
Note: This is a preliminary first draft version of this document. Portions may
be missing or subject to change in the future. This document is intended as a
starting point for developers who wish to work developing clients or servers for
this protocol. Developers who are not interested in either of these two areas can
ignore this document.

Direct questions and comments concerning this document to: DEVSUPPORT

Apple Printer Sharing Protocol Description
This document is a specification for the Apple Printer Sharing Protocol (APSP) Version 1.0.
APSP is a server/client connection-based stream used for sending documents to print servers.
APSP is intended for use on Macintosh computer using the AppleTalk Data Stream Protocol
(ADSP) transport. However, the protocol was designed with portability in mind. APSP requires
only that the underlying transport guarantee point-to-point connections, reliable delivery, and
correctly ordered messages. Implementing APSP over a non-ADSP transport, or even in a non-
Macintosh environment, should not prove difficult.

The protocol exchange consists of transaction queries and responses, and bulk data transfer.
APSP is best implemented using two channels, one for transactions and one for bulk data
exchange. The description for each message describes the input and output parameters, possible
errors, and the effects of the given message for the client and server.

Data Types

The following definitions are used to describe call parameters:

char 1-byte quantity (Macintosh character)
short a 2-byte quantity
long a 4-byte quantity
boolean a short, TRUE if 1 (one), FALSE if 0 (zero)
bitfield one or more unsigned shorts
Str31 length char, 0 to 31 char’s (max 32 bytes)
Str32 length char, 0 to 32 char’s (max 33 bytes)
Intl31 script word, length byte, 0 to 31 char’s (max 34 bytes)
DESBlock 32-byte unsigned quantity

Protocol Conventions

APSP uses the following conventions:

• All integral types are signed values unless otherwise indicated.

• Bit and bytes are ordered as per the MC680x0 processor family.

• All strings use the Macintosh Extended ASCII character set and the Macintosh
international script code(s).

• All variable-length parameters (i.e. strings) are null padded to a word boundary.

Apple Printer Sharing Protocol

Decmeber 4, 1992 Preliminary GX Documentation Page 1

In particular, NULL strings are two-byte quantities: a length byte of zero, followed
by a NULL pad byte. The length field of the message will include the pad byte(s),
though the string length byte will not.

• Response packets with non-zero error codes do not contain any additional
parameters, unless otherwise noted.

Transaction Message Format

APSP conceptually uses two channels: a transaction channel, and a data channel. The transaction
channel is designed for request/response messages, and is used mainly for session control and
status. Figure 1 shows the format for a transaction message.

Command

Result

Length

Version

data…

16 bits

Figure 1. Transaction Message Format

The header portion of the message contains:

• APSP Command code (short)

• APSP Version code (short). An APSP version is actually two packed bytes. The
ms byte is the major version; the ls byte is the minor version. Ex: 0x0103 is
version 1.3. This document describes version 1.0 (0x0100).

• Message Length (short). Number of bytes in the message including the header,
i.e. 8 + data length.

• Result code (short). This field is ignored for requests.

The data portion of the message contains transaction-specific parameters. See the message
descriptions below. Only one transaction can be outstanding at a given moment. Any client
request after the first will be ignored by the server.

Note that this implies a one-transaction limit for the client API. A transaction is started when the
client makes a request. The transaction is completed when the client receives a reply, or the
transaction is aborted.

Data Message Format

The data channel is used for transferring bulk data (print jobs and job format negotiation). Figure
2 shows the format for a data message.

Apple Printer Sharing Protocol

Decmeber 4, 1992 Preliminary GX Documentation Page 2

Command

Result

Length

parameters…

16 bits

Count

Figure 2. Data Message Format

The header portion of the message contains:

• APSP Command code (short)

• APSP Result code (short)

• Parameter count (long)

• Message Length (long). Number of bytes in the message including the header,
i.e. 12 + data length.

The parameter portion of the data message contains a list of parameters. Each parameter has a
format given by Figure 3.

Length

Name…

16 bits

Label

ID

null pad

data…

null pad

length

Figure 3. Paramater Format

Each parameter contains:

• parameter label (unsigned long)

• parameter ID (long)

Apple Printer Sharing Protocol

Decmeber 4, 1992 Preliminary GX Documentation Page 3

• parameter length (long) number of bytes in the parameter including the parameter header,
i.e. 12 + name length (+ pad) + data length (+ pad)

• parameter name (Str255, null padded to word boundary)

• parameter data (arbitrary bytes, null padded to word boundary)

A complete description of the data messages can be found in Bulk Data Formats (see below).

APSP Over ADSP

APSP is designed to operate over ADSP. Transaction messages are sent and received via the
Attention Channel. Data messages are sent and received over the Data Channel. All transactions
are sent as attention packets, with the attention code set to the APSP message command number

ADSP limits a single attention message to 570 bytes. When sending an APSP message that is
longer than 512 bytes of data, the sending side will set the result code to psNotDone, indicating
that the message is larger than a single ADSP attention packet, and the receiver should expect more
packets. The sender will set the APSP result code of the last packet to something other than
psNotDone when the entire message has been sent. In other words, an n-packet message will have
n-1 packets with a result code of psNotDone, and the last packet will have the actual result code.
The header data is the same for each packet (with the exception of the result code). The message
data can be split into packets of any size up to 512 bytes, as long as all bytes of the message are
delievered in sequence.

Data packet ends are marked by the ADSP EOM flag, as well as the message length field. In some
of the data packets, the message length field is filled with psNoLength (-1) indicating that the
length of a particular packet or parameter is unknown. In this case, the server or client would need
to parse the data by walking the parameters to determine the length, or rely on the EOM bit to mark
the end of the packet. Notice that in the Macintosh implementation, packets which use the
psNoLength value are required to set the EOM bit to mark the end of the packets.

APSP Over Other Transports

Other transports may be used so long as the transport guarantees reliable delivery and correctly-
ordered messages. The APSP implementation must adhere to all APSP specifications, even if the
transport does not impose the same restrictions as ADSP (i.e. only one outstanding transaction).
Note that APSP “transaction” and “data” channels are conceptual entities. A single channel
implementation is feasible assuming the client and server have someway to distinguish between
transactions and data messages. Other implementations may provide out-of-band data to
coordinate multiplexing transaction and data packet streams.

Magic Cookies

APSP tries to minimize bandwidth usage by using tags called magic cookies. A magic cookie is
guaranteed to change uniquely when the data it represents changes. The server uses the tag to
determine if a client has the most recent information. A server may return a special value meaning
“no change” for certain requests.

For example, suppose a client requests the name of the currently printing document. The server
would reply with the name and a magic cookie. The client includes the magic cookie the next

Apple Printer Sharing Protocol

Decmeber 4, 1992 Preliminary GX Documentation Page 4

time it requests the current document’s name. The server can then compare magic cookies and
respond with “no change” if the same document is still printing, or the name of the new document
(and a new magic cookie).

A magic cookie is respresented as a 32-bit signed quantity. A magic cookie of 0 is never
considered to be current; i.e., a client can send a magic cookie of 0 to force the server to respond.
The value of -1 indicates that the server does not support magic cookies for that item.

To Image Or Spool?

Before transferring a job to a server for printing, the server and client must agree on the job format.
Specifically, the client and server must decide whether the client should send a spool file or an
image file. Determining when to remote image and spool is a complex process (referred to as “the
negotiation”). The following set of rules should determine when to locally or remotely image:

1) Does the client request to send an image job?
If yes, remote spooling, if no, continue.

2) Does the server request only an image job because of any of the following reasons?
• version mismatches (server version < client version)
• machine type mismatch (server machine is much slower than client)
• server is set up to only handle image jobs
If yes, remote spooling, if no, continue.

3) Did the server request any needed fonts or extensions?
If no, remote imaging, if yes, continue.

4) Can the fonts be sent?
If yes, send and remote image, if no, continue.

5) Are the fonts and PerMods required?
If yes, inform user of error, if no, warn user and continue.

Bulk Data Formats

Job format negotiation and submission take place on the data channel. APSP uses five data
messages: Requirements, NeedResources, Spool, Resources, and Image. All five have the same
format, given in Figures 2 and 3 above. If the job is being locally imaged, job transfer can begin
immediately using Image messages with ‘imag’ parameters.

If the job is being imaged remotely, the client sends the server a list of required resources (fonts
and printing extensions) using one Requirements messages with ‘font’ and ‘ext ’ parameters. The
client sends one parameter for all of the fonts, and another for all of the printing extensions needed
to image the job. The server responds by sending one or more NeedResources message, detailing
the required resources that the client must supply, i.e. a font which the job uses that is not installed
on the server. The client then has the option of supplying the resource(s) in one or more Resource
messages, imaging the job locally and sending an image job, or cancelling the job transmission.
The server assumes that the client will be responsible for sending the needed resources, or imaging
the job in such a way as to not require them.

Parameters of Bulk Data Packets

Here are a description of the parameters used within these data messages, listed as type, ID, and
name. In addition, each one has an indication of where it is considered legal to use, and what it
means.

Apple Printer Sharing Protocol

Decmeber 4, 1992 Preliminary GX Documentation Page 5

‘spol’ (0, “”)— this data is in the form of a series of flattened pictures, one per page. This is the
same data format as the data fork of a disk spool file in GX. Expected to be first parameter in
packets of type psSpool. You must supply either this parameter, or ‘imag’ when sending a
psSpool packet.

‘imag’ (0, “”)— this data is driver specific, but consists of a standard header, plus standard tagged
image format consisting of tag (long), length (long), data (variable). A series of these will be
placed together to define data for the printer, page boundaries, and printer queries. The Image File
Format will be discussed further in another document. Expected to be the first parameter in
packets of the type psSpool. You must supply either this parameter, or ‘spol’ when sending a
psSpool packet.

‘font’ (0, “”) — a series of required (or missing) font names, in the form of Pascal strings
appended together. Legal only in psRequirements and psNeedResources packets.

‘ext ’ (0, “”) — printing extension information in the form of:
OSType creatorType; // type of the extension
long version; // version of the extension
long flags; // flags (where to use) for the extension

per extension. Legal only in psRequirements and psNeedResources packets.

‘XXXX’ (ID, NAME) — any Macintosh resource, sent to be placed into the resource fork. Legal
only in packets of type psResources.

Expected use of data packets

After receiving a “noErr” from a SendJob request, the server and the client are expected to be in the
process of sending a file. This sending takes place entirely with the use of data packets and
proceeds as follows.

1) Client sends the server a packet of type psRequirements.
2) Server replies with a packet of type psNeedResources.
3) Client sends to the server one of the following:

• A psSpool packet consisting of ‘spol’ data. Following should be a psResources packet
containing the resource fork of the spool file, plus any additional fonts needed by the file.

• A psSpool packet consisting of ‘imag’ data. Following should be a psResources packet
containing the ‘job ’ and ‘frmt’ resources.

• an AbortJob message
4) Assuming the job has not yet been aborted, the server then sends the client a packet of type

psSpool with no parameters, containing a final error code for the transmission.

Security Model

APSP security is made up of three components: user class, authentication type, and access rights.
User classes allow the server administrator to provide the users with access to a subset of the
server functionality. The server uses authentication types to verify that the client’s user class.
Access rights determine the services provided to the authenticated client.

User Class

Apple Printer Sharing Protocol

Decmeber 4, 1992 Preliminary GX Documentation Page 6

APSP supports five classes of user:

Guest
Anonymous client. No password is required.

Zone Guest
Anonymous client located in the server's local zone. No password is required.

User
A client presenting a user name. A password may be required.

Group
A client presenting a user name enumerated in a group of users registered for the server. A
password may be required.

Administrator
A client presenting the user name designated as the administrator for the server. A password may
be required. This user has by definition all privileges. An APSP server is not required to
designate an Administrator.

Authentication Type

PrinterShare supports six types of authentication:

uamGuest
Guest access. No verification is performed by the server.

uamZoneGuest
Zone membership. The server verifies the client’s zone membership.

uamNoPassword
User name, no password. Treated as uamGuest + uamZoneGuest.

uamClearText
User name, password in clear text.

uamRandNum
User name, password encrypted using AppleShare DES. Passwords are null-padded to 31
characters before encryption or decryption, making the key and data 32 bytes long.

uamTwoWay
User name, password encrypted using AppleShare DES, server validation. Passwords are null-
padded to 31 characters before encryption or decryption, making the key and data 32 bytes long.

Access Rights

APSP access rights determine what level of access of client has to server resources:

privNone client has no priveleges
privConnect client may connect to the server
privChangePassword client may change user’s password

Apple Printer Sharing Protocol

Decmeber 4, 1992 Preliminary GX Documentation Page 7

privSendJob client may submit jobs

privGetOwnJobInfo client may request information about user jobs
privSetOwnJobInfo client may change information about user jobs
privDeleteOwnJob client may delete user jobs

privGetGroupJobInfo client may request information about group jobs
privSetGroupJobInfo client may change information about group jobs
privDeleteGroupJob client may delete group jobs

privGetOtherJobInfo client may request information about other jobs
privSetOtherJobInfo client may change information about other jobs
privDeleteOtherJob client may delete other jobs

privSetQueueState client may change queue state (start/stop printing)

Note: User job is any job the user (client with the same user name) has submitted. Group job is
any job submitted by a member of the user’s group(s). Other job is any job submitted neither by
the user, nor by a member of the user’s group(s).

How Security Works

A client must choose one of the six authentication types (authTypes) when submitting an
Authenticate request to an APSP server. The authTypes above are ordered in “increasing” security,
judged by the amount of work the server and client must do to complete the authentication process.

For example, a client requesting guest access requires no additional information, and no verification
on the part of the server. A client requesting group access must present a user name and password,
and the server is required to verify that the password is valid and the user is a member of a valid
group.

The authType is an indication to the server as to the user class of the client. The client could belong
to more than one class (registered user and zone guest, for instance). The server must determine
all possible client user classes given the client’s authType.

Access rights are assigned to each user class. The server will grant all access rights defined for the
client’s user class(es). In other words, a client that is identified as both a guest (any user) and a
zone guest (any user in the same zone as the server) will be granted access rights for both guest
and zone guest.

The section below describes how the server determines a user class based on the client’s authType,
and notes which access rights are granted to an authenticated client.

uamGuest
If the server supports guest access, return guest access rights. If not, return “no guests.”

uamZoneGuest
If the server does not support zone guests, return “no zone guests.” If the server supports zone
guests and the client is in the server’s local zone, return zone + guest access rights. If not, return
“wrong zone.”

uamNoPassword
Treat as uamZoneGuest + uamGuest, except the client must specify a user name. Note that the
server is not required to verify that the user is who she says she is. Clients may use this authType

Apple Printer Sharing Protocol

Decmeber 4, 1992 Preliminary GX Documentation Page 8

to avoid requesting a password every time the user wishes to access the server.

uamClearText, uamRandNum, uamTwoWay
The server authenticates the client in several steps:

Defined Valid Registered Registered Local
User Password User Group Zone

Case 1 N * * * * reject: no such user

Case 2 Y N * * * reject: bad password

Case 3 Y Y N N * treat as uamNoPassword; reject: no such user

Case 4 Y Y N Y N return group + guest

Case 5 Y Y N Y Y return group + zone + guest

Case 6 Y Y Y N N return user + guest

Case 7 Y Y Y N Y return user + zone + guest

Case 8 Y Y Y Y N return user + group + guest

Case 9 Y Y Y Y Y return user + group + zone + guest

Notes:
Defined User - user exists, but is not explicitly configured for access
Registered User - user exists, and is explicitly configured for access
Registered Group - group of Defined Users
Local Zone - the client is located in the server’s local zone

Apple Printer Sharing Protocol

Decmeber 4, 1992 Preliminary GX Documentation Page 9

CloseSession

The client advises the server that it wishes to gracefully terminate the session. The session will not
be closed if the session is still “busy.” A session is considered busy if a SendJob call is in
progress (see below).

Required Priveleges
privNone

Request Parameters
none

Response Parameters
none

Result Codes
psNoErr request completed normally
psShutDown server is shutting down
psSnafu server exploded with happiness; please try again
psServerBusy server cannot service request now; try again later
psSessInUse session is in use and can’t be closed

Algorithm
The connection is closed by the server and client at the end of receipt of the reply. It is an error to
transmit either data or transactions after positive acknowledgement of a CloseSession.

Message Format

16 bits

Request

CloseSession

Length

0

Version

16 bits

Response

CloseSessionReply

Version

Result

Length

Apple Printer Sharing Protocol

Decmeber 4, 1992 Preliminary GX Documentation Page 10

Authenticate

The client wishes to authenticate itself to the server, and thereby gain any special access rights
configured for the user.

Required Priveleges
privNone

Request Parameters
uam which UAM to use [unsigned long]
userName user name [Str31]
password user password [Str31]
nbpName client registered NBP name [Str32]
nbpType client registered NBP type [Str32]

Response Parameters
privs client priveleges after authentication [unsigned long]
authID authentication ID, used by Validate [long]
randNum random number, used by Validate [DESBlock]

Result Codes
psNoErr request completed normally
psShutDown server is shutting down
psSnafu server exploded with happiness; please try again
psServerBusy server cannot service request now; try again later
psBadUAM server doesn’t grok this UAM type
psBadParm userName, password, nbpName, nbpType length is invalid
psNoGuest guest access not allowed
psNoZoneGuest zone guest access not allowed
psWrongZone client is not in server’s local zone
psNoSuchUser userName is unknown
psBadPswd password is wrong
psNotYet client must submit a Validate request (see below)

Algorithm
The authentication process is described under Security Model above. A client may authenticate a
session at any time. A client may authenticate as many times as desired. The authentication
process may cause a client’s access rights to increase or decrease, depending on the server
configuration and the UAM. All request parameters are required to be present, even if they are not
used for the particular UAM requested by the client. Unused parameters should be set to NULL:

uamGuest – null userName, password, nbpName, nbpType
uamZoneGuest – null userName, password
uamNoPassword – null password
uamClearText – (optional) null nbpName, nbpType
uamRandNum – (optional) null nbpName, nbpType
uamTwoWay – (optional) null nbpName, nbpType

The authID and randNum parameters will only be returned for uamRandNum and uamTwoWay, in
which case the response result code will be psNotYet, and privs will be set to privNone.

Apple Printer Sharing Protocol

Decmeber 4, 1992 Preliminary GX Documentation Page 11

Message Format

16 bits

Response

AuthenticateReply

Version

Result

Length

AuthID

Privs

RandNum

16 bits

Request

Authenticate

Length

0

Version

UAM

UserName…

null pad

Password…

null pad

NBPName…

null pad

NBPType…

null pad

length

length

length

length

Apple Printer Sharing Protocol

Decmeber 4, 1992 Preliminary GX Documentation Page 12

Validate

A server may request a client to validate an authentication request by presenting password
credentials.

Required Priveleges
privNone

Request Parameters
authID ID number returned by Authenticate response [long]
encryptedPass random number encrypted with client password [DESBlock]
randNum random number [DESBlock]

Response Parameters
authID ID number returned by Authenticate response [long]
encryptedPass client password, encrypted [DESBlock]

Result Codes
psNoErr request completed normally
psShutDown server is shutting down
psSnafu server exploded with happiness; please try again
psServerBusy server cannot service request now; try again later
psNoAuthInProg Validate without prior Authenticate
psBadAuthID authID is invalid
psBadParm required parameter missing
psBadPswd password is wrong
psNotYet user must submit a(nother) Validate request

Algorithm
Certain UAMs (Random Number Exchange, and Two-Way Scrambled) require the server to
validate the client before authnticating the session. The client encrypts the random number returned
by the server in Authenticate using the client’s password (Str31 null-padded to 31 characters) as the
encryption key. The client sends the encrypted random number along with the authID returned by
the server in Authenticate. For Two-Way Scrambling, the client may also request the server
validate itself by sending an additional random number, which the server encrypts using the client
password and returns in the Validate Response. If the client determines that the server is not valid
(i.e. does not know the client’s password) the client must initiate a CloseSession. Note that future
authentication schemes may require several Validate transactions before authenticating the session.

Apple Printer Sharing Protocol

Decmeber 4, 1992 Preliminary GX Documentation Page 13

Message Format

16 bits

Request

Validate

Length

0

Version

AuthID

EncryptedPswd

RandNum

16 bits

Response

ValidateReply

Version

Result

Length

AuthID

Privs

EncryptedPswd

Apple Printer Sharing Protocol

Decmeber 4, 1992 Preliminary GX Documentation Page 14

ChangePassword

Request the server to change the password for a given user. This message does not require the
client session to be authenticated. The required priveleges are determined based on the request
parameters sent by the client.

Required Priveleges
privChangePassword

Request Parameters
UAM which UAM to use [unsigned long]
userName username [Str31]
oldPassword old password [Str31]
newPassword new password [Str31]

Response Parameters
none

Result Codes
psNoErr request completed normally
psShutDown server is shutting down
psSnafu server exploded with happiness; please try again
psServerBusy server cannot service request now; try again later
psBadUAM server doesn’t grok this UAM type
psBadParm userName, oldPassword, newPassword length is invalid
psNoPriv no privelege for attempted operation
psBadPswd oldPassword is wrong

Algorithm
If the UAM is uamClearText, the client sends the server its user name plus its old and new
passwords in clear text. The server looks up the password for that user, if it matches the
oldPassword parameter, the newPassword will be saved for that user.

If the UAM is uamRandNum, the client sends the server its user name, the user’s old password
DES encrypted using newPassword as the key, and the user’s new password DES encrypted using
oldPassword as the key. Both passwords are Str31’s null-padded to 31 characters. The server
looks up the password for that user, uses that password as the key to decrypt the new password,
and uses that result as a key to decrypt the old password. If the final result matches the server’s
copy of the old password, then the new password will be saved for that user.

All other UAMs are considered to be invalid (i.e., will return a psBadUAM result code).

Notes
The granting of the ability to change a password is an administrative function and is outside the
scope of this protocol specification. Servers may optionally choose not to implement this function.

Apple Printer Sharing Protocol

Decmeber 4, 1992 Preliminary GX Documentation Page 15

Message Format

16 bits

Response

ChangePasswordReply

Version

Result

Length

16 bits

Request

ChangePassword

Length

0

Version

UAM

UserName…

null pad

OldPassword…

null pad

NewPassword…

null pad

length

length

length

Apple Printer Sharing Protocol

Decmeber 4, 1992 Preliminary GX Documentation Page 16

SendJob

This request comes from the client to request the transmission of a job to the ImageStation.

Required Priveleges
privSendJob

Request Parameters
imageLocally client wishes to send an image job [boolean]
driverVersion driver version to use [long]
tackleboxVers version of Print Manager]long]
machineType client machine ID (Gestalt) [long]

Response Parameters
imageLocally client should send image job [boolean]
queueID identity of queue [long]
deviceID identity of device [long]
jobID identity of job [long]

Result Codes
psNoErr request completed normally
psShutDown server is shutting down
psSnafu server exploded with happiness; please try again
psServerBusy server cannot service request now; try again later
psNoPriv no privelege for attempted operation

Algorithm
This protocol command starts the transmission of a job. The server returns to a jobID for use in
future packets concerning this job.

If the result code is noErr, the client may begin Job Negotiation as described above. The jobID
should be used for any requests (like GetJobInfo) the client may make concerning the job. If the
server returns “noErr” from this call, it expects the client to begin the sending of data packets,
begining with psRequirements.

Message Format

16 bits

Request

SendJob

Length

0

Version

DriverVersion

TackleboxVersion

ImageLocally

MachineType

16 bits

Response

SendJobReply

Version

Result

Length

QueueID

DeviceID

JobID

ImageLocally

Apple Printer Sharing Protocol

Decmeber 4, 1992 Preliminary GX Documentation Page 17

AbortJob

This packet is sent by the client to the server to indicate that the current job transmission will be
stopped. Any portion of the file that was received will be deleted.

Required Priveleges
privSendJob

Request Parameters
queueID identity of queue [long]
deviceID identity of device [long]
jobID identity of job [long]

Response Parameters
queueID identity of queue [long]
deviceID identity of device [long]
jobID identity of job [long]

Result Codes
psNoErr request completed normally
psShutDown server is shutting down
psSnafu server exploded with happiness; please try again
psServerBusy server cannot service request now; try again later
psNoPriv no privelege for attempted operation
psBadQueueID no such queue
psBadDeviceID no such device
psBadJobID no such job

Algorithm
This protocol command stops the reception of the current job. The server is returned to the idle
state and awaits the next command. All traces of the job are removed. The data channel is freed
for both client and server.

Message Format

16 bits

Request

AbortJob

Length

0

Version

QueueID

DeviceID

JobID

16 bits

Response

AbortJobReply

Version

Result

Length

QueueID

DeviceID

JobID

Apple Printer Sharing Protocol

Decmeber 4, 1992 Preliminary GX Documentation Page 18

DeleteJob

The client sends this message when attempting to delete a pending (queued) job file.

Required Priveleges
privDeleteOwnJob | privDeleteGroupJob | privDeleteOtherJob

Request Parameters
queueID identity of queue [long]
deviceID identity of device [long]
jobID identity of job [long]

Response Parameters
queueID identity of queue [long]
deviceID identity of device [long]
jobID identity of job [long]

Result Codes
psNoErr request completed normally
psShutDown server is shutting down
psSnafu server exploded with happiness; please try again
psServerBusy server cannot service request now; try again later
psNoPriv no privelege for attempted operation
psBadQueueID no such queue
psBadDeviceID no such device
psBadJobID no such job

Algorithm
The server will remove the pending job from the queue. If the job is currently printing, the job is
aborted as if an AbortJob call (see above) had been made. The job and all information pertaining to
it is removed from the server system. It is an error to request information about a job that has been
deleted.

Message Format

16 bits

Request

DeleteJob

Length

0

Version

QueueID

DeviceID

JobID

16 bits

Response

DeleteJobReply

Version

Result

Length

QueueID

DeviceID

JobID

Apple Printer Sharing Protocol

Decmeber 4, 1992 Preliminary GX Documentation Page 19

GetServerInfo

Request general information about the print server configuration.

Required Priveleges
privNone

Request Parameters
magicCookie ServerInfo tag [long]

Response Parameters
magicCookie ServerInfo tag [long]
flags psPassword, psMagicCookies [unsigned short]
versionCount number of APSP versions [short]
versions APSP version(s) server supports [array of short]
uamCount number of UAMs [short]
uams UAM(s) supported by server [array of long]
serverName server name [IntlStr31]

Result Codes
psNoErr request completed normally
psShutDown server is shutting down
psSnafu server exploded with happiness; please try again
psServerBusy server cannot service request now; try again later
psNoInfo server info not available
psNoChange data has not changed since last request

Algorithm
This call returns information about the server in the form of an information block. If the server
supports magic cookies, the server may elect to send a psNoChange result code, indicating that the
data has not changed since the last request. The psNoInfo result code should be returned if the
server cannot complete the request because one or more of the return parameters are unavailable.
Non-Macintosh servers should use zero (0) for the script code of the server name. The server
flags bitfield describes whether the server supports the ChangePassword command, and whether
the server supports magic cookies. A server implementation is not required to support magic
cookies. All other flags are reserved, and should be set to zero (0).

Apple Printer Sharing Protocol

Decmeber 4, 1992 Preliminary GX Documentation Page 20

Message Format

16 bits

Request

GetServerInfo

Length

0

Version

MagicCookie

16 bits

Response

GetServerInfoReply

Version

Result

Length

MagicCookie

Flags

VersionCount

Versions…

UAMCount

UAMs…

ScriptCode

Name…

null pad

length

ServerName

Change Password

Magic Cookies

Server Flags

Apple Printer Sharing Protocol

Decmeber 4, 1992 Preliminary GX Documentation Page 21

GetQueueList

This returns the list of queues for the server.

Required Priveleges
privNone

Request Parameters
magicCookie QueueList tag [long]

Response Parameters
magicCookie QueueList tag [long]
idCount number of queue IDs [short]
queueIDs queue IDs [array of long]

Result Codes
psNoErr request completed normally
psShutDown server is shutting down
psSnafu server exploded with happiness; please try again
psServerBusy server cannot service request now; try again later
psNoChange data has not changed since last request

Algorithm
The client requests the list of queueIDs for configured queues. If the server supports magic
cookies, the server may elect to send a psNoChange result code, indicating that the data has not
changed since the last request.

Message Format

16 bits

Request

GetQueueList

Length

0

Version

MagicCookie

16 bits

Response

GetQueueListReply

Version

Result

Length

MagicCookie

QueueIDs...

IDCount

Apple Printer Sharing Protocol

Decmeber 4, 1992 Preliminary GX Documentation Page 22

GetQueueInfo

This returns information about queues for the server.

This command is not supported in Version 1.0 of the protocol; it is provided merely for
completeness’ sake. See Future Directions below for more information.

Required Priveleges
privNone

Request Parameters
queueID queueID to return info for [long]
magicCookie QueueInfo tag [long]

Response Parameters
queueID queueID to return info for [long]
magicCookie QueueInfo tag [long]
queueInfo queue information [TBD]

Result Codes
psNoErr request completed normally
psShutDown server is shutting down
psSnafu server exploded with happiness; please try again
psServerBusy server cannot service request now; try again later
psNoChange data has not changed since last request
psNoInfo no queue info available
psBadQueueID no such queue

Algorithm
Return a block of information describing the queue.

Message Format

16 bits

Request

GetQueueInfo

Length

0

Version

QueueID

MagicCookie

16 bits

Response

GetQueueInfoReply

Version

Result

Length

QueueID

queueInfo...

MagicCookie

Apple Printer Sharing Protocol

Decmeber 4, 1992 Preliminary GX Documentation Page 23

SetQueueInfo

This changes information about queues for the server.

This command is not suypported in Version 1.0 of the protocol; it is provided merely for
completeness’ sake. See Future Directions below for more information.

Required Priveleges
privSetQueueInfo

Request Parameters
queueID queueID to return info for [long]
magicCookie QueueInfo tag [long]
queueInfo queue information [TBD]

Response Parameters
queueID queueID to return info for [long]
magicCookie QueueInfo tag [long]

Result Codes
psNoErr request completed normally
psShutDown server is shutting down
psSnafu server exploded with happiness; please try again
psServerBusy server cannot service request now; try again later
psBadQueueID no such queue
psNoPriv no privelege for attempted operation

Algorithm
Return a block of information describing the queue.

Message Format

16 bits

Request

SetQueueInfo

Length

0

Version

QueueID

MagicCookie

queueInfo...

16 bits

Response

SetQueueInfoReply

Version

Result

Length

QueueID

MagicCookie

Apple Printer Sharing Protocol

Decmeber 4, 1992 Preliminary GX Documentation Page 24

GetQueueState

This returns the list of queues for the server.

Required Priveleges
privNone

Request Parameters
queueID queueID to return state for [long]
magicCookie QueueState tag [long]

Response Parameters
queueID queueID to return state for [long]
magicCookie QueueState tag [long]
queueState queue state bitfield [unsigned long]

Result Codes
psNoErr request completed normally
psShutDown server is shutting down
psSnafu server exploded with happiness; please try again
psServerBusy server cannot service request now; try again later
psNoChange data has not changed since last request
psBadQueueID no such queue

Algorithm
The client requests the state for the specified queue. If the server supports magic cookies, the
server may elect to send a psNoChange result code, indicating that the data has not changed since
the last request. The state information is returned as a bitfield, shown below as Queue Flags. All
other bits are reserved and should be set to zero (0). The active bit means the queue is operational;
the busy bit means a job is currently printing on one (or more) of the queue’s devices.

Message Format

16 bits

Request

GetQueueState

Length

0

Version

QueueID

MagicCookie

16 bits

Response

GetQueueStateReply

Version

Result

Length

QueueID

QueueState

MagicCookie

Apple Printer Sharing Protocol

Decmeber 4, 1992 Preliminary GX Documentation Page 25

Active

Busy

Queue Flags

Apple Printer Sharing Protocol

Decmeber 4, 1992 Preliminary GX Documentation Page 26

SetQueueState

This returns the list of queues for the server.

Required Priveleges
privSetQueueState

Request Parameters
queueID queueID to return info for [long]
magicCookie QueueState tag [long]
queueState queue state bitfield [unsigned long]

Response Parameters
queueID queueID to return state for [long]
magicCookie QueueState tag [long]

Result Codes
psNoErr request completed normally
psShutDown server is shutting down
psSnafu server exploded with happiness; please try again
psServerBusy server cannot service request now; try again later
psNoPriv no privelege for attempted operation
psBadQueueID no such queue

Algorithm
The client wants to change a queue’s state. A queue can be toggled between active and inactive.
All other bits are reserved, and should be set to zero (0).

Message Format

16 bits

Response

SetQueueStateReply

Version

Result

Length

QueueID

MagicCookie

16 bits

Request

SetQueueState

Length

0

Version

QueueID

MagicCookie

QueueState

Active

Queue Flags

Apple Printer Sharing Protocol

Decmeber 4, 1992 Preliminary GX Documentation Page 27

GetDeviceList

This returns the list of dev ices for the queue.

Required Priveleges
privNone

Request Parameters
queueID queueID for devices [long]
magicCookie DeviceList tag [long]

Response Parameters
queueID queueID for devices [long]
magicCookie DeviceList tag [long]
idCount number of device IDs [short]
deviceDs device IDs [array of long]

Result Codes
psNoErr request completed normally
psShutDown server is shutting down
psSnafu server exploded with happiness; please try again
psServerBusy server cannot service request now; try again later
psNoChange data has not changed since last request
psBadQueueID no such queue

Algorithm
The client requests the list of deviceIDs for configured for the specified queue. If the server
supports magic cookies, the server may elect to send a psNoChange result code, indicating that the
data has not changed since the last request.

Message Format

16 bits

Request

GetDeviceList

Length

0

Version

QueueID

MagicCookie

16 bits

Response

GetDeviceListReply

Version

Result

Length

QueueID

MagicCookie

DeviceIDs...

IDCount

Apple Printer Sharing Protocol

Decmeber 4, 1992 Preliminary GX Documentation Page 28

GetDeviceInfoList

This returns the list of info types for the device.

Required Priveleges
privConnect

Request Parameters
queueID queueID for device [long]
deviceID deviceID for info [long]
magicCookie DeviceInfoList tag [long]

Response Parameters
queueID queueID for devices [long]
deviceID deviceID for info [long]
magicCookie DeviceList tag [long]
infoCount number of infoTuples [short]
infoTuples info tuples [array of long]

Result Codes
psNoErr request completed normally
psShutDown server is shutting down
psSnafu server exploded with happiness; please try again
psServerBusy server cannot service request now; try again later
psNoChange data has not changed since last request
psBadQueueID no such queue
psBadDeviceD no such device
psNoPriv no privelege for attempted operation

Algorithm
The client requests the list of info types for the specified device. If the server supports magic
cookies, the server may elect to send a psNoChange result code, indicating that the data has not
changed since the last request.

InfoTuples are defined as an InfoType (unsigned long) followed by an InfoID (long). InfoTuples
are essentially Macintosh resource type and id’s. The high 16 bits of the InfoID is reserved for
Macintosh resource attributes, and should be set to zero (0) unless otherwise indicated.

Apple Printer Sharing Protocol

Decmeber 4, 1992 Preliminary GX Documentation Page 29

Message Format

16 bits

Request

GetDeviceInfoList

Length

0

Version

QueueID

DeviceID

MagicCookie

16 bits

Response

GetDeviceInfoListReply

Version

Result

Length

QueueID

MagicCookie

DeviceID

InfoCount

InfoTuples...

InfoType

InfoID

InfoTuple

Apple Printer Sharing Protocol

Decmeber 4, 1992 Preliminary GX Documentation Page 30

GetDeviceInfo

This returns one piece of device info.

Required Priveleges
privConnect

Request Parameters
queueID queueID for device [long]
deviceID deviceID for info [long]
infoType DeviceInfo type [long]
infoID DeviceInfo ID [long]
magicCookie DeviceInfo tag [long]

Response Parameters
queueID queueID for device [long]
deviceID deviceID for info [long]
magicCookie DeviceInfo tag [long]
devInfo DeviceInfo [PSPParameter]

Result Codes
psNoErr request completed normally
psShutDown server is shutting down
psSnafu server exploded with happiness; please try again
psServerBusy server cannot service request now; try again later
psNoChange data has not changed since last request
psBadQueueID no such queue
psBadDeviceD no such device
psNoInfo no info of specified type and ID
psNoPriv no privelege for attempted operation

Algorithm
The client requests one of the DeviceInfo ID and tags from GetDeviceInfoList. This information is
then returned to the client.

Apple Printer Sharing Protocol

Decmeber 4, 1992 Preliminary GX Documentation Page 31

Message Format

16 bits

Response

GetDeviceInfoReply

Version

Result

Length

QueueID

MagicCookie

DeviceID

DevInfo...

16 bits

Request

GetDeviceInfo

Length

0

Version

QueueID

DeviceID

MagicCookie

InfoType

InfoID

Apple Printer Sharing Protocol

Decmeber 4, 1992 Preliminary GX Documentation Page 32

GetDeviceStatus

This returns the list of queues for the server.

Required Priveleges
privGetOwnJobInfo | privGetGroupJobInfo | privGetOtherJobInfo

Request Parameters
queueID queueID for device [long]
deviceID deviceID for info [long]
magicCookie DeviceStatus tag [long]

Response Parameters
queueID queueID for device [long]
deviceID deviceID for info [long]
magicCookie DeviceStatus tag [long]
jobID currently printing job [long]
userCount # of users connected to server [long]
currentPage currently printing page [long]
statusSize size of driver status [long]
status driver status [array of char]

Result Codes
psNoErr request completed normally
psShutDown server is shutting down
psSnafu server exploded with happiness; please try again
psServerBusy server cannot service request now; try again later
psNoChange data has not changed since last request
psBadQueueID no such queue
psBadDeviceD no such device
psNoPriv no privelege for attempted operation

Algorithm
The client requests the list of queueIDs for configured and operational queues. If the server
supports magic cookies, the server may elect to send a psNoChange result code, indicating that the
data has not changed since the last request.

Apple Printer Sharing Protocol

Decmeber 4, 1992 Preliminary GX Documentation Page 33

Message Format

16 bits

Request

GetDeviceStatus

Length

0

Version

QueueID

DeviceID

MagicCookie

16 bits

Response

GetDeviceStatusReply

Version

Result

Length

QueueID

MagicCookie

DeviceID

JobID

UserCount

CurrentPage

StatusSize

Status...

Apple Printer Sharing Protocol

Decmeber 4, 1992 Preliminary GX Documentation Page 34

SetDeviceStatus

This returns the list of queues for the server.

Required Priveleges
privSetOwnJobInfo | privSetGroupJobInfo | privSetOtherJobInfo

Request Parameters
queueID queueID for device [long]
deviceID deviceID for info [long]
magicCookie DeviceStatus tag [long]
jobID currently printing job [long]
statusSize size of driver status [long]
status driver status [array of char]

Response Parameters
queueID queueID for device [long]
deviceID deviceID for info [long]
magicCookie DeviceStatus tag [long]

Result Codes
psNoErr request completed normally
psShutDown server is shutting down
psSnafu server exploded with happiness; please try again
psServerBusy server cannot service request now; try again later
psBadQueueID no such queue
psBadDeviceD no such device
psBadJobD job or driver status has changed since GetDeviceStatus
psNoPriv no privelege for attempted operation

Algorithm
The client requests the list of queueIDs for configured and operational queues. If the server
supports magic cookies, the server may elect to send a psNoChange result code, indicating that the
data has not changed since the last request.

Message Format

Apple Printer Sharing Protocol

Decmeber 4, 1992 Preliminary GX Documentation Page 35

16 bits

Response

SetDeviceStatusReply

Version

Result

Length

QueueID

MagicCookie

DeviceID

16 bits

Request

SetDeviceStatus

Length

0

Version

QueueID

DeviceID

MagicCookie

JobID

StatusSize

Status...

Apple Printer Sharing Protocol

Decmeber 4, 1992 Preliminary GX Documentation Page 36

GetJobList

This returns the list of jobs in the specified queue.

Required Priveleges
privConnect

Request Parameters
queueID queueID for device [long]
deviceID deviceID for info [long]
magicCookie JobList tag [long]

Response Parameters
queueID queueID for device [long]
deviceID deviceID for info [long]
magicCookie JobList tag [long]
idCount number of job IDs [short]
jobIDs job IDs [array of long]

Result Codes
psNoErr password was changed
psShutDown server is shutting down
psSnafu server exploded with happiness; please try again
psServerBusy server cannot service request now; try again later
psNoPriv no privelege for attempted operation
psNoChange data has not changed since last request
psBadQueueID no such queue
psBadDeviceID no such device

Algorithm
The client requests the list of jobIDs for jobs pending on the specified queue. If the server
supports magic cookies, the server may elect to send a psNoChange result code, indicating that the
data has not changed since the last request. The noInfo result code should be returned if no jobs
are pending in the queue.

Message Format

Apple Printer Sharing Protocol

Decmeber 4, 1992 Preliminary GX Documentation Page 37

16 bits

Request

GetJobList

Length

0

Version

QueueID

DeviceID

MagicCookie

16 bits

Response

GetJobListReply

Version

Result

Length

QueueID

DeviceID

JobIDs...

IDCount

MagicCookie

Apple Printer Sharing Protocol

Decmeber 4, 1992 Preliminary GX Documentation Page 38

GetJobInfo

This requests information about a specific job.

Required Priveleges
privGetOwnJobInfo | privGetGroupJobInfo | privGetOtherJobInfo

Request Parameters
queueID queueID for device [long]
deviceID deviceID for job [long]
jobID jobID for info [long]
magicCookie JobInfo tag [long]

Response Parameters
queueID queueID for device [long]
deviceID deviceID for job [long]
jobID jobID for info [long]
magicCookie JobInfo tag [long]
priority job priority [long]
timeToPrint job scheduled time to print [long]
jobTimeout job timeout in ticks [long]
jobAlert job user interaction [long]
numPages job size [long]
jobType job type [unsigned long]
appName application name [Str31]
docName document name [Str31]
userName user name [Str31]

Result Codes
psNoErr password was changed
psShutDown server is shutting down
psSnafu server exploded with happiness; please try again
psServerBusy server cannot service request now; try again later
psNoPriv no privelege for attempted operation
psNoInfo no info available
psNoChange data has not changed since last request
psBadQueueID no such queue
psBadDeviceID no such device
psBadJobID no such job

Algorithm
This protocol command allows a client to request information on a single job. If the server
supports magic cookies, the server may elect to send a psNoChange result code, indicating that the
data has not changed since the last request.

Apple Printer Sharing Protocol

Decmeber 4, 1992 Preliminary GX Documentation Page 39

Message Format

16 bits

Request

GetJobInfo

Length

0

Version

QueueID

DeviceID

JobID

MagicCookie

16 bits

Response

GetJobInfoReply

Version

Result

Length

QueueID

JobID

DeviceID

MagicCookie

Priority

TimeToPrint

JobTimeout

JobAlert

PageCount

JobType

AppName...

null pad

length

DocName...

null pad

length

UserName...

null pad

length

Apple Printer Sharing Protocol

Decmeber 4, 1992 Preliminary GX Documentation Page 40

SetJobInfo

This sets information about a specific job.

Required Priveleges
privSetOwnJobInfo | privSetGroupJobInfo | privSetOtherJobInfo

Request Parameters
queueID queueID for device [long]
deviceID deviceID for job [long]
jobID jobID for info [long]
magicCookie JobInfo tag [long]
priority job priority [long]
timeToPrint job scheduled time to print [long]
jobTimeout job timeout in ticks [long]
jobAlert job user interaction [long]

Response Parameters
queueID queueID for device [long]
deviceID deviceID for job [long]
jobID jobID for info [long]
magicCookie JobInfo tag [long]

Result Codes
psNoErr password was changed
psShutDown server is shutting down
psSnafu server exploded with happiness; please try again
psServerBusy server cannot service request now; try again later
psNoPriv no privelege for attempted operation
psBadQueueID no such queue
psBadDeviceID no such device
psBadJobID no such job

Algorithm
This protocol command allows a client to set information on a single job. The badJobInfo result
code should be used if the server detects that the jobInfo parameter contains invalid data, or if the
server is unable to effect the requested change.

Apple Printer Sharing Protocol

Decmeber 4, 1992 Preliminary GX Documentation Page 41

Message Format

16 bits

Response

SetJobInfoReply

Version

Result

Length

QueueID

JobID

DeviceID

MagicCookie

16 bits

Request

SetJobInfo

Length

0

Version

QueueID

DeviceID

JobID

MagicCookie

Priority

TimeToPrint

JobTimeout

JobAlert

Apple Printer Sharing Protocol

Decmeber 4, 1992 Preliminary GX Documentation Page 42

