

C H A P T E R 6

6

A
udio C

om
ponents

Audio Components 6

This chapter describes audio components, which are code modules used by the Sound
Manager to adjust volumes or other settings of a sound output device. In general, you
need to write an audio component only if you are developing a sound output device
with multiple output ports that can be independently controlled by software. If your
sound output device has only one software-controllable output port, the sound output
device component for that device manages the volume levels of the port.

IMPORTANT

The Sound Manager loads and manages audio components, which
operate transparently to applications. The routines described in this
chapter are intended for use exclusively by audio components. ▲

To use this chapter, you should already be familiar with writing sound output device
components, as described in the chapter “Sound Components” in this book. Because
audio components are components, you also need to be familiar with the Component
Manager, described in Inside Macintosh: More Macintosh Toolbox.

This chapter begins by describing what audio components are and the Sound Manager
uses them. Then it provides instructions on how to write an audio component. The
section “Audio Components Reference” beginning on page 6-8 describes the routines
that your audio component might need to define.

Note
Pascal interfaces for audio components are not currently available. As
a result, this chapter provides all source code examples and reference
materials in C. ◆

About Audio Components 6

An audio component is a component that works with the Sound Manager to adjust
volumes or other settings of a sound output device. The Sound Manager uses audio
components, however, only when a particular sound output device has more than one
audio port that can be controlled through software. If a sound output device has only
one audio port, the sound component that communicates with the output device
controls the volume settings of that port.

IMPORTANT

Because audio components are currently used to manage only volume
and mute settings, they might have been called volume components. The
more general term anticipates future capabilities of audio components.
For example, audio components might in the future be used to modify
bass or treble settings of an audio port. ▲

An audio port is any independently controllable sound-producing hardware connected
or attached to a sound output device. For example, the Apple AudioVision 14 Display
(shown in Figure 6-1) contains two audio ports: a set of speakers and a jack for
headphones.
About Audio Components 6-3

C H A P T E R 6

Audio Components

Figure 6-1 The Apple AudioVision 14 Display

As the Volumes subpanel of the Sound control panel shows (Figure 6-2), the two audio
ports are independently controllable by software.

Figure 6-2 The Volumes control panel for the Apple AudioVision 14 Display

Sound in

Sound out

Stereo
speaker

Controls
Stereo
speaker

Integrated
microphone
6-4 About Audio Components

C H A P T E R 6

Audio Components

6

A
udio C

om
ponents

The control panel shown in Figure 6-2 contains volume sliders both for the set of
speakers and for the headphones. The volume of the speakers is controlled by the sound
component that drives the sound output device. The volume of the headphones is
controlled by an audio component.

In short, audio components are used to allow a single sound output device to have more
than one audio port. The sound component that communicates with that device can
control the volume setting of one audio port; audio components control the volume
settings of all other audio ports.

Writing an Audio Component 6

Because an audio component is a component, it must be able to respond to standard
selectors sent by the Component Manager. In addition, an audio component must handle
other selectors specific to audio components. This section briefly describes how to write
an audio component.

Creating an Audio Component 6
An audio component is a component. It contains a number of resources, including icons,
strings, and the standard component resource (a resource of type 'thng') required of
any Component Manager component. In addition, an audio component must contain
code to handle required selectors passed to it by the Component Manager as well as
selectors specific to the audio component.

Note
For complete details on components and their structure, see the chapter
“Component Manager” in Inside Macintosh: More Macintosh Toolbox. This
section provides specific information about audio components. ◆

The component resource binds together all the relevant resources contained in a
component; its structure is defined by the ComponentResource data type.

struct ComponentResource {

ComponentDescription cd;

ResourceSpec component;

ResourceSpec componentName

ResourceSpec componentInfo;

ResourceSpec componentIcon;

};

The component field specifies the resource type and resource ID of the component’s
executable code. By convention, this field should be set to the value kAudioCodeType.

#define kAudioCodeType 'adio' /*audio component code type*/
Writing an Audio Component 6-5

C H A P T E R 6

Audio Components

(You can, however, specify some other resource type if you wish.) The resource ID can be
any integer greater than or equal to 128. See the following section for further information
about this code resource.

The componentName field specifies the resource type and resource ID of the resource
that contains the component’s name. Usually the name is contained in a resource of type
'STR '. This string should be as short as possible.

The componentInfo field specifies the resource type and resource ID of the resource
that contains a description of the component. Usually the description is contained in a
resource of type 'STR '.

The componentIcon field specifies the resource type and resource ID of the resource
that contains an icon for the component. Usually the icon is contained in a resource of
type 'ICON'.

The cd field of the ComponentResource structure is a component description record,
which contains additional information about the component. A component description
record is defined by the ComponentDescription data type.

typedef struct {

OSType componentType;

OSType componentSubType;

OSType componentManufacturer;

unsigned long componentFlags;

unsigned long componentFlagsMask;

} ComponentDescription;

For audio components, the componentType field must be set to a value recognized by
the Sound Manager.

#define kAudioComponentType 'adio' /*audio component*/

In addition, the componentSubType field must be set to a value that indicates the type
of audio services your component provides. For example, the Apple-supplied audio
components have these subtypes:

#define kAwacsPhoneSubType 'hphn' /*AWACS phone*/

#define kAudioVisionSpeakerSubType 'telc' /*AudioVision speaker*/

#define kAudioVisionHeadphoneSubType 'telh' /*AudioVision headphones*/

If you write an audio component, you should define some other subtype.

Note
Apple Computer, Inc., reserves for its own use all types and subtypes
composed solely of lowercase letters. ◆

You can assign any value you like to the componentManufacturer field; typically you
put the signature of your audio component in this field.
6-6 Writing an Audio Component

C H A P T E R 6

Audio Components

6

A
udio C

om
ponents

The componentFlags field of the component description for an audio component
contains bit flags that encode information about the component. You can use this field to
specify that the Component Manager should send your component the
kComponentRegisterSelect selector.

enum {

cmpWantsRegisterMessage = 1L<<31 /*send register request*/

};

This bit is useful for audio components, which might need to test for the presence of the
appropriate hardware to determine whether to register with the Component Manager.
When your component gets the kComponentRegisterSelect selector at system
startup time, it should make sure that all the necessary hardware is available. If it isn’t
available, your component shouldn’t register.

You should set the componentFlagsMask field to 0.

Your audio component is contained in a resource file. You can assign any type you wish
to be the file creator, but the type of the file must be 'thng'. If the audio component
contains a 'BNDL' resource, then the file’s bundle bit must be set.

Dispatching to Audio Component-Defined Routines 6
As explained in the previous section, the code stored in the audio component should be
contained in a resource of type kAudioCodeType. The Component Manager expects the
entry point in this resource to be a function with this format:

pascal ComponentResult MyAudioDispatch (ComponentParameters *params,

AudioGlobalsPtr globals);

The Component Manager calls your sound component by passing MyAudioDispatch a
selector in the params->what field; MyAudioDispatch must interpret the selector and
possibly dispatch to some other routine in the resource. Your audio component must be
able to handle the required selectors, defined by these constants:

#define kComponentOpenSelect -1

#define kComponentCloseSelect -2

#define kComponentCanDoSelect -3

#define kComponentVersionSelect -4

#define kComponentRegisterSelect -5

#define kComponentTargetSelect -6

#define kComponentUnregisterSelect -7

Note
For complete details on required component selectors, see the chapter
“Component Manager” in Inside Macintosh: More Macintosh Toolbox. ◆

In addition, your audio component must be able to respond to component-specific
selectors. The Sound Manager can pass these selectors to your audio component:
Writing an Audio Component 6-7

C H A P T E R 6

Audio Components

enum {

kAudioGetVolumeSelect = 0,

kAudioSetVolumeSelect,

kAudioGetMuteSelect,

kAudioSetMuteSelect,

kAudioSetToDefaultsSelect,

kAudioGetInfoSelect

};

You can respond to these selectors by calling the Component Manager routine
CallComponentFunctionWithStorage. See the section “Audio Component-Defined
Routines” beginning on page 6-9 for information on how to handle these selectors.

In all likelihood, your component is loaded into the system heap, although it might be
loaded into an application heap if memory is low in the system heap. You can call the
Component Manager function GetComponentInstanceA5 to determine the A5 value
of the current application. If this function returns 0, your component is in the system
heap; otherwise, your component is in an application’s heap. Its location might affect
how you allocate memory. For example, calling the MoveHHi routine on handles in the
system heap has no result. Thus, you should either call the ReserveMemSys routine
before calling NewHandleSys (so that the handle is allocated as low in the system heap
as possible) or else just allocate a nonrelocatable block by calling the NewPtrSys routine.

If you need to access resources that are stored in your audio component, you can use
OpenComponentResFile and CloseComponentResFile. OpenComponentResFile
requires the ComponentInstance parameter supplied to your routine. You should not
call Resource Manager routines such as OpenResFile or CloseResFile.

▲ W A R N I N G

Do not leave any resource files open when your audio component is
closed. Their maps will be left in the subheap when the subheap is freed,
causing the Resource Manager to crash. ▲

Audio Components Reference 6

This section describes the data structures you can use to write an audio component. It
also describes the routines that your audio component should call in response to an
audio component selector. See “Writing an Audio Component” beginning on page 6-5
for information on creating a component that contains these component-defined routines.

Data Structures 6
This section describes the data structure you need to use when writing an audio
component.
6-8 Audio Components Reference

C H A P T E R 6

Audio Components

6
A

udio C
om

ponents
Audio Information Records 6

You return information about the capabilities of your audio component in the info
parameter passed to your AudioGetInfo function. The info parameter contains a
pointer to an audio information record. An audio information record is defined by the
AudioInfo data type.

typedef struct {

long capabilitiesFlags; /*device capabilities*/

long reserved; /*reserved*/

unsigned short numVolumeSteps; /*number of volume steps*/

} AudioInfo, *AudioInfoPtr;

Field descriptions

capabilitiesFlags
A set of bit flags specifying the capabilities of the audio component.
You can use constants to set some of these bits:

#define audioDoesMono (1L<<0) /*supports mono output*/

#define audioDoesStereo (1L<<1) /*supports stereo output*/

#define audioDoesIndependentChannels (1L<<2) /*supports independent

software control of each channel*/

reserved Reserved for use by Apple Computer, Inc.
numVolumeSteps

The number of volume steps your audio component supports.

Audio Component-Defined Routines 6
This section describes the routines you must define in order to write an audio
component. You need to write routines to

■ get and set volume levels of a sound output device

■ manage mute states

■ reset device settings

■ get information about the audio component

All routines return result codes. If they succeed, they should return noErr. To simplify
dispatching, the Component Manager requires these routines to return a value of type
ComponentResult.

See “Writing an Audio Component” beginning on page 6-5 for a description of how you
call these routines from within an audio component.
Audio Components Reference 6-9

C H A P T E R 6

Audio Components
Getting and Setting Volumes 6

To write an audio component, you might need to define two routines that manage the
volume level of the associated audio port:

■ AudioGetVolume

■ AudioSetVolume

AudioGetVolume 6

An audio component can implement the AudioGetVolume function. The Sound
Manager calls this function to determine the current volume of an audio port.

pascal ComponentResult AudioGetVolume (ComponentInstance ac,

short whichChannel,

ShortFixed *volume);

ac A component instance that identifies your audio component.

whichChannel
The channel or channels whose volume you should return.

volume
On output, the current volume level of the specified channel.

DESCRIPTION

Your AudioGetVolume function is called by the Sound Manager to determine the
current volume levels of one or more channels of an audio port. The volume parameter
can have any value between 0 and 1, where 0 indicates minimum volume and 1 indicates
maximum volume. The whichChannel parameter indicates the channels or channels
whose volumes you should return. The following constants are defined for the
whichChannel parameter:

#define audioAllChannels 0 /*all channels*/

#define audioLeftChannel 1 /*left channel*/

#define audioRightChannel 2 /*right channel*/

RESULT CODES

Your AudioGetVolume function should return noErr if successful or an appropriate
result code otherwise. In particular, if your audio component doesn’t support software
control of volume levels, AudioGetVolume should return unImpErr.
6-10 Audio Components Reference

C H A P T E R 6

Audio Components

6
A

udio C
om

ponents
AudioSetVolume 6

An audio component can implement the AudioSetVolume function. The Sound
Manager calls this function to set the current volume of an audio port.

pascal ComponentResult AudioSetVolume (ComponentInstance ac,

short whichChannel,

ShortFixed volume);

ac A component instance that identifies your audio component.

whichChannel
The channel or channels whose volume you should set.

volume
The desired volume level of the specified channel.

DESCRIPTION

Your AudioSetVolume function is called by the Sound Manager to set the volume
levels of one or more channels of an audio port. See the description of the
AudioGetVolume function for the values of the whichChannel and volume
parameters.

RESULT CODES

Your AudioSetVolume function should return noErr if successful or an appropriate
result code otherwise. In particular, if your audio component doesn’t support software
control of volume levels, AudioSetVolume should return unImpErr.

Managing the Mute State 6

To write an audio component, you might need to define two routines that manage the
mute state of the associated audio port:

■ AudioGetMute

■ AudioSetMute

AudioGetMute 6

An audio component can implement the AudioGetMute function. The Sound Manager
calls this function to determine the current mute state of an audio port.

pascal ComponentResult AudioGetMute (ComponentInstance ac,

short whichChannel,

short *mute);
Audio Components Reference 6-11

C H A P T E R 6

Audio Components
ac A component instance that identifies your audio component.

whichChannel
The channel or channels whose mute state you should return.

mute
On output, the current mute state of the specified channel.

DESCRIPTION

Your AudioGetMute function is called by the Sound Manager to determine the current
mute state of one or more channels of an audio port. The following constants define the
mute states you can return in the mute parameter:

#define audioUnmuted 0 /*device is not muted*/

#define audioMuted 1 /*device is muted*/

The whichChannel parameter indicates the channels or channels whose mute state you
should return. The following constants are defined for the whichChannel parameter:

#define audioAllChannels 0 /*all channels*/

#define audioLeftChannel 1 /*left channel*/

#define audioRightChannel 2 /*right channel*/

RESULT CODES

Your AudioGetMute function should return noErr if successful or an appropriate
result code otherwise. In particular, if your audio component doesn’t support software
control of mute states, AudioGetMute should return unImpErr.

AudioSetMute 6

An audio component can implement the AudioSetMute function. The Sound Manager
calls this function to set the current mute state of an audio port.

pascal ComponentResult AudioSetMute (ComponentInstance ac,

short whichChannel,

short mute);

ac A component instance that identifies your audio component.

whichChannel
The channel or channels whose mute state you should set.

mute
The desired mute state of the specified channel.
6-12 Audio Components Reference

C H A P T E R 6

Audio Components

6
A

udio C
om

ponents
DESCRIPTION

Your AudioSetMute function is called by the Sound Manager to set the mute state of
one or more channels of an audio port. See the description of the AudioGetMute
function for the values of the whichChannel and mute parameters.

RESULT CODES

Your AudioSetMute function should return noErr if successful or an appropriate
result code otherwise. In particular, if your audio component doesn’t support software
control of mute states, AudioSetMute should return unImpErr.

Resetting Audio Components 6

To write an audio component, you need to define the AudioSetToDefaults routine,
which resets the associated audio port to its default settings.

AudioSetToDefaults 6

The Sound Manager might call your AudioSetToDefaults function to reset an
audio port.

pascal ComponentResult AudioSetToDefaults (ComponentInstance ac);

ac A component instance that identifies your audio component.

DESCRIPTION

Your AudioSetToDefaults function should reset its volume and mute levels to some
reasonable default value. It should also reset to reasonable values any other settings it
might be maintaining privately.

RESULT CODES

Your AudioSetToDefaults function should return noErr if successful or an
appropriate result code otherwise.

Getting Audio Component Information 6

To write an audio component, you need to define the AudioGetInfo routine, which
returns information about the capabilities of your component.
Audio Components Reference 6-13

C H A P T E R 6

Audio Components
AudioGetInfo 6

An audio component must implement the AudioGetInfo function. The Sound
Manager calls this function to get information about the capabilities of your component.

pascal ComponentResult AudioGetInfo (ComponentInstance ac,

AudioInfoPtr info);

ac A component instance that identifies your sound component.

info A pointer to an audio information record.

DESCRIPTION

Your AudioGetInfo function returns information about your audio component. You
should fill out the audio information record pointed to by the info parameter. See
“Audio Information Records” beginning on page 6-9 for a description of the audio
information record.

RESULT CODES

Your AudioGetInfo function should return noErr if successful or an appropriate
result code otherwise.
6-14 Audio Components Reference

C H A P T E R 6

Audio Components

6
A

udio C
om

ponents
Summary of Audio Components 6

This section provides a C summary for the constants, data types, and routines you can
use to write an audio component. There are currently no Pascal interfaces available for
writing audio components.

C Summary 6

Constants 6

/*component types*/

#define kAudioComponentType 'adio' /*audio component*/

/*subtypes for kAudioComponentType component type*/

#define kAwacsPhoneSubType 'hphn' /*AWACS phone*/

#define kAudioVisionSpeakerSubType 'telc' /*AudioVision speaker*/

#define kAudioVisionHeadphoneSubType 'telh' /*AudioVision headphones*/

#define kAudioCodeType 'adio' /*audio component code type*/

/*Component Manager selectors for routines*/

enum {

kAudioGetVolumeSelect = 0,

kAudioSetVolumeSelect,

kAudioGetMuteSelect,

kAudioSetMuteSelect,

kAudioSetToDefaultsSelect,

kAudioGetInfoSelect

};

/*values for whichChannel parameter*/

#define audioAllChannels 0 /*all channels*/

#define audioLeftChannel 1 /*left channel*/

#define audioRightChannel 2 /*right channel*/

/*values for mute parameter*/

#define audioUnmuted 0 /*device is not muted*/

#define audioMuted 1 /*device is muted*/
Summary of Audio Components 6-15

C H A P T E R 6

Audio Components
/*audio component features flags*/

#define audioDoesMono (1L<<0) /*supports mono output*/

#define audioDoesStereo (1L<<1) /*supports stereo output*/

#define audioDoesIndependentChannels (1L<<2) /*supports independent

software control of each channel*/

Data Types 6

Short Fixed-Point Numbers

typedef short ShortFixed;

Audio Information Record

typedef struct {

long capabilitiesFlags; /*device capabilities*/

long reserved; /*reserved*/

unsigned short numVolumeSteps; /*number of volume steps*/

} AudioInfo, *AudioInfoPtr;

Audio Component-Defined Routines 6

Getting and Setting Volumes

pascal ComponentResult AudioGetVolume
(ComponentInstance ac, short whichChannel,
ShortFixed *volume);

pascal ComponentResult AudioSetVolume
(ComponentInstance ac, short whichChannel,
ShortFixed volume);

Managing the Mute State

pascal ComponentResult AudioGetMute
(ComponentInstance ac, short whichChannel,
short *mute);

pascal ComponentResult AudioSetMute
(ComponentInstance ac, short whichChannel,
short mute);

Resetting Audio Components

pascal ComponentResult AudioSetToDefaults
(ComponentInstance ac);
6-16 Summary of Audio Components

C H A P T E R 6

Audio Components

6
A

udio C
om

ponents
Getting Audio Component Information
pascal ComponentResult AudioGetInfo

(ComponentInstance ac, AudioInfoPtr info);

Assembly-Language Summary 6

Data Structures 6

Audio Information Record

0 capabilitiesFlags long device capabilities
4 reserved long reserved
8 numVolumeSteps word number of volume steps
Summary of Audio Components 6-17

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to Sound TOC
	 Introduction to Sound
	 Sound Manager TOC
	 Sound Manager
	 Sound Input Manager TOC
	 Sound Input Manager
	 Speech Manager TOC
	 Speech Manager
	 Sound Components TOC
	 Sound Components
	 Audio Components TOC
	Audio Components
	About Audio Components
	Writing an Audio Component
	Creating an Audio Component
	Dispatching to Audio Component-Defined Routines

	Audio Components Reference
	Data Structures
	Audio Information Records

	Audio Component-Defined Routines
	Getting and Setting Volumes
	Managing the Mute State
	Resetting Audio Components
	Getting Audio Component Information

	Summary of Audio Components
	C Summary
	Constants
	Data Types
	Audio Component-Defined Routines

	Assembly-Language Summary
	Data Structures

	 Glossary
	 Index
	 Colophon

