CHAPTER 3

Code Fragment Manager

This chapter describes the Code Fragment Manager, the part of the Macintosh system
software that loads fragments into memory and prepares them for execution. A fragment
can be an application, an import library, a system extension, or any other block of
executable code and its associated data.

The Code Fragment Manager is intended to operate transparently to most applications
and other software. You need to use the Code Fragment Manager explicitly only if

= you need to load code modules dynamically during the execution of your application
or other software

= you want to unload code modules before the termination of your application
» you want to obtain information about the symbols exported by a fragment

For example, if your application supports dynamic loading of tools, filters, or other
software modules contained in fragments, you’ll need to use the Code Fragment
Manager to load and prepare them for execution.

This chapter also describes the format of the code fragment resource, which defines
information about a fragment. You need to create a code fragment resource (a resource
of type' cfrg' ) for each application or import library you create. For information on
doing this, see “Creating a Code Fragment Resource” on page 3-12.

To use this chapter, you should already be generally familiar with the Macintosh
Operating System. See the books Inside Macintosh: Processes and Inside Macintosh: Memory
for information about the run-time architecture of the 680x0 environment. You also need
to be familiar with the run-time architecture of PowerPC processor-based Macintosh
computers, as explained in the chapter “Introduction to PowerPC System Software.”
That chapter describes the general nature and structure of fragments.

This chapter begins by describing the capabilities of the Code Fragment Manager. Then
it describes how the Code Fragment Manager searches for the appropriate versions of
import libraries. In general, you need to know these details about searching and version
checking only if you are creating updated versions of an existing import library. The
section “Using the Code Fragment Manager” beginning on page 3-10 provides code
samples illustrating how to use some of the routines provided by the Code Fragment
Manager. The section “Code Fragment Manager Reference” beginning on page 3-15 is a
complete reference to the Code Fragment Manager.

About the Code Fragment Manager

The Code Fragment Manager is the Operating System loader for executable code and
data that are contained in fragments. Its operations are loosely analogous to those of the
Segment Manager in previous versions of the Macintosh system software. The Code
Fragment Manager, however, provides a much richer set of services than the Segment
Manager, including

» loading and preparation of fragments for execution

= automatic resolution of imported symbols by locating and loading import libraries
used by a fragment

About the Code Fragment Manager 3-3

Jabeueyy Juswbelq apo)d -



CHAPTER 3

Code Fragment Manager

= automatic execution of a fragment’s initialization and termination routines
= support for updated versions of import libraries

The following sections describe how fragments are structured, how the Code Fragment
Manager searches fragments for unresolved symbols, and how it manages different
versions of import libraries.

Fragments

The Code Fragment Manager operates primarily on fragments. A fragment is a block of
executable code and its associated data. Fragments can be loosely differentiated into
three categories, based on how they are used:

= applications
= import libraries
= extensions

Fragments contain symbols, some or all of which may be referenced by code or data in
other fragments; these kinds of symbols are called exported symbols (or, for brevity,
exports). An import library is a fragment that consists primarily of exported symbols
and their associated code and data. Other kinds of fragments can contain references to
the exported symbols of an import library; these references are called imported symbols
(or, for brevity, imports).

During the linking phase of building a fragment, the linker creates an import for each
external symbol that is resolved to an export from some import library. The code or data
referenced by that import is not copied into the fragment. Instead, as part of the process
of loading the fragment into memory and preparing it for execution, the Code Fragment
Manager replaces the imported symbol with the address of the exported code or data.

Note

Both code and data may be exported by name. However, routines are
usually exported indirectly, via a transition vector to the routine. A
routine’s transition vector is stored in the fragment’s data area. See
“The Table of Contents” on page 1-26 for more details. O

A fragment is stored in a container, which can be any logically contiguous object acces-
sible by the Operating System. For example, the executable code and global variables

of a PowerPC application are typically stored in a fragment in the application’s data
fork. The Macintosh ROM is itself a container for the import library that exports

the Macintosh system software and for several other import libraries. Application
extensions, such as dynamically loadable filters or other code modules, can be stored in
resources in the application’s resource fork. It’s better, however, to use the data fork of
some file as the container of an application extension fragment. The extension can be put
into the application’s data fork (either before or after the application’s code fragment) or
into the data fork of some other file.

About the Code Fragment Manager



CHAPTER 3

Code Fragment Manager

Note

A single data fork can contain multiple containers. The ' ¢f rg' resource
in the file’s resource fork allows the Operating System to find each
individual container in a data fork. O

The Code Fragment Manager is responsible for loading fragments (by calling the Code
Fragment Loader) and preparing them for execution. It resolves the imported symbols
in a fragment, loading and preparing any additional fragments whose exports are
referenced by that fragment. Loading a given fragment, such as an application, usually
involves loading and preparing additional fragments.

An import library can have its exported symbols imported by any number of other frag-
ments. When the Code Fragment Manager resolves the imports in a particular fragment,
it establishes a connection to each individual fragment whose code or data that fragment
references. In general, the connections are transparent to the importing fragment. If you
call the Code Fragment Manager directly, however, it returns a connection ID to you
that uniquely identifies the connection. You can use the connection ID to perform
various actions on the exporting fragment (for example, to break the connection and
unload the fragment or to get information about its exported symbols).

Note
There is no practical limit on the size of a fragment. O

Import Library Searching

When searching for an import library to find code or data that is imported by some other
fragment, the Code Fragment Manager follows a standard search path. It looks in
various files and folders in a specific order until it finds an import library that exports
the code or data imported by the fragment being loaded. Once the Code Fragment
Manager finds a library that it deems compatible with the fragment it’s loading, it stops
searching and resolves imports in the fragment to code or data in that library. In general,
the exact order in which the Code Fragment Manager searches for import libraries is
transparent to your software. However, you might need the information in this section to
ensure that a particular import library is found before some other import library, which
might also be compatible with your fragment.

Note

See the next section, “Version Checking” beginning on page 3-7, for
information on how the Code Fragment Manager determines whether
some import library is compatible with a fragment. O

When loading and preparing an application that imports code or data from an import
library, the Code Fragment Manager searches first in the application file itself, by looking
for import libraries indicated in the application’s' ¢f rg' resource. Typically, any import
libraries contained in your application are located in your application’s data fork, either
before or after the container that holds your application’s code and data. Less commonly,

About the Code Fragment Manager 3-5

Jabeueyy Juswbelq apo)d -



3-6

CHAPTER 3

Code Fragment Manager

you can put an import library into a resource in your application’s resource fork. The
"cfrg' resource specifies the location of any import libraries that you’ve included with
your application, whether in the data or the resource fork.

If an import library used by your application is not found in the application file itself, the
Code Fragment Manager next searches in any directory designated as the application’s
library directory, a directory used by the application to store import libraries or aliases
to import libraries. You specify a library directory by including in the appropriate field of
your' cfrg' resource the ID of an alias resource that picks out the library directory. See
“The Code Fragment Resource” beginning on page 3-28 for details.

The Code Fragment Manager searches a directory by looking for files of type ' shl b’
that contain a resource of type' cfrg' . The' cfrg' resource identifies the logical name
of the import library, which is needed to match the library’s name generated at link time.
There can be more than one logical name listed in a single ' cfrg' resource. This might
happen if there are multiple import libraries contained in the data fork of a single

"shl b' file. This might also happen if a single import library or application is to be
identified by more than one name. Within a directory, the Code Fragment Manager also
looks for aliases to files of type ' shl b’ and resolves them to their targets. The alias file
must itself be of type ' shl b' .

If no suitable import library has been found yet, the Code Fragment Manager searches
next in the directory that contains the application. If any import libraries—whether
located in the application’s directory or targeted by an alias in the application’s
directory—are determined to be compatible with the fragment whose imports are being
resolved, the Code Fragment Manager chooses the most compatible library and stops
searching.

IMPORTANT
The Code Fragment Manager looks only in the top level of the
application’s directory, not in any subdirectories contained in it. a

If no suitable import library has been found yet, the Code Fragment Manager searches
next in the Extensions folder in the System Folder and in all the subdirectories of the
Extensions folder, including any directories that are targets of directory aliases in

the Extensions folder. Once again, both files of type ' shl b' and targets of aliases of
type' shl b' are candidates for compatibility checking. This scheme allows you to store
your import libraries in a vendor-specific location in the Extensions folder.

If the Code Fragment Manager still hasn’t found a compatible import library that exports
the imported symbols in the fragment it’s trying to prepare, it continues by looking in a
ROM registry, which keeps track of all import libraries that are stored in the ROM of a
Macintosh computer. The Code Fragment Manager registers all ROM-based import
libraries in this registry at system startup time.

The final stage of the search path is a file and directory registry that it maintains
internally. This registry is a list of files and directories that, for various reasons, cannot be
put into the normal search path followed by the Code Fragment Manager or would not
be recognized as import libraries even if they were in that path. For example, to be
registered automatically by the Component Manager, a component must be stored

in a file of type ' t hng' . To inform the Code Fragment Manager that the file also

About the Code Fragment Manager



CHAPTER 3

Code Fragment Manager

contains one or more import libraries in its data fork, it can be registered in the file and
directory registry.

Note
The Code Fragment Manager routine to register a file
or directory is currently private. O

If your application or other software loads a fragment explicitly from disk by calling the
Cet Di skFragment routine, the Code Fragment Manager first looks for any needed
import libraries in the load directory, the directory that contains the fragment being
loaded. (This directory is the one specified in the f i | eSpec parameter you pass to

Cet Di skFragment .) If no suitable import library is found there, the search continues
along the path followed when loading and preparing an application. However, the Code
Fragment Manager looks in the load directory first only if it is different from the
application’s directory. Otherwise, the load directory is searched in its normal sequence,
after the application file itself and the library directory.

In summary, the Code Fragment Manager looks in the following places when searching
for an import library to resolve one or more imports in a fragment being loaded:

1. The load directory (the directory containing the fragment being loaded). The load
directory, however, is searched only when a fragment is loaded in response to a call
to Get Di skFragnent or Get Shar edLi br ary, and only when it’s different from the
application’s directory.

2. The application file, if the application’s ' c¢f rg' resource indicates that the application
file contains import libraries. The application fragment is implicitly treated here as an
import library.

3. The application’s library directory (as specified in the application’s ' cfrg' resource).
4. The application’s directory. Only the top level of this directory is searched.

5. The Extensions folder in the System Folder. The Extensions folder and all directories
in the Extensions folder are searched.

6. The ROM registry maintained internally by the Code Fragment Manager.
7. The file and directory registry maintained internally by the Code Fragment Manager.

At any stage, the Code Fragment Manager selects the one import library of all those
available to it that best satisfies its compatibility version checking. If an import library
meets the relevant criteria, the library search stops. Otherwise, the search continues to
the next stage. If the final stage (the file and directory registry) is reached and no suitable
library can be found, the Code Fragment Manager gives up and does not load the
original fragment.

Version Checking

One of the principal benefits of import libraries, aside from their ability to reduce the
size of applications and other fragments, is the ease with which a library developer can
make improvements in portions of the import library without requiring developers to
modify or rebuild any applications that use the import library. The library developer

About the Code Fragment Manager 3-7

Jabeueyy Juswbelq apo)d -



3-8

CHAPTER 3

Code Fragment Manager

needs only to ensure that the updated version is compatible with the version expected
by the applications using the library. In general, this means that the external program-
ming interface provided by the import library remains unchanged throughout changes
in the underlying implementation.

The Code Fragment Manager provides a simple but powerful version-checking scheme
intended to prevent incompatibilities between import libraries and the fragments that
use them. This checking is always performed automatically as part of the normal
fragment loading and preparation process. In general, your application does not need to
concern itself with checking the version of an import library whose code or data it uses.

To take a simple example, suppose that an application uses a single import library. When
the application is created, it is linked with some version of that library. Unresolved
external symbols in the application are resolved, by the linker, to exported code or data
in the import library. The version of the import library used at link time is called the
definition version of the library (because it supplies the definitions of exported symbols,
not the actual implementation of routines and initialization of variables).

When the application is loaded and prepared for execution, it must be connected to a
version of that import library. The version of the import library used at load time is
called the implementation version of the library (because it supplies the implementa-
tions of routines and initializations of variables exported by the library). The essential
requirement is that the implementation version of an import library used at run time be
compatible with the definition version used at link time. The two versions do not need to
be identical, but they must satisfy the same programming interface. (The implementation
can be a superset of the definition library.)

To allow the Code Fragment Manager to check the implementation version of an import
library against the definition version used when linking the application, the linker copies
version information from the definition library into the application. When the application
is launched, the version information in the application is compared with the version
information stored in the implementation library. If the version of the import library is
identical to that expected by the application, the library and the application are deemed
compatible. If, however, the two versions are not identical, the Code Fragment Manager
inspects additional information in whichever of the two fragments (the application and
the import library) is the newer fragment. The idea is to allow the newer fragment to
decide whether it is compatible with the older fragment.

Every import library contains three version numbers: the current version number, the
oldest supported definition version number, and the oldest supported implementation
version number. The two latter version numbers are included to provide a way for the
Code Fragment Manager to determine whether a given definition version is compatible
with a given implementation version, if the current versions of the library and the
definition version used to link the application are not identical.

IMPORTANT

The current version number must always be greater than or equal to
both the oldest supported definition version number and the oldest
supported implementation version number. a

About the Code Fragment Manager



CHAPTER 3

Code Fragment Manager

The linker copies into the application both the current version number of the definition
library and the oldest supported implementation version number. When the application
is launched, the Code Fragment Manager checks those numbers with the version
numbers in the implementation libraries according to the algorithm shown in Listing 3-1.

Listing 3-1 Pseudocode for the version-checking algorithm

if (Definition.Current == | nplenentation. Current)
return(kLi bANdAppAr eConpati bl e) ;
else if (Definition.Current > Inplenentation. Current)
/*definition version is newer than inplenentation version*/
if (Definition.ddestlnp <= Inplenentation. Current)
return(kl npl AndDef Ar eConpati bl e);
el se
return(klnmpl I sTood d);
el se
/*definition version is older than inplenentation version*/
if (Inplenmentation.d destDef <= Definition.Current)
return(kl npl AndDef Ar eConpati bl e);
el se
return(kDeflsTood d);

Jabeueyy Juswbelq apo)d -

If the current version number copied into the application from the definition library at
link time is the same as the current version number of the candidate version of the
implementation import library, then the Code Fragment Manager accepts that version of
the implementation import library and continues with the loading and preparation of
the application. Otherwise, the Code Fragment Manager determines which of the two
fragments is newer and then applies a further check.

If the current version number copied into the application from the definition library

at link time is greater than the current version number of the candidate version of

the implementation import library, the Code Fragment Manager compares the oldest
supported implementation version number in the application with the current version
number of the implementation library. If the definition library’s oldest supported
implementation version number is less than or equal to the library’s current version
number, the application and library are deemed compatible. Otherwise, the library is too
old for the application.

If the current version number copied into the application from the definition library at
link time is less than the current version number of the most recent version of the
implementation import library, the Code Fragment Manager compares the oldest
supported definition library version number (stored in the implementation library) with
the current definition library version number (stored in the application). If the oldest
supported definition library version number is less than or equal to the application’s
current version number, the application and library are deemed compatible. Otherwise,
the application is too old for the library.

About the Code Fragment Manager 3-9



CHAPTER 3

Code Fragment Manager

Note

In general, of course, the Code Fragment Manager checks the
compatibility of a fragment being loaded and all of the import
libraries from which it imports code and data. O

The version numbers in both the definition and implementation versions of an import
library should have the same format as the first 4 bytes of a version resource (that is,

a resource of type' vers' ). See the chapter “Finder Interface” in Inside Macintosh:
Macintosh Toolbox Essentials for complete information on version resources. When
comparing version numbers, however, the Code Fragment Manager treats those 4 bytes
simply as an unsigned long quantity. As a result, the value 0x00000000 is interpreted as
a valid version number.

Using the Code Fragment Manager

3-10

The Code Fragment Manager provides routines that you can use to explicitly load code
fragments and to get information about symbols exported by a particular fragment. This
section illustrates how to use those routines.

IMPORTANT

In general, the Code Fragment Manager automatically loads all import
libraries required by your application at the time your application is
launched. You need to use the routines described in this section only if
your application supports dynamically loaded application tools, filters,
or other code modules. a

This section also describes how to create a code fragment resource. Every application
and import library must have a code fragment resource to describe basic information
about the application or import library.

Loading Code Fragments

You can use the Code Fragment Manager to load fragments from the containers in which
they are stored. You need to do this only for code fragments that are dynamically added
to your application’s context during execution. This might happen, for instance, if your
application supports dynamically loadable filters or tools.

The executable code you want to bind to your application context can be stored in any
kind of container. If the container is an import library (a file of type ' shl b' ), you can
use the Code Fragment Manager’s Get Shar edLi br ary function. If the container is a
disk file, you call the Get Di skFr agment function. If the container is a resource, you
need to load the resource into memory (using normal Resource Manager routines)
and then call the Get Menfr agnment function. See “Loading Fragments” beginning on
page 3-19 for complete details on each of these functions.

Using the Code Fragment Manager



CHAPTER 3

Code Fragment Manager

Listing 3-2 and Listing 3-3 illustrate how to load application-specific tools into
memory using the Code Fragment Manager. Listing 3-2 shows how to load a
resource-based fragment.

Listing 3-2 Loading a resource-based fragment
Handl e nmyHandl e;

OSEr r myErr;

Connectionl D  nyConnl D

Ptr nmy Mai nAddr ;

St r 255 my Er r Nane;

nmyHandl e = Get Resource('tool', 128);
HLock( myHandl e) ;
nyErr = Get Menfragnent (*myHandl e, Get Handl eSi ze( myHandl e) ,
nyTool Nane, kLoadNewCopy, &nyConnl D,
(Ptr*)&myMi nAddr, mnyErrNane);
if (myErr) {
Al ertUser (mnmyErr);
got o nolLoad;

}

As you can see, Listing 3-2 loads the resource into memory by calling the Resource
Manager function Get Resour ce and locks it by calling the Memory Manager procedure
HLock. Then it calls Get Menfr agment to prepare the fragment. The first parameter
passed to Get Menfr agnment specifies the address in memory of the fragment. Because
Cet Resour ce returns a handle to the resource data, Listing 3-2 dereferences the handle
to obtain a pointer to the resource data. To avoid dangling pointers, you need to lock the
block of memory before calling Get Menfr agment . The constant kLoadNewCopy passed
as the fourth parameter requests that the Code Fragment Manager allocate a new copy of
the fragment’s global data section.

Listing 3-3 shows how to load a disk-based fragment.

Listing 3-3 Loading a disk-based fragment

myErr = CGet Di skFragnent (&ryFSSpec, 0, kWwhol eFork, myTool Name,
kLoadNewCopy, &myConnl D, (Ptr*)&nyMi nAddr,
nyEr r Nane) ;
if (myErr) {
Al ertUser (mnmyErr);
got o nolLoad;

Using the Code Fragment Manager 3-11

Jabeueyy Juswbelq apo)d -



CHAPTER 3

Code Fragment Manager

All import libraries and other fragments that are loaded on behalf of your application
(either as part of its normal startup or programmatically by your application) are
unloaded by the Process Manager at application termination; therefore, a library can be
loaded and does not have to be unloaded by the application before it terminates.

Creating a Code Fragment Resource

You need to create a code fragment resource (a resource of type ' cfrg' ) for each native
application or import library you create. This resource identifies the instruction set
architecture, location, size, and logical name of the application or import library, as well
as version information for import libraries.

In PowerPC or fat applications, the code fragment resource is read by the Process
Manager at application launch time. The Process Manager needs to know whether the
application contains PowerPC code and, if so, where that code is located. If the Process
Manager cannot find a' ¢frg' resource in the application’s resource fork, it assumes
that the application is a 680x0 application, where the executable code is contained within
" CODE' resources in the application’s resource fork.

IMPORTANT

A code fragment resource must have resource ID 0. a

For an application, the code fragment resource typically indicates that the application’s
executable code fragment begins at offset 0 within the application’s data fork and
extends for the entire length of the data fork. Listing 3-4 shows the Rez input for a
typical application’s code fragment resource.

Listing 3-4

#i ncl ude "CodeFragment Types.r"

resource 'cfrg’ (0) {
{

kPower PC
kFul I Li b,
kNoVer si onNum
kNoVer si onNum
kDef aul t St ackSi ze,
kNoAppSubFol der,
kil sApp,
kOnDi skFl at ,
kZer oOf f set
kwWhol eFor kK,
"SurfWiter"

3-12 Using the Code Fragment Manager

The Rez input for a typical application’s' cfrg' resource

/*instruction set architecture*/
/*no update |evel for apps*/

/*no current version nunber*/
/*no ol dest def'n version nunber*/
/*use default stack size*/

/*no library directory*/
/*fragnent is an application*/
[*fragment is on disk*/
/*fragment starts at fork start*/
/*fragnment occupies entire fork*/
/*name of the application*/



CHAPTER 3

Code Fragment Manager

Note
See “The Code Fragment Resource” on page 3-28 for complete
information about the structure of a code fragment resource. O

For import libraries, the code fragment resource is read by the Code Fragment Manager
as part of the process of searching for symbols imported by some fragment that is
currently being loaded and prepared for execution. (See the section “Import Library
Searching” on page 3-5 for details on how the Code Fragment Manager searches for
import libraries.) The information in the ' ¢f r g' resource is also used to ensure that the
Code Fragment Manager finds an implementation version of an import library that is
compatible with the definition version used to link the fragment being loaded and
prepared for execution. Listing 3-4 shows the Rez input for a typical code fragment
resource for an import library.

Listing 3-5 The Rez input for a typical import library’s' cfrg' resource
#defi ne kA dDef Vers 0x01008000 /*version 1.0*/
#defi ne kCurrVers 0x02008000 /*version 2.0*/

#i ncl ude " CodeFragnment Types.r"
resource 'cfrg’ (0) {

{
kPower PC, /*instruction set architecture*/
kFul I Li b, /*base library*/
kCurr Vers, /*current version numnber*/
kA dDef Ver s, /*ol dest definition version nunber*/
kDef aul t St ackSi ze, /*ignored for inmport |ibrary*/
kNoAppSubFol der, /*ignored for inport |ibrary*/
kl sLi b, /*fragment is a |ibrary*/
kOnDi skFl at /*fragment is on disk*/
kZer oOf f set /*fragment starts at fork start*/
kWhol eFor k, /*fragnment occupies entire fork*/
"Surf Tool s" /*nanme of the library*/

}

b

An import library’s code fragment resource also specifies the logical name of the import
library. This is the name used by the Code Fragment Manager to resolve imports in some
other fragment. The logical name can be different from the name of the file containing
the import library.

Note that code fragment resources are required only for fragments that are either
applications or import libraries. If you need similar version-checking or name-binding
capabilities for fragments that are application extensions, you will need to provide your
own code to do this.

Using the Code Fragment Manager 3-13

Jabeueyy Juswbelq apo)d -



CHAPTER 3

Code Fragment Manager

Getting Information About Exported Symbols

In cases in which you load a fragment programmatically (that is, by calling Code
Fragment Manager routines), you can get information about the symbols exported

by that fragment by calling the Count Synbol s and Get | ndSynbol functions.

The Count Synbol s function returns the total number of symbols exported by a
fragment. Count Synbol s takes as one of its parameters a connection ID; accordingly,
you must already have established a connection to a fragment before you can determine
how many symbols it exports.

Given an index ranging from 1 to the total number of symbols in a fragment, the

Cet | ndSynbol function returns the name, address, and class of a symbol in that
fragment. You can use Count Synbol s in combination with Get | ndSynbol to get
information about all the symbols in a fragment. For example, the code in Listing 3-6
prints the names of all the symbols in a particular fragment.

Listing 3-6 Finding symbol names

voi d MyGet Synbol Nanes (Connecti onl D nmyConnl D) ;

{
| ong nyl ndex;
| ong nmyCount ; /*nunmber of exported synbols in fragnent*/
OSEr r nmyErr;
Str 255 nmy Nane; /*symbol nane*/
Ptr ny Addr ; [ *synbol address*/
SynCl ass nyd ass; /*synbol cl ass*/
nmyErr = Count Synbol s(myConnl D, &myCount);
if (!'nyErr)
for (nmylndex = 1; nylndex <= nyCount; nylndex++)
{
nyErr = Get | ndSynbol (myConnl D, nyl ndex, myNane,
&y Addr, &myd ass);
if (!'nyErr)
printf("%", nyNane);
}
}
If you already know the name of a particular symbol whose address and class you want
to determine, you can use the Fi ndSynbol function. See page 3-24 for details on calling
Fi ndSynbol .
3-14 Using the Code Fragment Manager



CHAPTER 3

Code Fragment Manager

Code Fragment Manager Reference

This section describes the data structures and routines provided by the Code Fragment
Manager. See “Using the Code Fragment Manager” beginning on page 3-10 for detailed
instructions on using these routines. This section also describes the format of the
optional initialization and termination routines you can include in a fragment, as well
as the structure of the code fragment resource.

Data Structures

This section describes the data structures that define the format of the data passed to a
fragment’s initialization routine.

IMPORTANT

You need the information in this section only if your fragment
(application, import library, or extension) contains an initialization
routine. In addition, much of the information passed to an initialization
routine is intended for use by language implementors. Most other
developers are likely to need only the pointer to a file specification
record passed to disk-based fragments. (This information allows the
initialization routine to access its own resource fork.) a

Fragment Initialization Block

The Code Fragment Manager passes to your fragment’s initialization routine a pointer to
a fragment initialization block, which contains information about the fragment. A
fragment initialization block is defined by the | ni t Bl ock data type.

struct InitBlock {
| ong cont ext | D; [ *context |D*/
| ong cl osurel D; /*closure | D*/
| ong connectionl D, /*connection |D*/
Fragment Locat or fragLocator; /*fragnment | ocation*/
Ptr I i bNane; /*pointer to fragnment name*/
| ong reserved4a; /*reserved*/
| ong reserved4b; [ *reserved*/
| ong reserved4c; /*reserved*/
| ong reser ved4d; /*reserved*/

i

typedef struct InitBlock InitBlock, *InitBlockPtr

Code Fragment Manager Reference 3-15

Jabeueyy Juswbelq apo)d -



CHAPTER 3

Code Fragment Manager

Field descriptions
context!1 D A context ID.

cl osurel D A closure ID.
connectionl D A connection ID.

fragLocat or A fragment location record that specifies the location of the
fragment. See the following section for details about the structure
of a fragment location record.

l'i bNane A pointer to the name of the fragment being initialized. The name is
a Pascal string (a length byte followed by the name itself).

reserved4a Reserved for use by Apple Computer.

reserved4b Reserved for use by Apple Computer.

reserved4c Reserved for use by Apple Computer.

reserved4d Reserved for use by Apple Computer.

IMPORTANT

The fields of a fragment initialization block are aligned in memory in
accordance with 680x0 alignment conventions. a

Fragment Location Record

The f ragLocat or field of an initialization block contains a fragment location record
that provides information about the location of a fragment. A fragment location record is
defined by the Fr agnment Locat or data type.

struct Fragment Locator {

| ong wher e; /*l ocation sel ector*/

uni on {
Mentr agnent i nMem /*menory | ocation record*/
Di skFragment onDi sk; /*di sk |l ocation record*/
Segnent edFr agnent i nSegs; /*segnent | ocation record*/

}ous

}s

typedef struct FragnmentLocator FragnentlLocator, *FragnmentlLocatorPtr;

Field descriptions

wher e A selector that determines which member of the following union is
relevant. This field can contain one of these constants:

enum {
kl nMem /*container in menory*/
kOnDi skFl at , /*container in a data fork*/
kOnDi skSegnented /*container in a resource*/

b
i nMem A memory location record.
onDi sk A disk location record.
i nSegs A segment location record.

3-16 Code Fragment Manager Reference



CHAPTER 3

Code Fragment Manager

IMPORTANT

The fields of a fragment location record are aligned in memory in
accordance with 680x0 alignment conventions. a

Memory Location Record

For fragments located in memory, the i nMemfield of a fragment location record contains
a memory location record, which specifies the location of the fragment in memory. A
memory location record is defined by the MenFr agment data type.

struct MenFragnent {

Ptr addr ess; /*pointer to start of fragnent*/
| ong | engt h; /*length of fragnent*/
Bool ean i nPl ace; /*is data section in place?*/

1
t ypedef struct MenFragnent MenFragment;

Field descriptions

addr ess A pointer to the beginning of the fragment in memory.
l ength The length, in bytes, of the fragment.
i nPl ace A Boolean value that specifies whether the container’s data section

is instantiated in place (t r ue) or elsewhere (f al se).

IMPORTANT
The fields of a memory location record are aligned in memory in
accordance with 680x0 alignment conventions. a

Disk Location Record

For fragments located in the data fork of a file on disk, the onDi sk field of a fragment
location record contains a disk location record, which specifies the location of the
fragment. A disk location record is defined by the Di skFr agment data type.

struct Di skFragnment ({

FSSpecPt r fil eSpec; /*pointer to FSSpec*/
| ong of f set; [*offset to start of fragnent*/
| ong | engt h; /*length of fragnent*/

b
typedef struct DiskFragment Di skFragment;

Field descriptions

fileSpec A pointer to a file specification record (a data structure of type
FSSpec) for the data fork of a file. This pointer is valid only while
the initialization routine is executing. If you need to access the
information in the file specification record at any later time, you
must make a copy of that record.

Code Fragment Manager Reference 3-17

Jabeueyy Juswbelq apo)d -



CHAPTER 3

Code Fragment Manager

of f set The offset, in bytes, from the beginning of the file’s data fork to the
beginning of the fragment.
[ ength The length, in bytes, of the fragment. If this field contains the value

0, the fragment extends to the end-of-file.

IMPORTANT
The fields of a disk location record are aligned in memory in accordance
with 680x0 alignment conventions. a

Segment Location Record

For fragments located in the resource fork of a file on disk, the i nSegs field of a fragment
location record contains a segment location record, which specifies the location of the
fragment. A segment location record is defined by the Segnment edFr agnent data type.

struct Segnent edFragnment {

FSSpecPt r fil eSpec; /*pointer to FSSpec*/
OSType rsrcType; /*resource type*/
short rsrcl D /*resource | D*/

s

typedef struct Segment edFragnment Segment edFragnent;

Field descriptions

fileSpec A pointer to a file specification record (a data structure of type
FSSpec) for the resource fork of a file. This pointer is valid only
while the initialization routine is executing. If you need to access
the information in the file specification record at any later time, you
must make a copy of that record.

rsrcType The resource type of the resource containing the fragment.
rsrclD The resource ID of the resource containing the fragment.
IMPORTANT

The fields of a segment location record are aligned in memory in
accordance with 680x0 alignment conventions. a

Code Fragment Manager Routines

You can use the routines provided by the Code Fragment Manager to
= load a fragment by filename or library name

» identify an import library that is already loaded

= unload a fragment

» find a symbol by name in a fragment

» find all the symbols in a fragment

3-18 Code Fragment Manager Reference



CHAPTER 3

Code Fragment Manager

Loading Fragments

The Code Fragment Manager provides three functions that you can use to load various
kinds of fragments: Get Di skFr agnment, Get MenFr agnent, and Get Shar edLi brary.
Loading involves finding the specified fragment, reading it into memory (if it isn’t
already in memory), and preparing it for execution. The Code Fragment Manager
attempts to resolve all symbols imported by the fragment; to do so may involve loading
import libraries.

If the fragment loading fails, the Code Fragment Manager returns an error code. Note,
however, that the error encountered is not always in the fragment you asked to load.
Rather, the error might have occurred while attempting to load an import library that the
fragment you want to load depends on. For this reason, the Code Fragment Manager
also returns, in the er r Name parameter, the name of the fragment that caused the load to
fail. Although fragment names are restricted to 63 characters, the er r Nane parameter is
declared as type St r 255; doing this allows future versions of the Code Fragment
Manager to return a more informative message in the er r Nane parameter.

GetDiskFragment

You can use the Get Di skFragnent function to locate and possibly also load a fragment
contained in a file’s data fork into your application’s context.

Jabeueyy Juswbelq apo)d -

OSErr Cet Di skFragnent (FSSpecPtr fil eSpec, |ong offset,
long I ength, Str63 fragNane,
LoadFl ags fi ndFl ags, Connectionl D *connl D,
Ptr *nmai nAddr, Str255 errNane);

fileSpec  Afile system specification that identifies the disk-based fragment to load.

of f set The number of bytes from the beginning of the file’s data fork at which
the beginning of the fragment is located.

l ength The length (in bytes) of the fragment. Specify the constant k\Whol eFor k
for this parameter if the fragment extends to the end-of-file of the data
fork. Specify a nonzero value for the exact length of the fragment.

fragName  An optional name of the fragment. (This information is used primarily to
allow you to identify the fragment during debugging.)

findFl ags A flag that specifies the operation to perform on the fragment. See the
description below for the values you can pass in this parameter.

connl D On exit, the connection ID that identifies the connection to the fragment.
You can pass this ID to other Code Fragment Manager routines.

mai nAddr On exit, the main address of the fragment. The value returned is specific
to the fragment itself. Your application can use this parameter for its
own purposes.

err Name On exit, the name of the fragment that could not successfully be loaded.
This parameter is meaningful only if the call to Get Di skFr agnent fails.

Code Fragment Manager Reference 3-19



DESCRIPTION

RESULT CODES

3-20

CHAPTER 3

Code Fragment Manager

The Get Di skFr agnent function locates and possibly also loads a disk-based fragment
into your application’s context. The actions of Get Di skFr agment depend on the action
flag you pass in the f i ndFl ags parameter. The Code Fragment Manager recognizes
these constants:

enum {

kLoadLi b =1, /*load fragnent*/

kFi ndLi b =2, [/*find fragment*/

kLoadNewCopy =5 /*load fragnent with new copy of data*/
1

The kFi ndLi b constant specifies that the Code Fragment Manager search for the
specified fragment. If the fragment is already prepared and connected to your application,
CGet Di skFragnent returns f ragNoEr r as its function result and the existing connection
ID in the connl D parameter. If the specified fragment is not found, Get Di skFr agment
returns the result code f r agLi bNot Found. If the specified fragment is found but could
not be connected to your application, Get Di skFr agment returns the result code

fragLi bConnErr.

The kLoadLi b constant specifies that the Code Fragment Manager search for the
specified fragment and, if it finds it, load it into memory. If the fragment has already
been loaded, it’s not loaded again. The Code Fragment Manager uses the data-
instantiation method specified in the fragment’s container (which is either global or
per-connection instantiation).

The kLoadNewCopy constant specifies that the Code Fragment Manager load the
specified fragment, creating a new copy of any writable data maintained by the
fragment. You specify kLoadNewCopy to obtain one instance per load of the fragment’s
data and to override the data-instantiation method specified in the container itself. This
is most useful for application extensions (for example, drop-in tools).

fragNoErr 0 No error
par ankrr =50 Parameter error
fragLi bNot Found —2804 Specified fragment not found
fragHadUnr esol veds -2807 Loaded fragment has unacceptable
unresolved symbols
fragNoMem —2809 Not enough memory for internal bookkeeping
f ragNoAddr Space -2810 Not enough memory in user’s address
space for section
fragQObj ect |l nitSeqErr —2812 Order error during user initialization function
fragl mport Tood d -2813 Import library is too old
fragl nport TooNew —2814 Import library is too new
fraglnitLoop -2815 Circularity in required initialization order
fragLi bConnErr -2817 Error connecting to fragment
fragUser|nitProcErr -2821 Initialization procedure did not return noEr r
Code Fragment Manager Reference



CHAPTER 3

Code Fragment Manager

SEE ALSO
See “Loading Code Fragments” on page 3-10 for more details on the fragment-
loading process.
GetMemFragment
You can use the Get MenFr agment function to prepare a memory-based fragment.
OSErr CGet Menfragnment (Ptr memAddr, long length, Str63 fragNane,
LoadFl ags fi ndFl ags, Connectionl D *connl D,
Ptr *mai nAddr, Str255 errName);
memAddr The address of the fragment.
l ength The size, in bytes, of the fragment.
fragName  The name of the fragment. (This information is used primarily to allow
you to identify the fragment during debugging.)
findFl ags A flag that specifies the operation to perform on the fragment. See the
description of the Get Di skFragnent function on page 3-19 for the
values you can pass in this parameter.
connl D On exit, the connection ID that identifies the connection to the fragment.
You can pass this ID to other Code Fragment Manager routines (for
example, Cl oseConnecti on).
mai nAddr On exit, the main address of the fragment. The value returned is specific
to the fragment itself.
err Name On exit, the name of the fragment that could not successfully be loaded.
This parameter is meaningful only if the call to Get MenFr agnent fails.
DESCRIPTION
The Get Menfr agnent function prepares for subsequent execution a fragment that
is already loaded into memory. This function is most useful for handling code that
is contained in a resource. You can read the resource data into memory using
normal Resource Manager routines (for example, Get 1Resour ce) and then call
Cet MenFr agment to complete the processing required to prepare it for use (for
example, to resolve any imports and execute the fragment’s initialization routine).
A WARNING

You must lock the resource-based fragment into memory (for example,
by calling HLock) before calling Get Menfr agnent . You must not
unlock the memory until you've closed the connection to the fragment
(by calling Cl oseConnecti on). a

Code Fragment Manager Reference 3-21

Jabeueyy Juswbelq apo)d -



RESULT CODES

CHAPTER 3

Code Fragment Manager

fragNoErr

parantrr

fragLi bNot Found

f ragHadUnr esol veds

f ragNoMem
f ragNoAddr Space

fragQoj ect | nitSeqErr
fragl nport Tood d
fragl nport TooNew
fraglnitLoop

fragLi bConnErr
fragUserlnitProcErr

=50
—2804
—2807

—2809
—2810

—2812
—2813
—2814
—2815
—2817
—2821

No error

Parameter error

Specified fragment not found

Loaded fragment has unacceptable
unresolved symbols

Not enough memory for internal bookkeeping
Not enough memory in user’s address space
for section

Order error during user initialization function
Import library is too old

Import library is too new

Circularity in required initialization order
Error connecting to fragment

Initialization procedure did not return noEr r

SEE ALSO
See “Loading Code Fragments” on page 3-10 for more details on the fragment-
loading process.
GetSharedLibrary
You can use the Get Shar edLi br ary function to locate and possibly also load an
import library into your application’s context.
OSErr Get SharedLibrary (Str63 |i bNane, OSType archType,
LoadFl ags fi ndFl ags,
Connectionl D *connl D, Ptr *mmi nAddr,
Str255 errNane);
['i bNane The name of an import library.
archType  The instruction set architecture of the import library. For the PowerPC
architecture, use the constant kPower PCAr ch. For the 680x0 architecture,
use the constant kMot or ol a68KAr ch.
findFl ags A flag that specifies the operation to perform on the import library. See
the description of the Get Di skFr agnent function on page 3-19 for the
values you can pass in this parameter.
connl D On exit, the connection ID that identifies the connection to the import
library. You can pass this ID to other Code Fragment Manager routines.
mai NAddr  On exit, the main address of the import library. The value returned is
specific to the import library itself and is not used by the Code
Fragment Manager.
err Name On exit, the name of the fragment that could not successfully be loaded.
This parameter is meaningful only if the call to Get Shar edLi br ary fails.
3-22 Code Fragment Manager Reference



DESCRIPTION

RESULT CODES

SEE ALSO

CHAPTER 3

Code Fragment Manager

The Get Shar edLi br ary function locates the import library named by the | i bNare
parameter and possibly also loads that import library into your application’s context. The
actions of Get Shar edLi br ary depend on the action flag you pass in the f i ndFl ags
parameter; pass KFi ndLi b to get the connection ID of an existing connection to the
specified fragment, KLoadLi b to load the specified fragment, or kLoadNewCopy to load
the fragment with a new copy of the fragment’s data section.

The Get Shar edLi br ary function does not resolve any unresolved imports in your
application. In particular, you cannot use it to resolve any weak imports in your
code fragment.

fragNoErr 0 No error

par anterr =50 Parameter error

fragLi bNot Found -2804 Specified fragment not found

f ragHadUnr esol veds —2807  Loaded fragment has unacceptable
unresolved symbols

fragNoMem -2809 Not enough memory for internal bookkeeping

f ragNoAddr Space -2810 Not enough memory in user’s address space
for section

fragQbj ect | nit SeqErr -2812 Order error during user initialization function

fragl mport Tood d -2813 Import library is too old

fragl mport TooNew —2814 Import library is too new

fraglnitLoop -2815 Circularity in required initialization order

fragLi bConnErr -2817  Error connecting to fragment

fragUserlnitProcErr -2821 Initialization procedure did not return noEr r

See “Loading Code Fragments” on page 3-10 for more details on the fragment-
loading process.

Unloading Fragments

The Code Fragment Manager provides one function that you can use to close an existing
connection to a fragment.

CloseConnection

You can use the Cl oseConnect i on function to close a connection to a fragment.
OSErr d oseConnecti on (Connectionl D *connl D);

connl D A connection ID.

Code Fragment Manager Reference 3-23

Jabeueyy Juswbelq apo)d -



DESCRIPTION

CHAPTER 3

Code Fragment Manager

The O oseConnect i on function closes the connection to a fragment indicated by the
connl Dparameter. Ol oseConnect i on decrements the count of existing connections to
the specified fragment and, if the resulting count is 0, calls the fragment’s termination
routine and releases the memory occupied by the code and data sections of the fragment.
If the resulting count is not 0, any per-connection data is released but the code section
remains in memory.

When a fragment is unloaded as a result of its final connection having been closed, all
libraries that depend on that fragment are also released, provided that their usage counts
are also 0.

The Code Fragment Manager automatically closes any connections that remain
open at the time Exi t ToShel | is called for your application, so you need to call

C oseConnect i on only for fragments you wish to unload before your application
terminates.

SPECIAL CONSIDERATIONS

You can close a connection only to the root of a loading sequence (that is, the fragment
whose loading triggered the entire load chain).

RESULT CODES

fragNoEr r 0 No error

fragConnecti onl DNot Found -2801 Connection ID is not valid
Finding Symbols

The Code Fragment Manager provides three functions that you can use to find the
symbols exported by a fragment and get information about them: Fi ndSynbol ,
Count Synbol s, and CGet | ndSynbol .

FindSymbol

3-24

You can use the Fi ndSynbol function to search for a specific exported symbol.

CSErr Fi ndSynbol (ConnectionlD connl D, Str255 synNane,
Ptr *symAddr, SynCl ass *synCl ass);

connl D A connection ID.
symiNane A symbol name.
symAddr On exit, the address of the symbol whose name is synNamne.

synCl ass  On exit, the class of the symbol whose name is synNamne. See the
description below for a list of the recognized symbol classes.

Code Fragment Manager Reference



DESCRIPTION

RESULT CODES

CHAPTER 3

Code Fragment Manager

The Fi ndSynbol function searches the code fragment identified by the connl D
parameter for the symbol whose name is specified by the synNanme parameter. If that
symbol is found, Fi ndSynbol returns the address of the symbol in the sy mAddr
parameter and the class of the symbol in the synCl ass parameter. The currently
recognized symbol classes are defined by constants.

enum {
kCodeSynbol 0, /*a code synbol */
kDat aSynbol =1, /*a data synbol*/
kTVect Synbol 2 /*a transition vector symnbol*/

b

Because a fragment’s code is normally exported through transition vectors to that code,
the value kCodeSynbol is not returned in the PowerPC environment. You can use the
other two constants to distinguish exports that represent code (of class kTVect Synbol )
from those that represent general data (of class kDat aSynbol ).

fragNoErr 0 No error
fragConnecti onl DNot Found -2801 Connection ID is not valid
f ragSynbol Not Found —2802 Symbol was not found in connection

CountSymbols

DESCRIPTION

You can use the Count Synbol s function to determine how many symbols are exported
from a specified fragment.

CSErr Count Synbol s (Connectionl D connl D, | ong *synCount);

connl D A connection ID.

synCount On exit, the number of exported symbols in the fragment whose
connection ID is connl D.

The Count Synbol s function returns, in the synCount parameter, the number of
symbols exported by the fragment whose connection ID is connl D. You can use the
value returned in symCount to index through all the exported symbols in a particular
fragment (using the Get | ndSynbol function).

Code Fragment Manager Reference 3-25

Jabeueyy Juswbelq apo)d -



CHAPTER 3

Code Fragment Manager

RESULT CODES

fragNoErr 0 No error

fragConnecti onl DNot Found -2801 Connection ID is not valid
GetIndSymbol

You can use the Get | ndSynbol function to get information about the exported symbols
in a fragment.

OSErr CGet I ndSynmbol (Connectionl D connl D, | ong sym ndex,
Str255 symName, Ptr *symAddr,
SynCl ass *syn( ass);

connl D A connection ID.

sym ndex A symbol index. The value of this parameter should be greater than
or equal to 1 and less than or equal to the value returned by the
Count Synbol s function.

synmNane On exit, the name of the indicated symbol.
symAddr On exit, the address of the indicated symbol.
synC ass On exit, the class of the indicated symbol.

DESCRIPTION

The Get | ndSynbol function returns information about a particular symbol exported by
the fragment whose connection ID is connl D. If Get | ndSynbol executes successfully, it
returns the symbol’s name, starting address, and class in the synNane, symAddr, and
synCl ass parameters, respectively. See the description of the Fi ndSynbol function
(page 3-24) for a list of the values that can be returned in the synCl ass parameter.

A fragment’s exported symbols are retrieved in no predetermined order.

RESULT CODES
fragNoEr r 0 No error
fragConnect i onl DNot Found —2801 Connection ID is not valid
f ragSynbol Not Found -2802 Symbol was not found in connection

Fragment-Defined Routines

This section describes the initialization and termination routines that you can define for
a fragment.

3-26 Code Fragment Manager Reference



CHAPTER 3

Code Fragment Manager

ConnectionlnitializationRoutine

DESCRIPTION

RESULT CODES

You can define a fragment initialization routine that is executed by the Code Fragment
Manager when the fragment is first loaded into memory and prepared for execution. An
initialization routine has the following type definition:

typedef OSErr ConnectionlnitializationRoutine
(I'nitBlockPtr initBl kPtr);

initBl kPtr
A pointer to a fragment initialization block specifying information about

the fragment.

Parameter block

- context| D | ong A context ID. ©
- cl osurel D | ong A closure ID.
- connectionl D | ong A connection ID. o
- fraglLocat or Fragnment Locat or A fragment location block. 3
- I i bNanme Ptr A pointer to fragment’s name. fl'il
- reserved4a | ong Reserved. g
- reserved4b | ong Reserved. 3
(0]
- reserved4c | ong Reserved. =1
- reserved4d | ong Reserved. §
2
«Q
@

A fragment's initialization routine is executed immediately after the fragment has been
loaded into memory (if necessary) and prepared for execution, and immediately before
the fragment’s main routine (if it has one) is executed. The initialization routine is passed
a pointer to an initialization block, which contains information about the fragment, such
as its location and connection ID. See “Fragment Initialization Block” on page 3-15 for a
description of the fields of the initialization block.

You can use the initialization routine to perform any tasks that need to be performed
before any of the code or data in the fragment is accessed. For example, you might want
to open the fragment’s resource fork (if it has one). You can determine the location of the
fragment’s container from the Fr agment Locat or field of the fragment initialization
block whose address is passed to your initialization routine.

Your initialization routine should return noEr r if it executes successfully, and some
other result code if it does not. If your initialization routine returns any result code other
than noEr r, the entire load fails and the error f ragUser | ni t Pr ocEr r is returned to
the code that requested the root load.

Code Fragment Manager Reference 3-27



CHAPTER 3

Code Fragment Manager

ConnectionTerminationRoutine

DESCRIPTION

Resources

You can define a fragment termination routine that is executed by the Code Fragment
Manager when a fragment is unloaded from memory. A termination routine has the
following type definition:

typedef void ConnectionTerm nati onRoutine (void);

A fragment’s termination routine is executed immediately before the fragment is
unloaded from memory. You can use the termination routine to perform any necessary
clean-up tasks, such as closing open resource files or disposing of any memory allocated
by the fragment.

Note that a termination routine is not passed any parameters and does not return any
result. You are expected to maintain any information about the fragment (such as file
reference numbers of any open files) in its static data area.

This section describes the code fragment resource, a resource of type ' cfrg' thatis used
by the Code Fragment Manager when loading fragments such as applications and
import libraries.

This section describes the structure of this resource after it is compiled by the Rez
resource compiler, available from APDA. If you are interested in creating the Rez input
file for this resource, see “Creating a Code Fragment Resource” on page 3-12 for detailed
information.

The Code Fragment Resource

3-28

You use a code fragment resource to specify some characteristics of a code fragment. For
an application, the code fragment resource indicates to the Process Manager that the
application’s data fork contains an executable code fragment. For an import library, the
code fragment resource specifies the library’s name and version information.

IMPORTANT
A code fragment resource must have resource ID 0. a

Figure 3-1 shows the structure of a compiled code fragment resource.

Code Fragment Manager Reference



CHAPTER 3

Code Fragment Manager

Figure 3-1 Structure of a compiled code fragment (' cfrg' ) resource
"cfrg' resource type Bytes
Reserved 4
Reserved 4

Version of ' ¢frg' resource 4

Reserved 4
Reserved 4
Reserved 4
Reserved 4

Number of fragment descriptions | 4

Z First fragment / Variable
description

4 /

Last fragment !
{ description { Variable

The compiled version of a code fragment resource contains the following elements:
= Reserved. The first two long integers are reserved and should be set to 0.

= Version information. This field specifies the current version of the ' cfrg' resource.
The current version is 0x00000001.

= Reserved. The next four long integers are reserved and should be set to 0.

= Number of fragment descriptions. This field specifies the number of code fragment
information records that follow this field in the resource. (The value in this field
should be the actual number of information records that follow, beginning with 1.)

Following the array count is an array of code fragment information records. A single file
can include one or more containers. Similarly, it might occasionally be useful to assign
more than one name to a single import library or application. Typically, however, both
applications and import libraries include just a single code fragment information record
in their ' cfrg' resources. Each record has the format illustrated in Figure 3-2.

Code Fragment Manager Reference 3-29

Jabeueyy Juswbelq apo)d -



CHAPTER 3

Code Fragment Manager

3-30

Figure 3-2 The format of a code fragment information record
Bytes
Code type 4
Update level 4
Current version 4
Oldest definition version 4

Application stack size

Application’s library directory

4
2

Type of fragment 1
Location of fragment 1
4

4

Offset to fragment

Length of fragment

Reserved 4

Reserved 4

Length of information record 2

{ Fragment name { Variable

A code fragment information record contains the following elements:

= The instruction set architecture. You can use the Rez constant kPower PC (' pwpc' ) to
specify the PowerPC instruction set architecture.

s The update level. For an import library, you can specify either the value kFul | Li b
(0), to indicate that the library is a base library (not an update of some other library),
or the value kUpdat eLi b (1), to indicate that the library updates only part of some
other library. Applications should specify the value kFul | Li b in this field.

s The current version number. For an import library, this field specifies the implementa-
tion version. This field has the same format as the first 4 bytes of a resource of type
"vers' . See the chapter “Finder Interface” in Inside Macintosh: Macintosh Toolbox
Essentials for details on the structure of a' ver s’ resource.

s The oldest definition version number. For an import library, this field specifies the
oldest version of the definition library with which the implementation import library
is compatible. This field has the same format as the first 4 bytes of a resource of
type' vers'.

s The application stack size. For an application, this field specifies the minimum size, in
bytes, of the application stack. You can use the Rez constant kDef aul t St ackSi ze
(0) to indicate that the stack should be given the default size for the current software
and hardware configuration. If you determine at run time that your application needs

Code Fragment Manager Reference



CHAPTER 3

Code Fragment Manager

a larger or smaller stack, you can use the standard stack-adjusting techniques that call
Get Appl Limt and Set Appl Limi t.

= The application’s library directory. For an application, this field specifies the resource
ID of an alias resource (a resource of type ' al i s' ) in the application’s resource fork
that describes the application’s load directory. See “Import Library Searching” on
page 3-5 for more information about load directories. For information about alias
resources, see the chapter “Alias Manager” in Inside Macintosh: Files.

= A usage field. This field specifies the type of fragment that this record describes. The
value kI sLi b (0) indicates that the fragment is an import library. The value k1 SApp
(1) indicates that the fragment is an application. The value k| sDr opl n (2) indicates
that the fragment is an extension. The Code Fragment Manager recognizes only the
values kI sLi b and kI sApp. The value ki sDr opl n is provided to allow you to put
private application extensions in a file and not have the Code Fragment Manager
recognize them as shared libraries.

= Alocation field. This field specifies the location of the fragment’s container. The value
kI nMem(0) indicates that the container is in memory (usually in ROM). This value is
intended for use by the Operating System; in general, you should not use it. The value
kOnDi skFl at (1) indicates that the container is in the data fork of some file. The
value kOnDi skSegnent ed (2) indicates that the container is in a resource in the
resource fork of some file.

= The offset to the beginning of the fragment. The interpretation of this field depends
on the value specified in the location field immediately preceding this field. If the
location field has the value kI nMem this field is the address in memory of the begin-
ning of the fragment. If the location field has the value KOnDi skFl at, this field is the
number of bytes from the beginning of the data fork to the beginning of the fragment
itself. You can use the Rez constant kZer oOf f set (0) to specify an offset of 0 bytes. If
the location field has the value KOnDi skSegment ed, this field is the resource type (of
type OSType) of the resource that contains the fragment.

= The length of the fragment. The interpretation of this field depends on the value
specified in the location field immediately preceding the offset field. If the location field
has the value kI nMem) this field is the address in memory of the end of the fragment. If
the location field has the value KOnDi skFl at, this field is the length, in bytes, of the
fragment. You can use the Rez constant kWhol eFor k (0) to indicate that the fragment
occupies the entire fork. If the location field has the value kOnDi skSegnent ed, this
field is the sign-extended resource ID of the resource that contains the fragment.

= Reserved. The next two long integers are reserved and should be set to 0.

= The total length of the code fragment information record. This field specifies
the length, in bytes, of this code fragment information record, including the
fragment name and any pad bytes added to the name field.

s The fragment’s name. This field is a Pascal string that indicates the name of the
application or import library. This is the default name used by the debugger for this
fragment. This field is padded with null bytes, if necessary, so that the information
record extends to a 4-byte boundary.

Code Fragment Manager Reference 3-31

Jabeueyy Juswbelq apo)d -



CHAPTER 3

Code Fragment Manager

Summary of the Code Fragment Manager

C Summary

Constants

/*CGestalt selector and response bits*/

#defi ne gestalt CFMAttr "cfrg' /*Code Fragnment Manager attributes*/
enum {

gestalt CFMPresent = 0 /*set if Code Fragnent Myr is present*/
i
#defi ne kPower PCAr ch ' pwpc' /*Power PC i nstruction set architecture*/

#def i ne kMot or ol a68KAr ch ' n68k’ /*680x0 instruction set architecture*/

#def i ne kNoLi bNane ((unsi gned char *) 0)
#def i ne kNoConnecti onl D ((Connectionl D) 0)
#def i ne kUnresol vedSynbol Addr ess ((Ptr) 0x0)

enum {

kLoadLi b = 1, /*1 oad fragnent*/

kFi ndLi b = 2, /*find fragnment*/

kLoadNewCopy =5 /*load fragnent with new copy of data*/
1
enum {

kCodeSynbol = 0, /*a code synbol */

kDat aSynbol = 1, /*a data synbol */

kTVect Synbol =2 /*a transition vector synbol*/
b
enum {
/*sel ectors for fragment |ocation record*/
kl nMem /*container in nmenory*/
kOnDi skFl at, [*container in a data fork*/
kOnDi skSegnent ed /*container in a resource*/
b

3-32 Summary of the Code Fragment Manager



CHAPTER 3

Code Fragment Manager

Data Types
typedef 1 ong Connectionl D; [/*connection |ID nunber*/
t ypedef unsigned | ong LoadFl ags; /*a flag | ong word*/
t ypedef unsi gned char SynCl ass; /*synbol cl ass*/
Fragment Initialization Block
struct InitBlock {
| ong cont ext | D; /*context |D*/
| ong cl osurel D [*cl osure | D~/
| ong connectionlD; [/*connection |D*/
Fragment Locat or fraglLocat or; /*fragment | ocation*/
Ptr [ i bNane; /*pointer to fragnment name*/
| ong reserved4a; /*reserved*/
| ong reserved4b; /*reserved*/
| ong reserved4c; [ *reserved*/
| ong reserved4d; /*reserved*/
1

typedef struct |nitBlock InitBIlock

Fragment Location Record

struct Fragment Locator {
| ong wher e;
uni on {
Menfr agnment i nMem
Di skFragment onDi sk
Segnent edFr agnent i nSegs;

}ou
b

t ypedef struct FragnentLocat or

Memory Location Record

struct Menfragnent {
Ptr addr ess;
| ong | engt h;
Bool ean i nPl ace;
b
typedef struct MenFragnent ©Mentragment;

Summary of the Code Fragment Manager

Fragment Locat or,

*|nitBl ockPtr;

/*1 ocation sel ector*/

/*menory | ocation record*/
/*di sk | ocation record*/
/*segnent | ocation record*/

*Fragment Locat or Ptr

/*pointer to start of fragnent*/

/*length of fragment*/
/*is data section in place?*/

3-33

Jabeueyy Juswbelq apo)d -



CHAPTER 3

Code Fragment Manager

Disk Location Record

struct Di skFragnment {

FSSpecPt r fil eSpec;
| ong of f set;
| ong | engt h;

b
typedef struct DiskFragment Di skFragment;

Segment Location Record

struct Segnent edFragment {

FSSpecPtr fil eSpec;
OSType rsrcType;
short rsrcl D,

}s

/*pointer to FSSpec*/
/[*offset to start of fragment*/
/*length of fragnent*/

/*pointer to FSSpec*/
/*resource type*/
/*resource | D*/

typedef struct SegnentedFragment Segment edFr agment ;

Code Fragment Manager Routines

Loading Fragments
OSErr Cet Di skFragnent

(FSSpechtr fil eSpec, long offset, |ong | ength,

OSErr Get Mentr agnent

OSErr Get SharedLi brary

Unloading Fragments
OSErr C oseConnection

Finding Symbols
OSErr Fi ndSynbol

OSErr Count Symbol s
CSErr Get | ndSynbol

Str63 fragNane, LoadFl ags fi ndFl ags,
Connectionl D *connl D, Ptr *mai nAddr,
Str255 err Nane);

(Ptr memAddr, long length, Str63 fragNane,
LoadFl ags fi ndFl ags, Connectionl D *connl D,
Ptr *mai nAddr, Str255 errNane);

(Str63 |i bName, OSType archType,
LoadFl ags fi ndFl ags, Connectionl D *connl D,
Ptr *mai nAddr, Str255 errNane);

(Connectionl D *connl D);

(Connectionl D connl D, Str255 synNane,
Ptr *symAddr, SynT ass *syntCl ass);

(Connectionl D connl D, |Iong *symCount);

(Connectionl D connl D, |ong synl ndex,

Str255 synNane, Ptr *symAddr,
SynCl ass *syn(l ass);

3-34 Summary of the Code Fragment Manager



CHAPTER 3

Code Fragment Manager

Fragment-Defined Routines

Initializing Fragments

t ypedef OSErr ConnectionlnitializationRoutine
(I'nitBlockPtr initBlkPtr);

Terminating Fragments

t ypedef voi d Connecti onTerm nati onRouti ne

(voi d);
Result Codes
fragNoErr 0 Noerror
par ankrr -50  Parameter error
f ragCont ext Not Found —2800  Context ID is not valid
fragConnecti onl DNot Found —2801  Connection ID is not valid
f ragSynbol Not Found —-2802  Symbol was not found in connection
fragSecti onNot Found -2803  Section was not found
f ragLi bNot Found —2804 Library name not found in fragment registry
f ragDupRegLi bNane -2805  Registered name already in use
f ragFor mat Unknown —2806  Fragment container format unknown
f ragHadUnr esol veds —-2807 Loaded fragment has unacceptable unresolved symbols
fragNoMem 2809  Not enough memory for internal bookkeeping
f ragNoAddr Space —-2810  Not enough memory in user’s address space for section
f ragNoCont ext | Ds —2811  No more context IDs available
fragQChj ectlnitSeqErr —2812  Order error during user initialization function
fragl nport Tood d —2813  Import library is too old
fragl nport TooNew —2814  Import library is too new
fragl nit Loop —2815  Circularity in required initialization order
fraglnit Rt nUsageErr —-2816  Boot library has initialization routine
fragLi bConnErr —2817  Error connecting to library
fragMyrinitErr -2818  Error during Code Fragment Manager initialization
fragConst Err —2819  Internal inconsistency discovered
fragCorrupt Err —2820  Fragment container is corrupted
fragUser|InitProcErr —2821  Initialization procedure did not return noEr r
f r agAppNot Found —2822  No application found in' cfrg' resource
fragArchErr —-2823  Fragment targeted for unacceptable architecture
fragl nval i dFr agnent Usage —2824  Fragment is used invalidly

Summary of the Code Fragment Manager

3-35

Jabeueyy Juswbelq apo)d -






	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to PowerPC TOC
	 Introduction to PowerPC
	 Mixed Mode Manager TOC
	 Mixed Mode Manager
	 Code Fragment Manager TOC
	Code Fragment Manager
	About the Code Fragment Manager
	Fragments
	Import Library Searching
	Version Checking

	Using the Code Fragment Manager
	Loading Code Fragments
	Creating a Code Fragment Resource
	Getting Information About Exported Symbols

	Code Fragment Manager Reference
	Data Structures
	Fragment Initialization Block
	Fragment Location Record
	Memory Location Record
	Disk Location Record
	Segment Location Record

	Code Fragment Manager Routines
	Loading Fragments
	Unloading Fragments
	Finding Symbols

	Fragment-Defined Routines
	Resources
	The Code Fragment Resource


	Summary of the Code Fragment Manager
	C Summary
	Constants
	Data Types
	Code Fragment Manager Routines
	Fragment-Defined Routines

	Result Codes


	 Exception Manager TOC
	 Exception Manager
	 Glossary
	 Index
	 Colophon

