHeap part of System Memory
FirmwareStack part of System Memory

See MEM_USAGE above
i.e. page number measured in 4K pages

Length of Residual

*/

x/
*/
x/
*/
x/
*/
x/
*/
x/
*/
x/
*/
x/
*/
x/
*/
x/

x/
*/

x/

~ ~ -~ ~

~ N~ Y~~~

~ ~ Y~~~

~ O~~~ ~— ~—

unsigned short Version;
unsigned short Revision;

VPD VitalProductData;

unsigned long ActualNumCpus;
PPC_CPU Cpus[MAX_CPUS];

unsigned long TotalMemory;
unsigned long GoodMemory;
unsigned long ActualNumMemSegs;
MEM_MAP Segs[MAX_MEM_SEGS];
unsigned long ActualNumMemories;
PPC_MEM Memories[MAX_MEMS];

unsigned long ActualNumDevices;
PPC_DEVICE Devices[MAX_DEVICES];

/*
/*

/*
/*

of this data structure
of this data structure

Total amount of memory installed
Total amount of good memory

unsigned char DevicePnPHeap[2*MAX_DEVICES*AVE_PNP_SIZE];

} RESIDUAL;

$endif /* ndef RESIDUAL_ */

5.6.2 Plug and Play Configuration Structures

The following describes Plug and Play terminology used in both the NVRAM and residual data structures.

/* x/
/* Plug and Play header definitions */
/* */
/* Structure map for PnP on PowerPC Reference Platform */
/* See Plug and Play ISA Specification, Version 1.0, May 28, 1993. It *x/
/* (or later versions) is available on Compuserve in the PLUGPLAY area. */
/* This code has extensions to that specification, namely new short and *x/
/* long tag types for platform dependent information */
/* Warning: LE notation used throughout this file */
/* For enum's: if given in hex then they are bit significant, i.e. */
/* only one bit is on for each enum x/

#ifndef _PNP_
#define _PNP_

#define MAX MEM REGISTERS 9
#define MAX IO _PORTS 20
#define MAX IRQS 7

$define MAX DMA_CHANNELS 7

/* Device Base Type Codes */

typedef enum _PnP_BASE_TYPE ({
Reserved = 0,
MassStorageDevice = 1,
NetworkInterfaceController = 2,
DisplayController = 3,
MultimediaController = 4,

Boot Process and Firmware — Page 109 of 319

x/
*/

x/
*/

Memory = 5,
BridgeController = 6,
CommunicationsDevice = 7,
SystemPeripheral = 8,
InputDevice = 9

} PnP_BASE_TYPE;

/* Device Sub Type Codes */

typedef enum _PnP_SUB_TYPE {

~———— ~ ~ ~ ~

SCSIController = 0,

IDEController = 1,
FloppyController = 2,
IPIController = 3,
OtherMassStorageController = 0x80,

EthernetController = 0,
TokenRingController = 1,
FDDIController = 2,

OtherNetworkController

0x80,

VGAController= 0,
SVGAController= 1,
XGAController= 2,
OtherDisplayController = 0x80,

VideoController = 0,
AudioController = 1,
OtherMultimediaController = 0x80,

RAM = 0,
FLASH = 1,
OtherMemoryDevice = 0x80,

HostProcessorBridge = 0,
ISABridge = 1,

EISABridge = 2,
MicroChannelBridge = 3,
PCIBridge = 4,
PCMCIABridge = 5,
OtherBridgeDevice = 0x80,

RS232Device = 0,
ATCompatibleParallelPort = 1,
OtherCommunicationsDevice = 0x80,

ProgrammableInterruptController = 0,
DMAController = 1,

SystemTimer = 2,

RealTimeClock = 3,

L2Cache = 4, /* L2 Cache Auqust 15, 1994 */
NVRAM = 5, /* NVRAM August 15, 1994 */
PowerManagement = 6, /* Power Management August 15, 1994 */
CMOS = 7, /* CMOS Bugust 15, 1994 */

OtherSystemPeripheral = 0x80,

KeyboardController = 0,
Digitizer = 1,
MouseController = 2,

Page 110 of 319 — PowerPC Reference Platform

~ YN YN N N~ N NN YN N N

——— e~~~

OtherInputController = 0x80
} PnP_SUB_TYPE;

/* Device Interface Type Codes */

typedef enum _PnP_INTERFACE ({

General = 0,
GeneralSCSI = 0,
GenerallIDE = 0,

ATACompatible = 1,
GeneralFloppy = 0,
Compatible765 = 1,

GeneralIPI = 0,

GeneralEther = 0,
GeneralToken = 0,
GeneralFDDI = 0,

GeneralVGA = 0,
GeneralSVGA = 0,
GeneralXGA = 0,

GeneralVideo = 0,
GeneralAudio = 0,

GeneralRAM = 0,
GeneralFLASH = 0,

GeneralHostBridge = 0,
GeneralISABridge = 0,
GeneralEISABridge = 0,
GeneralMCABridge
GeneralPCIBridge
PCIBridgeDirect = 0,
PCIBridgeIndirect = 1,
GeneralPCMCIABridge = 0,

0,
0,

GeneralRS232 = 0,
CoMx = 1,
Compatiblel6450 = 2,
Compatiblel6550 = 3,
GeneralParPort = 0,
LPTx = 1,

GeneralPIC = 0,
ISA_PIC = 1,
EISA_PIC = 2,
GeneralDMA = 0,
ISA DMA = 1,
EISA DMA = 2,
GeneralTimer = 0,
ISA_Timer = 1,
EISA Timer = 2,
GeneralRTC = 0,
ISA_RTC = 1,
GeneralCMOS = 0,

Inlinel2 = 0,

/* Bugust 15, 1994 */
/* Auqust 15, 1994 */

/*
/*
/*
/*

CMOS with 1 byte of address and data */

August 15, 1994 */
inline L2 cache */
August 15, 1994 */

Boot Process and Firmware — Page 111 of 319

—~——

~ O~~~ ~— ~— ~— —

~ N~ Y~~~

~ Y~~~

e T T T

Lookasidel2 = 1,
BufLookasidel2 = 2,

GeneralNVRAM = 0,

GeneralPowerManagement = 0
} PnP_INTERFACE;

typedef enum _CONSOLE_TYPE {
Console_NoConsole = 0,
Console_Serial
Console_Video
Console_Videolb
Console_Video24
Console_VGA =
} CONSOLE_TYPE;

4

-

Il
—J oy W DN
~

~

<

typedef enum _DISKETTE_TYPE ({
D525x2M = 2,
D35x2M = 4,
D35x4M = 6
} DISKETTE_TYPE;

typedef enum _DISKETTE_FEATURE {
MediaSense = 0x01,
AutoEject = 0x02
} DISKETTE_FEATURE;

typedef enum _PnP_SUBTAG {
Extended = 0,

KeyboardType =
KeyboardKeys =
KeyboardCaps =
MouseButtons =
MouseLR = 7,
ModemParity = 10,
ModemSpeed = 11,
ModemStop = 12,
DisplayID = 20,
DisplayHor = 21,
DisplayVer = 22,
DisplayBuffer = 23,
DisplayType = 24,
DisplayRow = 25,
DisplayCol = 26,
DisketteType = 30,
DisketteFeature = 31,

<

~

oY LW DN
-

4

SCSILun = 40,
DiskType = 41,
DiskSize = 42,

LargeIO = 1,
MemoryIndirectAddrl = 2,

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

lookaside L2 cache */
August 15, 1994 */
buffer lookaside L2 cache */
August 15, 1994 */
NVRAM with 2 bytes of address */
August 15, 1994 */
and 1 byte of data registers */
August 15, 1994 */
Power Management */

August 15, 1994

/*
/*
/*
/*
/*
/*

/*
/*
/*

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/*
/*
/*

Page 112 of 319 — PowerPC Reference Platform

Console unknown */
Serial console */
Video in 8 bpp graphics */
Video in 5,6,5 graphics */
Video in 8,8,8 graphics */
Video in VGA text mode */

see BOC-AR-07012, p 9-5 Figure 9-2 */

5.25 high density
3.5 high density

Small platform tags ...
Keyboard id

Number of keys

Key caps i.e. language

Number of buttons

0 - right handed, 1 left handed
E - even, 0 - odd, N - none
1200, 2400, 9600, 14400, etc.

1 or 2

4 bits, e.g. 1010 = 8514, etc.
Horizontal resolution, e.g. 640
Vertical Resolution, e.g. 480
Address of display buffer

See CONSOLE_TYPE enum

Number of Rows - VGA and Serial

Number of Columns - VGA and Serial
See DISKETTE_TYPE enum

Diskette features - media sense,
auto eject

lun

Large platform tags ...
4 byte I/0 addresses
For low-client indirect addresses

x/
*/

x/
*/
x/
*/
x/
*/
x/
*/
x/
*/
x/
*/
x/
*/
x/
*/
x/
*/
*/
*/

x/
*/
x/

~ O~~~ ~— ~—

e e T e N

MemoryIndirectAddr2 = 3
} PnP_SUBTAG;

/* PnP resources */

/* For

/* Compressed ASCII is 5 bits per char; 00001=A ... 110

typedef struct _SERIAL_ID {

low-client indirect addresses */

10=7 */

unsigned char VendorIDO; /* bit7=0; bit (6:2)=1st compressed ASCII; bit(1:0) */
/* 2nd compressed ASCII bit(4:3) */
unsigned char VendorIDl; /* bit(7:5) 2nd compressed ASCII bit(2:0); bit (4:0) */

/* 3rd compressed ASCII */
unsigned char VendorID2; /* Product number - vendor assigned */
unsigned char VendorID3; /* Product number - vendor assigned */

/* Serial number is to provide uniqueness if more than one board of same */
/* type is in system. Must be "FFFFFFFF" if feature not supported. */

unsigned char Serial0; /* Unique serial
unsigned char Seriall; /* Unique serial
unsigned char Serial2; /* Unique serial
unsigned char Serial3; /* Unique serial
unsigned char Checksum;

} SERIAL_ID;

typedef enum _PnPItemName {
Unused = 0,
PnPVersion = 1,
LogicalDevice = 2,
CompatibleDevice = 3,
IRQFormat = 4,
DMAFormat = 5,
StartDepFunc = 6,
EndDepFunc = 7,
I0Port = 8,
FixedIOPort = 9,
Resl = 10,
Res2 = 11,
Res3 = 12,
SmallPlatformItem = 13,
SmallVendorItem = 14,
EndTag = 15,
MemoryRange = 1,
ANSIIdentifier = 2,
UnicodeIdentifier = 3,
LargeVendorItem = 4,
MemoryRange32 = 5,
MemoryRangeFixed32 = 6,
LargePlatformItem = 16
} PnPItemName;

number bits
number bits
number bits
number bits

(7:0) ¥/
(15:8) */
(23:16) */
(31:24) */

/* Define a bunch of access functions for the bits in the tag field */

/* Tag type - 0 = small; 1 = large */
#define tag_type(t) (((t) & 0x80)>>7)
#define set_tag_type(t,v) (t = (t & 0x7f) |

((v)<<T))

Boot Process and Firmware — Page 113 of 319

/* Small item name is 4 bits - one of PnPItemName enum above */

#define tag_small_item_name(t) (((t) & 0x78)>>3)

#define set_tag_small_item_name(t,v) (t = (t & 0x07) | ((v)<<3))

/* Small item count is 3 bits - count of further bytes in packet */

#define tag_small_count(t) ((t) & 0x07)

#define set_tag_count(t,v) (t = (t & 0x78) | (v))

/* Large item name is 7 bits - one of PnPItemName enum above */

#define tag_large_item_name(t) ((t) & 0x7f)

#define set_tag_large_item_name(t,v) (t = (t | 0x80) | (v))

/* a PnP resource is a bunch of contiguous TAG packets ending with an end tag */

typedef union _PnP_TAG_PACKET ({
struct _S1_Pack{
unsigned char Tag;
unsigned char Version[2];
} S1_Pack;

struct _S2_Pack({
unsigned char Tag;
unsigned char DevId[4];
unsigned char Flags[2];

} S2_Pack;

struct _S3_Pack{
unsigned char Tag;
unsigned char CompatId[4];
} S3_Pack;

struct _S4_Pack({
unsigned char Tag;
unsigned char IRQMask[2]; /*
unsigned char IRQInfo;

} S4_Pack;

struct _S5_Pack{
unsigned char Tag;
unsigned char DMAMask;
unsigned char DMAInfo;
} S5_Pack;

struct _S6_Pack({
unsigned char Tag;
unsigned char Priority;

} S6_Pack;

Page 114 of 319 — PowerPC Reference Platform

/*
/*
/*

/*
/*
/*
/*
/*
/*
/*

/*
/*
/*

/*
/*

VERSION PACKET */
small tag = 0x0a */
PnP version, Vendor version */

LOGICAL DEVICE ID PACKET */
small tag = 0x15 or 0x16 */
Logical device id */
bit (0) boot device; */

bit (7:1) command in range x31-x37 */
bit (7:0) command in range x28-x3f */
(optional) x/

COMPATIBLE DEVICE ID PACKET */
small tag = 0xlc *x/
Compatible device id */

IRQ PACKET
small tag = 0x22 or 0x23

bit (0) is IRQ0, ..; bit(0) is IRQ8 .. */

/*
/*
/*
/*
/*
/*

/*
/*
/*

/*
/*
/*
/*
/*
/*
/*

optional; assume bit (0)=1; else
bit (0) - high true edge sensitive
bit (1) - low true edge sensitive
bit(2) - high true level sensitive
bit (3) - low true level sensitive
bit (7:4) - must be 0

DMA PACKET */
small tag = 0x2a */
bit (0) is channel 0 ... */

START DEPENDENT FUNCTION PACKET
small tag = 0x30 or 0x31
Optional; if missing then x01; else
x00 = best possible
x01 = acceptible
x02 = sub-optimal,
but functional

*/
x/
*/
x/
*/
x/
*/

x/
*/

*/
x/
*/
x/
*/
x/

~ O~~~ ~— ~—

~ N~~~ ~ N~ Y~~~ ~ N~ Y~~~

e T T e e T ~ Y~~~

~ O~~~

struct _S7_Pack({
unsigned char Tag;
} S7_Pack;

struct _S8_Pack({
unsigned char Tag;
unsigned char IO0Info;

unsigned char RangeMin[2];
unsigned char RangeMax[2];
unsigned char IOAlign;

unsigned char IONum;
} S8_Pack;

struct _S9_Pack{
unsigned char Tag;
unsigned char Range[2];
unsigned char IONum;
} S9_Pack;

struct _S13_Pack({
unsigned char Tag;
unsigned char SubTag;
unsigned char Data[6];
} S13_Pack;

struct _S14_Pack{
unsigned char Tag;
unsigned char Type;
unsigned char Data[6];
} S14_Pack;

struct _S15_Pack{
unsigned char Tag;
unsigned char Check;
} S15_Pack;

struct _L1_Pack{
unsigned char Tag;
unsigned char Count0;
unsigned char Countl;
unsigned char Data[9];

} L1_Pack;

struct _L2_Pack({
unsigned char Tag;
unsigned char Count0;
unsigned char Countl;
unsigned char Identifier[l];

} L2_Pack;

struct _L3_Pack{
unsigned char Tag;
unsigned char Count0;
unsigned char Countl;

/*
/*

/*
/*
/*
/*
/*
/*
/*
/*
/*

/*
/*
/*
/*

/*
/*
/*

/*
/*
/*
/*

/*
/*
/*

/*
/*
/*
/*
/*
/*

/*
/*
/*

/*
/*

/*
/*
/*

END DEPENDENT FUNCTION PACKET
small tag = 0x38

VARIABLE I/0 PORT PACKET
small tag x47

x0 = decode only bits(9:0);
%01 = decode bits(15:0)

Min base address */

Max base address */

base alignment, increment in

1 byte blocks

x/
*/

number of contiguous I/0 ports

FIXED I/0 PORT PACKET
small tag = 0x4b
base address 10 bits */

x/
*/
x/
*/

x/
*/
x/

*/
x/

number of contiguous I/0 ports */

small tag = Oxbm m = 8-F */
device dependent tag */
Platform defined */

VENDOR DEFINED PACKET */
small tag = 0xTmm = 1-7 */
00=non-IBM */

Vendor defined */

END PACKET */
small tag = 0x78 or 0x79 */
optional - checksum */

MEMORY RANGE PACKET */
large tag = 0x81 */
x09 */
x00

a variable array of bytes, */
count in tag

ANST ID STRING PACKET
large tag = 0x82
Length of string

a variable array of bytes, */
count in tag

UNICODE ID STRING PACKET
large tag = 0x83
Length + 2 of string

Boot Process and Firmware — Page 115 of 319

*/

x/
*/
x/

*/

x/
*/
x/

~ N N N~

~ O~ ~— /— ~— ~— ~— —

~ YN YN N N~

~ O~~~ ~— ~—

N T e T T

unsigned char Country0; /* TBD *x/
unsigned char Countryl; /* TBD */
unsigned char Identifier[l]; /* a variable array of bytes, */
count in tag
} L3_Pack;
struct _L4_Pack({ /* VENDOR DEFINED PACKET */
unsigned char Tag; /* large tag = 0x84 */
unsigned char Count0; /* x/
unsigned char Countl; /* */
unsigned char Type; /* 00=non-IBM *x/
unsigned char Data[l]; /* a variable array of bytes, */
/* count in tag */
} L4_Pack;
struct _L5_Pack{
unsigned char Tag; /* large tag = 0x85 */
unsigned char CountO0; /* Count = 17 */
unsigned char Countl;
unsigned char Data[l7];
} L5_Pack;
struct _L6_Pack({
unsigned char Tag; /* large tag = 0x86 */
unsigned char Count0; /* Count = 9 */
unsigned char Countl;
unsigned char Data[9];
} Lé6_Pack;
struct _L16_Pack{
unsigned char Tag; /* large tag = 0x90 */
unsigned char SubTag;
unsigned char Count0;
unsigned char Countl;
union _L16_Dataf{
unsigned char Data[l]; /* a variable array of bytes, */
/* count in tag */
struct _L16_I0{ /* SubTag = 1 */
unsigned char RangeMin[4]; /* Min base address */
unsigned char RangeMax[4]; /* Max base address */
unsigned char IOAlign; /* base alignment, inc in 1 byte blocks */
unsigned char IONum[4]; /* number of contiguous I/O ports */
} L16_I0;
} L16_Data;
} L16_Pack;

} PnP_TAG_PACKET;

#endif /* ndef _PNP_ */

5.7 Open Firmware Extension for PowerPC Reference Platform

~ ~ ~— ~—

Open Firmware uses a hardware-independent and extendable interpretive language, FCode. FCode has a

Forth dictionary that is extended for boot. Using FCode, the Open Firmware process builds a device tree,
which is a hierarchical data structure describing system hardware. Open Firmware also uses configuration
memory, with which a user can affect the behavior of Open Firmware functions.

Page 116 of 319 — PowerPC Reference Platform

~ O~ ~ -~

~ N N N N N N~

~

~ O~ ~ ~

This section describes the specific requirements and recommendations of Open Firmware for the PowerPC
Reference Platform.

5.7.1 Open Firmware Requirements

In order to be PowerPC Reference Platform compliant, Open Firmware must provide the following:

a) the Open Firmware-compliant client interface
b) the Open Firmware-compliant device interface
¢) Bi-Endian booting capability

Note: Bi-Endian booting establishes the Endian mode of the hardware system to be the same as that of the
operating system loaded. Furthermore, Bi-Endian booting includes the capability of handling call-backs
from either Big-Endian or Little-Endian operating systems.

5.7.2 Open Firmware Process

The main purpose of using Open Firmware on a PowerPC Reference Platform system is to support a boot
process which is independent of system configuration. Open Firmware achieves this system-independent
boot process by allowing processor-independent boot drivers to reside on adaptor ROMs and by providing
methods to use these drivers. These drivers are coded in FCode.

For plug-in devices that may not have these FCode ROMs, it is strongly recommended that the system
provide an alternate method of making Open Firmware compatible drivers available. One implementation
approach would be for these driver images in FCode to be installed from media (e.g. a diskette) to Flash
ROM or some other non-volatile storage. The system firmware would need to provide a utility that would
perform this installation. Once installed, the FCode driver image would be used by Open Firmware in the
same way as the driver in ROM on a plug-in device. The FCode driver image that is loaded via this mech-
anism must follow the Open Firmware bus specification for the bus to which the device attaches. It is
recommended that a minimum of 32 KB of non-volatile storage be allocated for these drivers.

To provide boot services, Open Firmware requires four basic elements:

Forth programming language
A Forth dictionary

A device tree

Configuration memory

Before the Open Firmware process starts, the FCode interpreter must be initialized. A PowerPC Open
Firmware implementation must perform the following steps during the boot process:

a) Initialize built-in devices: Device nodes and drivers for built-in devices reside in Open Firmware and are
permanently installed in the device tree. Some amount of testing may be performed as part of this step
to insure that the device is functioning correctly.

b) Configure the non-Plug and Play ISA devices stored in NVRAM: NVRAM may have configuration
information for non-PNP ISA devices in ConfigArea. Open Firmware must include the nodes in the
device tree for those non-PnP ISA devices.

c) Probe plug-in devices: The plug-in devices are located, their device nodes are added on the device tree,
and the nodes are set with proper property values and associated with their methods. If the device is a
boot device, its device driver must be available at the end of this process.

d) Switch Endian mode: Firmware must establish the Endian mode of the hardware system to be con-
sistent with that of the operating system to be loaded.

Boot Process and Firmware — Page 117 of 319

Page 118 of 319 — PowerPC Reference Platform

6.0 Reference Implementation

This section describes a reference implementation of a PowerPC Reference Platform-compliant system. This
Reference Implementation is intended as an example of one way to build to the PowerPC Reference Plat-
form architecture. Information in this section should not be construed as specifying the only implementation
possible or recommended.

If more detailed information on the Reference Implementation is needed, two design kits are available from
IBM Microelectronics Division. One design kit shows this implementation using a PowerPC 601 processor;
the second design kit shows this implementation using a PowerPC 603 processor. These design kits contain
additional descriptive information, schematic diagrams showing connections of components, and sample
hardware.

The recommended PowerPC Reference Platform system design for a desktop as shown in Figure 18 con-
tains a processor complex, an I/O complex, and various types of devices and adaptors. Within this figure, a
dashed line is used to show optional devices and connections. For instance, the graphics subsystem may be
attached directly to the PCI bus or attached via a PCI connector.

The processor complex consists of a 601 processor, a memory controller and PCI bridge, System Memory,
and an open slot for a second level of cache (e.g. L2 Cache) or a processor upgrade to a higher-speed 601 or
604 processor chip. The Processor and I/O complexes are connected via the PCI bridge and PCI bus.
Designs based on the current system could have a processor running at 50, 66, 80, or 100 MHz with corre-
sponding processor bus speeds of 50, 66, 40 or 50 MHz. The System Memory could have up to eight
memory slots and, depending upon the choice of memory SIMMs, may have memory ranging from 8 to 256
MB using the 8- or 32-MB SIMMs. The design does not preclude using SIMMs of other sizes (e.g. 4, 16,
64 MB) as they become available in compatible packaging. Memory is parity checking.

The I/O complex consists of the PCI bus, various connections, and an I/O controller. One or more PCI
connectors for PCI adaptor cards may be connected to the PCI bus. A SCSI subsystem controller is con-
nected to the PCI bus. Flash ROM is located on the PCI bus. The Flash ROM, or any updatable initial-
ization program storage media (Flash ROM is implementation dependent and technology may present a
faster and less costly solution) is used to bring up the system. The graphics subsystem may be connected
directly to the PCI bus or optionally may be plugged into a PCI connector. Optionally, a bus bridge to
other tertiary buses may be provided.

The I/O controller is a bridge to the ISA bus and ISA adaptors that supply the remainder of the I/O ports.
Non-volatile RAM (NVRAM) is located with the non-volatile Real-Time Clock and battery on the ISA
bus. The NVRAM is used for recording error and configuration information that will be retained when a
system is powered down.

The following subsections describe the components used to build this Reference Implementation. No
recommendation is made of these specific components; they are shown as one approach to implement this
example of a PowerPC Reference Platform-compliant system. The subsystems are presented for the
processor complex, the I/O complex, and attached peripheral devices and interfaces. Following this informa-
tion are some basic configuration alternatives and more detail on the upgrade slot.

Reference Implementation — Page 119 of 319

Processor Complex 10 Complex

Video Buffer

PowerPC
Processor || CLK
Gen.
DACT
L Cntl Graphics PCI
Addr Subsys. Adaptor L1
Dota Upgrade Line In/Out
1 Siot
] L2
Cache ‘ ‘ ‘ ‘
I Pel conn. | [Pei conn. | 154 % II\UdT:
Yy v v - npu
\ PC
Mem. Ctrl./ agerfocta | T Esa
-
PCl Bridge Bus i i | h e
| [N
cntl Bridge ! ‘.‘ | VME
L_J I
\/ = i PCMCIA

Cntl
pata | ROM T

R A ‘

Systern Memn. 10
(B—256MB) scsl Control
Subsys. Subsys. @ Parallel
Indusatry
Standard
72—bit/168—pin L ﬂ‘ Serial
SIMMs

M Serial
ISA

Ethermnet
Token Ring
1. scsi—li Co-ROM [] ISDN
24DMB—2GB O LocalTalk
U Fox/Data Modem
Access Bus

Floppy Special Func.

ffffffffffffff = gptional device, subsystem or interface

Figure 18. PowerPC Reference Platform Recommended Desktop System

6.1 Memory and I/O Map

The memory and I/0 map for a PowerPC Reference Platform-compliant system is shown in Figure 19. The
left side of this figure shows the view of memory from the PowerPC processor. The right side of this figure
shows the view of memory of the I/O master doing I/O addressing or memory addressing. As shown on the
left side of the figure, the address space is split into three areas: a System Memory portion with addresses
from O to 2 GB, a System I/O portion which stretches from 2 GB to 3 GB, and an I/O Memory area which
covers 3 GB to 4 GB.

Page 120 of 319 — PowerPC Reference Platform

