
DV 23 - Driver Education 1 of 17

Devices

New Technical Notes

Developer Support

ð
®Macintosh

DV 23 - Driver Education
Devices

Revised by Craig Prouse and Brian Bechtel May 1993
Written by: Mark Bennett August 1990

This Technical Note describes in detail the operation of the Device Manager and its interaction
with device drivers. It provides the background needed for correct operation of third-party
device drivers and also presents a method for finding an entry in the Unit Table for a driver.

Many aspects of the Device Manager remain myste by Find Styleof Macintosh developers,
especially those who might wish to accomplish tasks not directly supported by the current
offering of calls. For example, developers might wish to install their own driver at INIT time or
wish to manage their own I/O queues for processing. A solid knowledge of the Device
Manager helps in these tasks, as well as in simply writing a normal, no-frills device driver.

A general-usage driver, which is best installed at INIT time, provides services to software that
might run on a Macintosh at any time. This type of driver is typically implemented by having a
file of type INIT, cdev, or RDEV that users move into their System Folder. This file contains
'INIT' and 'DRVR' resources, among others. The 'INIT' resource gets loaded into
memory and executed, at which time it installs the driver.

Caveat—Low Memory and System Data Structures

Warning: This Note involves the discussion and use of low-memory globals and
operating system internal data structures. It is a plain fact that using
these puts software at a compatibility risk; therefore, DTS recommends
you approach the information in this Note in the following manner:

1. If you do not have to use a low-memory global or system data
structure, then don’t.

2. If you do have to use a low-memory global or system data structure,
use it only as described in this Note, or in other, authorized Apple
Computer, Inc., technical documentation.

3. When using a low-memory global or system data structure in an
authorized manner, do so in a way that encapsulates and isolates this
dependency from the rest of this software. This way, if Apple alters
the structure of space-time out from under you, there is one nice,
tidy spot that you have to modify.

4. When Apple provides a system-independent manner by which you
can obtain the same information, modify your code to use this
method.

Macintosh Technical Notes

2 of 17 DV 23 - Driver Education

Devices

An example of points three and four would be using a module that returns a
low-memory global instead of always reaching into low-memory directly. For
example, when this Note references the low-memory global UTableBase, the
software that needs the value stored there should call a routine like the
following:

 FUNCTION GetUTableBase : Ptr;
 CONST
 UTableBase = $11C;
 TYPE
 LongPtr = ^LongInt;
 BEGIN
 GetUTableBase := POINTER(LongPtr(UTableBase)^);
 END;

Then, if Apple were to provide a Gestalt call to get the same value, only this
one module would (and should) be changed. If you are blessed enough to be
using a high-level or, better yet, an object-oriented language, you can even
further isolate the dependency by encapsulating a whole mechanism that relies
on low-memory globals and system data structures into a module that can be
completely replaced if needed.

It should go without saying that simply because this Note uses some low-
memory globals and system data structures, it does not mean Apple has gone
soft on software that uses them, especially when they violate the aforementioned
guidelines.

Driven to Tears

A solid understanding of the Device Manager begins with knowledge of its data structures.
Although much of the following is described in Inside Macintosh, Apple has made some
changes since its publication.

First, there is the structure of the unit table. It is a nonrelocatable block in the system heap that
is pointed to by the low-memory global UTableBase ($11C). The unit table is a contiguous
table of handles to Device Control Entry (DCE) records. The offset of a handle within the unit
table (its entry, or “slot”) determines the unit number for the driver, as well as the refnum for
that handle, since a unit number relates to a refnum in the following way:

 refnum = ~(unit number)

If the handle at a particular slot is NIL, there is no DCE and thus no driver installed for that
refnum. There is another low-memory global, UnitNtryCnt ($1D2), which is the count of
entries in the unit table. This low-memory global can be used to know when to stop searching
the unit table.

Many of the slots in the unit table are committed to certain devices due to the fact that the
corresponding reference numbers are committed to those devices. For example, the refnum -3
is reserved for the .Print driver; therefore, unit number -(-3)-1=2 is reserved, which means
that the slot at offset 8 (4 bytes per handle * 2) in the unit table is reserved for the
handle to the DCE of the .Print driver. This relationship is true even if the slot is currently NIL,
because a lot of the operating system, Toolbox, and applications make heavy assumptions

Developer Support Center May 1993

DV 23 - Driver Education 3 of 17

Devices

about the refnum of a particular device. There are more detailed lists in Inside Macintosh, but
following is a summary list of what unit numbers are committed to what device types:

Unit Number Range Refnum Range Usage
0 through 11 -1 through -12 Serial, disk, AppleTalk, printer,

and so on
12 through 31 -13 through -32 Desk accessories
32 through 39 -33 through -40 SCSI devices
40 through 47 -41 through -48 AppleShare and other reserved for

Apple
48 through 63, 127 -49 through -64, -128 Slot drivers—open for other

drivers as well

The entry for unit numbers 48 and above requires some explanation. First, on the Macintosh
512KE and Macintosh Plus, the unit table does not go past unit number 47; this point is
addressed later. On the Macintosh SE, the unit table is large enough to hold up to unit number
63. On the Macintosh II family of machines, the unit table is large enough to hold up to unit
number 127; UnitNtryCnt is probably lower, though not lower than 64.

After documenting the device control entry blocks in Inside Macintosh, Volume II, Apple has
expanded them to deal with new features like the Slot Manager. The new DCE looks the same
as the old DCE, but contains a few additional fields:

 TYPE AuxDCE = PACKED RECORD
 dCtlDriver: Ptr;
 dCtlFlags: INTEGER;
 dCtlQHdr: QHdr;
 dCtlPosition: LONGINT;
 dCtlStorage: Handle;
 dCtlRefnum: INTEGER;
 dCtlCurTicks: LONGINT;
 dCtlWindow: Ptr;
 dCtlDelay: INTEGER;
 dCtlEMask: INTEGER;
 dCtlMenu: INTEGER;

The following fields are the additions for the new DCE record:

 dCtlSlot: Byte;
 dCtlSlotId: Byte;
 dCtlDevBase: LONGINT;
 reserved: LONGINT;
 dCtlExtDev: Byte;
 fillByte: Byte;
 END;

The core structure of parameter blocks has remained the same as described in Inside Macintosh.
They begin with the standard I/O queue fields:

Macintosh Technical Notes

4 of 17 DV 23 - Driver Education

Devices

 TYPE ParamBlockRec = RECORD
 qLink: QElemPtr;
 qType: INTEGER;
 ioTrap: INTEGER;
 ioCmdAddr: Ptr;
 ioCompletion: ProcPtr;
 ioResult: OSErr;
 ioNamePtr: StringPtr;
 ioVRefNum: INTEGER;
 ioRefNum: INTEGER;
 ...
 END;

The rest of the parameter block is heavily dependent on the device driver that uses it and what
kind of driver call is being made.

Unit Table

UTableBase ($11C)

Master Pointer

Device Control Entry

Parameter Block

Parameter Block

Parameter Block

Device Driver

Master Pointer

dCtlDriver

dCtlQHdr

qLink

qLink

qLink

Figure 1—Basic Device Manager Data Structures

The Unit Table, the DCE, and the Parameter Block all work together to provide all the
information necessary for the application, Device Manager, and device driver to communicate
with one another. For example, the structure of a RAM-based driver that has been opened and
called asynchronously a few times might look like that shown in Figure 1.

Developer Support Center May 1993

DV 23 - Driver Education 5 of 17

Devices

Routine Maintenance

A device driver is a block of data composed of a header followed by executable code. The
header contains flags, a delay amount, an event mask, a menu ID, an optional name of the
driver, and offsets to the routines that are in the executable code. Inside Macintosh describes
device drivers as being 'DRVR' resources. Although this is typically the case, it should be
noted that this is not necessarily a requirement, as long as certain rules are followed. Details of
these rules are discussed later in this Note.

A device driver can implement five routines. The Device Manager calls these routines when
certain operating system traps are executed. The traps are called with register A0 pointing to the
parameter block. Some of these traps can be called in one of two different modes: immediate
and asynchronous. If bit 9 of the trap word is set, the call is immediate, while if bit 10 is set,
the call is asynchronous. The device driver should be able to respond to every call by the
Device Manager in at least some fashion, even if just to return. The device driver routines, the
traps that cause the Device Manager to call the routines, and the various modes in which the
calls can be made are as follows:

Routine Trap Modes
Open _Open Immediate
Prime _Read, _Write Immediate, Asynchronous
Control _Control Immediate, Asynchronous
Control _KillIO Immediate
Status _Status Immediate, Asynchronous
Close _Close Immediate

_Open, _Close, and _KillIO are always immediate because of the way they are handled
by the Device Manager. Do not make asynchronous _Open, _Close, or _KillIO calls, and
do not specify the IMMED bit for them explicitly. It is extremely rare that a driver will support
immediate _Read and _Write calls properly. These calls should be used only when
specifically allowed according to the documentation for a driver.

From the driver’s point of view, KillIO is handled as a _Control call with a csCode = 1.
However, this is a façade produced artificially by the Device Manager. Calling a driver with
_Control and csCode = 1 is not the same thing as a KillIO and none of the normal
dequeueing action will take place.

Especially important:

Developers should never make a Device Manager call at interrupt time, including VBLs, Time
Manager tasks, deferred tasks, and so on, unless the call is asynchronous and the underlying
driver is capable of returning to the caller before the I/O completes. Deviations from this
practice will result in severe interrupt latency or even system hangs.

What the Glue Do

High-level languages often come with libraries that provide an easy-to-use interface (“glue”) to
the machine-level Device Manager traps. Many of these calls are documented in Inside
Macintosh. These routines are further divided into two groups. The first group is composed of
“low-level” routines; these routines take an already complete parameter block passed to them,

Macintosh Technical Notes

6 of 17 DV 23 - Driver Education

Devices

point register A0 at it, and execute the proper trap with the correct mode. The second group is
composed of “high-level” routines, which set up a parameter block and required registers with
data provided in the call parameters, then execute the Device Manager traps. For example, the
OpenDriver call creates a parameter block on the stack, completes the required fields, points
register A0 to the block, and executes the _Open trap.

Following is a list of high-level routines and the trap glue they execute:

Routine Trap
OpenDriver _Open
CloseDriver _Close
FSRead _Read
FSWrite _Write
Control _Control
Status _Status
KillIO _KillIO

Yes, We’re Open

The Open routine of a device driver is called as a result of an _Open trap being executed.
What _Open does depends on what machine is running, but is fairly consistent across the
machine models, with the exception of NuBus™ slot drivers on a Macintosh with a Slot
Manager. The following is a pseudo-code description followed by a narrative:

IF call is NOT from _OpenDeskAcc AND filename does NOT begin with “.” THEN
 pass control to file system
ELSE [
 IF driver is for slot device THEN [{explained in narrative below}
 search unit table from 48 through UnitNtryCnt for match
 IF NOT found THEN
 call _GetNamedResource for driver name type 'DRVR'
 IF NOT successful THEN
 call _SGetDriver for driver
 IF NOT successful THEN
 return error
 {found the driver}
 search unit table from 48 through UnitNtryCnt for NIL DCE handle
 IF NOT found THEN [
 bump up UnitNtryCnt by 4
 IF maximum UnitNtryCnt exceeded THEN
 return error]
 {found a slot}
 install driver]
 ELSE [
 search unit table from 0 through UnitNtryCnt for match
 IF NOT found THEN
 call _GetNamedResource for driver name type 'DRVR'
 IF NOT successful THEN
 return error
 {found driver}
 get resource ID of 'DRVR' resource
 IF unit number not already in use THEN
 install driver] {otherwise, leave old driver there}

Developer Support Center May 1993

DV 23 - Driver Education 7 of 17

Devices

 IF driver NOT already open THEN [
 move Drvr fields into corresponding DCE fields
 IF driver is RAM-based THEN
 set RAM-based flag in dCtlFlags field of DCE
 IF driver is for slot device THEN
 call _SFindDevBase and put result into DCE]
 IF driver needsLock THEN
 lock driver and DCE
 IF driver NOT already open OR called from _OpenDeskAcc THEN
 call Open routine of driver
 IF any error resulted THEN [
 clear ioRefnum field
 clear driverOpen bit of dCtlFlags
 unlock driver and DCE]
 ELSE
 unlock driver and DCE if allowed
 set ioResult field to result]

First, _Open checks to see if the call is from _OpenDeskAcc. This check is made by looking
for a special value in the ioFileType field of the parameter block, which _OpenDeskAcc
sets. The filename should also begin with a null byte ($00), but this is not checked. If the call is
not from _OpenDeskAcc, _Open checks to see if the filename in the parameter block begins
with a period (.). If the filename does not begin with a period, control is passed to the file
system. Otherwise, if the machine is a Macintosh with the Slot Manager, then a check is made
to see if the driver is for a slot device. If bit 9 of the _Open trap word is set and bit 0 of the
ioFlags word is set or the ioSlot field of the parameter block is not 0, then the driver is
assumed to be for a slot device.

If the driver is for a slot device, the unit table is searched, starting at unit number 48 and ending
at UnitNtryCnt. If the dCtlSlot, dCtlSlotID, and dCtlExtDev fields of none of the
DCEs of the unit numbers match the fields of the parameter block, then
_GetNamedResource is called, using the name of the driver and type 'DRVR'. If that fails,
then _SGetDriver is called to load the driver from the card’s ROM. If that attempt fails, an
error is reported. In the case where one of the attempts succeeds, the unit table is searched after
loading the new driver, starting at unit number 48 and ending at UnitNtryCnt, for an
unused (NIL) slot. If none are found, the value of UnitNtryCnt is incremented by four. If
the value exceeds 128, then an error is reported. Otherwise driver uses the newly created slot.

If the driver is not for a slot device or has been determined to be a desk accessory, the unit table
is searched, starting at unit number 0 and ending at UnitNtryCnt. If none of the names for
the installed drivers in the table matches the filename of the parameter block, then
_GetNamedResource is called, using the name of the driver and type 'DRVR'. If that
attempt fails, an error is reported. If the attempt succeeds, the ID of the resource is assumed to
be the unit number of the driver and is mapped into the equivalent refnum. If the slot for that
refnum is already occupied, then the driver that is already there remains there.

Once the device driver is installed, or it has been determined that a driver already occupies the
slot in the unit table, the driver is checked to see if it has already been opened. If it has not, the
driver is checked to see if it is RAM-based or and the dCtlFlags field of the driver’s DCE is
set accordingly, along with being combined with the rest of the DrvrFlags field of the driver
header. The DrvrDelay, DrvrEMask, and DrvrMenu fields from the driver header are also
moved into the corresponding fields of the DCE. If the driver is for a slot device,
_SFindDevBase is called for the slot and ID of the driver’s device and the result is put into
the DCE.

Macintosh Technical Notes

8 of 17 DV 23 - Driver Education

Devices

Once the DCE fields have been completed, or it is determined that the driver is already open,
the driver and DCE are locked if needed. The permissions are then checked, returning an error
if incorrect, and the Open routine of the driver is called if the driver is not already open or if the
call was from _OpenDeskAcc. If the driver returns any error, then the ioResult field of
the parameter block and the driverOpen bit of the dCtlFlags field are cleared, and the
driver and its DCE are unlocked. If the driver returns no errors, then it and the DCE are
unlocked, if allowed. In either case, the result from the driver’s Open routine is put in the
ioResult field of the parameter block.

That’s Great, But What Are You Driving At?

So, of what practical value is all this? If you are trying to provide a nonslot driver that can be
installed at INIT time and used later by other software, the best method for finding a unit
number in the unit table is the way the _Open trap on the Macintosh II family finds a unit
number in the unit table for slot device drivers. Unfortunately, you may want to run on other
Macintosh models, and it would be a bit kludgy to fake being a slot device driver, so you
cannot just call _Open and pretend to be a slot device driver. Additionally, it is likely that you
may wish that the driver’s Open routine not be called until it is actually opened with the _Open
trap by software that really wants to use it; therefore, your INIT code must mimic the pertinent
code of the _Open trap.

The first action should be to call _GetNamedResource with the name of the driver and its
resource type (typically 'DRVR', although it is not required, since you are loading it). The
resource that contains your driver must have the system heap bit set in its resource attributes, so
it is loaded into the system heap where it can continue to exist, long after the INIT has gone
away. Note that if for some incredible reason, your driver is greater than 16K, you might want
to include a 'sysz' resource to increase the available space in the system heap.

Next, you must call _DetachResource with the handle to your resource, so it is not
removed when your INIT file is closed. Now you are ready to find a slot in the unit table for
your driver. First check if unit numbers 48 and higher are even available by checking
UnitNtryCnt.

If UnitNtryCnt is 48, you have a bit of a problem in that there are no empty slots available
in the unit table. You can rectify this, however, by resizing the unit table. DTS recommends
you accomplish that task by creating a new unit table that is larger than the old one.

To resize the unit table, first create a new, nonrelocatable block in the system heap that is the
new size you want, and clear it to zeros. The following assembly-language code fragment gives
an example:

 MOVE.W D1,D0 ;D1 = requested # slots
 MULU.W #4,D0 ;turn it into size
 _NewPtr,SYS,CLEAR ;create clear block in system heap
 BNE Error ;check for errors!

Next, you must copy the contents of the old unit table into the new unit table, point
UTableBase to the new unit table, and adjust the value of UnitNtryCnt. While doing all
of that, it would be most inconvenient if an interrupt occurred; therefore, you must turn off

Developer Support Center May 1993

DV 23 - Driver Education 9 of 17

Devices

interrupts during the process. The following assembly-language code fragment, which would
follow the previous code, gives an example:

 MOVE SR,-(SP) ;save old interrupt status
 OR #0700,SR ;disable all maskable interrupts
 MOVEA.L A0,A1 ;A0 (address new unit table) -> A1
 MOVEA.L UTableBase,A0 ;old unit table -> A0
 MOVE.W UnitNtryCnt,D0 ;number of entries -> D0
 MULU.W #4,D0 ;size of old table -> D0
 _BlockMove ;copy old table to new table
 _DisposPtr ;get rid of old table
 MOVE.L A1,UTableBase ;make us new unit table
 MOVE.W D1,UnitNtryCnt ;update number of entries
 MOVE (SP)+,SR ;restore old interrupt status

DTS suggests that if UnitNtryCnt was originally 48, you increase it to 64, adjusting the
table size as shown.

At this point, with the unit table resized or already at a size to hold more than 48 unit numbers,
it may be searched for an empty slot, starting at unit number 48 and ending at UnitNtryCnt.
If, in the case where the unit table already held more than 48 unit numbers, no empty slot was
found, then the unit table might be able to be expanded as was described previously. This time,
however, the process can be a bit more complicated.

It could very well be that the unit table itself is already larger than what UnitNtryCnt would
indicate, either because the machine is a Macintosh II–class machine or somebody else has
changed things ahead of your INIT. The best action to take would be to call _GetPtrSize on
the unit table, divide the result by four, rounding down, and compare that number to
UnitNtryCnt . If UnitNtryCnt is lower than that result, you can increment
UnitNtryCnt by any amount that keeps it less than or equal to the maximum allowable size
that the unit table can handle. Four is a good number, because it reduces the need for someone
else to do the same check later on without also making the search for a given driver. Once
UnitNtryCnt has been incremented, you know you have an empty slot waiting.

If UnitNtryCnt is already equal to the size of the unit table divided by four, you should
expand the unit table as described previously, choosing a size around 16 or 32 bytes greater
than the old size. Remember always to check the result of the _NewPtr call; it would be
catastrophic to copy the old unit table into the low-memory global area.

Once you have found a slot for the driver in the unit table, call _DriverInstall with the
corresponding refnum and pointer to the driver. This call creates a DCE for the driver and sets
up the correct refnum in the DCE. Next, move the handle to the driver into the dCtlDriver
field of the DCE, then move the DrvrFlags, DrvrDelay, DrvrEMask, and DrvrMenu
fields of the driver header into the dCtlFlags, dCtlDelay, dCtlEMask, and dCtlMenu
fields of the DCE. Finally, set the dRamBased bit in the dCtlFlags field of the DCE.
That’s all there is to it.

Macintosh Technical Notes

10 of 17 DV 23 - Driver Education

Devices

Immediate Asynchronicity

The _Read, _Write, _Status, and _Control traps differ from _Open, _Close, and
_KillIO in that a request can be “queued,” (that is, inserted into a waiting list of requests for
that device driver). This queue allows requests to be saved for processing later if the driver is
busy handling another request. As the device driver finishes servicing each request, the next
request in line is passed to the driver until no more requests remain. Calls made to _Open,
_Close, and _KillIO, however, must be handled immediately, so they are never queued.
This behavior is not a problem with Open requests, since there are usually no requests already
queued. What happens with Close requests is described later in this Note.

As noted earlier, these traps can be optionally executed immediately, asynchronously, or both.
Normally, when a trap is executed, it means that control should not return to the caller until the
request has been completed. That is, the requested task completely finishes doing whatever was
asked and needs to do no further action. For example, assume a _Read trap is called for a
serial driver. If called normally, control would not return to the caller until a character was
received.

An asynchronously executed trap should return to the caller as soon as possible, even if the
request cannot be completed before returning. In the previous example, if _Read were
executed asynchronously, it would return control as soon as the request was noted rather than
waiting until a character was received. When a character finally was received, the ioResult
of the parameter block would reflect that fact, and any ioCompletion routine would be
executed.

When a trap is executed immediately, it means that the request is not queued, but rather sent
immediately to the driver, whether or not it is busy handling another request. Immediate
requests are typically not I/O-related in nature. If the example call were to have been executed
immediately, it is not clear what the proper response of the driver should be; should it wait until
a character is available, thereby accomplishing the task but violating the concept of
“immediateness,” or if no character is available, should it just return immediately without ever
completing the task? A better use for immediate calls is for checking the status of a driver,
using the _Status trap. Note that the _KillIO trap, used for aborting all processes the
driver might be involved in, doesn’t need the immediate bit set. _KillIO is always executed
immediately.

Note that Inside Macintosh states that it is the caller’s responsibility to know if a driver can
handle a particular call being made immediately.

You Can Feel It When You Drive

When _Read or _Write is executed, the Device Manager checks the refnum. If it is not
negative, it is assumed that it is a file reference number and control passes to the file system.
When _Status is executed, the Device Manager first checks if the csCode is one (1). If it is,
then the DCE handle is calculated and returned in the csParam field and control is returned to
the caller.

Beyond this special handling, the Device Manager processes _Read, _Write, _Status and
_Control traps in much the same way. First, however, it checks if the call was a _Read or

Developer Support Center May 1993

DV 23 - Driver Education 11 of 17

Devices

_Write. If it was either of these, then the ioActCount field of the parameter block is
cleared to indicate that no bytes have been read or written yet.

Next, the ioResult field of the parameter block is set to one (1) to indicate the call is “in
progress.” The ioTrap field is filled with the trap word that was executed and the qType is
set to ioQType, 2. The Device Manager checks to see if the driver is open and if it is capable
of handling the kind of call made. If either of these tests fail, it returns an error. Otherwise, it
checks the “immediate” bit (bit 9) of the trap word, and if set, it goes straight to the code that
calls the appropriate driver routine. If the call was not immediate, the Device Manager checks
the “asynchronous” bit (bit 10) of the trap word, and if set, it passes control via a BRA to the
code that queues the request and calls the appropriate driver routine. If this bit is clear, the
ioCompletion field of the parameter block is cleared and the same code is called via a BSR.
On returning from that code, the Device Manager executes a loop (the infamous _SyncWait)
that tests the ioResult field and exits when it is less than or equal to 0.

To further clarify the difference between asynchronous and synchronous calls: by doing a BSR
call in the synchronous case, the Device Manager leaves its return address on the stack, thus
regaining control after the driver routine it called returns. This allows the Device Manager to
keep control, waiting until the call has completed (the ioResult field becomes nonpositive),
before returning control to the code that executed the _Read, _Write, _Status, or
_Control trap. In the asynchronous case, no return address is left on the stack; therefore,
control returns to the code that executed the trap when the driver routine returns. It is very
important to recognize that the Device Manager is doing the work in handling the difference
between asynchronous and synchronous calls. For almost every conceivable case, the driver
routine does not have to worry about that difference.

The Device Manager gives control to the driver routine during an asynchronous or synchronous
trap (not an immediate trap) with the following process. It saves the interrupt level, disables
interrupts, and adds the request to the head of the driver’s queue. Next, it checks the
drvrActive bit of the driver’s dCtlFlags field of the device control entry. If this bit is
set, the driver is busy handling another request. In this case, the Device Manager restores the
interrupt level, exits the code, and returns control to either the code that waits for the
ioResult field to become less than or equal to 0 (the synchronous case) or the code that
executed the trap (the asynchronous case). If the drvrActive bit is not set, the Device
Manager sets it to indicate the driver is busy and the interrupt level is restored.

This is now the point at which an immediate call would have entered as well as where the code
continues for synchronous and asynchronous calls. Notice how none of the processing
described in the previous paragraph was done in the case of an immediate call; the request was
not added to the driver queue and no check was made for whether the driver was busy.

At this point, if the trap is _Read or _Write, the Device Manager checks the ioByteCount
field; if it is 0, it is assumed that the call is complete and control is passed to IODone, which is
described later. In addition, it adjusts the dCtlPosition field to reflect the ioPosMode and
ioPosOffset values in the parameter block.

At this point, the Device Manager checks to make sure the driver is loaded by doing a
_LoadResource if it finds the driver has been purged. It then locks the driver and calls the
correct routine within the driver by using the offsets given in the driver header.

Macintosh Technical Notes

12 of 17 DV 23 - Driver Education

Devices

Sorry, We’re Closed

When the _Close trap is called, the first thing the Device Manager does is check the refnum.
If it is not negative, it passes control to the file system. Otherwise, it searches the unit table and
checks if the driver is open and exists if it is not. If the driver is open, the Device Manager
waits in a loop until the drvrActive bit of the dCtlFlags field is clear, indicating the
driver is no longer busy. Once the driver is not busy, the Device Manager calls the driver’s
Close routine. If no error is returned, the dOpened flag is cleared. If the driver is for a slot
device, then the refnum in the Slot Resource Table is cleared with a call to _SUpdateSRT.

Note that the device driver is not removed from the unit table, nor is the driver or its device
control entry disposed. To remove a driver and dispose of its device control entry, you must
call _DrvrRemove. The driver itself is usually removed by getting purged (it must be
purgeable).

Get Outta the Way, Ya Sunday Driver

The driver’s Open, Prime, Status, Control, and Close routines are called under
different circumstances and need to respond correctly to these situations.

The routines can be broken into two groups:

Open and Close These routines are called only one way and must be
completed before returning.

Prime, Status, and Control These routines can be called in different ways and might
be able to defer completion of a request.

Handling Open and Close is simple; you must complete all the processing that is to be done
before returning, and you do so by simply returning with a result code in register D0.

In the case of Prime, Status, and Control, things get a bit more complicated. If called
with the immediate bit of the trap word set, the routine must complete the request and simply
return with register D0 containing the result code. If not called with this bit of the trap word set,
the routine should, if possible, complete the request and return via a JMP to JIODone. If the
request cannot be completed immediately, the routine should simply return with register D0 set
to noErr. Since the request cannot be completed immediately, it is implied that some
mechanism is used to indicate deferred completion of the request. This might be through an
interrupt being generated that itself signals the completion of the request, or it might be an
interrupt that allows a periodic function to poll something that would indicate the completion of
the request. Whatever the case, once the request has been completed, the code responsible for
completing it should perform a JMP to JIODone with register A1 pointing to the device
control entry for the driver and register D0 containing the result code.

Developer Support Center May 1993

DV 23 - Driver Education 13 of 17

Devices

What the Heck Does JIODone Do, Anyway?

JIODone is nothing more than a utility provided by the Device Manager for use by device
drivers when they wish to indicate the completion of a queued request. Since it is only used for
queued requests, it is inappropriate to use JIODone in completing Open, Close and
“immediate” Prime, Status, and Control requests.

What JIODone does is first look at the queue header of the device control entry. It assumes
that the queue header points to the request that is being completed. If it is NIL, it exits
immediately after unlocking the driver, if the driver can be unlocked. Otherwise, the interrupt
level is saved, interrupts are disabled, and the drvrActive flag is cleared, to indicate the
driver is no longer busy. Then the driver is unlocked, if allowed, the request is removed from
the driver’s queue, and the interrupt level is restored. Next, register D0 (the result code) is
stuffed into the ioResult field of the request, then if a completion routine was specified
(ioCompletion is non-NIL), it gets called. At this point, interrupts are disabled once again,
and if any more requests are pending for the driver, the driver is called again at the point where
the Device Manager checks to see if the driver is busy. If no more requests are pending,
JIODone restores the interrupt level again and returns.

If you call JIODone when there is not an appropriate I/O request pending in the queue, very
strange and mysterious things occur. When debugging difficult device driver bugs, be
absolutely certain that JIODone is not being called inappropriately.

Driving the Point Home

In summary, the following concepts are important to recognize:

1. Since the Open routine of a driver is only called once from the _Open trap, and
when it is called, the parameter block is not attached to a queue, the Open routine of
the driver should only perform actions such as validating opening the driver and
doing data initialization. Do not attempt to use the Open routine in the capacity of
something like a _Control call.

2. Likewise, since the Close routine of a driver is called only once by the _Close
trap, the Close routine should only perform actions that undo the actions of the
Open routine, such as deallocation of data structures, and so on.

3. _Read, _Write, _Status and _Control all act very similar with just a few
minor differences. During _Read and _Write calls, the ioActCount field
automatically gets cleared and the dCtlPosition field gets updated in accordance
with ioPosOffset and ioPosMode. A _Status call with csCode = 1
automatically results in the Device Manager returning the device control entry
handle. Other than this difference and the fact that the _Read and _Write traps
call the driver’s Prime routine, the _Status trap calls the Status routine, and
the _Control trap calls the Control routine, these traps behave the same.

4. Because the Device Manager takes care of the different processing requirements of
asynchronous and synchronous calls, the Prime, Status, and Control
routines of a driver can ignore the difference and handle both kinds of calls in the

Macintosh Technical Notes

14 of 17 DV 23 - Driver Education

Devices

same way. That is, when the call is completed, jump through JIODone. If the call
cannot be completed immediately, just return.

5. Because immediate calls to the Prime, Status, and Control routines of a
driver do not have the parameter block added to the head of the queue, you should
not exit to JIODone when the call is completed, but rather just return.

Crucial References for Writing a Macintosh SCSI Disk Driver

The following is a partial list of specific references that we’ve found handy for writing SCSI
related drivers. Some of the information enclosed is SCSI specific. Some relates to device
drivers on the Macintosh. Some relates to other system level programming usually found
necessary when writing system level software. Thanks go to Craig Prouse, formerly of DTS,
who compiled the original list on which this list is based.

SCSI Development Package

This provides a package of written documentation from DTS including full sample code for an
existing driver. Version 1.0 was in assembly language and supported only the old (now
unsupported) partition map format. This version has been available from APDA for quite some
time. Version 2.0 is rewritten mostly in C, and is available in the snippets folder on the
Developer CD Series.

Standards

These official standards, while difficult reading, are indispensable for determining proper
operation of low-level SCSI Manager code. Don’t go any further without them.

SCSI-1: ANSI X3.131-1986
CCS: X3T9.2/85-52, 1986 (Revision 4.B)
SCSI-2: ANSW X3.131-1992 (Revision 10h)
SCSI-3: ANSI X3.131-199x

(Available from:
SCSI Bulletin Board System: (719) 574-0424 or (316) 636-8700
anonymous ftp from rex.cs.tulane.edu
SCSI-1 and CCS:

American National Standards Institute
1430 Broadway
New York, NY 10018

SCSI-2 and most other standards:
Global Engineering Documents
2805 McGraw
Irvine, CA 92714
(800) 854-7179 or (714) 261-1455

Developer Support Center May 1993

DV 23 - Driver Education 15 of 17

Devices

Inside Macintosh, Volume II

Chapter 6
The Device Manager
The developer should be thoroughly familiar with all aspects of this chapter and should begin
by writing a simple device driver shell that can be installed by a system extension. Once this is
accomplished the desired specific features may be implemented.

Chapter 11
The Vertical Retrace Manager
Drivers supporting removable media as a rule use a VBL task to occasionally poll the device to
check for a disk insertion. If a disk insertion is sensed, then the driver calls PostEvent to notify
the Finder or Standard File. There is more, and better information about VBL tasks as well.
The best example of how to write a VBL is in MultiFinder Tech Note #180. There is
supplemental information on VBLs is in the Time Manager chapter of Inside Macintosh Volume
VI, and there are virtual memory considerations for VBLs in Tech Note #285.

Inside Macintosh, Volume IV

Chapter 19
The File Manager
Interestingly enough, one does not need a great deal of familiarity with HFS in order to write a
disk driver. Nevertheless, it can’t hurt to be familiar with this chapter. There is one poorly
documented fact that bears mentioning here: HFS always calls the disk driver with a drive
number in the vRefNum field of the parameter block. It does not pass an actual vRefNum to the
driver.

Chapter 20
The Device Manager
With the Mac Plus and later, the unit table expanded to accommodate SCSI drivers. There are
reserved slots in the unit table for SCSI devices and these unit numbers have a simple
correspondence to their reserved SCSI IDs. This is documented only very briefly. Blink and
you’ll miss it. The driver for SCSI ID n must be installed at unit number (32+n). Do not install
it anywhere else or other drivers may not recognize your existence and this can lead to
conflicts.

Chapter 31
SCSI Manager
Most of the basic information here is still valid, but there are a couple of caveats. First, the
SCSIStat call returns hardware information about the 5380 SCSI chip. Newer Macintoshes
may not use the 5380 and SCSIStat may therefore not return the type of information that’s
documented here. See the “Fear No SCSI” tech note for more details. Also, the Device
Partition Map documented on page 292 is no longer supported. Refer to Inside Macintosh
Volume V for later information. The old format may be supported optionally but is not
required. The new partition map format is required.

Inside Macintosh, Volume V

Chapter 31
SCSI Manager
Inside Macintosh Volume V defines the new partition map structure that is required of all new
drivers. It also gives good documentation on the polled vs. the blind SCSI transfer modes.

Macintosh Technical Notes

16 of 17 DV 23 - Driver Education

Devices

Inside Macintosh, Volume VI

Chapter 23
Time Manager
This chapter provides just a bit more documentation on VBLs and perhaps offers a few
alternatives.

Chapter 28
Memory Management
This is the chapter that finally explains A5 and virtual memory. It is extremely important for
SCSI driver developers to understand at least how virtual memory works, and for removable
drives, also how to work with A5.

Guide to the Macintosh Family Hardware

Chapter 9
The SCSI Manager
This chapter gives the definitive description of polled vs. blind transfer modes for those who
are curious and really want to understand what’s going on in hardware and why blink mode is
so much faster.

Macintosh Technical Notes

DV 5 - Drive Queue Elements
This Tech Note contains an explanation of the drive queue and example code for how to add a
drive to the queue. For drives containing multiple partitions, it’s mostly a matter of searching
beyond the first valid HFS partition in the partition map and adding more than one drive to the
drive queue. Where it gets difficult is when a single driver then has to provide control for all of
those mounted volumes.

DV 6 - Finding Drivers in the Unit Table
The key to avoiding conflicts between different drivers installed in the same system is giving
drivers the ability to sense the presence of other drivers when installing. For example, if a
driver is stored on a removable cartridge and loads at system boot time, then the driver in the
Extensions folder would not be necessary. That driver should be able to see that there is already
a driver installed in its unit table slot and it should not install over the existing driver. Other
similar situations are possible. Tech Note #71 gives some ideas about how drivers can become
aware of other drivers by searching the unit table. Use this information in conjunction with the
information in Chapter 20 of Inside Macintosh Volume IV.

DV 2 - _AddDrive, _DrvrInstall, and _DrvrRemove
The most reliable way to install a driver, particularly a SCSI driver that is not stored as a
resource and the unit number for which must be determined at runtime, is to do it manually.
Rather than depending on OpenDriver, load the resource into the system heap explicitly. Call
_DrvrInstall to allocate its Device Control Entry and fill out the DCE by hand, setting up all the
pointers yourself. It’s not as difficult as it sounds, it’s reliable, and DTS provides full sample
code showing how to do it. See the SCSI Development Package.

TB 35 - MultiFinder Miscellanea
Somehow, the best example of how to write a VBL is hidden in a MultiFinder Tech Note.

Developer Support Center May 1993

DV 23 - Driver Education 17 of 17

Devices

FL 24 - Don’t Look at ioPosOffset
This is a very short and concise Tech Note that helps explain what to do in one very small but
very confusing part of your device driver, where read and write calls are converted into logical
block addresses for SCSI. Don’t miss this one, and see the example code as well.

ME 9 - Coping With VM and Memory Mappings
Because virtual memory depends on the SCSI bus to perform paging, SCSI driver writers must
understand how virtual memory and the SCSI manager interact. Virtual memory also affects
how VBLs are run, which may affect everything from checking for disk insertions, to
displaying progress indicators during disk formatting.

DV 24 - Fear No SCSI
This excellent tech note by Colleen Delgadillo includes answers to frequently asked SCSI
questions; a sample of how to call the SCSI manager; information about differences between
the Quadra class machines and their new SCSI chip; and other valuable new information about
the SCSI manager. As Colleen says, “the target controls the bus.”

Further Reference:
• Inside Macintosh, Volumes II, IV, and V, The Device Manager
• Inside Macintosh, Volume I, The Desk Manager
• Technical Note DV 6 - Finding Drivers in the Unit Table
• Technical Note DV 2 - _AddDrive, _DrvrInstall, and _DrvrRemove

NuBus is a trademark of Texas Instruments.

	CaveatÑ Low Memory and System Data Structures
	Driven to Tears
	Routine Maintenance
	What the Glue Do
	Yes, WeÕre Open
	ThatÕs Great, But What Are You Driving At?
	Immediate Asynchronicity
	You Can Feel It When You Drive
	Sorry, WeÕre Closed
	Get Outta the Way, Ya Sunday Driver
	What the Heck Does JIODone Do, Anyway?
	Driving the Point Home
	Crucial References for Writing a Macintosh SCSI Disk Driver

