
ð
Apple Event Registry:
Database Suite

ð
Developer Technical Publications
© Apple Computer, Inc. 1992

ð APPLE COMPUTER, INC.

© 1992, Apple Computer, Inc.
All rights reserved.

No part of this publication may
be reproduced, stored in a
retrieval system, or transmitted,
in any form or by any means,
mechanical, electronic,
photocopying, recording, or
otherwise, without prior written
permission of Apple Computer,
Inc. Printed in the United States
of America.

The Apple logo is a registered
trademark of Apple Computer,
Inc. Use of the “keyboard” Apple
logo (Option-Shift-K) for
commercial purposes without the
prior written consent of Apple
may constitute trademark
infringement and unfair
competition in violation of
federal and state laws.

Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014-6299
408-996-1010

Apple, the Apple logo, APDA,
LaserWriter, and Macintosh are
trademarks of Apple Computer,
Inc., registered in the United
States and other countries.

Adobe Illustrator and PostScript
are trademarks of Adobe Systems
Incorporated, which may be
registered in certain jurisdictions.

ITC Zapf Dingbats is a registered
trademark of International
Typeface Corporation.

Microsoft is a registered
trademark of Microsoft
Corporation.

Palatino is a registered
trademark of Linotype AG and/or
its subsidiaries.

Varityper is a registered
trademark of Varityper, Inc.

Simultaneously published in the
United States and Canada.

LIMITED WARRANTY ON
MEDIA AND REPLACEMENT

If you discover physical defects
in the manual or in the media on
which a software product is
distributed, APDA will replace
the media or manual at no
charge to you provided you
return the item to be replaced
with proof of purchase to
APDA.

ALL IMPLIED WARRANTIES
ON THIS MANUAL,
INCLUDING IMPLIED
WARRANTIES OF
MERCHANTABILITY AND
FITNESS FOR A PARTICULAR
PURPOSE, ARE LIMITED IN
DURATION TO NINETY (90)
DAYS FROM THE DATE OF
THE ORIGINAL RETAIL
PURCHASE OF THIS
PRODUCT.

Even though Apple has
reviewed this manual, APPLE
MAKES NO WARRANTY OR
REPRESENTATION, EITHER
EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL,
ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR
FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS
MANUAL IS SOLD “AS IS,”
AND YOU, THE PURCHASER,
ARE ASSUMING THE ENTIRE
RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE
LIABLE FOR DIRECT,
INDIRECT, SPECIAL,
INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY
DEFECT OR INACCURACY IN
THIS MANUAL, even if
advised of the possibility of
such damages.

THE WARRANTY AND
REMEDIES SET FORTH
ABOVE ARE EXCLUSIVE AND
IN LIEU OF ALL OTHERS,
ORAL OR WRITTEN, EXPRESS
OR IMPLIED. No Apple dealer,
agent, or employee is authorized
to make any modification,
extension, or addition to this
warranty.

Some states do not allow the
exclusion or limitation of
implied warranties or liability
for incidental or consequential
damages, so the above
limitation or exclusion may not
apply to you. This warranty
gives you specific legal rights,
and you may also have other
rights which vary from state to
state.

i i i

Contents

Introduction to the Database suite / 2
Overview of the Database suite / 2
Applications that should support the Database suite / 3
Typical client applications for the Database suite / 3
Relationship of the Database suite with other suites / 3
Using object specifiers in place of other parameters / 4

Apple events defined in the Database suite / 4
Abort Transaction—cancel a series of changes / 5
Begin Transaction—begin a transaction thread and optionally

associate it with an existing session / 7
Group—summarize a table / 9
Sort—order an object by one or more of its elements / 11
Object classes defined in the Database suite / 13
cCell—a cell from a table / 16
cColumn—a column of cells from a table / 21
cDatabase—a database / 25
cDBMS—a database management system / 28
cHost—a network host containing a DBMS or database / 30
cKey—an indexed column / 33
cRow—a row of cells from a table / 36
cRowSelection—a saved selection of rows / 40
cSession—an active session connected to a host, DBMS, or

database / 44
cTable—a table of rows, columns, and cells from a database / 48
Descriptor types defined in the Database suite / 51
typeCell—a cell object / 52
typeColumn—a column object / 53
typeKey—a key fields object / 54
typeRow—a row object / 55
typeRowSelection—a row selection object / 56
typeSession—a session object / 57
typeTable—a table object / 58
Key forms defined in the Database suite / 59
Comparison operators defined in the Database suite / 60
Constants defined in the Database suite / 61

iv

Figures and tables

Figure 1 Object inheritance hierarchy for the Database
suite / 15

Table 1 Apple events defined in the Database suite / 4
Table 2 Apple event object classes defined in the Database

suite / 13
Table 3 Descriptor types defined in the Database suite / 51
Table 4 Key forms defined in the Database suite / 59
Table 5 Comparison operators defined in the Database

suite / 60
Table 6 Constants defined in the Database suite / 61

1

The Database Suite

The Database suite defines Apple event constructs that are used for
communicating with database programs and transferring data to and
from a database. This suite should be supported by applications that
work cooperatively with database applications.

2 Apple Event Registry

Introduction to the Database suite

The Database suite defines Apple event constructs that allow applications to
communicate with database programs. By using the constructs defined in the
Database suite, an application should be able to access a database and manipulate
its data.

The Database suite is an extension of the events and objects defined in the Apple
Event Registry: Standard Suites. In order to use the Database suite Apple event
constructs, an understanding of the events and objects of the Core suite, Table suite,
and Miscellaneous Standards is required. Anyone attempting to understand or use the
Database suite must read and understand the Apple Event Registry: Standard Suites.
An understanding of the Apple Event Manager is also encouraged. (See the Apple
Event Manager chapter of “Inside Macintosh: InterApplication Communication“ for
more information.)

Overview of the Database suite

The Database suite defines Apple events for

■ performing more complex transactions than required by the Core suite. A
transaction is a series of Apple events that must be processed without interruption
from other Apple events. The Core suite transaction model allows a single
transaction; any subsequent transactions cannot be started until the initial
transaction has been completed. On the other hand, databases typically allow
multiple transactions that can consist of a variety of operations. These
transactions can be canceled without completion by using the Abort Transaction
event, causing the database to return to the state it was in prior to the start of the
transaction. Transactions can also be verified through the use of cSession object.

■ sorting or accessing tables within a database. Data in a database is stored in the
form of tables. A table is a named row of column headings, with zero or more rows
of data values inserted under those headings. A single record is called a row and a
table consists of a set of rows. The intersection of a row and a column is called a
cell. The data contained in a cell is known as atomic data which can have either
a single value or a list of values (in the case of multi-valued data cells).

■ producing grouped summaries from tables.

The Database suite also defines object classes for

■ accessing rows, columns, and cells within a database.

■ accessing a database management system (DBMS). A DBMS is a collection of
programs that enables users to create and maintain a database.

The Database Suite 3

■ accessing the database host (a computer running a DBMS).

■ managing the sessions object on a host, DBMS, or a database.

■ accessing selections in a database.

■ accessing key fields in a database. The key field in a database is a column (or a
combination of a number of columns) that can be used to uniquely identify rows in
the table.

Applications that should support the Database suite

The following types of applications should support the Database suite:

■ Applications that manipulate databases or spreadsheets.

■ Applications that communicate with local or remote databases.

■ Applications that remotely access databases.

Typical client applications for the Database suite

The following types of applications are likely to be clients of applications that
support the Database suite:

■ Applications that utilize shared data, for example, addresses and phone
numbers.

■ Applications that use information in a networked database, such as CAD, Forms,
Inventory Control, or Point of Sale.

■ Applications that interact with database programs.

Relationship of the Database suite with other suites

The Database suite’s Apple event constructs allow applications to refer to, request,
and modify a remote database application’s data when used in conjunction with the
objects and events defined in the Apple Event Registry: Standard Suites.

The Database suite defines three new Apple events: Abort Transaction, Group, and
Sort, in addition to the Begin Transaction event which is an extension of the Begin
Transaction event of the Miscellaneous Standards. To support the Database suite, an
application must also support a small subset of Apple events from the Core suite,
particularly Do Objects Exist, Get Data, Get Data Size, and Set Data. A few Apple

4 Apple Event Registry

events from the Miscellaneous Standards are also used by the Database suite. All of
the common functions of a database operation can be accomplished using only the
Apple events defined in the Apple Event Registry: Standard Suites.

For example, the Create Element event is used to create an object in this suite. A
descriptor record containing initialization data is passed as the keyAEData
parameter to the Create Element event. This descriptor contains optional
information necessary to create the object. If the information is missing, the server
uses default values. It follows that the Get Data and Set Data events are the most
commonly used events of the Core suite. They provide the capability of
manipulating the data defined by the database objects. By using the Get Data event,
an application can interrogate another application about the value of various fields,
columns, rows, or cells. The Apple Event Manager’s automatic coercion handlers
allow the user to request data in a format acceptable to Apple event constructs.

Using object specifiers in place of other parameters

In all of the suites except the Finder suite, you can substitute an object specifier for
any parameter of an Apple event that is not already defined as an object specifier.
This object specifier must specify a single object. When you substitute an object
specifier for a parameter, the actual value of the parameter is the value of the
default descriptor record for the specified object (that is, the value you get when you
send a Get Data Apple event for the object and do not specify a particular descriptor
type for the result).

Apple events defined in the Database suite

The Apple events defined in the Database suite are described in the following
sections. Table 1 lists these Apple events.

■ Table 1 Apple events defined in the Database suite

Name Requested action

Abort Transaction Cancel a series of changes.

Begin Transaction Begin a transaction thread and optionally
associate it with an existing session.

Group Summarize a table.

Sort Order an object by one or more of its elements.

The Database Suite 5

Abort Transaction—cancel a series of changes

The Abort Transaction Apple event is used to cancel a transaction without allowing
it to complete. This ensures that any changes that took place during the transaction
are not made permanent.

Event Class kAEDatabase

Event ID kAEAbortTransaction

Parameters None

Reply Parameters None

Notes Abort Transaction complements the Begin Transaction, End
Transaction, and Transaction Terminated events found in the
Miscellaneous Standards. It extends their functions to allow commit
and rollback functionality. Transactions are used to connect a series of
events into one logical operation. The transaction ID, which is
present in every Apple event, is used to identify the transaction. If a
session has been associated with a given transaction, every event
that is part of that transaction will behave as if the session were
explicitly given. To associate a session with a transaction, include
the session identifier as an optional parameter in the Begin
Transaction event. Any transaction can either be completed by
sending an End Transaction event (known as commit because it saves
all the pending actions), or it may be aborted by sending an Abort
Transaction event (known as rollback because it cancels any pending
series of changes).

Databases that do not support commit and rollback should treat the
Begin Transaction event as a Save and the Abort Transaction event as
a Revert. Otherwise, the server returns errAEEventNotHandled on
receipt of the Abort Transaction event to indicate that it could not
rollback the transaction. More complex database management
systems are able to rollback the transaction on receipt of an Abort
Transaction event or commit the transaction upon receipt of the End
Transaction event.

6 Apple Event Registry

If a database does not support any type of transaction, the Begin,
Abort, and End Transaction events are not handled. Instead, the
events are processed on a first come first serve basis, which is an
inefficient method for even the least complex database. On the other
hand, some databases support only single transaction threads that
handle one transaction at a time. In such cases, the Begin Transaction
and the End Transaction events are used to lock out other events
while processing a series of events. The way these events are
handled by the server depends on the way the server has been
implemented. Either of these transaction mechanisms may be used
with or without support for cSession object.

The Abort Transaction event differs from the Transaction Terminated
event found in the Miscellaneous Standards, in that the client
application sends an Abort Transaction event to cancel a transaction,
whereas in the latter case, the server sends a Transaction
Terminated event if it encounters an error.

Result Codes

errAEEventFailed –10000 The Apple event handler failed when
attempting to handle the Apple event.

errAENoSuchTransaction -10012 The specified transaction is not a valid
transaction; the transaction may never
have begun, or it may have been
terminated.

The Database Suite 7

Begin Transaction—begin a transaction thread and

optionally associate it with an existing session

The Begin Transaction Apple event is an extension of the Begin Transaction event of
the Miscellaneous Standards. The Begin Transaction Apple event is used to initiate a
transaction and return a transaction ID for subsequent events in the transaction. In the
Database suite, this Apple event is extended to provide a way to associate a
transaction thread (a series of events that occur under the auspices of a single
transaction) with an existing session. The cSession object, the direct parameter to the
Begin Transaction Apple event, is optional and may not be required even where
sessions are being used. The client application may be allowed to open a transaction
without any session object. In such cases, the server uses guest privileges for the
transaction. The direct parameter is optional as some applications may not require
sessions. On servers that do require sessions, this parameter is required for a
transaction to be initiated.

Event Class kAEMiscStandards

Event ID kAEBeginTransaction

Parameters

keyDirectObject

Description: The session with which to associate
this transaction

Descriptor Type: typeObjectSpecifier

Required or Optional? Optional

Reply Parameters

keyAEResult

Description: The transaction ID

Descriptor Type: typeLongInteger

Required or Optional? Required

keyErrorNumber

Description: The result code for the event

Descriptor Type: typeLongInteger

Required or Optional? Optional (The absence of a keyErrorNumber
parameter in the reply indicates that the event
was handled successfully.)

8 Apple Event Registry

keyErrorString

Description: A character string that describes the error, if
any, that occurred when the event was handled

Descriptor Type: typeIntlText

Required or Optional? Optional

Result Codes

errAEEventFailed –10000 The Apple event handler failed when
attempting to handle the Apple event.

errAEInTransaction –10011 Could not handle this Apple event
because it is not part of the current
transaction.

errAENoSuchTransaction –10012 The specified transaction is not a valid
transaction; the transaction may never
have begun, or it may have been
terminated.

Notes Some applications may wish to allow nested transactions. A nested
transaction is a new transaction within the context of another
existing transaction. Although nested transactions are allowed, they
are not required. Nested transactions allow multiple levels of
commit and rollback to occur. If an application does not support
nested transactions it may return an errAEInTransaction error if a
Begin Transaction event occurs during another transaction. Initial
Begin Transaction events use a transaction ID of kAnyTransaction,
whereas nested Begin Transaction events use their enclosing
transaction’s ID.

The Database Suite 9

Group—summarize a table

The Group Apple event is used to create a table of summary rows by using data from
an existing table. These summary rows are computed based on the columns specified:
for every column in the direct object, all rows are grouped by value, and a summary
row is produced for each row with a distinct value. Rows with identical values are
summarized by using the function specified on the specified group columns. Functions
are listed in the constants section. Either or both of the group columns and functions
may be a list. If there is a list of columns and a single function, then the function
applies to all the columns. If there are multiple functions, then there must be only
one function for every column listed. This makes it possible to summarize multiple
columns with one Apple event.

Event Class kAEDatabase

Event ID kAEGroup

Parameters

keyDirectObject

Description: The columns to use in generating a new table of
summary rows

Descriptor Type: typeObjectSpecifier

Required or Optional? Required

keyAEGroupColumns

Description: The columns to summarize (may be a list)

Descriptor Type: typeObjectSpecifier

Required or Optional? Required

keyAEGroupFunctions

Description: The functions with which to summarize (may
be a list). The following group functions are
available: kAverage, kCount, kMaximum,
kMean, kMinimum, kStdDev, and kSum.

Descriptor Type: typeEnumeration

Required or Optional? Required

keyAEInsertHere

Description: The destination summary table

Descriptor Type: typeInsertionLoc

Required or Optional? Optional

10 Apple Event Registry

Reply Parameters

keyAEResult

Description: The summary table (if not specified)

Descriptor Type: typeObjectSpecifier

Required or Optional? Optional

keyErrorNumber

Description: The result code for the event

Descriptor Type: typeLongInteger

Required or Optional? Optional (The absence of a keyErrorNumber
parameter in the reply indicates that the event
was handled successfully.)

Notes The destination table is optional and should be created and returned
as the direct object if not specified. The keyAEInsertHere specifies
where to put the newly created rows.

Since the functions are specified by a four character code, both the
client application and the server must have a list of common
functions to specify. There is no provision for textual functions or for
code resources since this is intended to be platform independent.
Instead, the table of common functions should be extended.

Result Codes

errAEEventFailed –10000 The Apple event handler failed when
attempting to handle the Apple event.

errAENoSuchGroupFunction –10018 The keyAEGroupFunctions
parameter is not a known value.

The Database Suite 11

Sort—order an object by one or more of its elements

The Sort Apple event is used to order an object by one or more of its elements. For
example, a client application may wish to sort a table based on one of its columns or a
selection of rows based on a cell or column. The sort type indicates the way by which
to sort, such as ascending or descending order. The element by which to sort may be a
list of items; in this case, the first element of the list is the most significant item on
which to sort, and each subsequent item is a less significant item. Applications
which do not support multiple item sorts can either perform multiple sorts in
response to this event or simply ignore all but the first sort element in the
keyAESortElement list.

Event Class kAEDatabase

Event ID kAESort

Parameters

keyDirectObject

Description: The object to sort. (The value must be one of the
following: cTable, cRowSelection, or a list of
cRows.)

Descriptor Type: typeObjectSpecifier

Required or Optional? Required

keyAESortElement

Description: The columns by which to sort (may be a list)

Descriptor Type: typeObjectSpecifier

Required or Optional? Required

keyAESortType

Description: Sort type (may be a list)

Descriptor Type: typeShortInteger

Required or Optional? Optional

Reply Parameters None

Notes If keyAESortElement is an optional parameter, then the client
application can instruct server applications to unsort a sorted table
by omitting or sending a null parameter. The keyAESortType
parameter would be ignored in this case. If the keyAESortElement is
a list, and the keyAESortType is a scalar, then the sort type
specified is used for all fields that are to be sorted.

12 Apple Event Registry

If there is a list of sort types specified as keyAESortType, then there
must be a matching list in the parameter keyAESortElement and
each sort element must be sorted by the corresponding sort type. The
default sort should be an ascending textual sort.

Result Codes

errAEEventFailed –10000 The Apple event handler failed when
attempting to handle the Apple event.

errAENoSuchSortType –10017 The keyAESortType parameter is not a
known value.

The Database Suite 13

Object classes defined in the Database suite

The Apple event object classes defined in the Database suite are described in the
following sections. Table 2 lists these object classes.

■ Table 2 Apple event object classes defined in the Database suite

Object class ID Description

cCell A cell from a table
Properties: pBestType, pClass, pDefaultType,

pFormula, pLock, pName, pProtection,
pRepeatsize, pValue

Element Classes: None

cColumn A column of cells from a table
Properties: pAccess, pBestType, pClass,

pDefaultType, pFormula, pLock,
pName, pNullsOk, pProtection,
pRepeating, pRepeatSize,
pUniqueValue

Element Classes: cCell, cColumn

cDatabase A database
Properties: pAccess, pBestType, pClass,

pDefaultType, pLock, pName
Element Classes: cSession, cTable

cDBMS A database management system
Properties: pBestType, pClass, pDefaultType,

pName
Element Classes: cDatabase, cSession

cHost A network host containing a DBMS or database
Properties: pBestType, pClass, pDefaultType,

pName
Element Classes: cDatabase, cDBMS, cSession

cKey An indexed column
Properties: pBestType, pClass, pCurrentSort,

pDefaultType, pName,
pPrimaryKey, pUniqueValue

Element Classes: cColumn

(continued)

14 Apple Event Registry

■ Table 2 Apple event object classes defined in the Database suite (continued)

Object class ID Description

cRow A row of cells from a table
Properties: pAccess, pBestType, pClass,

pDefaultType, pID, pLock,
pName, pProtection

Element Classes: cCell, cTable

cRowSelection A saved selection of rows
Properties: pAccess, pBestType, pClass,

pDefaultType, pKind, pLock,
pName, pProtection, pRowIDs

Element Classes: cColumn, cKey, cRow

cSession An active session connected to a host, DBMS, or
database
Properties: pAccount, pBestType, pClass,

pDefaultType, pGuest, pID,
pOpenTransaction, pPassword,
pUser

Element Classes: None

cTable A table of rows, columns, and cells from a database
Properties: pAccess, pBestType, pClass,

pDefaultType, pKind, pLock,
pName, pProtection

Element Classes: cCell, cColumn, cKey, cRow

Figure 1 illustrates the inheritance hierarchy for the object classes defined in the
Database suite. Listed for each object class are the properties, element classes, and
Apple events that have not been inherited from object classes higher in the
inheritance hierarchy.

The Database Suite 15

■ Figure 1 Object inheritance hierarchy for the Database suite

cObject

pBestType
pClass
pDefaultType
Clone
Count Element
Create Element
Delete
Do Objects Exist
Get Class Info
Get Data
Get Data Size
Move
Set Data

cHost

pName
cDatabase
cDBMS
cSession

pAccess
pFormula
pLock
pName
pNullsOk
pProtection
pRepeating
pRepeatSize
pUniqueValue
cCell
cColumn
Group

cColumn

pFormula
pLock
pName
pProtection
pRepeatSize
pValue

cCell

pAccess
pLock
pName
cSession
cTable

cDatabase

pName
cDatabase
cSession

cDBMS
 cRowSelection

pRowIDs

cTable

pAccess
pKind
pLock
pName
pProtection
cCell
cColumn
cKey
cRow
Sort

cSession

pAccount
pGuest
pID
pOpenTransaction
pPassword
pUser
Begin Transaction

pAccess
pID
pLock
pName
pProtection
cCell
cTable
Sort

cRow

cKey

pCurrentSort
pName
pPrimaryKey
pUniqueValue
cColumn

16 Apple Event Registry

cCell—a cell from a table

The cCell object class is the class for atomic data in a DBMS. It is an extension of the cCell object
class defined in the Table suite. The intersection of a row and a column is called a cell. The data
contained in a cell is called atomic data. The contents of a cell may be of any data type,
however all cells in one column typically have the same data type. This data type can be
accessed through the pDefaultType property and can be returned as cText by a coercion handler.

Superclass cObject (Core suite)

Default
Descriptor
Type typeCell

Properties

pBestType

Description: The descriptor type that can contain the most
information from objects of this object class

Object Class ID: cType

Inherited? Yes, from cObject

Modifiable or
Non-modifiable? Non-modifiable

pClass

Description: The four-character class ID for the object class

Object Class ID: cType

Inherited? Yes, from cObject

Modifiable or
Non-modifiable? Non-modifiable

pDefaultType
Description: The default descriptor type for the object class
Object Class ID: cType
Inherited? Yes, from cObject
Modifiable or
Non-modifiable? Non-modifiable

pFormula
Description: The formula for the cell (inherits or overrides the

column's formula, if any)
Object Class ID: cText
Inherited? No
Modifiable or
Non-modifiable? Modifiable

The Database Suite 17

pLock

Description: The lock status of the object in the current transaction
(The value must be one of the following:
kExclusiveLock, kNoLock, or kSharedLock.)

Object Class ID: enumLockTypes

Inherited? No

Modifiable or
Non-modifiable? Modifiable

pName

Description: The name of the cell

Object Class ID: cText

Inherited? No

Modifiable or
Non-modifiable? Modifiable

pProtection

Description: Specifies whether the elements or pFormula property
of the cell can be changed (The value must be one of
the following: kAEFormulaProtect, kAEReadOnly,
or kAEReadWrite.)

Object Class ID: enumProtection

Inherited? No

Modifiable or
Non-modifiable? Modifiable

pRepeatSize

Description: Indicates the actual number of values for the
particular cell

Object Class ID: cLongInteger

Inherited? No

Modifiable or
Non-modifiable? Non-modifiable

pValue

Description: The data in the cell

Object Class ID: cText

Inherited? No

Modifiable or
Non-modifiable? Modifiable

18 Apple Event Registry

Element Classes None

Apple Events Apple events from the Core suite:

Do Objects Exist Inherited from cObject

Get Data Inherited from cObject

Get Data Size Inherited from cObject

Set Data Inherited from cObject

Notes The actual number of values for a particular cell is indicated by the
pRepeatSize property of cCell, while the pValue property contains
a list of values for that cell. The pRepeatSize property reports the
number of items in a list, while the pDefaultType property reports
the type of elements in the list.

Locking is used by a database in order to prevent two or more client
applications from making simultaneous changes to stored data.
Locking requires a client application to obtain an exclusive lock on a
piece of data before being allowed to modify it. A client application
can also request a shared lock in order to prevent other users from
obtaining an exclusive lock. A shared lock does not allow the
requesting client application to modify the data. For example,
suppose one client application wants to run a report which requires
each row to be read exactly once, in the order of a particular column.
The client application can request a shared lock on the table object
that will prevent any exclusive locks from being granted on the table
object or any other objects contained in the table. A lock always
applies to the locked object and to any objects contained in the locked
object. Linkset tables that are contained in a row are an exception to
this. (Refer to the section describing the cRow object class for the
definition of linkset.)

Locking a row should not lock every linked row, rather it should lock
only the cells in the row. Once the table is locked, the client
application can begin reading the rows with the assurance that no
other client application will delete, or modify the rows in the table.

The usual procedure is to lock a row before reading or updating it. If
required, a client application can also lock individual cells, columns,
whole tables, or databases. If a user is browsing through records, the
client application can obtain a shared lock on the record that is being
browsed and later upgrade the lock status to exclusive when the user
decides to edit the record. To lock an object the client application
simply sets the pLock property of the object.

The Database Suite 19

Timeout or deadlock errors may be returned in response to a request to
lock an object. A deadlock occurs when two users try to lock the same
two objects in the reverse order. For example, if user A locks object A
and user B locks object B, it would not be possible for user A to lock
object B because it was already locked by user B. It follows that user
B will also encounter the same problem if it attempts to lock object A.
The server resolves this problem by detecting the deadlock at the
point where the last lock was requested.

A timeout error occurs whenever a lock request issued by a client
application is not used or referenced by the client application within
a certain time frame. This causes the server to give up on the client
application and issue a timeout error. Timing out a lock request has
its own drawback. If the timeout is too short, the client application
may just retry the lock request. This in turn may prevent the server
from seeing the deadlock, because the cycle is always one request
short. Because of this, database applications are encouraged to abort
a transaction whenever a lock request is canceled. For example, when
a Set Data Apple event is performed on a locked property, it could
result in a request that returns an error message. In such a case, the
application should abort the transaction and start over.

Client applications cannot see the locked status obtained by other
client applications. This is to discourage client applications from
implementing their own polling mechanism for obtaining locks, such
as polling until the status becomes kNoLock. This is not allowed
because the server must maintain a complete list of pending lock
requests in order to detect any deadlocks.

On the other hand, a client application can read the pLock property
of an object to find out the locked status of that object with respect to
a particular client application or transaction. Only locks that were
set by the client application are revealed; otherwise kNoLock is
returned.

Locks are used during transactions that operate on the data stored in
a database. Since the data must be locked before it is changed, locks
are usually obtained in the context of a transaction. If a lock is
obtained in the context of a transaction, the server will normally
require that the locks be retained until the transaction either ends
normally or aborts. Thus, any attempt to release a lock by setting the
pLock property to kNoLock will be ignored without returning an
error. Furthermore, when the transaction ends or is aborted, the
server will automatically release all locks obtained during the
transaction.

20 Apple Event Registry

If a lock is obtained outside the context of any transaction, the lock
must be released by setting pLock to kNoLock.

The possible error conditions are:

■ errAEDeadLock - a deadlock was detected. The transaction is
aborted.

■ errAELockRequestTimeout - a lock request timed out. The
transaction is aborted.

■ errAELockRequestTimeout - should be returned if a transaction
remains inactive for a long period of time without any pending
lock request, as in the case of the client application that has
failed to continue the transaction, and no possible deadlocks exist.
A well designed server would return this error only if the inactive
transaction is blocking a lock request from an active transaction.
This is a good approach for handling deadlocks that are not
detected properly by the server, such as situations where the
client applications are polling database attributes on their own.

The Database Suite 21

cColumn—a column of cells from a table

The cColumn object class is the class for the representation of a single column in a table.

Superclass cObject (Core suite)

Default
Descriptor
Type typeColumn

Properties

pAccess

Description: Access privileges. (The value must be one of the
following or an additive combination of:
kCreateAccess, kDeleteAccess, kReadAccess,
kUpdateAccess, or kWriteAccess.)

Object Class ID: enumAccess

Inherited? No

Modifiable or
Non-modifiable? Non-modifiable

pBestType

Description: The descriptor type that can contain the most
information from objects of this object class

Object Class ID: cType

Inherited? Yes, from cObject

Modifiable or
Non-modifiable? Non-modifiable

pClass

Description: The four-character class ID for the object class

Object Class ID: cType

Inherited? Yes, from cObject

Modifiable or
Non-modifiable? Non-modifiable

pDefaultType

Description: The default descriptor type for the object class

Object Class ID: cType

Inherited? Yes, from cObject

Modifiable or
Non-modifiable? Non-modifiable

22 Apple Event Registry

pFormula

Description: The formula for the cell (inherits or overrides the
column's formula, if any)

Object Class ID: cText

Inherited? No

Modifiable or
Non-modifiable? Modifiable

pLock

Description: The lock status of the object in the current transaction.
(The value must be one of the following:
kExclusiveLock, kNoLock, or kSharedLock.)

Object Class ID: enumLockTypes

Inherited? No

Modifiable or
Non-modifiable? Modifiable

pName

Description: The name of the column

Object Class ID: cText

Inherited? No

Modifiable or
Non-modifiable? Modifiable

pNullsOk

Description: Indicates whether nulls are allowed in the column

Object Class ID: cBoolean

Inherited? No

Modifiable or
Non-modifiable? Non-modifiable

pProtection

Description: Specifies whether the elements or pFormula property
of the cell can be changed. (The value must be one of
the following: kAEFormulaProtect, kAEReadOnly,
or kAEReadWrite.)

Object Class ID: enumProtection

Inherited? No

Modifiable or
Non-modifiable? Modifiable

The Database Suite 23

pRepeating

Description: Indicates whether it is a repeating column. (The value
must be one of the following: kAEFixedRepeat,
kAESingleValued, or kAEVariableRepeat.)

Object Class ID: enumRepeatValues

Inherited? No

Modifiable or
Non-modifiable? Non-modifiable

pRepeatSize

Description: Specifies the maximum number of values that can be
stored in each cell of a column. For fixed repeat
columns, this property indicates the number of values
that can be stored in each cell of a column, whereas,
for variable repeat columns, it indicates the
maximum possible number of values that can be stored
in a column.

Object Class ID: cLongInteger

Inherited? No

Modifiable or
Non-modifiable? Non-modifiable

pUniqueValue

Description: Indicates whether the values in this column have to
be unique

Object Class ID: cBoolean

Inherited? No

Modifiable or
Non-modifiable? Non-modifiable

Element Classes

cCell

Description: Cells in the column

Inherited? No

Modifiable or
Non-modifiable? Modifiable

Key Forms: formAbsolutePosition, formName, formPropertyID,
formRange, formRelativePosition, formTest

24 Apple Event Registry

cColumn

Description: Columns contained in a grouped column, that is, a
column that contains a number of other columns.

Inherited? No

Modifiable or
Non-modifiable? Non-modifiable

Key Forms: formAbsolutePosition, formName, formPropertyID,
formRange, formRelativePosition, formTest

Apple Events Apple events from the Core suite:

Clone Inherited from cObject

Count Elements Inherited from cObject

Delete Inherited from cObject

Do Objects Exist Inherited from cObject

Get Class Info Inherited from cObject

Get Data Inherited from cObject

Get Data Size Inherited from cObject

Move Inherited from cObject

Set Data Inherited from cObject

Apple events from the Database suite:

Group Not inherited

Notes A column may be specified as a repeating column, a grouped column,
or a repeating grouped column. A repeating column is a column that
can contain a list of values instead of a single value. There are three
types of repeating columns: kAESingleValued, which is a single
number; kAEFixedRepeat, which is a column with the same number
of values in each cell; and kAEVariableRepeat which is a column
where each cell can have a different number of values. A grouped
column contains no data itself but contains a number of other columns.
A repeating grouped column contains a list of values for a number of
other columns.

The Database Suite 25

cDatabase—a database

The cDatabase object class is the class for database tables, each of which contains rows
and columns.

Superclass cObject (Core suite)

Default
Descriptor
Type typeAEDescList

Properties

pAccess

Description: Access privileges. (The value must either be one of
the following or an additive combination of:
kCreateAccess, kDeleteAccess, kReadAccess,
kUpdateAccess, or kWriteAccess.)

Object Class ID: enumAccess

Inherited? No

Modifiable or
Non-modifiable? Non-modifiable

pBestType

Description: The descriptor type that can contain the most
information from objects of this object class

Object Class ID: cType

Inherited? Yes, from cObject

Modifiable or
Non-modifiable? Non-modifiable

pClass

Description: The four-character class ID for the object class

Object Class ID: cType

Inherited? Yes, from cObject

Modifiable or
Non-modifiable? Non-modifiable

pDefaultType

Description: The default descriptor type for the object class

Object Class ID: cType

Inherited? Yes, from cObject

Modifiable or
Non-modifiable? Non-modifiable

26 Apple Event Registry

pLock

Description: The lock status of the object in the current transaction.
(The value must be one of the following:
kExclusiveLock, kNoLock, or kSharedLock.)

Object Class ID: enumLockTypes

Inherited? No

Modifiable or
Non-modifiable? Modifiable

pName

Description: The name of the cell

Object Class ID: cText

Inherited? No

Modifiable or
Non-modifiable? Modifiable

Element Classes

cSession

Description: Active sessions using this database

Inherited? No

Modifiable or
Non-modifiable? Modifiable

Key Forms: None

cTable

Description: Represents tables in the database

Inherited? No

Modifiable or
Non-modifiable? Non-modifiable

Key Forms: formAbsolutePosition, formName, formPropertyID,
formRange, formRelativePosition, formTest

The Database Suite 27

Apple Events Apple events from the Core suite:

Clone Inherited from cObject

Count Elements Inherited from cObject

Create Element Inherited from cObject

Delete Inherited from cObject

Do Objects Exist Inherited from cObject

Get Class Info Inherited from cObject

Get Data Inherited from cObject

Get Data Size Inherited from cObject

Set Data Inherited from cObject

Notes The Get Class Info Apple event should be sent to determine if a
database needs a session. If the database can contain a session but
none are present, then the client application must create a session
with the Create Element Apple event. If the database needs a
different session than its containing DBMS, then it should require a
new cSession object; otherwise one should not be listed in Get Class
Info. If the database cannot contain a session object, then no session is
necessary to use the database.

28 Apple Event Registry

cDBMS—a database management system

The cDBMS object class is the class for a particular brand of database management system.

Superclass cObject (Core suite)

Default
Descriptor
Type typeAEDescList

Properties

pBestType

Description: The descriptor type that can contain the most
information from objects of this object class

Object Class ID: cType

Inherited? Yes, from cObject

Modifiable or
Non-modifiable? Non-modifiable

pClass

Description: The four-character class ID for the object class

Object Class ID: cType

Inherited? Yes, from cObject

Modifiable or
Non-modifiable? Non-modifiable

pDefaultType

Description: The default descriptor type for the object class

Object Class ID: cType

Inherited? Yes, from cObject

Modifiable or
Non-modifiable? Non-modifiable

pName

Description: The name of the cell

Object Class ID: cText

Inherited? No

Modifiable or
Non-modifiable? Modifiable

The Database Suite 29

Element Classes

cDatabase

Description: Databases in the DBMS

Inherited? No

Modifiable or
Non-modifiable? Non-modifiable

Key Forms: formAbsolutePosition, formName, formPropertyID,
formRange, formRelativePosition, formTest

cSession

Description: Active sessions using this DBMS

Inherited? No

Modifiable or
Non-modifiable? Modifiable

Key Forms: None

Apple Events Apple events from the Core suite:

Count Elements Inherited from cObject

Do Objects Exist Inherited from cObject

Get Class Info Inherited from cObject

Get Data Inherited from cObject

Get Data Size Inherited from cObject

Set Data Inherited from cObject

Notes Some DBMS brands do not require any specific connection and can use
the cSession information from their cHost object if desired. Other
DBMS brands may require the user to log in. Determine this with a
Get Class Info event on the cHost object. If cSession is present, then
send a Create Element event with a cSession object containing user
name information. Once a DBMS is selected, the databases accessible
by that DBMS brand can be selected.

Some servers may not require a DBMS brand to be selected. If a server
contains no DBMSs, the container for the database may be specified
as the host or NULL if there are no hosts. If a server contains only
one DBMS brand, then that DBMS should be specified as the
container for any databases.

30 Apple Event Registry

cHost—a network host containing a DBMS

or database

The cHost object class is the class for a computer that runs one or more DBMS brands. If the
DBMS is being accessed over a network, the server becomes the network host.

Superclass cObject (Core suite)

Default
Descriptor
Type typeAEDescList

Properties

pBestType

Description: The descriptor type that can contain the most
information from objects of this object class

Object Class ID: cType

Inherited? Yes, from cObject

Modifiable or
Non-modifiable? Non-modifiable

pClass

Description: The four-character class ID for the object class

Object Class ID: cType

Inherited? Yes, from cObject

Modifiable or
Non-modifiable? Non-modifiable

pDefaultType

Description: The default descriptor type for the object class

Object Class ID: cType

Inherited? Yes, from cObject

Modifiable or
Non-modifiable? Non-modifiable

pName

Description: The name of the host

Object Class ID: cText

Inherited? No

Modifiable or
Non-modifiable? Modifiable

The Database Suite 31

Element Classes

cDatabase

Description: Databases in this host

Inherited? No

Modifiable or
Non-modifiable? Non-modifiable

Key Forms: formAbsolutePosition, formName, formPropertyID,
formRange, formRelativePosition, formTest

cDBMS

Description: DBMS brands handled by this host

Inherited? No

Modifiable or
Non-modifiable? Non-modifiable

Key Forms: formAbsolutePosition, formName, formPropertyID,
formRange, formRelativePosition, formTest

cSession

Description: Active sessions using this host

Inherited? No

Modifiable or
Non-modifiable? Modifiable

Key Forms: None

Apple Events Apple events from the Core suite:

Count Elements Inherited from cObject

Do Objects Exist Inherited from cObject

Get Class Info Inherited from cObject

Get Data Inherited from cObject

Get Data Size Inherited from cObject

Set Data Inherited from cObject

Notes Some hosts do not require any specific connection. Other hosts may
require the user to log in. Determine this with the Get Class Info
event on the cHost object. If cSession is present, send a Create Element
event with a cSession object containing user name information. Once a
host is selected, the DBMS brands or databases contained within
that host can be selected.

32 Apple Event Registry

Some servers may not require a host to be selected. If a server contains
no hosts, the container for a DBMS may be specified as NULL. If a
server contains only one host, then that host should be specified as
the container for any DBMS.

Some servers may not require a DBMS brand to be selected. If a server
contains no DBMSs, the container for a database may be specified as
the host or NULL if there are no hosts.

The Database Suite 33

cKey—an indexed column

The cKey object class is the class for a collection of indexed columns that can be searched or
sorted faster than regular columns.

Superclass cObject (Core suite)

Default
Descriptor
Type typeKey

Properties

pBestType

Description: The descriptor type that can contain the most
information from objects of this object class

Object Class ID: cType

Inherited? Yes, from cObject

Modifiable or
Non-modifiable? Non-modifiable

pClass

Description: The four-character class ID for the object class

Object Class ID: cType

Inherited? Yes, from cObject

Modifiable or
Non-modifiable? Non-modifiable

pCurrentSort

Description: Sort type constant

Object Class ID: cShortInteger

Inherited? No

Modifiable or
Non-modifiable? Non-modifiable

pDefaultType

Description: The default descriptor type for the object class

Object Class ID: cType

Inherited? Yes, from cObject

Modifiable or
Non-modifiable? Non-modifiable

34 Apple Event Registry

pName

Description: The name of the key

Object Class ID: cText

Inherited? No

Modifiable or
Non-modifiable? Modifiable

pPrimaryKey

Description: Indicates that this key is the primary key for a
table. There are no requirements for a primary key to
exist, but for any table only one primary key may
exist. If pPrimaryKey is TRUE, then the key should
also be unique with pUniqueValue as TRUE.

Object Class ID: cBoolean

Inherited? No

Modifiable or
Non-modifiable? Non-modifiable

pUniqueValue

Description: Indicates if the key is guaranteed to be unique for
every row in the table. If pUniqueValue is TRUE,
then any attempt to create a new row with duplicate
values or to modify an existing row to contain
duplicate values will result in an errNotUnique error.

Object Class ID: cBoolean

Inherited? No

Modifiable or
Non-modifiable? Modifiable

Element Classes

cColumn

Description: Columns in the key

Inherited? No

Modifiable or
Non-modifiable? Modifiable

Key Forms: formAbsolutePosition, formName, formPropertyID,
formRange, formRelativePosition, formTest

The Database Suite 35

Apple Events Apple events from the Core suite:

Clone Inherited from cObject

Count Elements Inherited from cObject

Create Element Inherited from cObject

Delete Inherited from cObject

Do Objects Exist Inherited from cObject

Get Class Info Inherited from cObject

Get Data Inherited from cObject

Get Data Size Inherited from cObject

Move Inherited from cObject

Set Data Inherited from cObject

Notes The primary key for a table is a column or a combination of columns
that uniquely identifies each row. The primary key is almost
always indexed and is the preferred key for relational databases.
There may be many different ways by which one can uniquely
identify a row, hence there may be many possible candidates for the
primary key. However, only one key can be the primary key. If more
than one key satisfies the uniqueness requirement for a table, then
the server must make an arbitrary decision as to which key will be
the primary key.

Databases that do not support key fields should simply return a
value equivalent to zero for the number of keys in a table and fail
when asked to create keys. Since a key can contain multiple columns,
this is the way to specify concatenated keys. The column elements
should appear in their order of importance. The pCurrentSort
property should contain the same constant used in the Sort event.

36 Apple Event Registry

cRow—a row of cells from a table

The cRow object class is the class for a single record in a table.

Superclass cObject (Core suite)

Default
Descriptor
Type typeRow

Properties

pAccess

Description: Access privileges. (The value must be one of the
following or an additive combination of:
kCreateAccess, kDeleteAccess, kReadAccess,
kUpdateAccess, or kWriteAccess.)

Object Class ID: enumAccess

Inherited? No

Modifiable or
Non-modifiable? Non-modifiable

pBestType

Description: The descriptor type that can contain the most
information from objects of this object class

Object Class ID: cType

Inherited? Yes, from cObject

Modifiable or
Non-modifiable? Non-modifiable

pClass

Description: The four-character class ID for the object class

Object Class ID: cType

Inherited? Yes, from cObject

Modifiable or
Non-modifiable? Non-modifiable

pDefaultType

Description: The default descriptor type for the object class

Object Class ID: cType

Inherited? Yes, from cObject

Modifiable or
Non-modifiable? Non-modifiable

The Database Suite 37

pID

Description: A unique ID for this row. Internally the ID property
can be of any desired type. The Object Class ID is
listed as cText so that the ID can be handled by
scripting systems. Most of the common ID types
should be easily coerced to and from text.

Object Class ID: cText

Inherited? No

Modifiable or
Non-modifiable? Non-modifiable

pLock

Description: The lock status of the object in the current transaction.
(The value must be one of the following:
kExclusiveLock, kNoLock, or kSharedLock.)

Object Class ID: enumLockTypes

Inherited? No

Modifiable or
Non-modifiable? Modifiable

pName

Description: The name of the row

Object Class ID: cText

Inherited? No

Modifiable or
Non-modifiable? Modifiable

pProtection
Description: Specifies whether the elements or pFormula property

of the cell can be changed. (The value must be one of
the following: kAEFormulaProtect, kAEReadOnly,
or kAEReadWrite.)

Object Class ID: enumProtection
Inherited? No
Modifiable or
Non-modifiable? Modifiable

Element Classes

cCell
Description: Cells in the column
Inherited? No
Modifiable or
Non-modifiable? Modifiable
Key Forms: formAbsolutePosition, formName, formPropertyID,

formRange, formRelativePosition, formTest

38 Apple Event Registry

cTable

Description: Name of the linkset

Inherited? No

Modifiable or
Non-modifiable? Modifiable

Key Forms: formAbsolutePosition, formName, formPropertyID,
formRange, formRelativePosition, formTest

Apple Events Apple events from the Core suite:

Clone Inherited from cObject

Count Elements Inherited from cObject

Create Element Inherited from cObject

Delete Inherited from cObject

Do Objects Exist Inherited from cObject

Get Class Info Inherited from cObject

Get Data Inherited from cObject

Get Data Size Inherited from cObject

Move Inherited from cObject

Set Data Inherited from cObject

Apple events from the Database suite:

Sort Not inherited

Notes Each row of a table is structured identically, except that variable
repeating columns can have a different repeat value for each row.
Rows may contain a table of other rows, representing child rows
linked to a parent row. However, the name of the cTable object
contained in a cRow object is the same as the name of the linkset and
not the name of the child row’s container.

A linkset is an abstract concept that can be defined as a single parent
row with zero or more related child rows. To understand the concept
of linksets, consider the example of a customer-invoice relational
database that consists of an invoices table and a customer table. The
customer table has a primary “customer account,” and the invoice
table has a column that refers to the customer by his or her account.
To relate an invoice and a customer, the database stores the
customer’s account number in the customer account column of the
invoice row. Whenever data is to be accessed, the database can
easily locate the customer row by using the customer account number.
Each customer record will “own” a linkset, where the child records in

The Database Suite 39

each linkset are those records that are related to the particular
parent record.

In the case of a network database, records are related through
explicit operations that add or remove child records from a parent
record. These operations do not create or delete any records, instead,
they maintain the relationships between the records. The
implementation may be a linked list of child records. In the case of
the customer-invoice database, each child record invoice has a
reference to the next and previous child record in addition to the
parent record.

A relational database can map linksets by performing a search
operation to find all of the child rows. Note that in a relational
database the “linking” field is usually indexed. The customer
account field in the invoices table is indexed in order to allow fast
retrieval of all invoices related to a particular customer. A network
database will simply map the existing sets to the linkset objects.

Linksets are easily mapped into the Database suite by allowing the
parent row to contain a table object, which in turn contains each child
row. The name of the table is taken from the linkset name, which in
turn is taken from the naming convention in a particular database.

Some relational databases will not explicitly identify where the
relationship exists. These databases have no linksets and
relationships are defined by the users of the database performing
explicit find operations, which can also be executed through the
Apple event interface.

40 Apple Event Registry

cRowSelection—a saved selection of rows

The cRowSelection object class is the class that represents an arbitrary selection of rows in a
DBMS. Since some selections may be difficult or time consuming to collect, this object is intended
as a way to save arbitrary collections of rows.

Superclass cTable (Database suite)

Default
Descriptor
Type typeRowSelection

Properties

pAccess

Description: Access privileges. (The value must be one of the
following or an additive combination of:
kCreateAccess, kDeleteAccess, kReadAccess,
kUpdateAccess, or kWriteAccess.)

Object Class ID: enumAccess

Inherited? Yes

Modifiable or
Non-modifiable? Non-modifiable

pBestType

Description: The descriptor type that can contain the most
information from objects of this object class

Object Class ID: cType

Inherited? Yes, from cObject

Modifiable or
Non-modifiable? Non-modifiable

pClass

Description: The four-character class ID for the object class

Object Class ID: cType

Inherited? Yes, from cObject

Modifiable or
Non-modifiable? Non-modifiable

pDefaultType
Description: The default descriptor type for the object class
Object Class ID: cType
Inherited? Yes, from cObject
Modifiable or
Non-modifiable? Non-modifiable

The Database Suite 41

pKind

Description: Defines the property as a cursor, linkset, table, or
view. (The value must be one of the following:
kCursor, kLinkset, kTable, or kView.)

Object Class ID: enumTableTypes

Inherited? Yes

Modifiable or
Non-modifiable? Non-modifiable

pLock

Description: The lock status of the object in the current transaction.
(The value must be one of the following:
kExclusiveLock, kNoLock, or kSharedLock.)

Object Class ID: enumLockTypes

Inherited? No

Modifiable or
Non-modifiable? Modifiable

pName

Description: The name of the table

Object Class ID: cText

Inherited? No

Modifiable or
Non-modifiable? Modifiable

pProtection

Description: Specifies whether the elements or pFormula property
of the cell can be changed. (The value must be one of
the following: kAEFormulaProtect, kAEReadOnly,
or kAEReadWrite.)

Object Class ID: enumProtection

Inherited? Yes

Modifiable or
Non-modifiable? Modifiable

pRowIDs

Description: A list of row IDs for the rows in this selection

Object Class ID: cAEList

Inherited? No

Modifiable or
Non-modifiable? Non-modifiable

42 Apple Event Registry

Element Classes

cColumn

Description: Columns in the table

Inherited? Yes

Modifiable or
Non-modifiable? Modifiable

Key Forms: formAbsolutePosition, formName, formPropertyID,
formRange, formRelativePosition, formTest

cKey

Description: Key or indexed columns in this table

Inherited? Yes

Modifiable or
Non-modifiable? Modifiable

Key Forms: formAbsolutePosition, formName, formPropertyID,
formRange, formRelativePosition, formTest

cRow

Description: Rows in the table

Inherited? Yes

Modifiable or
Non-modifiable? Modifiable

Key Forms: formAbsolutePosition, formName, formPropertyID,
formRange, formRelativePosition, formTest

Apple Events Apple events from the Core suite:

Clone Inherited from cObject

Count Elements Inherited from cObject

Create Element Inherited from cObject

Delete Inherited from cObject

Do Objects Exist Inherited from cObject

Get Class Info Inherited from cObject

Get Data Inherited from cObject

Get Data Size Inherited from cObject

Set Data Inherited from cObject

Apple events from the Database suite:

Sort Not inherited

The Database Suite 43

Notes To create a cRowSelection object, use a Create Element event with
keyAEData parameter being typeRowSelection. The
typeRowSelection parameter contains an object specifier that
resolves to a set of rows. Once created, a cRowSelection object can be
used as a reference to the rows without the tests that were required
in the original object specification.

Selections consist of rows in the form of a table. The selection object
can be a list of row IDs that are used to reference the actual rows in
their original locations. The selection object can also be used as if it
were a table. Although the actual implementation is up to the
server, a selection should be similar to a table made up of the rows
named in the pRowIDs property when the elements are referenced.
A selection should also be able to return a list of row IDs when
asked for the pRowIDs property.

44 Apple Event Registry

cSession—an active session connected to a host, DBMS, or

database

The cSession object class is the class that describes the user of the host, DBMS, or database. It
contains access information, such as the user name, account, and the password used to access the
object. It uses a value of type boolean (TRUE/FALSE) to determine whether the session is
conducted as an unauthenticated guest or through the user information. The session ID is a
unique session identifier.

Superclass cObject (Core suite)

Default
Descriptor
Type typeSession

Properties

pAccount

Description: An optional account number

Object Class ID: cText

Inherited? No

Modifiable or
Non-modifiable? Modifiable

pBestType

Description: The descriptor type that can contain the most
information from objects of this object class

Object Class ID: cType

Inherited? Yes, from cObject

Modifiable or
Non-modifiable? Non-modifiable

pClass

Description: The four-character class ID for the object class

Object Class ID: cType

Inherited? Yes, from cObject

Modifiable or
Non-modifiable? Non-modifiable

pDefaultType
Description: The default descriptor type for the object class
Object Class ID: cType
Inherited? Yes, from cObject
Modifiable or
Non-modifiable? Non-modifiable

The Database Suite 45

pGuest

Description: Whether the user name and account is used to log in or
whether the user is signed in at the default guest
level

Object Class ID: cBoolean

Inherited? No

Modifiable or
Non-modifiable? Modifiable

pID

Description: A unique ID for this session. Internally the ID
property can be of any desired type. The Object Class
ID is listed as cText so that the ID can be handled by
scripting systems. Most of the common ID types
should be easily coerced to and from text.

Object Class ID: cText

Inherited? No

Modifiable or
Non-modifiable? Non-modifiable

pOpenTransaction

Description: Current transaction(s) list

Object Class ID: cLongInteger

Inherited? No

Modifiable or
Non-modifiable? Non-modifiable

pPassword

Description: The password supplied to authenticate this session

Object Class ID: cText

Inherited? No

Modifiable or
Non-modifiable? Modifiable

pUser

Description: The user name used to access the DB

Object Class ID: cText

Inherited? No

Modifiable or
Non-modifiable? Non-modifiable

Element Classes None

46 Apple Event Registry

Apple Events Apple events from the Core suite:

Count Elements Inherited from cObject

Create Element Inherited from cObject

Delete Inherited from cObject

Do Objects Exist Inherited from cObject

Get Class Info Inherited from cObject

Get Data Inherited from cObject

Get Data Size Inherited from cObject

Set Data Inherited from cObject

Apple events from the Database suite:

Begin Transaction Not inherited

Notes One way to reference a session is to use the Begin Transaction event
with a session specifier. A session’s pOpenTransaction property is
undefined until the session object is specified in the Begin
Transaction event. The transaction ID is returned by the Begin
Transaction event. Since sessions are used for authentication, it does
not make sense for a server to allow read access to its data. This
means that any request for session properties should return an error.
The server may allow writing to the properties if session information
can be changed; otherwise, they should only be specified when the
session is created.

Every event in a transaction can be authenticated easily without the
overhead of a specific session reference. However, there are certain
situations that require a session for a specific event that is not part of
a transaction. These situations require a session parameter to be
added to an arbitrary event. This parameter should be:

keyAESession

Description: A session reference for authentication

Descriptor Type: typeObjectSpecifier

Required or Optional? Optional

If you want these events to be parsed by a scripting system, you must
add this parameter to the application for each event on which you
use it. This may require you to replicate the entire Core suite, or
whatever parts of it you add this parameter to, in your private
application; this is why the transaction method is preferred.

The Database Suite 47

Sessions are opened upon creation of the cSession object with the
Create Element event. The initial values are provided in the Create
Element event’s typeSession record, but they may be rejected based on
the server’s verification process. If the values are rejected, then the
session is not created, and the Create Element event returns an error
through the keyErrorString parameter. If the Create Element event
succeeds, then the returned object specifier can be saved and used for
future references to this session.

Some objects may not require a session element. Use the Get Class Info
event or an object that has a cSession element to see if it actually
requires one. If it does, you must create the session object with Create
Element before using the object. All of the properties of a session are
optional, depending on the server’s needs. A Get Class Info event
should always be sent to determine what information is necessary to
validate a session. Sessions may vary from object to object; a cHost
session may be different than a cDatabase session.

If a session parameter is expected on any event but not present, the
server should attempt to treat the request as a Guest access with the
corresponding public privileges if available. Guest sessions can also
be requested explicitly by creating a session with the pGuest
property initialized to TRUE. The server must return
errAEPrivilegeError in the reply keyword keyErrorNumber and a
message in the keyErrorString keyword if Guest sessions are not
allowed or if any specified session data is invalid.

The session ID property is documented as text since any ID should be
representable as text. A server can use any data type for the session
ID since the server is typically the only one referencing it. All client
applications should use the object reference to the session that is
returned by Create Element to refer to the session. Although this is a
simple object specifier referring to the session by ID, it is opaque to a
client application. A client application only sees an arbitrary object
specifier.

48 Apple Event Registry

cTable—a table of rows, columns, and

cells from a database

The cTable object class is the class for tables. A table is a collection of rows and columns
in a database.

Superclass cObject (Core suite)

Default
Descriptor
Type typeTable

Properties

pAccess

Description: Access privileges. (The value must be one of the
following or an additive combination of:
kCreateAccess, kDeleteAccess, kReadAccess,
kUpdateAccess, or kWriteAccess.)

Object Class ID: enumAccess

Inherited? No

Modifiable or
Non-modifiable? Non-modifiable

pBestType

Description: The descriptor type that can contain the most
information from objects of this object class

Object Class ID: cType

Inherited? Yes, from cObject

Modifiable or
Non-modifiable? Non-modifiable

pClass
Description: The four-character class ID for the object class
Object Class ID: cType
Inherited? Yes, from cObject
Modifiable or
Non-modifiable? Non-modifiable

pDefaultType
Description: The default descriptor type for the object class
Object Class ID: cType
Inherited? Yes, from cObject
Modifiable or
Non-modifiable? Non-modifiable

The Database Suite 49

pKind

Description: Defines the property as a cursor, linkset, table, or
view. (The value must be one of the following:
kCursor, kLinkset, kTable, or kView.)

Object Class ID: enumTableTypes

Inherited? No

Modifiable or
Non-modifiable? Non-modifiable

pLock

Description: The lock status of the object in the current transaction.
(The value must be one of the following:
kExclusiveLock, kNoLock, or kSharedLock.)

Object Class ID: enumLockTypes

Inherited? No

Modifiable or
Non-modifiable? Modifiable

pName

Description: The name of the table

Object Class ID: cText

Inherited? No

Modifiable or
Non-modifiable? Modifiable

pProtection

Description: Specifies whether the elements or pFormula property
of the cell can be changed. (The value must be one of
the following: kAEFormulaProtect, kAEReadOnly,
or kAEReadWrite.)

Object Class ID: enumProtection

Inherited? No

Modifiable or
Non-modifiable? Modifiable

Element Classes

cCell

Description: Cells in the table

Inherited? No

Modifiable or
Non-modifiable? Modifiable

Key Forms: formAbsolutePosition, formName, formPropertyID,
formRange, formRelativePosition, formTest

50 Apple Event Registry

cColumn

Description: Columns in the table

Inherited? No

Modifiable or
Non-modifiable? Modifiable

Key Forms: formAbsolutePosition, formName, formPropertyID,
formRange, formRelativePosition, formTest

cKey

Description: Key or indexed columns in this table

Inherited? No

Modifiable or
Non-modifiable? Modifiable

Key Forms: formAbsolutePosition, formName, formPropertyID,
formRange, formRelativePosition, formTest

cRow

Description: Rows in the table

Inherited? No

Modifiable or
Non-modifiable? Modifiable

Key Forms: formAbsolutePosition, formName, formPropertyID,
formRange, formRelativePosition, formTest

Apple Events Apple events from the Core suite:

Clone Inherited from cObject

Count Elements Inherited from cObject

Create Element Inherited from cObject

Delete Inherited from cObject

Do Objects Exist Inherited from cObject

Get Class Info Inherited from cObject

Get Data Inherited from cObject

Get Data Size Inherited from cObject

Move Inherited from cObject

Set Data Inherited from cObject

Apple events from the Database suite:

Sort Not inherited

The Database Suite 51

Descriptor types defined in the Database suite

The descriptor types defined in the Database suite are described in the following
sections. Table 3 lists these descriptor types.

■ Table 3 Descriptor types defined in the Database suite

Descriptor type Description

typeCell A cell object

typeColumn A column object

typeKey A key fields object

typeRow A row object

typeRowSelection A row selection object

typeSession A session object

typeTable A table object

52 Apple Event Registry

typeCell—a cell object

A typeCell descriptor record contains data to create or retrieve a cCell object.

Description To create a typeCell descriptor record, you coerce an Apple event
record containing the following fields into the equivalent typeCell
descriptor record.

Keyword Descriptor type Description

keyAEData typeAEList A list of values in the cell with
the format described by
keyAEDefaultType

keyAEDefaultType typeType The default data type

keyAEFormula typeChar The cell’s formula

keyAEName typeChar The name of the cell

keyAEProtection typeEnumeration The formula’s protection

keyAERepeatSize typeLongInteger The number of values in
keyAEData list

Note that the Apple Event Manager can coerce any Apple event
record into any other descriptor type. A special coercion handler is
not required.

Data Size Variable

The Database Suite 53

typeColumn—a column object

A typeColumn descriptor record contains the data needed to create or retrieve a
cColumn object.

Description To create a typeColumn descriptor record, you coerce an Apple event
record containing the following fields into the equivalent
typeColumn descriptor record.

Keyword Descriptor type Description

keyAEAccess typeEnumeration Access privileges

keyAECellList typeAEList The column values and formulas
as a list of typeCell descriptors

keyAEFormula typeChar The formula for the column

keyAEName typeChar The name of this row

keyAENullsOK typeBoolean Indicates whether Nulls are
allowed

keyAEProtection typeEnumeration The formula privileges

keyAERepeating typeEnumeration Indicates whether it is a repeating
column. (kAEFixedRepeat,
kAESingleValued, or
kAEVariableRepeat.)

keyAERepeatSize typeLongInteger Number of times to repeat

keyAEUniqueValue typeBoolean Indicates whether values in this
column have to be unique

Note that the Apple Event Manager can coerce any Apple event
record into any other descriptor type. A special coercion handler is
not required.

Data Size Variable

54 Apple Event Registry

typeKey—a key fields object

A typeKey descriptor record contains the data to create or retrieve a cKey object.

Description To create a typeKey descriptor record, you coerce an Apple event
record containing the following fields into the equivalent typeKey
descriptor record.

Keyword Descriptor type Description

keyAEColumnList typeAEList A list of column object
specifiers

keyAECurrentSort typeShortInteger The current sort constants

keyAEName typeChar The name of the key

keyAEPrimaryKey typeBoolean Indicates whether the key is
the primary key

keyAEUniqueValue typeBoolean Indicates whether the key is
unique

Note that the Apple Event Manager can coerce any Apple event
record into any other descriptor type. A special coercion handler is
not required.

Data Size Variable

The Database Suite 55

typeRow—a row object

A typeRow descriptor record contains data to create or retrieve a cRow object class.

Description To create a typeRow descriptor record, you coerce an Apple event
record containing the following fields into the equivalent typeRow
descriptor record.

Keyword Descriptor type Description

keyAEAccess typeEnumeration The access privileges

keyAECellList typeAEList The row values and formulas as
a list of typeCell descriptors

keyAEID typeChar The permanent ID number for
this row

keyAEName typeChar The name of this row

keyAEProtection typeEnumeration The formula privileges

Note that the Apple Event Manager can coerce any Apple event
record into any other descriptor type. A special coercion handler is
not required.

Data Size Variable

56 Apple Event Registry

typeRowSelection—a row selection object

A typeRowSelection descriptor record contains the data to create or retrieve a
cSession object. Information about existing sessions cannot be obtained from a
typeRowSelection descriptor record.

Description To create a typeRowSelection descriptor record, you coerce an Apple
event record containing the following fields into the equivalent
typeRowSelection descriptor record.

Keyword Descriptor type Description

keyAEAccess typeEnumeration The access privileges

keyAEData typeObjectSpecifier An object specifier that resolves
to a set of rows to be referenced in
this row selection

keyAEKind typeEnumeration The kind of table

keyAEName typeChar The name of this row selection

keyAEProtection typeEnumeration The table’s protection value

Note that the Apple Event Manager can coerce any Apple event
record into any other descriptor type. A special coercion handler is
not required.

Data Size Variable

The Database Suite 57

typeSession—a session object

A typeSession descriptor record contains the data necessary to create a cSession
object. Note that information about existing sessions cannot be obtained.

Description To create a typeSession descriptor record, you coerce an Apple event
record containing the following fields into the equivalent
typeSession descriptor record.

Keyword Descriptor type Description

keyAEAccount typeChar An optional account name or
number for login verification

keyAEGuest typeBoolean Whether or not to validate the
session at the default guest
level

keyAEPassword typeChar The session password

keyAEUser typeChar The user name to access this
object’s container

Note that the Apple Event Manager can coerce any Apple event
record into any other descriptor type. A special coercion handler is
not required.

Data Size Variable

Notes The keyAEGuest field is used to determine if the user, account, and
password fields are required. If keyAEGuest is TRUE, then they are not
used and do not need to be included or referenced. The session should be
validated at whatever the default guest access level is. If keyAEGuest is
false, then the fields keyAEUser and keyAEPassword (and optionally
keyAEAccount) should be used for session verification.

The keyAEAccount field is an optional field typically used for
logging onto mainframes. It can be omitted if it is not needed.

The keyAEPassword field is a password that is used to verify the
session. If the password does not match the password on the server
for that particular user, then the session creation should fail.

58 Apple Event Registry

typeTable—a table object

A typeTable descriptor record contains data to create or retrieve a cTable object.

Description To create a typeTable descriptor record, you coerce an Apple event
record containing the following fields into the equivalent typeTable
descriptor record.

Keyword Descriptor type Description

keyAEAccess typeEnumeration The access privileges

keyAEColumns typeAEList A list of typeColumn
descriptors

keyAEData typeAEList The data in the table as a list
of rows, with each row as a list
of typeCell descriptors

keyAEKind typeEnumeration The kind of table

keyAEName typeChar The name of this table

keyAEProtection typeEnumeration The table’s protection value

keyAERowList typeAEList A list of typeRow descriptors

Note that the Apple Event Manager can coerce any Apple event
record into any other descriptor type. A special coercion handler is
not required.

Data Size Variable

Notes The keyAERowList and keyAEColumns descriptors should not
include the keyAEData keyword. The keyAEData keyword should
only appear in the typeTable descriptor, and the data should be a
list of lists. Each element in the list is a row, and that row is a list
of typeCell descriptors containing only the unique information for
that cell.

The Database Suite 59

Key forms defined in the Database suite

Table 4 lists the key forms defined in the Database suite. The italicized words in
each example correspond to the key (the portion of the object specifier record that
distinguishes an object from other objects of the same class in the same container). For
more information about keys and key forms, see the Apple Event Manager chapter of
Inside Macintosh: Interapplication Communication.

■ Table 4 Key forms defined in the Database suite

Key form constant Description

formAbsolutePosition Specifies the position of an element in relation to the
beginning or end of its container (for example, “word 5 of . . . ”),
or specifies one or more elements with a constant defined in the
Apple Event Manager chapter of Inside Macintosh:
Interapplication Communication, such as kAEFirst (for
example, “the first word in paragraph 12 . . . ”) or kAEAll (for
example, “all the words in paragraph 12 . . . ”)

formName Specifies an element by its name (for example, “the
document named ‘MyDoc’ ”)

formPropertyID Specifies a property of an object by its four-character
property ID (for example, “the font of word 1”)

formRange Specifies a list of elements between two other elements
(for example, “the words between ‘Wild’ and ‘Zanzibar,’
inclusive”)

formRelativePosition Specifies an element immediately before or after a
container (for example, “the next word after the word
whose style is bold”)

formTest Specifies one or more elements that pass a test; values of
one or more properties or elements are tested (for
example, “the first paragraph that is centered and that
begins with the word ‘Wild’ ”)

60 Apple Event Registry

Comparison operators defined in the Database suite

Table 5 lists the comparison operators defined in the Database suite.

■ Table 5 Comparison operators defined in the Database suite

Comparison operator
constant Operator Description

kAEBeginsWith 'bgwt' The value of the first operand begins
with the value of the second operand
(for example, the string “operand”
begins with the string “opera”)

kAEContains 'cont' The value of the first operand
contains the value of the second
operand (for example, the string
“operand” contains the string “era”)

kAEEndsWith 'ends' The value of the first operand ends
with the value of the second operand
(for example, the string “operand”
ends with the string “and”)

kAEEquals '= ' The value of the first operand is
equal to the value of the second
operand

kAEGreaterThan '> ' The value of the first operand is
greater than the value of the second
operand

kAEGreaterThanEquals '>= ' The value of the first operand is
greater than or equal to the value of
the second operand

kAELessThan '< ' The value of the first operand is less
than the value of the second operand

kAELessThanEquals '<= ' The value of the first operand is less
than or equal to the value of the
second operand

The Database Suite 61

Constants defined in the Database suite

Table 6 lists the constants defined in the Database suite.

■ Table 6 Constants defined in the Database suite

Constant Value Constant Value

cDatabase 'cDB ' kAESort 'SORT'

cDBMS 'cDBM' kAEVariableRepeat 'rVar'

cHost 'cHST' kAscending $0000

cKey 'cKEY' kAverage 'AVRG'

cRowSelection 'crsl' kCount 'CONT'

cSelection 'csel' kCreateAccess $0008

cSession 'cSES' kCursor 'CURS'

enumAccess 'accs' kDeleteAccess $0010

enumGroupFunctions 'grup' kDescending $0001

enumLockTypes 'lock' kExclusiveLock 'EXLK'

enumProtection 'prtn' keyAEAccess 'pACS'

enumRepeatValues 'erpt' keyAEAccount 'pACT'

enumSortDirection 'sort' keyAEColumnList 'kCol'

enumTableTypes 'tblt' keyAEColumns 'COLS'

errAEDeadLock –10019 keyAECurrentSort 'pSRT'

errAELockRequestTimeout –10020 keyAEDefaultType 'deft'

errAENoSuchGroupFunction –10018 keyAEGroupColumns 'GRPC'

errAENoSuchSortType –10017 keyAEGroupFunctions 'GRPF'

errAENotUnique –10022 keyAEGuest 'pGST'

errAETransactionTimeout –10021 keyAEID 'ID '

kAEAbortTransaction 'ABRT' keyAEKind 'pKND'

kAEDatabase 'DATA' keyAEName 'pnam'

kAEDBSuite 'dbst' keyAENullsOK 'pNLS'

kAEFixedRepeat 'rFxd' keyAEPassword 'pPAS'

kAEFormulaProtect 'fpro' keyAEPrimaryKey 'pPKy'

kAEGroup 'GRUP' keyAERepeating 'pRPT'

kAEModifiable 'modf' keyAERepeatSize 'pRPS'

kAENonModifiable 'nmod' keyAERowList 'krls'

kAESingleValued 'rSgl' keyAESession 'SESN'

(continued)

62 Apple Event Registry

■ Table 6 Constants defined in the Database suite (continued)

Constant Value Constant Value

keyAESortElement 'SRTE' pCurrentSort 'pSRT'

keyAESortType 'SRTT' pFormula 'pfor'

keyAEUniqueValue 'pUNQ' pGuest 'pGST'

keyAEUser 'pUSR' pID 'ID '

kLinkset 'LINK' pKind 'pKND'

kMaximum 'MAX ' pLock 'pLCK'

kMean 'MEAN' pNullsOk 'pNLS'

kMinimum 'MIN ' pOpenTransaction 'pTRN'

kNoAccess $0000 pPassword 'pPAS'

kNoLock 'NOLK' pPrimaryKey 'pPKy'

kNumeric $0002 pRepeating 'pRPT'

kReadAccess $0001 pRepeatSize 'pRPS'

kSharedLock 'SHLK' pRowIDs 'pRWS'

kStdDev 'STDV' pUniqueValue 'pUNQ'

kSum 'TOTL' pUser 'pUSR'

kTable 'TABL' pValue 'vlue'

kTextual $0000 typeCell 'ccel'

kUpdateAccess $0004 typeColumn 'ccol'

kView 'VIEW' typeKey 'cKEY'

kWriteAccess $0002 typeRow 'crow'

pAccess 'pACS' typeRowSelection 'crsl'

pAccount 'pACT' typeSession 'cSES'

63

 Index

A

Abort Transaction 2, 4, 5, 6
Apple event constructs 2
Apple events, defined in the

Database suite 4–7,
10, 12

B

Begin Transaction 3, 4, 5, 6, 7
Begins With comparison

operator 60

C

cCell 13, 16, 23, 37, 49
cColumn 13, 21, 24, 34, 42, 50
cDatabase 13, 29, 31
cDBMS 13, 28, 31
cHost 13
cKey 13, 42, 50
Clone 24, 27, 50
cObject 16, 21, 25, 28
comparison operators,

defined in the
Database suite 60

constants, defined in the
Database suite 61-62

Contains comparison
operator 60

Core suite transaction
model 2

Count Elements 24, 27, 29, 50
Create Element 4, 27, 50
cRow 36, 42, 50
cRowSelection 14, 40
cSession 6, 7, 14, 26, 29, 31
cSession object 2
cTable 14, 26, 38, 40
cText 16, 28
cType 16, 21, 28

D

database management
system 2

Database object class 25
Database suite 1-62

Apple events defined in
4-7, 10, 12

comparison operators
defined in 60

constants defined in 61-62
descriptor types defined

in 51
key forms defined in 59
object classes defined in

13-18, 24, 27, 29, 32,
39, 43, 46

object inheritance
hierarchy in 14

Database suite defines
Apple events 2

DBMS 2, 16
Delete 24, 27, 50
descriptor types, defined in

the Database suite 51
Do Objects Exist 18, 24, 27,

29, 50

E

End Transaction 5
Ends With comparison

operator 60
enumAccess 21, 25
enumRepeatValues 23
Equal To comparison

operator 60
errAEEventFailed 6, 8, 10,

12
errAEEventNotHandled 5
errAEInTransaction 8
errAENoSuchGroupFunction

10

errAENoSuchSortType 12
errAENoSuchTransaction 6,

8

F

formAbsolutePosition key
form 59

formName key form 59
formPropertyID key form 59
formRange key form 59
formRelativePosition key

form 59
formTest key form 59

G, H, I, J

Get Class Info 24, 27, 29, 50
Get Data 4, 18, 24, 27, 29, 50
Get Data Size 3, 18, 24, 27,

29, 50
Greater Than comparison

operator 60
Greater Than or Equal To

comparison operator 60
Group 4, 24

K, L

kAEAbortTransaction 5
kAEBeginsWith comparison

operator 60
kAEBeginTransaction 7
kAEContains comparison

operator 60
kAEDatabase 5, 9, 11
kAEEndsWith comparison

operator 60
kAEEquals comparison

operator 60
kAEFixedRepeat 24
kAEGreaterThan comparison

operator 60

64 Apple Event Registry

kAEGreaterThanEquals
comparison operator 60

kAEGroup 9
kAELessThan comparison

operator 60
kAELessThanEquals

comparison operator 60
kAEMiscStandards 7
kAESingleValued 24
kAEVariableRepeat 24
kCreateAccess 21, 25, 36,

40, 48
key field 3
key forms, defined in the

Database suite 59
keyAEAccess 53, 55, 56, 58
keyAEAccount 57
keyAECellList 53, 55
keyAEColumnList 54
keyAEColumns 58
keyAECurrentSort 54
keyAEData 4, 52, 56, 58
keyAEDefaultType 52
keyAEFormula 52, 53
keyAEGroupColumns 9
keyAEGroupFunctions 9, 10
keyAEGuest 57
keyAEID 55
keyAEInsertHere 9, 10
keyAEKind 56, 58
keyAEName 52, 53, 54, 55,

56, 58
keyAENullsOK 53
keyAEPassword 57
keyAEProtection 52, 53, 55,

56, 58
keyAERepeatSize 52
keyAEResult 10
keyAERowList 58
keyAESession 46
keyAESortElement 11, 12
keyAESortType 11
keyAEUniqueValue 53
keyAEUser 57
keyDirectObject 9, 11
keyErrorNumber 10
kWriteAccess 21, 25, 36,

40, 48

M

Move 24, 50

N

NULL 29

O

object classes, defined in the
Database suite 13-24,
27, 29, 32, 39, 43, 46

object inheritance hierarchy
15

for Database suite 14
object specifiers, key forms

for 59

P, Q, R

pAccess 21, 25, 36, 40, 48
pAccount 44
pBestType 16, 21, 25, 28, 30,

33, 36, 40, 44, 48
pClass 16, 21, 25, 28, 30, 33,

36, 40, 44, 48
pCurrentSort 33
pDefaultType 16, 21, 25, 28,

30, 36, 40, 44, 48
pFormula 16, 22
pGuest 45
pID 37, 45
pKind 41, 49
pLock 17, 22, 26, 37, 41, 49
pName 17, 22, 26, 28, 30, 34,

37, 41, 49
pNullsOk 22
pOpenTransaction 45
pPassword 45
pPrimaryKey 34
pProtection 17, 22, 37, 41, 49
pRepeating 23
pRepeatSize 17, 23
pRowIDs 41
pUniqueValue 23, 34
pUser 45
pValue 17

S

Set Data 4, 18, 24, 27, 29, 50
Sort 4, 50

T, U, V, W, X, Y, Z

the End Transaction 6
transaction ID 5, 7
Transaction Terminated 5, 6
typeAEDescList 25, 28, 30
typeAEList 52, 53, 54, 55, 58
typeBoolean 53, 57
typeCell 16, 51, 52
typeChar 52, 53, 54, 55, 56,

57, 58
typeColumn 21, 51
typeEnumeration 9, 52, 53,

55, 56, 58
typeInsertionLoc 9
typeIntlText 8
typeKey 33, 51
typeLongInteger 52
typeObjectSpecifier 7, 9, 46,

56
typeRow 51, 55
typeRowSelection 40, 51, 56
typeSession 51
typeShortInteger 54
typeTable 48, 51, 58
typeType 52

THE APPLE PUBLISHING SYSTEM

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh computers
and Microsoft Word software. Proof pages
were created on an Apple LaserWriter IINTX
printer. Final pages were created on the
Varityper VT600 imagesetter. PostScript®,
the page-description language for the
LaserWriter, was developed by Adobe
Systems Incorporated.

Text type and display type are Palatino®.
Bullets are ITC Zapf Dingbats®. Some
elements, such as program listings, are set
in Apple Courier.

Writer: Amr Eissa
Illustrator: Janet Anders

