
DV 19 - Drivers & DAs in Need of (a Good) Time 1 of 4

Devices

New Technical Notes

Developer Support

ð
®Macintosh

DV 19 - Drivers & DAs in Need of (a Good) Time
Devices

Revised by: Pete Helme October 1989
Written by: Pete Helme August 1989

This Technical Note describes a few complications which rear their rather ugly little heads
when a desk accessory or driver needs periodic time. It also presents a few solutions to work
around these problems and make life easier, at least periodically.
Changes since August 1989: Corrected _BitClr and _BitSet examples. Okay, I
admit it. I was having too good of a time when I wrote the original Note and messed up the bit
manipulations at the end. My vision was blurred; I was in no condition to see those tiny little
things.

See Jane’s Heap, See accRun…

MultiFinder is our friend. Our friend, that is, until a driver or desk accessory is called when in
an unknown heap. Then things get complicated. When a driver is called at accRun time
under MultiFinder, one can never be exactly sure of the heap in which it will find itself. When
a DA receives an open call, or any other messages besides accRun, under MultiFinder, the
system heap is switched in as the current heap.* (*NOTE: This is true unless a user “force”
switched the DA into an application heap by holding down the Option key when opening the
DA. In this particular case, the application’s heap will be swtiched in.)

During the accRun cycle, whatever heap is currently switched in will be the driver’s heap as
well, and surprise, surprise, that heap may not be the system heap.

This situation could be a real problem if your DA allocates memory or creates a window during
that accRun period. Why? What if the application whose heap the DA is in suddenly slips a
bit and decides to call it quits before the DA? You’d be stuck with allocated blocks in a zone
that suddenly doesn’t exist. Eventually, your DA would go belly up, and whoever bought
your DA or driver would be on the phone to a local dealer demanding retribution.

So what’s the solution? The easiest way out of this situation is to simply not do any memory
allocation or display any newly created windows or dialog boxes during accRun. So what if
it’s a cop out, it’s easy to implement.

Being the good souls that we are in DTS, we’re not going to leave you hanging there with
nowhere to go. We prefer you heed the previous solution, but we realize that there may be rare
times when you might need a window during accRun. We’ve devised a solution, albeit a bit
strange, but one that’s easy enough to use.

Macintosh Technical Notes

2 of 4 DV 19 - Drivers & DAs in Need of (a Good) Time

Devices

The basic problem is that the DA needs to know in which heap it should be allocating it’s new
storage. It would be nice if the DA knew in which heap it was opened and could allocate the
new stuff there, and it’s easy enough to do, so here is what you need to know to do it.

Switching from the current heap to the “preferred” heap is fairly simple. When you feel the
need to allocate memory or create a window during accRun, first save the current heap zone
with _GetZone. Now, get the handle to the actual driver for the DA. You can do this by
looking at the dCtlDriver offset of the DAs device control entry (DCE). The DCE is
always in register A1 when a control call to the DA is made. Use _HandleZone on the
handle to the DAs driver to give you a pointer to the heap in which the driver resides. Pass that
value to _SetZone. Once you have switched in the correct heap, do whatever memory
allocation or window creation you need, and then make sure to set the current zone back to the
saved zone with _SetZone.

The following short routine, borrowed, in part, from an MPW sample DA, shows one way to
set up the correct zone.

pascal short DRVRControl(CntrlParam *ctlPB, DCtlPtr dCtl)
{

extern void doCtlEvent();
extern void doPeriodic();

THz driverZone;
THz savedZone;

/*
 * The current grafPort is saved & restored by the Desk Manager
 */
switch (ctlPB->csCode) {

case ACCEVENT: /* accEvent */
HLock(dCtl->dCtlStorage); /* Lock handle since it will

 be dereferenced */
doCtlEvent(*((EventRecord **) &ctlPB->csParam[0]),

(Globals *)(*dCtl->dCtlStorage));
HUnlock(dCtl->dCtlStorage);
break;

/*
 * Hey! Look here!
 */
case ACCRUN: /* periodicEvent */

savedZone = GetZone(); /* save a pointer to current heap
*/

driverZone = HandleZone(dCtl->dCtlDriver); /* get the heap our
 driver resides
 in */

SetZone(driverZone); /* use that as the current heap */
doPeriodic(dCtl); /* go do your periodic stuff */
SetZone(savedZone); /* restore the old heap */
break;

default:
break;

}
return 0;

}

Developer Support Center October 1989

DV 19 - Drivers & DAs in Need of (a Good) Time 3 of 4

Devices

One note of caution: Watch out for changes in the resource chain when in accRun, as it may
not be what you expect when MultiFinder is active.

“Houston, We’ve Got a Re-Entry Problem”

Displaying an alert or other modal dialog box is a common occurrence in Macintosh
programming, even in DAs. But since DAs are not applications, modal dialog boxes pose
other problems when displayed under MultiFinder. This problem is reentrancy. If your DA or
driver asks for periodic time, it continues to receive it when it display a modal dialog box.
Bummer. Your modal dialog routine might even be called again, and again, and again, and
again, and you get the idea. This problem occurs because _ModalDialog calls the
_SystemTask trap, which in turn calls drivers which asked for time, including yours. There
is no internal check by the System for this possible problem, so it’s up to you and your driver
to be prepared.

We realize that some DAs and drivers expect, and depend upon, this functionality. We’re just
taking this opportunity to inform the rest of you that this is a situation about which you should
be aware.

An easy way to avoid this issue is to simply tell the Device Manager not to call your DA when
you display an alert or other modal dialog box. Remember that dNeedTime bit you set when
you opened your DA so you’d get time? Just clear it before your call to _Alert or
_ModalDialog. As long as the bit is clear, your DA does not receive any periodic time.
Remember to reset it once you are done with your _Alert or _ModalDialog trap call.

The _BitClr and _BitSet Toolbox utilities are a mite on the brain-damaged side, and the
bits are the reverse of conventional 680x0 numbering (numbering starts from the high-order bit
instead of the low-order bit). This difference necessitates a calculation for figuring out the
correct bit as shown in the following example: (I think whoever wrote these Toolbox utilities
did this just to see if anyone was paying attention.)

Pascal

BitClr(@dce^.dCtlFlags, 2); { clear bit 5/dNeedTime bit. IM I-471 }
BitSet(@dce^.dCtlFlags, 2); { set bit 5/dNeedTime bit. IM I-471 }

or the kind of more efficient, but less efficient than C:

CONST
dNeedTime = $2000; { Bit 5 of high-order byte of word }

dce^.dCtlFlags := BAND(dce^.dCtlFlags, BNOT(dNeedTime)); { clear bit 5/dNeedTime
 bit. }

dce^.dCtlFlags := BOR(dce^.dCtlFlags, dNeedTime); { set bit 5/dNeedTime bit.
}

C

BitClr(&dce->dCtlFlags, 2); /* clear bit 5/dNeedTime bit. IM I-471 */
BitSet(&dce->dCtlFlags, 2); /* set bit 5/dNeedTime bit. IM I-471 */

or the somewhat more efficient:

Macintosh Technical Notes

4 of 4 DV 19 - Drivers & DAs in Need of (a Good) Time

Devices

#define dNeedTime 0x2000 /* Bit 5 of high-order byte of word */

dce->dCtlFlags &= ~dNeedTime; /* clear bit 5/dNeedTime bit. */
dce->dCtlFlags |= dNeedTime; /* set bit 5/dNeedTime bit. */

One More Thing…

We cannot overemphasize our viewpoint that if you are writing a DA and the result looks and
acts more like an application, then write an application instead and save us all a lot of
headaches.

Further Reference:
• Inside Macintosh, Volume II, The Memory Manager
• Technical Note TB 35 - MultiFinder Miscellanea

	See Jane's Heap, See accRun...
	"Houston, We've Got a Re- Entry Problem"
	One More Thing...

