New Technical Notes

Macintosh ®
Developer Support

DV 23 - Driver Education

Devices

Revisedby Craig Prouse and Brian Bechtel May 1993

Writtenby: Mark Bennett August 1990

This Technical Note describes in detail the operation of the Device Manager and its interaction
with device drivers. It provides the background needed for correct operation of third-party
device drivers and a so presents a method for finding an entry in the Unit Table for adriver.

Many aspects of the Device Manager remain myste by Find Styleof Macintosh developers,
especially those who might wish to accomplish tasks not directly supported by the current
offering of calls. For example, developers might wish to install their own driver at INIT time or
wish to manage their own /O queues for processing. A solid knowledge of the Device
Manager helpsin these tasks, aswell asin ssimply writing anormal, no-frills device driver.

A general-usage driver, which isbest installed at INIT time, provides services to software that
might run on aMacintosh at any time. Thistype of driver istypically implemented by having a
file of type INIT, cdev, or RDEV that users move into their System Folder. Thisfile contains
"I NI T' and' DRVR' resources, among others. The' I NI T' resource gets loaded into
memory and executed, at which timeit installs the driver.

Caveat—Low Memory and System Data Structures

Warning: This Note involves the discussion and use of low-memory globals and
operating system internal data structures. It is a plain fact that using
these puts software at a compatibility risk; therefore, DTS recommends
you approach the information in this Note in the following manner:

1. If you do not have to use a low-memory global or system data
structure, then don't.

2. If you do have to use alow-memory global or system data structure,
use it only as described in this Note, or in other, authorized Apple
Computer, Inc., technical documentation.

3. When using a low-memory global or system data structure in an
authorized manner, do so in away that encapsulates and isolates this
dependency from the rest of this software. Thisway, if Apple aters
the structure of space-time out from under you, there is one nice,
tidy spot that you have to modify.

4. When Apple provides a system-independent manner by which you
can obtain the same information, modify your code to use this
method.

DV 23 - Driver Education 1of 17

Devices

Macintosh Technical Notes

An example of points three and four would be using a module that returns a
low-memory global instead of always reaching into low-memory directly. For
example, when this Note references the low-memory global UTabl eBase, the
software that needs the value stored there should call a routine like the

following:
FUNCTI ON Get UTabl eBase : Ptr;
QONST
UTabl eBase = $11C
TYPE
LongPtr = ~Longlnt;
BEG N
Get UTabl eBase : = PA NTER(LongPt r (UTabl eBase) *) ;
END;

Then, if Applewereto provide aCGest al t call to get the same value, only this
one module would (and should) be changed. If you are blessed enough to be
using a high-level or, better yet, an object-oriented language, you can even
further isolate the dependency by encapsulating a whole mechanism that relies
on low-memory globals and system data structures into a module that can be
completely replaced if needed.

It should go without saying that simply because this Note uses some low-
memory globals and system data structures, it does not mean Apple has gone
soft on software that uses them, especially when they violate the aforementioned
guidelines.

Driven to Tears

A solid understanding of the Device Manager begins with knowledge of its data structures.
Although much of the following is described in Inside Macintosh, Apple has made some
changes since its publication.

First, thereis the structure of the unit table. It is a nonrel ocatable block in the system heap that
is pointed to by the low-memory global UTabl eBase ($11C). The unit table is a contiguous
table of handles to Device Control Entry (DCE) records. The offset of a handle within the unit
table (its entry, or “dot”) determines the unit number for the driver, aswell asther ef numfor
that handle, since aunit number relatesto ar ef numin the following way:

refnum= ~(unit nunber)

If the handle at a particular slot is NI L, there is no DCE and thus no driver installed for that
r ef num There is another low-memory global, Uni t Nt r yCnt ($1D2), which isthe count of
entries in the unit table. Thislow-memory global can be used to know when to stop searching
the unit table.

Many of the slots in the unit table are committed to certain devices due to the fact that the
corresponding reference numbers are committed to those devices. For example, ther ef num-3
isreserved for the .Print driver; therefore, unit number- (- 3) - 1=2 isreserved, which means
that thedlot at offset8 (4 bytes per handle * 2) intheunittableisreserved for the
handle to the DCE of the .Print driver. Thisrelationship istrue even if the slot iscurrentlyNI L,
because a lot of the operating system, Toolbox, and applications make heavy assumptions

2of 17 DV 23 - Driver Education

Devices

Developer Support Center May 1993

about ther ef numof aparticular device. There are more detailed lists inInside Macintosh, but
following isasummary list of what unit numbers are committed to what device types.

Unit Number Range Refnum Range Usage

0 through 11 -1 through -12 Serial, disk, AppleTalk, printer,
and so on

12 through 31 -13 through -32 Desk accessories

32 through 39 -33 through -40 SCSI devices

40 through 47 -41 through -48 AppleShare and other reserved for
Apple

48 through 63, 127 -49 through -64, -128 Slot drivers—open for other
drivers as well

The entry for unit numbers 48 and above requires some explanation. First, on the Macintosh
512KE and Macintosh Plus, the unit table does not go past unit number 47; this point is
addressed later. On the Macintosh SE, the unit table is large enough to hold up to unit number
63. On the Macintosh 11 family of machines, the unit table is large enough to hold up to unit
number 127; Uni t Nt r yCnt is probably lower, though not lower than 64.

After documenting the device control entry blocksin Inside Macintosh, Volume I, Apple has
expanded them to deal with new features like the Slot Manager. The new DCE |ooks the same
asthe old DCE, but contains afew additional fields:

TYPE AuxDCE = PACKED RECCRD

dC | Driver: Ptr;
dC | Fl ags: | NTECER,
dc | QHdr: QHr ;

dCt | Position: LONG NT;
dc | Storage: Handl e;
dQ | Ref num | NTECER,
dCt | QurTicks: LONG NT;
dCG | Wndow:. Ptr;

dc | Del ay: | NTECER,
dC | EMask: | NTEGER,
dc | Menu: | NTECER,

Thefollowing fields are the additions for the new DCE record:

dal S ot: Byt e;

dc| Sl otld: Byt e;

dC | DevBase: LONG NT;

reserved: LONG NT;

dC | Ext Dev: Byt e;

fillByte: Byt e;
END;

The core structure of parameter blocks has remained the same as described inlnside Macintosh.
They begin with the standard 1/0 queue fields:

DV 23 - Driver Education 3of 17

Devices

Macintosh Technical Notes

TYPE Par anBl ockRec = RECCRD

qLi nk: H enftr;

qType: | NTECER,

i oTr ap: | NTEGER,

i oOndAddr : Ptr;

i oConpl etion: ProcPtr;

ioResul t: CSErr;

i oNarrePt r: StringPtr;

i oVRef Num | NTEGER,

i oRef Num | NTEGER,
END;

The rest of the parameter block is heavily dependent on the device driver that usesit and what
kind of driver call is being made.

UTabl eBase ($11C) —m= Master Pointer

Unit Table<——| = Device Driver <:|

—m= Master Pointer

Device Control Entry:|

da | Dri ver

\/\/\ = Parameter Block
dC | QHdr :
\/\/\ qlLi nk -

Parameter Block
gLi nk

Parameter Block <=
gLi nk

Figure 1—Basic Device Manager Data Structures

The Unit Table, the DCE, and the Parameter Block all work together to provide all the
information necessary for the application, Device Manager, and device driver to communicate
with one another. For example, the structure of a RAM-based driver that has been opened and
called asynchronously afew times might look like that shown in Figure 1.

4 of 17 DV 23 - Driver Education

Devices

Developer Support Center May 1993

Routine Maintenance

A device driver is a block of data composed of a header followed by executable code. The
header contains flags, a delay amount, an event mask, a menu ID, an optional name of the
driver, and offsets to the routines that are in the executable code. Inside Macintosh describes
device drivers as being ' DRVR' resources. Although thisis typically the case, it should be
noted that thisis not necessarily arequirement, aslong as certain rules are followed. Details of
these rules are discussed later in this Note.

A device driver can implement five routines. The Device Manager calls these routines when
certain operating System traps are executed. The traps are called with register AO pointing to the
parameter block. Some of these traps can be called in one of two different modes. immediate
and asynchronous. If bit 9 of the trap word is set, the call isimmediate, while if bit 10 is set,
the call is asynchronous. The device driver should be able to respond to every call by the
Device Manager in at least some fashion, even if just to return. The device driver routines, the
traps that cause the Device Manager to call the routines, and the various modes in which the
calls can be made are asfollows:

Routine Trap M odes

Qpen _Open Immediate

Prinme _Read, Wite Immediate, Asynchronous
Cont r ol _Control Immediate, Asynchronous
Cont r ol KilllO Immediate

St at us _Status Immediate, Asynchronous
d ose O ose Immediate

_Open, _C ose,and_Kil | | Oare dwaysimmediate because of the way they are handled
by the Device Manager. Do not make asynchronous_ OQpen, C ose,or _Ki |l | | Ocalls, and
do not specify the | MVED bit for them explicitly. It is extremely rare that adriver will support
immediate _Read and W i t e calls properly. These calls should be used only when
specifically allowed according to the documentation for adriver.

From the driver’s point of view, Ki | | | Oishandledasa_Cont r ol call withacsCode = 1.
However, thisis a fagade produced artificially by the Device Manager. Calling a driver with
_Control andcsCode =1isnot the samething asaKi | | I Oand none of the normal
dequeueing action will take place.

Especialy important:

Developers should never make a Device Manager call at interrupt time, including VBLS, Time
Manager tasks, deferred tasks, and so on, unless the call is asynchronous and the underlying
driver is capable of returning to the caller before the 1/0 completes. Deviations from this
practice will result in severe interrupt latency or even system hangs.

What the Glue Do

High-level languages often come with libraries that provide an easy-to-use interface (“glue’) to
the machine-level Device Manager traps. Many of these calls are documented in Inside
Macintosh. These routines are further divided into two groups. The first group is composed of
“low-level” routines; these routines take an aready complete parameter block passed to them,

DV 23 - Driver Education 5o0f 17

Devices

Macintosh Technical Notes

point register AO at it, and execute the proper trap with the correct mode. The second group is
composed of “high-level” routines, which set up a parameter block and required registers with
data provided in the call parameters, then execute the Device Manager traps. For example, the
OpenDri ver call creates a parameter block on the stack, completes the required fields, points
register AO to the block, and executesthe _Open trap.

Following isalist of high-level routines and the trap glue they execute:

Routine Trap
QpenDri ver _Qpen

d oseDri ver _dose
FSRead _Read
FSWite _Wite
Contr ol _Control
St at us _Status
KilllO _Killlo

Yes, We're Open

The Open routine of a device driver is called as aresult of an _Open trap being executed.
What _Open does depends on what machine is running, but is fairly consistent across the
machine models, with the exception of NuBus™ slot drivers on a Macintosh with a Slot
Manager. The following is a pseudo-code description followed by a narrative:

IF call is NOT from_QpenDeskAcc AND fil enanme does NOT begin with “.” THEN
pass control to file system
ELSE [
IF driver is for slot device THEN [{explained in narrative bel ow}
search unit table from48 through UnitNerynt for natch
I'F NOT found THEN
call _Cet NanedResource for driver name type ' DRVR
I F NOT successful THEN
call _SGetDriver for driver
I F NOT successful THEN
return error
{found the driver}
search unit table from48 through nitNtryOnt for NIL DCE handl e
I'F NOT found THEN [
bunp up UnitNtryOnt by 4
I F maxi mum Uni t NNryOnt exceeded THEN
return error]
{found a slot}
install driver]
ELSE [
search unit table fromO through UnitNeryOnt for match
I'F NOT found THEN
call _Get NamedResource for driver name type ' DRVR
I F NOT successful THEN
return error
{found driver}
get resource ID of 'DRVR resource
IF unit nunber not already in use THEN
install driver] {otherwi se, |eave old driver there}

6 of 17 DV 23 - Driver Education

Devices

Developer Support Center May 1993

I F driver NOT already open THEN [
nove Drvr fields into corresponding DCE fiel ds
IF driver is RAM based THEN
set RAM based flag in dCl Fl ags field of DCE
IF driver is for slot device THEN
call _SFindDevBase and put result into DCE]
I F driver needsLock THEN
l ock driver and DCE
I F driver NOT already open OR called from_CpenDeskAcc THEN
call Qpen routine of driver
IF any error resulted THEN [
clear ioRefnumfield
clear driverQen bit of dQI Fl ags
unl ock driver and DCE]
ELSE
unl ock driver and DCE i f all owed
set ioResult field to result]

First, _Open checksto seeif the call isfrom_OQpenDeskAcc. This check is made by looking
for aspecia valueinthei oFi | eType field of the parameter block, which_OpenDeskAcc

sets. The filename should also begin with anull byte ($00), but thisis not checked. If the call is
not from _QOpenDeskAcc, Open checksto seeif the filename in the parameter block begins
with a period (.). If the filename does not begin with a period, control is passed to the file
system. Otherwise, if the machine is a Macintosh with the Slot Manager, then a check is made
to seeif the driver is for adot device. If bit 9 of the Open trap word is set and bit O of the
i oFl ags wordisset or thei 0S| ot field of the parameter block is not O, then the driver is
assumed to be for adlot device.

If the driver isfor adot device, the unit table is searched, starting at unit number 48 and ending
aUnitNtryCnt . If thedCt | Sl ot ,dCt | Sl ot | D,anddCt | Ext Dev fields of none of the
DCEs of the unit numbers match the fields of the parameter block, then
_CGet NanedResour ce iscaled, using the name of the driver and type' DRVR . If that fails,
then SGet Dri ver iscalled to load the driver from the card’s ROM. If that attempt fails, an
error isreported. In the case where one of the attempts succeeds, the unit table is searched after
loading the new driver, starting at unit number 48 and ending at Uni t Nt r yCnt , for an
unused (NI L) slot. If none are found, the value of Uni t Nt r yCnt isincremented by four. If
the value exceeds 128, then an error is reported. Otherwise driver uses the newly created dot.

If the driver is not for aslot device or has been determined to be a desk accessory, the unit table
is searched, starting at unit number 0 and ending at Uni t Nt r yCnt . If none of the names for

the installed drivers in the table matches the filename of the parameter block, then

__Get NanedResour ce is called, using the name of the driver and type' DRVR' . If that

attempt fails, an error is reported. If the attempt succeeds, the ID of the resource is assumed to
be the unit number of the driver and is mapped into the equivalentr ef num If the slot for that

r ef numisaready occupied, then the driver that is aready there remains there.

Once the device driver isinstalled, or it has been determined that a driver already occupies the
dot in the unit table, the driver is checked to seeif it has already been opened. If it has not, the
driver is checked to seeif it isSRAM-based or and thedCt | Fl ags field of the driver’sDCE is
set accordingly, along with being combined with the rest of theDr vr FI ags field of the driver

header. The Dr vr Del ay, Dr vr EMask, and Dr vr Menu fields from the driver header are also
moved into the corresponding fields of the DCE. If the driver is for a slot device,

_hSFi ndDevBase iscalled for the slot and ID of the driver’s device and the result is put into

the DCE.

DV 23 - Driver Education 7 of 17

Devices

Macintosh Technical Notes

Once the DCE fields have been completed, or it is determined that the driver is already open,
the driver and DCE are locked if needed. The permissions are then checked, returning an error
if incorrect, and the Qpen routine of the driver is called if the driver is not already open or if the
call wasfrom _OpenDeskAcc. If the driver returns any error, then thei oResul t field of
the parameter block and the dr i ver Open bit of thedCt | Fl ags field are cleared, and the
driver and its DCE are unlocked. If the driver returns no errors, then it and the DCE are
unlocked, if allowed. In either case, the result from the driver’s Open routine is put in the
i oResul t field of the parameter block.

That's Great, But What Are You Driving At?

So, of what practical value is al this? If you are trying to provide a nonslot driver that can be
installed at INIT time and used later by other software, the best method for finding a unit
number in the unit table is the way the _Open trap on the Macintosh 11 family finds a unit
number in the unit table for slot device drivers. Unfortunately, you may want to run on other
Macintosh models, and it would be a bit kludgy to fake being a slot device driver, so you
cannot just call _Open and pretend to be aslot device driver. Additionaly, it islikely that you
may wish that the driver’ sQpen routine not be called until it is actually opened with the_Qpen
trap by software that really wants to use it; therefore, your INIT code must mimic the pertinent
code of the _Qpen trap.

Thefirst action should be to call _Get NanmedResour ce with the name of the driver and its
resource type (typically ' DRVR' , athough it is not required, since you are loading it). The
resource that contains your driver must have the system heap bit set in its resource attributes, so
it is loaded into the system heap where it can continue to exist, long after the INIT has gone
away. Note that if for some incredible reason, your driver is greater than 16K, you might want
toincludea' sysz' resourceto increase the available space in the system heap.

Next, you must call _Det achResour ce with the handle to your resource, so it is not
removed when your INIT fileis closed. Now you are ready to find a slot in the unit table for
your driver. First check if unit numbers 48 and higher are even available by checking
UnitNtryCnt.

If Uni t Nt r yCnt is48, you have abit of a problem in that there are no empty slots available
in the unit table. You can rectify this, however, by resizing the unit table. DTS recommends
you accomplish that task by creating anew unit table that is larger than the old one.

To resize the unit table, first create a new, nonrelocatable block in the system heap that is the
new size you want, and clear it to zeros. The following assembly-language code fragment gives
an example:

MOVE. W D1, DO ;DL = requested # slots

MULU. W #4, D0 ;turn it into size

_NewpPt r, SYS, CLEAR ;create clear block in system heap
BNE Error ;check for errors!

Next, you must copy the contents of the old unit table into the new unit table, point
UTabl eBase to the new unit table, and adjust the value of Uni t Nt r yCnt . While doing all
of that, it would be most inconvenient if an interrupt occurred; therefore, you must turn off

8of 17 DV 23 - Driver Education

Devices

Developer Support Center May 1993

interrupts during the process. The following assembly-language code fragment, which would
follow the previous code, gives an example:

MOVE SR - (SP) ;save old interrupt status

R #0700, SR ;disable all maskable interrupts
MOVEA. L A0, Al ;A0 (address new unit table) -> Al
MOVEA. L UTabl eBase, A0 ;old unit table -> AD

MOVE. W UnitNeryOnt, DO ;nunber of entries -> DO

MULU. W #4, DO :size of old table -> DO

_Bl ockMove ;copy old table to new table
_DisposPtr ;get rid of old table

MOVE. L Al, UTabl eBase ;make us new unit table

MOVE. W D1, Uni t NbryOnt ;updat e nunber of entries

MOVE (SP)+, SR ;restore old interrupt status

DTS suggests that if Uni t Nt r yCnt was originally 48, you increase it to 64, adjusting the
table size as shown.

At this point, with the unit table resized or aready at a size to hold more than 48 unit numbers,
it may be searched for an empty dot, starting at unit number 48 and ending atUni t Nt r yCnt .
If, in the case where the unit table already held more than 48 unit numbers, no empty slot was
found, then the unit table might be able to be expanded as was described previously. Thistime,
however, the process can be a bit more complicated.

It could very well be that the unit table itself is already larger than whatUni t Nt r yCnt would
indicate, either because the machine is a Macintosh |1—class machine or somebody else has
changed things ahead of your INIT. The best action to take would beto call_Get Pt r Si ze on
the unit table, divide the result by four, rounding down, and compare that humber to
Uni t Nt ryCnt . If Uni t Nt ryCnt is lower than that result, you can increment
Uni t Nt r yCnt by any amount that keeps it less than or equal to the maximum allowable size
that the unit table can handle. Four is a good number, because it reduces the need for someone
else to do the same check later on without also making the search for a given driver. Once
Uni t Nt r yCnt has been incremented, you know you have an empty slot waiting.

If Uni t Nt r yCnt isalready equal to the size of the unit table divided by four, you should
expand the unit table as described previously, choosing a size around 16 or 32 bytes greater
than the old size. Remember always to check the result of the _NewPt r call; it would be
catastrophic to copy the old unit table into the low-memory global area.

Once you have found a slot for the driver in the unit table, call _Dri ver | nstal | withthe
corresponding r ef numand pointer to the driver. Thiscall creates a DCE for the driver and sets
up the correct r ef numin the DCE. Next, move the handle to the driver into thedCt | Dri ver

field of the DCE, then move the Dr vr FI ags, Dr vr Del ay, Dr vir EMask, and Dr vr Menu
fields of the driver header into thedCt | Fl ags, dCt | Del ay, dCt | EMask, anddCt | Menu
fields of the DCE. Finally, set the dRamBased bitinthedCt | Fl ags field of the DCE.
That'sal thereistoit.

DV 23 - Driver Education 9of 17

Devices

Macintosh Technical Notes

Immediate Asynchronicity

The Read, Wite, Status,and_ Control trapsdiffer from _Open, Cl ose, and
_Ki'l'I'l O inthat arequest can be “queued,” (that is, inserted into awaiting list of requests for
that device driver). This queue allows requests to be saved for processing later if the driver is
busy handling another request. As the device driver finishes servicing each request, the next
request in line is passed to the driver until no more requests remain. Calls made to _Open,
_Close,and _Ki | I I O however, must be handled immediately, so they are never queued.
This behavior isnot a problem with Gpen requests, since there are usually no requests already
gueued. What happens with Cl ose requestsis described later in this Note.

As noted earlier, these traps can be optionally executed immediately, asynchronously, or both.
Normally, when atrap is executed, it means that control should not return to the caller until the
request has been completed. That is, the requested task completely finishes doing whatever was
asked and needs to do no further action. For example, assume a_Read trap is called for a
seria driver. If called normally, control would not return to the caller until a character was
received.

An asynchronously executed trap should return to the caller as soon as possible, even if the
request cannot be completed before returning. In the previous example, if _Read were
executed asynchronously, it would return control as soon as the request was noted rather than
waiting until a character was received. When a character finally was received, thei oResul t

of thegdarameter block would reflect that fact, and any i oConpl et i on routine would be
executed.

When atrap is executed immediately, it means that the request is not queued, but rather sent
immediately to the driver, whether or not it is busy handling another request. Immediate
requests are typically not 1/O-related in nature. If the example call were to have been executed
immediately, it is not clear what the proper response of the driver should be; should it wait until
a character is available, thereby accomplishing the task but violating the concept of
“immediateness,” or if no character is available, should it just return immediately without ever
completing the task? A better use for immediate calls is for checking the status of a driver,
using the _St at us trap. Note that the _Ki | | | Otrap, used for aborting all processes the
driver might be involved in, doesn’t need the immediate bit set. _Ki | | | Ois always executed
immediately.

Note that Inside Macintosh states that it is the caller’s responsibility to know if a driver can
handle a particular call being made immediately.

You Can Feel It When You Drive

When _Read or _W i t e is executed, the Device Manager checks ther ef num If it is not
negative, it is assumed that it is afile reference number and control passes to the file system.
When _St at us is executed, the Device Manager first checksif thecsCode isone (1). If itis,
tﬂen C;ne DCE handleis calculated and returned in thecsPar amfield and control is returned to
thecdler.

Beyond this specia handling, the Device Manager processes Read, Wite, Status and
_Cont rol trapsin much the same way. First, however, it checksif the call wasa _Read or

10 of 17 DV 23 - Driver Education

Devices

Developer Support Center May 1993

Wi te.If it was either of these, then thei oAct Count field of the parameter block is
cleared to indicate that no bytes have been read or written yet.

Next, thei oResul t field of the parameter block is set to one (1) to indicate the call is*“in

progress.” Thei oTr ap field isfilled with the trap word that was executed and theqType is
settoi 0QType, 2. The Device Manager checks to see if the driver is open and if it is capable
of handling the kind of call made. If either of these tests fail, it returns an error. Otherwise, it

checks the “immediate” bit (bit 9) of the trap word, and if set, it goes straight to the code that

calls the appropriate driver routine. If the call was not immediate, the Device Manager checks
the “asynchronous’ bit (bit 10) of the trap word, and if set, it passes control via a BRA to the
code that queues the request and calls the appropriate driver routine. If this bit is clear, the
i oConpl et i on field of the parameter block is cleared and the same codeis called viaaBSR.

On returning from that code, the Device Manager executes aloop (theinfamous_SyncWai t)

that teststhei oResul t field and exitswhen it islessthan or equal to 0.

To further clarify the difference between asynchronous and synchronous calls: by doing aBSR
call in the synchronous case, the Device Manager leaves its return address on the stack, thus
regaining control after the driver routine it called returns. This alows the Device Manager to
keep control, waiting until the call has completed (thei oResul t field becomes nonpositive),
before returning control to the code that executed the Read, Wi te, Status,or

Cont rol trap. In the asynchronous case, no return address is Ieft on the stack therefore
control returns to the code that executed the trap when the driver routine returns. It is very
important to recognize that the Device Manager is doing the work in handling the difference
between asynchronous and synchronous calls. For ailmost every conceivable case, the driver
routine does not have to worry about that difference.

The Device Manager gives control to the driver routine during an asynchronous or synchronous
trap (not an immediate trap) with the following process. It saves the interrupt level, disables
interrupts, and adds the request to the head of the driver’s queue. Next, it checks the
drvr Acti ve bit of thedriver'sdCt | Fl ags field of the device control entry. If thisbit is
set, the driver is busy handling another request. In this case, the Device Manager restores the
interrupt level, exits the code, and returns control to either the code that waits for the
i oResul t field to become less than or equal to O (the synchronous case) or the code that
executed the trap (the asynchronous case). If the dr vr Act i ve bit is not set, the Device
Manager setsit to indicate the driver is busy and the interrupt level is restored.

Thisis now the point at which an immediate call would have entered as well as where the code
continues for synchronous and asynchronous calls. Notice how none of the processing
described in the previous paragraph was done in the case of an immediate call; the request was
not added to the driver queue and no check was made for whether the driver was busy.

At thispoint, if thetrapis_Read or _W i t e, the Device Manager checksthei oByt eCount
field; if itisO, it isassumed that the call is complete and control is passed tol ODone, whichis
described later. In addition, it adjuststhedCt | Posi t i on field to reflect thei oPosMbde and
i oPosO f set valuesin the parameter block.

At this point, the Device Manager checks to make sure the driver is loaded by doing a
LoadResour ce if it finds the driver has been purged. It then locks the driver and calls the
correct routine within the driver by using the offsets given in the driver header.

DV 23 - Driver Education 11 of 17

Devices

Macintosh Technical Notes

Sorry, We're Closed

Whenthe O ose trapiscalled, the first thing the Device Manager doesis check ther ef num
If it isnot negative, it passes control to the file system. Otherwise, it searches the unit table and
checks if the driver is open and exists if it is not. If the driver is open, the Device Manager
waitsin aloop until thedr vr Act i ve bit of thedCt | Fl ags field is clear, indicating the
driver is no longer busy. Once the driver is not busy, the Device Manager calls the driver’s
Cl ose routine. If no error isreturned, the dOpened flag is cleared. If the driver isfor aslot
device, then ther ef numin the Slot Resource Tableis cleared with acall to_SUpdat e SRT.

Note that the device driver is not removed from the unit table, nor is the driver or its device
control entry disposed. To remove a driver and dispose of its device control entry, you must
cal _Drvr Renmove. The driver itself is usually removed by getting purged (it must be
purgeable).

Get Outta the Way, Ya Sunday Driver

The driver’'s Open, Pri me, St at us, Cont r ol , and Cl ose routines are called under
different circumstances and need to respond correctly to these situations.

The routines can be broken into two groups:

Qpen and d ose These routines are called only one way and must be
completed before returning.

Pri me, St at us, and Cont r ol These routines can be called in different ways and might
be able to defer completion of arequest.

Handling Open and Cl ose issimple; you must complete all the processing that is to be done
before returning, and you do so by simply returning with aresult code in register DO.

In the case of Pri me, St at us, and Cont r ol , things get a bit more complicated. If called
with the immediate bit of the trap word set, the routine must compl ete the request and simply
return with register DO containing the result code. If not called with this bit of the trap word set,
the routine should, if possible, complete the request and return viaa JMP to J1 ODone. If the
regquest cannot be completed immediately, the routine should simply return with registerDO set
to noEr r . Since the request cannot be completed immediately, it is implied that some
mechanism is used to indicate deferred completion of the request. This might be through an
interrupt being generated that itself signals the completion of the request, or it might be an
interrupt that allows a periodic function to poll something that would indicate the completion of
the request. Whatever the case, once the request has been completed, the code responsible for
completing it should perform a JMP to J1 ODone with register A1 pointing to the device
control entry for the driver and register DO containing the result code.

12 of 17 DV 23 - Driver Education

Devices

Developer Support Center May 1993

What the Heck Does JIODone Do, Anyway?

J1 ODone is nothing more than a utility provided by the Device Manager for use by device
drivers when they wish to indicate the completion of a queued request. Since it isonly used for
gueued requests, it is inappropriate to use JI ODone in completing Open, Cl ose and
“immediate” Pri me, St at us, and Cont r ol requests.

What JI ODone doesisfirst look at the queue header of the device control entry. It assumes
that the queue header points to the request that is being completed. If it is NI L, it exits
immediately after unlocking the driver, if the driver can be unlocked. Otherwise, the interrupt
level is saved, interrupts are disabled, and the dr vr Act i ve flag is cleared, to indicate the
driver is no longer busy. Then the driver is unlocked, if allowed, the request is removed from

the driver’s queue, and the interrupt level is restored. Next, register DO (the result code) is
stuffed into thei oResul t field of the request, then if a completion routine was specified

(i oConpl eti onisnon-NI L), it gets called. At this point, interrupts are disabled once again,
and if any more requests are pending for the driver, the driver is called again at the point where
the Device Manager checks to see if the driver is busy. If no more requests are pending,

JI CDone restores the interrupt level again and returns.

If you call JI ODone when there is not an appropriate I/0 request pending in the queue, very
strange and mysterious things occur. When debugging difficult device driver bugs, be
absolutely certainthat JI CDone isnot being called inappropriately.

Driving the Point Home
In summary, the following concepts are important to recognize:

1. Sincethe Open routine of adriver isonly called once from the _Open trap, and
when it is called, the parameter block is not attached to a queue, theQpen routine of
the driver should only perform actions such as validating opening the driver and
doing datainitialization. Do not attempt to use the Qpen routine in the capacity of
something likea_Cont r ol cal.

2. Likewise, sincethe Cl ose routine of adriver is caled only once by the _Cl ose
trap, the Cl ose routine should only perform actions that undo the actions of the
Open routine, such as deallocation of data structures, and so on.

3. Read, Wite, Status and_Control all actvery similar with just afew
minor differences. During _Read and Wi t e cdls, thei oAct Count field
automatically gets cleared and thedCt | Posi t i on field gets updated in accordance
with i oPosCOf f set andi oPosMbde. A St at us cal withcsCode = 1
automatically results in the Device Manager returning the device control entry
handle. Other than this difference and the fact that the _Read and _W i t e traps
call thedriver'sPri e routine, the St at us trap callsthe St at us routine, and
the _Contr ol trap callstheCont r ol routine, these traps behave the same.

4. Because the Device Manager takes care of the different processing requirements of
asynchronous and synchronous calls, the Pri me, St at us, and Cont r ol
routines of a driver can ignore the difference and handle both kinds of callsin the

DV 23 - Driver Education 13 of 17

Devices

Macintosh Technical Notes

same way. That is, when the call is completed, jump through JI CDone. If the call
cannot be completed immediately, just return.

5. Because immediate calls to the Pri me, St at us, and Cont r ol routines of a
driver do not have the parameter block added to the head of the queue, you should
not exit to JI ODone when the call is completed, but rather just return.

Crucial References for Writing a Macintosh SCSI Disk Driver

The following is a partia list of specific references that we've found handy for writing SCSI
related drivers. Some of the information enclosed is SCSI specific. Some relates to device
drivers on the Macintosh. Some relates to other system level programming usually found
necessary when writing system level software. Thanks go to Craig Prouse, formerly of DTS,
who compiled the original list on which thislist is based.

SCSI Development Package

This provides a package of written documentation from DTS including full sample code for an
existing driver. Version 1.0 was in assembly language and supported only the old (now
unsupported) partition map format. This version has been available from APDA for quite some
time. Version 2.0 is rewritten mostly in C, and is available in the snippets folder on the
Developer CD Series.

Standards

These official standards, while difficult reading, are indispensable for determining proper
operation of low-level SCSI Manager code. Don't go any further without them.

SCSI-1: ANSI X3.131-1986
CCS: X3T9.2/85-52, 1986 (Revision 4.B)
Scsl-2: ANSW X3.131-1992 (Revision 10h)
SCSl-3: ANSI X3.131-199x

(Available from:
SCSI Bulletin Board System: (719) 574-0424 or (316) 636-8700
anonymous ftp from rex.cs.tulane.edu
SCSI-1 and CCS:
American Nationa Standards Institute
1430 Broadway
New York, NY 10018
SCSI-2 and most other standards:
Global Engineering Documents
2805 McGraw
Irvine, CA 92714
(800) 854-7179 or (714) 261-1455

14 of 17 DV 23 - Driver Education

Devices

Developer Support Center May 1993

Inside Macintosh, Volume |1

Chapter 6

The Device Manager

The developer should be thoroughly familiar with all aspects of this chapter and should begin
by writing a simple device driver shell that can be installed by a system extension. Once thisis
accomplished the desired specific features may be implemented.

Chapter 11

The Verticd Retrace Manager

Drivers supporting removable mediaas arule use aVBL task to occasionally poll the deviceto
check for adisk insertion. If adisk insertion is sensed, then the driver calls PostEvent to notify
the Finder or Standard File. There is more, and better information about VBL tasks as well.
The best example of how to write a VBL is in MultiFinder Tech Note #180. There is
supplementa information on VBLsisin the Time Manager chapter of Inside Macintosh Volume
VI, and there are virtual memory considerations for VBLsin Tech Note #285.

Inside Macintosh, Volume 1V

Chapter 19

The File Manager

Interestingly enough, one does not need a great deal of familiarity with HFS in order to write a
disk driver. Nevertheless, it can’t hurt to be familiar with this chapter. There is one poorly
documented fact that bears mentioning here: HFS always calls the disk driver with a drive
number in the vRefNum field of the parameter block. It does not pass an actual vRefNum to the
driver.

Chapter 20

The Device Manager

With the Mac Plus and later, the unit table expanded to accommodate SCSI drivers. There are
reserved slots in the unit table for SCSI devices and these unit numbers have a simple
correspondence to their reserved SCSI IDs. This is documented only very briefly. Blink and
you'll missit. Thedriver for SCSI ID n must be installed at unit number (32+n). Do not install
it anywhere else or other drivers may not recognize your existence and this can lead to
conflicts.

Chapter 31

SCSI Manager

Most of the basic information here is still valid, but there are a couple of caveats. First, the
SCSIStat call returns hardware information about the 5380 SCSI chip. Newer Macintoshes
may not use the 5380 and SCSIStat may therefore not return the type of information that’s
documented here. See the “Fear No SCSI” tech note for more details. Also, the Device
Partition Map documented on page 292 is no longer supported. Refer to Inside Macintosh
Volume V for later information. The old format may be supported optionally but is not
required. The new partition map format is required.

Inside Macintosh, Volume V

Chapter 31

SCSI Manager

Inside Macintosh Volume V defines the new partition map structure that is required of all new
drivers. It also gives good documentation on the polled vs. the blind SCSI transfer modes.

DV 23 - Driver Education 15 of 17

Devices

Macintosh Technical Notes

Inside Macintosh, Volume VI

Chapter 23

Time Manager

This chapter provides just a bit more documentation on VBLS and perhaps offers a few
alternatives.

Chapter 28

Memory Management

This is the chapter that finally explains A5 and virtual memory. It is extremely important for
SCSI driver developers to understand at least how virtual memory works, and for removable
drives, also how to work with A5.

Guide to the Macintosh Family Hardware

Chapter 9

The SCSI Manager

This chapter gives the definitive description of polled vs. blind transfer modes for those who
are curious and really want to understand what’ s going on in hardware and why blink modeis
so much faster.

Macintosh Technical Notes

DV 5 - Drive Queue Elements

This Tech Note contains an explanation of the drive queue and example code for how to add a
drive to the queue. For drives containing multiple partitions, it's mostly a matter of searching

beyond the first valid HFS partition in the partition map and adding more than one drive to the
drive queue. Where it gets difficult is when a single driver then has to provide control for all of
those mounted volumes.

DV 6 - Finding Driversin the Unit Table

The key to avoiding conflicts between different driversinstalled in the same system is giving

drivers the ability to sense the presence of other drivers when installing. For example, if a
driver is stored on a removable cartridge and loads at system boot time, then the driver in the

Extensions folder would not be necessary. That driver should be able to see that thereis already
adriver installed in its unit table slot and it should not install over the existing driver. Other

similar situations are possible. Tech Note #71 gives some ideas about how drivers can become
aware of other drivers by searching the unit table. Use this information in conjunction with the
information in Chapter 20 of Inside Macintosh Volume V.

DV 2-_AddDrive, Drvringtal, and _DrvrRemove

The most reliable way to install a driver, particularly a SCSI driver that is not stored as a
resource and the unit number for which must be determined at runtime, isto do it manually.

Rather than depending on OpenDriver, load the resource into the system heap explicitly. Call

_Drvrinstall to allocate its Device Control Entry and fill out the DCE by hand, setting up al the
pointers yourself. It's not as difficult as it sounds, it’sreliable, and DTS provides full sample
code showing how to do it. See the SCSI Development Package.

TB 35 - MultiFinder Miscellanea
Somehow, the best example of how to writea VBL is hidden in a MultiFinder Tech Note.

16 of 17 DV 23 - Driver Education

Devices

Developer Support Center May 1993

FL 24 - Don't Look at ioPosOffset

Thisisavery short and concise Tech Note that helps explain what to do in one very small but
very confusing part of your device driver, where read and write calls are converted into logical
block addresses for SCSI. Don’t miss this one, and see the example code as well.

ME 9 - Coping With VM and Memory Mappings

Because virtual memory depends on the SCSI busto perform paging, SCSI driver writers must
understand how virtual memory and the SCSI manager interact. Virtual memory also affects
how VBLSs are run, which may affect everything from checking for disk insertions, to
displaying progress indicators during disk formatting.

DV 24 - Fear No SCSI

This excellent tech note by Colleen Delgadillo includes answers to frequently asked SCSI
guestions; a sample of how to call the SCSI manager; information about differences between
the Quadra class machines and their new SCSI chip; and other valuable new information about
the SCSI manager. As Colleen says, “the target controls the bus.”

Further Reference:
* Inside Macintosh, Volumes|l, IV, and V, The Device Manager
Inside Macintosh, Volume |, The Desk Manager
Technical Note DV 6 - Finding Driversin the Unit Table
Technical Note DV 2 - _AddDrive, Drvringtall, and _DrvrRemove

NuBus s atrademark of Texas Instruments.

DV 23 - Driver Education 17 of 17

Devices

	CaveatÑ Low Memory and System Data Structures
	Driven to Tears
	Routine Maintenance
	What the Glue Do
	Yes, WeÕre Open
	ThatÕs Great, But What Are You Driving At?
	Immediate Asynchronicity
	You Can Feel It When You Drive
	Sorry, WeÕre Closed
	Get Outta the Way, Ya Sunday Driver
	What the Heck Does JIODone Do, Anyway?
	Driving the Point Home
	Crucial References for Writing a Macintosh SCSI Disk Driver

